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H I G H L I G H T S

� We model the stable expansion in gas-fluidized beds of different diameters.
� We solve the model and analyze the results using the Richardson and Zaki equation.
� We study the role of enduring particle–particle contacts in uniform gas-fluidized beds.
� We study the role of wall friction in uniform gas-fluidized beds.
� We conduct fluidization/defluidization experiments to validate our theoretical results.
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a b s t r a c t

The Richardson and Zaki (1954, Sedimentation and fluidization. Trans. Inst. Chem. Eng. 32, pp. 35–53.)
equation has been used extensively to investigate the expansion profiles of homogeneous gas-fluidized
beds. The experimental value of the parameter n appearing in the equation indicates how significantly
interparticle forces affect the expansion of these beds, revealing the relative importance of these forces
with respect to the fluid dynamic ones. In this work, we modeled the stable expansion of gas-fluidized
beds of different diameter, accounting for enduring contacts among particles and wall effects. We solved
the model numerically to obtain the bed expansion profiles, back-calculating from them the values of the
parameter n. For all the cases considered, we observed that the values of n are higher than those
obtained by purely fluid dynamic correlations, such as those advanced by Richardson and Zaki, and Rowe
(1987, A convenient empirical equation for estimation of the Richardson and Zaki exponent. Chem. Eng.
Sci. 42, pp. 2795.). This effect was more pronounced in beds of smaller diameter. To validate our model,
we carried out fluidization and defluidization experiments, analyzing the results by means of the
Richardson and Zaki equation. We obtained a reasonable agreement between numerical and experi-
mental findings; this suggests that enduring contacts among particles, which are manifestations of
cohesiveness, affect homogeneous bed expansion. This effect is amplified by wall friction.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Gas-fluidized beds generally exhibit heterogeneous structure,
with rising pockets of gas named bubbles; liquid-fluidized beds,
conversely, usually maintain a smooth appearance, expanding
progressively as the fluid flow rate is increased. These two types
of fluidization behaviors are respectively termed aggregative or
bubbling (for gas-fluidized beds) and particulate or homogeneous
(for liquid-fluidized beds). Although gas-fluidized beds generally
exhibit aggregative fluidization, small particles with low density

fluidized by gas display an interval of smooth expansion when
the flow rate of fluid exceeds the minimum fluidization value
(Tsinontides and Jackson, 1993). Particles with this stable behavior
are classified by Geldart (1973) as Group A powders.

The physical origin of the stable behavior of Group A powders
has been studied by several researchers. Some ascribed the
stability of uniform suspensions to the effect of interparticle forces,
while others sought for a purely fluid dynamic explanation.
Jackson (1963) carried out a fluid dynamic stability analysis, but
was unable to predict the stable behavior of gas-fluidized beds of
fine materials. Also Garg and Pritchett (1975) investigated the
dynamics of gas-fluidized beds theoretically, reporting that stabi-
lity can be predicted by adding to the particle linear momentum
balance equation a fluid dynamic force proportional to the spatial
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gradient of the fluid volume fraction. Foscolo and Gibilaro (1984)
derived a stability criterion based on fluid dynamic arguments,
resorting to the stability theory of Wallis (1969), to show that
stability depends on the relative magnitude of the kinematic and
dynamic waves that propagate in the bed (Mazzei et al., 2006;
Mazzei, 2008). Similarly to Garg and Pritchett (1975), they
reported that the force acting on the particles (in particular the
drag component), present in the particle linear momentum
balance equation, should contain an additional term proportional
to the spatial gradient of the bed void fraction. Batchelor (1988)
held a view which is similar in part to that of Foscolo and Gibilaro
(1984). He proposed a predictive criterion for stability based on
fluid dynamic considerations. But he did not support the idea that
stability is a result of the dependence of the drag force on the void
fraction gradient, as Foscolo and Gibilaro (1984) maintained; he
showed instead that stability can arise from random fluctuations
in the particle velocity.

Reitema (1973) and Mutsers and Reitema (1977), conversely,
adopted the stability criterion of Wallis (1969) to show that the
stable behavior observed in Group A powders may be attributed to
the cohesive forces among particles. Their experiments show that
when a uniform gas-fluidized bed is tilted over a horizontal axis, it
remains stable until a critical tilting angle is reached, and at this
angle the bed surface suddenly shears off. This observation
demonstrates that uniform gas-fluidized beds maintain a mechan-
ical structure that is caused by sustained contacts among particles.
Mutsers and Reitema (1977) further argued that, if the stability of
gas-fluidized beds is due to fluid dynamic forces, the voidage at
minimum bubbling should depend on the ratio g=μ2g; conversely, if
the stability is due to a network of interparticle contacts, it should
depend on g=μg . Their experimental results showed that the latter
holds, validating their claim that stability results from the action of
interparticle forces.

Tsinontides and Jackson (1993) also investigated the mechan-
ism of stabilization of gas-fluidized particles. They carried out
fluidization and defluidization experiments of fine powders about
complete cycles, from zero gas flow rate up to flow rates where
bubbles start appearing in the bed and then back to zero. They
measured the bed depth and pressure drop at each stage, deter-
mining the solid volume fraction profiles by employing a high-
resolution gamma-ray densitometer. Their results revealed the
presence of yield stress throughout the range of stable behavior.
They thus concluded that the stability of gas-fluidized particles is
due to the presence of particle–particle contact forces.

While attempting to explain the physical origin of stability in
gas-fluidized beds, Fortes et al. (1998) used a theoretical approach
to show that the stability of these systems has two distinct origins:
one that is fluid dynamic, arising from the interactions between
the solid and fluid phases, and one that is not, arising from
interparticle forces. They proposed a mechanistic description for
the latter, regarded as a stabilizing agent of fluidization, showing
that clustering and particle dispersion in suspensions result from
the competition between interparticle and fluid dynamic forces.

While the arguments among researchers on the physical origin
of the stable behavior of gas-fluidized beds continue, some
pertinent questions about these systems arise. Do homogeneous
gas-fluidized beds consist of particles that float freely without
interacting? Furthermore, if we deny the existence of particle–
particle contact forces in these beds, how do we explain with fluid
dynamic considerations alone the presence of particle interactions
that often result in the formation of clusters? Valverde et al.
(2003b) sought to answer these probing questions in their
experimental work on the dynamics of gas-fluidized beds. They
reported that the interval of stability observed in gas-fluidized
Group A particles has two regimes, one with ‘solid-like’ and
another with ‘fluid-like’ behavior. Castellanos (2005) examined

the distinctive features of these regimes in the fluidization–
defluidization experiments of xerographic toner particles. He
reported that the solid-like regime is characterized by the exis-
tence of a network of permanent particle–particle contacts that
stabilizes the bed against small perturbations. In this regime, the
bed behaves like a weak solid with non-vanishing compressive
and tensile yield stress. In the fluid-like regime, conversely,
particle contacts are absent and the bed behaves like a low-
viscosity liquid whose upper surface remains horizontal when
tilted. These observations strengthen the idea that the stability of
gas-fluidized beds may have two distinct origins: one purely fluid
dynamic and one arising from particle contact forces.

In this work, we attempt to provide further insight into the
stable behavior of homogeneous gas-fluidized beds. We believe
that the effect of cohesiveness in these systems is reflected by the
presence of enduring contacts among particles. Such contacts are
characteristic of homogeneous gas-fluidized beds in the solid-like
regime; therefore, we focused our analysis primarily on this
regime. We carried out fluidization and defluidization experi-
ments, analyzing the results by means of the Richardson and
Zaki (1954) equation. We solved the one-dimensional linear
momentum balance equations of Jackson (2000) for the fluid
and solid phases, accounting for enduring contacts among parti-
cles, relating the numerical predictions of the model to our
experimental findings. Now, to begin, we review the Richardson
and Zaki equation, discussing on its ability to predict the expan-
sion profiles of gas-fluidized beds.

2. Richardson & Zaki equation and homogeneous expansion of
gas-fluidized powders

Richardson and Zaki (1954) advanced an empirical relationship
between the sedimentation velocity u of monodisperse particles in
a liquid and the void fraction ε of the dispersion. The equation
reads

u¼ utε
n ð1Þ

where n is an empirical parameter which depends on the free fall
particle Reynolds number Ret, and ut is the unhindered terminal
settling velocity of the particles. Several correlations have been
proposed for determining the value of n. In particular, we report
the empirical relationship proposed by Rowe (1987), which we
used in this work

n Retð Þ ¼ AþB� 0:175Re3=4t

1þ0:175Re3=4t

ð2Þ

Here A and B are the values ascribed to n in the limits of viscous
and inertial regimes, respectively. Richardson and Zaki (1954) take
A and B to be equal to 4.65 and 2.39, respectively; Rowe (1987)
employs the values of 4.70 and 2.35, while Khan and Richardson
(1989) and Gibiliaro (2001) use 4.80 and 2.40, respectively. The
unhindered terminal settling velocity ut, on the other hand, can be
obtained in the creeping flow regime using the well-known Stokes
equation

ut ¼
ðρp�ρf Þgd2p

18μf
ð3Þ

Here μf and ρf are the viscosity and density of the fluid, respec-
tively, dp and ρp are the particle diameter and density, respectively,
and g is the gravitational acceleration.

The Richardson and Zaki (1954) equation and the correlations
proposed for estimating the exponent n are found to hold for liquid-
fluidized systems, where they are very accurate in providing an
excellent account of the expansion profiles of such systems. But
questions were raised regarding the applicability of this correlation
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to gas-fluidized systems. While trying to answer these questions,
Godard and Richardson (1968) conducted several experiments on
powders fluidized by air and characterized by extremely narrow
size distributions. They found that the relationship between the
superficial fluid velocity and the void fraction could be expressed in
the Richardson and Zaki form, given in Eq. (1); however, the values
of the exponent n for all the powders tested were found to be
greater than those predicted by Eq. (2). They also found that the
values of the parameter ut determined by extrapolating the loga-
rithmic void fraction-velocity plots were greater than the terminal
velocity of the particles. To emphasize this, we shall denote these
experimental values as nn and un

t . The latter, as said, differ from the
fluid dynamic values of n and ut observed in liquid-fluidized beds
and predicted by Eqs. (2) and (3), respectively.

Massimilla et al. (1972) and Donsi and Massimilla (1973)
investigated the homogeneous expansion of fine particles flui-
dized by gas and report that the value of the exponent nn is
between 5.4 and 7.0. Again, these values are outside the range
predicted by the empirical correlations reported above for liquid-
fluidized beds.

Lettieri et al. (2002) studied the homogeneous bed expansion
of FCC catalysts fluidized by gases at high temperatures. They
employed the Richardson and Zaki equation to describe the
homogeneous expansion of these particles, estimating the values
of the parameters in the equation. These values were compared
with those of n and ut predicted by Eqs. (2) and (3), respectively;
for all the FCC catalysts considered, they found that the former
(that is, nn and un

t ) were much higher than the latter (that is, n and
ut). They attributed this to the formation of clusters in the bed,
which are caused by the presence of interparticle forces.

In the same vein, Geldart and Wong (1984, 1985) investigated
the bed expansion characteristics of Group A powders. They
fluidized different materials with different gases and found the
values of nn between 4 and 60, showing that materials with higher
cohesiveness have greater values of the exponent. Moreover, they
observed that in non-cohesive systems, the value of the terminal
velocity given by the Stokes equation is very close to that
extrapolated from the logarithmic plot of the Richardson and Zaki
equation, whereas for cohesive systems it is greater.

All the foregoing experimental evidence, and much more not
reported here, allows us to conclude that the Richardson and Zaki
equation is capable of describing the bed expansion of gas-
fluidized particles, but the values of the equation parameters are
greater than those required for liquid-fluidized systems (in gen-
eral, fluidized systems in which fluid dynamic forces dominate
over interparticle forces). Researchers have presented compelling
experimental evidence to show that the greater values obtained
for the parameters are indications of the presence of interparticle
forces. These observations appear to support the idea that these
forces play a crucial role in the stabilization of gas-fluidized fine
powders.

We should note that the expansion of non-cohesive homo-
geneous powders depends only on the drag force exerted by the
fluid on the particles, in addition to the effective weight of the
latter; as a consequence, the values of n and ut (which refer to
liquid-fluidized beds, in which interparticle forces are negligible
compared to their fluid dynamic counterpart) are directly related
to the drag force magnitude. Conversely, the expansion of cohesive
powders depends not only on the fluid dynamic forces just
mentioned, but also on the forces that the particles exert on one
another; accordingly, the values of nn and un

t (which refer to gas-
fluidized beds, in which interparticle forces are often as important
as their fluid dynamic counterpart) lump together the effects of
both forces and are not directly related only to the drag force
magnitude. This observation is important when one intends to
model the drag force.

In this work, our goal is to investigate the homogeneous regime
in gas-fluidized beds, intending to show that the stress trans-
mitted through sustained contacts among particles plays a role in
the bed homogeneous behavior and is responsible for the higher
values of nn and un

t observed experimentally for fine particles. This
will offer further insight into the dynamics of stable expansion in
fluidized beds. The conventional idea is that these beds consist of
particles freely suspended in the fluid with no form of particle–
particle interactions. Nevertheless, as we shall see, homogeneous
fluidized beds are not necessarily systems with uniform solid
volume fraction which are entirely supported by the fluid: this is
only observed in beds that are in the fluid-like regime. More often,
homogeneous beds are in the solid-like regime, and so are only
partly fluidized, presenting a solid volume fraction gradient along
the vertical bed axis. One often uses the Richardson and Zaki
(1954) equation to describe the bed expansion of any kind of
homogeneous bed, although the equation was derived merely for
beds in the fluid-like regime, in which interparticle forces are
absent or negligible. This aspect has to be investigated in more
detail. This is what we intend to do. To this end, we employed a
theoretical model to analyze the expansion of gas-fluidized pow-
ders, taking into consideration enduring particle–particle contacts.
We used the model to determine the axial void fraction profiles
through the bed at different superficial gas velocities. By plotting
the mean void fraction against the superficial gas velocity in the
Richardson and Zaki form, we computed the values of the para-
meters n and ut which appear in the correlation. We then
conducted fluidization and defluidization experiments to validate
our theoretical results. Before presenting the model, we briefly
describe the processes of fluidization and defluidization, on which
the remaining part of this work focuses.

3. The processes of fluidization and defluidization of fine
particles

In describing these processes, we find it more convenient to
examine defluidization first. Consider a fluid bed of small, light
particles, such as those belonging to Group A of the Geldart (1973)
classification. We assume that the bed is homogeneous and in the
fluid-like regime, so that no enduring contacts are present among
the particles. These, in consequence, are fully supported by the
fluid. Being the bed homogeneous, the volume fraction of solid,
denoted as ϕ, is uniform throughout it. If we slightly decrease the
fluid flow rate, the bed contracts, remaining uniform and in the
fluid-like regime, until ϕ attains the value needed by the drag force
to balance the effective weight of the bed. If we continue to
decrease the fluid flow rate, the volume fraction of solid will
eventually reach a value ϕmin at which the granular material is able
to resist compression. When the bed reaches this compaction, it
enters the solid-like regime, in which particles do form enduring
contacts and the bed starts behaving like a weak solid. The more ϕ
exceeds the value ϕmin (that is, the more compact the bed), the
larger the stress needed to cause compressive yield (that is, further
bed compaction). We assume that the compressive yield stress
tends to infinity at some value ϕmax; when the bed reaches this
compaction, it cannot compact further, no matter how large the
compressive stress to which it is subjected becomes. Hence, with
Tsinontides and Jackson (1993), we can model the compressive
yield stress using the following constitutive equation

σcðϕÞ ¼ cðϕ�ϕminÞa
ðϕmax �ϕÞb ϕminoϕoϕmax;

¼ 0 ϕoϕmin ð4Þ
where a, b and c are positive constants which must be determined
experimentally. As said, ϕmin denotes the lowest solid volume
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fraction at which the assembly of particles is capable of supporting
stress through a structure of enduring contacts, whilst ϕmax

denotes the highest solid volume fraction that one can obtain in
a defluidization process without resorting to mechanical means.
The interval between ϕmax and ϕmin is largely determined by the
cohesiveness of the material. For large, smooth, non-cohesive
particles, such as those belonging to Groups B and D of the
Geldart (1973) classification, ϕmax and ϕmin are very close; this is
because particles are brought to random close packing under very
small compressive stress, insofar as they are unable to form a
network of enduring contacts. For small, rough, cohesive particles,
which are able to form such a network, the interval between ϕmax

and ϕmin is instead much larger. These groups of particles are able
to form extended structures which can resist compressive stress
over a broader range of particle concentration. This might explain
why, during fluidization, they can expand homogeneously over a
wide range of superficial gas velocity before transiting to the
bubbling fluidization regime. In this work, we focus on this second
group of particles.

When the bed enters the solid-like regime, its structure is
uniform – the solid volume fraction being equal to ϕmin every-
where. In this condition, the bed is still fully supported by the
fluid. But when the fluid flow rate is decreased further, the bed
compacts non-uniformly, the mean bulk density increasing pro-
gressively from the top of the bed to its bottom: a solid volume
fraction profile develops along the vertical bed axis. In particular, if
we assume that the bed is in a condition of incipient yield
everywhere, in each location the solid volume fraction takes the
value required by the compressive yield stress to equate the
compressive stress present at that location. The bed is only
partially fluidized, being partly supported by the distributor plate
and partly by the frictional forces acting between the walls of the
vessel and the particles. And even if the bed may look homo-
geneous to the naked eye, it is not. When the fluid flow rate
vanishes, the bed is completely defluidized and fully supported by
the distributor plate and the vessel walls; also in this case, the bed
is inhomogeneous, the solid volume fraction increasing towards
the bed bottom.

Consider now the bed of granular material that is resting on the
distributor plate. If an upward flow of gas is established, the bed
structure, and in particular the solid volume fraction profile along
the vertical axis of the bed, initially remains unchanged, the
pressure drop through the bed rises, and the particles become
partly supported by the drag force exerted on them by the fluid. At
a sufficiently large flow rate, the bed weight is entirely supported
by the drag force, but in general the bed retains its structure,
without dilating (in other words, it does not fluidize). A further
increase in gas flow rate generates tensile stress within the
granular material. When the latter exceeds the tensile yield stress
which the material may sustain, the bed breaks and fluidization
begins. When this happens, the pressure drop, and hence the drag
force, is equal to the sum of the weight of the bed and the tensile
yield stress which must be exceeded before the bed dilates
(Tsinontides and Jackson, 1993; Watson et al., 2001).

The condition for the bed to dilate, according to Tsinontides
and Jackson (1993), is first met at the contact surface between the
bed and the distributor plate; thus, the fluidization process
commences by the fracture of the bed at its lowest point. When
this happens, the stress at the bottom and top of the bed vanishes
and the bed accelerates upwards. The acceleration is caused by the
imbalance between the bed weight and the drag force; the latter,
as said, is greater than the former when the bed detaches from the
distributor plate. As the bed travels upwards, its bottom part,
which is a free surface, gradually erodes, generating a rain of
particles behind it. These particles recompact to form a new, more
dilute bed. While the fluid flow rate is kept constant, the original

packed bed continues to travel upward, gradually becoming
shorter in length as its lower region progressively disappears,
until it is entirely replaced by the new bed (for low fluidization
velocities, near minimum fluidization, the behavior complicates
slightly; refer to Tsinontides and Jackson (1993)). This dynamic
process is complex, and since we also lack an exact understanding
of the mechanics of erosion, predicting how the newly-formed bed
is structured (particularly, how the solid volume fraction varies
along the bed axis) is not possible. We do not expect the bed to be
at incipient yield conditions, but nothing can guarantee that it is
fully supported by the fluid (and therefore fully fluidized).

We conclude this section by pointing out that the values of
ϕmax and ϕmf (the solid volume fraction at minimum fluidization)
are expected to be very close, because the bed does not expand
while it is fixed. If a powder does not enter the fluid-like regime
during homogeneous fluidization, then ϕmin and ϕmb (the solid
volume fraction at minimum bubbling) are expected to be iden-
tical; conversely, if a powder enters the fluid-like regime, ϕmin is
expected to be larger than ϕmb.

4. Theoretical analysis

The theoretical analysis is based on the one-dimensional model
derived by Jackson (2000). We report the main equations of the
model, referring to the literature for details. The linear momentum
balance equation for the fluid phase in the regime of stable bed
expansion reads

dp
dz

¼ ϕðρp�ρf Þg
1�ϕð Þn

u
ut

þρf g ð5Þ

where p is the fluid pressure and z is the vertical coordinate
measured downwards from the upper surface of the bed. Notice that
the Richardson and Zaki parameters featuring in this equation are
the fluid dynamic ones (that is, n and ut) because the drag force is
entirely unrelated to particle–particle interaction forces. If we used
the experimental values nn and un

t , we would no longer be
modeling the drag force; we would be modeling an effective force
combining the drag and interparticle forces. This was mentioned
in Section 2. Accordingly, to calculate the values of n and ut in Eq.
(5), we employed Eqs. (2) and (3), which are purely fluid
dynamical and unrelated to particle–particle contacts.

The linear momentum balance equation for the solid phase in
the regime of stable bed expansion, which, as for the fluid, reduces
to a force balance, reads

dσ
dz

7
4
D
μjσ ¼ ϕðρp�ρf Þg 1� 1

1�ϕð Þn
u
ut

� �
ð6Þ

where σ is the zz-component of the stress, D is the bed diameter, μ
is the coefficient of wall friction, j is the Janssen coefficient, while u
is the superficial velocity of the fluid. The first term on the left-
hand side relates to the forces transmitted via particle–particle
contacts. In this work, we aim to investigate how their presence
influences the behavior of the bed, in particular its homogeneous
expansion. The second term represents the frictional force exerted
on the particle assembly by the walls of the vessel containing the
fluid bed; the positive sign applies to the defluidization process, in
which the bed slowly consolidates, while the negative sign applies
to the fluidization process. The term on the right-hand side
combines the gravitational force acting on the particles and the
fluid–particle interaction force.

In Eq. (6) there are two unknown functions: σ(z) and ϕ(z). To
find the solid volume fraction profile ϕ(z) in the bed, we need to
express the normal stress σ as a function of ϕ and then substitute
this expression in the linear momentum balance equation. During
defluidization, the variables σ and ϕ are related, if we assume that
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the bed is in conditions of incipient yield everywhere; thus,
following Tsinontides and Jackson (1993), we can employ Eq. (4).
In Section 5, we will report how we obtained the values of the
constants in the equation. Consequently, for a defluidization
process, we can write

dϕ
dz

¼ dσ
dz

dσ
dϕ

� ��1

¼ ðρp�ρf Þϕg 1� u
ut

1
1�ϕð Þn

� �
�4
D
μjσ

� �
dσ
dϕ

� ��1

ð7Þ

where the derivative of σ(ϕ) can be calculated by means of Eq. (4).
The values of j and μ are related to the angle of internal friction
φ as follows:

j¼ ð1� sin φÞ
ð1þ sin φÞ ; μ¼ kc

σ
þ tan φ ð8Þ

where kc is the particle–wall cohesion coefficient, which we
assume to be negligibly small since no strong cohesion is present
between the particles and the steel walls of the vessel (Mabrouk
et al., 2008). Note that, as mentioned, the angle of internal friction
is employed also to model the particle–wall coefficient μ, as done
in several other works in the literature (see, for instance, Mabrouk
et al. (2008); Cagnoli and Manga (2004); Hartl and Ooi (2011)).

To calculate the solid volume fraction profile in the bed at each
operating condition, we integrate Eq. (7), using the following
boundary condition

z¼ 0; ϕ¼ ϕmin ð9Þ

This condition is given at the lower limit of the integration
domain, which coincides with the top surface of the bed. The
upper limit of the integration domain, which coincides with
the bottom surface of the bed, located at z¼H, where H denotes
the bed height at the given operating condition, is unknown at the
start of the numerical integration. To determine it, we start
integrating Eq. (7) from the top of the bed, terminating the
integration at the value of H which satisfies the following condi-
tion

ρp

Z H

0
ϕðzÞdz¼m ð10Þ

where m is the particle mass loading, that is, the mass of particles
per unit cross-sectional area. Thus, by imposing the condition
reported in Eq. (10) on the solution of Eq. (7), we can determine
the solid volume fraction profile ϕ(z) and the bed height H for a
given superficial fluid velocity. Knowing ϕ(z) allows us to integrate
Eq. (5) to obtain the fluid pressure profile at different values of u.

In the fluidization process, if we assume that the tensile yield
stress of the powder is vanishingly small, we can argue that, as the
velocity is gradually increased from zero, σ at the bottom of the
bed decreases to finally vanish when the minimum fluidization
velocity um is reached. Following this argument, we can determine
the value of um as follows. During fluidization, Eq. (6) reads

dσ
dz

�4
D
μjσ ¼ ðρp�ρf Þϕg 1� u

ut

1
ð1�ϕÞn

� �
ð11Þ

In this case, σ and ϕ are no longer functionally related; so, Eq. (11)
cannot be solved to obtain ϕ(z) at each superficial gas velocity, as we
did during the defluidization process. For fluidization velocities lower
than the minimum fluidization velocity, this does not present a
problem, because the bed retains the structure acquired during the
defluidization process, and therefore the solid volume fraction profile
ϕ(z) is known, being equal to that obtained during defluidization for
a zero fluid velocity. This allows us to solve Eq. (11) to determine the
stress profile σ(z). Once this is known, we can find the minimum
fluidization velocity um, because, as reported in Section 3, we know
that at minimum fluidization σ vanishes at the top and bottom of the

bed. The velocity is given by

um

ut
¼

Z H

0
ϕe�pzdz

� � Z H

0

ϕ

ð1�ϕÞne
�pzdz

� ��1

ð12Þ

where p� 4μj/D. This equation allows calculating the value of the
minimum fluidization velocity given the axial profile ϕ(z). The latter,
as said, is the solid volume fraction profile obtained in the defluidiza-
tion process when the gas flow rate is zero (that is, the bed is fully
defluidized).

5. Experimental

We investigated two types of powders: Powder 1 (Alumina)
and Powder 2 (Ballotini). Their properties are reported in Table 1.
For each powder we performed two sets of experiments: first,
fluidization and defluidization experiments, which allowed us to
determine the pressure drop and bed height profiles in the bed;
second, experiments aimed to determine the compressive yield
stress σ of the powder, which allowed us to obtain the values of
the parameters appearing in Eq. (4).

5.1. Fluidization and defluidization experiments

We carried out fluidization and defluidization experiments in
three different tubes, made of stainless steel, with nominal
internal diameters of 10 cm, 5 cm and 2.5 cm, and height of 1 m.
We chose stainless steel as vessel material to minimize electro-
static effects. The latter usually arise as a result of continuous
contact and separation between the particles and the vessel walls.
Electrostatic effects create serious problems in fluidized beds,
making particles adhere to the wall and in some cases generating
channeling. One method suggested by Katz and Sears (1969) to
minimize these effects is to increase the humidity of the fluidizing
gas. We did not resort to this method, because it would increase
the cohesiveness of the particles, making it impossible to distin-
guish between the effects of air humidity and those (that continue
to be) present also in dry conditions. In any case, the electrostatic
effects were reduced significantly with the use of stainless steel as
vessel material. The gas distributor, made of a 5 mm-thick sintered
mesh with pore size of 20 μm, was mounted between the tubes
and the windbox (whose diameter, in each case, was equal to that
of the tube). We used dry air, from compressed air cylinders, as
fluidizing medium, passing it through a pressure regulator to
minimize flow fluctuations. We measured the gas flow rates by
means of flow meters and the pressure drops across the bed by
means of a digital manometer.

To visualize the bed, we used a pulsed x-ray system consisting
of an x-ray generator, an x-ray tube and an image intensifier,
respectively labeled 1, 2 and 3 in Fig. 1. The x-ray tube and the
image intensifier are mounted on a twin column suspension unit
that allows them to be moved vertically or horizontally across the
room. The horizontal movement allows us to adjust the distance
between the x-ray tube and the image intensifier, while the
vertical movement allows us to visualize different heights in the
fluidized bed. Each column can be moved vertically independently

Table 1
Physical properties of powders 1 and 2.

Powder 1 Powder 2

Mean particle diameter (lm) 53 66
Particle density (kg/m3) 1730 2500
Angle of internal friction, φ 401 131
Minimum fluidization velocity (cm/s) 0.113 0.633
Minimum bubbling velocity (cm/s) 0.301 0.971
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or as a synchronized pair. The x-rays are produced from a high-
voltage source ranging from 40 to 150 kV and frequencies up to
72 Hz, pulsed at 25 fps. The x-ray pulses, synchronized with an
image capturing device, pass through the fluid bed. The absorption
of the x-rays by the latter is proportional to the nature and
quantity of the material along its path. The x-ray beam that
emerges from the fluid bed is amplified by the image intensifier
by converting the x-ray absorption pattern to an image of
sufficient brightness and contrast. These are then recorded by a
video camera. The images from the camera are sent by fiber optics
to a dual processor industrial PC that has the capacity to store real-
time image sequences of high quality.

To start the experiments, we placed a known mass of particles
in the tube. We aerated the bed at low flow rate for about 30 min
to ensure that the particles were moisture-free. We then increased
the flow rate, allowing the bed to bubble gently for a period of
time. After, we decreased the air flow in small intervals until the
bed was entirely defluidized. At each step, we let the bed
equilibrate, subsequently measuring the bed height and pressure
drop. After completing the defluidization process, we increased
the air flow rate in small increments, measuring at each step the
bed height and the pressure drop through the bed until the latter
entered the bubbling regime. The pressure drop curves, for
different vessel diameters, are reported in Fig. 2 for both fluidiza-
tion and defluidization processes; the figure refers to Powder 1,
but analogous trends are observed for Powder 2. The profiles
obtained numerically are also shown; we will discuss them later
on in Section 6.

5.2. Determination of the powder compressive yield stress

To determine the compressive yield stress of the powders
investigated, we adopted a procedure proposed by Valverde
et al. (1998). We placed a known mass of particles in the tube
with diameter of 10 cm. We allowed the bed to bubble gently for a
while, and then we slowly reduced the gas flow rate until it
became entirely defluidized. We finally measured the bed height.
We then added a known mass of particles to the bed, letting the
latter bubble gently for a while, then, we slowly defluidized it,
recording its resting height. By repeating this procedure, we

obtained the bed height H as a function of the mass loading m.
We then calculated the mean solid volume fraction ϕðHÞ for each
value of H using this relation

ϕðHÞ ¼ m
ρpgH

ð13Þ

The variation with H of the experimental values obtained for ϕ,
along with a curve fit, is shown in Fig. 3 for Powders 1 and 2. We
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Fig. 2. Normalized pressure drop, defined as ΔP/(mg), against superficial gas
velocity for Powder 1. ΔP is the pressure drop, m is the mass of the powder per
unit cross-sectional area of the tube and g is the gravitational acceleration. Figures
A, B and C refer to tube diameters of 10 cm, 5 cm and 2.5 cm, respectively.

Fig. 1. Experimental set-up showing the x-ray equipment for visualizing the
fluidized bed. (1) x-ray generator, (2) x-ray tube, (3) image intensifier.
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see that ϕ increases rapidly when the bed is shallow, remaining
approximately constant when it becomes sufficiently deep. This
constant value gives a rough estimate of ϕmax. We now use these
figures to determine the compressive yield stress curves for the
two powders.

The increase in ϕ as the bed height increases is caused by an
increase in compressive stress, owing to the weight of the
particles; this makes the latter rearrange into a more compact
ensemble in the lower parts of the bed. Assuming that wall friction
plays a negligible role – this is why to carry out these measure-
ments we used the vessel of largest diameter – we can calculate
the compressive yield stress at the bottom of the bed using the
following relation:

σðHÞ ¼ ρpϕðHÞgH ð14Þ

If we now succeed in determining the corresponding values of
ϕ(H), that is, of the solid volume fractions at the bottom of the bed
for the various bed heights considered, combining the functions
σ(H) and ϕ(H) we can obtain the compressive yield stress locus
σ(ϕ). Our task is thus finding a way to obtain the values ϕ(H). These
differ from those of ϕðHÞ: the former are the local values of the
solid volume fraction at the bottom of the bed, whereas the latter
are the mean values of the solid volume fraction, averaged over
the entire bed. To derive an expression for ϕ(H), we proceed as
follows. We begin by writing
Z H

0
ϕ zð Þdz¼ ϕ Hð ÞH ð15Þ

Differentiating both sides with respect to H, we obtain

ϕ Hð Þ ¼ ϕðHÞþH
dϕ
dH

ð16Þ

We can now use the experimental curve ϕðHÞ reported in Fig. 3
and Eq. (16) to evaluate ϕ(H) and use Eq. (14) to evaluate σ(H).
Fig. 4 reports the curves σ(ϕ) for Powders 1 and 2 obtained with
this method. The figure shows that the stress needed to cause
compressive yield is small at low values of ϕ, but, as the latter
increases, σ rises slowly at first and then rapidly. To obtain the
values of the parameters that appear in Eq. (4), we fitted the
equation to the experimental curves in Fig. 4; the results are
reported in Table 2, along with other properties of the powders.

6. Results and discussion

As said, Fig. 2 refers to Powder 1 and reports the plots, obtained
through fluidization and defluidization experiments, of the pres-
sure drop, normalized with respect to the bed weight per unit
cross-sectional area of the tube, against the superficial gas velo-
city; cases A, B and C refer to tube diameters of 10 cm, 5 cm and
2.5 cm, respectively. Similar profiles, not shown, were obtained for
Powder 2. In Fig. 2, during the fluidization process, the normalized
pressure drop rises linearly until the velocity reaches the mini-
mum fluidization value. At this point, the normalized pressure
drop increases above unity, revealing that the pressure drop
through the bed exceeds the effective bed weight. This is observed
for all the tube diameters investigated. There is a noticeable
increase in the pressure drop overshoot as the bed diameter
decreases; we attribute this to wall effects, which become more
pronounced as the tube diameter becomes smaller. Similar pres-
sure drop overshoots have been reported by several authors (see,
for instance, Tsinontides and Jackson (1993); Valverde et al.
(1998); Srivastava and Sundaresan (2002)). We observe that the
normalized pressure drop at fluidization velocities beyond the
point of initial expansion is less than unity; this means that the
pressure drop does not support the full weight of the bed, and that

in the latter compressive stress is at work. This is contrary to what
one would expect in ideal fluid beds, where the pressure drop
exactly balances the effective weight of the particles, the solid
being unable to transmit stress. Although the bed expands, it is not
fully fluidized, being in the solid-like regime over the entire
interval of stable expansion, before transiting to the bubbling
regime at a superficial gas velocity of about 0.30 cm/s. This is
observed, even more emphatically, during the defluidization
process, starting from velocities close to the minimum bubbling
velocity down to the point of minimum fluidization. Judging from
the pressure drop curves, therefore, the bed never enters the fluid-
like regime, even if eventually (that is, near the bubbling point) it
approaches it very closely: when the superficial fluid velocity
approaches the minimum bubbling velocity, in particular for fluid
velocities greater than 0.24 cm/s, the normalized pressure drop
becomes equal to 0.98 and the compressive yield stress almost
vanishes. The fact that the bed does not appear to enter the fluid-
like regime immediately before the onset of bubbling is not the
crucial point; for fluid velocities larger than 0.24 cm/s, the normal-
ized pressure drop is so close to unity that no clear-cut conclusions
can be drawn. A slight underestimation of the pressure drop owing
to experimental error may be present (although we are unaware of
this); if so, the normalized pressure drop may eventually become
unity, making us conclude that the bed does eventually enter the
fluid-like regime. The important point, conversely, is that over
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Fig. 3. Average solid volume fraction against bed height obtained experimentally.
Figures A and B refer to Powders 1 and 2, respectively.
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most of the interval of stable expansion the bed is in the solid-like
regime.

The value of the solid volume fraction at minimum bubbling
ϕmb reported in Table 2 is slightly lower than that of ϕmin, implying
that between these two solid volume fractions – that is, for
superficial fluid velocities larger than 0.24 cm/s – the bed is in the
fluid-like regime. The considerations reported above, in the pre-
vious paragraph, explain this contradiction. Also, because the
difference between ϕmb and ϕmin is not considerable, similar
considerations to those made for the pressure drop apply here.
Finally, we would like to point out that, as one can see from
Table 2, for each powder the value of ϕmb does not depend on the

vessel diameter (it is a property of the powder alone). This can be
explained as follows. When the bed starts bubbling, the powder is
either in the solid-like regime, but in this case, as Fig. 2 shows, very
near the threshold of fluid-like regime, or in the fluid-like regime.
This aspect has just been discussed. In the former case the
compressive stress and in turn the friction force at the wall are
negligibly small, while in the second case they are zero. So, in both
cases at the bubbling point the wall plays a negligible role, in
agreement with what is observed experimentally.

The behavior just described is typical of Group A powders and
has been reported often in the literature (refer, for instance, to
Tsinontides and Jackson (1993); Jackson (2000); Srivastava and
Sundaresan (2002); Loezos et al. (2002)). For more cohesive
powders, such as those belonging to the Group C of the Geldart
classification (treated in such a way that fluidization does occur),
stable expansion is unambiguously present in both solid-like and
fluid-like regimes, the latter, in particular, is clearly observed over
a wide range of superficial gas velocities (Valverde et al., 2003a).

Fig. 2 reports also the theoretical fluidization and defluidization
curves. The fluidization curves extend up to the superficial gas
velocity at which the structure of the bed, acquired during
defluidization, breaks down and fluidization begins. To continue
these curves to higher superficial gas velocity values, we would
have to assume something about the structure of the fluidized
bed; as a consequence, we preferred to stop the fluidization curves
at the end of the initial linear branch. The minimum fluidization
velocities predicted theoretically, with the method described in
Section 4, and those obtained experimentally, from the pressure
drop curves referring to the fluidization and defluidization pro-
cesses, are reported in Table 3.

For both fluidization and defluidization processes, the theore-
tical pressure drop curves reported in Fig. 2 match well the
experimental ones, except in one respect. The theoretical curves
during defluidization approach a value of unity when the gas
velocity exceeds 0.24 cm/s; the model, therefore, predicts that
between this velocity and the minimum bubbling velocity the bed
finds itself in the fluid-like regime (this is also observed in Fig. 5A).
This is consistent with the value of ϕmin implemented in the
model, which the suspension reaches at a gas velocity of 0.24 cm/s.
For larger velocities, the model correctly predicts that particle
contacts are no longer present and that the bed is spatially
uniform.

6.1. Solid volume fraction profiles

By integrating Eq. (7) numerically, using for the parameters the
values reported in Table 2, we determined the solid volume
fraction profiles in the bed at various superficial gas velocities u
during defluidization. Fig. 5 reports the solid volume fraction
vertical profiles for Powders 1 and 2 at different superficial gas
velocities. At each velocity, the volume fraction varies significantly

Table 2
Simulation parameters.

Powder 1 Powder 2

Terminal velocity (m/s) ut 0.10 0.25
Richardson and Zaki exponent n 4.60 4.30
Coefficient of wall friction μ 0.80 0.27
Solid volume fraction beyond which enduring particle contacts vanish ϕmin 0.556 0.549
Maximum solid volume fraction ϕmax 0.634 0.575
Solid volume fraction at minimum bubbling ϕmb 0.551 0.542
Janssen's coefficient j 0.20 0.63
Positive parameter a 1.00 1.00
Positive parameter b 1.00 1.00
Positive parameter (N/m2) c 32.00 35.00
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Fig. 4. Compressive yield stress σ against solid volume fraction ϕ obtained
experimentally. Figures A and B refer to Powders 1 and 2, respectively.
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near the top of the bed, remaining fairly constant at lower heights;
this shows that the bed bulk density builds up with depth. The
figure also shows that the solid volume fraction at the bottom of
the bed decreases as the superficial velocity of the gas increases.
This is because at larger velocities the bed is more expanded, and
we do expect lower and lower values of the solid volume fraction
as the bed becomes progressively less packed; this indicates that
as the gas velocity increases a larger fraction of the bed weight is
supported by the fluid. The profiles of solid volume fraction show
that the beds are not fully fluidized until the fluid velocity reaches
the value of 0.24 cm/s for Powder 1 and 0.82 cm/s for Powder 2
(these velocity values are those required by the drag force to
balance the effective weight of the bed when the solid volume

fraction is spatially uniform and equal to ϕmin). At such velocity
values, the beds enter the fluid-like regime, becoming fully
fluidized; we can tell because the solid volume fraction becomes
constant over the entire depth of the bed; this implies that the
particles are uniformly suspended in the fluid and that particle–
particle contacts are absent. In this condition, the normal stress
gradient vanishes, so that the beds can no longer transmit stress
via a network of particle–particle contacts; accordingly, spatial
variations in solid volume fraction no longer exist.

To see if wall friction affects the solid volume fraction profile in
the bed, we ran simulations at various values of the bed diameter,
keeping the superficial velocity of the fluid constant. Fig. 6 shows
the plot of normalized bed height against solid volume fraction for
Powders 1 and 2. We observe that, at a given value of the superficial
fluid velocity, the solid volume fraction, in particular at the bottom
of the bed, decreases as the value of D decreases. This is due to the
additional support provided by the walls of the vessel, the latter
reducing the component of the particle weight balanced by the
action of the distributor plate. At larger velocity, the difference
among the solid volume fraction profiles becomes less significant;
the profiles at 0.15 cm/s for Powder 1 and 0.80 cm/s for Powder
2 are closer than those obtained at lower velocities. The reason for
this is that at a high superficial gas velocity, the bed expands more,
the enduring contacts among the particles reduce, and therefore the

Table 3
Experimental and theoretical values of minimum fluidization velocities.

Powder 1 Powder 2

Minimum fluidization velocity (cm/s)

D (cm) Experimental Theoretical Experimental Theoretical

10.0 0.102 0.106 0.610 0.614
5.0 0.112 0.110 0.641 0.623
2.5 0.121 0.117 0.648 0.637
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normal stress decreases considerably. This causes a corresponding
decrease in the frictional force at the walls, since the latter is
directly related to the normal stress σ (refer to the second term on
the left-hand side of Eq. (6)). At these high velocities, the depen-
dence of the frictional force on the normal stress outweighs that on
the vessel diameter; hence, the solid volume fraction profiles do not
vary appreciably as D changes.

We did not measure experimentally the solid volume fraction
profile along the bed at different superficial gas velocities, and
therefore we could not directly validate the results of the model
shown in Fig. 5. The validation that we carried out was indirect.
As we will describe in the next section, we used the profiles
to determine the parameters nn and un

t present in the Richardson
and Zaki (1954) correlation, which we also measured experimen-
tally. The validation, therefore, was done in terms of these
parameters.

6.2. Richardson & Zaki equation and homogeneous expansion in gas-
fluidized beds

Before advancing further, let us briefly recap the aim of this
work. We pointed out, in Section 2, that the correlation of
Richardson and Zaki (1954) holds for both liquid-fluidized and
gas-fluidized beds, but for the latter the values of the parameters n
and ut appearing in the correlation are greater than those
predicted by the relations reported in the literature, which instead
are reasonably accurate for liquid-fluidized beds. As said, we
denote the larger values holding for gas-fluidized beds as nn and
un
t . These values reflect the effects of both fluid dynamic and

interparticle forces, whilst the values of n and ut reflect only the
effects of the former, insofar as in liquid-fluidized beds the
interparticle forces play a negligible role. We believe that the
larger values of nn and un

t are caused by the enduring contacts
among the particles, which in turn are a manifestation of cohe-
siveness. In homogeneous fluidized beds in the fluid-like regime
these contacts are absent, and the Richardson and Zaki parameters
take on the expected fluid dynamic values denoted as n and ut. In
most of the stable interval of homogeneous expansion, never-
theless, gas-fluidized beds find themselves in the solid-like
regime, where enduring contacts among particles are present.
We believe that these play a key role, their presence explaining
why the values of the Richardson and Zaki parameters are larger
than expected. We are now in a position to put this claim to the
test. The model results provide, for any given superficial gas
velocity, the axial profile of the solid volume fraction, and there-
fore of the void fraction as well. Using these profiles, we may
determine the mean values of the void fraction through the bed as
a function of the superficial gas velocity; these values are those
that one measures in experiments on homogeneous fluidized beds
and uses in the Richardson and Zaki correlation.

To determine the nn and un
t values theoretically, we operate as

follows: from the profiles of solid volume fraction, we calculate the
mean solid volume fraction ϕ at each fluidizing velocity u in the
stable interval of expansion, using the following relationship

ϕ¼ 1
H

Z H

0
ϕ zð Þdz ð17Þ

By plotting u against ϕ in the Richardson and Zaki form

log u¼ log un

t þnnlogð1�ϕÞ ð18Þ
we then obtain the theoretical values of nn and un

t from the slope
and intercept on the velocity axis of the function above, respec-
tively. The logarithmic plot of u against ð1�ϕÞ for Powder 1 is
shown in Fig. 7 for the bed with 10 cm diameter. Table 4 reports
the theoretical and experimental values of nn and un

t in beds of

different diameters for Powders 1 and 2. The theoretical values
of nn and un

t obtained from our simulations show a reasonable
agreement with the experimental results. In particular, the
values of nn are higher than the limiting values ascribed to n
in the limit of viscous regime (discussed in Section 2). We also
observe from Table 4 that the values of nn and un

t increase as the
bed diameter decreases; this is true for both powders and due to
wall effects becoming more pronounced as the bed diameter
reduces.

To investigate the role of enduring particle contacts in homo-
geneous fluidization, we reasoned as follows: if truly there were
no particle–particle contacts in the fluidized bed, the particles
floating freely in the fluid and the homogeneous expansion being
dictated solely by fluid dynamic forces, as some authors argue, we
would expect the values of nn to be the same as the values used in
our simulations to model the drag force (that is, the values of n). To
explain this, let us consider Eq. (6). The latter reduces to the
Richardson and Zaki equation if we neglect the contribution of
stress transmitted by enduring particle contacts. In this case, the
equation merely expresses the fluid dynamic force balance (where
the drag force on the particles balances their effective weight)
which one would expect if the bed were to be uniformly fluidized;
hence, the equation yields the hydrodynamic n and ut values used
as input in the model. However, as seen from the experiments, the
values of nn and un

t obtained for Powders 1 and 2 are larger than
the hydrodynamic ones (see Table 4). This reveals that by account-
ing for the stress transmitted via contacts among particles, we are
able to capture the expansion profiles in the bed and to correctly
predict the expansion parameters featuring in the Richardson and
Zaki equation.
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Table 4
Summary of Richardson and Zaki (1954) parameters.

Experimental Theoretical Hydrodynamic

Powder 1
D (cm) nn un

t ðm=sÞ nn un
t ðm=sÞ n ut ðm=sÞ

10.0 5.36 0.183 5.04 0.144 4.6 0.10
5.0 5.96 0.309 5.49 0.204 4.6 0.10
2.5 6.62 0.587 6.35 0.437 4.6 0.10

Powder 2
D (cm) nn un

t ðm=sÞ nn un
t ðm=sÞ n ut ðm=sÞ

10.0 5.03 0.437 4.94 0.417 4.3 0.25
5.0 5.21 0.524 5.11 0.476 4.3 0.25
2.5 6.21 1.156 6.13 1.081 4.3 0.25
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7. Conclusions

We adopted a one-dimensional model to investigate the
behavior of gas-fluidized beds of fine particles in the homoge-
neous fluidization regime, accounting for enduring contacts
among particles. These contacts, which are a manifestation of
cohesiveness, strongly affect the expansion profiles of the beds. In
particular, the values of the expansion parameters n and ut of the
Richardson and Zaki (1954) equation obtained when we accounted
for stress transmitted through enduring particle contacts are
higher than those obtained from purely fluid dynamic considera-
tions. This agrees with what occurs in reality. We validated our
numerical results by carrying out fluidization and defluidization
experiments. The results indicate that fluid dynamic correlations
for calculating the values of n and ut, like those reported, for
instance, in Gibilaro (2001), are unsuitable for describing the
expansion profiles of gas-fluidized beds.
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