BAYESIAN INFERENCE IN REPEATED ENGLISH
AUCTIONS *

Gian Luigi Albano! Frédéric Jouneau-Sion?

' ELSE
and
Department of Economics, Universily College London
2GREMARS, Université de Lille 3
and
CORE, Université catholigue de Louvain

July 2002

Abstract

We propose a Bayesian approach to inference in repeated English
auctions. The model tests the dynamic behaviour of a sequence of
prices in a repeated English auction. We apply the technique to a
sale of antiques and find that the sequence of selling prices displays a
dynamic pattern.

Keywords: English Auctions, Bayesian Inference.
J.E.L. classification numbers:Dj4, C11, C15

*This work owes a lot to the meetings of the “Auctions Group” sponsored by Univer-
sité de Lille 3 and the Belgian program on Interuniversity Poles of Attraction initiated by
the Belgian State, Prime Minister’s Office; Science Policy Programming The first author
acknowledges the support of the Economic and Social Research Council (ESRC). The
work was part of the programme of the ESRC Research Center for Economic Learning
and Social Evolution. We thank L. Broze and V. Ginsburgh for having involved both of
us in this project, O. Torres for lengthy discussions and A. Justel for useful remarks on
an earlier draft. We are deeply grateful to an anonymous referee for detailed comments.
Finally, we thank seminar participants at CORE, University “Carlos III”, Université de
Lille 3 and University College London.

Corresponding  author: Gian Luigi Albano, Department of Economics, Uni-
versity College London, Gower Street, London WCIE 6BT, United Kingdom.
Email:g.albano@ucl.ac.uk



1 Introduction

Auctions are among the most widely used market mechanisms. They also
provide one of the few examples in which game theory predictions can be
tested on real datasets. A (non-cooperative) auction game can be described
as follows. A set of participants (say firms interested in a procurement
contract, individuals interested in antiques) submit bids for an object put
for sale. Kach participant is assumed to have some private information
concerning the object. In our setting, each participant to a sale of antiques
privately knows his willingness to pay for the object. Submitting a bid
has a strategic feature since each bidder has to formulate an offer without
knowing how much the other participants are willing to pay. In general,
an equilibrium analysis of such a game leads to sharp predictions about
individual behavior. Thus by observing all (or a subset of) bids submitted
by the participants, it is possible to infer the distribution of participants’
willingness to pay.

This paper adopts a Bayesian approach to the inference problem in re-
peated oral auctions. We claim that the Bayesian framework is more suitable
for evaluating game theoretic models. Indeed the asymptotic approach has
rather weak structural foundations when the underlying economic model in-
volves strategic behaviour (Jouneau-Sion (2000)). The problem is that the
structural interpretation of the econometric model may no longer be valid
when the number of observations tends to infinity. This point deserves some
explanations.

In empirical models of auctions there exist two feasible asymptotic di-
mensions: the number of participants and the number of objects put for
sale. Changing the number of players affects the outcome of an auction
game and consequently the data generating process itself. This route has
nevertheless been followed by Florens and Protopopescu (1997) and Florens,
Protopopescu and Richard (1998).! It is also is well-known that the rele-
vance of strategic behavior disappears when the number of players tends to
infinity.

Another approach is to use longitudinal data as in Laffont et al. (1995)
and Paarsch (1992). This approach creates other difficulties. Laffont et
al. (1995) correctly note that increasing the number of repetitions may not
be harmless. More precisely, as the number of repetitions goes to infinity,
the set of equilibria does not reduce to the simple repetition of the optimal

IThis approach only appears in the mimeo versions of theses two papers (see also, in
the context of collusion, Pesendorfer (1995)).



one-shot strategy. This multiplicity of equilibria undermines the structural
feature of the econometric model. The coincidence between the econometric
and the economic model is no longer guaranteed owing to the multiplicity
of outcomes. One way to get around this problem is to assume that the rep-
etitions of the game are (conditionally) independent from each other. Then
the equilibrium strategy of the repeated game is simply the repetition of the
equilibrium strategy of the one-shot game. The “independence” assumption
precludes a priori any dynamic feature of the sequence of prices. This as-
sumption is particularly unsatisfactory if one deals with art auctions as in
our case. In theses auctions, several items are offered for sale in a short pe-
riod of time. Insofar as the items are not completely identical, the sequence
of prices might display a dynamic pattern which would not be captured by
a “static” econometric model. We propose a Bayesian model which allows
us to test whether the observed sequence of prices displays any dynamic fea-
ture. Finally, a Bayesian approach seems appropriate whenever, as in our
case, the data set contains only a few observations and the econometrician
cannot use more detailed information than the selling prices.

Other authors have already proposed a Bayesian framework for empirical
models of auctions. Bajari (1997) estimates a first-price sealed-bid asym-
metric auction game. In Bajari (1997), because of the sealed-bid nature of
the auction mechanism, in principle all bids can be used for inference pur-
poses. Moreover the numbers of participants is directly observed, since it
equals the number of submitted bids.

Sareen (1998) treats the case of Dutch (i.e., descending first price) auc-
tions. As noticed by Laffont et al. (1995), the evaluation of first-price
auctions raises two kinds of difficulties. First, the players’ optimal strategy
involves the unknown distribution of private signals. The main consequence
being that the observed outcome of the game is a complicated function of
the underlying statistical model. Second, the number of players is not ob-
served by the econometrician. This is a crucial issue since the number of
players affects the strength of competition.

In this paper, we stress that the oral nature of KEnglish oral auctions
implies that the number of active participants is in most cases unobservable.
This phenomenon is likely to be a major point in art auctions since the
heterogeneity among similar but not identical objects may raise the interest
of a different number of bidders across sales. In oral auctions the estimation
procedures have to rely only on one observation, namely the winning bid.

The paper is organized as follows. Section 2 sets forth the econometric
model. In section 3 we explain the estimation techniques and apply our
approach to a real data set. In particular, we discuss some empirical points



related to the dynamic structure of the auction. Section 4 concludes.

2 The econometric model

2.1 Modelling art auction prices

We outline the essential feature of a model of English auction with indepen-
dent private values. An object has to be auctioned to a set of risk-neutral
bidders. Each bidder 7,7 =1,..., N, is assumed to know exactly how much
the item is worth to him, say S;. He does not know anyone else’s valuation of
the object; instead, he perceives any other bidder’s valuation as a draw from
some probability distribution, F(-), which is assumed to be common knowl-
edge. Similarly, he knows that the other bidders regard his own valuation
as being drawn from the same probability distribution. Bidders’ valuations
are assumed to be independent.

To summarize, each bidder knows his own evaluation 5;, the distribution
F(+), the number of potential buyers N. It is assumed that F(-) is absolutely
continuous with respect to the Lebesgue measure on the (positive) real line.

We are mainly interested in art auctions. Our dataset consists in 106
chinese gold ingots found in wrecked ship. The art/antiques auction market
has some particular features that are worth describing. First, several items
are typically sold in a short period of time, say, from some minutes to an
hour. These items are usually grouped: works by the same artist, antiques
from the same period, etc. Sometimes the items appear — at least to the
layman — as almost perfect substitutes. This is the case in our data set. We
thus deal with highly homogenous items though not completely identical.
Second, it is very difficult to observe the intermediate bids and the identity
of active bidders even if one is attending the sale. Finally, the number of
bidders interested in each item is likely to be small. In brief, the set of
observations consists in the number of people attending the sale and the
winning bids. Considering the limited informational content of our data set,
a Bayesian approach seems particularly adequate.

We want to keep the framework as simple as possible. This implies
several choices for our model. We have stressed that using the number
of repetitions as an asymptotic dimension may create some difficulties in
defining participants’ optimal strategies. We are not aware of closed form
equilibrium strategies in the context of repeated English auctions®. However,
a general result in repeated game theory is that individual behaviors may

?Bikhchandani (1988) analyzes a special model of repeated second-price auction.



display dynamic patterns. This seems particularly relevant for our case
where the items are sold in a very short time period, since then the time
preference parameter is likely to be close to one. We thus propose to take
into account a possible dynamic pattern in the sequence of selling prices.

We also limit our analysis to the case of a parametric distribution for the
signals. In our evaluation we restrict to the class of log-normal distributions.
A Bayesian non-parametric approach would be much more challenging.

The above discussion leads us to model the signals of the [-th (I > 1)
auction as follows:

log(Si1) = a+ Bipi—1 + Popi—2 + Yog1 + M1G1—1 + Yegi—2 + 0€; .
Vi=1,...,N,

where NV; is the number of active participants for the [-th auction, €; 1,...,€en,
is a standard Gaussian vector, p; = log P; is the logarithm of the price and g;
is the logarithm of the weight of the I-th ingot. We also use the notation 8 for
the parameters o, B1, B2, 70, 71, ¥2- Accordingly, z; = (1,p1 1,012,915, 911,91 2)"
denote the explanatory variables for auction /.

Following the well-known result by Vickrey (1961), the price given N is:

P = S(lelle) ;

where S(y,_1.,) corresponds to the second order statistic of the i.i.d. sample
Si1,.--,8n,4- The distribution of the logarithm of the price is given by

ﬂ—(pl | 9707 xlaNl) &
NN, = 1) o g [oHp — 0'a)] @ [0 Ly — Om) ™ 2 @ [—0 Lp — O'z)])]

where ¢ stands for the p.d.f. of the standard normal distribution and & for
its c.d.f. counterpart.

2.2 Discussion

Several remarks are immediate. First, notice that, contrarily to Sareen
(1998), the number of players may change across auctions. The idea is that
in a given auction one specific item may be much more interesting for some
unobserved reasons (quality, collector behavior...). This is a major source of
heterogeneity across prices. Indeed the distribution of the selling price for
the [-th auction is that of the second highest signal among N;. Increasing
the number of players shifts the expectation of the price to the right (it also
affects the variance since the signals are log-normally distributed).



Second, past prices and weights may affect the current signals. The
reason why we consider lag effects of the weights appears in the following
formula, we have:

Elog(S1,/G1) | pi—1,P1-2, 91, 91-1, 91—2) =
a+ Brlog(Pi_1/Gi—1) + Balog(P—2/Gi—2) + (vo — L)g1 + (71 + B1)gi—1 + (v2 + B2)gi—2-

(where G stands for the weight of the ingot).

Indeed, if we impose vg = 1 = y9 = 0, then if the § parameters appears
to be significative, the price per gram of gold would be influenced by past
weights. The presence of the v parameters allow us to capture a possible
effect of past weight independently of that of past prices.

When the § and/or v parameters are significantly different zero, the
prices are not independent. However, our model does not incorporate an
explicit structural dynamic strategy. Bidders’ behavior is entirely myopic.
Indeed the mean of the signals depends on the previous outcome but none
of the bidders takes into account the influence of his current bid on future
prices. A more precise theoretical picture of the underlying dynamic game
is needed for a genuine structural interpretation of the dynamic part of
the model when it appears to be significative. It is clear that this form of
dynamic is somewhat ad hoc. However a totally static behavior — as usually
assumed — is also ad hoc. Our model could be interpreted as a reduced form
for some —unknown— dynamic behavior.

i From an econometric viewpoint, the presence of past prices and weights
in the distribution of the current signals may also be interpreted as a proxy
for some unobserved exogenous effects. We have stressed that highly ho-
mogenous items are often sold in art auctions. Nevertheless, the differences
across selling prices may be large. Were the model entirely static, an in-
crease in the prices could only be explained by a sudden strenghtening of
the competition (i.e. the number of players). The dynamic part of the
model may be a proxy for some trended unobserved exogenous variable. For
instance, the pictures provided in Christie’s catalog clearly show that some
ingots are shallowed by encrustrations due to the very long stay in the sea.
The first ingot sold has almost no encrustration whereas the 42-nd one has
much more. These are the only clear pictures we have. We suspect that the
first ingots sold have fewer encrustrations than the last ones. However we
have no further information concerning the dynamic of the qualities. The
dynamic of the model could cope for a possible unobserved trend in the
quality of the ingots.



2.3 Prior distributions of the parameters

To complete the Bayesian framework we now describe the prior distributions
for 8,0 and Ny,..., Np. We first consider the case for N;. To rule out any
possible confusion we will call “sale” the set of auctions. At each auction only
one item is sold. Moreover, we will call “players”™ or “active participants”
those who are really engaged in the bidding process.

Getting information about the number of active participants before the
sale starts is usually a difficult task for auctions of antiques. It may be
argued that the number of people attending the sale is a good proxy for the
number of active participants. This is in general a misleading argument.
On the one hand, participants to a sale might be interested only in a subset
of the items to be sold. In this respect, the number of people attending
the sale is larger than the number of active participants to a given auction.
On the other hand, some active participants may be absent (see Ginsburgh
(1998) for such a case in the context of wine auctions). In this last case,
the number of active participants may be larger than the number of people
attending the sale.

As we already explained, we treat Ny,..., Np as parameters. Choosing a
prior distribution for N; should take into account the characteristics of real
auctions. For art auctions, people are typically interested in a few items.
Suppose for the moment that L items are to be sold in I. auctions and that
M people are attending the sale. Moreover, assume that the probability
that a potential buyer is interested in a given item is equal to 1/L. This
corresponds to the case where most potential buyers are interested in exactly
one item, but the econometrician ignores which participant is interested in
which item. Thus the econometrician is bound to assign a priori equal
probabilities to the event that a given potential buyer is willing to buy a
specific object.

We assume that potential buyers behave “independently”.® Then the
number of active participants to each auction is identically distributed as a
Bernoulli distribution B(M,1/L). When both M and L are large, we then
have the Poisson approximation B(M,1/L) ~ P(M/L). Now recall that
the auction model requires the number of participants to be larger than 2.
Then, we are naturally led to choose a Poisson distribution as a prior for N,
with a lower truncation at 2. More formally we set :

®We rule out the case where a potential buyer is interested in a given item for the mere
reason that another participant is willing to buy it.
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7T(N1, N ,NL) X H N—I!]INZZQ,

with 4 = M/L > 1. Note that this distribution is written w.r.t. the count
measure on INY. Furthermore N; is assumed to be ez ante independent of
the other parameters of the model.

We choose p = 1.2 which gives the following prior distribution:

p-d.f c.d.f

64.28% 64.28%

25.71%  89.99%

771%  97.70%
5 2.3% 100%

The justification of this value for u is the following. The sale concerns
105 ingots. As p may be interpreted as M/L our choice for the prior is
consistent with less than 130 people attending the sale.

The total number of parameters is L 4+ 7. We thus face an incidental
parameter problem. Clearly, it would be difficult to handle such a prob-
lem in the classical framework (see, however the finite sample technique
proposed by Jouneau-Sion and Torres (2000)). Our modelling choice raises
two different questions. First, there may be some identification problems if
we use improper distributions as priors (see below). Second, the sequence
(N1,...,Nz) may be considered as a nuisance parameter. This last inter-
pretation calls for a reference prior approach (see for instance Bernardo and
Smith (1994)). Note however that one could be interested in estimating the
strength of competition, thus the number of players in a specific auction
may be of economic interest. Moreover, the reference approach seems diffi-
cult to apply in our setup. Indeed, it relies on asymptotic invariance of the
choice of prior, but, as we argued above, any reference to the asymptotic
approach is inadequate in our problem (both for econometric and economic
reasons). Note finally that our choice of prior for the numbers of players
is not completely ad hoc as the above discussion shows that it is related to
some priors on the participation behavior of the bidders.

For the 8 parameters, we only avoid the case where the dynamic process
is explosive. Thus the # parameters are assumed to fullfil the conditions
implying the stationarity of the underlying process. As we did not specify
any dynamic for the process of ingots’ weights we only impose the usual



restriction for an AR(2) process to be stationary, precisely S < min{l +
B1,1 — B} and B > —1 (see, for instance, Hamilton (1994)). We shall
denote © the subset of IR® such that the stationarity conditions are fulfilled.
We choose the uniform prior on IRT™ for the logarithm of o.
If we observe L auctions, the joint posterior distribution is given by :

W(Q,U,Nl,...,NL,|pl,...,pL) X

1, L (u® [0 (o — 0'2)] )N A0 ¢ [0 L (py — 0'))]
“ ]l (N, —2)! o

@[~ p —0'7) ]| Dheo-
-1

Note that the parameters of the model are not ex post independent.
In particular, the numbers of players are independent conditionally on the
other parameters but they are not marginally independent.

2.4 Existence of the posterior moments

The ex-post distribution of (8, o) is easily computed. Indeed, we have:

+o0o 4o +oo L

1
(1) _ 0/ NZ?Q*]I
N?:wg% 2211_[1 8 =) (N, —2)r =2
L 4 1
— P -1 _0/ N;—2 1
[T 2. g o™= )™ it

L
= Hexp(uq) [0_1(29[ —0'z)])
=1

Thus we deduce

(90|p1,...,pL)

]IDO X Hexp (1@ [0 (o1 — O'a1)

=1

) ¢ o — 0'z)]

g

@ [—oHp —0'2)|heo

The posterior moments for (0,0) exist under usual conditions. Indeed
we have the clear upper bound:

exp (@ [0~ (pr — O'z1)]) & [0~ (pr — 0'z)] @ [0 (pr — 0'm)] <
¢ oy — 0'xy)] x max, ¢ o) exp(pa)(l — x) (1)

=¢ o Hp — 0'z)] exp(p— 1)/



where the last equality takes into account the constraint g > 1.

Thus the conditions under which the posterior moments for 8 and o
exist are the same as for the linear regression model where the endogenous
variable is p; and the explanatory variables are x;. These conditions are
clearly fulfilled in our setting (the matrix of explanatory variables has full
column rank).

Finally we have

L

_ 5 I
TNy N spns,0) o [T (@ 07! = O M2 5
=1 :

Thus, conditionally on 8,0 and the data (N; — 2,..., N; — 2) are inde-
pendently distributed. The distribution of N; — 2 given 6,0 and the data
is P(u® [0 L(p, — 0'm;)] . Thus all posterior moments of N, [ =1,2,..., L,
exist. Also notice that as the difference p; — 0'x; increases, the forecasted
Ny gets larger.

3 Inference technique and application

Equation (1) also provides a way to simulate from the posterior distribution
of (0,0). Indeed, we propose an acceptance/rejection algorithm in which
(0,0) is drawn as if the model were the usual gaussian linear regression
(stationarity conditions imposed). We accept this draw as soon as

L
[T exp (u® [0~ (py — O'z1)]) ® [~ (o1 — O'))] exp(p— 1) /s
1=1

is larger than an independent draw from the uniform distribution. If u is
not too large, the acceptance rate is reasonable (for instance for u = 1.2 the
acceptance rate is close to 10%.).

The simulation of the numbers of players is easy. For every accepted
drawing of (6,0) we simply have to simulate in the Poisson distribution
P (u® [0~ (py — 0'z)]) and to add 2.

3.1 Description of the data set

The data set comes from the sale of 105 Chinese gold ingots that Christie’s
organized in Amsterdam on April 28, 1986. The Chinese bars of precious
metal have the form of the slippers of womenfolk in ancient China. Each
rectangular ingot displays a shallowly-domed underside and gently-sloping



sides rising to a sharp slightly-raised edge. The top is centrally stamped
with Chinese characters. The dimensions of each ingot are 8 cm wide, 2.5
cm deep, and 1.5 cm high at the edge. An essay test on the first ingot (item
number 1819 in the Christis’s catalogue) of the lot indicated a fineness of
868 parts per 1000 (almost 21-carats gold).

— Insert pictures 1 and 2 about here —

As we already explained, the 106 gold ingots are almost all alike except
for small incrustations due to the very long stay in the sea (see picture 1 and
2). Recall we suspect —although we have no clear proof of this statement—
that the most well-preserved (i.e. with almost no incrustations) ingots have
been sold first.

The following chart shows the time series of the selling prices (unit is a
thousand of dutch guilders).

— Insert chart 1 about here —

The data display a clear downward trend. This phenomena is common
to many auctions (see, for an explanation, Ginsburg (1998)). This does
not automatically induce that the signals are correlated. Indeed, this dy-
namic pattern may be the outcome of a downward trend in the number of
participants.

The following table gives some simple descriptive statistics:

min.  aver. max. std. err.
price ( 1000 guilders ) 17 21.3 38 4.87
weight ( grams ) 318  367.05 394 6.06

price/gram ( guilders/gram) 46.32 57.99  103.83 13.08

Finally, it is worth noting that the price of gold on the regular market
by the time of the selling was 27 guilders per gram. It is clear that the
ingots have not been bought as “ordinary” pieces of precious metal. The
smallest price per gram is 72% higher than the equivalent amount of gold
on the regular market. The ingots are definitively antique collector items.

10



3.2 Inference results

We have generated 50.000 draws from the posterior distribution of (6, 0).
The results are presented in the following table.

a b1 B2 Yo 71 Y2 o
Min. -0.375 0.099 0.211 -0.211 -0.232 0.024 0.073

Q1% -0.196 0.248 0.306 -0.071 -0.088 0.027 0.081
Q5% -0.136 0.3 0.333 -0.024 -0.038 0.028 0.083
Q10%  -0.103 0.327 0.348 0.001 -0.012 0.028 0.085
Mean 0.014 0424 0397 0.096 0.082 0.03 0.091
Median 0.014 0.425 0.397 0.094 0.081 0.03  0.09

Q90%  0.13 0.52  0.447 0.191 0.179 0.031 0.097
Q95%  0.163 0.547 0.462 0.221 0.208 0.032 0.099
Q99%  0.229 0.596 0.489 0.277 0.263 0.033 0.103
Max. 0.389 0.694 0.561 0.448 0433 0.035 0.116

The dynamic effects of past prices are clearly present. Larger prices
in the past sustain larger current prices. None of the 50.000 simulations
sustains the hypothesis of absence of dynamic effect.

The past and current effects of the weight are easier to understand if we
use the following model:

Elog(S1,/G1) | pi—1,P1-2, 91, 91-1, 91—2) =
a+ Bilog(Pi—1/Gi—1) + Balog(P—2/Gi—2) + (vo — L)g1 + (71 + B1)gi—1 + (v2 + B2)gi—2-

The table below presents the estimation corresponding to the above
parametrization (the last two columns are given to check the stationarity
conditions).

Y—1 m+B81 v+b Bi+ph B—[F
Min. -1.211 0.134 0.241 0.506 -0.431

Q1% -1.071  0.283 0.336 0.674 -0.263
Q5% -1.024  0.348 0.364 0.718 -0.194
Q10%  -0.999 0.382 0.378 0.74 -0.157
Mean -0.904 0.506 0.427 0.821 -0.027
Median -0.906 0.505 0.427 0.822 -0.028
Q90%  -0.809 0.633 0.476 0.902 0.104

Q95%  -0.779 0.671 0.491 0.925 0.141

Q99%  -0.723 0.743 0.517 0.964 0.212

Max. -0.552  0.926 0.591 1.000 0.35

11



We see that heavier ingots appear slightly (althought significatively)
under-priced (in terms of guilders per gram of gold). On the other hand,
selling the heavier ingots first, helps increase future prices.

Since the stationarity conditions have been imposed, they are always
fullfilled. Notice that the only one which appears to be bounded is 52+ 81 <
1. In an unconstrained estimation exercise we evaluate the probability that
this conditions is violated at 0.003 whereas all other conditions are always
fullfilled.

We now turn to the estimation of the number of players.

price 2 players 3 players 4 players > 5 players
38 99.425%  0.545% 0.026% 0.004%
34 99.182%  0.759% 0.056% 0.003%
32 97.446%  2.218% 0.295% 0.041%
30 99.029%  0.902% 0.064% 0.005%
28 96.366%  2.758% 0.68% 0.196%
27 99.277%  0.691% 0.032% 0%

25 98.997% 0.914% 0.078% 0.01%
24 99.085%  0.858% 0.055% 0.002%
23 97.657% 1.834% 0.424% 0.085%
21 99.895%  0.102% 0.003% 0%

20 99.149%  0.765% 0.075% 0.01%
19 99.395%  0.574% 0.027% 0.003%
18 99.79% 0.202% 0.006% 0%

17 99.955%  0.043% 0% 0%

Clearly, the posterior probability is highly concentrated on the occurence
N; = 2 (see also Jouneau-Sion and Torres (2000) for a similar finding).
Notably, the probablity of strictly more than 2 players is not increasing
with F,. This is due to the dynamic effects. Recall indeed that when no
dynamic effects are present, any increase in the price is explained by an
increase in the number of players. Note also that the posterior distribution
differs from the prior. Despite the large number of parameters, the data do
help identify the number of players in our model. We may also remark that
the largest posterior probabilities for N; = 3 are obtained for P, = 32, 28
and 23. The price 32 correspond to auctions 5,7,9 and 14. In the last three
cases the price 32 correspond to an increase in the price (see chartl). The
two other cases P, = 28 and P, = 23 correspond either to an increase in the

12



price or to the same price after repeated declining prices. Thus when the
prices are much larger than expected (past prices taken into account) the
model clearly forecasts a strengthening of the competition.

Finally, we also estimated the probability that N; = 2 for each auc-
tion. Not surprisingly, this posterior probability is rather high (81.5%).
The heterogeneity introduced by varying the number of active players across
auctions cannot explain the dynamic patterns observed in the prices. The
variation of the prices cannot solely derive from heterogenous degree of com-
petition. Our dataset definitively shows the presence of dynamic bidding
behavior.

We have also assessed the forecasting ability of our model. To this end,
the last 20 observations have been withdrawn from the sample. The follow-
ing chart describes the forecasting errors.

—Insert chart 2 about here—

4 Conclusion

In this paper we propose a Bayesian approach to the estimation of oral
English auctions. We describe an inference technique which is applied to the
estimation of an antique auction. The results clearly show that the dynamic
effects cannot be bypassed. From our viewpoint, this calls for a closer look
at possible dynamic aspects in empirical studies of repeated auctions.

Our model is only a first step as the dynamic is introduced in “reduced
form” way. A challenging line of research is to formalize a structural econo-
metric model in which individual strategies would exhibit a dynamic pat-
tern. This task is certainly difficult owing to the lack of theoretical results
in repeated auctions.

13
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