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I ntroduction

The explosion of interest amongst game-theoristsin recent yearsin the ‘evolutionary’ (learn-
ing) dynamics of repeated games, has generally been concerned with 2-player (usually symmet-
ric) games in which each player has available a finite number of pure strategies. The learning
dynamics of players chosen from large, usually infinite, populations of such players, are then
taken to describe the evolution of the probability with which arandomly chosen player will play
agiven pure strategy. In asuitable continuous-time limit, in which the game is repeated contin-
uously, these dynamics take the form of a finite-dimensiona system of differential equations.
Various versions of these dynamics have been extensively studied in various game-theoretic
contexts, and up-to-date accounts of much of the recent research in this area can be found in

Weibull (1996), Samuelson (1997) and Hofbauer and Sigmund (1999).

1 An evolutionary dynamics on continuous strategy spaces, which has features in common with the
approach presented here, has a so recently been developed by Oechssler and Riedel (1998). See a so Ponti

and Seymour (1998), appendix A, and Oeschler and Riedel (1999) for a somewhat different approaches.
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However, in many games the strategy sets open to players are continua, rather than finite sets.
For example, in bargaining games over continuously divisible commodities. Little work has
been done in exploring evolutionary dynamicsin thismore general context, not | east because of
the oftenformidabl etechnical difficultiesinvolved. Recent exceptionsare Hopkinsand Seymour
(1999), Seymour (1999), Friedman and Yellin (1997), Ponti and Seymour (1998), and Oeschler
and Riedel (1998, 1999). However, more adventurousexcursionsinto theevol utionary dynamics
of infinite dimensional games are undoubtedly hindered by the lack of an easily accessible and
rigorous development of ageneral theory appropriateto thiscontext. For example, what general
formsof dynamicsshould be associated with 2-player infinite-dimensional games? Inparticular,
what is the infinite dimensional analogue of the Replicator Dynamics? Under what conditions
do the usual existence and uniqueness theorems for solutions of systems of ordinary differential
eguations extend to the infinite dimensiona case? Given that solutions exist, when do they
exist for al positive times? Under what conditions do infinite dimensional dynamical systems
possess equilibria? What is the relation between dynamic equilibriaand Nash equilibria of the
underlying game? When are dynamic equilibria (locally) stable? When are such equilibria
unique? What influence do “mutations’ (or “mistakes’) have on the dynamics, in particular in

relation to equilibrium selection?

Inthispaper, | shall give some answersto some of these questionsin the context of asymmetric
games. In section 1 | develop an abstract formulation of an infinite dimensional, 2-player,
asymmetric game, in which mixed strategies are defined as probability measures on the Borel
subsets of the space of pure strategies, and illustrate it with the specific example of the simple
bargaining game known as the Ultimatum Game. | aso discuss the notion of mixed-strategy
Nash equilibrium, and prove the infinite dimensional analogue of the key finite-dimensional
property that the expected payoffs from any pure strategy in the support of a mixed-strategy
equilibrium are equal (Proposition 4). In section 2, | briefly review the relevant parts of the
general theory of dynamical systems on a Banach space needed in the sequel, and continue
in the spirit of Hofbauer and Sigmund (1990) and Hopkins (1999), to define a very general
class of evolutionary dynamics associated with infinite-dimensional games, which, following

Hopkins (1999), | shall cal positive definite adaptive (PDA) dynamics, and which it seems
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reasonable to suppose will support many natural examples of learning rules likely to be of
interest. This class includes the Replicator dynamics, which | consider in detail. A principal
feature of PDA dynamicsisthat a player’s non-equilibrium (mixed) strategy will evolve (over
a short time period) to a better response to his opponent’s recently played strategy. Section 3
is concerned with the relation between Nash equilibria of the underlying game and dynamic
equilibria of the evolutionary dynamics. In particular, under suitable assumptions on the class
of positive-definite dynamics, asymptotically stable dynamic equilibria are Nash equilibria
satisfying certain strictness-type conditions (Proposition 13), and strongly strict (pure-strategy)
Nash equilibria are asymptotically stable (Proposition 19). This latter notion requires that an
equilibrium response should not only be strictly better than any alternative, but that there should
infact beafinite advantage over any alternative stragtegy (precise definitionsaregivenin section
1). In section 4, | consider PDA dynamics augmented by mutations, in which “mistakes’ by
playersare introduced by supposing that aplayer occasionally uses an exogenously-determined
mixed strategy instead of the strategy dictated by the undisturbed dynamic. Alternatively,
one can think of a stream of experienced players leaving the game-playing population, to be
replaced by naive players who begin by playing the fixed exogenous strategy. In this context,
| consider questions concerning the absolute continuity of mixed strategies (i.e. whether they
are represented by probability densities), and discuss the general form of the dynamics when
expressed in terms of densities. In particular, | show that the natural home for evolutionary
dynamics expressed in thesetermsisasuitable L -space of functions (Proposition 23). Section

6 offers some concluding thoughts.

1. Two-player asymmetric games

Let ©2; and Q25 be two compact topological spaces. We shall assume for simplicity that €2,
is a closed and bounded subset of some Euclidean space, IR™, though most of the arguments

which follow could be formulated in a more general context.

The (; areto be construed as the spaces of pure strategiesin a 2-player, infinite dimensional

game; i.e. €); isthe space of pure strategies available to player-i. To completely specify such a
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game, we also need payoff functions,
7T1,7T2291 XQQ—>B+, (1)

where IR, isthe space of non-negative real numbers?, and 7 (£, ), w2 (£, 1) arethe payoffsto
players-1 and -2, respectively, given that player-1 uses pure strategy £ € 2, and player-2 uses
pure strategy n € .

It would be natural and convenient to be able to assume that the functions 7; are continuous.

However, such an assumption istoo restrictive, asis shown by the following example.

EXAMPLE 1. Theinfinite dimensional Ultimatum Game Player-1 (Adam) isin possession
of adollar and must make an offer of a split of this dollar with player-2 (Eve). Eve may either
accept or rgect this offer. If she accepts, she gets what was offered, and Adam keeps the

remainder. If she refuses, neither player gets anything.

Take Q; = Qs = [0, 1], the unit interval. A pure strategy for Adam is an offer to Eve,
¢ € [0,1]. A pure strategy for Eve is an acceptance level, n € [0, 1], such that she will accept

Adam’soffer if and only if it is greater than or equal to . Thus, the payoff functions,

wa, g ¢ [0,1] x [0,1] — [0, 1],

are given by
men={ "¢ HEzn (20)
w6 ={ § fE20 (20)

But it is clear that neither of these functionsis continuous on [0, 1] x [0, 1].

Notethat thereisavariation on the Ultimatum Game, which we call the sub-Utimatum Game,

in which the strict and non-strict inequalities in (2a,b) are reversed. That is, Adam must offer

2 Weshall always assume that payoff functions are bounded, so thereisno loss of generality in assuming

they are non-negative.



Eve strictly more than 7 before she will accept. As we shall see later, there are reason for

prefering the first version of this game. [

To define asuitable space of functionsfrom which payoff functions can bedrawn, we consider
the o-field B = B(Q) of Borel subsets of the compact space 2 C IR".? Let B[] denote the
linear space whose elements are the uniform limits of real-valued, B-simple functions. Then

B[] is aBanach space with respect to the norm

Lf1] = sup | f(w)], (3)
weN

and the set of all real-valued, bounded B-measurable functionsis dense in B[(2].* The payoff
functionswe shall consider are non-negative functionsin 5[, x Qs], whereQ; x Qo C IR™ X
IR™ = [R™*"2. Such functions have the property that 7(-,7) € B[Q;] and = (&, ) € B[Qs]

for each (¢, 1) € Q1 x Q9. The Ultimatum game payoffs (2a,b) are clearly of thistype.

Now consider mixed strategies for the game. Such strategies should be represented by
‘probability distributions over pure strategies. However, in the infinite dimensional context
considered here, a probability distribution must be interpreted as a probability measure. Thus,
foracompact 2 C IR", let M€, B] bethelinear space of real-valued, signed, regular, bounded,
o-additive measureson (2, B). Then X € M[Q, B] isaprobability measure if and only if

a) X(B) >0 fordl B e B, 4
b) X(Q) = 1. (4)

We denote the subspace of probability measures by P[(2, 5].

The quantity X (B) isto be interpreted as the probability that a player uses a pure strategy

in the subset B. Alternatively, we may interpret X (B) in terms of populations. Thus, suppose

3 The Borel subsets of §2 are the members of the smallest o-field of subsets of 2 which contains every
closed subset of €2. Our assumptionthat {2 C IR™ impliesthat the Borel sets coincide with the Baire sets.
If we drop thisrestriction, then Baire sets and measures must be used throughout. See Yosida (1978), pp

18-19.
4 A B-simple function is a function which can be represented as afinite linear combination of indicator

functions of setsin B. See Dunford and Schwartz (1958), 2.12, p 240.
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a player is drawn at random from a large population of size N, each member of which is
programmed to play a definite pure strategy in 2. Then we interpret X (B) as the fraction of
this population which plays a pure strategy in B, inthelimit as N — oo. For the asymmetric

games considered here, the popuations from which players 1 and 2 are drawn must be distinct.

The space M (2, B] is a Banach space with the norm,

X1 = sup | [ gax], )

where f runs over the set of functions f € B[Q2] with || f|| < 1. The quantity ||X|| isfinite and
is known asthe total variation of X on .> The topology on M|, B] defined by this norm is

known as the strong , or metric, topol ogy.

LEMMA 1. Let P[Q2, B] C M, B] be the subset of probability measures on (2, ). Then
P[Q, B] isaclosed, convex subset of the unit spherein M|, B].

Proof. SeeAppendix. [

Thereisafamily of bilinear pairings,
(,)p BBl x MIQ,B| = R; (g, X)p = / gdX, (BeB).  (6)
B

We shall often write (g, X') for (g, X)q. Thus, if X € P[Q, B, then Ex[g] = (g, X) isthe
expected value of the function g with respect to the probability measure X. More generaly, if
X(B) > 0,then Ex[g | B] = X) /X (B) isthe conditional expectation of g with respect
to X, given that only pure strategiesin B are used. In particular, these interpretations apply for
payoff functions for the class of games we consider. The main intuitive attraction of the strong

topology is contained in the following Lemma.

LEMMA 2. The pairings (-, -) g are continuous.

® See Yosida (1978), pp 35-37.
6 Itisfundamental to notethat this does not imply that P[$2, B] iscompact (at least inthe strong

topology considered here).



Proof. See Appendix. []

We can now return to mixed strategies. Suppose player-2 uses the mixed strategy Y €
P[Q2, Bs]. Player-1 then obtains some non-negative expected payoff on using a pure strategy
¢ € 4, which we shall denote by wy (£). More generaly, we assume there is a generalised

expected payoff function
wiM[QQ,BQ] —>81[Ql]; Y—>wy, (7)

which satisfies the following properties:

a) w islinear and continuous,
b) wy >0 o0n Q if Y >0 on By, (8)
C) T (f; 77) = WA(n) (f);

where 7, isthe pure strategy payoff function (1), and A(n) isthe Dirac A-measureat n € o,

defined by,

@ ={ g §1Eh o

for B € By. These measures satisfy the well-known characteristic property,

(f;A€)) = f(&) for fe B (10)

Similarly, we assume there is a generalised payoff function for player-2,
’UZM[Ql,Bl] —>82[QQ], X—>Ux, (11)
satisfying the obvious properties corresponding to (7).

Why should w belinear in Y ? To answer thiswe begin with the pure strategy payoff functions
(1), and construct w and v from them. We wish to define wy (§) to be the expected payoff to
player-1 given that he usesthe pure strategy ¢ and player-2 usesthe mixed strategy Y. Similarly,
vx (n) is the expected payoff to player-2 when she uses the pure strategy n and player-1 uses
the mixed strategy X . We must therefore define

wy (&) = Jo, m(EmaY (n) = (m(&,),Y)a,, }
vx(n) = Jq, m2(n,§)dX(§) = (m2(n,"), X)a, .

7
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Clearly w extends by linearity to afunction defined for all Y € My, By], and similarly for v.
The formulae (12) therefore explain the linearity assumption (8a). Note that the Fubini-Tonelli

Theorem” implies that

(wy, X))o, = (m,X xY)a, xq,
(vx,Y)a, = (m,Y xX)a,xa,

We show that (12) and (8) are consistent in the following resuilt.

LEMMA 3. Suppose the pure-strategy payoff functions =; € B[2; x {2,] are non-negative.
Then, the functions w and v defined by (12) take valuesin B[2;]| and BI[(2.], respectively, and
satisfy the properties (8).

Proof. The boundedness of wy- follows from the boundedness of 7;. Infact, since m; > 0,

oy (©) = =& )| <7t sup [(£.7)] = mi Y]l (1)
1 IIFII<1

where 77 = sup; , m(&,n) > 0. That wy is B;-measurable follows from the fact that

WleiBﬁllx:ng
To prove (8a), we need only prove continuity in Y. For this, we have, from linearity and (14),
jwy () = wy (§)] = |wyr—y (&) < 7|[Y' = Y],

so that

lwyr —wy || = sup |wy(€) —wy (€)| < m7[|Y" = Y|.
e

Continuity therefore follows.

Property (8b) follows immediately from (12) and the assumption that ; is non-negative.
Property (8c) follows from (10) and (12). [

Note that property (8c) identifies the pure strategy n € €2, with the mixed stratgery A(n) €
P[Qs, Bs).

" SeeYosida(1978), p. 18.



Given (8) and (12), we can extend w and v to bilinear generalised expected-payoff functions,
H1 : M[Ql,Bl] X M[QQ,BQ] — IR and H2 : M[QQ,BQ] X M[Q1,Bl] — R,

by

I (X,Y) :<wy,X>,}
IL(Y,X) =(vx,Y).

(15)
It then follows that if w and v are given by (12), then the pure strategy payoff functions (1)
satisfy

(16)

We now consider Nash equilibria.

DEFINITION1. Apair(X,Y) € Py, B1]xP[Qs, B,] isamixed-strategy Nash equilibrium
(NE) if

~

(wy, X) < (wy,X) and (vg,Y) < (vg, V), (17)

forall (X,Y) € P[4, B1] x P[Q2, B2]. A NEisstrict (SNE) if theinequalities (17) are strict
whenever X # X andY # Y.

Important properties of mixed-strategy NE are giveninthefollowing Proposition. Recall that,
for ameasure X € M[Q, B}, a pure strategy-dependent property holds X -almost everywhere

(X-ae)) if it holds everywhere on €2 except on a subset of X -measure zero.

PROPOSITION 4. If (X,Y) isamixed-strategy Nash equilibrium, then

A A

(wy, X)p, = (we, X)X(By) and (vg,Y)p, = (vg, Y)Y (Ba), (18)

for dl (B, Bz) € By x By. Inaddition, wy (£) < (wy,fQ for each ¢ € Qq, with equality
X-ae, and v (n) < (vg,Y) for each n € Q,, with equality Y-ae. That is, wy is constant

X-ae and v isconstant Y-ae.



Proof. Suppose X(B) = 0 for B € B;. Then (wy,X)p = 0 by absolute continuity?®,
so equality holds in (18a). On the other hand, if X(B) > 0, define a probability measure
X € P[Ql,Bl] by

, (B/ S Bl)

wy-,
< )§( >B - <wY’X> < <wY7X>7
which gives
<wY7X>B < <wY7X>X(B)7 (19)
foral B € B;.

Now suppose there exists B € 31 for which the inequality (19) is strict. Let B¢ = Q — B.

Then (19) also appliesto B¢, whence

~ A A

<w§,,X) = <w}>,X>B —+ <w§7,X>Bc
< (wy, X)X(B) + (wy, X)X(B°)
= (wg, X){X(B) + X (B)}

A

= <w}>,X>.

This is a contradiction, and we conclude that equality must hold in (19) for all B € By; i.e
(184) holds. A similar argument establishes (18b).

For the last statement, the NE condition together with (9), gives wy (§) = (wy, A(§)) <
(wy, X), for each ¢ € Q. Let iy = wy — (wy, X), and note that (18a) can be written as
(g, X)p = 0 foral B € By. It therefore follows that «w; = 0 X-a.e. The statements for

vy areproved similarly. [

Proposition 4 saysthat, at aNE, the expected payoff to aplayer from any of the pure strategies

which are used with positive probability is the same. In particular, Proposition 4 implies that

8 See Yosida (1978), Properties of theintegral (v), p 17.
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a SNE must consist of pure strategies. To see this, let By be the set on which the inequality
wy < (wy, X) isstrict, and let By = BS. Then X (B,) = 0 and X (B;) = 1 by Proposition 4.
Let £ € By, and supposethat X # A(€). Then, by (10) and the strictness condition for SNE,

A~

wy (€) = (wy, AE)) < (wy, X),

which contradicts Proposition 4. Hence, X = A(€), and By = {¢}.

A

At the other extreme, a fully mixed NE satisfies wy. (€) = (wy, X) and vy () = (v, Y)
foral (£,7m) € 1 x Qy. That is, the expected payoffs to each player are the same for every
strategy.

Asiswell known for finite-dimensional asymmetric games, that a SNE is locally asymptot-
icaly stable with respect to a large class of evolutionary dynamics. However, this is not the
case in infinite dimensions. To see why SNE is not enough to guarantee good properties with

respect to evoltionary dynamics, we note that the strictness conditions imply that

~

T (é? /ﬁ) > T (ga 77) and 2 (év 77) > 7"'2(67 77)7 (20)

forall £ # 5 and n # 71.° However, these strict inequalities are not generic properties of payoff
functionsin B[Q; x ). In particular, if m (£,7) is continuous at £, then an arbitrarily small
perturbation of 71 in B[2; x Q4] will define a payoff function for which the first inequality in
(20) fails. For example, define the function 71 (£, 7) € B[2; x Q5] by

T1(&,m) = (& n) + elB(§),

where I 5 denotestheindicator functionof aset B € By, ande > 0. Thenfrom (3), ||71 — 71 || =
e. On the other hand, by continuity of 7 (¢,7) a &, we may choose B with £ ¢ B and
0< 7T1<é,?7) — 71'1(50,77) < e for each fo € B. Then,

~

#1(€,9) — 71(&0, ) = m1(€,7) — 1 (€0, ) — e < 0.

9 The SNEis(X,Y) = (A(£), A(%)), and the strictness conditions are (wy, X) > (wy, X) and
(UX,Y) > (vg,Y) fordl X # XandY # Y. Nowtake X = A(€) andY = A(n) to obtain

(20).
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Thus, if equality holds for all £, € B, then each & is an alternative best reply to 7, and the
strictness property for the game with payoff functions (71, m2) no longer holds (though it is still
aNE). On the other hand, if the inequality is strict for some &, € B, then (é, 7) is no longer

even aNE. This underlines the fragility of the notion of SNE in the infinite-dimensional case.

To guarantee good properties, we need a stronger notion than strictness for a NE, which is

generic in the appropriate sense.

~

DEFINITION 2. A SNE (X,Y) = (A(€), A(7)) issuper strict (SSNE) if there exists 5y > 0
such that

m1(€,1) — mi(€,7) > 8o and mo (€, 7)) — m2(E,1) > do, (22)

foral ¢ # andn # 7).

It follows from (22) that it cannot be true that 7 (¢, 7)) is continuous at £ or that 75 (€, ) is
continuous at . That is, 7 (&, 7) has a (discontinuous) ‘spike’ at &, and 72 (€, ) has aspike at
7. Aswe have seen, any pair of payoff functionsfor which (X , Y) iIsa SNE can be perturbed by
an arbitrarily small perturbation in B[Q; x Q] to apair of payoff functions for which (X, V)
is a SSNE. For example, a uniform method to do this is to define a pair of perturbed payoff
functions (71, 72 ) by:

7?1(5,77):{ m1(§,m) ifgi

. B m2(§,7m) ifn#1n
Atpmen ife—¢ ”2“’”)‘{<

L+q)m(&n) ifn=1
(24)

with p, ¢ > 0 (but otherwise arbitrarily small). Conversely, an SSNE is generic in the sense
that all sufficiently small perturbations of the payoff functions retain the property of having an
SSNE at (X,Y).

We illustrate the general setup described above in the case of the Ultimatum Game.

EXAMPLE 2. Continuing with the Ultimatum Game described in Example 1, we have

that Adam’s expected payoff from an offer £ € [0, 1], when Eve uses a mixed strategy
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Y € P[0, 1], B], isgiven by (12) with m; = w4 asin (2a):

13
wwazwl—ojﬁﬂﬂzu—gﬂxmay

0

Similarly, if Adam uses a mixed strategy X € 73[[0, 1],8], and Eve has acceptance level
n € [0, 1], then Eve's expected payoff is given by (12) with 7o = wg asin (2b):

1
vx(n) = [ €4X(©) = (1 Xy,
n
where ¢ isthe identity map on I.

The Ultimatum Game admits a family of pure-strategy Nash equilibria, (X,Y) =
(A(£),A(€)) (onefor each & € [0,1]); i.e. Adam offers & and Eve accepts any offer greater
than or equal to £&. The equilibrium with ¢ = 0 is the subgame perfect equilibrium. However,

none of these equibria are strict, since, if £ > 0,

<UX7A(77)> = WE(”»&) = 5 = <UX7Y>7

for al n < & (Eve could equally well have used an acceptance level less than £). For the
subgame perfect equilibrium, v¢ (n) = mg(n,0) = 0, sothat (v¢,Y) = (vX,Y) = 0 for any

Y (Eve would receive nothing whatever her strategy).

Now observe the profound difference between the above situation and that pertaining for the
sub-Ultimatum game (Example 1). For the latter, it is easy to see that there are no pure strategy
Nash equilibriaat al. Thus, if Eve accepts Adam’'soffer (¢ > n), thereisawaysastrictly better

offer Adam could have made which would also have been accepted (e.g. (¢ + 7).

Returning to the Ultimatum game, we can obtain a subgame perfect equilibrium which isa
SNE for amodified form of the Ultimatum Game as follows. Restrict Adam and Eve's strategy
spacesto [«, 1], where 0 < o < 1. That is, Adam cannot offer less than «, and this minimum
offer isknown to Eve, who consequently will not consider an acceptance level lessthan «.. The
subgame perfect equilibriumisthen (X,Y) = (A(a), A(a)), with payoffs (1 — a, «). Inthis
case, Eve has no aternative best reply to Adam’s offer of « other than to accept, and Adam

has no offer against Eve's acceptance level of a which achieves an equal payoff. In fact, Eve
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has a payoff spike at the acceptance level «, since mg(a,a) = a > 0 and g (a, ) = 0 for
n > a. Ontheother hand, there seemsto be nointuitively satisfying way of modifying the game
which gives Adam a payoff spike at the subgame perfect equilibrium; infact, 74 (&, ) =1 —¢
is continuous at £ = «a. S0, only an artificial (infintessimal) perturbation of Adam’s payoff
function, asin (21), will yield a subgame perfect equilibrium which is a SSNE. For example,
if Adam pays aforfeit (to athird party) measured as a percentage of the deviation of his actual

offer from the best offer he could have made. That is, the game now has payoff function for

Adam,
0 if &€ <n,
Ta(€,n) { 1-¢ if & =n, (25)
(I-p)(1-=¢) if&>n,

where 0 < p < 1 isthe percentage penaty. With Eve's payoff function unchanged, (o, ) is
now a SSNE for this modified game. [J

2. PDA Dynamics

We shall consider dynamical systems on the Banach space £ = M[Qy, B1] x M[Qs, Bs],

with the product-space norm. That is, we are given afunction,
E=(X)): €€, (26)

which defines the dynamical system,

% = X(X,Y), }

% :y(X7Y)7

with X € M[Ql,Bl] andY ¢ M[QQ,BQ].

To obtain the standard existence and uniqueness theorems for solutions of (27), we need only
the minimal assumption that = be locally Lipschitz. That is, for each (X,Y) € &, thereisa
neighbourhood, V' (X,Y") C &, suchthat = isbounded on V' ( X, Y'), and there exists a constant
k > 0 (depending on V) with

12X Y") = E(X", YY) < komaz{|| X" = X"||, [[Y" = Y[}, (28)
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foral (X', Y’), (X", Y") e N(X,Y). Of course, alocally Lipschitz function is continuous.'®

Recall that, under these assumptions, there is a unique solution flow for the system (27), in

the form of a continuous map on an open subset i/ C IR x &,
F:U—-E, (t,e) — Fi(e), (29)

wheree = (X,Y) € £ isageneric element, having the following properties:

a) {0} x & CU,

{t] (t,e) €U} = (—ale), Ble)) C R,

(e) =e foreach e € &, (30)
) Fara(e) = F(File)),

e) Fi(e) —e—i—fo (Fs(e))ds foreach (t,e) € U.

In (b), 0 < a(e), B(e) < oo, and (—a(e), B(e)) isthe maximal interval on which the solution

)
c) Fo
d) F
f

with initial condition e is defined.

DEFINITION 3. A subset £ C £ iscaled forward invariant under the flow F if, for each
ec Kand0 < v < fB(e), Fi(e) € Kforalt e [0,v]. Smilarly, K is backward invariant if,
foreache € Land 0 < v < a(e), Fi(e) € Kfordl ¢t € [—v,0].

We have the following important result.

PROPOSITION 5. Let £ C &£ be aclosed subset which is forward invariant under the flow
F, and suppose that = is uniformly bounded on K. Then 3(e) = oo for each e € K. Similarly,
if IC isbackward invariant then a(e) = oo for each e € K. If K is both forward and backward

invariant, then, 7, : K — K isahomeomorphism, with inverse 7_;, for each ¢t € IR.

Proof. See, for example, Hirsch and Smale (1974), p. 172, Proposition. Their use of com-
pactnessin the finite-dimensional case can be replaced by the uniform boundedness assumption

given here. [

In applying the general theory outlined above to the case of infinite-dimensional, 2-player

games, we shall take = = (X', )) to have a particular form. But we shall keep this form

10" For example Dieudonné (1960), p 281, (10.4.6) and p 299, (10.8.1). Conversely, a continuous function

islocally bounded, but need not satisfy (28).
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as genera as possible, while retaining our focus on the specific application of the theory to
evolutionary games. In the subsequent development, we follow, in spirit if not in detail, the

ideas of Hopkins (1999) - see aso Hopkins and Seymour (1999).

We suppose given afamily of locally-Lipschitz functions,
Qq : B[Q] x M[Q,B] — M[Q, B], (31)

one for each pair (n, (), with 2 a compact subset of IR™. Associate an evolutionary game
dynamics to the family of operators (31) using the generalised payoff functions w and v of (7)
and (11) defined by the given underlying game with pure strategy space €2; C IR™: for player i
(t=1,2), by

dX — X)(X,Y) = Qi (wy, X), } (32)

G = Vo(X)Y) = Q2(vx,Y).
The ideais that these dynamics capture a continuous-time limit, as 7 — 0, of some strategy-
learning process, when the given game is repeated indefinitely at intervals of length 7. Thus,
we assume the existence of two distinct and large (usually infinite) populations, one from which
player-1 is drawn and the other from which player-2 is drawn. The form of the dynamics
incorporates the manner in which players are chosen in each round. In this scenario, X (B) is
interpreted as the probability that a chosen player-1 will use a pure strategy in B. Observe that
theinstantaneousrate of change of the mixed strategy X used by player-1 dependsboth on X and
on the payoff he receives when player-2 uses the mixed strategy Y. Similarly, the instantaneous
rate of change of player-2's mixed strategy depends both on her current mixed strategy, Y, and
on the payoff she receives on player-1's use of the mixed strategy X. An important example
of this construction, the Replicator Dynamics, is discussed below. Of course, the dynamics
defined by (32) can only be interpreted in game-theoretic terms when X and Y are proper
mixed strategies (i.e. probability measures). For general X and Y, the dynamicsisto be taken

as existing only as aformal extension of the interpreted dynamics.

PROPOSITION 6. Suppose @, islocaly Lipschitz on B[] x M2, B] for each Q2. Then
=0 = (Xo, y()) |S|Oca||y LIpSChItZ oné = M[Ql, Bl] X M[QQ,BQ].
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Proof. See Appendix. []

COROLLARY 7. Suppose that Qq is C! (i.e. continuously differentiable) on B[] x
MIQ, B]. Then 2y = (X, Vo) islocally Lipschitzon & = M[Qq, B1] x M[Qs, Bs].

Proof. A C! mapislocally Lipschitz. See Hirsch and Smale (1974), Lemma, pp 163-64. [

EXAMPLE 3. TheReplicator Dynamics. Theinfinite dimensional Replicator dynamicsare
defined using (32) and the family of operators,

It follows from (33) that, for f, g € B[],

Thus, when X is a probability measure, so that X (2) = 1, (f, Ra(g, X)) isthe covariance of

f and g with respect to X . Notethat R, isinfact linear in g. The dynamics (32) associated to

the Replicator operatorsis called the Replicator dynamics.

The Replicator operators admit an important generalization as follows. Let ag : B[] x
MIQ, B] — [ax,a*],with0 < a, < a* < oo, beafamily of locally-Lipschitz functions. Then
we define the Generalized Replicator operators by: Rq(g, X) = aq(g, X)Ra(g, X). The
significance of this generalization lies in the fact that the games we consider are asymmetric,
so that the multiplying factors a;(wy, X) and as(vx,Y’) which appear in the generalized
Replicator dynamics (32), represent different time-scale factors over which the two players
strategies evolve. These factors cannot in general both be absorbed by a single time-scale
change, and hence represent important intrinsic features of the dynamics. Also note that,
unlike Rq (g, X), the generalization R (g, X) is not in general linear in g. The relevance of
Generalized Replicator dynamics to learning processes which involve sequential sampling and

imitation has been emphasised by Schlag (1998) and Hofbauer and Schlag (1998).

From (32), the Replicator dynamics takes the form

L (B1) = (wy, X) B, X () — (wy, X)a, X (B1), }
%(BQ) = <UX,Y>BQY(QQ) - <UX7Y>Q2Y<BQ)7
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for B, € B;. Here, when X and Y are probability measures, the measure = (wy, X)p, on
(Ql, Bl) can beinterpreted asthe “fitness’ of the mixed strategy X against Y from the point of
view of player-1. Then (wy, X)q, isthe“mean fitness’, and the replicator equation measures
the deviation of the fitness from the (probability-weighted) mean fitness. Similarly, the measure

(vx,Y)p, isthe“fitness’ of the mixed strategy Y against X from the point of view of player-2.

Equations (35) take on amore familiar form when X and Y are defined by densities; i.e.

X(B1) = [, #(€)ds, }
Y(B2) = [, y(n)dn,

where d¢ and dn represent Lebesgue measure on §2; and Q, repectively, and z(£), y(n) are

(36)

Lo-functionson €2, and 2, respectively. Thentaking B; = d¢ and B, = dn in (36) yieldsthe

infintessimal form of these equations,

dz(§) _
o2l = 2(&) [wy (&) — (wy, X)a, ],
Wi = y(n)[vx () — (vx,Y)a,). } (37)

Conversely, integration of equations (37) over B; and B-, respectively, recovers equations (35).

The Replicator family of operators (33) is C'! in the sense of Corollary 7. To see this, recall
that the derivative of Qq (g, X) is (by definition) the continuous linear operator DQq (g, X) :
B[] x M[Q, B] — M|, B], given by

DQa(g, X)(6,®) = lim = {Qalg + =6, X + @) ~ Qalg, )},

For the Replicator operators, the linearity in thefirst coordinate and the continuity in the second

coordinate of Rq, impliesthat thislimitis

where Do R (g, X) : M[Q, B] — M[Q, B] isthe partia derivative of Rq, (g, X') with respect

to X. Thislatter is easily calculated from (33) to be
D3 Ra(g, X)®(B) = (9, ) s X (Q2) — (9, X)®(B) + (g9, X) 5 2(2) — (9, 2) X (B),

B € B, which is patently continuous (in fact, bilinear) in X and g by Lemma 2. Since R, is

continuous, this shows that R, is C! and hence that the Replicator dynamics (35) is locally
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Lipschitz. Sincethemultiplying factorsaq (g, X') areassumed to belocally Lipschitz, it follows
that the Generalized Replicator operators R, (g9, X) areaso locally Lipschitz, andinfact C! if
theaq(g, X) aeCt. O

DEFINITION 4. Anoperator Qq, issaid to be positive on B[2] x P[2, B] if, for each (¢, X) €
B[] x P[Q, B],

(9,Qalg, X)) >0, (41)

and Qq, is said to be positive definite on a subset S C B[] x P, B], if it is positive and
equality holdsin (41) for (¢, X) € Sifandonly if (9, X)p = 0 forall B € B;i.e if andonly
ifg=0X-ae

The significance of positive-definite conditions has been recognised by Hofbauer and Sig-

mund (1990), Hopkins (1999), and applied by Hopkins and Seymour (1999).

Now suppose player-1 receives constant payoffs; i.e. 71 (£, n) = w1 (n) for each pure-strategy
par (£,m) € Q1 x Qo. Then wy = constant. However, if player-1 is receiving strategy-
independent payoffs, he has no incentive to update any particular strategy he happens to be
using, so in this case we expect % = 0. Inview of this, it isreasonableto require our operators
to satisfy

Qa(c, X) =0 for any constant ¢ and each X € P[Q, B]. (42)

It followsthat equality must holdin (41) when g isconstant. However, the only constant function
satisfying the positive definite conditionis g = 0, so that Q¢ cannot be positive-definite on any

set S containing apair (g, X') with X € P[2, B] and g anon-zero constant.

On the other hand, given any (g, X), we may represent g uniquely in the form
g =9x +cx (43)

where (gx, X) = 0, and cx isthe constant function with value (g, X'). We may therefore form
the derived set S’ = {(g9x, X) | (9, X) € S}. Thentheonly pair (g, X) € S" with g constant
and X € P[Q, B] must have g = 0.
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A further obvious constraint on the game dynamics (32) arises from the relation X (2) = 1

for X € P[Q, B]. Thus,

dX d
E(Q) = [X(Q)] =0,

isthe condition for the preservation through time of this normalization condition. We therefore

require the operators Qg, in (31) to satisfy

Qa(g, X)(Q2) = (1,Qaly, X)) = 0 foreach (g, X) € BIQ] x P[€2, B]. (44)
In view of the above discussion, we consider the class of operators defined as follows.

DEFINITION 5. Let
So = {(g, X) € B[] x P2, B] | (g, X) = 0}. (45)

Then §(, = Sq. A family of operators (31) is called positive definiteif (42) and (44) hold, and
Qq ispositiveon 5[2] x P[Q2, B], and positive-definiteon S, inthe sense of (41). Thedynamics
(32) associated with apositive-definite family of operatorsiscalled a Positive-definite-Adaptive,

or PDA, dynamics.

Theimportant propertiesof positive-definite operatorsare summarizedinthefollowing propo-

sition, the proof of which follows easily from the above discussion.

PROPOSITION 8. Let Qq bealocaly-Lipschitz family of operators (31) which are positive
definite. Then

a (g9,Qal(g,X)) = 0foreach (g, X) € B[] x P[S, B].

b) (c,Qal(g, X)) =0,if ¢ = constant.

c) Equality holdsin (a) if and only if g isconstant X-ae., andtheng = (g9, X) X-ae.

EXAMPLE 4. TheReplicator Dynamics. For X € P, B], it follows from (34) that

(9, Ra(9, X)) = (g%, X) — (9, X)% = ((g — (9, X)), X), (46)
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isthe variance of g with respectto X. Thus, (g, Qa(g, X)) > 0. Notethat equality holdsif and
onlyif X ({w | g(w) # (g9, X)}) = 0;i.e. ifandonlyif gisconstant X -ae. For thegeneralized
Replicator operators (see Example 3), we have (g,RQ(g,X)) = aq(9,X) (g, Ra(g, X)) >
a. (g, Ra(g, X)) > 0, with equality if and only if (g, Ro(g, X)) = 0, sincea, > 0.

From (33), we have, for any X-a.e. constant function c,
Ra(c, X)(B) = e{X(B)X(Q) - X(2)X(B)} =0,

whichverifies(42).'! Similarly, Ro(c, X) = aq(c, X)Ro(c, X) = 0. Again, Ro(g, X)(Q) =
aq(g, X)Ra(g, X)(Q2) = 0from (33). It therefore follows that the Replicator and Generalized

Replicator families are positive definite in the sense of Definition 3. [

The general significance of apositive definite condition (41) on the operators ); in (32) arises
from the fact that strategies tend to evolve towards better responses under PDA dynamics. That

is, a PDA dynamicsisimproving, asis shown in the following proposition.

PROPOSITION 9. Lete = (X,Y) beafixed pair amixed strategies satisfying

(wy, Q1(wy, X)) >0, (47)

and let F;(e) = (X¢(e), Yi(e)) bethe flow under the PDA dynamics (32) with initial condition
e. Thenthereisasmall timeinterval, 0 < ¢ < ¢, for which X;(e) isastrictly better response
to Y than X. Similarly, if (vx, Q2(vx,Y)) > 0, then Y;(e) isastrictly better response to X
than Y.

Proof. Assume that (47) holds. Then wy cannot be zero X-ae., so that ||wy || > 0. Thus,

thereisasufficiently small n > 0 for which

(wy, Q1 (wy, X)) = nllwy[[ > 0. (48)

11 Notethat (cg, X) = c(g, X) for any bounded B-measurablefunction g and X -a.e. constant function

¢, because the measure (g, X )  is X -absolutely continuous. See footnote 7.
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By continuity of @; and of the flow F;(e), thereisaninterval 0 < ¢ < ¢, for which

Q1 (wyie): Xi(€)) = Quwy, X

= Hsrrgl}@,Ql(wme),Xt(e))> — (g, Q1(wy, X))| < %77-

This, together with (48), implies that

1
(wy, Q1 (wy,(e), Xi(e))) > 577||U)Y|| >0,

for eacht € [0, ). Now, by the Mean Value Theorem, for each ¢ € (0,¢) thereisan s € (0, t)

such that,
1
<wy,Xt(€)> - <UJY7X> = t<wY7 Ql (st(e)7XS(e))> > §7I||U’Y||t > 0.

This shows that, for small valuesof ¢t > 0, X;(e) isasdtrictly better responseto Y than was X .
Thus, if Q; satisfies (47), then X evolvesin ashort time to a better responseto Y. []

We have shown that the essential characteristic of positive-definite dynamicsisthat strategies
evolve toward better responses. Clearly, similar arguments apply to )2, so that player-2's

strategy also evolves toward better responses.

Mutations We can extend the basic form of the dynamics (32) by adding mutations. The
idea is that matched players who intend (or are programmed) to play a mixed strategy pair,
(X,Y), occasionally make ‘mistakes (mutations). These mistakes come with their own fixed,
exogenous distributions, ©; € P[Q;, B;]; i.e. instead of using the intended mixed strategy X,
player-1 sometimes usesthe mixed strategy ©1, and similarly for player-2. Mistakesfor player-i
occur with a(usually small) probability §; € [0, 1]. This process has the effect of amending the

dynamics (32) to the dynamics defined by

“dt

D = V(X,Y) = (1= 6:)W(X,Y) +6,(02 — V).

X =X(X,Y) = (1 - 0)X(X,Y) +6: (61 - X), } (49)

An dternative interpretation of the mutation terms in (49) is that players are leaving their

respective populationswith probabilities §; and d-, and being replaced by naive (inexperienced)
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players, who bring with them the exogenously determined mixed strategies ©; with which they
begin playing the game, before any game-specific learning takes place. In this interpretation,
the ©; can be regarded as distributions over propensities to play pure strategies, conditioned
by general cultural influences in the societies from which the players are chosen. One can also

think in terms of births and deaths rather than replacement.

We remark that the probabilities ¢; in (49) need not be constants. In fact, we can take them
to be endogenously determined by real-valued functions, §; = §,(X,Y) : £ — [0, 1], which
are locally Lipschitz. The mutation terms in (49) are then also locally Lipschitz. Hence, if
=0 = (Xb, Vo) islocaly Lipschitz, sois= = (X, ). Thus, the theory devel oped so far applies

to the mutation-augmented dynamics defined by (49).

We now show that , provided certain uniformity conditions hold, tragjectories of (49) exist for

al timet > 0. We consider two uniformity conditions, as follows.

DEFINITION 6. Let Qq : B[] x M[Q,B] — M[Q,B] be alocaly Lipschitz family of
operators. We say that Qg, is uniformly bounded on B[Q2] x P2, B] if there is a continuous
non-decreasing function v : [0,00) — [0,00), such that ||Qa(g, X)|| < ya(llg|l) for all
(9, X) € B[Q] x P[Q, B].

DEFINITION 7. Suppose Qq : B[Q] x M[Q, B] — M[Q,B]isC* for k > 1. We say that
Qq isC*-uniformly bounded on B[] x P[€2, B] if thereisacontinuous non-decreasing function
76 ¢ [0,00) — [0, 00), such that maz{||Qa(g, X)I|, [[DQa(g, X)II, - ., [[D*Qalg, X)|I} <
76 (lgl]) for al (g, X) € B[Q] x P[Q, B].

It follows from Corollary 7 that C'*-uniformly bounded implies uniformly bounded.

For example, if Qq (g, X) islinear in g, then we can take v () = Kz, where the constant
K = sup{||Qalg, X)|| | (9,X) € B[Q] x P[Q,B] and [[g|| < 1}, provided K < oo.
Similarly, wecan definev§& (z) = K*x with K* = sup{||Qqa(g, X)||+|/DQa(g, X)||+. ..+

23



ID*Qa(g, X)|| | (g9,X) € B[Q] x P[Q,B] and ||g|| < 1}, provided K* < co. We shall
show later that the Generalized Replicator family is C'*-uniformly bounded on B[] x P[Q, B]

(see the proof of Proposition 11 below).

PROPOSITION 10. Let K = P[4, B1] x P[Q9, Bs] C £. Suppose that

a) Qq islocaly Lipschitz on B[2] x M(S, B].

b) Qa(g, X)(B) > 0 whenever (g, X) € B[Q] x P[Q, B] and X(B) = 0.!2
©) Qal(g,X)(Q) = 0foreach (g, X) € B[Q] x P[Q, B].13

d) Qq isuniformly bounded on B[2] x P2, B].

e) 6;: & —[0,1] arelocaly Lipschitz functions (i = 1,2).14

Then KC isforward invariant under the dynamics defined by (49). Hence, trajectories beginning
in IC exist for all ¢ > 0.

Proof. By Lemmal, K is closed, bounded and convex. The theorem therefore follows from
Propositions 5 and 6, provided we can show that K isforward invariant and that = isuniformly

bounded on .

Consider aninitial condition eqg = (Xg, Yy) € K. Then ©1(21) = Xo(21) = 1. Hence

X (X0, Y0) () = (1 = 01)Xp(Xo, Yo) (1) = (1 — 01)Q1(wyy, Xo) (1) = 0,

by condition (c). Similarly, (X, Y5)(£22) = 0.

12 This property is weaker than the requirement that Qo (g, X) be X -absolutely continuous for each g.
The latter would require Qq (g, X )(B) = 0 whenever X (B) = 0. Infact, if strict inequality holds for
some B, then previously unused strategies can be brought into use by the dynamics. Thisis not possible

if equality holdsfor al B.
13 That is, property (44) holds.

14" For example, if J; is constant.
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Since eg € K, we have Xo(B) > 0 for dl B € By (i.e. Xy is a probability measure).
Suppose that Xy (B) = 0 for some B. Then

X(Xo,Y0)<B) = (1 — 51)Q1(wy0,X0)(B) + 51@1(3) Z 51@1(B) Z 0,

by condition (b). It follows that X;(B) can only increase in a short time interval ¢ > 0. In

particular, it cannot become negative. Similarly if Y,(B) = 0 for some B € Bs.

The above arguments show that F;(ey) € K for ¢ in some non-empty interval [0,~). But
this clearly impliesthat F;(eo) € K for al ¢ > 0 for which it is defined, since we have actually

shown that, oncein IC, aforward time trajectory can never leave K.

It remains to show that = is uniformly bounded on K. From Lemma 1 and (€), the function

61(X,Y)(©1 — X) isuniformly bounded on K. On the other hand, by (d),

1Q1(wy, X)I| < 71 (llwyll),

where v, isasin Definition 6. But, from (14), |

wy|| < 7TT <ooforY e P[QQ,BQ], so that
Q1 (wy, X) is uniformly bounded on K. The result therefore follows from this and a similar

argument for Q2 (vy,Y). [

We apply Proposition 10 to the mutation-augmented (Generalized) Replicator dynamics de-
fined by the operators (33).

PROPOSITION 11. The Replicator family of operators (33) satisfy conditions (a) to (d) of
Proposition 10. Hence, if the §; satisfy condition (€), the conclusions of Proposition 10 apply
to the mutation-augmented Generalized Replicator dynamics,

dd_)t((Bl) = (1 — 51)a1 [(wy, X>31 — <’LUy, X>QIX(B1>} + (51 [@1(31) — X(Bl)] y }

X (By) = (1 = 62)az [(vx,Y) B, — (ux,Y)0,Y (B2)] + 02[02(B2) — Y (Bs)],
(50)

with B; € B;, 0; = 51(X; Y) anda; = al(wy,X),ag = CLQ(U)(,Y).

Proof. a) isproved in Example 3.
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b) Infact X(B) = 0implies R (g, X)(B) = 0. Thisfollowsimmediately from the definition
(33) and the fact that (g, X ) g is X -absolutely continuous.'®

¢) Thisisimmediate from (33).

d) Toshowthat Rq (g, X) isuniformly bounded on BB[Q] x P[Q, B], wehave || Rq (g, X)|| <
a*||Ra(g, X)|| where aq : B[Q] x M[Q, X] — [a«,a*]. It therefore suffices to show that
Rq(g, X ) isuniformly bounded (Definition 6). Infact, weshow that R (g, X ) isC*-uniformly
bounded (Definition 7).

In Example 3it is shown that the Replicator operatorsare C!. Using the formulain Example
3, we have || DRq(g, X)|| < ||Ra(g, X)|| + ||D2Ra(g, X)||. Hence, maz{||Ra(g, X)]I,
IDRa(g, X)|[} < [|Ra(g, X)[| + [|[D2Ra(g, X)||. Now,

| Ra(g, X)I = liTLgl!(gh,)O — (g, X){h, X)|
< lgll - {IXI+ 11X}

= 2|lg]l-
Similarly,

|D2Ra(g, X)|| = sup ||D2Ra(g, X)®||

1@]]<1

= sup sup |[(hg,®) — (g, X)(h, ®) + (hg,X) — (g, ®)(h, X)]|
18|11 [|h]|<1

<loll- sup {111+ X111 -+ 1]+ 911X}

= 4||g]|.

Hence, maz{|| Ra(g, X)||.|[DRa(g, X)|[} < 4llg|| for all (g, X) € B[] x P[, B], which
showsthat R, is C'*-uniformly bounded on B[] x P[, B].

For the Generalized Replicator dynamics, we have Rq (g, X) = aq (g, X)Ra(g, X). Hence,

if ag isC!,

15 see footnote 8.
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The C'*-uniform boundedness of Ry, therefore follows by an argument like that above, provided
ag isaso C'-uniformly bounded on B[] x P[Q, B]. L[]
3. Propertiesof equilibria

Wefirst consider the dynamics (32) defined by afamily of continuous operators (Qq,, without
mutations. We shall relate the notion of Nash equilbrium of the underlying game to the notion

of an equilibrium (stationary point) of the dynamics (32).

Throughout this section, Q¢ will be a family of locally Lipschitz operators (31) satisfying
the conditions of Proposition 10.
PROPOSITION 12. Suppose Qq, satisfies:

a Qalg,X)isX-ac. foreach (¢, X) € B[Q] x P[Q, B].

b) Qa(g, X) = 0whenever X € P[Q, B] and g = constant X-a.e.'

Then aNash equilibrium of the underlying gameis an equilibrium of the dynamics (32) defined
by the Qq,.

Proof. Let (X , Y) be a Nash equilibrium of the underlying game. It followsfrom Proposition
4that wy = (wy, X), X-ae, sotha Q(wy,X) = 0 by condition (b). A similar argument
shows that Q2 (v¢,Y) = 0, and we conclude that (X,Y") is an equilibrium of the dynamics
(32). L]

Note that condition (a) is not needed in the proof of Proposition 12. It is inserted there for
the convenience of future reference.

The converse of Proposition 12 is false; i.e. there are dynamic equilibria which are not

Nash equilibria. In particular, consider the injective set function (which is not continuous),

161 Qg is positive definite, and g = constant X -a.e,, then (g, Qq (g, X)) = 0, by Proposition 8(c).

Condition (b) is stronger than this.
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A x A:Qy x Qy — K, which identifies the pure-strategy pair (£, n) with the mixed-strategy
pair (A(£), A(n)) (see (10) and (11)). That each of these pure strategy pairsis an equilibrium
of the dynamics (32) follows easily from condition (a) of Proposition 12 (in fact, any bounded,
B-measurablefunctionisconstant A(¢)-a.e.). However, aswas shown for the Ultimatum Game

in Example 2, not every pair of pure strategiesis a Nash equilibrium.

Nevertheless, as we shall show below, it is true that every asymptotically stable dynamic
equilibrium is a NE. Before giving our detailed results, we need to discuss what is meant by
asymptotic stability in the infinite-dimensional context. Here we shall consider only the most

obvious strong notion of stability.

DEFINITION 8. Consider L = P[4, B1] x P[Q2, B2] equipped with the (strong) topology
induced by thenormmetric||(X,Y)— (X', Y")|| = max {||X — X'||, ||Y — Y”||}. A dynamic
equilibrium (X, Y) of the PDE dynamic (32) is locally asymptotically stable if, given any
(strong) neighbourhood U of (X , f’) in /C, there exists a (strong) neighbourhood V' C U of
(X,Y) such that:

i) (X:,Y:) € Ufordlt > 0andall initial conditions (X, Yy) € V;

i) [|(X.,Y:) — (X,Y)]| — 0ast — oo for all initial conditions (X,,Y;) € V.

Unfortunaltely this obvious notion of asymptotic stability turns out to be very strong, and it
isunclear if it is the most suitable definition for use in infinite dimensions. There are weaker
notions which also have an intuitive appeal. However, we shall be concerned only with the
strong notion defined above in what follows. We begin by generalising to infinite dimensions
aresult of Samuelson (1997)'7. First, recall the important property of pairwise singularity
of measures which we will use often in this section. Thus, X, X' € M|[Q, B] are mutualy

singular, written X 1 X', if there exits subsets B, B’ € BB with the following properties:

(@) BAB'=0; (b)) BUB'=Q; (c) X'(B)=X(B')=0. (21)

17 The strictness conditions given in Proposition 13 are the infinite-dimensional analogues of similar

conditions given in Samuelson (1997), Proposition 4.3, p 119. See also Samuelson and Zhang (1992).
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For example, A(§) L A(¢') for& #¢'.

PROPOSITION 13. Supposethat QQq, is positive definite, and that the assumptions of Propo-
sition 12 hold. If (X, Y") isan (locally) asymptotically stable equilibrium of the game dynamics
(32), then (X, Y") isaNash equilibrium of the underlying game. Furthermore, (X,Y") satisfies

the following strictness conditions.

A

i) If (wg, X) = (wy, X) for some X € P[Qy, B with X # X, thenvx # (vx,Y) Y-ae.

A

i) If (ug,Y) = (vg,Y) forsomeY € P[Qy, Bo] WithY # Y, then wy # (wy, X) X-ae.

Proof. Suppose that (X , Y) is not a Nash equilibrium, and suppose that there exists X €
P[4, B;] such that

(wy, X) > (wy, X). (51)

A

Since Q1 (wy, X) = 0, it follows that (wy, Q1 (wy, X)) = 0. This implies that wy =

(wyg, X), X-ae., by Proposition 8(c).
Let i = wy — (wy, X), sothat v = 0 X-ae,andlet By = {£¢ € Q, | @ = 0} € By,
Setting B; = )y — By, we have
0 = By U By, BoﬂBlzw, X(B(]):L X(Bl):(), w=0 on By. (52)
Thus, (51) can be written
(W, X) = (b, X) g, > 0. (53)

Now, if X(B1) = 0, it follows that (1, X), = 0 by absolute continuity'®, and we have a
contradiction to (53). Hence X (B;) > 0.

Define ameasure X’ € P[Qy, 51| by

X(BN B)

X'(B) = X(By)

(B € By).

18 geefootnote 8.

29



It then follows from (52) that X’ L X;i.e. X'(By) = 0 and X'(B;) = 1, and from (53) that

<12)7 X>B1

XD = X8y

> 0. (54)

Consider the perturbed measure X = (1 — &)X +eX’ € P[Qy, By], withe > 0 small. Then

~

(54) impliesthat (i, X — X) = (i, X) = (i, X') > 0, which translates to

~ A

(wy, X) > (wy, X). (55)
Also, at (X,Y), we have
d o o dX N
%(X—X):%—Ql(ww)()
Thus,
d. o 4 ) )
a“ aX—X>]=<wa%(X—X)>=(w»Q1(wva)>207 (56)

since g, is positive definite (Proposition 8(a,b)). Suppose equality holds in (56). Then, by
Proposition 8(c), wy = (wy, X) X-ae. Hence, by (55), « is drictly postive X-ae. But,
by construction, @ = 0 on By, and X (By) = (1 — &)X (By) = (1 —&) > 0. Thisgivesa

contradiction, and we conclude that strict inequality holdsin (56).

It now follows that (1, X — X) is strictly increasing for small times. However, if (X,Y)
is locally asymptotically stable, then, in view of (55), (@, X — X) must be non-increasing for

sufficiently small . We therefore have a contradiction.

A similar argument applies if we assume the existence of aY € P9, B2 which violates

the Nash equilibrium condition; i.e. suchthat (v¢,Y) > (v¢,Y). We have therefore shown
that (X, Y") must be a Nash equilibrium.

Now suppose there isan X # X which is an alternative best reply to Y; i.e. such that
(wy, X) = (wy, X). Suppose that vx = congtant Y-ae. Form the perturbed strategy
X =(1-¢)X +eX. Thenvg = (1 —¢)vg +cvyx = constant Y-ae. By Proposition 12(b),
it follwsthat Qs (v, Y) = 0. Onthe other hand, (wy, X) = (wy, X), and

d ~ -
77 [wg, X)] = (wy, Qi (wy, X)) > 0.
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If the strictinequality holds, then, since Qq, ispositive definite, X evolvesinashort timeinterval
to a strictly better response to Y by Proposition 9. But, since X isabest reply to Y, thisisa
contradiction. Thus, equality holds, and again by positive definiteness, wy = (wy, X) X-ae,
and hence Q; (wy, X) = 0. Thisshowsthat (X, Y") isan equilibrium of the dynamicsfor each
e > 0. Hence, (X , Y) cannot be asymptotically stable. We therefore have a contradiction, and

the strictness condition (i) is established.

Condition (ii) is proved similarly. L[]

The strictness condition (i) in Proposition 13, saysthat, if X isan alternative best reply to Y,
then player-2, using the pure strategies chosen with positive probability under Y, can distinguish
between X and X. That is, there exists B, € B, with Y (By) > 0, such that

A N

(vx,Y)p, # (ox,Y)Y(Bs), but (vg,Y)p, = (vg, Y)Y (Bo).

[The latter equality by (18).] A similar interpretation applies to condition (ii). In particular, if
(X,Y) = (A(€),A())) is apure-strategy NE which is asymptotically stable, then it follows

~

easily from conditions (i) and (ii) that (£, 7) must be astrict NE.

EXAMPLEG6. Consider the Sub-Ultimatum gamedefinedin Example 1. Asshownin Example
2, this game has no pure-strategy Nash equilibria at all, and hence cannot have any (pure)
asymptotically stable states under any (well-behaved) PDA dynamics. [

We will prove a partial converse of Proposition 13, namely that (with further restrictions) a
SSNE islocally asymptotically stable. For thiswe shall need to make the stronger assumption

that Qg, is C}l, and we first obtain an important property of the derivative in this case.
Suppose Qq isC}, andthat (X,Y) € K = P[Qy, By] x P[Qa, Bs] isadynamic equilibrium
of the system (32). We define the operator, Q(X , Y) : € — IR, by

Q(X,V)(O, ) = min {(w?, D2Q1(wy, X)), (v, DaQa(vsg, ?)@} .57
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The relevant properties of this operator are given in the following Lemma.

LEMMA 14. Let Qq be C}, and (f(,f/) be a dynamic equilibrium of (32). Then,
Q(X,Y)(X',Y') > 0 for any pair (X',Y’) € K. Further, if X’ is X-acor Y’ isY-ac,
then O(X, V)(X",Y") = 0.

Proof. Fore > 0, let L.(X,Y)X' = 2{Q:(wy, X + eX') — Qi(wy, X)}, with X’ €
P, B1]. Then DyQa (g, X)X’ = lim._o L.(X,Y)X’. Further, since (X,Y") isadynamic
equilibrium, then Q; (wy, X) = 0 and L.(X, V)X’ = 1Q; (wy, X +X’). Again, since Q,

is positive definite, (wy, Q1 (wy, X + X)) > 0, whence

(wyr, DaQi (wy, X)X') = lim (wg, Lo(X, V) X) > 0.

e—0

N

A similar argument shows that (v, D2Q2 (v, Y)Y’) > 0 for each Y’ € Py, By]. Hence,
Q(X,Y)(X",Y') > 0.

Now supposethat X’ is X-a.c. Then X +¢X'is X-acforeache > 0. Sincew, = constant
X-ae, it follows that wy = congtant (X + eX’)-ae. Furthermore, Q;(wy, X + ¢X') is
(X +eX')-ac. Hence, (wy, Q1 (wy, X+eX')) = congtant.(1, Q1 (wy, X +eX’)) = 0. Thus,
(wy, Le(X,Y)X') = 0,andtherefore (wy, D2Q1 (wy, X)X') = lim._o{wy, L (X,Y)X")
= 0. Similarly, (v¢, D2Qo(vg,Y)Y') = 0if Y’ isY-ac. Hence, Q(X,Y)(X',Y') = 0 if
either X' is X-acor Y’ isY-ac. []

DEFINITIONO. LetQqbeC},and(X,Y) beadynamicequilibriumof (32). Wecall (X,Y)
strictly non-degenerate for Qq, if there exists §; > 0 such that Q(X,Y)(X’,Y”) > 4, for all
(X, Y')eKwithX’ L XandY’ LY.

Before stating our main result on asymptotic stability, we first give a more convenient char-
acterisation of local neighbourhoods in the strong (metric) topology. This is achieved in the

next two lemmeas.

LEMMA 15. Let X, X' € P[Q, B] with X’ L X. Then || X’ — X|| = 2.
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Proof. Choose B,B’ € BwithBUB' = Q, BN B ={,and X(B') = X'(B) = 0. Let
f=1Ip —1Ig. Then||f|| =1,and |{f, X' — X)| = 2. Hence, || X’ — X|| > 2. On the other
hand, the triangle inequality gives || X’ — X || < || X’|| + || X || = 2, since P[{2, B] is a subset
of the unit spherein M[Q, B]. [

LEMMA 16. Let X = A(E) € P[, B]. Thenany X € P[Q,B] with X # X, may be
uniquely decomposed in the form X = (1 — a)X + aX’, where0 < o < 1, X’ € P[Q, B]
and X’ 1 X. Further, a = 3||X — X]||.

Proof. Write Xo(B) = X(BN By) and X1(B) = X(BN B;). Then X = X, + X5, and
both X, and X are non-negative measures with Xy L X;. Further, X(B) = 0 if and only if
BN By = 0, and in this case Xo(B) = 0. This shows that X, is X-absolutely continuous,
and in fact, Xo = aX, wherea = X(B;) > 0. By the Lebesgue decomposition theorem!?
in M[Q, B], this decomposition of X isunique. Also, a = X(By) < X(Q2) = 1, so that
0<a<1. Settinga =1—a,then X(By) + X(B1) = X(2) = 1 impliesthat « = X (B;).
If « = 0,then0 < X;(B) = X(BNBy) < X(B;) =0,0that X; = 0,and X = X. If
a>0,write X' = o 'X;. Then X’ > 0and X' (Q) = a1 X(B;) = a la = 1. Hence,
X =(1-a)X +aX withX’ € P[Q,B]and X’ L X.

For the last part, wehave X — X = o(X — X’), and hence || X — X|| = 2a by Lemma 15.
H

DEFINITION 10.  Let X+ = {X’ € P[Q,B] : X’ L X}. We define the strong e-

neighbourhood of X to be

R N - 1
N€<X):{(1—CE)X—|—04X/IX/€XJ‘ and 0§a<§6}. (58)

It then follows from Lemma 16 that, for X € N.(X), || X — X|| = 2o < e. Thus,

A A

N.(X) = {X e PIQ,B]:||X - X|| < s}. That is, N.(X) coincides with the usua notion

of the open e-ball in the norm-induced topology on P2, B].

19 see Dunford and Schwartz, 1958, Theorem 14, p 132.
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LEMMA 17. If (X,Y) = (A(E, ) isaSSNE (satisfying (22)), then

A

mz’n{(w};,X—X’%(vX,Y—Y’}} > o, (59)

foral (X',Y") € P[Qy,B1] x P[Q, Bo]with X’ | X andY’ LY.

A

Proof. Thefirst condition (22) may be written as, (wy-, X) — wy-(§) > do <1 - I{é}(§)> for
al ¢ € Q. Now apply (-, X') to thisinequality, and notethat (7,¢,, X') = 0 because X | X'
implies X’({¢}) = 0. We then obtain (wy,X — X') > do. A similar argument shows that
g,V =Y > 6. [

LEMMA 18. If (X,Y) is a SNE, then (wy, Q1(f, X)) = (vg,Q2(g,Y)) = 0 for any
(f,9) € B[Q1] x B[Qs].

Proof. By Proposition4, wy = (wy, X) = constant X -a.e. By Proposition12(a), Q1 (f, X) is
X-ac. Hence, if wy isnon-constantonaset B € B,then X (B) = 0,andhenceQ, (f, X)(B) =

0. It follows that

<w§77Q1(f7X)> = <w§?,X><1,Q1(f,X)> =0

by condition (42). A similar argument showsthat (v ¢, Qz(g,f/» =0. [
We are now is a position to give our main stability result.

PROPOSITION 19. Let Qg be C2, and (X, Y) be a SSNE which is strictly non-degenerate
for Qq. Then (X , Y) is a strongly locally-asymptotically-stable stationary point of the PDA
dynamic (32).

Proof. Consider the positive-definite Lyapunov function:

A A~

L(X,Y) = (wg, X — X) + (vg,V = V). (60)

Then,
dL

= (XY) = —(wy, Qu(wy, X)) = {vg, Q2(vx, V). (61)
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Now take (X,Y) = ((1 —a)X +ar X', (1 —az)Y+a2Y'), where 0 < ay,ag < 1,

and (X',Y') € Xt x Y. Then, || X — X|| = 204 and ||Y — Y|| = 2a2, and hence from

(60),

A ~

L(X,)Y) = Ck1<w§,,X — X,> + 042<1)X—,Y — Y/> < 2(a1 + az) < 2a, (62)

where o = maz{2a1,2as} = [|(X,Y) — (X,Y)]|. Ontheother hand, if (X, Y) isan SSNE,

then from Lemma 17 there exists §, > 0 such that (59) holds. Thus,

1
L(X, Y) > (Oél + 062)50 > 50&50. (63)

Now consider

(wy, Qi (wy, X)) = (wy, Qi(wy, X))
+ aq (wy, Dng(wy,X)(X' — X))+ ag(w};,DlQl(w};,X)(Y/ —Y)+0 [o?]

= 041<wf/7D2Q1<wf/7X)X/> + a2<w§,,D1Q1(w§,,X)Y'> +0 [O‘z]

by Taylor expansion and Lemma 18. On the other hand,

A

. 1
(g, D1Qu (wy, X)Y) = lim {wy, Qu(wy ey, X)) =0,
again by Lemma18. Thus,
(wy, Q1(wy, X)) = a1 (wy, DaQ1(wy, DaQ1(wy, X)X') + O [a?].

Using asimilar calculation for (v, Q2(vx,Y")), we obtain from (61)

dL
—(X,Y) =
dt( 7)

— ap(wy, DaQ1(wy, DaQ1(wy, X)X') — az(vg, DaQa(vg, DaQa(vg, V)Y') + O [a?]
< (o1 + ) Q(X, V) (X', Y') + O [o?]

< —%aQ(X,Y)(X’,Y’) +0[a?].

Thus, by the strict non-degeneracy of (X,Y), thereexistsad;, > 0 such that

Cfl—f(X, Y) < —6a+ 0 [a?].
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Since the remainder term is bounded, it follows that thereis an ¢ > 0 such that

dL 1
“ZXY) < —5ha (64)

foral a =||(X,Y) — (X,Y)|| < e; inparticular, forall (X,Y) € N.(X) x N.(Y). Hence,
from (62) and (64),
L(X,,Y;) < L(Xy, Yy) exp {—0st}, (65)

foral t > 0 for which o, = [|(X;, Y;) — (X,Y)]| < &, where s, = 14,

LetU = {(X,Y): [|(X,Y)—(X,Y)||<e and L(X,Y) < +80e}. Since L iscontinuous
inthestrong topology with (X, ') = 0, U isan open neighbourhood of (X, Y"). Furthermore,
it follows from (63) and (65) that for (Xg,Yp) € U

1 1
5500% < L(X:,Y:) < L(Xo, Yo) exp{—6at} < 5(508 exp{—dat},

aslong as oy < . But these inequalitiesimply that L(X;,Y;) < 3d0c and oy = |[( Xy, Y;) —
(X,Y)]|| < e, and hencethat (X;,Y;) € Uforalt > 0. Thus, ay = ||(X, Y:) — (X, Y)]| — 0

A ~

ast — oo, and we conclude that (X, Y") is strongly-locally-asymptotically stable. []
Proposition 19 may be applied to the Replicator dynamics as follows.

COROLLARY 20. An SSNE equilibriumisalocally asymptotically stable dynamic equilib-

rium of the generalized Replicator dynamics.
Proof. We use the formulain the proof of Proposition 11,
DyRa (g, W)® = Dyaq(g, X)® - Ra(g, X) + aq(g, X) - D2Ro(g, X)®.
Let X' € X Then
(wyg, DRy (wy, X)X') = ay(wyg, X ){wyg, DaRy (wy, X)X,

since R (wy-, X) = 0. Now aq(g, X) > a, > 0, and

(wy, DaRi(wy, X)X') = (wi, X') — 2(wy, X' (wy, X) + (w3, X)
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= VarX’(wf/> + VarX(wy) + (<7~U§/7X> - <w§?’X/>>2

= Vary: (wy) + ((wg, X) — (wg, X))

> (w};,f( - X'\2,
sinceVar ; (g) = Oforany g, because X = A(€). Since(X,Y)isaSSNEand X’ | X, wehave
(wy, X — X') > 8y > 0, and hence (wy., Dy Ry (wy, X)X') > .02 > 0. A similar argument
shows that (vg, DaRa(vg,Y)Y') > a.83 for Y/ L Y. Thus, Q(X,Y)(X',Y") > a.d3
whenever either X’ | X or Y’ L Y. Thisshowsthat (X,Y) isstrictly non-degenerate for the

generalized Replicator operators Rq,, and the result therefore follows from Proposition 18. [

EXAMPLE 7. Modified Ultimatum Game. Consider the modified form of the Ultimatum
Game discussed in Example 2, in which there is a positive lower bound o« > 0 for offers from
Adam, whose payoff functionisgiven by (25) withp > 0. Thenthe subgame perfect equilibrium
istheunique SSNE. By Proposition 18, thisequilibriumisthereforelocally asymptotically stable
for suitable PDA dynamics. [

EXAMPLE 8. Asdiscussed in section 2, any gamewith aSNE, (X, Y"), may be perturbed by
an arbitrarily small perturbation to agame for which (X , Y) isa SSNE, and which istherefore
locally asymptotically stable for suitable PDA dynamics. For example, the perturbation (24)

with p, ¢ > 0 arbitrarily small. [J

Symmetric games. The theory in this paper has been developed for asymmetric games.
However, there is no difficulty in adapting it to symmetric games. For a symmetric game, we
have 2, = Q5 = Q. Only one payoff function w = v in (7) or (11) isrequired, and the payoffs
to players 1 and 2 from a mixed strategy pair, (X,Y"), are given by:

IL(X,Y) = (wy, X), }

LY, X) =(wx,Y). (66)

[cf. (15).] The general form of the (mutation-augmented) game dynamics (49), defined by a

family of operators (31) isthen,

(67)



with @ = Qq and § > 0. Here, we think of both players as chosen from the same population,
whichissubject to asingle mutation probability, ¢, associated with asingle mutation distribution,
© € P, B]. However, in thisinterpretation, we should think of X (B) as the probability that
any player chosen from the single population will play a pure strategy in B. In other words,
as far as her propensity to play a particular pure strategy is concerned, a chosen player does
not care whether she occupies the role of player-1 or player-2. Thus, the same mixed strategy
should apply to both players, so that we must take X = Y in (67), and therefore (67) reduces

to the single equation,
dX

or = Q(wx,X) + (0 — X). (68)

EXAMPLEY9. TheNashDemandGame. Therearetwo playerswho must bid, independently
and simultaneously, for a share of an infinitely divisible utility pie of unit size. A strategy for
each player isabid ¢ € [0, 1], representing the share demanded by the player. If £ and &, are
the bids of the two players, the rules of the game stipulate that the players get their demands if
&1+ & < 1, but get nothing if £&; + & > 1. However, inthe case ¢; + & < 1, the outcomeis

inefficient since thereisapositive surplus, 1 — & — &», which is discarded.

The strategy space is 2 = [0, 1], and the payoff functionis

o= {§ HEELn "

Thisis easily seen to be 512 = By;-measurable. The associated payoff function, w : M2, B]
— B[], isgiven by

1-¢
wy(€) = ¢ /O 4y (n) = €Y (10,1 - €)), (70)

and satisfies conditions (8).

The strategy pairs (£, 1 — &) form acontinuous family of pure-strategy Nash equilibria. Each
of these equilibriais strict, but none of them is a SSNE. However, we can modify the game
dlightly asfollows. Suppose each player hasto pay a penalty, expressed as a percentage of the

hisshareof the pie, for aninefficient outcome. Thus, if theplayersbid &, and & withé +& < 1
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(an inefficent outcome), then player 7 forfeits a fixed percentage p¢;, with 0 < p < 1. This

modified game has payoff function

0 if& 4+ & > 1,
(&1, &) = &1 if& +& =1, (71)
1-p& if&E+H6 <L

For this game, each pair (£,1 — &) with & € (0,1) isa SSNE, and hence is locally asymptot-
icaly stable for any well-behaved PDA dynamics by Proposition 18. At first sight this seems
counterintuitive because the pairs (£, 1 — &) form a continuum in pure-strategy space 2 x €.
However, it must be remembered that, however close £ and ¢ are (with &' # €) in Q = [0, 1],
the corresponding mixed strategies A () and A(¢’) arefar appart in the strong topology. Infact
[|AE)—A(E")]| = 2by Lemmal5. Thebasin of attraction of (¢, 1 —¢) containsastrong neigh-
bourhood of the form (58), and therefore only measures of the form X = (1 — e)A(§) + e X’
with X” 1 A(§) ande > 0 small, are asymptotically attracted to this equilibrium; in particular,
X = (1—¢e)A(&) +eA(¢).25 Thus, avery large proportion of the probability weight remains

concentrated at £ for relevant small perturbations away from equilibrium. [J

4. Absolute continuity and probability densities

Let Q, be afamily of operators satisfying the hypotheses of Propositions 10 and 12. Fix a
mixed strategy © € P[2, B]. We have in mind that © should be one or other of the mutation
distributions in the mutation-augmented dynamical system (49), but for the present we do not
need to specify this. Denote by D[(2, ©] C B[], the subset of density functions for ©; i.e.
functions 0 satisfying

>0 and (0,0)=1. (72)
The set D[S, O] is closed and convex.

Let M[Q2,B,0] C M[Q,B] be the closed subspace of measures which are ©-a.c., and
PQ,B,0] = M[Q,B,0]NP[Q, B]. For © > 0 (not necessarily normalized), thereisalinear

26 With similar considerationsat 1 — & for the other player.
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map, Jo : B[Q2] — M[Q, B, O], given by
J@f(B) = <f7 @>B (B S B)> (73)

andif © € P[Q2, B], Jo mapsDIS2, O] intoP[2, B, ©]. Itiseasy toseethat ||Jo f|| < || f]|-]|O]l,
from which it follows that Jg is continuous. The kernel of Jg is the null space of O; i.e
KerJo = {f € B[] | f = 0 ©-ae.}, and the Radon-Nikodym theorem?® implies that Jg

induces an isometric isomorphism,

Jo : L1[Q, B,O] — M, B, ©]. (74)

Recall our assumption that Qq (g, X) is X-a.c. for each g. If, in addition, X is ©-a.c., then

0isQa(g, X). It therefore follows from the above discussion that there is an operator

qa : B[] x D[Q, 0] — L[1[2, B, 0], (75)
satisfying
Joxr=X and Jyx [qg(g,x)] = Qalg, X). (76)
Hence, from (73)2!,

The above discussion may be generalized if we assume the stronger condition that Q¢ (g, X)
is X-ac. foral (¢g,X) € B[] x M[Q,B]. Recal that this means that Qq(g, X)(B) = 0
whenever the total variation of X on B € Biszero; i.e. |X|(B) = ||X||p = 0.22 Since
| X| is a positive measure, there is a unique function 4o (g, X) € L[, B, 0] such that

Jix1 (Galg, X)) = Qa(g, X). Ontheother hand, the function x in (74) isno longer necessarily

20" See Dunford and Schwartz (1958), Theorem 10.2, p 176.
21 seeDunford and Schwartz (1958), Theorem 10.4, p 179, for thefact that absol utely continuous measures

can be combined in this way.
22 See Dunford and Schwartz (1958), Lemma 4.13, p 131. Note that this condition holds for the family

of operators (33) defining the Replicator dynamics.
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adensity, but exists as an element of L2, B, ©]. By the Jordan decomposition Theorem?? we
may write X = X — X, where X+ are positive measures, and | X| = X + X . Hence,
r =zt — z~, with 2* non-negative L,-functions. Then Jo(|z|) = Jo(zT +27) = |X|.
Now let By € B bethe support of 2, and define I, € B[] by I.(¢) = £1if £ € By, and

zero otherwise. If weset gq (g, z) = I.4a(g, X), then (77) holdsfor any X.

The properties of ¢, are summarized in the following proposition.

PROPOSITION 21 If Qq, satisfies the hypotheses of Propositions 10 and 12, then ¢, given
by (75) to (77) satisfies the following.

a) zqa(g,z)islocaly Lipschitz on B[] x L[, B, O].

b) Either z(§) = 0or go(1,z)(§) = 0.

€) {(zqal(g,z),0)q =0.

d) ¢g=0 ©-ae implieszqa(g,z) =0 O-ae.

If, in addition, Q, is positive definite, then:

€ (g9zqa(g,x),O) = 0.

f) (92g0(9,2),©) = (29:90(9x, 7), ©), where g, = g — (g, ©).
g) Equality holdsin (e) if and only if zg, =0 ©-ae.

Proof. SeeAppendix. [

Now let © = (©1,02) € P[Qy, B1] x P[Q9, B be apair of probability measures, and let
5@ = M[Ql,Bl,Gl] X M[QQ,BQ,@Q] C M[Ql,Bl] X M[QQ,BQ] = £. We wish to show
that the subspace &g isinvariant under the mutation augmented dynamics (49) defined by the

mutation strategies ©.

23 See Yosida (1978), Theorem 2, p 36, or Dunford and Schwartz (1958), Theorem 1.8, p 98.
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LEMMA 22 If Qq(g, X) is X-ac. forany (g, X) € B[] x M[Q, B], then Eg isinvariant
under the dynamics (49); i.e. Z(&o) C Eeo.

Proof. From (77), if X is©;-ac., thensois Q;(wy, X) forany Y € M[Qs, Bs|. Theright
hand side of the first equation of (49) isjust alinear combination of termsin M[Qy, By, ©1],
and henceisalso in M[Qy,B1,01]. Thisistruefor eachY € M[Q,, By]. Similar remarks

apply to the second equation of (49), and so the result follows. [

PROPOSITION 23 Suppose Qq (g, X) is X-ac. forany (g, X) € B[Q] x M[Q, B]. Then
the mutation augmented dynamics (49) with mutation strategies® = (01, ©5), when restricted

to £, isequivalent to the dynamics defined on L1 [y, By, ©1] x L1[Qs, Bs, ©2] given by

Cfl_f = (1 - 8))zqu(wy, z) + 61 (1 — ), (78a)
% = (1 = 02)yq2(va, y) + 2(1 — ), (780)

where ¢;(g,2) = qq, (g, 2) is defined by (76), and we have written w,, v, for wy,vx, with
X = Jlilﬁ,Y = ng and J; = J@i. Simllarly, 0; = 5Z(X, Y) = (SZ(Jl.CB,JQy) Further, the
closed convex set D[21, ©41] x D2, O2] isinvariant under the flow defined by (78).

Proof. The subspace £ C £ is closed, and hence is a Banach space. Thus, by Lemma 22,
Eeo is invariant under the flow F; of the dynamics (49). Write 7,(X,Y) = (X (¢),Y (¢)).
Then (X,Y) € &g implies X (t) € M[Qq, By, 0] for each t.2* Hence, there exists a ©; -
essentially unique function z(t) € B1[Q] with Jyx(t) = X (¢). Further, by Proposition 10 and
the properties of J, z(t) € D[y, 0] if X € P[Qy, B1,04]. Similarly, there exists a unique
y(t) € L1[Q, Ba, O] With Joy(t) = Y (t). Writing f,(z,y) = (z(t), y(t)), wehavethat (.J; x
J2)(fe(x,y)) = F(X,Y). Further, theuniqueness of f; impliesthat the conditions (30c,d) for
f follow from those for F, so that f definesaflow on L;[Q1, B1,01] X L1[Q2, B, O2].

Since lim;—.o{3(X(t) — X)} exists and is equal to & € M[Qy, B], the sequence

{X(X(t,) — X)} is a Cauchy sequence in M2y, By, ;] for any sequence {t,} with

tn

24 Infact, the proof of Lemma 21 shows that thisis true eveniif Y is not ©,-absolutely continuous.
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t1 >ty > ... > t, — 0. Hence, from (74), {;-(z(t,) — =)} is a Cauchy sequence in
L1[Q4, By, 04]. Sincethis latter space is complete?®, it follows that %(m(tn) —z) — & ¢
Ly[Q1,B1,0:1] asn — oo. Further, by the continuity of J;, we have J; (4£) = %X, which
also shows that % is independent of the sequence {t,,}. Thus, lim;_o 1 (z(t) — z) existsin

L1[Q1,B1,04] and is equal to 2. Now use (77) to obtain

Jl (ij—f) = dd—i( = J1 [(1 - (51)56(]1(’[1)}/,1’) + 51(1 — .I)}

It therefore follows from (74) that equation (78a) holdsin L[, By, ©1]. A similar argument
serves to establish equation (78b). [

EXAMPLE9. TheReplicator dynamics. For thefamily of operators (33) defining the Repli-
cator dynamics, and a fixed measure © € P[(2, ], the corresponding family of operators (75)

(when X > 0) iseasily seento be
TQ(Q,ZZJ) = <$>®>g - (gx,@> (79)

In particular, the mutation-augmented Replicator dynamics (50) take the form

e <1—61>x[<x,@1>wy—<wyx,@1>}+51<1—w>7}

L = (1-6)y[(y, O2)vs — (vay,02)] + d2(1 — y), (80)

for z,y > 0. Clearly, the equations (80) extend formally to the whole of L[, By, ©1] X
L1[Qs, B2, O5]. Also, if x isa®©;-density and y is a ©»-density, then (z,01) = (y,05) = 1.

When the ©; are Lebesgue measures, and §; = 0, this gives the form (37) of the Replicator

dynamics.

Observe that if 6; > 0 on D[y, 04] x D[Sy, O], then any solution of (78) must have
z¢(§) > 0foral & € Qp,andt > 0. However, this does not necessarily mean that all pure
strategies get used with positive probability. For example, if there exists an open set B, € B,
with ©1(B;1) = 0, we have X;(By) = (x¢,0)p, = 0, for al ¢, so that pure strategiesin B,

never get used.

25 See Dunford and Schwartz (1958), Theorem 6.6, p 146.
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For densitieswith full support, some of the properties of qq, listed in Proposition 21 simplify.
Thus, if z > 0 on €, then Proposition 21(b) implies that ¢o(1,2) = 0 on Q;. Proposition
21(d) reads. g = 0 ©-a.e. impliesqn(g,x) = 0 ©-ae. Findly, Proposition 21(g) implies that
equality holdsin (e) if and only if g, = 0 ©-ae.

6. Final Remarks

The theory presented in this paper leaves many questions unanswered. Perhaps the most
pressing need is to fill the gap between the necessary and sufficient conditions of Propositions
13 and 19 for a Nash equilibrium to be asymptotically stable. Of course, the same gap exists
also in the finite-dimensional case?”. Thisis a question of the appropriate refinement of Nash
equilibrium. The requirement for a SSNE in Proposition 19 is very strong indeed. However,
in theinfinite-dimensional case, it isfalse that astrict NE is necessarily locally asymptotically
stable. Thisis perhaps unsurprising in view of the fact that an arbitrarily small perturbation
of the payoff function can convert a SNE (which is not a SSNE) into a strictly dominated
strategy. Nevertheless, it seemslikely that if lessrestrictive conditions could be obtained for the
Replicator dynamics, then the same conditionswould work more generally for an enlarged class
of positive-definite dynamics, perhaps with additional restrictions, such as the non-degeneracy

assumption of definition 5.

Of course, the notion of an SSNE is very strong, and probably few games of interest have
such equilibria. It may therefore be prefereable to seek out weaker concepts of local asymptotic
stability than that discussed here. In effect this means considering other possible topologies
besidesthe strong topol ogy; for exampl e, the so-called weak*-topol ogy on the space of measures

M|, B]?8. Thisisamatter for further research.

Some of the most difficult technical questions probably centre around the effect of mutations

ontheunderlying positive-definitegamedynamics. Inparticular, wehaveseenfor theUltimatum

2T See, for example, Samuelson (1997) , chapter 4.
28 Dunford ansd Schwartz (1958), Chapter V, section 3; Also Yosida (1978), p 111. Topologies weaker

than the strong topology ave been considered by Oeschler and Riedel (1999)
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Game and the Nash Demand game that Nash equilibria may occur in extended components
(Examples 2 and 6), rather than asisolated points. In this situation, we have no useful stability
theorems. In fact, one of the motivations for introducing (low probability) mutations is the
hope that their effect will be to ‘condense’ a component of Nash equilibria down to a single
isolated equilibrium of the augmented dynamics, which it might then be possible to show is
stable. Thisis one possible approach to ‘equilibrium selection’. However, there is no general
theory (as far as | know) which covers this situation, even in the finite-dimensional case, so
that each example must be treated ab initio, simulation often being the only available option.?®
A useful first step would be to understand when an extended component of Nash equilibriais
asymptotically attracting for mutation-free dynamics. The complex equilibrium situation which
can arise when mutations are introduced is evident in the work of Seymour (1999) on equilibria

in the infinite-dimensional Ultimatum Game.

Finally, examples of positive-definite game dynamics other than the Replicator dynamics,
such as those discussed in Hopkins (1999) in the finite-dimensional case, would be interesting

to examinein their infinite-dimensional form.

29 For example Gale, Binmore and Samuelson (1995). See also Samuelson (1997), chapter 5.
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Appendix

Proof of Lemma 1. For convexity, note that any convex combination of probability measures

is also a probability measure.

To show that P[2, 5] is asubset of the unit sphere, note that, for any 3-measurable function

fywith || f]| <1, wehave

/ fdx < sup{f(w)}/ dX < sup|f(w)|X(Q) <1
Q we Q we

and

[ $ax = ing {1} [ dx = - supl ()| X(@) = -1
Q Q weN

we

Thus,
I1X|| = sup ‘/Qde‘ ~ 1.

I1F11<1

It remains to show that P[(2, B] is a closed subset of M2, B]. To do this, we shall show
that the complement of P[(2, B] isopen. Let X € P[(2, B]¢, the complement of P[2, B]. Then
either X (Q2) > 1, orthereexists B € B suchthat X (B) < 0. Inthelatter case, let§ € M2, B]

satisfy [|0]| < e for some 0 < ¢ < —3X(B). Then, if Iz istheindicator function of B,

(X—i—@)(B):X(B)-I—/QIBdQ

+ ‘/ Ipdo)

< X(B)+ sup /fd@‘
I1fll<1

= X(B) + /0|

< X(B)+e¢

< 0.

Thus, the open ball of radius ¢, centre X is contained in P[2, 5]°. On the other hand, if
X(€2) > 1, chooses < $(X(©2) —1). Then,

(X +0)(Q) = X() +/Qd9
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> X(Q) - ‘/Qde‘

> X(Q) — sup ‘/Qfde‘

I111<1
= X(Q) - [l6l|
> X(Q) —¢
> 1.

Again, the open ball of radius ¢, centre X is contained in P[(2, B]¢. This shows that P[(2, B]°

is an open subset of M2, ], and therefore completes the proof. [

Proof of Lemma 2. Fix B € B. If g isabounded 5-measurable function defined on B, then
g may be extended to a bounded B-measurable function ¢ defined on €2, by setting g = 0 on
Q1 — B. Clearly ||g]| = ||gl|B = sup,cp |g(w)|. Thus, by (5), for X € M[Q, B],

| Xl = sup |[{g.X)5]
[l9]lB<1

= sup |(g,X)]
[lg]1<1

< sup ‘(f,X>|

1Fll<1
= [1X1];

where f € B[Q2]. Hence,

’<g/7X,>B - <g>X>B| = ‘<g/7X/>B - <g7X/>B + <g7X/>B - <g7X>B‘
S |<g/ _g7X/>B| + |<gvX/ _X>B|
<|lg" = gllsl|X'llz + llgllsl| X" — X||5

<Ilg" = gllslI X"l + llgll sl X" — X]|. (A1)
It therefore follows that (¢, X') g — (9, X) 5| — 0 asmaz{|lg’ — g||s, || X' — X||} — 0,
which provestheresult. [
Proof of Proposition 6. Fix (X,Y) € M[Qq, B1] x M[Qs, Bs]. From (32),

X (X",Y") = X(X", Y| = [|Q1(wyr, X") = Qu(wy+, X')]|.
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By hypothesis, there is aneighbourhood, 24, x N7 C B[] x M[4, By], of (wy, X), and a

positive constant /1, such that
Q1 (wy, X") — Q1(wy+, X)|| < ly. max{|| X" — X"||, [[wy» —wy|},

whenever (wy, X", (wy+, X') € Uy x N7. By property (8a), thereis a constant /5 such that
[wyr — wy|| = [Jwyr—y/|| < ]|V —Y'||.3Y Setting Vo = w1 (U;), the continuity of
w implies that A is a neighbourhood of Y in M[Qs, By]. Then, for (X', Y”), (X", Y") €
N7 x N5, we have

140 (X", Y") = X (X" Y| < kymaz{[| X" — X|[|[Y" = Y'||},

where k1 = max{ly,l1l2}. A similar argument applies to )y, and the proposition therefore

follows. [

Proof of Proposition 21. (a) Fix (g,z) € B[] x L1[Q, B, 0], and let X = Jg[z|. Since
Qq is localy Lipschitz, we may choose an open neighbourhood N C B[] x M[Q, B] of
(9, X) in which Qq, is bounded and Lipschitz, with constant k. Let U = Jg'[A]. Then, by
the continuity of Je, U isan open neighbournood of (g, x) in L1[2, B,©] x L[, B, ©]. For
(¢ 2"),(¢",2") e Uyand X' = Jg[z'], X" = Je[z"], it follows from (68) and (71) that

‘x/qﬂ(g/, x/) o x//qQ(g//7x//)‘1 — ||J@ [x/qQ(g/’(L‘/) - x//qQ(g//, x//)] ||
= [|Qa(y’, X') — Qaly”, X")||
< k.maz{[lg’ — ¢"[|,||X" — X"|[}

= k.maz{|lg’ - g"||. |z — 2"[1}.
This proves (a).

(b) Suppose X > 0. Let By € Bbethesetonwhichz(¢) = 0, sothat z(£) > 0on B; = B§.
Then X (By) = (x,0)p, = 0and X (B;) = (z,0)p, > 0, unlessO(B;) = 0. But, thislatter

eventuality can occur only if X = 0, in which case we can take = = 0 everywhere. Otherwise,

30 See Yosida (1978), p 43, Corollary 2.
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write Qa(g, X) = Q&(9, X) — Qg (g, X). Then Qqo(1,X) = 0 implies Q5 (1,X) = 0.
We therefore have (z¢3 (1,2),0)p, = Q5 (1,X)(B;) = 0, from which we conclude that
¢5(1,7) = 0 ©-ae. on By, and hence that ¢o(1,2) = 0 ©-ae. on B;. However, since
ga(1, x) isonly defined ©-a.e., we can take gq (1, x) = 0 everywhere on B;. The extension of

the arguement to arbitrary X is straightforward - see the discussion after (71). This proves

(b).

(¢) From (67) and (71), (zqa(g,x),0) = Jelzgal(g, X)](2) = Qalg, X)(2) = 0 (see
(44)). This proves (c).

(d If g = 0 ©-ae. and X is O-absolutely continuous, then ¢ = 0 X-ae. Hence,
Qalg, X) = 0 by Proposition 12(a). Thus, from (70), zq¢a(g,z) = 0 ©-ae. This proves
(d).

(e) Itfollowsfrom (67) that if f € B[], then (f, Jof) = (f0, ©). Hence, from (71),
(9a0(g, 2)z, ©) = (g, Jolqa(g, ¥)z]) = (g, Qalg, X)) = 0, (42)

since g, is positive definite. This proves (e).

(f) Notethat g, = g — (g, X) = gx. Theresult then follows from Proposition 8 and (A2).

(g) By Proposition 8, equality holdsin (A2) if and only if g, = gx = 0 X-ae. Hence, if
andonly if zg, =0 ©-ae. [
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