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Highlights

o Unfitted finite element method for a fluid—structure interaction.
e Proof of stability and accuracy.
e Different coupling scheme’s for time advancement: fully coupled or loosely coupled.

Abstract

We consider the extension of the Nitsche method to the case of fluid—structure interaction problems on unfitted meshes. We
give a stability analysis for the space semi-discretized problem and show how this estimate may be used to derive optimal error
estimates for smooth solutions, irrespectively of the mesh/interface intersection. We also discuss different strategies for the time
discretization, using either fully implicit or explicit coupling (loosely coupled) schemes. Some numerical examples illustrate the
theoretical discussion.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

The use of Nitsche’s method for the coupling of multiphysics problems in computational mechanics has received
increasing attention recently (see, e.g., [1]). Thanks to its flexibility and the mathematical soundness it has been used
to design methods for several problems. Examples include XFEM of elasticity, i.e., interface problems on unfitted
meshes [2,3], and robust and accurate fictitious domain methods [4]. Nitsche’s method was first applied to fluid—
structure interaction problems in the framework of space—time Galerkin methods in [5] and used to design stable
loosely coupled fluid—structure interaction methods in [6,7]. The objective of this note is to apply these techniques
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to design a computational method for fluid—structure interaction on unfitted meshes. The use of fictitious domain or
immersed boundary methods for the numerical simulation of fluid—structure interaction problems was pioneered in
the works [8—11] and has recently seen a surge of interest in papers such as [12—14].

Our contribution in the present paper is to show how Nitsche’s method can be used for fluid—structure computa-
tions on unfitted meshes. We consider a low Reynolds regime (Stokes flow) and assume that the structure undergoes
infinitesimal displacements (fixed interface). Though simplified, this setting retains some of the main numerical is-
sues that appear in the time-stepping of complex non-linear incompressible fluid—structure interaction problems (see,
e.g., [15]). We study both the case where the fluid and the solid equations are defined in domains of R and the case
where the fluid is coupled to a thin-walled solid, with the solid equations written in the (d — 1)-manifold defined by
the fluid—solid interface. We present a rigorous proof that optimal convergence in energy norm is obtained for smooth
solutions in the space semi-discretized case. Then we discuss different strategies for the time discretization, either
fully implicit or the loosely coupled schemes introduced in [6,7].

We will study the case where the solid body is meshed and fitted to the interface. The main motivation for this
is the fact that solids are generally described in Lagrangian coordinates and, hence, it is straightforward to move the
mesh according to the deformation. This deformed solid mesh is then glued onto the fluid domain without respecting
the mesh on the fluid side. This approach is similar to that proposed in [16] for the Poisson problem and more recently
in [17] for Stokes’ equations. The heterogeneous character of the present system however leads to some difficulties
compared to these works. The Nitsche method uses explicit integration of normal stress on the interface to ensure con-
sistency. Since the stress is continuous the stress may be taken from either the solid or the fluid system. Indeed in [16],
robustness is ensured by taking all the stresses on the side where the mesh is conforming. This choice is convenient in
the homogeneous case, but appears not to be so appealing in the case of fluid—structure interaction. The reason for this
is that there is no dissipative mechanism in the solid elastodynamic system that can absorb the perturbation induced
by the boundary stresses on the solid side.

If, on the other hand, the Nitsche mortaring is taken only from the fluid side as proposed in [5], the trace inequality
necessary for the analysis is no longer robust and the penalty parameter may have to be chosen very large for
unfortunate cuts of the mesh, or the resulting system matrix may turn out to be close to singular. In order to nevertheless
design a robust and accurate method we suggest to use a ghost penalty term in the fluid (see [18,19] where this
technique was proposed for fictitious domain methods for Stokes’ problem) in order to extend the coercivity to all of
the mesh domain. This is a weakly consistent stabilization term that extends the H !-stability of the viscous dissipation,
as well as the control of the fluid pressure, to the whole fluid mesh-domain, i.e., also to parts of cut elements that are
outside the physical domain. We prove that this is sufficient for the method to be stable and optimally convergent.

It should be noted that, even though it appears non-physical, a similar analysis as the one presented below may be
carried out if the stresses in the Nitsche coupling terms are taken on the solid side, provided that the solid equations
are set in R?. This requires the use of Gronwall’s inequality and leads to the appearance of an unspecified time scale
in the Nitsche penalty parameter. Furthermore this approach is not feasible when thin-walled solids are considered
and is very inconvenient for nonlinear elasticity. It will therefore not be discussed further herein.

An outline of the paper is as follows. In Section 2 we present a model problem for the fluid—structure interaction and
the associated variational formulation. A Nitsche fictitious domain spatial discretization of the problem is proposed in
Section 3. Stability and optimal convergence for smooth solutions is proven for this space semi-discretized system in
Sections 3.1-3.3. Section 4 is devoted to time discretization, using either implicit or explicit coupling procedures. In
Section 5 we present some numerical examples on a two-dimensional model problem. The performance of the fitted
and the unfitted methods is compared. We investigate also the accuracy of the explicit coupling schemes proposed.
Finally, Section 6 is dedicated to some concluding remarks.

2. A linear model problem

The physical domain consists of {2 def KUPUY cRY, withd = 2 or 3, 2F, (25 the fluid and solid subdomains,

respectively, and X LT\ T35 the fluid—solid interface. The exterior unit-vectors normal to 82" and 8 2° are denoted
by n and n°. We consider partitions 32f = I' U ¥ and 82% = I'S U ¥ of the fluid and solid boundaries. The fluid
is described by the Stokes equations in the polyhedral domain £2°. For the structure we consider two cases, either the
elastodynamics equations in £2° C R or the elastodynamic equations for a thin-walled structure (string, membrane
or shell) posed on the (d — 1)-manifold Y. In the latter case =Yand I =92X.
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The considered coupled problem reads as follows: find the fluid velocity u : 2f x R™ — R¢ and the fluid pressure
p: NTxRT — R, satisfied in 21, the solid displacementd : 2° xRt — R? and the solid velocity d : 2% xRt — R¢
such that

o', — dive (u, p)=0 in o,

diva =0 in 0F, (D
u=0 on I'",

d=0dd in 2%,

p’0id —dive®d) =0 in £, @)
d=0 on IS,

u=d on Y, 3)
o(u, p)n = —c*(d)n® onX.

Here, p! and p® respectively denote the fluid and solid densities. The fluid Cauchy-stress tensor is given by

3 1
o(u, p) def —pl +2ue(u), e€u) def 5 (Vu + VuT> ,

where p stands for the fluid dynamic viscosity and I the identity matrix in R?. The solid stress tensor is given by

@) ¥2Lie@) + Lrdiva)l,

where L1, Ly > 0 stand for the Lamé constants of the structure. This system of equations is complemented with the
initial conditions u(0) = u°, d(0) = d°, d(0) = d°.
In the case of the coupling with a thin-walled structure, the relations (2)—(3) are replaced by

u=d in X,

pseatd + L% =—0o(,pn inX, @
d=0d in X,

d=0 on [,

where L® denotes an elasticity operator defined on the (d — 1)-manifold X' and € denotes the thickness of the structure.
Note that (4), simultaneously enforces the kinetic continuity and the momentum equilibrium in the solid. Well-
posedness results for this type of linear fluid—structure interaction problems can be found in [20,21].

In what follows, we will consider the usual Sobolev spaces H" (w) (m > 0), with norm || - [|;4., and semi-norm
| - |m.- For a given part I' C dw of dw, the closed subspace H IL (w), consisting of functions in H'(w) with zero trace

on I', will be used. The scalar product in Lz(w) is denoted by (-, ), and its norm by || - [|0,e-
For the weak formulation of the solid system (2) we introduce the space of admissible displacements W &ef

[HILS (2%)]4 and the elastic bi-linear form a® : W x W — R defined by

a*(d, w) £ 2L, (@), W) s + La(divd, divw) .,
for alld, w € W. In the case of a thin-walled structure the elastic bilinear form is simply defined as the weak form of
the differential surface operator L®, that we assume to be symmetric, coercive and continuous on W. An example will
be given in Section 5. We define the elastic energy norm by ||w||e &f e (w, w)%. We also introduce the fluid velocity

and pressure functional spaces V def [H }f(Qf)]d, 0 def L2(025). Finally, the standard bi-linear forms for the Stokes

problem,a : VxV — Randb: Q x V — R, given by

a,) €2 (@), e) o, blg,v) E —(g, divw) g,

will be used.
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Fig. 1. Example of overlapping fluid—solid meshes.

3. Space semi-discretization: Nitsche fictitious domain formulation

Let {7,’}o<n<1 denote a family of triangulations of {2°. The meshes 7,° are fitted to 2°. Then consider a family of
meshes {’Z;lf}0<h§1, where each 'Z’,f covers the fluid region ot ’Thf c f and is fitted to the Dirichlet boundaries I'f,
but in general not to Y. Instead we assume that for every simplex K € ’];,f there holds K N 2F ¢ (see Fig. 1). We
have, in particular,

r=. 2¢<cl.

KeTp; KeTf

. : e . : . 7 def . . .
We will denote by QfTh the set of R? coinciding with 7;} , that is, QfTh = U KeT)- For each triangulation 7y, the subscript

. . . f .
h € (0, 1] refers to the level of refinement of the triangulation, which is defined by & def maxg 7, hk, with hg the
diameter of K. In order to simplify the presentation, we assume that the families of triangulations are quasi-uniform.
We will use the following discrete semi-norms on function values on the interface X/,

1

def 1 2
IR D DU
2 K
{KeT:KNE#0)

We also note that the following trace inequality holds for all functions in H!(K). There exists Ct > 0 such that
for the intersection of the polygonal/polyhedral surface 3’ with an element K there holds

_1 1
lullo,xnsr = Cr (=2 lullox + h? [ Vullo.x ). 5)

For shape regular elements, the proof of this result is equivalent to that of the standard trace inequality.
In what follows, we consider the standard spaces of continuous piecewise affine functions:

Xj € oy e @) /v € PLK) VK e T
(6)

x; & {vh e CO(F) J vpk € P1(K) VK € T,f}.

For the approximation of the fluid velocity we will consider the space

def
v, & {vh e [XI vl e :0}

and for the pressure we will use Qj, def X}CI. Observe that for g, € Qp we have g, |t € Q. For the solid we set W), def
(X519 NW.

Since our choice of velocity and pressure spaces does not satisfy the inf—sup condition, we will consider a pressure
stabilization in the form of an operator s;, : Qp x Qp + R in the mass equation below. We assume that the pressure
stabilization operator, s, : Qj X Q) — R, satisfies

™ B paly gr = su(p, i) < opT DI g (7)
Py ey
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with ¢y, ¢ > 0. For instance, the classical Brezzi—Pitkdranta pressure stabilization [22] may be used on the following
form

d h?

ef

Sh(pn,>qn) = Vp/ - —Vpu-Vagn, v >0. (8)
[0} oo

Observe that the pressure stabilization is defined over the computational fluid domain QfT This feature is crucial to

ensure stability for the coupling over the unfitted boundary. To counter instabilities due to the cut meshes we introduce

a penalty term on the fluid velocities as well, g;, : Vj, x V;, = R, we assume that this operator is designed so that the

following stability holds:

& (uue(vh)ng oL +gh<vh,vh>) < wlewnlly o + 8nh, va) ©)

for all v, € Vj, and with ¢ > 0 (see [18] for examples of suitable operators and a proof). The role of g, is to extend
the coercivity from the fluid domain 2 to the computational domain Q%’ . This feature allows us to prove robust error
estimates independent of the mesh interface intersection. Note that the velocity stabilization only is needed in the
interface zone and can in principle even be localized to elements K for which 2f N K is small.

We denote the total fluid stabilization by

def
Su(@n, p)s Ony qn)) = su(pns qn) + gn@n, vi), (10)

1
with associated semi-norm |(uy,, pp)ls def Sh((uh, pn), upn, ph)) 2. The proposed space semi-discrete approximation
of the systems given by (1)—(3) or (1) and (1)—(4) reads as follows: for ¢t > 0, find

(i (1), pr(0),dn(1),dy(1)) € Vi x Qi x Wy, x Wy,
such that d, (t) = d,d),(t) and

P (drtan. vi) o + A(@n, pi)s Wns qn)) + 05 (3idn, wh) s + a (i wi)
- (U(uhv ph)n1 (vh - w/’l))z’ - ((uh - dh)v O'(Vh, _Qh)n)g (11)
+ yh—ﬂ((uh —dy), (v — wi)) s + Su(@n. pr). Wnqn)) =0

for all (vy, gn, wi) € Vi, x O x Wy, Here, we have used the notation

A(@ny pr)s 0ns an)) = aGn, va) + bCpn, vi) — b(qn, up)

and y > 0 is the Nitsche penalty parameter.

Remark 3.1. Note that the integrals in the bilinear forms corresponding to the fluid model are evaluated over the
physical domain £2f. This means that, in practice, numerical quadrature has to be performed over the parts of the trian-
gles that intersect the physical fluid domain. This is a non-standard implementational problem that has been discussed
in [23].

Remark 3.2. Note that the fluid mass matrix may be poorly conditioned if some nodes have macroelements with very
small intersection with the physical domain. The space discretization operator of the fluid system however will have a
condition number that is uniform in the mesh-interface intersection (see [17] for a proof) and therefore ill-conditioning
of the mass matrix is unlikely to have any impact on the full system, except for very small time-step. This problem
can be eliminated using diagonal scaling or alternatively the mass matrix can be stabilized as well using an operator
similar to g5 (-, -), to extend the L2-stability to the computational domain (2%1 . This only requires a modification of
the parameter of g (-, -).

3.1. Stability properties of the discrete scheme

The next lemma states a result giving the coercivity in “Q%, of the discretization of Stokes’ system.
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Lemma 3.1. For y > 0 sufficiently large, there exists cg > O such that
2 2 2
Cs <M||VVh||0,Q; tyidve = wally ), o+ 100, %)Ig) = A((Vh, qn) W, Qh)) — (0 n, q)n, vh —wi))

Y
— (e —gn)n, vy —wp) 5 + T(Vh — Wi Vi —Wh) 5 + [V, anls
fOr all (v, qh) eV, x Qh and wy, € W,
Proof. Note that
A((vh, pn)s W, Ph)) — (e n. p)m, v —wp)) 5
Y
—(eWn, —pw)n, vy —wp) 5 + 7(% —Wh Vi —Wh) 5 + |V, 3
=20l or = 2(0 Gn, O, 5 = wi) s+ v lvn =wall] | + 100, IS
We now observe that, by combining (5) with a discrete inverse inequality, it follows that
Cm 1 1ol
(0w 0, vy —wy) s <2—p2ll€n)llg or Y212 Ive —wallL, 5
y? T >
with Ct1r > 0. Finally, we conclude by using an arithmetic—geometric inequality with suitable weights, the stability
estimate (9), Korn’s inequality and taking y sufficiently large. O

If we take v, = uy,, g5, = pp and wy, = dj, in (11) and apply the result of Lemma 3.1 we get the following energy
inequality:

d(pt P
m <?”uh”0’9f + Tlldhllo,gs +a®(dy, dy)

+cs (mwuh 16,0 +velus —dill , o+ @, ph)|’§) <0, (12)
07, J
which guarantees the energy stability of the unfitted space semi-discrete approximation (11).
3.2. Consistency of the formulation

If we multiply (1) by vy, gn € V), x Qj, and (2) by w;, € W), integrate by parts in both systems and use (3),, we
obtain the equality

' (81, vn) or + A(@. p). 0n. qn)) + p° (3d, wi) o + a°(d. wi) — (o, p)n, vy — wp)) 5, = 0.

The same result is obtained for (1), (4), this time with the coupling conditions given in (4),. Hence, owing to (3); or
(4);, we may write

p' (8w, vn) or + A(@. p). 0n. qn)) + p* (8, wp) s + a(d. wp)

22 (@ =, o0 —wp) 5 = 0 (13)

for all vy, gn, wi, € Vi, x Qp x Wy. Taking the difference between (13) and (11) we obtain the following result.

— (0@, pyn, on —wn)) o — (@ —d), o v, —q)n) . +

Lemma 3.2 (Galerkin Orthogonality). Let (u, p, d, d) be the solution of (1), (2), (3) or (1), (4) and (uy, pn, dy, dp)
be given by (11). The following approximate Galerkin orthogonality holds:

" (0 — wp), vi) or + A(@ — wn, p — pr). 0w an) + p°(3:(d — di), wh) s
+a®d —dp,wi) — (0w —up, p— pp)n, vy —wp)) 5,

— (=) = @ = dy). o 0. —gu)m) 5+ 5= (0 =) = @ = ), 03— wi)
= Su(@n. pn). Wn. qn)) (14)
forallvy, qn,wyp € Vi, x Qp X Wyand t > 0.
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3.3. Error analysis

In the succeeding text, the symbol < indicates inequalities up to a multiplicative constant (independent of the dis-
cretization parameter 4 and the mesh/interface intersection). Furthermore, we assume that the elements in the solid
mesh with faces in the solid trace mesh on X may be grouped in disjoint macropatches P;, with meas(P;) = O(h?)

in the case of a thick-walled solid and meas(P;) = @ (h%~1) for a thin-walled solid. The restriction of the patch P;

to X' will be denoted by F; def P; N Y. In the case of thin-walled solids we have P; = F;. Each (d — 1)-dimensional

macropatch F; is assumed to contain at least one interior node and the union of the F; is assumed to cover X, viz.,
U F; = X.
We introduce the discrete solid errors
def : def - - !
£, =dy—npd, £, = d,—T)d in 2,
where n,f stands for the elastic Ritz-projection of the solid, viz., a®(d — n;d, wy) = O for all w;, € W;,. We assume
that the solid is convex so that [|7;d —d|lo, s S h2\d |§ s+ The interpolation operator Zj, is defined by

Ihd def n;d + Zai‘Pis
i

with o; € R. The ¢; are functions with support in the patches P;, such that 0 < ¢; < 1, with [l@;llo.p, < h? for

the thick-walled solid case and ||@;llo.p. S h% for the thin-walled solid case. The function ¢; takes the value 1,

component-wise, in the interior nodes of the associated interface patch F;. The associated ¢; are chosen so that

d—Tyd) -n=0. 15)
F;

For details on the construction of ¢; we refer to [24].

We now assume that there exist two linear continuous lifting operators E; : H 2(Y > H2(RY) and E; : H' (025
— H'(RY), satisfying the bounds || E1v]| 1 (gay S 0]l 10 for all v € H'(2') and || Exv| g2gay S il g2 gry for
all v € H%(02%). Using these lifting operators (component wise) we introduce the discrete errors for the fluid

def . def . . £
0n = up — i Eru, Yo = pn —iszE1p in {27,

where iy, is defined by the Scott—Zhang interpolant (see, e.g., [25]). We assume that the stabilization operator defined
in (10) satisfies the following weak consistency property

1 _1
[(issEat issErp) g S (12 uly, e + 1721l ) 16)

For a proof of this property for the velocity part we refer to [4]. The pressure part is an immediate consequence of (7),
the H '-stability of the Scott—Zhang interpolant and the stability of the extension operator E1,

. . i _1 . —1 _1
Sh(lszElpalszElp) Su 2h|lszE1p|1,Q§, Su 2h|E1p|1,Q§, Ny 2h|p|1,9f'
h h
The remaining necessary approximation estimates for these interpolants are collected in the following lemma.

Lemma 3.3. Assume that u € [H2(291%, p € H'(2Y) and d, d e [H2(2%)19. The following approximation esti-
mates hold:

lu — i, Eaullg o + hIIV (@ — is, Eau)llg or S hPluly, o,

Ip — izE1pllo,or + RIV(p — i E1p)llo,or S hlply o,

ld — 7idllo.os + hIIVd — mid)llo, o5 < h7ldl2, 0.

ld — Zudllo. s + hIV @ — Tud)llo. s S h*ldl2, 05,

lo (@ — iy Eau, p — i, Exp)nll_y j, 55 < b (Il or + 1P 1) -

@ — i Eow) = @ = Tl 50 < (Il or + N2, 20)
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Proof. We only discuss the proof of the three last estimates, since the other estimates follow using standard approxi-
mation theory and the stability of the extension operator. By the construction of Z; we have,

fFi(d—n;d) ‘n
B fF,v gin
Since h@—D < lfF; @, - n| and meas(F;) = Oh4~1), we have

o

)fﬂ(d—n,fd)~n‘

DS D ShTY N = widlg g, (17)
i i i
Therefore, for the thick-walled solid, there holds
> leul* SR g, (18)
i

where the last inequality follows from (5) and the approximation properties of my. For the thin-walled solid case,
thanks to the approximation properties of 7, we get

D leul* SR g (19)
i

Hence, for the thick-walled solid, it follows that
1

2
S hAd, s + (hd > :|al-|2>
i

and we conclude by applying (18). Whereas, for the thin-walled solid, we have

0=

ld — Zudllo. s < ld — midllo. 0 + (Z lei@; ||3,P,.)
i

1 1
2 2
ld — Tudllo. s < ld — midllo, 00 + (Z lei@; ||3,P,.) S Wldly, o + (hd—l > e |2>
i i

and the result follows using (19).
The estimate for ||V (d — Zxd)||o, s follows similarly, by using a discrete inverse inequality in P;.
For the error estimates on the trace ), note that we have
. . 1 . .
llo@ — i Exu, p—is, Evpnll sy 5 S 02 (IV@ = iz Exw)llo.> + P — izE1pllo.5)
. . . _l . . .
I — i Eou) — @d = Lpd) |1, 5 Sh™2(lu —igEsullo, s + |d — Zidllo, ).
The quantities on the solid side where the mesh is fitted to interface are treated in a standard fashion using element-
wise trace inequalities, followed by approximation in the case of a thick-walled solid and approximation only in the
case of a thin-walled solid.
We will detail the estimates for quantities on the unfitted mesh. Using the trace inequality (5) element-wise, for all
elements intersected by the interface, we have
1 . _1 ,
h2||V(u — iy Ecu)llo, s +h™ 2 |lu — is, Ecullo, x
S hlEawly o + V@ —igEaw)lly or +h ™" lu —is, Eaully or
T, T, T,
5 h|E2u|2 QfT S h|u|2__Qf,
’ h '
where the last inequality is a consequence of the stability of the extension operator. Similarly we may estimate the
trace error of the pressure in the following fashion
1 . . )
h2llp —igEipllo.s S RIV(E1p =iz E1p)llg or. +1E1p —issE1pllg of
h
S hlElpll,ngh S hlply o

which concludes the proof. [
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By using Lemma 3.1, we get the following energy estimate for the discrete errors 65, yj, E n En
1
—||0h(t)||0 of + 2 II’f;'h(t)Ilo o zll’;'h(l)llg
t
+cs/0 I:M||V0h||39f +yl0n = €4l , 5+ 1@n IS + 0 G & —afsh)}

1
<—||0h<0>||mf+ ||sh<0)||09g S 1€ O

t ~ . .
+ /O [pf(atoh,ohmf + 08 (3€p, &) s + 1O, Y15+ A(Bn, yn). On, yi))
— (o On., y)n, (05 — éh))g — (6 @h. —yn)n, 0, — éh)g

+Vh—u(0h—éh’oh—éh)g‘Fae@hvéh)]- (20)

Observe that due to the different definition of the interpolation operators in &, and £ 1> it does not hold that £ = 0:&.
Therefore to obtain the above inequality we used the fact that

1 1 4 . ! .
Ensh(r)u%—5||sh(0>||§+f a(&,. &, — &) =/ a(&,. &)
0 0

This results in a non-positive contribution a¢(£,,, £, — 9,€,,) in the left-hand side of (20) which will be treated as an
approximation error in the error analysis below. Note that the pressure is only controlled in the weak norm given by
the stabilization operator.

For the purpose of the analysis, it is convenient to denote the approximation errors by

0x & Eou—iEsu,  yr & Eyp—igErp in O

£ Yd-nd i ¥a-T,d in0.

We are now ready to state and prove our main convergence result.

Theorem 3.1. Let (u, p, d, d) be the solution of (1), (2), (3) or (1), (4) and (up, p, dy, dy) be given by (11). Assume
that the exact solution (u, p,d,d) has the regularity required by the approximation results of Lemma 3.3 and that
y > 0 is given by Lemma 3.1. For t > 0, there holds:

p! ps . 1
1 @n = OIF gr + - 1@n = DOIG g + 51 dn — DO

t
. 2 712 2
o [ [V =0l gt it =yl o] <02

Proof. By a triangle inequality and the optimal approximability of the proposed interpolants it is sufficient to prove
the convergence of the discrete error (0, yn, §, §). Consider first the inequality (20). After applying the Galerkin
orthogonality (14) in the right-hand side and noting that by the definition of 7}, a®(§;, &;,) = 0, we have

1
—||0h(t)||09f+ ||§h(t)llogs zll’;'h(l)llg

t
+cs/0 [uuvohnw; s =4I, o+ 16 )R]

o' 2 P 2 1 2
< SN0 OG i + 5 164 OF s + 516, O) 12

! . .
+ /0 [(3r0n, 01) o + 9k, &) + S ((isz E2u (), is, E1 p(0)), B, yn))

Ty T
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X A((aﬂv yﬂ)v (oh’ yh)) - (0'(0719 )’n)”, (oh - éh))z‘ - (0(01’!9 )’h)", 07‘[ - é?‘[)Z

T3

+ yh_M(oﬂ_én»ah_éh)x_de(‘shvéh—atgh)], 1)
—_—
Ts

Ty

We may now bound the terms 71, .. ., T5 term by term. Mainly by applying Cauchy—Schwarz inequality followed by
trace inequalities and approximation. For the first term we have
t
/ T < ,Of||3t0n||L2(0,,;Qf)||0h||L2(0,;;Qf) + ||3t§n||L2(o,;;9f)||§h||L2(o,;;QS)
0
S Ch4()0f”alu ||iz(0,t;H2(.Qf)) + pS ”athiZ(O’t;HZ(QS))) + pf”o/’l ”iZ(O’t; Qf) + IOS ”gh ||22(0,t;05)‘

The two first terms in the right-hand side have optimal convergence order and the last two may be controlled using
Gronwall’s lemma.
For T, we observe that

t 1 t ) ) c t
/Tzf—/ |zszE2u(r>,zszE1p(r)|§+—S/ O i) 2.
0 2¢s Jo 2 Jo

where the second term in the right-hand side is absorbed in the left-hand side of (21) and the first term is bounded
using the approximation (16).

To estimate 73 we first note that the second term in the expression is bounded by the Cauchy—Schwarz inequality
followed by approximation

t
/(‘) |(U(0ﬂv Yn)", (0/2 - Eh))z' S Chz('”'iZ(O’t;HZ(_Qf)) + |p|%2(0’t;H1(Qf)))

t
C : 2
+Svu [ 10— EulR 22
We then consider the velocity part and observe that

t
fo (@@, 01) = (605, 0, 0 —E1) 1) < CR2(l 720 1. 20y + 141720 11200y

1
S0 [ 10412 g @3)
The pressure velocity coupling is the most interesting part of the continuity. For the remaining terms of 73 we write,
using an integration by parts in the mass conservation equation,
b, 0) — by, ) — (00, =y, 0z — &) 5
= s V-0 ot — ns V- 02) gr = (00, —yi)m, 0 — €,)
= (O, V- 0 or = (V. 02) o — (00, yim, &) 24)

T3 T3 T33

Estimating the terms 731 and 73, we get
' 2,12 s ' 2
fo Tyt < CR1pR g iy + 1 /0 IV6uI2 .

Ty < CH u) “ 0.l
0 32 = ”u”LZ(O,z;HZ(.Qf)) + § 0 |( s )’h)|S'
Denoting by y; the average of yj, over the interface patch F; we obtain, using the property (15) of the interpolant 7,
T3 =Y  inf (y4 — i, &, -n), < C|hV hid|. s
3 lZyieR(yh vis€x +m) g, = ClVynlo g hld12.0

IA

Cq .
310 ynls + Ch2|dI3 . (25)
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The boundary penalty term 7y is handled using the Cauchy—Schwarz inequality followed by approximation,
t Ty < ! ' 0 & 12 Cs ! 0 .
o T I ”_E””%,h,z"'zyﬂ A I h—Ehll%’h’E

1 2 2 2 Cs ! L2
< Zyﬂh (”u”LZ(O,t;HZ(Qf)) + ”d”LZ(O,t;HZ(.QS))) + Z}/M/() ”0/1 - Eh” %,/’L,E. (26)
Note that the first term has the right convergence order and the second term can be absorbed in the left-hand side
of (21).

Finally, term 75 is bounded using the fact that £ n— &, = ; ajg; and the convergence order of the perturbation
is known (cf., the bound (17)),

' ' . '
/0 Ts = /0 a®(&,, &, — &, = Z/O a®(&,, aip;)

t t
2 21012
S Z/() ||§h||e||ai‘Pi||l,.QS S‘/(; ||§h||e +h ||d||L2(O’I;H2(QS))’
l

We may now collect the above bounds to obtain the bound
f 1 )
|I0h(l)||0 of + 2 IIEh(t)IIO o §||§h(t)||e

C" .
LG / [ufnvohué,gg Tyl = &4l o+ 16wl

1
< _||0h(0)||0 g+ e ||£h<0>||0 o+ 5 18O
+ Cth4 (p ||8lu||L2(0’t;H2(Qf)) + ps”aZd”%Z(OJ;HZ(Qs)))
2 2 2 112
+ Cth (lulLZ(O’t;HZ(Qf)) + |p|L2(07t;H1(Qf)) + ||d||L2(0’t;H2(QS)))

t
+17! (pfnohniz(o,m + 0 1€ 17200 1. 05y T / ||§h||§> :
" v 0
We conclude the proof by applying Gronwall’s lemma. [
4. Time discretization: coupling schemes

This section is devoted to the time discretization of the space semi-discrete formulation (11). Both implicit and
explicit coupling strategies are discussed. In the subsequent text, the parameter t > 0 stands for the time-step length,

th & nt, forn € N and 9, x" dof (x" — x"h /T for the first-order backward difference. We also introduce the fluid
discrete bi-linear form

ab (@, pr)s O qn)) =A@ p)s On ) + Su(@n, pr)s Ons an)).-

4.1. Implicit coupling

An overall implicit first-order scheme is considered for the time-discretization of (11). This yields the time-
advancing procedure reported in Algorithm 1.

Note that at each time level n, the fluid (u};, p}) and solid (d”, d}) states are fully coupled. The next result states
the unconditional stability of the implicit scheme given by (27), and where

dfP
E"= o llu h||09f+ ||d||ogs+a< ),

denotes the total energy of the discrete system a time #,,.
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Algorithm 1 Implicit coupling scheme
Forn > 1, find (uz, pz,dz,d;l’) eV x Qp x Wy, x Wy, such thatd), = 0.dj and

" (0cuf, vi) + ap (@, P, Wy qn)) + 0% (34}, wh) oy + a(@d}, wh)
— (o}, ppn, vn —win)) 5 — (@) —d}), 0 v, —qn)n) 27)
+ L5 (@), — ). o = wi)) 5, = 0

for all (vy, g, win) € Vi X Qpn x Wy,

Lemma 4.1. Let {(u},, p}., dz, d})}n=1 be the sequence given by Algorithm 1. Then, under the condition C%I <y,
there holds E" < EV foralln > 1.

Proof. The result is a straightforward consequence of Lemma 3.1, after taking (vp, gn, wp) = (uz, pZ,ilZ) in
27. O

4.2. Explicit coupling

In this paragraph we introduce time-marching procedures that allow an uncoupled computation of the fluid (u};, p})
and solid (d7, d}) states (explicit coupling schemes). Basically, the proposed methods generalized the Nitsche-based
splitting schemes, introduced in [6,7], to the unfitted framework provided by (11). To this purpose, we first note that
the monolithic problem (11) can be equivalently formulated in terms of two coupled sub-problems: for # > 0

e Solid sub-problem: find (dj, (1), dx (1)) € Wy x W), with dj,(r) = d,d),(¢) and such that

0% (ddn. wh) s + a®(dn, wp) + %(dh, Wh) = —%(uh, wi) 5 — (o @p, pr)n,wy) 5 (28)

for all wy, € Wy,.
e Fluid sub-problem: find (uy,(¢), pn(t)) € Vi x Qp such that

Pf(i?tuh, vi) o + a;fl((uh, )y . qn)) — ((p — dy), o (v, —qmn) 5,

+ Vh—“(uh, Vi) = yh—M(iih, Vi) s + (0 @, pr)n.vi) s, (29)

for all (v, g) € Vi x Qp.

Algorithm 2 Stabilized explicit coupling scheme
Forn > 1:

1. Solid sub-step: find (dZ, d;l’) e W, x W, with dﬁ = 0.dj, and such that

p* (3cdy, wh) o + a(d), wi) + J/}l_ﬂ(z Wh) 5
=T ow) = @i g o) s GO)
for all w, € Wy,.

2. Fluid sub-step: find (u}, pj) € Vi, x Qp such that

p"(0cufy, vi) oo + aj (@, i), On qn)) — (uh — dj, qam) 5, + V#(“Z’ vh) s

h :
H L= ) = @) s @ g )y 6D
for all (vy, g) € Vi x Qp.

Following [6,7], we propose to uncouple the time-marching of (28) and (29) through the explicit treatment of the
interface fluid terms in (28), as detailed in Algorithm 2. Note that, in the fluid sub-step (31), the interface fluid stress
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is explicitly treated. This explains why the symmetrizing viscous term
(wy —dp). o (v, 0)n) .,
is missing in (31). The weakly consistent interface pressure stabilization,

Yoh n n—1
—(Pr—pry sqn)ss Y0>0,
)/,bL( h h )Z‘

is introduced to control the artificial interface pressure fluctuations induced by the splitting of pressure stress in time.

Algorithm 3 Stabilized explicit coupling scheme with K -correction steps
Forn > 2:

1. Extrapolation:

n,0 n—1 n—2 n,0 _n0 n—1 n—1 n,0 n—1
w2 =2uw,” —u, ", o, ,p, m=0oc, ,p, n, p, =p, . (32)

2.Fork=1,...,K~|—1:. ] ]
e Solid sub-step: find (dZ’k, dZ’k) e W, x Wy, with dZ’k = (dZ’k — dZ_l)/T and such that

p*(8.d)", wh) os + a®@dy*, wy) + yh—u(t'l;l"k, wh) 5.
=~ )y = (@ )

for all w, € Wj,.
o Fluid sub-step: find (uZ’k, pZ’k) € Vj, x Qy, such that

k k k n.k Y k
PH @ty vn) gr + @ (@, PR, Onya)) = (= di ", qum) g + == (" vn)
Yoh ik k=1 Y onk k=1 nk-1
+W(pf,’ - )y = T(dZ i)y + (0@ py  mLvy) 5
for all (vy, gp) € Vi, x Qp.
3. Solution update:
K1 K41 K41 K41
wp=wy" L pp=ppt T, dp=dytT, dy=dptT

The next result guarantees the conditional stability of Algorithm 2.

Lemma 4.2. Let {(u},, p}, dz, d;)}n>1 be the sequence given by Algorithm 2. Then, under the following conditions,
Ch<y. vr<h 15w,
E" < E® + pllup g 5 + mlle@llg o + %’Zrnpﬁiné,z

forn > 1.

Proof. The result follows by combining Lemma 3.1 with the arguments reported in [6, Section 5.1]. [

The main drawback of Algorithm 2 is its poor accuracy compared to Algorithm 1. In fact, the interface time splitting
introduces a truncation error whose leading contribution is of the form O(z/h), which prevents convergence under
the stability conditions of Lemma 4.2. This error perturbation comes from explicit treatment of the penalty term in the
right-hand side of (30). In order to retain overall first-order accuracy under the standard condition T = O(h) imposed
by the stability, we propose to combine Algorithm 2 with an extrapolation/correction strategy (see [7, Section 4.1]).

The resulting procedure is detailed in Algorithm 3, where K > 0 indicates the number of correction steps. Here, we
have used the notation 3, x* = (x™K —x"~1) /7. The purpose of the second-order extrapolation, in (32), is to retrieve
a truncation error in the penalty term of the form (9((12 /K ‘H), after K-correction iterations. Note that without
any correction, (K = 0), this contribution is (’)((t2 / h)) and hence an overall O(h) is expected under t = O(h).
Numerical evidence shows, however, that K > 1 is required for stability.
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relative elastic energy-norm error

0.1k ——— Unfitted (Algorithm 1)
’ ——-O-—- Fitted
Slope 1
0.01 0.1
mesh size

Fig. 2. Unfitted vs. fitted methods. Convergence history of the displacement at time ¢+ = 0.015. Space—time grid refinement under = = O(h).
5. Numerical example

In order to illustrate the accuracy and performance of the proposed schemes, we consider the widespread two-
dimensional pressure-wave propagation benchmark (see, e.g., [26]). The fluid domain and the fluid—solid interface
are, respectively, of = 0,L) x (0, R), X = 1[0, L] x {R}, with L = 6 and R = 0.5. A generalized string model is
taken for the structure. Hence 2° = ¥ and in (4) we take

0 0 def Ee€ def Ee
d=("), L= I W . VAL~
<n> (—Maxxn + kon) Y= 20+ 0T R21 -2

Then the elastic bi-linear form reads
a®(d, w) = 31 (B, dew) 5 + Ao, w) g,

withw = (0, w)T. As usual, here E denotes the Young modulus and v the Poisson ratio of the solid. All the quantities
will be given in the CGS system. At x = 0 we impose a sinusoidal pressure of maximal amplitude 2 x 10* during
5.1073 s, corresponding to half a period. Zero pressure is enforced at x = 6 and a symmetry condition is applied on
the lower wall y = 0. The solid is clamped at its extremities, x = 0, L. The fluid physical parameters are given by
,0f = 1.0, © = 0.035, while for the solid we have p* = 1.1,¢ = 0.1, E = 0.75 x 10° and v = 0.5.

Fig. 5 shows an example of unfitted and fitted fluid computational meshes considered in the computations. In the
unfitted case, we have Q%' = [0, 6] x [0, 0.8] and hence 2f C Q%' . The ghost-penalty stabilization bi-linear form in
(10) has been defined on the whole computational domain, that is,

def
en@nvi) S ve Y / uh[Vauy Tog IV ok
KeTf IK\9 25,

where the symbol [ | denotes the jump of given quantity across the edge or face F. The free stabilization param-
eters have been set to y = 1000, y, = 1 and y, = 1073 (in (8)). All the computations have been performed with
FreeFem++ [27].

In Fig. 6 we have reported a few snapshots of the pressure field obtained with Algorithm 1, taking ¢ = 2 - 10~
and 7 = 0.1. The numerical solution remains stable, as predicted by Lemma 4.1, and a propagating pressure-wave
is observed. For comparison purposes, Fig. 7 reports the snapshots of the pressure obtained with a fitted method and
interface matching discretizations. The good agreement of the two numerical solutions in the physical domain £2F is
clearly visible. Similar conclusions can be inferred from Fig. 8, which reports the corresponding interface displace-
ments att = 0.015. The depicted reference solution has been generated using the fitted method with a high space—time
grid resolution (A = 3.125 x 1073, ¢ = 107°).

In order to highlight the overall accuracy of Algorithm 1, we have refined both in time and in space at the same
rate, T = O(h), with the following set of discrete parameters:

, 4
(t,h) € {2—’ (2. 1074, 0.1)}‘ (33)

i=
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Fig. 3. Implicit vs. explicit coupling. Convergence history of the displacement at time 1 = 0.015. Space-time grid refinement under t = O(h).
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Fig. 4. Implicit vs. explicit coupling. Comparison of the solid displacements at + = 0.015 for different levels of (z, #)-refinement, given by (33)

withi =1,..

.4

The coarsest discretization, i = 0, corresponds to the results reported in Figs. 6 and 8. In Fig. 9, we have displayed
the interface displacements obtained after successive space—time refinement, i = 1, ..., 4. These results highlight
the convergent behavior of Algorithm 1 and that, after a few space—time refinements, both the fitted and the unfitted

methods yield practically the same accuracy.

Fig. 2 reports the convergence history of the solid displacement at time ¢+ = 0.015, in the relative elastic energy-
norm. The results show that Algorithm 1 retrieves the overall optimal O(h) accuracy of the fitted method. Note that,
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(a) Unfitted: 2f ¢ Qﬁfh ) (b) Fitted: £2f = Qﬁfh .

Fig. 5. Computational fluid mesh (in gray) and solid domain (in black).

s
\
i

(a) t = 0.005. (b)t = 0.01.

IS &

(c)t = 0.015.

Fig. 6. Snapshots of the fluid pressure at different time instants obtained with Algorithm 1.

| T ES W a2

(a) t = 0.005. (b)t = 0.0L.

(c)t = 0.015.

Fig. 7. Snapshots of the fluid pressure at different time instants obtained with the fitted method.

owing to Theorem 3.1, the accuracy of Algorithm 1 is expected to be O(t) 4+ O(h) in the energy norm. Hence, under
7 = O(h) we retrieve the optimal O (k) rate observed in Fig. 2.

We discuss now the explicit coupling procedures introduced in Section 4.2. These methods allow an uncoupled
time-marching of the fluid and the solid sub-problems. Fig. 3 shows the convergence histories of the solid displacement
at time ¢ = 0.015, in the relative elastic energy-norm, obtained with Algorithms 1-3 with K = 1. The non-convergent
behavior of Algorithm 2 under = = O(h) is striking, as anticipated in Section 4.2. On the other hand, Algorithm 3
with one correction step retrieves the overall optimal O(h) accuracy of the implicit coupling scheme (Algorithm 1).
Similar observations can be inferred from Fig. 4, where we have reported the interface displacements obtained with
the last four space—time refinements (i = 1, ..., 4 in (33)).

6. Conclusion

We have introduced a Nitsche type method for incompressible fluid—structure interaction problems with unfitted
meshes. The interface is defined as a part of the solid mesh, which is then glued onto the unfitted fluid mesh. The basic
ingredients of the method are:

e integration of the fluid equations only in the physical domain (cut elements);
e Nitsche’s treatment of the interface coupling conditions (kinematic/kinetic coupling);
e ghost-penalty stabilization to guarantee robustness.

For the space semi-discrete formulation, an a priori error estimate has been derived (Theorem 3.1), which guaran-
tees optimal accuracy with respect to the piecewise affine interpolation used. We have then discussed the stability
and accuracy of fully discrete formulations based on implicit and explicit coupling schemes. The numerical results
confirmed the theoretical findings. In particular, an overall optimal first-order convergent rate was obtained with the
implicit schemes (Algorithm 1) and the explicit coupling scheme with extrapolation/correction (Algorithm 3).



E. Burman, M.A. Ferndndez / Comput. Methods Appl. Mech. Engrg. 279 (2014) 497-514 513

I Unfitted (Algorithm 1)
0.03F —————- Fitted
[ oo Reference

0.02}

vertical displacement
o
o
=
T

-0.01f

x-coordinate

Fig. 8. Comparison of the solid displacements at = 0.015 obtained with t = 2 - 1074 and h = 0.1.
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Fig. 9. Unfitted vs. fitted methods. Comparison of the solid displacements at + = 0.015 for different levels of (t, #)-refinement, given by (33) with
i=1,...,4.

Further extensions of this work can explore various directions. An important setting, not covered by the present
analysis, is the case of moving interfaces. From the computational point of view the case of the coupling with non-
linear fluid and solid models, and the extension to three-dimensional problems also present some interesting chal-
lenges. We refer the reader to the recent works [23,28,29] for further discussions of the computational aspects of this
type of methods.
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