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Abstract—In neuroimaging studies, pathologies can present
themselves as abnormal intensity patterns. Thus, solutions for
detecting abnormal intensities are currently under investiga-
tion. As each patient is unique, an unbiased and biologically
plausible model of pathological data would have to be able to
adapt to the subject’s individual presentation. Such a model
would provide the means for a better understanding of the
underlying biological processes and improve one’s ability to
define pathologically meaningful imaging biomarkers. With
this aim in mind, this work proposes a hierarchical fully
unsupervised model selection framework for neuroimaging
data which enables the distinction between different types
of abnormal image patterns without pathological a priori
knowledge. Its application on simulated and clinical data
demonstrated the ability to detect abnormal intensity clusters,
resulting in a competitive to improved behavior in white matter
lesion segmentation when compared to three other freely-
available automated methods.

Index Terms: Bayesian inference criterion (BIC), brain segmen-
tation, Gaussian mixture model (GMM), magnetic resonance
imaging (MRI), split-and-merge (SM) strategy, white matter
lesion (WML).

I. INTRODUCTION

I Measures of pathological load or proportion of

abnormal vs. healthy tissue within the brain can be used to
ascertain clinical correlations and infer disease progression
in multiple sclerosis (MS), Alzheimer’s disease, as well as
other neurological conditions [1]. As a consequence of the
direct relationship between biological properties and signal
intensity in structural magnetic resonance imaging (MRI),
the presence of pathology commonly leads to the observation
of unusual intensity patterns in the image. Once a protocol
has been developed, these patterns can be manually outlined
by trained operators. However manual segmentations can
suffer from inter- and intra-rater variability and tend to be
very time consuming [2]. Therefore, there is a crucial need
for reliable automated methods to identify and delineate
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pathology-related observations on MRI. Furthermore, as
human delineation relies mostly on anatomical knowledge
and image contrast rather than on quantitative features,
inter-subject discrepancies and biases can occur due to
lesion size, neighboring intensities, and/or their spatial
location. Moreover, in the context of drug trials and in
observational studies where serial images are obtained, the
threshold of visual rating for longitudinal change is too high
to observe subtle changes [3] further motivating the need for
automated solutions. In the case of automated segmentation
of pathological data, different strategies have been proposed,
either focusing on the independent delineation of lesions
or by jointly estimating healthy and pathological tissues.
Since the relationships between the presence of abnormal
intensities, such as lesions, and surrogate biomarkers are
increasingly investigated in clinical studies, a combination
of appropriate tissue delineation and lesion measurement is
necessary.

Using MRI, three main anatomical components of the
intracranial space can be detected: grey matter (GM), white
matter (WM) and corticospinal fluid (CSF). In addition to
these, voxels with unexpected intensities can be observed.
These have different causes: blood vessels, pathologies
of different kinds, imaging artefacts or confounding non-
brain structures. From a modelling perspective, two main
problems arise when dealing with these observations: first,
bias is introduced in the estimation of model parameters by
the presence of outlier intensities when segmenting non-
pathological tissues [4], [5]; secondly, there is a need for
prior knowledge in order to design better pathology-specific
segmentation algorithms. Due to pathology-specific tuning
and the reliance on knowledge-based heuristic rules [6], [7],
pathology segmentation methods are not easily applicable
to multiple pathologies [3]. Heterogeneity in the expression
of the pathology of interest further complicates the analysis.
For instance, pathological tissues exhibit different signal
patterns according to the stage of the disease in patients
with multiple sclerosis (MS) or stroke. The existence of
diffuse pathology, such as the dirty appearing white matter
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in the case of age-related white matter hyper-intensities
(WMH) might further hinder the segmentation results. The
tuning of methods toward specific applications introduces
heuristic constraints to avoid false positive and false
negative classification [8] or to separate lesions from
other outliers (such as imaging artefacts) [6]. Task-specific
models also obviate situations in which different types of
pathologies or lesions are present in the same subject [9], a
problem which is seldom addressed [10], [11].

In the field of lesion segmentation, numerous methods
have been designed to automatically delineate lesions. These
can be classified as supervised or unsupervised methods.
The performance of supervised methods was reported to
be high [12] but the main caveat of these methods is the
choice of the training set which may not include the full
extent of pathology which exists in the population, thus
producing a less-than-optimal representation of pathological
variability [1]. Caution is further warranted: with problems
such as lesion segmentation, for which inter- and intra-
rater variability is high [13], clinical definition can be
disputed [14]. Alternative strategies, whose strengths and
weaknesses have been discussed in [9], include the use
of atlases [15], the application of tissue segmentation to
drive the lesion detection [16] or the direct application
of empirical rules [17]. Most of the methods however
make use of complementary information obtained using
different structural MR acquisition sequences. For example,
the T1-weighted (T1) images are known to provide a
good contrast between the healthy tissues while FLuid
Attenuated Inversion Recovery (FLAIR) sequences are
widely used to distinguish pathologies present in the white
matter. In addition, FLAIR images offer a good contrast
between the CSF and the lesions but is known to suffer
from acquisition artefacts such as pulsatile flow in the
CSF and overestimation of the demyelination as previously
reported in [1], [18], [19]. Multimodal information may
be used directly in a joint manner [6], [20] or following
a multi-steps scheme [21], [22], making use of specific
modalities to obtain either the tissue [3], [23] or the final
lesion segmentation [8]. It has been noted that, since the
different acquisition sequences represent different physical
behaviors, their combined use makes the definition of the
lesions even more complex [21]. A spatially weighted
model characterising the amount of information provided
by each modality has also been proposed [24]. Finally,
some methods avoid problems related to the registration
of multiple acquisition sequences by using one unique
acquisition sequence [25], [26].

Using a mixture of Gaussian distributions also known as
Gaussian Mixture Model (GMM), is a classical and elegant
way of modelling the observed intensities in MR images,
where the optimization of the model parameters can be done
through the Expectation-Maximization (EM) algorithm [27].
However, the EM algorithm is known to be very sensitive

to initialization and to the presence of outliers: a single
unexpected observation can strongly bias the parameters
estimation and consequently the segmentation outcome [5],
[28]. Various algorithms have been designed to provide a
robust estimation of the tissue parameters in presence of
outliers. These approaches consist of the down-weighting
of the responsibility of the voxels considered as outliers
when estimating the parameters [5], [7], [29] or the
introduction of an outlier-specific class, thus reducing the
bias introduced by the outliers into the parameter estimates
of the normal tissue classes [5], [6].

One should note that when the signal to noise ratio
(SNR) of an MR image is above 2 [3], [30], the Rician
noise in magnitude MR images can be approximated
as Gaussian, justifying the Gaussian assumption used in
the GMM. However, GMM models which consider a
single Gaussian component per tissue class have been
challenged and are especially controversial in the case of
the CSF, as mentioned in [23]. Even in the absence of
pathology, additional components modelling the presence
of partial volume effect have been added [31]. The method
developed in [32] considered a fixed number of Gaussian
subcomponents per tissue class. As previously reported,
intensities are widely spread in the CSF, leading to an
increase in the variance estimates [20]. This aspect is
particularly challenging for white matter hyper-intensities
observed in T2-weighted (T2) images since the variance
overestimation may lead to an overlap between the CSF
class and the hyper-intense lesions. A combination of non
parametric methods and Gaussian models for the GM and
the WM have therefore been proposed to tackle specifically
the CSF problem [23]. Another way to circumvent the
limitations of the GMM is to increase the number of
parametric components in the model. An adaptive mixture
model with up to 25 Gaussians was detailed in [33] to
delineate the lesions, while models using many Gaussians
have also been developed in a more local framework [24].
Lastly Freifeld et al. proposed to use many local Gaussians,
which are then classified as one of the four labels (GM,
WM, CSF or lesion) [34].

Task-specific methods are developed toward a certain
target application, making them prone to a modelling bias.
This bias can hinder their performance in pathologically
normal subjects and in cases with multiple types of outliers.
The lack of generalisation capability has been in fact put
forward as a reason for the absence of a standard in clinical
practice [9]. To tackle this problem, this work proposes a
novel adaptive framework for data modelling in the presence
of multiple types of outlier observations, named BaMoS
(Bayesian Model Selection) [35]. In this framework, the
data is modelled hierarchically by first dividing the model
into an inlier and an outlier part. Each one of these parts is
then modelled as a mixture of multiple anatomical classes,
with each one of these classes modelled as a Gaussian

Thiswork islicensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.



This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TM1.2015.2419072, | EEE Transactions on Medical Imaging

mixture model. As the number of Gaussians necessary to
characterize each tissue class is not known a priori, we
propose to use the Bayesian Information Criterion (BIC)
for model selection and a split-and-merge (SM) strategy
for the optimization of the model complexity [36]. The
EM algorithm developed in this framework applies addi-
tional improvements presented earlier in the field of medical
imaging. Intensity inhomogeneities (IIH), also known as
bias field, are corrected according to the method detailed
in [37], anatomical spatial knowledge is introduced through
probabilistic atlases that are then relaxed [38], [39], and
spatial context constraints are enforced through the use of
a Markov Random Field (MRF) [37], [40]. Thanks to its
non-pathology-specific formulation, the proposed algorithm
is then subsequently targeted toward different applications.
As a further refinement of the model developed in [35],
constraints are added to the Gaussian covariances. The vali-
dation of the proposed algorithm is performed on both simu-
lated images with pathological lesions in different conditions
of noise and bias field, and on clinical data in the context of
both multiple sclerosis and age-related white matter hyper-
intensities (WMH). The purpose of this validation is three-
fold: first to show the improvements in lesion segmentation
brought by considering more than one Gaussian per tissue
in a GMM, second the generic applicability of the proposed
work to different contexts, and third the ability of the
proposed method to compete with other available lesion
segmentation algorithms while providing a finer definition
of lesion severity and potentially other types of outliers.

II. METHODS

This section introduces the methodological contributions

of the proposed work. Note that, due to the large number
of variables and notations used in the proposed model,
abbreviations and acronyms are listed in Appendix V-A
while a summary table of mathematical notations is provided
in Appendix V-B.
The model selection method presented in this work relies
on an hierarchical mixture of Gaussian mixture models.
The proposed three-tiered hierarchy is first modeled as an
inlier/outlier mixture, with each component being split into
four tissue types (GM, WM, CSF and Non-Brain (NB)).
Each of this tissue is in turn modelled as a GMM, whose
number of components is automatically determined through
a split and merge strategy. Figure 1 displays an example of
such a model.

After a short review of GMM (II-Al) and the mathe-
matical description of the three-layered hierarchical model
(ITI-A2), the use of the Expectation-Maximization algorithm
is detailed II-A3. Previously published approaches to control
for the intensity inhomogeneities (II-B1), morphological
variability in statistical atlases (II-B2) and the addition of
spatial neighboring smoothing constraints through a Markov
Random Field (II-B3) are then presented in the proposed hi-
erarchical mixture scheme. In section I1I-B4 we then present
a Gaussian-model derived prior over the covariance of the
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Fig. 1: Example of a possible hierarchical model, where
each level is denoted by [ (Level 1), [j (Level 2), and [jk
(Level 3). The elements in Level 1 and 2 represent a mixture
distribution, whereas the elements in Level 3 are either a
Gaussian or a uniform distribution. Lighter shaded elements
in Level 3 correspond to a hypothetical uniform distribution.

1 1 1
WM | WM | CSF | CSF | CSF
1 2 3

considered Gaussian components of the model.

Afterwards, the model selection process that occurs at the
third level of the hierarchy and enables the automatic selec-
tion of the number of needed components is detailed in II-C.
The split and merge (SM) strategy used in this framework
is expanded (II-C1) and the algorithm steps are further
explained (II-C3). Lastly, the application of this model
selection in the context of white matter lesion segmentation
is detailed in II-D.

A. Hierarchical Gaussian mixture model and EM algorithm

1) Gaussian mixtures: In the following, %" = {y1,---,yn}
denotes the set of log-transformed normalized intensities
indexed by n, N being the total number of observations.
The feature vector y, is of dimension D, representing the
number of channels used for the segmentation. The log
transformation of the intensities is further used to model
the ITH as additive as detailed in II-B1. The log-transformed
intensities are still assumed to be Gaussian-distributed and
this assumption with this modelling of the bias field has
been shown to yield good results [41]. In GMMs, the
intensity of each voxel is considered as stemming in different
mixing proportions from J Gaussian density distribution
functions ¢ (% | 6;). Considering J Gaussian instances in the
mixture, the set of parameters to optimize is composed of
©; = {64,---,6,}, where 6; = {p;,A;}, with p; and A;
being respectively the mean and covariance matrix of the
7 component of the mixture. The vector of weights for the
mixture is 7 whose j component 7; is the weight attributed
to the component j under the constraint 25:1 i =1 and
Vj, mj > 0. For mathematical simplicity we introduce Zjy =
{@,, 7} the complete set of parameters. The parameters are
optimized in order to maximize the log-likelihood of the
model and consequently enable an accurate labelling of the
voxels of the image.

2) Hierarchical model: Adopting a hierarchical treatment
of pathological images is common in the literature. Many
lesion segmentation methods operate in a stepwise fashion,
by first extracting the class containing the lesions and then
refining this segmentation according to some heuristic rules
in order to extract the lesions ( [1], [6], [20], [23]).
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In this work, BaMoS follows a three-level hierarchical
architecture:

1) At the first level (Level 1), indexed by [, the model

is robustly separated into two density functions / and

O, that correspond respectively to the inlier part (I),

modelling the healthy tissues, and to the outlier part

(0), related to the unexpected observations, such that

S (yalEx) = br-1(yn|Ek) +bo - O (ya|Ex),

with b;+bp =1 and b; > 0, and introducing b the vec-
tor formed with these parameters. Note that O (y,|Zk)
is a full mixture model, contrary to previously pro-
posed models which assumed a uniform distribution for
O [42].

2) The second level (Level 2), indexed by j characterizes
the anatomical tissue classes (i.e. if an inlier or outlier
voxel belongs to WM, GM, CSF or other non-brain
(NB) tissues). The number of anatomical classes J;
is considered the same for both the inlier and outlier
classes since the model is built under an assumption of
symmetry, simplifying J; = Jo = J. The distribution is

thus:
G)lj) )

where b, a and ® (yn G)lj) are respectively the mix-
ing weight of /, the class weight for /; and the likelihood
of the data at voxel n for the tissue class /;. At this point,
a denotes the vector of mixing weights q;; satisfying
Zi,lal =1 and a;; >0, VI € {I,0}.

3) The third level (Level 3), indexed by k, characterizes
the multiple intensity clusters of each inlier or outlier
tissue class and models the acquisition noise in the
observations from the expected biological mean signal.
Each anatomical class density distribution is modelled
by a mixture of multiple components with distribution
A , that can be Gaussian (¢) and/or uniform (%) such

that
@ (v, )

eljk ) + Wl.fk,j +1 %/

(yn ‘—'K

Y b Zaz ()’n

lero  j=1

Klf+]

®1]-) = k; lek*%(yn

K,
= Z Wl_jkg ()’n
k=1

where K;; is the number of Gaussian components in
class [, Wi, is the mixing proportion (> 0) of class /;,
and 91 are the corresponding Gaussian parameters.
The umform distribution in each class /; is only
parameterized by the mixing coefficient wy; ik 1 The

mixing coefficients for class /; are gathered in the
vector w;., with W being the set of all such vectors that

41
satisfy ¥,/ wi, =1,VI€{I,0} and Vj€ {1, .J}.

Adopting the notation m,, = b,al].wljk with v = {b,a, W} the
set of a priori mixing weights at the different hierarchical

levels and considering the observations as independent and
identically distributed (iid), the multi-layered mixture model
can finally be expressed as follows:

eljk)

An example of a possible hierarchical model is displayed
in Figure 1, where at Level 1 [ takes the values Ior O
and j the values in {GM, WM, CSF, NB}. At this point,
three main types of parameters have to be optimized: first,
the parameters of each Gaussian distribution 6, ; secondly,
- o k

the contribution P of each distribution to the overall
observation model; and thirdly and most importantly, the
number of Gaussian components Kj; necessary to describe
the underlying distribution of tissue class /;.

3) EM algorithm: The Expectation-Maximization algo-
rithm introduced in [27] is commonly used for the op-
timization of Ek. Introducing the labelling configuration,
denoted by 2 = {z;,---,zy}, the complete data is then
defined as 2" = {%,%}. Here, z,, supporting label ¢, is
defined as e, vector of the canonical basis, i.e. the unity
vector with component ¢ equal to 1 and all the others to 0.
The conditional distribution of the complete data given the
parameters is expressed as:

f(ZEk) = f(¥,Z|Ek)
=f(¥|Z,2k) f(Z]|m)
Kl.Jrl

N J ny .
= H H H [n’ljkl%/ (yn Gljkﬂz Lk
n=11eL,0 j=1 k=1

The EM algorithm consists in alternating between two steps,
ensuring the increase of the log-likelihood. The Expectation
step or E-step consists in finding the expectation (&) of the
log of the conditional distribution of the complete data given
the parameters obtained at iteration ¢, i.e:

H Z Z k; ”l.fk///(y"

i=11el,0 j=

J

2 (2x|2) = dp g (7 (2 2K))]
N J KljJrl anjk
= éasﬁ? loggzd,og h [ zjk///(Yn szk)]
N K +1
- ng’llel,Ojgl k;l 55%) {Z"l-/k} log (7171 A (y” szk))
K;.
— i {log (/// (yn 91_,k)) + log(m_/k)}

, also called responsibility, is obtained by ap-
plying the Bayes Rule as:

Pt = fan = ey lva BY)

ﬂl(.t) M (Yn

K/ +1

Zl’elo):/ 1Zk/ 1

%)

ﬂl<’t) M ()'n

]k/

(t)
el/./ >
]k/
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The maximization step or M-step, consists in the maxi-
mization of the 2 (EK|E§)) with respect to Ek.

B. Variations for applications to medical imaging

1) Intensity Inhomogeneity correction (IIH): Intensity
inhomogeneities, also called bias field, may appear in MR
images due to spatial inhomogeneity of the scanner main
magnetic field during the acquisition of the image [43].
It causes smooth variations in the intensity observed for
the same tissue throughout the image and might lead to
misclassifications if left uncorrected. When pathological
tissues are present, this correction is of special interest
and often performed as a preprocessing step. In this work,
the estimation of the bias field follows the model detailed
in [37]. The bias field, multiplicative in the original MRI
observation space, is modelled as a linear combination of
M polynomial basis functions ), given the spatial loca-
tion pos,, YM | c,xm(pos,). When considering the log-
intensities %/, the bias field becomes additive and the pa-
rameters c,,, vectors of size D, can then be progressively
optimized within the EM framework. In the following, y;, @)
denotes the corrected intensity feature at voxel n at iteration
¢t with:

ye

M
=¥a— Y € 2n (pos,)
m=1

Denoting C = {¢y,---,¢y} the set of vectors of linear
coefficients used to model the magnetic field inhomogeneity,
the set of parameters to optimize becomes Eg = {@k,w,C}

2) EM algorithm with spatial adaptive a priori knowl-
edge: The classical mixture model presented above has been
modified to consider spatially varying mixing coefficients,
where the parameters 7; become spatially variant [44].
As previously reported [39], this model cannot distinguish
structures with similar intensities from one another. For
instance, very hyper-intense lesions in the white matter
cannot be distinguished from flow artefacts occurring in
the CSF. To overcome this problem, a popular solution has
been to adopt a priori knowledge stemming from statistical
atlases [45]. Adopting such form of a priori knowledge at
Levels 1 and 2 of the hierarchical model, @ denotes now
{B,A, W}, where B (resp. A) refers to the set of N vectors
of a priori mixing probabilities b,, (resp. a,). The conditional
distribution becomes:

J K1j+1
Znl
T
7@ 0 =TT ITIT T [f,# (n.0,,)]
n=11el,0 j=1 k=1
with Tut;, = bpiani;wi;, - Considering a symmetric model at

Level 2, the atlases are defined so that Vn, nl; = Ano; = dnj-
The responsibilities are now defined as:
(t))
Gljk
9(’ ) )
Jk'

(1) _ bnlanjwl(ji<%/ <Yn
Joo
Z Z Z nl’anj’wll '/% Yn
€0 j=1 k=1

”l Ky +1
o
Jk/

This solution is subject to some difficulties related to both
the choice of an appropriate population to build the statistical
atlases and the choice of a suitable coordinate mapping [25].
This problem is especially important when pathological
features are not present in the statistical atlases. For example,
the study of white matter hyper-intensities (WMH) in elderly
subjects with enlarged ventricles can be biased by the
use of atlases that originate from a population of young
healthy volunteers [3]. A framework for statistical atlas
adaptation has been described in [38], [39]. This adaptation
enables the handling of pathological morphologies while
still preserving some prior spatial information constraints.
This model assumes that the spatially varying mixing priors
are derived from a Dirichlet distribution, noted &. Now
denoting 7% = {B,A, W}, the mixing coefficients follow the
distribution:

f(#®)=f(B)f(A)
N
= Ijl ( ann) (aman)
gt
=1 P ,8,, %(an)

where 4 is a Beta function and 3,,, v, the vectors of Dirich-
let prior parameters for voxel n such that f3,; = 1+ 8,b,; and
0 = 1+ &ayj, where 01 and O, are positive parameters
assessing the strength of the relaxation applied at Level 1
and Level 2 of the hierarchy. Note that the choice for an
asymmetric modelling in the inlier and outlier part would
prevent the decoupling in the adaptation of the different
levels. The E-step is kept unchanged but the M-step consists
now in the optimization of:

f(‘%‘®Kaﬁ3C) f(®Ka7?aC)

with respect to the parameters. Using the Lagrange
multipliers method as detailed in [39] in order to enforce
the constraint that the mixing coefficients must sum to 1,
the M-step leads to an update of the mixing coefficients

which related to the probabilistic atlases, such that
(t4+1)

1
B O1by +P,(1t1+ ) A 620 tDyj
! o +1 ! &+1
with
t+1 J j t+1 (t4+1) K[j+1 (1+1)
Z Z Pnj " = Z Z pnl,k ’
j=1 k=1 1el,0 k=1

Since the probabilistic atlases are supposed to be smooth
but the responsibilities are not, a Gaussian Kernel G5 with
standard deviation ¢ is convolved with the responsibilities
as a form of spatial regularization, similarly to previously
described methods [38], [39]. Eventually, the update for the
a priori mixing coefficients is:

E’(fl-‘rl) = (1 —K1)bp + K1 (Go‘*p<t+1))
a™ = (1 - )an + k2(Gox pli)
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where k; = 1/8;+ | and x represents the convolution opera-
tor. The smoothing mentioned here is related only to the
relaxation of the statistical atlases and does not concern
the posterior that is used to produce the final segmentation
and optimize most model parameters. This atlas relaxation
contributes greatly towards the detection of outliers in the
proposed model. One can loosely see this step as placing
probabilistic seeds on outlier regions as has been done in
[22].

3) EM algorithm with neighborhood consistency
constraints: Spatial constraints are not only added on
a global scale with probabilistic atlases but can be
also reinforced at a more local scale. Neighborhood
context constraints are introduced here to improve the
consistency between neighboring voxels. By introducing a
Markov Random Field, one can promote the propensity of
neighboring voxels to be classified under the same class.
Usually, one adopts a Potts model with a unique value
expressing the energy needed for two voxels to be classified
under different labels. However, additional anatomical
information can be added if the neighborhood relationships
between tissue classes are known [38]. This leads to the
introduction of a symmetric matrix H of parameters, stating
the energy relationships between neighboring tissues.
Adding these parameters into the model results in the
following expression for the prior over the labelling, where
N, represents the set of von Neumann neighbors of voxel
n:

N J K/ +1
f(Z|H, 7)o el ~UMrF(ZIH)) IT IT

H
n=11€l,0 j=1 k=1

N
UMRF(EZW‘H) = Z ZLA/,”H)

Z zZ, Hz,
ley
In case of anisotropy in the resolution of the data, scaling

factors might be used on the matrix H to take into account
the distance between voxels, increasing the constraint with
the increase in voxel proximity [31]. Adding an MRF
spatial context constraint results in the invalidity of the
independence assumption, making the calculation of the
E-step intractable. The vector p, is built from the set of
responsibilities associated to each component /;, at voxel n
and the set of such vectors at locations .4, is denoted p_y; .
The mean field approximation described in [40] is used
here, such that

an

UMRF (24|24, H) =

f (Zl’l = eljk

Z%,H,w(’))

L p(;)n 71‘1) )

n_(,) . (_UMRF (e
ik

YY)

l'el,oj'=1 ¥ fk/

leading to the following responsibilities
) (1) o ()
¢n ; ﬂnl- lI/nl-

J
LY
I'el,0 j'=1

(t+1)
nljk

K+

J
Z (t)
nl/ nl/ nl’
: k/

k/ k’

where we adopt the notations

0 _ _ =
¢n[ (yn |Zn = el_,-k s -'K(t))

v, (- o)

4) Constraint over the covariance matrix: If the same
noise model is used over all the observations, it makes sense
to consider that if the covariance matrix of the Gaussian
parameters is only describing the acquisition noise, then all
covariances should be related. A way of constraining the
noise covariance is to introduce a prior distribution over
these matrices. Here we choose the Inverse Wishart distri-
bution [46] as a prior form. Thus, the a priori distribution
of the covariances is expressed as

Kk [
fu (Aljk) < exp | =5 Tr (A,jk T, ‘I‘Y,jk)

J'k‘

where Tr is the trace of the matrix, ¥ is a positive definite
matrix and Yljk is a scaling diagonal matrix, such that

1y, (d,d)y=1/ exp(ul(;f()) is taking into account the relation
between the mean and the covariance matrix under log-
transformed image observations. Within the Maximum a
Posteriori EM (MAP-EM) algorithm framework, the con-
straint ¥ is optimized as a model parameter and the update
of the covariance matrix is modified into

t+1 (t+1) ~1 n(t+1)
(t+1)_1 ZIGIOZ 712 Qljk Yljk
v %,

N'ZIGI,OZJ':I Y1

t+1
Qi Yljkqf( )Tl.fk
L Z (t+1)
Al _ nPnij,
e [ NFd+ 1
+ (1)
n nljk
where Ql(;_“) is the weighted covariance matrix at iteration
(t41).
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5) Summary of the modified EM: Using the adaptation
of the population atlases described in II-B2, 7 = {B,A,W}
represents the sets of adapted atlases (B and A) for the first
and the second level and the set of weights (W) attributed to
the classical mixtures in Level 3. The conditional definition
of the labelling f (% |H,#) is then proportional to

N
ITTIII

n=11e,0j=1 k

J
l.
J
II {nlanlwl } Wy,

The advantage of using a matrix of neighborhood param-
eters for the spatial context constraint (through the MRF)
appears here, where the rules can lower the energy needed
for subclasses of the same tissue j to be neighbors.

Within this framework, the E-step of the EM contributes
to the update of the responsibilities so that

c) () ~(6). (1) (1)
¢nl ik b

ay:w
(H—l) nl W llj”l/'k

nl

K i
o5 ) ) i)

lel,oj'=1k=1 Ty Sy Ty

The M-step of the described MAP-EM with the prior
over the covariance matrices (Section II-B4), ITH correction
(Section II-B1) and atlas adaptation (Section II-B2) enables
the update of the Gaussian parameters and the weights for
the third level mixture of Gaussian and uniform components
such that

) (" —nl)
ipm
= nljk

where y; stands for the IIH-corrected intensities and Q

)

is the weighted covariance matrix used in the update of the
Gaussian covariance Agl_).
Jk

C. Model selection

1) Split and merge strategy: The flexibility of the pro-
posed model lies in the automatic selection of the appropriate
number of components K;; needed to model each mixture /;.
Ideally, this parameter could be optimized using a Markov
Chain Monte Carlo algorithm. In fact, due to the compu-
tational complexity of such an approach, here, a split-and-
merge (SM) strategy is used for model optimization [47],
[48]. The SM operations were introduced in order to deal
with the initialization problem of the EM algorithm by
redistributing the Gaussian components over the observation
space. However, incorrect initialization may lead to the con-
vergence of the log-likelihood toward a local maximum [28],
resulting in errors in the final segmentation.

In BaMoS, the number of Gaussian components per tissue
class enables the modelling of complex biological phenom-
ena, further justifying the prior constraint over the covariance
matrices introduced in Section II-B4. In this SM approach,
a merge operation consists of transforming two Gaussian
distributions, /; iy and [; iy into a single Gaussian distribution
lj,. A split operatlon is the transformation of a single
distribution, Gaussian or uniform, into two subcomponents.
The symmetric Kullback-Leibler Divergence (KLD) is used
to define which component(s) should be modified in the
model. Considering two probabilistic distributions P; and
P>, over the variable y, the discretized symmetric KLD is

expressed as follows:
Pi(y) Py(y)
z(y)) FRO)es <P1 (y)>

When looking for which component to split, the most
likely candidate is the one whose model distribution explains
the corresponding observations most poorly, i.e the one
whose KLD compared to the underlying observations is the
largest. When merging two components of the model, the
selected pair is the one that produces the smallest KLD
between the two model distributions. The initialization of the
newly formed component(s) follows the strategy previously
described in [49], such that when merging components / ity
and /; ity into a single component /; , the initial Gaussian
parameters are expressed as:

KLD(P; || P») ZP] log(

Jk?

wi, = lekl +lek2
y Wi, P, Jrszkz By,
L, =
Tk wr. +wp,
Jky Ity
wy, Ay, wy, Ay,
A Lie, M, + Ly My
lj, =
k
lekl +lek2

~ T
Aljk,» = Aljkl- + (uljki _IJ’ij) (Hl/k,- _I'l’ljk>

When splitting a Gaussian component /;, into two compo-
nents [ iy and / i, W adopt the implementation described
by Li et al. [48], which follows Richardson et al. [49].
Introducing v, as the vector corresponding to the highest
eigenvalue from the orthogonal factorization of the covari-
ance matrix Ay, and setting the free parameters to 0.5, the
initial parameters for the new Gaussian components are:

wp. = wp. :OSWI
Jky ko Tk
g = B, —0.5-v, g, = B, +0.5-v;,
A[. :Al- :Al. —0.25‘V1, V]
Ky iy Jk Jk

With the aim of modelling the observed data as Gaussian
distributions, a uniform distribution is split into one Gaussian
component modelling a sub-cluster of the data under the
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original uniform distribution, and one new uniform distribu-
tion modelling the rest of the data. Splitting a uniform into a
Gaussian plus a remaining uniform ensures that unmodeled
outliers can still be accurately captured by the probabilistic
model, thus maintaining the stability of the model. As no
closed-form solution exists, a 2-class k-means algorithm is
used to estimate the 2 main sub-clusters of the samples under
52/;/.. The mean and covariance of the cluster with the smallest
variance are used to initialize the new Gaussian class.
Every time a new model is initialized, the EM optimization
described above is run until convergence.

2) Penalty function - Acceptance criterion: The proposed
model is optimized using an iterative conditional modes
(ICM) approach, where it switches between the optimization
of the model parameters and the model selection. In order
to provide a bias-variance trade-off between accuracy and
complexity of the model, the Bayesian Information Criterion
(BIC), testing the current model K and expressed by

BIC(K) = vlog (f (% |2k)) — 2(K),

is here used as an objective function. The BIC penalizes the
log-likelihood of the model according to the penalization
function Z(K) = [ZZZ/'KI_,- <(D+21>D + 1) —J] -log(N - v),
which depends on the number of free parameters being
optimized. The decimation factor v is introduced into the
BIC cost function to compensate for the lack of spatial
independence between the observed samples, i.e. U repre-
sents the proportion of voxels that can be considered as
independent [50]. The decimation factor is defined as:

0.9394 —2log2
FWHM, log (corr,)

v= with FWHM? =

re(x,y,2)

where corr, is the correlation between adjacent voxels in the

r-direction.

3) Iterative model selection scheme: For each ICM it-
eration, the model evolves given the most probable model.
If the selected model fails to increase the objective function
BIC(K) after convergence of the EM, the next most probable
model is tested. The SM search stops when all possible SM
models have been tested. Given a model and its parameters
E g, the model selection process is performed in an iterative
five steps sheme as summarized in Figure2:

Step 1 Computation of the list of possible SM operations
Listgy: given the current model, an ordered list of
possible operations is defined by an alternating se-
quence of split and merge operations. Merge operations
are ordered by increasing KLD and split operations
by decreasing KLD as detailed in Section II-C. As a
hard constraint, and mostly for computational reasons,
Gaussian components with a relative weight to class
[; inferior to 0.01 are not allowed to split. Merging
can only occur between Gaussian components from the
same mixture /;.

Step 2 Initialization of a new model: the first element of
Listgy is used to define the transformation on the cur-
rent model. The parameters for the changed components

= _Kinit
Sinit K

Step 1
Listgy determination

Listgym

Step 2
New model initialization

r=rinit
HKI’]EW

Knew

new
KK Step 3

EM on tested model

EK — EKnew

KnCW

=
SR new

Step 4
Model accepted ?

Listgy ¢ Listgy \ Listsm [0]

Step 5
r Listgy empty ?
< Y

Final model

®_

Fig. 2: Graphic scheme of the model selection process
performed in BaMoS.

are initialized as detailed in Section II-C1. The matrix
H, used to define the MRF neighborhood rules, is
updated.

Step 3 Optimization of the parameters of the tested model
with the EM algorithm.

Step 4 Test of the new model using the BIC: the new model
is accepted only if the relative change in the objective
function is above 10~*. In order to avoid instability in
the model, components with a relative weight below
0.01 are removed from the model.

Step 5 Check for evolution: if the model is accepted, the
process restarts at Step 1. If not, the first element of
Listgy is removed from the list and the process restarts
at Step 2, thus testing the next operation. If all the
elements in the list have been tested, the algorithm
terminates.

D. Application to white matter lesion segmentation

Once BaMoS has converged to a final model, the obtained
hierarchical model can be further used to gather components
that share a similar biological meaning. For instance the
resulting model can be analysed to gather the components
related to the lesion and after a minor false positive correc-
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tion produce a delineation of the white matter lesions that
can be observed clinically in multiple sclerosis patients or
in elderly.

1) Components selection: To obtain the lesion segmenta-
tion, the meaningful mixture components must be extracted
from the model. As the lesions segmented with BaMoS can
belong to more than one of the model’s clusters, the relevant
components of the final model were automatically selected
and combined by adding the corresponding probability maps
inversely weighted with their Mahalanobis distance towards
the mean of the grey matter if this distance was below
3. The model components relevant for lesion segmentation
were selected from the outlier part of the final model. The
following heuristic rules were used to select the pathology
relevant modalities:

. lj = Owwm (Patho) (Patho)
lj, eLif{ or and [,L[jk > My
lj = Oam

with Patho = {FLAIR, T2, PD} where PD refers to proton
density weighted images. The inclusion of the GM outlier is
necessary due to the smoothness of the atlases used in this
work and the presence of lesions near the cortical sheet as
well as close to the deep gray matter.

When the FLAIR modality is not available, a further
refinement on the selected components is required in order to
avoid the inclusion of voxels related to partial volume effect
at the GM-CSF border. Such components present themselves
as very hypo-intense on the T1 modality and slightly but not
strikingly hyper-intense on the T2 image. Since the change
in intensities is monotonic with lesion severity for both T1
and T2 intensities (respectively decreasing and increasing)
but with a much stronger slope for the T2 compared to the
T1 [51], [52], it can be assumed that very low intensities on
the T1, would only correspond to a very severe lesion and
thus an even higher hyper-intensity level on the T2 image.
To address this correspondence, in cases where a potential
lesion-related component with a very hypo intense mean on
T1 (i.e. a mean lower that the mean observed for the GM
inliers), the corresponding mean on the T2 was checked to
be hyper-intense compared to the mean of undisputed lesion
components. Such components must present a hyper-intense
mean on T2 (lesion-like) and a mean on T1 higher than the
mean of the GM inliers.

Mathematically we have the set L of components initially
considered as related to the lesions split into two groups:
TL, standing for true lesion (or undisputed lesion), and DL,
standing for disputed lesion such that

DL = {s €L ’ wd™ < u,g?}
TL=L\DL
The refined set of lesion RL is then defined as:
RL=TL+{s€DL ‘ W™ = )

where pr denotes the mean intensity of the 7L set.

It must be emphasized that this refinement is not needed
and would be erroneous in the case where the FLAIR
modality is available. Indeed, at the CSF-GM interface,
intensities do not appear hyper-intense on the FLAIR image.
Furthermore the monotonic evolution of intensities with
lesion severity does not hold in the case of the FLAIR
modality due to the inversion recovery process of the ac-
quisition [52]. A similar selection process is performed
voxelwise for the remaining uniform distributions. The main
strength of such a selection process relies on its post-
processing characteristic. As it occurs after obtaining the
final model, the complete model is independent of the
definition of the outliers of interest. Furthermore, this post-
processing step remains flexible and adaptable to different
acquisition protocols and subtleties in the clinical definition
of the pathology [53].

2) Correction for false positives: In the final lesion
segmentation, a constraint on the minimum lesion size of 3
voxels was chosen to define a lesion. The inclusion of GM
lesions led to false positives in the cortical sheet, septum
pellucidum and in the outer border of the brain as well as
the shine through artefacts of the third and fourth ventricles.
To correct for those errors, the lesion connected elements
are defined and neighboring rules based on the surrounding
segmentation results are used. To correct for the inclusion
of elements at the outer border of the brain, distance to
the NB class and to the mask border is for instance the
main indicator. For the other types of FP correction, the
elements considered for correction were those for which
the proportion of neighboring voxels belonging to WM was
lower than the GM neighboring proportion or presented very
mixed proportion between GM, CSF and WM neighbors.
Among those, the elements that were not in the potential
deep grey matter area as defined by the ICBM statistical
atlas [54] were discarded and considered as belonging to the
cortical sheet. The position relative to the mask centre and
the midline of gravity was further used to eliminate at most
areas related to the septum pellucidum and shine through
effects on the inferior third and fourth ventricles.

E. Implementation details - Choice of parameters

In order to obtain a final lesion segmentation, four steps
are required:

1) Preprocessing

2) Initialization

3) Model selection

4) Application to lesion segmentation
Hereafter are the details of the parameters chosen for these
different steps.

1) Preprocessing: The preprocessing of the data used in
this study consists first in the spatial co-registration of the
different modalities. As detailed in Section II-B2, statistical
atlases are used at Level 1 and 2 of the hierarchy. For
the first level, no a priori statistical information is known
about the location of the outliers. Therefore, constant priors
over the image are initially used so that Vn, b,o = bp and
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by = 1 —bg. The value for bp has been set to 0.01 in all
our experiments, shown to be probabilistically equivalent
to a Mahalanobis distance of 3 in previous work [55].
Conversely, for the second level, tissue-specific probabilistic
maps are used to describe the prior probability of the four
main tissues (GM, WM, CSF and NB). The probabilistic
maps used in this study (ICBM452) are aligned with the
observed data and re-normalized between 0 and 1 before use.
For computational and complexity purposes, skull stripping
is performed on the image [56]. The masks obtained for
brain extraction are filled to include the ventricles and sulcal
CSF using morphological operations (dilation of 2 voxels,
filling and erosion by 1 voxel).

2) Initialization: The initial model K is initialized
as K, =1 and Ko, =0 Vj, meaning that each inlier tissue
component is being modelled by a single Gaussian, and the
outlier tissue components are modelled by a uniform distri-
bution. As the inlier mixtures are assumed to be governed
only by Gaussians, the inlier classes’ uniform distribution
mixing weight is set to 0. To avoid instability and overfit in
the presence of a large number of classes, the ITH is only
optimized on the initial model K(©), while the atlases B and
A are relaxed after convergence of the EM on KO, They
are considered static thereafter. The parameters that control
the relaxation of the statistical atlases have been set to K =1
and o =1 and the EM is considered to have converged once
the relative increase in the log-likelihood is less than 1074,

3) Model selection: The MREF spatial constraints and the
constraint over the covariance are applied throughout the
model selection process detailed in Section II-C whereas
the correction for IIH is only performed once before the
beginning of the model selection process. In order to behave
similarly to the MRF weighting of 0.15 used in the VBM
segmentation tool of SPM8 and also in [57], the symmetric
matrix H containing the neighborhood energy cliques for the
MREF is defined as:

. ! _ O ifj = j/

Al Uye) = { 0.15  otherwise

Enforcing spatial consistency only at Level 2 of the hierar-
chical model should avoid the smoothing of relatively small
but very hyper intense lesions that will be detected thanks
to the inlier/outlier separation.

IIT1. DATA EXPERIMENTS AND RESULTS

To wvalidate the wide applicability of BaMoS, its
performance was evaluated in various contexts: first it was
applied to simulated data with presence of pathology at
different levels of lesion load, with various degree of noise
and bias field, as provided by the BrainWeb project [58].
The provided fuzzy lesion class membership was considered
as ground truth (GT) for segmentation comparison. BaMoS
application in the context of multiple sclerosis and age-
related WMH was further evaluated on clinical datasets
made available during the MICCAI challenge 2008 in the
case of MS [59] and during the MICCAI BrainS challenge

for the age-related WMH. Lesion manual segmentations
were used as reference and considered as gold standard
(GS). In those experiments, BaMoS was compared to two
simpler versions of itself and to three other freely-available
automated lesion segmentation algorithms, demonstrating
both the importance of the adaptability of the model as
well as its competitive performance when compared to
other validated algorithms. Three versions of BaMoS have
been tested: the first one, called BaMoS-static consists in
the static solution obtained without allowing for a change
in the number of Gaussian components, i.e. that performs
the first initial EM, the atlas adaptation and a final EM
refinement before exiting the process. The second version
of BaMoS, denoted BaMoS-NoCov has been detailed in
[35], i.e. without any prior over the covariances. Finally, the
final full version of BaMoS is simply denoted BaMoS. In
terms of computation, for instance for simulated data, about
250 EM related to model selection (Step 3 of the model
selection process Section II-E3, Figure 2) were required for
BaMoS, which amounted to about 12 hours of computation
(single core desktop computer). Among the numerous
methods described for lesion segmentation [9], we selected
the ones which were made available online and maintained
as listed in [60] as well as being able to handle data with
artefacts. The first one was the classical EMS algorithm [6]
that belongs to the same family of methods as BaMoS and
thus enables a very similar set-up. The EMS code, available
at (https://mirc.uzleuven.be/MedicallmageComputing/
downloads/ems.phpEMSsection=download&pagePath=2)

allows for a similar choice in the parameters (atlases,
MRF), thus decreasing the comparison bias otherwise
induced by preprocessing and parameter choice. The default
value of 3 for the Mahalanobis distance, noted to be the
most suitable [6] and used for comparison in [1] was
chosen in all experiments. The second algorithm chosen,
part of the SPMS8 package and available for download at
http://www.applied-statistics.de/lst_download.html is the
Lesion Segmentation Tool (LST) detailed in [22]. Among
the variety of proposed methods in the literature, this
method has been validated both for application in the
context of both MS and age-related WMH with a difference
on a single threshold parameter. According to [61], the
default value of 0.3 is to be chosen for MS applications
(LST-MS) whereas the value of 0.25 is more appropriate
when applied to age-related WMH (LST-WML). The
third comparison point was the Lesion-TOADS (TOADS)
algorithm [15], (http://www.nitrc.org/projects/toads-cruise/)
that belongs to the family of non-parametric methods but
also corrects for IIH within its scheme. It is available for
installation at http://wwww.nitrc.org/projects/toads-cruise/.
Two variants of the MRF energy matrix were used when
comparing EMS to BaMoS: the H matrix defined for
BaMoS (EMS-C) and the automatically adapted MRF
detailed in [6], with the latter being the default set up of
EMS algorithm (EMS-D). To ensure consistency in the
comparisons, the same masked data were used for EMS,
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TOADS and BaMoS.

A. Assessment of lesion segmentation

Name Equation Best
2-f(RefNSeg)
S
VD 100 x |1 — gR—i 0 (%)
#Seg—t(RefnS
FPR 100 x W 0(%)
#(RefnS
TPR 100 x % 100 (%)
#Ref—#(RefnSeg)
FNR 100 x % 0(%)
n;i{z fd(s,r)Jr Y rgzsn d(s,r)
. sedSegredRe redRefs€ddSeg
AvDist £ TIReTT10Seg 0 (mm)
DE Yrerp UrN, iF 0 (mL)
OER 100 % ZTETPC ]j(RchUSegT)—jj(RefTﬁSegT) 0 (%)

fRef

TABLE I: Table of lesion segmentation evaluation measures.

As noted in [9], the use of a unique method for the
assessment of the quality of the lesion segmentation is insuf-
ficient and to better understand the strengths and weaknesses
of different methods as well as the origin of the errors.
Thus it can be useful to study jointly different segmentation
assessment measurements. In this work, the popular Dice
similarity coefficient (DSC) was combined with the true
positive rate (TPR), and the false positive rate (FPR) as
defined in [15] as well as the false negative rate (FNR).
The other evaluation measures used here are the volume
difference (VD) and the average distance (AvDist) also
defined in [15]. To better assess the origin of errors, two
measures, that have been shown to be less dependent on
the total lesion load (TLL) according to [13] were used
as a complement, respectively the detection error (DE) and
the outline error rate (OER). The definitions of these quality
assessment measures are gathered in Table I where # denotes
the cardinality of a set considered in a voxelwise manner, the
subscript . indicating the connected set, and 0 denoting the
border of a set defined in the 18-neighborhood connectivity
scheme. With this denomination, considering Seg URef, FP,
denotes the set of connected components wrongly considered
as positive, while FN, corresponds to the set of connected
components wrongly considered as negative. In turn, TP,
represents the true positive connected components, that is
the connected components for which Seg NRef # @. When
possible, statistical tests between methods were performed
using a non parametric Wilcoxon-Mann-Whitney test. Re-
sults were considered significant for p-values below 0.01.

B. Validation on simulated images

As a first validation, the segmentation framework de-
scribed earlier was applied to the simulated BrainWeb brain
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Fig. 3: Comparison of DSC results for the automated
methods with noise level variation at mild (top), moderate
(middle) and severe (bottom) lesion load. The errorbars refer
to the minimum and maximum obtained when varying the
intensity inhomogeneity level.

images available at http://brainweb.bic.mni.mcgill.ca in or-
der to assess its performance for various level of image
quality. A simulated model with multiple sclerosis lesions
is available for three different lesion loads (Mild, Moderate,
Severe). The ground truth segmentations are provided as
maps of fuzzy membership. BaMoS was used on all different
combinations of the available modalities (T1, T2 and PD)
for different levels of noise (3%, 5% and 7%) at different
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Assessment method

DSC (%) VD (%) FPR (%) TPR (%) FNR (%) AvDist DE  OER (%)
BaMoS-NoCov 36.9 94.3 62.9 44.2 55.8 8.3 84.3 101.7
BaMoS$ 51.4 46.4 44.9 52.0 48.0 2.7 40.9 86.5
BaMoS-static 48.6 43.1 25.6 42.9 57.1 45 45.8 74.5

= EMS-D 2.6 4851.6 48933 583 41.7 400 132079  1063.9

S EMS-C 10.7 7243 775.2 49.1 50.9 374 26004 82.8
LST-WML 22.8 56.1 27.9 16.0 84.0 13.4 186.8 67.2
LST-MS 22.3 70.6 15.0 14.5 85.5 13.5 146.8 66.7
TOADS 0.8 983.8 1078.8 4.9 95.1 249  4190.6 137.3
BaMoS-NoCov 55.7 75.3 91.6 72.1 27.9 1.3 507.6 104.8
BaMoS$ 70.2 22.9 33.6 72.8 272 0.8 173.9 55.3

g BaMoS-static 65.0 33.9 20.8 60.2 39.8 1.3 309.2 51.3

S EMS-D 20.4 582.6 606.0 76.5 235 165 131978  188.0

g EMS-C 449 91.8 1248 67.0 33.0 158  2935.0 65.8

= LST-WML 62.9 30.2 16.2 53.6 46.4 3.9 693.9 4.1
LST-MS 62.6 34.7 13.4 51.9 48.1 4.0 648.9 424
TOADS 15.0 64.2 1443 19.9 80.1 7.8 1362.3 185.0
BaMoS-NoCov ~ 77.2 37.5 463 91.2 8.8 0.5 71.6 54.3
BaMo$S 81.2 232 32.6 90.5 9.5 0.4 33.6 41.7

, BaMoS-static 79.7 20.1 16.4 77.9 22.1 0.4 50.1 38.0

5 EMS-D 39.9 195.5 217.1 78.4 21.6 100 13105.7 88.7

3 EMS-C 64.1 42.0 526 74.1 25.9 8.7 2596.9 49.6
LST-WML 77.3 13.1 14.6 72.5 27.5 0.9 310.8 38.8
LST-MS 77.1 15.8 13.0 712 28.8 0.9 286.6 38.9
TOADS 64.6 6.1 315 62.6 37.4 2.1 838.2 60.6

TABLE II: Comparison for the different assessment measures of the segmentation method for the T1T2 combination
modality. The results are taken as the mean over all level noise and ITH at the three different lesion loads.

Load Noise DSC (%) VD (%) FPR (%) TPR (%) FNR (%) AvDist(mm) DE (uL) OER (%)

3 56.8 64.9 89.6 75.4 24.6 1.3 42.7 108.4

= 5 54.9 17.7 32.3 50.0 50.0 2.1 32.0 77.5
= 7 42.6 56.6 12.9 30.5 69.5 4.7 48.0 73.7
Mean 514 46.4 44.9 52.0 48.0 2.7 40.9 86.5

2 3 75.3 10.3 31.1 79.2 20.8 0.5 44.0 50.1
5 5 70.5 335 51.2 823 17.7 0.6 59.3 66.9
B 7 64.8 24.9 18.3 56.8 432 1.4 418.3 49.1
= Mean 702 22.9 33.6 72.8 272 0.8 173.9 55.3
. 3 81.9 28.7 35.0 93.7 6.3 0.4 453 40.9
5 5 79.9 34.6 40.9 93.7 6.3 0.4 30.0 46.8
3 7 81.7 6.2 22.0 84.2 15.8 0.4 25.3 37.4
Mean 81.2 232 32.6 90.5 9.5 0.4 33.6 41.7

TABLE III: Assessment of BaMoS for various measures at different noise level and lesion load for the T1T2 modality
combination (mean over various intensity inhomogeneity levels).

severity of intensity inhomogeneity (0%, 20% and 40%) for
the three available lesion loads (0.4 mL, 3.5 mL, 10.1 mL).
For the T1T2 combination that is the standard choice of
modalities for the tested segmentation methods, the various
lesion segmentation assessment measures are gathered in
Table II as the mean of each measure across noise and IIH
level for each lesion load separately.

1) Behavior with noise level: Since the quality of imaging
data is very heterogenous, assessing the robustness of a
given method against the level of noise is an important
validation step. The range of noise between 3% and 7%
(as defined in BrainWeb) was found to be comparable to

the range of noise of 3T and 1.5 T clinical scans, and was
thus used for comparison. The noise model in BrainWeb
consists in adding Gaussian white noise on both the real
and imaginary components of the image with a standard
deviation chosen based on a reference tissue signal such that
the ratio between the standard deviation and the signal is the
percentage value of the noise model. The obtained noise on
the magnitude image thus follows a Rician distribution. As
the signal for the reference tissue varies through modalities,
the observed effect of noise is also modality-dependent. The
robustness to the noise level for the different lesion loads
for the compared methods is presented using the DSC in
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Figure 3 for which the methods are applied on the T1T2
modality combination. At each noise level, the extremities
of the errorbar present the minimum and maximum result
obtained when varying the intensity inhomogeneity level
from O to 40%. For the T1T2 combination, Table III gathers
the various lesion segmentation evaluation results obtained
when varying level of noise and lesion load for BaMoS
supporting the notion that BaMoS is robust to noise. When
increasing the noise level, we generally observed a logical
decrease in FP related to the boundaries of the lesions and an
increase in FN. As shown by the related changes in DE and
OER, mis-detection of lesions increases only for the change
between 5 and 7% noise on the moderate case. The number
of subclasses necessary to model the data was negatively
correlated with the noise level, as the wider class variance
makes it hard to justify the need to more Gaussian classes
under the BIC model.

Modality combination

Load Method TIPD TIT2 TIT2PD T2PD
BaMoS-NoCov 10.3  36.9 35.8 17.9
BaMoS 11.1 514 47.5 18.0
BaMoS-static ~ 10.0  48.6 40.9 16.7
EMS-D 0.7 2.6 3.0 1.2
= EMS-C 5.7 10.7 7.1 4.9
s LST-WML 00 228 / /
LST-MS 0.0 223 / /
TOADS 0.8 0.8 / /
BaMoS-NoCov 29.1 55.7 56.7 28.4
BaMoS 275 1702 63.5 29.3
BaMoS-static  23.8  65.0 59.9 322
o EMS-D 74 204 24.9 14.4
g EMS-C 22.8 449 43.0 22.3
2 LST-WML 0.0 629 / /
= LST-MS 0.0 626 / /
TOADS 140 150 / /
BaMoS-NoCov 40.0 77.2 72.3 60.6
BaMoS 422  81.2 77.3 60.2
BaMoS-static  32.8  79.7 77.8 57.9
N EMS-D 13.9 399 46.2 34.0
5 EMS-C 263 64.1 61.2 37.7
é LST-WML 0.0 773 / /
LST-MS 0.0 77.1 / /
TOADS 65.1 64.6 / /

TABLE IV: Mean DSC (%) results over noise and IIH levels
for the compared methods for various modality combinations
at the three lesion loads. The slash (/) sign indicates that the
combination was not possible to use for the given method.

2) Impact of modality combination: It has been suggested
in [62], that the variability in the choice of imaging modal-
ities for clinical studies might be a cause for discrepancies
between conclusions as the association between white matter
lesion location and clinical outcome. Moreover, in clinical
trials where multiple modalities are acquired, knowing the
performance of different modality combinations may help
in the appropriate choice of sequences. In this perspective,
the graphs in Figure 4 show the impact of the noise level
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Fig. 4: Comparison of the DSC results for BaMoS at
different noise levels for different modalities combinations
for mild (top), moderate (middle) and severe (bottom) lesion
load. The errorbars indicate the minimum and maximum
obtained when varying the ITIH level.

on the result for BaMoS at different lesion loads for the
different modality combinations, while Table IV gathers the
mean DSC for the compared methods and for the different
modality combinations.

As neither TOADS nor LST are able to handle the

TI1T2PD and T2PD combinations, the results are not pro-
vided. The visual comparison between the segmentations
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EMS-C LST-MS TOADS

Fig. 5: Simulated BrainWeb multiple sclerosis model with severe lesion load case. Each row displays in a different orientation
(axial, coronal and sagittal) from left to right the T1 image, the T2 image, the ground truth (GT) for the lesion segmentation
and the corresponding results for BaMoS, EMS-C, LST-MS and TOADS.

Fig. 6: Enlarged section on an axial slice of the T2-weighted
(a) simulated image with severe lesion load. Overlayed with
the lesion segmentation ground truth (b), the total segmenta-
tion obtained with BaMoS (c) and the two separated compo-
nents lesion-related (d-e). Note that the separation between
the lesion-related components is linked to the outlierness of
the lesion.

obtained for the automated methods (BaMoS, EMS-C, LST-
MS and TOADS) is presented in Figure 5. The lesion-related
sub-components from the BaMoS model are displayed as an
enlarged axial section in Figure 6. Note that different clusters
are formed according to the lesion severity of the underlying
voxel.

C. Clinical data

Due to its low performance over all experiments, the
results obtained for EMS-D are not presented in the re-
maining of the figures. The suggested LST-MS parameter set

(0.3) was used for the MS experiment and the LST-WML
parameter set (0.25) was used for the WMH experiment.

1) MS lesion segmentation: The MICCAI Challenge
2008 (http://www.ia.unc.edu/MSseg/) data set was used to
further validate BaMoS for MS. For this dataset, 20 T1
T2 and FLAIR images are provided along with the manual
segmentation. All images were resampled isotropically to
the space of the T1 image. Comparison between methods
was performed using T1 and FLAIR images. For the as-
sessment methods described in Table I, statistical results
are gathered in Figure 7 where each reference method
(in rows), is compared against all other methods using all
assessment measures. In this infographic, green corresponds
to a significantly better performance, grey to a non stastically
significant difference in performance and red to a signifi-
cantly worse performance. For each measure, the diagonals
are kept white. For this dataset, BaMoS and LST both
appear to perform better than TOADS and EMS. Figure
8 presents an example of the obtained segmentations for
the different automated methods. Also, when comparing the
three versions of BaMoS, the only significant differences
observed were related to the DSC and the TPR for which
BaMoS performed significantly better than BaMoS-static.

Among the 30 available datasets used for testing, the
publically available results concern only 23 of them. The
obtention of the scores relative to the quality of the seg-
mentation is described in [59]. When comparing on these
23 images, the overall mean scores, for BaMoS, EMS,
LST and TOADS were respectively 79.9, 62.7, 80.0 and
69.9. Note that the current version of TOADS appeared to
perform worse than the one tested in 2010, for which the
obtained score was 79.9. For the sake of consistency across
the experiments the same currently freely-available online
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Fig. 7: Color-coded statistical difference significance summary for each assessment measure on the MS dataset, where
each automated reference method: BaMoS (B), EMS (E), LST (L) and TOADS (T) is tested against another method
(column) for a specified assessment measure. Green relates to a significantly better performance, Red to a significantly
worse performance and Grey to a non statistically significant difference

T1 BaMoS
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Sagittal

EMS-C LST-MS TOADS

Fig. 8: Comparison of segmentation results for an MS patient. Each row displays in a different orientation (axial, coronal
and sagittal) from left to right the T1 image, the T2 image, the gold standard (GS) manual lesion segmentation and the
corresponding results for BaMoS, EMS-C, LST-MS and TOADS.

version of TOADS was used in all the experiments. The
comparison was limited to the available algorithms in order
to keep a consistent preprocessing of the data and therefore
limit its influence over the final segmentation result. Thus,
in a generic framework, in which the model selection is not
finely tuned towards the specific detection of white matter
lesions, BaMoS appeared to be competitive compared to
other methods.

2) WMH in population with cardiovascular risk and
diabetes: WML can present themselves in many other
contexts than MS and are for example known to appear
as part of the aging process. Age-related WMH and MS
lesions, though arising from different pathological pathways
may have similar appearance on T2 and FLAIR modalities
[63] and additional shape and location criteria have been
put forward to increase the diagnostic specificity [64]. In
age-related white matter lesions, one of the aetiological
explanations for the existence of such lesions is the partial
ischemia of the white matter. As the myelin degrades, the
fat/water ratio in the white matter changes, leading to the
signal change observed in the MRI images. Such white

matter lesions are thought to correlate with cognitive decline
and disability in the elderly [65] and have been associated
with risk factors such as Type 2 diabetes (T2DB) [66] and
cardiovascular risk factors [67]. Compared to the general
population, the decrease of contrast between WM and GM or
the enlargement of the ventricles related to the aging process
may further affect the detection of WML [3]. In this context,
the behavior of BaMoS was assessed on images part of the
MICCAI MRBrainS2013 Challenge.

For this study, brain images from T2DB patients and
matched controls with increased cardiovascular risk (age
> 50) were acquired on a 3T Philips scanner. Multi-slice
FLAIR images (0.958 x 0958 x 3 mm) and TI-
weighted 3D registered images were used. Further details
about the acquisition and preprocessing can be found at
http://mrbrains13.isi.uu.nl. WMH were manually segmented
on twenty FLAIR images giving a total lesion load (TLL)
range between 0 mL and 35.48 mL (median 6.02 mL,
interquartile range 9.22 mL) and used as gold standard
for the evaluation of the automated methods. No WMH
was detected by the human rater for one of the twenty
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patients. The obtained lesion segmentations were evaluated
using the various lesion segmentation assessments defined
in Section III-A for the nineteen subjects in which TLL > 0.

Effect of FP correction
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Fig. 9: Effect of the FP correction on BaMoS in terms of
DSC, FPR and TPR. The correction reduces the FPR but
does not affect the TPR. BaMoS-nc refers to the result of
BaMoS uncorrected for FP.

In addition, the impact of the correction for false positives
after selection of the lesion-related components is shown in
Figure 9 for the DSC, the TPR and the FPR. The stability
in TPR supports the appropriateness of the FP detection.

Comparison of BaMoS versions
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Fig. 10: Comparison of the three versions of BaMoS in terms
of DSC, FPR and TPR. Note the existence of low outliers
for the DSC in the BaMoS-NoCov version. The only outlier
for BaMoS corresponds to the case with only 0.06 mL of
lesion.

The comparison between the three versions of BaMoS,
is presented in Figure 10. The apparently surprising obser-
vation that BaMoS-static did not contain any DSC of 0 is
caused mostly by the fact that the lesion segmentation is
performed on a voxelwise basis for this method. The only

DSC of value 0 observed for BaMoS corresponds to the
case where only 24 voxels were manually segmented as
lesion. Overall, BaMoS performed significantly better than
BaMoS-static for global assessment measures (DSC, VD,
TPR) but no significant difference was observed for the
Average distance, DE and OER. BaMoS-NoCov performed
significantly better than BaMoS-static for VD, TPR but
not for DSC. BaMoS-static performed significantly better
in terms of FPR compared to BaMoS and BaMoS-NoCov
but this observation is directly linked to the low TPR. The
seeming discrepancy in results showing a higher median for
DSC and TPR of BaMoS-NoCov compared to BaMoS, but a
significant improvement of the DSC results of only BaMoS
over BaMoS-static is related to the existence of outliers
in the results of BaMoS-NoCov. This outlines the positive
impact on the robustness of the method when including the
prior over the covariance.

The comparison between the other automated methods is
summarized in terms of statistical significance in Figure 11
showing that for this application, BaMoS outperformed EMS
and LST and performed similarly to TOADS.

Since the measure of global TLL has been related with
cognitive decline, TLL correlations between the automatic
and manual segmentations were studied using both the
Pearson’s R? correlation coefficient and the slope of the
linear regression for the twenty cases. The quantitative
results for both lesion segmentation assessment measures
and TLL regression are presented in Table V. The TLL
linear regression, whose results are presented in the last
couple of lines of this table, was performed over the 20
subjects whereas all the other assessments are summarized
for subjects with a positive TLL (19). BaMoS slightly
underestimated the lesion volume (linear coefficient of 0.88)
but the correlation was high when compared to the other
methods (R?=0.96). The volume related study is presented
visually in Figures 12 and 13. The Bland-Altman plot shows
less bias for BaMoS. The plot of automated TLL per patient
ordered by increasing manually segmented TLL highlights a
potential problem regarding lesion overestimation in TOADS
for very mild cases.

The analysis of the errors observed in BaMoS with respect
to the manual segmentation showed that 12% of the FN
corresponded to missed lesions, the rest being related to
the outline of the lesions (i.e. border disagreement). Among
those missed lesions, 87% of this amount corresponded to
lesions with a volume lower than 0.1 mL. When comparing
the number of missed lesions in the automated methods, no
significant difference was observed between BaMoS, EMS
and TOADS, and all were able to detect significantly more
lesions than LST. The periventricular region, known to be
prone to partial volume effect due to resampling and shining
through effects on the ventricular lining was the most prone
to FN outline errors. In turn, the occurrence of FP, that
represent 20% of the errors concerned the outline for 65%
of its volume. For the erroneously detected FP lesions, 66%
of the volume corresponded to lesions of less than 0.1mL.
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Fig. 11: Summary of statistical differences observed between the automated methods for each assessment measure in
a Green Grey Red code on the T2DB dataset. Each method used as a reference (row) is compared to the other three
(column). Significantly better and worse performances for a specific assessment are coded in green and red respectively.
No statistically significant difference is coded in grey. Diagonals stay white.

Method BaMoS EMS-C LST-WML TOADS
462 2792 30.9 52.1
DSC 25 1877 25.0 17.6
VD 520 1056 75.7 183.2
200 1938 214 644.0
102 68.7 26 177.4
FPR 6.5 2227 3.0 666.9
37.7 20.9 217 445
TPR  5sg 13.9 20.1 12.9
623 79.1 783 55.5
FNR 553 13.9 20.1 12.9
) 6.8 77 102 38
AvDist 1y ¢ 5.6 12.4 6.9
1.0 15 19 1.1
DE 0.6 15 1.1 0.7
533 69.2 49.7 86.1
OER 35 15.8 0.7 100.2
R? 0.96 0.86 0.94 0.90
Lin 0.88 0.41 0.63 0.53

TABLE V: Comparison of the different methods according
to the various lesion segmentation assessment measures for
the T2DB dataset of 19 subjects with positive TLL. All the
measures are given in a two lines format with the mean on
the first and the standard deviation on the second. The last
set of lines gives the Pearson’s R> correlation coefficient for
the twenty subject and the corresponding linear coefficient
(Lin).

Those FP lesions were mostly located close to the ventricular
lining. Similarly to what was observed on MS simulated
data in Section III-B, BaMoS was able to separate different
types of lesion in clinical data. Other types of outliers,
such as areas of iron deposition in the basal ganglia with
much darker intensities on FLAIR images were also assigned
their own cluster. A visual example of BaMoS’ ability to
stratify different types of WM and deep GM sub-clusters is
presented in Figure 14. Thanks to the BIC constraint, the
number of subclasses observed for the inlier classes was
stable across the clinical dataset.
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Fig. 12: Comparison of TLL per patient for the four auto-
mated methods against the manual segmentation (black line).
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Fig. 13: Bland-Altman plot of the automated methods against
the manual gold standard segmentation. The markers repre-
sent the twenty cases from the T2DB dataset and the line
the corresponding linear fit TLLyyo - TLLmanyar-

D. Specific caution on the use of manually segmented gold
standard for lesion segmentation assessment

It is a well known fact that especially in the case of white
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Fig. 14: WM segmentation for one case of the clinical T2DB
dataset. First row: Images of two modalities used T1 (a) and
FLAIR (b). Second row: two subclasses obtained for the
inliers of the WM (c-d). Third and fourth row: 4 subclasses

classified as outliers, spatially related to WM presenting
hyper- (third row: e-f) and hypo-intensities (fourth row: g-h).

matter lesions, the tremendous work required to manually
delineate the lesions is subjected to a high inter- and intra-
rater variability [13]. Furthermore, as the clinical definition
of such lesions remains unclear [14], the protocols designed
to manually segment those lesions might result in a lack of
consistency that can for instance be expressed in terms of
the intensity characteristics of the lesions. As those manual
segmentations are the basis of any validation of automated

methods, methods that tend to reproduce human behavior
will appear to perform better compared to methods more
focused on the understanding of the underlying signal and
its biological classification.
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Fig. 15: Compared Z-score distribution of manually seg-
mented lesion and WM with respect to WM on the FLAIR
modality.

Based on the age-related dataset (aging population with
diabetes and/or cardiovascular risk) presenting WML for
which the data provided was already corrected for intensity
inhomogeneities, the intensity distribution of the segmented
WM was compared to that of the manually segmented
lesions. Note that in MS datasets, iso-/hypo-intense FLAIR
regions surrounded by an hyper-intense rim are considered
as lesions [68] but this is not the case for the age-related
dataset. The white matter mask used as reference for the
distribution of normal intensities was obtained as the inter-
section of the resultant WM obtained by the four automated
methods. Voxels that belonged to the manual segmentation
were removed from this mask. Since in MRI the absolute
signal value is not quantitative, Z-scores and Mahalanobis
distances with respect to the mean of the WM were used here
to assess the relative signal distribution. Figure 15 presents
as an example the distribution of intensity Z-scores with
respect to the WM on FLAIR modality for the manually
segmented lesions and the WM mask across the dataset.The
overlap observed and the fact that the mode of the lesion
segmentation is located on this overlapped region, highlights
the difficulty to define consistently the limit between normal
appearing white matter, dirty appearing white matter and
lesions.

Such uncertainty impacts directly the assessment of auto-
mated lesion segmentation methods. As an example Figure
16, presents the correlation between the proportion per
manually segmented lesion of voxels whose intensities falls
below the threshold of 2 in terms of Mahalanobis distance
compared to the WM versus the lesion DSC for BaMoS.
As expected, a negative correlation is observed. The DSC
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decreases when the proportion of normal appearing voxels
considered as lesion increases (R2 0.48, Linear coefficient
-0.96). Thus, comparing automated methods to manual
segmentations does not suffice to validate the algorithms’
degree of systematism in the definition of lesion intensity
characteristics.

Figure 17 illustrates such behaviors in terms of two
possible assessment measures:

PropLes : Proportion of lesion intensities that overlap with
WM intensities.

DistQuant : Difference in Z-score between the first quar-
tile of lesion intensity and the third quartile of WM
intensity.

A good consistency across the dataset would correspond to

a low variance for these measurements. A low proportion

overlap between intensities of normal appearing white matter

and segmented lesions was observed for LST-WML and

BaMoS. This effect can be explained by a more conservative

segmentation algorithm. For example, such a behavior for

LST-WML is directly related to the seed-growing principle

on which this segmentation method is based. In a lesser

extent, this can also be observed for BaMoS, as the evolving
outlier atlas can be seen to provide “seeds” for outlier
segmentation. The high variance observed for TOADS in
terms of PropLes, can be explained by the inclusion of false
positives in CSF-containing regions when performing a fill-
ing of the lesions. In turn, EMS-C presented a low variance
in the intensity characteristic that however corresponded to

Impact of volume of segmented lesion on DSC
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Fig. 16: Illustration of the impact of the intensity overlap
between manually segmented lesions with normal appearing
white matter. The DSC per lesion (with volume >0.05 mL)
is plotted (scattered points) with respect to the proportion
of manually segmented voxels that present an intensity at a
Mahalanobis distance inferior to 2 compared to the normal
WM. The bold and dashed lines represent respectively the
trendline of the correlation and the corresponding 95%
confidence interval.

an important intensity overlap between lesions and normal
white matter.
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Fig. 17: Comparison of consistency in terms of lesion
intensity limits for the four automated methods and the gold
standard in terms of PropLes (left axis) and DistQuant (right
axis).

IV. DISCUSSION

In this work, we developed a comprehensive method
to dynamically determine the most appropriate model to
describe multimodal data in presence of outliers. Based
on a complexity criterion, BaMoS automatically estimates
the necessary number of components as well as the
corresponding model parameters needed to model the
inlier and outlier components of the data simultaneously,
according to anatomical prior knowledge introduced as
statistical atlases. The main advantage of this model is its
ability to describe different types of outliers at the same
time, thus avoiding any bias in the segmentation of the
normal tissues.

The application chosen for the validation has been the
extraction of white matter lesions (WML) in the case of
multiple sclerosis (BrainWeb simulated data and clinical
data) and age-related WML with type 2 diabetes or increased
cardiovascular risk (clinical data) with a large range of
lesion loads. The components of the model corresponding to
the clinical definition of WML were extracted automatically
after the model optimization, providing the final lesion
segmentation described in Section II-D. As the model
selection is independent of the observed pathology, BaMoS
has a large clinical flexibility to different modalities and
pathological contexts.

BaMoS separates the lesions into different components
according to their intensity, opening the door to a deeper
understanding of the underlying lesion’s pathophysiology
and highlighting the need for further investigation into the
problem of partial volume between lesions and surrounding
healthy tissue. Since a consistent and systematic intensity
cut-off is difficult to draw between normal appearing white
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matter, dirty appearing white matter and true lesions, the
ability to introduce fuzzyness and uncertainty in the lesion
segmentation result may prove useful. Further investigation
is still necessary to account for these effects locally. Such
investigation would also benefit the final healthy tissue
segmentation but is out of the scope of this work. These
intensity levels may be of further interest when studying the
evolution of the WMH longitudinally since in the elderly it
has been shown that such lesions evolve from pre-existing
WM damages [69].

Validation of automated segmentation methods is usually
performed by comparison to a gold standard (GS) that
is difficult to acquire for clinical data and is commonly
based on manual segmentation. As the total volume load is
currently the clinical standard for the assessment of lesions,
correlations between the automated and manual lesion
volumes, here considered as a clinical gold standard, is a
common form of validating and comparing segmentation
strategies [6], [61], [22]. Contrary to the lesion count,
important when looking at early stages of MS, lesion volume
has been found to be related to the clinical outcome and to
cognitive decline [70] when investigating age-related white
matter changes. In the age-related WML dataset, R> of the
correlation was 0.96 for BaMoS compared to 0.88 for EMS-
C, 0.94 for LST-WML and 0.90 for TOADS. Application of
BaMoS to larger clinical datasets would however be needed
to properly assess the relevance of the detected lesion
burden in terms of disease staging and progression. As the
TLL is insuficient to evaluate segmentation accuracy, lesion
shape, localization accuracy and overlap [22] [9] [71], the
eight segmentation evaluation measures defined in Table I
were used to assess the automated segmentations and better
analyse the origin of the segmentation errors. The study
of the lesion count version of these measures would also
be of interest for a more complete evaluation of the methods.

When compared to the validation on clinical data, the
main advantage of using synthetic images is the availability
of a ground truth. However, the validation using the Brain-
Web dataset was limited by multiple factors as previously
underlined in [1]. As only one phantom is available, no
statistical analysis is possible. Also, synthetic images cannot
be considered truly realistic. Moreover the range of lesion
load is limited compared to the amount that can be found
in clinical cases. Thus, the BrainWeb data was used here
to test the algorithmic stability to different imaging modal-
ity combinations, different degrees of image quality with
varying noise level and intensity inhomogeneity. BaMoS
was more stable across noise level when compared to the
other methods especially TOADS and EMS. Naturally, the
decrease in TPR with image quality was most important in
the mildest case since subtle and small lesions are more
affected by the noise level than more prominent lesions as
observed in the severe case. Comparing three versions of
the proposed methodology: BaMoS-static, BaMoS-NoCov

and BaMoS in its full version, BaMoS was observed to be
more robust to ITH than BaMoS-NoCov and more robust to
noise than both BaMoS-static and BaMoS-NoCov. BaMoS-
static appeared to perform reasonably well as the BrainWeb
data can be modelled by a limited number of Gaussian com-
ponents. However, the TPR was clearly lower for BaMoS-
static than for the other BaMoS versions. The constraint
over the covariance matrix for the lesions contributed to
promote smaller covariances and thus encourage a more
detailed characterization of difference in levels of lesion
severity and partial volume effect. Compared to the other
three families of methods, BaMoS appeared more robust
to noise, a feature that is particularly important for milder
cases of lesion load. Naturally, the number of Gaussian
components needed to model the lesions decreased with an
increase in the noise level. BaMoS was reasonably stable
when presented with different combinations of modalities
and when compared to the other automated techniques
that are optimized towards specific combinations. This can
be of real interest when considering clinical studies for
which some imaging modalities might not be available for
certain subjects. Further investigation would be needed to
better understand the biological correlates between various
modalities and observed signal as well as the direct impact
on lesion detection and segmentation.

As far as the clinical data is concerned, using the same
assessment methods, when comparing the sub versions of
BaMoS, the static version of BaMoS, appeared to be less
sensitive to the presence of lesion and BaMoS appeared
to perform significantly better than BaMoS-static in terms
of DSC for both clinical datasets. This tends to illustrate
the improvements brought by the use of a higher number
of Gaussian components in the data modelling. In turn,
despite performing marginally worse than BaMoS-NoCov
in terms of median (BaMoS 42.6% vs BaMoS-NoCov
53.2%), BaMoS was found to be more stable as shown in
Figure 10 (illustrated by a higher mean BaMoS 46.2%
versus BaMoS-NoCov 45.2% ) for the age-related WMH
dataset. The lower sensitivity to lesion in BaMoS-static
expressed itself both in terms of a significantly lower TPR
and a significantly better FPR when compared to BaMoS
and BaMoS-NoCov for the age-related dataset. The higher
robustness of BaMoS compared to BaMoS-NoCov was
further exemplified in the case of the clinical MS dataset
for which significant differences between subversions was
only observed for BaMoS which performed significantly
better than BaMoS-static in terms of DSC, FNR and TPR.
BaMoS obtained comparable, and sometimes improved
results when compared to automated methods in both MS
and age-related WML contexts with a tendency to slightly
underestimate the lesion volume. When looking at the rate
metrics, such as the somehow low TPR obtained for the
WMH elderly population, one should keep in mind that
rates are prone to large variations when the rate normaliser
is small. Therefore, a few missegmented voxels in subjects
with low lesion load result in a low average TPR. We noted
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however that BaMoS had consistently good results when
compared to the heterogeneous performance of competing
methods.

The analysis of the origin of possible false negatives for
BaMoS showed that the undetected regions were mostly
related to small lesions of less than 0.01 mL. Lesion segmen-
tation accuracy was also found to be negatively correlated
with the proportion of lesion voxels with WM-like intensi-
ties. Given the strength of BaMoS model selection process,
improvements in sensitivity could be obtained through the
use of shape or texture features in the post-processing
step. This observation relates strongly to the segmentation
protocol defined in [68] for the segmentation of MS lesions
in which a conservative segmentation of lesions promoting
false negatives over false positives for mildly hyper-intense
regions is encouraged to enable the observation of change
over time.

Good scores in ground-truth based assessment mostly
characterizes the algorithm’s ability to reproduce human
behavior rather than its true ability to detect abnormal bio-
logical signal. One should thus be cautious when assessing
an algorithm entirely based on manual segmentations. Due to
the extreme difficulty of the manual segmentation task, clin-
ical expertise might be encouraged to provide careful lesion
definitions that can be translated into automatic methods. In
addition, the variations in the degree of confidence in what
should be considered as lesion or not, should further support
the argument for non-binary lesion segmentations. Surrogate
measurements, such as the ability to predict clinical outcome
or measures of intensity consistency proposed in Section
III-D can be used to further validate automated algorithms.
Indeed, as far as treatment effects are concerned, consistency
in the segmentation may appear of greater importance than
sensitivity since a predictable bias is commonly much less
detrimental to the power of longitudinal studies than a larger
variance.

In many methods specially dedicated to the segmentation
of white matter lesions, a post processing step is often
needed to avoid taking into account the hyper-intense voxels
due to flow artefacts in FLAIR images [72] [73] or voxels
at the border between GM and WM [74], or other types
of false positives [75]. The post-processing FP correction
heuristics applied are mostly needed due to the presence of
imaging artifacts and minor anatomical variations and do
not affect the generality of the BaMoS model that consider
the brain as a mixture of normal appearing (inliers) and
unexpected (outliers) tissues. The FP correction performed
in this work is partly related to the smoothness of the
statistical atlases. The spatial separation in the modelling of
the outliers enables indeed to naturally avoid the CSF-related
flow artefacts. The use of different atlases could lead to a
modification in the post-processing selection process that
would reduce the FP correction. Besides, in this framework,
BaMoS does not rely on a prior T1 segmentation of the
white matter that can be biased toward the presence of hypo-
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intense lesion regions [74] [22].

In addition to false negatives undetected in small lesions,
the ventricular lining appeared to be the most prone to
false negatives. As this region has been highlighted as of
special interest when dichotomizing the clinical impact of
white matter lesions [76], further work is needed to avoid
confusion between deep gray matter and WML.

As each split operation is mostly intensity driven, the
biological interpretation of the resulting clusters remains
difficult. Causes other than the underlying biology, such
as partial volume effect and remaining bias field inhomo-
geneities, may induce similar changes in the images. The
robustness of the method could be also tested using same-
day repeatability scans. It should be also noted that the prior
over the covariance matrix might hinder the detection of
hypo-intense outliers.

The use of multiple channels appears to be important to
stratify different levels and/or types of lesions. When FLAIR
images are available, the process of anatomical prior relax-
ation improves the ventricular segmentation, enabling the
correct classification of periventricular lesions as a subclass
of the WM outliers. Even in difficult conditions such as
anisotropic clinical data, BaMoS performed well. Nonethe-
less, BaMoS performance should be further improved by
the reduction of flow and resampling artefacts [18] in 3D
isotropic FLAIR images as encouraged in [60]. The generic
framework that governs BaMoS makes it applicable for all
possible range of modality combinations contrary to TOADS
or LST. As the lesion selection process is performed after se-
lection of the hierarchical Gaussian mixture model, the final
segmentation remains independent from the lesion definition
that can be adapted to the variability in lesion definition
contrary to EMS in which the lesion definition is included
in the initial description of the model. This flexibility allows
for more variation in the clinical description of lesions and
further emphasize the generability of BaMoS.

In our validation, we focused our efforts on the segmen-
tation of white matter lesions as they are of biological and
clinical interest in improving our understanding of the aging
process and cognitive decline and assessing the evolution
of multiple sclerosis. The main strength of the proposed
method is its ability to model different types of outliers in
a consistent and unified manner. This could enable further
correlative studies between white matter disease and related
outcomes. Owing to the generic outlier modelling obtained
through BaMoS, associations of different types of outliers
such as white matter lesions and extent of iron deposition
could be further investigated since iron deposition is known
to be associated with cognitive decline in aging [77] and
observed in the course of MS [78]. Future work will
explore the ability to characterize different degrees of hyper-
intensity, if related to lesion severity, which might prove
useful in the longitudinal assessment of certain pathologies.
Also, as the definition of WML in FLAIR images is still far
from consensual [79], future applications will also explore
the usefulness of certain subclasses of the inlier WM to
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characterize normal vs. dirty appearing white matter.

V. APPENDIXES

A. Acronyms and abbreviations

The following acronyms are ordered alphabetically and
not by order of appearance.

AvDist
BaMoS
BaMoS-No-
Cov
BaMoS-static
BIC

CSF

DE

DSC

EM

EMS
EMS-C

EMS-D
E-step
FLAIR
FPR
FWHM
GM
GMM
GT

GS
ICM
ITH
KLD
LST
LST-WML

LST-MS
MAP-EM

MRF
MR(I)
MS
M-step
NB
OER
PD

SM

Tl

T2
T2DB
TLL
TLLauto
TLLmanual
TPR
VD
WM
WMH

Average distance.

Bayesian Model Selection.

Version of BaMoS without the covariance
constraint.

Version of BaMoS without Model evolution.
Bayesian Inference Criterion.

Corticospinal fluid..

Detection error

Dice Similarity Coefficient.
Expectation-Maximization.

Expectation Maximization Segmentation tool
Clinical version of EMS (with MRF as de-
fined in Section II-E3)

Default version of EMS (with adaptive MRF).
Expectation step.

FLuid Attenuation Inversion Recovery.

False Positive Rate.

Full Width at Half Maximum.

Grey matter.

Gaussian mixture model.

Ground Truth.

Gold standard.

Iterative Conditional Mode.

Intensity inhomogeneity.

Kullback-Leibler Divergence.

Lesion Segmentation Tool.

Clinical version of LST (0.25) optimized for
WMH.

Default version of LST (0.3) optimized for
MS.

Maximum a
Maximization.
Markov Random Field.

Magnetic Resonance (Imaging).
Multiple sclerosis.

Maximization step.

Non-Brain.

Outline Error Rate.

Proton density weighted.

Split and merge.

T1-weighted.

T2-weighted.

Type 2 Diabetes.

Total lesion load.

TLL obtained by an automated method.
Manually segmented TLL.

True Positive Rate.

Volume difference.

White matter.

White matter hyper-intensity.

Posteriori ~ Expectation-

WML

White matter lesion.

B. Mathematical notations

In this work, a non bold lower case symbol corresponds
generally to a scalar. Depending on the context, the notation
f can either refer to a distribution density function or to a
probability function.

1) Superscripts and generalities:

()

o

€
*

Iteration ¢.

Corrected for ITH.

Applied to a vector or a matrix, denotes the
transposition operation.

Taking the value d or Patho, T1, T2, denotes a
specific channel.

Applied on a matrix, denotes the determinant of
the matrix.

Applied on a random variable, denotes the expec-
tation of this variable.

The ¢ vector of the canonical basis .

Indicates a convolution operation.

2) Indexing and counters:

n and N
m and M
d and D

jand J

k and Klj

Applied to the voxels of the image, with index
n and total number N.

Applied to the ITH polynomial basic functions,
with index m and total number M.

Applied to the number of image modalities, with
index d and total number D.

Used for the Level 1 of the model hierarchy and
assume the value 7 or O.

Used for the Level 2 of the hierarchy with
index j, and J representing the total number of
anatomical classes.

Used for the Level 3 of the hierarchy with index
k, and Kj; representing the number of Gaussian
distributions used to model class /;.

3) Sets and vectors:

y

&

4

Z

Indexed by n and of size D, refers to the vector
of normalized log-intensities.

Set of vectors y,, with n varying from 1 to N.
Indexed by n, represents the unity vector of the
canonical basis characterising labelling configura-
tion for voxel n.

Set of vectors z, represents the full labelling
configuration for the images (hidden data).

4) GMM density distributions and parameters:

®>%

e

Mean (vector) for a Gaussian distribution.
Covariance matrix for a Gaussian distribution.
Set of Gaussian parameters {u,A}, generally in-
dexed by [;,.

Parameters of the Gaussian components of a mix-
ture indexed by /;.

Model under consideration, characterising the
number of Gaussian components Kj; per mixture
l;.
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Denotes the complete set of parameters used for
the model.

Denotes the density distribution function for the
inlier and outlier part of the model respectively.
Density distribution for a mixture at Level 2 of
the hierarchy, indexed by /;.

Notation adopted for a Gaussian density distribu-
tion

Notation adopted for a uniform distribution.
Generic notation for a distribution at Level 3: can
be either uniform (%)) or Gaussian (G)

5) IIH correction:

X
pos

c, C

Indexed by m, corresponds to a IIH polynomial
basis function.

Indexed by n, corresponds to the spatial location
of voxel n.

Denotes respectively the vector, indexed by m (of
size D), of basis coefficients and the correspond-
ing set of such vectors (size M).

6) Mixing weights and atlases:

w

w

w
a (b)

a (b)

A (B)

Indexed by [, , denotes the mixing weight of the
component /;, in mixture /;.

Indexed by [/}, represents the vector of mixing
weights Wi, used to model mixture /;.

Denotes the set of all vectors Wi, in the model.
When simply indexed by /; (I), corresponds to
the global mixing weight of class /; (/) at Level 2
(Level 1). When also indexed by n, corresponds
to a voxelwise a priori probability.

In the context of statistical atlases, corresponds
to the vector built from apl; (bn), indexed by
n. Otherwise, corresponds to the vector of global
mixing weights.

Set of vectors {aj,---,an} ({b1, --,bN}) repre-
senting the statistical atlases.

When used as a diacritic mark, denotes the relaxed
version of the coefficient/atlas.

When indexed by nlj, is defined as Tout;, =
buian Wi

Depending on the context, denotes either the set
{b,a,W} of global mixing weights or the set
{B,A,W} using the statistical atlases for Level
1 and Level 2.

7) Atlas adaptation and parameters:

K

Oyj,Cepn

ﬁﬂhﬁfl

Denotes the Dirichlet distribution.

Denotes the Beta distribution.

Indexed by the level of the hierarchy (1 or 2),
defines the strength of the prior relaxation process.
A lower value represents a stronger relaxation.
Directly related to 6. The highest x, the strongest
the relaxation.

Dirichlet prior parameters at voxel n for the
anatomical tissue j, and the corresponding vector
of all gathered anatomical features (Level 2).
Same as o; and ap but at Level 1 of the
hierarchy.

Pnl
Pnj
Go

23

Responsibility marginalized over the second level.
Responsibility marginalized over the first level.
Gaussian kernel with standard deviation ©.

8) MRF notations:

N

P

UMRF

¢nljk

Yl
H

Tk

Denotes the set of von Neumann neighbors of
voxel n, i.e. the 6 nearest neighbors (east, west,
north, south, top and bottom).

Denotes the vector or responsibilities for all /;,
components. When indexed by .4;, denotes the
set of such vectors for the voxels in 4.

Energy function related to the current labelling
configuration.

Abbreviation of f (yn

Zn=e, EK).

Pl

Abbreviation of exp (—UMRF (e;jk

MREF inter-class energy matrix.

9) Constraint over the covariance matrix:

Q)

Y
Y,

Jk

Weighted covariance matrix for the Gaussian
component /;, at Level 3.

Prior over the model covariances.

Scaling diagonal matrix used to compensate for
the log-transformation of the intensities in the
prior over the covariances.

10) Model selection:

\4

corr,

Indexed by /;,, denotes the vector in the orthog-
onal decomposition of the covariance matrix A]-/k
associated with the highest eigenvalue.
Decimation factor accounting for the proportion
of truly independent voxels.

Bayesian Information Criterion on model K.
Penalization function over the model K used in
BIC

Value of correlation between adjacent voxels in

the r-direction.

11) Lesion definition:

Patho

L

TL
DL

RL

Modalities that can be used as indicator of pathol-
ogy in the case of WMH, that is FLAIR, T2 and
PD.

Set of components potentially considered as le-
sions.

Set of components considered as lesions.

Set of possible lesion-related components that
need further refinement.

Final set of lesion-related components refining
DL.

12) Lesion assessment:

d

§
Ref

Seg
FP.

FN,
TP,

Denotes the border of a binarized object.
Denotes the cardinality of a set.

Refers to the binary lesion segmentation used as
reference.

Refers to the binary lesion segmentation evalu-
ated.

Set of connected elements that belong only to Seg.
Set of connected elements that belong only to Ref.
Set of connected elements for which at least one
voxel is a true positive.
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Seg (Ref) restricted to the connected element T.

(Refr)
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