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ABSTRACT 

 

Despite extensive research on the neural basis of empathic responses for pain and disgust, there 

is limited data about the brain regions that underpin affective response to other people’s 

emotional facial expressions. Here, we addressed this question using event-related functional 

Magnetic Resonance Imaging to assess neural responses to emotional faces, combined with 

online ratings of subjective state. When instructed to rate their own affective response to others’ 

faces, participants recruited anterior insula, dorsal anterior cingulate, inferior frontal gyrus, and 

amygdala; regions consistently implicated in studies investigating empathy for disgust and pain, 

as well as emotional saliency. Importantly, responses in anterior insula and amygdala were 

modulated by trial-by-trial variations in subjective affective responses to the emotional facial 

stimuli. Furthermore, overall task-elicited activations in these regions were negatively associated 

with psychopathic personality traits, which are characterized by low affective empathy. Our 

findings suggest that anterior insula and amygdala play important roles in the generation of 

affective internal states in response to others’ emotional cues, and that attenuated function in 

these regions may underlie reduced empathy in individuals with high levels of psychopathic 

traits. 

 

Keywords: empathy; psychopathic personality; emotional facial expression; amygdala; anterior 

insula 
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INTRODUCTION 

 

Empathy is a multidimensional phenomenon that involves the ability to resonate with and 

understand the affective states of others. Recent research suggests that this ability comprises a 

number of dissociable, but interacting, cognitive components. One of these components, the 

emotional component, involves the capacity to share or become affectively aroused by others’ 

emotions and has been referred to as affective resonance (Decety, 2010; Decety and Cowell, 

2014) or emotional contagion (Bird and Viding, 2015). Albeit using a wide range of 

experimental tasks and stimuli, previous studies have focused mainly on the neural basis of 

empathy for pain, in which the majority of the tasks involved watching another person’s body 

parts in painful situations or a loved one about to receive an electric shock, or empathy for 

disgust, in which stimuli involved watching another person expressing disgust (see (see Fan et 

al., 2011 for a comprehensive review).Recent meta-analyses of these studies (Fan et al., 2011; 

Lamm et al., 2011) indicate that the observation of others’ experiences of pain or disgust elicits 

robust activation in anterior insula, pars orbitalis of the inferior frontal gyrus (IFGOp) and dorsal 

anterior cingulate cortex (dACC). While less consistently reported in previous studies, the 

amygdala is also thought to participate in affective resonance with others’ emotions, due to its 

role in detecting and responding to emotionally salient stimuli (Adolphs, 2010).  

 

Despite the extensive literature on the neural correlates of empathy, there is limited data on the 

neural correlates of empathic processing for facial expressions and, to our knowledge, no study 

has used an experimental task explicitly probing online subjective affective response to facial 

expressions of basic emotions. Facial expressions have specific communicatory functions, 
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conveying information about the observed person to the observer (Blair, 2003, 2005). They thus 

constitute important cues to others’ emotional states and, because they can be readily perceived, 

likely readily trigger empathic responses in humans. If the above-mentioned brain regions 

underlie empathic processing more generally, they should be recruited independently of the type 

of emotional content being empathized with, and we would thus expect them to participate in 

affective responses to both positive and negative basic emotional expressions. Indeed, previous 

research on emotional facial processing has reported that observing facial expressions of basic 

emotions such as sadness, anger and happiness elicits responses in visual and prefrontal brain 

areas, but also in limbic and temporoparietal areas, including the amygdala and the anterior 

insula (e.g. Kesler/West et al., 2001; Fitzgerald et al., 2006). Moreover, response in amygdala 

and anterior insula also appears to be positively correlated with the valence attributed to 

emotional stimuli in general (Phan et al., 2004). Here, we build on these previous studies and 

inspect whether activity in regions typically associated with empathic processing co-varies with 

trial-by-trial fluctuations in the intensity of online self-reported affective responses to a wide 

range of facial expressions, in a larger sample than has been used previously.  

 

One important motivation for studying the neural basis of affective resonance in response to 

others’ emotional cues is to better understand conditions that are characterized by apparent 

difficulties in empathising with other people. Callous and un-empathic behavior is the hallmark 

of individuals with high levels of psychopathic traits. Psychopathic traits include a constellation 

of affective-interpersonal traits, such as lack of consideration for others’ feelings and a tendency 

to manipulate others, as well as impulsive lifestyle-antisocial behavior characteristics, such as 

impulsiveness and persistent antisocial behavior (Hare, 1993; Hare & Neumann, 2008). It has 
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been proposed that the absence of a robust spontaneous empathic response to others’ distress 

explains why individuals with psychopathy find it easier to commit acts of antisocial behavior 

towards others (Blair, 2013; Blair et al., 2005). Behavioral and neuroimaging data are consistent 

with the notion that these individuals do not find other people’s distress as salient as their peers 

do (e.g. Blair, 2013; Marcoux et al., 2013). Furthermore, individuals with high levels of 

psychopathic traits report reduced affective responses to others’ emotional faces (Ali et al., 2009; 

Seara-Cardoso et al., 2012; Seara-Cardoso et al., 2013) and reduced empathic concern for other 

people relative to those with low levels of psychopathic traits (Seara-Cardoso et al., 2012; Seara-

Cardoso et al., 2013). It has been proposed that the absence of a robust affective response to the 

distress cues of others is a core feature of psychopathy. Over time, this may lead to impaired 

moral development, making individuals high in psychopathic traits more prone to engage in 

antisocial behavior (Blair et al., 2005).  

 

A recent functional neuroimaging study from Decety, Skelly, Yoder, and Kiehl (2014) 

investigated neural processing of dynamic facial expressions of fear, sadness, happiness and 

pain, in a large group of incarcerated males with varying levels of PCL-R scores. Decety et al., 

(2014) found that, while passively observing dynamic emotional facial expressions, inmates with 

highest levels of psychopathy presented significantly lower hemodynamic response than inmates 

with low and medium levels of psychopathy in a wide set of regions, including facial cortical 

processing areas such as the fusiform gyrus, and regions typically involved in affective 

processing like the inferior frontal gyrus. In contrast to what might be expected, given the 

putative role of the anterior insula in affective processing, Decety et al. (2014), found that the 

group with highest levels of psychopathy presented increased activity in this region in response 
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to negative emotional facial expressions. Additionally, three recent studies addressed the neural 

correlates of empathic processing in adults with psychopathy while viewing other people in 

painful situations. Decety, Skelly and Kiehl (2013) found that when observing stimuli depicting 

body parts in painful situations and stimuli with facial expressions of pain, incarcerated men with 

high levels of psychopathy exhibited greater responses in anterior insula, dACC and IFG, 

compared with those with low levels of psychopathy. In a follow-up study, Decety, Chen, 

Harenski, and Kiehl (2013) reported that the manipulation of the instruction given before the 

observation of body parts in painful situations had an impact on the patterns of activation 

observed. When inmates with high levels of psychopathic traits were instructed to imagine 

themselves in the pictures they also showed increased activity in anterior insula, dorsal anterior 

cingulate and inferior frontal gyrus in relation to those with low levels of these traits. But, when 

instructed to imagine another person in the pictures, they showed reduced response in anterior 

insula, orbitofrontal cortex and in the amygdala, as expected. These findings suggest that these 

individuals may present a specific deficit in regions associated with affective processing when 

instructed to imagine others in pain but not when imagining themselves in pain.  

 

Meffert et al. (2013) also found that when observing videos depicting hands in emotional 

interactions (e.g. a hand being caressed or hit by another hand), offenders with high levels of 

psychopathic traits had lower activation relative to non-offenders in several brain regions 

including anterior insula, IFG, dACC and amygdala. Meffert and colleagues reported that when 

participants were explicitly instructed to ‘empathize’ with the actors in the video, group 

differences in activation related to psychopathy were reduced. Although this might suggest that 

top-down instruction can modulate neural responses to affective stimuli in individuals with 
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psychopathy, it is unclear whether their experience of empathy is itself altered. In summary, 

existing evidence suggests reduced engagement of brain areas typically associated with empathic 

processing in individuals with high levels of psychopathic traits, particularly in response to 

others’ pain and when not explicitly instructed to empathize. These results are consistent with 

developmental studies where precursors of psychopathic traits (i.e. callous-unemotional traits) 

have been reported to be associated with reduced responses in the anterior insula, dACC and 

amygdala when participants viewed others in painful situations (Lockwood, Sebastian et al., 

2013; Marsh et al., 2013) and add to the hypothesis that hypo-reactivity of these regions might 

underlie disrupted emotional and empathic behavior typically encountered in individuals with 

high levels of these traits.  

 

The primary aim of the current study was to identify the brain regions involved in processing 

affective responses to both positive and negative facial expressions of others. We predicted that 

these would include structures that have been consistently associated with empathic responding 

in previous studies, in particular anterior insula, dACC and IFGOp, as well as the amygdala, 

which is thought to be involved in detecting emotional saliency, particularly from facial cues 

(Adolphs 2010; Fitzgerald et al., 2006). Critically, we tested whether activation in these regions 

is modulated according to trial-by-trial variation in the intensity of self-rated affective responses 

to facial stimuli. If these regions participate in the generation of affective states generally, then 

neural responses should follow a quadratic (U-shaped) function with respect to affective 

responses along the valence continuum (i.e. they should respond maximally to stimuli eliciting 

affective responses at both positive and negative extremes of valence). To this end, we adapted 

the Empathy for emotional facial expressions task (Seara-Cardoso et al., 2012; Seara-Cardoso et 
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al., 2013) for functional magnetic resonance imaging (fMRI). In this task, participants are asked 

to rate their affective state while viewing faces expressing basic emotions. The task includes 

realistic and naturalistic stimuli and is proposed to index affective resonance since participants 

are asked how the stimulus depicting another individual makes they themselves feel. The task 

correlates highly with other measures of empathy and related constructs, and is sensitive to 

individual differences in psychopathic traits in the general population (Seara-Cardoso et al., 

2012; Seara-Cardoso et al., 2013; Lockwood, Bird et al., 2013).Our second aim was to test 

whether inter-individual variability in psychopathic traits is associated with responses in these 

regions during affective resonance with facial expressions. We predicted that psychopathic traits 

would be negatively associated with neural activity in anterior insula, dACC, IFGOp and 

amygdala during affective resonance, consistent with the callous-unemotional behavior 

commonly observed in individuals with high levels of these traits and with prior evidence of 

blunted affective and neural responses to others’ emotions in this group. 

 

MATERIALS AND METHODS 

 

Participants 

Thirty-one right-handed male participants from the community with no reported history of 

psychiatric illness were recruited for this study. Of these, one was excluded due to failure to 

respond on >50% of trials and corrupted fMRI data due to movement, leaving 30 participants in 

the analysis [mean age: 26.9, range: 20-40; mean estimated intelligence quotient (IQ) 110, range: 

85-125]. All participants provided written informed consent according to the guidelines approved 
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by UCL Division of Psychology and Language Sciences Ethics Committee who provided ethical 

approval for this study. 

 

Materials 

Questionnaire assessments 

Psychopathic traits were assessed with the Self-Report Psychopathy Scale Short Form (SRP-SF; 

(Paulhus et al., in press), a 29-item scale designed to measure psychopathic attributes in non-

institutionalized samples. The SRP-SF assesses psychopathic traits, organized in four facets – 

interpersonal (e.g. “I have pretended to be someone else in order to get something”), affective 

(e.g. “I never feel guilty over hurting others”), lifestyle (e.g. “I rarely follow the rules”) and 

antisocial (e.g. “I have threatened people into giving me money, clothes, or makeup”) – 

consistent with recent research on the Psychopathy Checklist – Revised (PCL-R; Hare 2003). 

Like the PCL-R, the four facets can be modelled in terms of the traditional two-factor 

dimensions: affective-interpersonal and lifestyle-antisocial. The SRP has been shown to have a 

clear latent structure and good construct validity (Neumann and Pardini, 2012; Neumann et al., 

2012), and strongly correlates with the PCL-R (Lilienfeld and Fowler, 2006; Paulhus et al., in 

press). Items are scored on a 5-point Likert scale (from 1 “Disagree Strongly” to 5 “Agree 

Strongly”). In the present sample, SRP-SF total scores varied between 31 and 109 (M=58.07; 

SD=18.18), affective-interpersonal scores varied between  14 and 61 (M=29.23; SD=10.89), 

lifestyle-antisocial scores varied between 15 and 47 (M=27.70; SD=8.73), thus presenting a 

similar distribution to a previousy reported distribution from a larger sample of adults from the 

general population (Seara-Cardoso et al., 2012). The Matrix Reasoning subscale of the Wechsler 

Abbreviated Scale of Intelligence (WASI; Wechsler, 1999) was administered to estimate level of 
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general intellectual ability. Participants also completed the State-Trait Anxiety Index (STAI; 

Spielberger et al., 1970) to assess state and trait anxiety.  

 

Empathy for emotional facial expressions task 

We adapted the Empathy for emotional facial expressions task previously described in Seara-

Cardoso et al. (2012; 2013) for event-related fMRI. In this task, originally based on Ali et al. 

(2009), participants are instructed to rate their own affective state on the valence scale of the 

Self-Assessment Manikin (SAM; Bradley and Lang, 1994) while observing images depicting a 

person displaying a sad, fearful, angry, happy or neutral expression. This task has been shown to 

be highly correlated with other measures of empathy and related constructs, and to be sensitive to 

individual differences in psychopathic traits in the general population (Seara-Cardoso et al., 

2012; Seara-Cardoso et al., 2013; Lockwood, Bird et al., 2013). To prevent possible confounding 

effects at the neural level of presenting expressive manikins (which contain emotional facial 

expressions) alongside the emotional stimuli of interest (emotional facial expressions), the 

valence scale of the SAM was replaced by a sliding scale, ranging from -4 (most negative) to +4 

(most positive), with 0 as the central ‘neutral’ anchor. The task included a total of 40 different 

images, 8 images (4 male, 4 female) per emotional condition (sadness, fear, anger, neutral, and 

happiness), which were repeated 3 times. Immediately prior to scanning, participants were 

familiarized with the task and instructions. Stimuli used during practice were not used in the 

scanning session. Inside the scanner, participants were presented with a total of 120 trials, 

pseudorandomised across two runs, and were instructed to rate how the picture made them feel 

on the sliding rating scale (Figure 1). 
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Each trial lasted 8.5 s and started with the presentation of the face stimulus. After 2 s, the sliding 

scale appeared on the screen, below the stimuli. Participants made their ratings using three keys 

on a keypad. Two keys moved the cursor (initially positioned in the center of the scale) to the left 

or the right on the sliding scale, and a third key ‘marked’ the answer. Participants had a 

maximum of 4 s to make their ratings. If a rating was not made within that time, the trial was 

considered an error. After marking their ratings, participants received visual confirmation of their 

answer for 1 s. A fixation cross appeared on the screen for 1.5 s before the next trial started. 

Twenty-four fixation cross “baseline” trials, with the same overall duration, were also presented. 

Trials were presented in a pseudorandom order to prevent presentation of more than two 

consecutive trials of the same emotional category and more than one consecutive null trial. 

Stimulus presentation and response collection were carried out with Cogent 

(http://www.vislab.ucl.ac.uk/cogent.php) running in Matlab 2011b (http://mathworks.com). 

 

Magnetic resonance imaging acquisition 

Images were acquired using a Siemens Avanto 1.5 T MRI scanner at the Birkbeck-UCL Centre 

for Neuroimaging with a 32-channel headcoil. A 5.5 min 3D T1-weighted anatomical scan, and 

multislice T2*-weighted echo planar images (EPIs) with blood oxygenation-level-dependent 

(BOLD) contrast were acquired. The T2* EPI sequence used the following acquisition 

parameters: 35 2 mm slices acquired in a descending trajectory with a 1 mm gap; echo time = 50 

ms; repetition time = 2.975 s; slice tilt = -30o; flip angle = 90o; field of view = 192 mm; matrix 

size = 64 x 64. Field maps (phase and magnitude images) were also acquired for use in the 

unwarping stage of data preprocessing.  

 

http://mathworks.com/
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Data analyses 

Behavioral data analysis 

All behavioral analyses were conducted with IBM SPSS Statistics for Windows, Version 20.0. 

To investigate whether the stimuli in the different emotion (sad, fearful, angry, happy) conditions 

elicited significantly stronger affective responses than the stimuli in the neutral condition, we 

conducted a repeated-measures ANOVA. Post-hoc pairwise comparisons included Bonferroni 

correction for multiple comparisons. Relationships between affective response ratings and 

psychopathic traits were assessed using the Pearson correlation coefficient. Overall affective 

response was estimated by averaging ratings of all emotional stimuli (i.e. excluding neutral 

stimuli), with the sign of ratings of negatively valenced stimuli reversed (note that ratings were 

reversed only for this specific analysis). 

 

Image processing and analyses 

EPI data were analyzed using SPM8 (www.fil.ion.ucl.ac.uk/spm) in Matlab. The first five 

volumes were discarded, and the data were realigned to the sixth volume, unwarped using a 

fieldmap, normalized to the Montreal Neurological Institute template resampling to a voxel size 

of 2x2x2 mm, and smoothed with an 8 mm full width at half-maximum Gaussian filter. Data 

were high-pass filtered at 128 s to remove low-frequency drifts, and the statistical model 

included an AR(1) autoregressive function to account for autocorrelations.  

 

At the first level we estimated two models. In the first model, onsets were time-locked to the 

presentation of the face stimuli (one regressor per emotion condition), with duration 2-6 s, 

depending on the duration of the rating on the sliding scale. Where necessary, we also included a 

http://www.fil.ion.ucl.ac.uk/spm
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regressor modelling any missed trials with duration 8.5 s (range of missed trials: 1-6; M=0.367). 

Fixation cross trials (baseline) were also modelled in the analyses with duration 8.5 s. Regressors 

of interest were created by convolution of these onsets with a canonical hemodynamic response 

function. The six realignment parameters were included in the model to control for minor 

participant motion. For two participants, an extra regressor was included to model corrupted 

images resulting from excessive motion (>1mm or 1 degree between one volume and the next). 

These images were removed and replaced with an image created by interpolating the two 

adjacent images to prevent distortion of the between-subjects mask. To test whether the neural 

responses in the first analysis varied according to the reported level of affective response elicited 

by each stimulus, a second model was estimated. This model was specified and estimated in a 

similar manner to the first model, with the exception that all emotional stimuli were combined in 

a single regressor, which was parametrically modulated by a series of polynomial expansions 

(linear to cubic), using the subject-specific affective ratings from each trial (ranging from -4 to 

+4) after Z-transformation of the ratings within each subject. Using such a cubic expansion 

ensures that possible exponential relationships are not misinterpreted as quadratic (Winston et 

al., 2007). Neutral trials were modelled in a second regressor. 

 

Second-level analyses group analyses were implemented on contrasts of interest using the 

standard summary-statistics approach to random-effects analysis. For the first model, whole-

brain analyses were conducted using a threshold of P<0.05, FWE corrected at the voxel level, 

after applying an inclusive grey matter mask (segmented from the group average anatomical 

scan). Region-of-interest (ROI) analysis was conducted in bilateral amygdala (as a single ROI) 

following an initial threshold of P<0.005 (uncorrected), defined using the Pickatlas toolbox with 
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the automated anatomical labelling (AAL) atlas (Maldjian et al., 2003), and applying small 

volume correction (SVC). Additional exploratory analyses were conducted using a cluster 

forming threshold of P<0.005 (cluster size > 20) after applying the inclusive grey matter mask, 

and clusters surviving FWE correction for spatial extent across the whole brain (P<0.05) were 

considered statistically significant. For the second (parametric) model, ROI analyses were 

conducted in regions identified as robustly engaged by the task in the (orthogonal) first analysis: 

anterior insula, dACC, IFGOp and amygdala. ROIs for the anterior insula, dACC and IFGOp 

were defined by creating 8 mm spheres centered on activation peaks identified in the first 

analysis. An initial threshold of P<0.005 was applied and effects surviving SVC FWE correction 

(P<0.05) at the voxel-level were considered statistically significant. 

 

To test whether individual differences in hemodynamic response in these regions were associated 

with individual differences in psychopathic traits, we used the Marsbar toolbox (Brett et al., 

2002) to extract contrast estimates from 8 mm spheres centered on activation peaks identified in 

the first analysis (anterior insula, dACC, IFGOp and amygdala) and related these to SRP scores 

in SPSS. Note that these correlation analyses were orthogonal to the contrast used to identify the 

neural response and as such do not require correction for a voxel-wise search (Kriegeskorte et 

al., 2009). Contrast estimates extracted with Marsbar were also used to generate the regression 

plots presented in Figure 3. Residual analyses were performed to check the validity of parametric 

assumptions and presence of outliers.  

 

RESULTS  
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Behavioral analyses 

Manipulation check 

Analysis of subjective affective ratings revealed a significant main effect of valence (F(1, 29) = 

423.27, P<0.001), confirming that our task elicited the expected subjective states in participants. 

Post-hoc pairwise comparisons, with Bonferroni correction, confirmed significant differences in 

affective ratings between all emotional categories (all P<0.001, except for sad<fear: P=0.03), 

with the pattern sad < fearful < angry < neutral < happy (additional descriptive statistics are 

presented in Supplementary Table 1). 

 

 

 

Relationship between psychopathic traits and affective response to emotional facial expressions 

Psychopathic traits, specifically affective-interpersonal traits, were significantly negatively 

associated with overall affective responses to faces (SRP total: r=-0.34, P=0.07 (marginal); SRP 

affective-interpersonal: r=-0.41, P=0.03; SRP lifestyle-antisocial: r=-0.20, P=0.30). Inspecting 

the associations between psychopathic traits and different emotion categories, we observed that 

psychopathic traits, specifically affective-interpersonal traits, were significantly negatively 

associated with affective response to happy faces (total: r=-0.43, P=0.02; affective-interpersonal: 

r=-0.43, P=0.02; lifestyle-antisocial: r=-0.23, P=0.23). The associations between psychopathic 

traits, and specifically affective-interpersonal traits, with fearful and angry faces had correlation 

coefficients of similar magnitude to those reported in the previous studies (all rs>0.25; Seara-

Cardoso et al., 2012; Seara-Cardoso et al., 2013), but failed to reach statistical significance, 
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likely due to the lower number of participants that could be included in the present study. 

Associations with ratings for the neutral faces were weak and non-significant (rs<.10). Including 

IQ and trait anxiety as covariates did not change this pattern of associations (Supplementary 

Tables 2 and 3). Residual statistics analyses confirmed that the assumptions for parametric 

analysis were met and that there were no outliers. 

 

*** Figure 1 *** 

 

fMRI analyses 

Activation during task performance 

We initially contrasted neural responses associated with task performance relative to baseline 

(fixation cross) in the first model to isolate regions recruited during face processing. Performing 

this task evoked responses in regions that have been consistently identified to be associated with 

affective empathy at P<0.05 (whole-brain FWE corrected): right IFGOp bilateral anterior insula 

and dACC. Activations were also observed in left parietal operculum, supramarginal gyrus, 

middle frontal gyrus, thalamus and cerebellum, extending to fusiform gyrus (Table 1). No 

regions exhibited the reverse pattern at this significance threshold. ROI analysis in bilateral 

amygdala identified two significant clusters of activation at P<0.05 (FWE SVC), one in the right 

amygdala (peak coordinates: [x=-27; y=-4; z=-11]; k=8; Z=4.77; P<0.01) and one in the left 

(peak coordinates: [x=24; y=2; z=-11]; k=1; Z=3.26; P=0.03).  

 

*** Table 1 *** 
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We next investigated the effect of the emotional face conditions contrasted against the neutral 

face condition, using a within-subjects ANOVA with the 5 experimental conditions (each 

contrasted against baseline) constituting the repeated-measures factor (F-contrast: [1 0 0 - 1 0; 0 

1 0 -1 0; 0 0 1 -1 0; 0 0 0 -1 1], where the order of conditions in the design matrix was: sad, 

fearful, angry, neutral, happy). At an initial threshold of P<0.05 (FWE corrected), we identified 

significant effects in lingual gyrus bilaterally (left peak coordinates: [x=-9; y=-85 z=-11]; k=75; 

Z=6.57; P<0.01; right peak coordinates: [x=15; y=-73 z=-14]; k=60; Z=5.94; P<0.01), and in 

pars orbitalis of the IFG (IFGOb), bilaterally (left peak coordinates: [x=-45; y=44 z=-5]; k=9; 

Z=5.03; P=0.01; right peak coordinates: [x=51; y=32 z=-11]; k=3; Z=4.89; P=0.02), where at 

least one emotional condition differed from the neutral condition. Post-hoc pairwise comparisons 

of extracted contrast estimates (8 mm spheres centered on activation peaks) revealed that 

activation in left lingual gyrus was higher for sad, fearful and angry faces than for neutral faces 

(t(29)s= 3.76; 3.39; 2.38; Ps<0.01, uncorrected). In right lingual gyrus activation was only higher 

for happy than for neutral faces (t(29)=3.47; P<0.01, uncorrected), and lower for sad, fearful and 

angry than for neutral faces (t(29)s=2.49, 2.53, 2.62; P<0.01, uncorrected).In left IFGOb, 

activation was higher for neutral than for each emotional face category (all t(29)s>2.95; P<0.01, 

uncorrected), and in right IFGOb, activation was higher for neutral faces than for sad, fearful and 

happy faces (t(29)s= 3.01, 2.24, 5.09; P<0.01, uncorrected). Amygdala ROI analyses did not 

identify significant activations for any type of emotional expression relative to neutral faces. 

 

Quadratic parametric modulation of affective response to emotional facial expressions 

Having identified the brain network recruited by this task (relative to baseline), we then tested 

whether these regions participate specifically in subjective affective responding. In this second 
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model, using an initial threshold of P<0.005 and SVC in ROIs (anterior insula, IFGOp, dACC 

and amygdala) defined on the basis of the results described above at P < 0.05 FWE-corrected, we 

identified significant positive quadratic relationships (i.e. U-shaped relationships) between 

activation to emotional faces and trial-by-trial subjective affective responses in the anterior 

insula, extending to the IFGOp, bilaterally (right peak coordinates: [x=42; y=2; z=4]; k=35; 

Z=3.55; P=0.01; left peak coordinates: [x=-48; y=2; z=-2]; k=12; Z=3.01; P=0.03), and in 

amygdala (right peak coordinates: [x=33; y=-1; z=-20]; k=22; Z=3.45; P=0.02; left peak 

coordinates: [x=-27; y=-1; z=-17]; k=32; Z=3.50; P=0.02) (Figure 2). None of the ROIs 

exhibited the opposite pattern of activation. In support of the notion that anterior insula and 

amygdala responses vary in accordance with the intensity of affective responses along the 

valence continuum (i.e. respond maximally to stimuli eliciting high affective responses at both 

positive and negative extremes of valence) and therefore participate in affective responding per 

se as opposed to negative emotion specifically, we did not find any significant linear or cubic 

relationships between activation in these regions and trial-by-trial subjective affective response 

to emotional faces, even at a liberal threshold of P<0.005 (uncorrected). Additional exploratory 

whole-brain analyses are presented in Supplementary Table 4. To confirm that the observed 

pattern of quadratic relationships between activation to emotional faces and subjective affective 

responses was not driven by varying length of the modelled epochs, we estimated an additional 

model where trial onsets were time-locked to the presentation of the stimuli, as previously, but 

where durations were kept constant by fixing them to the mean trial duration within each 

participant. This additional model yielded a similar pattern of significant effects in anterior 

insula, extending to IFG bilaterally (right peak coordinates: [x=42; y=2; z=4]; k=76; Z=4.25; 

P<0.001; left peak coordinates: [x=--42; y=2; z=-4; k=57; Z=4.05; P<0.001), and in amygdala 
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(right peak coordinates: [x=33; y=-1; z=-20]; k=34; Z=3.79; P=0.01; left peak coordinates: [x=-

27; y=-4; z=-11]; k=34; Z=3.77; P=0.01), thus confirming that the quadratic effect we identified 

was not simply driven by longer epochs in trials with more extreme affective ratings. An 

illustrative figure of these results is presented in Supplementary Figure 1.   

 

*** Figure 2 *** 

 

Associations between neural responses during task performance and psychopathic traits 

We tested whether responses elicited during the performance of the task (all faces relative to 

baseline) in anterior insula, dACC, IFGOp and amygdala were associated with individual 

differences in psychopathic traits. Significant negative correlations with total psychopathic traits 

were identified in the bilateral anterior insula (right: r=-0.38, P=0.04; left: r=-0.40, P=0.03). The 

magnitude of anterior insula response was significantly negatively associated with levels of 

lifestyle-antisocial psychopathic traits (right: r=-0.39, P=0.03; left: r=-0.43, P=0.02), and with 

affective-interpersonal traits at trend level (right: r=-0.31, P=0.10; left: r=-0.31, P=0.09). The 

magnitude of response in right amygdala was also significantly negatively correlated with total 

psychopathic traits (r=-0.37, P=0.05), specifically with affective-interpersonal traits (r=-0.36, 

P=0.05), while the correlation with the lifestyle-antisocial subscale did not reach statistical 

significance (r=-0.29; P=0.12) (Figure 3). Including IQ and anxiety as covariates did not change 

the associations between psychopathic traits and anterior insula response, but did change the 

associations with right amygdala response, where the associations became stronger, achieving 

statistical significance for both sub-scales (affective-interpersonal: r=-0.38, P=0.05; lifestyle-

antisocial r=-0.37, P=0.05). We then explored whether observed associations were driven by 
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shared variance between the two dimensions of psychopathic traits, or unique variance specific 

to individual dimensions. Entering each dimension of psychopathy as a covariate of the other 

rendered associations weaker and non-significant, indicating that variance shared by both 

dimensions likely drives the associations found (Supplementary Table 5). Furthermore, Steiger’s 

Z tests indicated that the two dimensions did not present significantly different correlation 

coefficients in any of the associations described above (all Z<0.89; P>0.38). Residual statistics 

confirmed that the assumptions for parametric analysis were met and that there were no outliers 

in any of the reported analyses. 

 

*** Figure 3 *** 

 

DISCUSSION 

 

The aims of the study described in this paper were twofold. First, we wanted to identify the 

neural structures that subserve affective responding to emotional facial expressions, and verify 

whether these included the neural structures that have been consistently associated with empathic 

responding to pain and disgust and with responding to emotionally salient stimuli. Critically, we 

wanted to test whether responses in these regions were modulated by subjective affective 

responses to emotional facial expressions. Second, we wanted to test whether neural responses 

during affective responses to faces were associated with individual differences in psychopathic 

traits, which are known to reflect low empathy. Our findings indicate that, when participants 

rated their affective response to others’ faces (relative to low-level baseline), they robustly 

recruited the anterior insula, dACC and IFGOp, structures consistently reported to be involved in 

face processing as well as in empathic processing of pain and disgust (Fan et al., 2011; Lamm et 
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al., 2011); and also the amygdala, a region associated with responding to emotional saliency 

(Adolphs, 2010). Most importantly, responses in the amygdala and anterior insula (albeit in more 

posterior regions of the anterior insula and nearer to the central sulcus than the peaks reported in 

the above-mentioned meta-analyses) were modulated by trial-by-trial fluctuations in reported 

subjective affective responses to facial stimuli, in line with the predicted quadratic shape. 

Finally, responses to faces in these regions were also negatively associated with individual 

differences in psychopathic traits. 

 

While the precise roles that each of these structures play in response to others’ emotional cues 

remains under investigation, it has been proposed that they each play separate but 

complementary roles in empathic processing. While the amygdala is thought to be involved in 

detecting emotional saliency (Adolphs, 2010) of both positive and negative stimuli (e.g. Hamann 

et al., 2002), as well as in the experience of arousal triggered by emotional stimuli (Decety, 

2011), the anterior insula is proposed to be critical for sensory integration (Critchley et al., 2004) 

and interoceptive awareness of all subjective feelings (Craig 2009; Critchley and Harrison 2013). 

These regions therefore seem to play a crucial role in emotional awareness and understanding 

(Craig, 2009; Decety, 2011). Here, we demonstrated that these regions are recruited when 

participants rated their affective responses to others’ faces. We identified a quadratic pattern in 

anterior insula and amygdala, bilaterally, corresponding to subject-specific trial-by-trial 

fluctuations in subjective affective responses to facial expressions. That is, these regions 

responded to more intense subjective affective states elicited by the observation of emotional 

faces, providing further evidence that these regions participate in the generation of emotional 

internal states in response to others’ emotional cues. 
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Our findings also indicate that the dACC and the pars opercularis of the IFG are recruited when 

we respond affectively to others’ faces. The dACC, with extensive connections from the 

somatosensory cortices, and to and from the insula, amygdala and ventral striatum, is thought to 

be a hub region in affective, cognitive and motor control and, ultimately, to influence motor 

centers responsible for expressing affect and executing goal-directed behavior (Bernhardt and 

Singer, 2012; Shackman et al., 2011). The IFGOp, with functional projections to the motor 

cortex (e.g. Greenle et al., 2004), has been found to be involved in both observation and 

imitation of facial expressions (Carr et al., 2003; Leslie et al., 2004; Hennelotter et al., 2005), 

and is thought to be involved in motor simulation of others (Keysers and Gazzola, 2006). The 

IFG has been reported to form a critical part of the attention network (Corbetta & Schulman, 

2002), and its pars opercularis region has been linked to efficient action observation and 

imitation (e.g. Molnar-Szakacs et al., 2005), as well as motor (e.g. Aron and Poldrack, 2006), 

affective (e.g. Ochsner et al., 2004) and cognitive inhibitory control (e.g. Tabibnia et al. 2011). 

However, the nature of the current analysis does not allow us to infer the precise role these 

structures play in processing others’ facial cues. However, the nature of the current analysis does 

not allow us to infer the precise role these structures play in processing others’ facial cues.  

 

We were not able to disentangle possible distinct neural circuits involved in the affective 

response to different types of emotions in relation to neutral facial expressions, and only detected 

significant clusters of activation within the lingual gyrus, a visual cortex region thought to be 

engaged in early perceptual processing of facial stimuli (Adolphs 2002; Fusar-Poli et al., 2009) 

and in the pars orbitalis of the IFG, a frontal region though to be necessary for emotional 
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recognition (Hornak et al., 1996). Possibly, the limited number of trials per condition, and the 

repetition of stimuli within conditions (which may have resulted in some habituation), meant that 

our task was not optimally sensitive to obtain separate parameter estimates for each emotion 

condition. Another possible explanation for the lack of differential neural activation between 

emotional and neutral conditions in our task is that the differential processing demands between 

the emotional and neutral conditions may have been more subtle than we expected. That is, 

explicitly attempting to introspect on one’s own affective response to others’ emotional or 

neutral facial expressions possibly recruits a largely overlapping set of psychological processes, 

regardless of the actual valence of the face. Additionally, neutral faces can be perceived as 

ambiguous (e.g. Russell and Fehr, 1987; Somerville et al., 2004) and it is thus possible that some 

degree of affective resonance takes place even with these faces, particularly if a participant is 

actively encouraged to reflect on their affective response. Nonetheless, we believe these 

difficulties were substantially mitigated by the use of a more sensitive parametric modulation 

analysis, which do not require a contrast. The parametric modulation analyses allowed the 

detection of a pattern of response in both amygdala and anterior insula which varied as a function 

of affective response to others’ emotional expressions, as predicted. Future studies examining 

affective empathy for faces should include more trials per condition, without repeating stimuli, 

and should also employ stimuli that share visual properties with faces but that the participants are 

less likely to find salient, for example scrambled faces.  

 

Previous studies have shown that variability in self-reported affective responses to emotional 

faces is associated with individual differences in psychopathic traits (Seara-Cardoso et al., 2012, 

2013). The present findings provide insight into the neural circuits driving this association. We 
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found that responsivity to faces in regions previously associated with empathic responding was 

negatively associated with both dimensions of psychopathic traits. These findings are consistent 

with most of the prior work investigating empathy for pain in adults with high levels of 

psychopathy (Decety, Chen et al., 2013; Meffert et al., 2013) and children with high levels of 

callous-unemotional traits (thought to be a precursor of psychopathy) (Lockwood, Sebastian et 

al., 2013; Marsh et al., 2013). Our findings support the hypothesis that psychopathic traits are 

marked by impairments in responsivity to others, and that this is accompanied by diminished 

amygdala and anterior insula function in healthy individuals with higher levels of these traits.  

 

In summary, we demonstrate that the neural structures that are most consistently reported to be 

involved in empathy for pain and disgust (anterior insula, dACC and IFGOp) and in detecting 

emotional saliency (amygdala) are robustly recruited when participants rate affective responses 

elicited by others’ faces. Critically, we demonstrate that both anterior insula and amygdala 

respond more to more extreme elicited affective states (both positive and negative), providing 

further evidence for the involvement of these regions in affective resonance, in particular in the 

generation of internal affective states in response to others’ emotional cues. Furthermore, we 

found that neural responses in anterior insula and amygdala were associated with variation in 

psychopathic traits in the general population, which support previous theoretical and empirical 

work suggesting that atypical function of these regions might represent neural markers of 

disrupted emotional and empathic processing for individuals with high levels of these traits. 

 

Acknowledgments: We would like to thank Prof. Craig Neumann for his help and advice with 
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Tables with captions 

 

Table 1. Peak cluster activations in brain regions during response to facial expressions (relative to 

baseline) 

 Peak Cluster 

Brain regions L/R x y z t Z P (FWE) Extent (k)  

          

Inferior frontal gyrus, pars opercularis R 54 11 7 13.63 7.56 < 0.001 659  

Extending  to Anterior insula R 42 5 1 10.05 6.55    

Cerebellum L 24 -49 -32 12.52 7.29 < 0.001 3583  

Extending to Fusiform gyrus L 39 -58 -14 12.01 7.15    

Thalamus L -12 -22 10 12.28 7.22 < 0.001 268  

Parietal operculum L -45 -25 16 12.22 7.21 < 0.001 1302  

Extending to Anterior insula L -42 -1 1 11.59 7.03    

Dorsal anterior cingulate cortex R -3 14 34 11.66 7.05 < 0.001 235  

Dorsal anterior cingulate cortex R 6 14 40 11.34 6.96 < 0.001 205  

Supramarginal gyrus L 45 -40 40 8.38 5.93 < 0.001 140  

Middle frontal gyrus R 36 41 25 8.22 5.86 < 0.001 176  

 

Notes: Whole-brain analysis within grey matter mask, reported at a threshold level of P < 0.05 (FWE 

corrected). Spatial coordinates (x, y, z) are in Montreal Neurological Institute space. R = Right; L = Left. 
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FIGURE LEGENDS 

 

Figure 1. Empathy for emotional faces task 

A. Task timeline and examples of three trials (from fearful, neutral and happy conditions). 

Participants were presented with each trial over two screens consisting in the presentation of the 

stimuli for 2 s, followed by presentation of the sliding scale where they rated how the image 

made them feel (0-4 s); B. Scatter-plot depicting the association between overall affective ratings 

(excluding ratings of neutral faces trials; ratings of sad, fearful and angry faces trials are 

reversed) and levels of affective-interpersonal psychopathic traits. 

 

Figure 2. Quadratic parametric modulation of affective response to emotional facial 

expressions 

Results illustrate clusters of voxels in bilateral anterior insula and amygdala. Overlays are 

displayed at p < 0.005 (uncorrected); Plots illustrate the positive quadratic effect of affective 

response in anterior insula and amygdala, bilaterally. All regions show a quadratic response to 

ratings of affective state, with trials eliciting extremes of affective ratings generating greater 

activation than trials eliciting medium affective ratings. Data for illustrative plots were derived 

from a subsidiary model in which stimuli were divided into quartiles of intensity of affective 

ratings for each subject and contrasted against baseline. Contrast estimates were extracted from 

peak coordinates identified in the quadratic parametric modulation analysis (Error bars represent 

standard error of the mean). 

 

 



36 

 

Figure 3. Associations between neural response and psychopathic traits 

Regression plots depicting associations between contrast estimates of task elicited (relative to 

baseline) anterior insula (8 mm sphere centered at peak coordinates [45 5 1; -42 -1 1]) and 

amygdala (8 mm sphere centered at peak coordinates [24 2 -11]) response and levels of 

psychopathic traits. 
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