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ABSTRACT: Human impacts on Earth are now so great that they have led to the
concept of a new geological epoch defined by this global human influence: the
Anthropocene. While not universally accepted, the term is increasingly popular and
widely used. However, even among proponents, there is considerable debate regarding
when the epoch may have started, from coeval with the Holocene, through the
Industrial Revolution, to the mid-20th century when unprecedented human activities
resulted in exponential increases in population, resource consumption, and pollutant
emission. Recently, this latter period, known as the Great Acceleration, appears to be
becoming the more widely accepted start date. To define any start point, a global
stratigraphic marker or Global Boundary Stratotype Section and Point (GSSP) is
typically required. Here, spheroidal carbonaceous fly ash particles (SCPs), byproducts
of industrial fossil-fuel combustion, are proposed as a primary marker for a GSSP at the
time of the Great Acceleration. Data from over 75 lake sediment records show a global,
synchronous, and dramatic increase in particle accumulation starting in c. 1950 driven by the increased demand for electricity and
the introduction of fuel-oil combustion, in addition to coal, as a means to produce it. SCPs are morphologically distinct and solely
anthropogenic in origin, providing an unambiguous marker. This is a clear signal of great stratigraphic utility representing a
primary driving force for global anthropogenic change.

■ INTRODUCTION

Recognition that human activities are having far-reaching
impacts upon the Earth is not new,1 but the scale and extent
of that influence on biodiversity, biogeochemical cycles, and
climate2 is increasingly apparent. In 2000, it was proposed that
anthropogenic environmental change had become so dominant
that it justifies a new geological epoch, and the name
“Anthropocene” was proposed for it.3 Since then, although
not universally accepted,4 the term has become increasingly
widely used in both the scientific and broader literature.
However, there has been considerable controversy regarding
the point at which the Anthropocene may be considered to
have succeeded the current Holocene Epoch. Some arguments
effectively eliminate any distinction with the Holocene5 by
proposing the megafaunal extinction c. 12 500 BP6,7 and the
start of domestication as the onset point, while Ruddiman’s
“early-anthropogenic era”8 uses agriculturally-derived increases
in atmospheric methane and CO2 at 5000 and 8000 BP,
respectively. Others argue that the start of the Industrial
Revolution in the latter half of the 18th century, with the
expansion of fossil-fuel exploitation on an industrial scale and
the subsequent inflection in greenhouse gas concentrations
above the Holocene background values, marks the logical start
date.1 Still others suggest an even later date in the mid-20th
century marked by dramatic increases in human population,
unprecedented exploitation and consumption of natural

resources, and emissions of pollutants to the atmosphere and
surface waters.9

It is apparent that the earlier suggested dates are neither
global nor synchronous.9 Fuller et al.10 present archaeozoo-
logical data to show how the spread of livestock and
domestication across Africa, India, and southeast Asia each
cover c. 4000 years, while similar studies show, for example,
how rice cultivation spread over periods of millennia both
regionally11,12 and within a single country.13 Similarly, the
Industrial Revolution can no longer be regarded as the abrupt
discontinuity that its name suggests, having its origins in
economic expansion in Britain in the 16th century14 and with
subsequent industrialization spreading across the world over a
period of 200 years between the 18th and 20th centuries.15 In
contrast, the mid-20th century period, termed the “Great
Acceleration” or the “Atomic Age”,2,16 is marked by global and
synchronous rather than local or regional and time-trans-
gressive changes. For example, Steffen et al.1,17 demonstrate
how dramatic and unprecedented changes in human
population, damming of rivers, fertilizer consumption, vehicle
numbers, increases in atmospheric N2O and depletion of
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stratospheric ozone, exploitation of global fisheries, and
perturbation of the nitrogen cycle all started from c. 1950.
In 2009, the Anthropocene Working Group (AWG) of the

Subcommission on Quaternary Stratigraphy was established to
consider the evidence for environmental signatures that could
be uniquely attributed to a new epoch.15 The AWG is
responsible for producing a recommendation to be considered
by the International Commission on Stratigraphy in 2016,
including a requirement for defining its lower boundary.18

Therefore, the recognition of an unequivocal human-induced
stratigraphic marker19 that may underpin a Global Boundary
Stratotype Section and Point (GSSP) (or “golden spike”) or
alternatively a Global Standard Stratigraphic Age (GSSA), with
which to define the lower boundary of the new epoch, is
essential to this process and, hence, the definition of the
Anthropocene itself. Recent indications are that the Great
Acceleration currently has the most support within the
AWG,9,20 who are “working on a stratigraphical boundary for
the mid-20th century”.21 While not all mid-century markers
show the same precise temporal patterns,22 the beginning of the

atmospheric 14C peak23 or that of 239Pu and 240Pu24 resulting
from the fallout of nuclear weapons testing may be considered
as markers for a global stratigraphically synchronous boundary
for the mid-20th century. However, as described above, the
mid-1960s is a decade later than many of the observed
emissions and impacts that define the Great Acceleration1 and
almost two decades later than the proposed boundary level at
the time of the world’s first nuclear explosion at Almagordo,
NM, at 11:29:21 ± 2 s [UTC or Greenwich Mean Time
(GMT)] on July 16, 1945.9

Here, it is proposed that the fly ash particle record in natural
archives could provide a more suitable globally synchronous
indicator of anthropogenic impact for c. 1950. Fly-ash particles
are the particulate byproducts of high-temperature fossil-fuel
(coal-series; fuel-oil) combustion and are emitted to the
atmosphere along with flue gases. There are two main particle
types: inorganic ash spheres, which are derived from non-
combustible minerals present within the fuel, and spheroidal
carbonaceous particles (SCPs) (Figure 1), which result from
the incomplete combustion of the pulverized coal particles or

Figure 1. Scanning electron microscopy (SEM) and light microscopy photographs of SCPs extracted from lake sediments. The SEM image shows 20
μm scale bar, and the SCP in light microscope image is 18 μm in diameter.

Figure 2. Site location map. A Robinson projection with sites used in this study. Labels 1−71 are lakes with radiometrically dated sediment cores and
SCP accumulation rate data. (Inset) Enlarged map of European sites. Presented data for Europe, especially U.K. and Ireland, are not exhaustive but
representative of these regions. C1−C5 are sites, taken from the literature, for areas where less SCP accumulation rate data exist. Cores from these
lakes have radiometric dates and SCP sediment concentration data (see SI Figure 1 of the Supporting Information) but not SCP accumulation rate
data. All site names, latitudes, longitudes, and data sources are provided in the Supporting Information.
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Figure 3. SCP accumulation rate data (number of particles cm−2 year−1) for the 71 lake sediment cores (1−71 in Figure 1) plotted on a
radiometrically derived chronological y axis (years AD). The red line indicates 1950. Additional site information and data sources are provided in SI
Table 1 of the Supporting Information.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.5b00543
Environ. Sci. Technol. 2015, 49, 4155−4162

4157

http://dx.doi.org/10.1021/acs.est.5b00543


oil droplets themselves25 and are a component of the “black
carbon continuum”.26 They have no natural sources, and their
characteristic shape, color, and morphology (Figure 1) make
them unambiguous indicators of contamination from this
industrial source.25,27 Further, they preserve in a range of
accumulating media, including freshwater28,29 and marine30

sediments, peats,31 and ice.32 However, most data are available
from lake sediments because their continuous accumulation,
global spread, clarity of record, and comparative ease with
which reliable, highly resolved chronologies can be produced
make them ideal archives.

■ MATERIALS AND METHODS
Sites and Sampling. The data presented here represent an

amalgamation of over 20 years of research undertaken at the
Environmental Change Research Centre (ECRC), University
College London, and additionally through collaboration with
many institutions around the world. These studies have
included assessments of acidification and recovery, eutrophica-
tion, and the scale and extent of atmospherically deposited
contamination using the lake sediment archive as an historical
record. Because of the varying nature of these studies, there are
no specific selection criteria that cover all sites. Criteria for
inclusion in this current study include historical SCP flux data
and a reliable sediment record with reasonable radionuclide-
derived chronologies. However, within some regions, for
example, across the U.K.,33 a large number of sites fulfilling
these criteria were available and only a typical few have been
selected for inclusion. Consequently, SCP flux data from 71
lakes are presented, and while the majority of these are within
Europe (Figure 2 and SI Table 1 of the Supporting
Information), every continent is represented. Where data are
sparse, additional sites with only SCP concentration data (sites
C1−C5; Figure 2) and radiometric chronologies have also been
included (see the Discussion).
Sediment cores were taken using a variety of different

techniques appropriate to the requirements of these studies.
These included short gravity cores,34,35 mini-Mackereth cores,36

and modified Livingstone cores.37 Further, they have been sub-
sampled at a variety of different resolutions from 0.2 cm
intervals for remote, slowly accumulating upland and mountain
lakes to 1 cm intervals for rapidly accumulating lowland ponds
and pools. All sediment samples were air- or freeze-dried prior
to SCP analysis and radiometric dating.
SCP Analysis. SCP analysis involved sequential treatments

of nitric, hydrofluoric, and hydrochloric acids to remove
organic, siliceous, and carbonate fractions, respectively, from
the sediment, resulting in a suspension in water.38 A known
fraction of this suspension was then evaporated onto a coverslip
and mounted onto a glass slide, and the number of SCPs was
counted using a light microscope at 400 times magnification.
Standard criteria for SCP identification were followed.27 SCP
concentrations were calculated as the number of particles per
gram of dry mass of sediment (g−1 of DM), and SCP fluxes
were calculated as the product of the SCP concentration and
bulk dry sediment accumulation rate (number of particles per
centimeter squared per year; cm−2 year−1). SCP accumulation
rate data are used preferentially to SCP concentrations because
they take into account the effect that variations in the bulk
sediment accumulation rate may have on contaminant
concentration data (e.g., a dilution when sediment accumu-
lation increases). Analytical blanks and SCP reference materi-
al27 were included with all sample digestions. The detection

limit for the technique is typically less than 100 g−1 of DM, and
calculated concentrations generally have an accuracy of c. ±45
g−1 of DM.

Radiometric Dating of Sediment Cores. Dried sediment
samples were analyzed for 210Pb, 226Ra, 137Cs, and 241Am by
direct gamma assay using ORTEC HPGe GWL series well-type
coaxial low background intrinsic germanium detectors. 210Pb
was determined via its gamma emissions at 46.5 keV, and 226Ra
was determined by the 295 and 352 keV gamma rays emitted
by its daughter isotope 214Pb, following 3 weeks of storage in
sealed containers to allow for radioactive equilibration. 137Cs
and 241Am are artificial radionuclides measured by their
emissions at 662 and 59.5 keV, respectively.39 They were
introduced into the environment by atmospheric fallout from
nuclear weapons testing and by nuclear accidents. Sediment
records of these radionuclides generally begin in the 1950s and
peak in 1963, the year prior to the global atmospheric test ban
treaty. Absolute efficiencies of the detectors were determined
using calibrated sources and sediment samples of known
activity. Corrections were made for the effect of self-absorption
of low-energy gamma rays within the sample. There are two
principal methods for determining the initial 210Pb activity of a
sediment layer necessary for the calculation of its 210Pb date.
These are the CRS (constant rate of unsupported 210Pb supply)
model and the CIC (constant initial 210Pb concentration)
model.40 The CRS model is perhaps the most widely accepted
and is based on the hypothesis that the 210Pb supply to the
sediments is dominated by constant atmospheric fallout. This
model is not valid where there are interruptions or changes to
the 210Pb supply, for example, with a sediment hiatus. The
independently derived 1963 fallout date is used to help
constrain the 210Pb dates.40 Final chronologies for all cores
were derived using all of these available data. 210Pb has a half-
life of 22.26 years, allowing for reliable chronologies of 150−
170 years to be produced. Sediment core chronological errors
for most recent decades are typically ±2 years, with sediments
in the mid-20th century typically ±4−7 years and the mid-late
19th century typically ±18−25 years.

■ RESULTS AND DISCUSSION
The SCP flux data for the 71 individual lakes are presented on
chronological axes in Figure 3. Across Europe and North
America, the SCP record typically begins in the mid-19th
century.28,29 The observable start of the SCP record varies
depending upon regional developments in the industrial
combustion of coal-series fuels but also the accumulation rate
of the depositing archive. For example, a rapid accumulation
rate may dilute the concentration of SCPs (or any
contaminant) to a level below the analytical limit of detection,
thereby delaying the observable start of the record until such
time that deposited contamination increases to a level that
exceeds that detection limit. SCP concentrations and fluxes
typically increase gradually from the start of the record (Figure
3) until the mid-20th century, when there is a “rapid increase”
starting from c. 1950. This dramatic increase in SCP deposition
is concomitant with the many other indicators of the Great
Acceleration,1,2 including, of course, primary energy use,17 and
is linked with the post-World War II (WWII) increase in the
demand for electricity and the introduction of cheap fuel oil,
which led to the development of the first large-scale oil-fired
power plants.25 The duration of this rapid increase varies
between regions because the SCP concentration and flux peaks
are often followed by a decline in inputs (Figure 3). This is due
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to a number of reasons, including the introduction of particle-
arrestor technology to combustion sources, changes of fuel
source (e.g., from coal to natural gas), and the regional decline
of heavy industry. Therefore, while some features of SCP
profiles (e.g., start of the record; the sub-surface peak) vary
regionally,25,33 the “rapid increase” in the mid-20th century
appears to be a global signal.
The data presented in Figure 3 demonstrate this global

signature and show that it is recorded in the sediments of a
wide range of lake types from mountain lakes (e.g., sites 3, 12,
and 65) to shallow lowland lakes (sites 31, 33, and 40) and
coastal waterbodies (sites 58) and from small lakes a few
hectares in area (sites 13 and 27) to some of the largest
freshwater bodies in the world (sites 62, 66, and 68). The mid-
20th century rapid increase in SCP accumulation is clearly
observable in all locations. At some sites (e.g., sites 4, 15, and
51), this is recorded as an inflection in a gradually increasing
SCP accumulation rate profile, marking the transition from
lower levels of contamination to significantly enhanced
contaminant deposition. At others, most noticeably in less
contaminated areas (e.g., sites 13 and 14), regions of more

recent industrial development (e.g., sites 58 and 62), or lakes
with more rapid sediment accumulation rates (e.g., sites 38 and
67), this rapid increase can be observed as the start of the
record, where the increase in SCP deposition leads to
exceedance of the analytical detection limit for the first time.
In areas where SCP accumulation rate data are sparse,
additional concentration records from the literature have
been used to provide supporting evidence for these temporal
patterns. Locations are shown in Figure 2 (C1−C5) (details in
SI Table 2 of the Supporting Information), and the
concentration profiles are shown in SI Figure 1 of the
Supporting Information, again on the same chronological
axes. These SCP concentration profiles also show a clear and
rapid increase from c. 1950. However, while these data are not
as robust as SCP accumulation rate data for the reasons
described above, the mid-20th century increases in concen-
tration are so marked that significant and temporally
coincidental changes in bulk sediment accumulation rates
would be required for them to fail to agree with the observed
global picture.

Figure 4. SCP sediment profile data plotted for different regions. Data include 71 lake cores with SCP accumulation rate data and an additional 5
with SCP concentration data. All are normalized to the SCP accumulation or concentration peak (1.0) for that site, to take account of within and
between region variations in the scale of contamination. Open circles are data points for the individual cores, and solid lines represent mean data (5
year time step) for the region. Horizontal bars indicate 1950 ± 5 years, i.e., “mid-20th century”. See the Materials and Methods for radiometric
dating errors across the time period represented by these data.
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Figure 4 shows these lake data (all 76 sites) divided into six
geographical regions and normalized to peak SCP input
(maximum SCP accumulation rate or concentration = 1.0) to
take account of the variations in the scale of contamination
between and within regions. While there are only limited data
for the southern hemisphere and north Africa, the marked
increase in SCP contamination at c. 1950 is clear in every
region. Across Europe and North America, this is indicated by a
rapid increase in SCPs over and above a gradual but already
increasing level of contamination. In north Africa and Asia,
where industrial development occurred later, this is more often
observed as the start of the record. This geographical shift in
global black carbon emissions (i.e., from North America and
Europe to Asia) from the mid-late 20th century onward has
also been reported from modeling studies.41

Although the presented data are derived solely from lake
sediment records, atmospherically deposited contaminants also
accumulate in ice cores, peat sequences, and marine sediments.
However, SCP data in the literature for these other natural
archives are very sparse. While a number of papers consider
historical profiles of various components of the black carbon
continuum in ice cores,42,43 the various definitions of black
carbon cover more than just high-temperature fossil-fuel-
derived particulates, such as SCPs, and to my knowledge,
only a single ice core study to date specifically refers to SCP
accumulation rate data.32 This ice record only covers the period
1900−1995 but does show the rapid increase in SCP
accumulation rate in c. 1950. SCP data for marine sites are
restricted to coastal sediment concentrations. In all available
locations, marine sediment SCP temporal trends reflect
regional lake sediment profiles, indicating that SCP accumu-
lation rates would likely also record the increase in SCP input
in the mid-20th century. Similarly, SCP concentration profiles
from accumulating peats are also reported to reflect adjacent
lake sediment profiles, and the mid-20th century rapid increase
in U.K. peat sequences has been used to provide a
chronological control as a result.31

In proposing a stratigraphic marker for a new geological
epoch, it is of benefit to demonstrate long-term preservation.19

Because SCPs are only produced from high-temperature
industrial sources, they are first recorded in the mid-19th
century, and although they currently show no signs of
decomposition or deterioration, the earliest particles are only
a maximum of 170 years old. However, carbon-rich particles
with a “bubble texture” thought to have been formed by bolide
impact into organic-rich geology c. 65 Myr BP have been
observed at the Cretaceous−Paleogene (K−P) boundary.
These are thought to have been produced by low-temperature
(300−800 °C) expansion of volatiles but not ignition44 and,
therefore, effectively represent a pre-combustion SCP-type
particle. While easily distinguishable from fly ash, these
“precursor SCPs” look structurally similar and have also been
identified in Bronze Age peat sequences dated to c. AD 550.45

The source of these latter particles remains to be determined
but may be due to smelting processes. If SCPs preserve
similarly well (and there is no reason to suggest that they will
not), then they would easily meet the criterion for a long-term
stratigraphic marker.
SCPs provide a more robust indicator for the mid-20th

century Great Acceleration than many other potential
contaminant markers. They provide a less ambiguous signal
than trace metals, where changes to the weathering of natural
sources46 or local and regional activities can provide dramatic

changes to concentrations across a variety of time periods (e.g.,
Bronze Age47 and late 18th century48). As particulates formed
from black carbon, they are not susceptible to photochemical
and microbial degradation as are persistent organic pollu-
tants49,50 and other organic chemicals (e.g., pharmaceuti-
cals51,52) nor are they affected by selective dissolution, as can
be the case for magnetic minerals,53 which may also be derived
from a range of industrial and non-industrial sources.54 The
SCP rapid increase feature is the same and unidirectional across
a wide range of site types and archives, unlike the signals that
may be recorded by nitrogen isotopes, whereby upland systems
experiencing enhanced nitrogen inputs from atmospheric
sources show a decline in δ15N values,55 while those in lowland
areas receiving increased nitrogen from agricultural inputs often
show an increase in δ15N.56 Furthermore, unlike some
radionuclides, they have no half-life precluding them from
being long-term indicators (e.g., 137Cs half-life = 30.17 years),
while the extent and chronologies for other potential
anthropogenic markers, such as plastiglomerates (the combi-
nation of melted plastic and lavas57) and technofossils,58 remain
to be fully evaluated.
As a marker for industrial fossil-fuel combustion, SCPs

directly represent a globally distributed driving force of the
Great Acceleration. They therefore provide not only a highly
effective stratigraphic marker but are also a proxy for the rate
and scale of anthropogenic global change. In conclusion, while
further research is required to confirm temporal patterns in
some regions and in the marine environment, the increase in
SCP contamination shows an unambiguous, synchronous, and
global stratigraphic indicator for the mid-20th century across a
range of natural archives, making them a robust, near-ideal
marker for the Anthropocene.
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