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There is substantial evidence to indicate that route choice in urban areas is complex
cognitive process, conducted under uncertainty and formed on partial perspectives. Yet,
conventional route choice models continue make simplistic assumptions around the nat-
ure of human cognitive ability, memory and preference. In this paper, a novel framework
for route choice in urban areas is introduced, aiming to more accurately reflect the uncer-
tain, bounded nature of route choice decision making. Two main advances are introduced.
The first involves the definition of a hierarchical model of space representing the relation-
ship between urban features and human cognition, combining findings from both the
extensive previous literature on spatial cognition and a large route choice dataset. The sec-
ond advance involves the development of heuristic rules for route choice decisions, build-
ing upon the hierarchical model of urban space. The heuristics describe the process by
which quick, ‘good enough’ decisions are made when individuals are faced with uncer-
tainty. This element of the model is once more constructed and parameterised according
to findings from prior research and the trends identified within a large routing dataset.
The paper outlines the implementation of the framework within a real-world context, vali-
dating the results against observed behaviours. Conclusions are offered as to the extension
and improvement of this approach, outlining its potential as an alternative to other route
choice modelling frameworks.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over recent years there has been a growing recognition of the fundamental limitations of traditional route choice
modelling. The increasing availability of fine-grained route choice analyses (Nakayama et al., 2001; Papinski et al., 2009),
combined with improved analytical capabilities afforded by enhanced computational power, have prompted a reconsidera-
tion of the conventions ascribed within Wardrop’s Equilibrium (Wardrop, 1952). Wardrop’s behavioural assumptions of pure
rationality, homogeneity and unlimited knowledge and foresight, inherent within many route choice models, have been
questioned by numerous authors (Garling, 1998; Avineri, 2012).

In response, a number of new models have emerged that aim to tackle existing limitations. One strong focus has rested
upon the bounded nature of route choice decision making. Bounded rationality has been an important research stream in
behavioural economics for some time (Simon, 1957; Sen, 1977), yet the methodologies developed within this field have only
recently filtered into route choice modelling. By far the greatest application of behavioural economics within transportation
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behaviour has involved the incorporation of Prospect Theory and Cumulative Prospect Theory (Avineri and Bovy, 2008; Gao
et al., 2010; Ben-Elia and Shiftan, 2010; Xu et al., 2011), building on the research of psychologists Daniel Kahneman and
Amos Tversky (Kahneman and Tversky, 1979). The Prospect Theory model aims to reflect the non-linear relationship
between risk – such as the risk of delay involved in choosing a route – and choice by augmenting the utility of potential alter-
natives. While these models have bought an enhanced sophistication to the modelling of travel behaviour, an extension into
the wider potential offered by behavioural economics has yet to emerge (Avineri, 2012).

An alternative approach to modelling bounded decisions, not previously incorporated within route choice modelling, has
been offered in the form of heuristic decision-making, a theory put forward by Gerd Gigerenzer and Daniel Goldstein
(Gigerenzer and Goldstein, 1996). This theory states that when individuals are required to make decisions under uncertainty,
they use simple rules and inferences to determine the relative value of each alternative. The heuristic approach is presented
as an alternative to other econometric models of decision-making (including Prospect Theory). As Gigerenzer states: ‘Logic
and probability are mathematically beautiful and elegant systems. But they do not always describe how actual people
. . .solve problems’ (Gigerenzer, 2008).

Central to the heuristic decision-making framework is the concept that the human cognition contains a ‘toolbox’ of rule-
sets that enable the completion of both simple and complex tasks in a quick and efficient manner (Gigerenzer, 2004). These
rulesets, known as heuristics, impose low cognitive computational load and require minimal volumes of information in order
to reach a decision (Gigerenzer and Todd, 1999). The heuristics reflect how individuals use cognitive shortcuts to reach intui-
tively correct decisions.

A number of heuristic frameworks have been outlined and validated (Snook and Cullen, 2006; Pohl, 2006; Goldstein and
Gigerenzer, 2002; Brandstatter et al., 2006), each modelling decision making processes through simple rule-based structures.
The most widely applied, the Take-The-Best (TTB) heuristic, deals in differentiating between multifaceted alternatives, bas-
ing judgement on ranked cues, where each cue describes a separate attribute of each alternative. In traversing the set of cues
in order, judging between two alternatives, a selection is made at the point of the first significant deviation between the cue
values, stopping the decision process and selecting the alternative with the higher cue value. This process is known as ‘one
reason’ decision making, replicates how individuals use cues as indicators of broader utility, when faced with scarce infor-
mation. This simple inferencing process has been demonstrated to work effectively across a range of scenarios, including
investment decisions (Bröder, 2000), court judgements (Dhami, 2004), political election strategies (Graefe and Armstrong,
2012) and medical decisions (Dhami and Harries, 2001). The TTB heuristic has also been demonstrated to match or outper-
form multiple regression (Czerlinski et al., 1999) and machine learning algorithms (Brighton et al., 2006).

While heuristic decision-making represents an alternative method for choice modelling, research into spatial cognition
offers an alternative approach for describing how individuals make choices in urban space. Many conventional route choice
models typically represent urban space through the road network and its attributes alone. However, research from neu-
roscience, cognitive science and behavioural geography indicates that the relationship between individuals and space is
much more complex. Instead it has been shown that urban space is mentally encoded and recalled by individuals within
a hierarchical structure (Montello, 1998; Tversky, 1993; Golledge et al., 1985; Hirtle and Jonides, 1985), where certain salient
features are more strongly recalled by individuals, and so feature centrally within the route choice decision process. In a
highly influential work, urban planner Kevin Lynch identified five types of urban feature – paths, nodes, districts, edges
and landmarks – as forming the basis of spatial knowledge (Lynch, 1960). The process of the brain recording space as a series
of point (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978) and region-based (Hafting et al., 2005; Solstad et al., 2008)
objects has been furthermore observed in neurological studies, while others have outlined the process by which the brain
uses these features during navigation (Wiener and Mallot, 2003; Wiener et al., 2004). A more recent study, using large-scale
GPS routing data, has identified non-linear attraction to particular locations on the road network during navigation, resulting
in widespread deviation from more optimal alternative routes (Manley et al., 2015). Despite the evidence supporting the
importance of the spatial hierarchy in navigation decision-making, application of this model has not been widely applied
within transportation studies. While a few route choice models have incorporated landmarks and anchor points as a
potential influence on navigation (Prato et al., 2012; Kaplan and Prato, 2012; Arentze et al. 2014; Chown et al., 1995), the
modelling of route choice within a complete hierarchical representation of space has not yet been undertaken.

This paper draws together research into heuristic decision making and the cognition of space in introducing a novel
approach to modelling route choice decision making. The route choice framework encodes choices as sets of simple heuris-
tics, based on a hierarchical spatial structure corresponding with the construction of cognitive spatial knowledge. The heuris-
tic modelling approach represents an alternative methodology to the utility maximising paradigm currently dominant in
route choice modelling. The use of a hierarchical representation of space recognises that navigation decisions in urban areas
may be based on an array of spatial features, rather than purely road connectivity and route conditions. While this paper will
introduce one configuration and implementation of this new framework for route choice modelling, it is hoped that the
framework will serve as an alternative methodology for future route choice modelling, within wider urban transportation
modelling stacks where individual-level behaviours are represented (e.g. activity-based, agent-based models).

To achieve these objectives, this paper integrates previous findings within the literature with observations drawn from a
large dataset of route traces, leading to the development of a new route choice modelling framework. The paper presents the
implementation of the model within a real-world environment. The paper is structured as follows. The next section describes
the route dataset that will support the development of the model framework. The following third section outlines the devel-
opment of the hierarchical model of urban space across which route choices will be made. The model is based on the
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principles of spatial cognition and memory established within the literature. The fourth section details the development of
route choice heuristics, describing the decision process by which a route is chosen through urban space. A description of the
implementation and validation of the complete modelling approach for London, United Kingdom is presented in Section 5.
The final section concludes in discussing the main advances presented by this approach in addition to the potential for
improvement and elaboration.
2. Route dataset

The development of the model is supported by a large dataset of minicab route choices. This dataset contains the routes of
690,045 journeys undertaken by 2970 Addison Lee minicab drivers within London, United Kingdom, between December
2010 and February 2011. The routes are constructed from GPS point data, and aligned with job records, providing complete
origin–destination routes.

It should be noted that the Addison Lee drivers are not expected to have held professional driving positions in London
previously, nor are they required to have passed ‘The Knowledge’ test, required of Black Cab drivers in London. While
Addison Lee do provide their new drivers with some training, it is expected that there is considerable variance in the knowl-
edge of London amongst the drivers. This has been confirmed through analyses carried out during earlier research, where
drivers were found to not follow optimal paths and the widespread use of satellite navigation routing was ruled out
(Manley et al., 2015).

The dataset is split into calibration and validation partitions according to a 80:20 percentage split of the randomly sorted
routes. This divides the dataset into 552,036 routes for the construction and calibration of the models, reserving the remain-
ing 138,009 routes for the final validation stage.
3. Modelling hierarchical urban space

As described earlier, cognition and memory of space is influenced by an array of spatial features, used distinctly during
the course of route choice. One widespread interpretation within the literature is that urban space is mentally encoded
within a hierarchy, where less prominent objects are recalled within the context of more salient features. In defining urban
space for heuristic decision-making, a spatial hierarchy is developed, with each level of the hierarchy taking on a different
role during route choice.

Spatial hierarchies have been shown to exist at a number of scales. Stevens and Coupe identified a hierarchy of cities
(Stevens and Coupe, 1978), while Hirtle and Jonides presented a hierarchical organisation of landmarks (Hirtle and
Jonides, 1985). Other models incorporate different types of urban feature – Golledge presented a hierarchical model that
linked landmarks to paths to within areas (Golledge, 1978); Montello outlined a model of spatial memory that moved from
landmarks to routes and then to survey (or layout) knowledge (Montello, 1998); Tomko and Winter present a framework
structured around Lynch’s urban elements (Tomko and Winter, 2013; Lynch, 1960); while Richter and colleagues introduce
a hierarchical network approach for modelling indoor spaces (Richter et al., 2011).

Like those proposed by Golledge and Montello, the model developed for this work represents the movement from coarse
to granular spatial knowledge. In this case, however, the model aims to reflect how spatial objects are generalised and
recalled for the purposes of spatial decisions. As such, the urban environment is broken down into regions, nodes, and
roads,where each feature type is encapsulated within the former as part of a hierarchy. A conceptual representation of
the arrangement of these layers is shown in Fig. 1.

The implication of this schema is that each level of the hierarchy is involved in a different type of route choice decision.
This model replicates the cognitive of spatial features during route finding described elsewhere (Wiener and Mallot, 2003;
Wiener et al., 2004). Regions are positioned at the top of the hierarchy, used for the formation of a coarse route plan that only
broadly directs subsequent route choices. Nodes fall below regions, referring to decision points on the road network, used in
the construction of more specific paths made within the constraints of the previously defined regional route plan. While
roads, in being at the base of the hierarchy, and following the previous decisions make at regional and nodal level, are
involved only in the execution of the route between nodes.

The remainder of this section will outline the implementation of this hierarchical representation of space. Each level of
the hierarchy is built from the spatial representation below it, as such, the models are presented here in reverse order, begin-
ning with the road segments, ending with the region definitions. The model has been implemented in London, United
Kingdom.

3.1. Roads

Roads sit at the base of the spatial hierarchy. They are involved in the execution of route plans defined at higher levels of
the hierarchy, based on regionalised interpretations of the urban area. As such only a simple road network dataset is
required. In the case of London, the Ordnance Survey Integration Transport Network (ITN) dataset, a GIS dataset covering
all road segments within the United Kingdom, is used. All directional, turn and speed regulations are included within the
road network model.



Fig. 1. Conceptual representation of hierarchical model of space, indicating the connections between each hierarchy of the spatial representation.
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3.2. Nodes

Nodes represent locations in urban space that prompt a route choice decision, points where a number of alternative
choices are available to the decision-maker. The locations chosen to represent these points are road junctions (or intersec-
tions), linking with the road network and enclosed within a regional model above it. At these locations, individuals are
unable to proceed as they may have been previously, and are faced with an intermediate choice about their overall route
plan. At this point they make a choice to move to another node, based on the region-based route plan, and this choice is exe-
cuted on the road network.

The use of road junctions as an indicator of a decision point is well supported in the literature. Lynch noted that junctions
as have ‘compelling importance for the city observer’, being places where ‘decisions must be made’, and where ‘people
heighten their attention’ (Lynch, 1960). Passini (Passini, 1984) reported how individuals use particular locations during route
planning, associating salient features with actions (e.g. turn left). The notion that point-like features are highly important in
spatial memory and navigation has been widely recognised, both through neuroscience and behavioural studies (O’Keefe and
Dostrovsky, 1971; Siegel and White, 1975; Couclelis et al., 1987; Tversky, 1993; Winter et al., 2008). While these features
refer to any point-like location, including salient buildings and landmarks, the process of driving ensures greater engagement
with road junctions, rather than buildings.

The construction of nodes builds on the intersections formed in road network. However, clearly not all junctions are
important navigation points, nor are all junctions recalled in the same way. As such, junctions will be ranked according
to their importance. Many road network datasets incorporate a categorisation system providing a hierarchical indication
of a road’s importance. In defining nodes, the classifications of two intersecting roads is used to rank the importance of a
particular junction. In the case of the Ordnance Survey ITN datasets, the classification includes six road classes. Taking these
classes, and removing the most minor classifications – Local Streets and Alleys – a four-point node ranking is constructed as
follows:
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1. Junctions between only Motorways and A-Roads.
2. Junctions linking B-Roads to Motorways or A-Roads.
3. Junctions between B-Roads.
4. Junctions between Minor Roads and Motorways, A-Roads or B-Roads.

With the nodes defined, a directed network is constructed based on the recorded flow between each pair of junctions. By
extracting the number of routes passing between each pair of junctions, the weighted network encodes the connectivity of
junctions, reflecting the likelihood of an individual travelling to any connecting node based on their current location. To pre-
serve the node hierarchy, separate weighted networks are constructed for each level of the node hierarchy – at level 1, only
Motorway and A-Road junctions are included, whereas at level 4, all junctions (beyond Local Streets and Alleys) are incor-
porated. Each network is constructed using the calibration dataset.

It should be noted that the creation of a hierarchy is not a strict condition of this methodology. While the volume of junc-
tions considered during this stage of route choice will be considerably lower than that of the number of road segments, a
threshold may be used in place of a hierarchy (e.g. using only junctions associated with Motorways and A-Roads). As will
be shown later, however, the hierarchy enables the modeller to reflect variation in a decision-makers awareness of a node,
reflecting a transition from detailed (all nodes used) to coarse (only higher level nodes used) knowledge of space.

3.3. Regions

Regions represent the least granular representation of the urban environment. Through a regional definition, individuals
generalise about an entire area of the city, easing the requirements upon cognition during decision-making. Using the region
definitions, a route plan is constructed which informs which nodes will be selected. Regional boundaries are formed again
using lower spatial representations, in this case node definitions. Regions represent clusters of nodes, where nodes share a
particular characteristic causing them to be considered part of a structurally homogenous entity.

There have been few attempts made to quantify how neighbourhoods are perceived and recalled by city residents. While
many conventional boundary definitions exist, these usually relate to administrative or electoral boundaries, and tend not to
reflect how individuals perceive regions. Instead individuals, as Lynch argues, identify regions through shared ‘texture, space,
form, detail, symbol, building type, use, activity, inhabitants, degree of maintenance, topography’ (Lynch, 1960). Where
regionalisation in urban space has been studied, participants have engaged with controlled, virtual environments (Wiener
and Mallot, 2003, 2006; Kuipers et al., 2003; O’Sullivan, 2009), without a direct relationship with real-world spatial features.

3.3.1. Region definition: method
In view of the absence of an established methodology, regions are constructed for London from the observed behaviours

of the minicab drivers. For this purpose, the node network outlined in SubSection 3.2 is used. This weighted network is seg-
mented using community detection methods, breaking the network into regions that are internally strongly interconnected,
while less well connected with external nodes. Strongly interconnected regions reflect common usage – if one node is used,
it is more likely that another within the same region will be used subsequently – and thus is indicative of a perceived
homogeneity. In this sense, regions do not follow those definitions suggested by Lynch, but instead follow the functional nat-
ure of route choice.

The community detection algorithm used to identify regions within the weighted network was the Louvain Method
(Blondel et al., 2008). The Louvain Method approach builds communities through the agglomeration of nodes into groups.
As nodes are added to a group, their impact on a modularity metric is calculated. Modularity (known as Q) is measured
as the degree of connectivity within a region in relation to random network arrangement, with a higher values indicative
of tightly-grouped regions. The method will continue to change the configuration of communities until no further improve-
ments can be made to the modularity score.

Aside from optimising for modularity, the construction of communities using this approach is influenced by two addi-
tional factors. First, the method incorporates stochasticity – and so variation in regional definitions – that must be accounted
for during region production. Second, it incorporates a resolution parameter (R) that influences community size. This
parameter is incorporated within the measurement of modularity, influencing the strength of attraction between nodes
within groups. Where values set to below 1, a stronger inter-community modularity is required than necessary through
the standard modularity function, resulting in smaller, more tightly-clustered groups.

3.3.2. Region definition: results
In view of the influence of stochasticity and the potential role of varied resolution, the production of regional definitions is

carried out over a number of trials. Resolution settings were furthermore tested five times each to test for variance in cluster
size and specification.

As the results of the trials shown in Table 1 demonstrates, little variation in modularity score was found both between
trials and as the resolution parameter is adjusted. The indication is that, no matter what resolution parameter is selected,
a reasonable distinction of regions can be made by the algorithm. However, greater insight is found in visually inspecting
the generated regions, allowing an assessment of their alignment with known regional definitions and the identification
of variation in boundary definitions between trials.



Table 1
Resolution parameter evaluation.

R Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Q Clusters Q Clusters Q Clusters Q Clusters Q Clusters

1 0.785 80 0.788 77 0.786 77 0.785 79 0.786 79
0.8 0.787 81 0.781 80 0.786 80 0.779 81 0.789 81
0.6 0.783 85 0.778 86 0.778 86 0.789 82 0.779 84
0.4 0.768 94 0.766 93 0.77 92 0.765 91 0.767 92
0.2 0.732 113 0.733 112 0.733 110 0.735 109 0.736 110
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Through visual inspection it is found that very little variation in region definition is found between trials, despite the
stochasticity inherent to the Louvain Method. As such, any ‘averaging’ of regional definitions across multiple trials was con-
sidered unnecessary. On inspecting the regions generated at each resolution, there are indications that the best results are
achieved with a resolution setting of 0.2. At this level,1 as is shown in Fig. 2, some well-known areas of Central London are
extracted, including the City of London, Soho, Camden and Knightsbridge. Regions are also defined along with some of the
important routes in and around Central London. Interestingly, in many cases, major roads are divided into multiple regions, sug-
gesting that these roads are used in sections rather than in their entirety.

The resulting regional definitions describe which nodes are used together and, as such, may reflect the way in which drivers
recall regions during vehicular navigation. Using these definitions, each node is assigned to a region. Regions are then linked
where node-to-node connections between regions exist. These points will be referred to as gateways, and reflect the locations
at which an individual choose to move between one region and another (indicated in Fig. 1 as the links between regions).
4. Heuristic modelling of route choice

The structure of the heuristic route choice model aligns with the model of space defined above. In travelling between ori-
gin and destination, the decision-maker moves from a coarse to a finely-grained route plan. In the first level of the hierarchy,
individuals make region-based choices, forming their rough plan within which subsequent finer-grained choices are con-
strained. In the second tier, individuals refine their route based on the nodes within the previously chosen regions. In the
lowest level, individuals select the roads that link together the chosen nodes, arriving at the final chosen route.

An example of this process is outlined in Fig. 3, showing how an individual’s choice of regions (defined by origin and
destination points) limits the subsequent selection of nodes, which in turn limits the selection of road segments. Fig. 3 high-
lights the choice rulesets involved at each level of the hierarchy, more detail on each will be provided within this section.

This section will describe the specification and calibration of each the three choice models. At each level, heuristic choice
models are utilised, reflecting how quick, ‘good enough’ decisions are taken under uncertainty (Gigerenzer, 2008). Following
the definition of these models, a final subsection will describe how behavioural heterogeneity is introduced through estima-
tion error and bounded spatial knowledge.

4.1. Region-based choice

The selection of regions towards a destination represents the most strategic level of the route planning model. At this
level, an approximate path is specified, made up of regions within which more specific elements of the route will be selected.
A set of heuristics are developed to represent this process of selecting a region-based route to a destination.

The region selection process is conducted in a step-by-step fashion, moving from region-to-region until the destination is
found. This selection process consists of two stages – first, an identification of regions adjacent to the current region that
satisfy one set of heuristics, based on an Elimination By Aspects heuristic; then following that, identification of the most
favourable region from the subset of accepted alternatives, based on a Take-The-Best heuristic.

4.1.1. Stage 1 – Region Elimination By Aspects
The first stage in the decision-making process prunes the number of alternative regions to only those satisfying distinct

criteria. This heuristic follows the Elimination by Aspects (EBA) theory of decision making, which states that alternatives will
be ignored if they do not fit within specific definitions of acceptability (Tversky, 1972).

This decision process is based on gateways, pairs of nodes linking one region to a potential next region. The characteristics
of these gateways provide the attributes on which a quick, initial judgement is made as to the suitability of a potential next
region. Should a gateway be deemed attractive according to the heuristics in place, the entire region will be considered
within a second, more comprehensive assessment.

The EBA ruleset eliminates all potential gateways that do not result in the decision-maker being closer to their destina-
tion. These rules specify the maximum distance and angular deviation away from the final destination that would be deemed
1 For completeness, lower resolutions (R = 0.1, 0.05) were checked too, but found to reduce modularity score significantly, leading to high fracturing of
central areas.



Fig. 2. Region definitions in Central London (R = 0.2), where each region is distinguished by a different colour. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Hypothetical example of the heuristic route choice process executed across the hierarchical representation of space, indicating how higher level
decisions influence subsequent choices at lower levels of the spatial hierarchy. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

E.J. Manley et al. / Transportation Research Part C 56 (2015) 195–209 201



202 E.J. Manley et al. / Transportation Research Part C 56 (2015) 195–209
acceptable to the decision-maker. The rules defined here are non-compensatory, with each rule assessed independently with
no trading off between attributes. These rules state that gateways will only be deemed attractive if they fulfill all of the
stated criteria, failing to do so will mean the gateway is eliminated and not considered during the second stage of
decision-making.

For a gateway to be deemed acceptable, the following criteria must be met. These rules are executed at the entry to each
selected region (i.e. the end of the previously selected gateway), relative to the location of the destination. Regions may be
considered for each potential gateway.

1. Deviation from target rule: (current location, potential gateway exit node) < (90� + angle (current location, destina-
tion)) AND angle (current location, potential gateway exit node) > (angle (current location, destination) – 90�).

2. Distance rule: distance (potential gateway exit node, destination) < distance (current location, destination).
3. Gateway direction rule: angle (potential gateway entry node, potential gateway exit node) < (90� + angle (current

location, destination)) AND angle (potential gateway entry node, potential gateway exit node) > (angle (current loca-
tion, destination) – 90�).

The satisfaction of each rule results in its inclusion in the set of alternatives considered in the second stage of decision-
making.

4.1.2. Stage 2 - Take-The-Best Region
The second stage of decision-making aims to identify a single stand out candidate region from those preselected by the

EBA heuristic. This process follows the Take-The-Best (TTB) heuristic, whereby the attributes of an array of alternatives are
compared until the first significant distinction is identified (Gigerenzer, 2008; Bröder, 2000).

The TTB heuristic operates according to a very simple iterative process of comparisons of alternatives through single attri-
butes, known as cues. The comparison of cues is carried out in order of a predefined importance of each attribute. The TTB
process proceeds by running through the list of attributes, where a distinction is identified between two alternatives, the one
scoring more favourably is carried forward and the other rejected from further consideration. Where no distinction is found
between two or more nodes via the first cue, a second comparison is made using the next cue in the list. The process
continues while no distinction is found through all specified attributes. Should there remain no distinction between two
alternatives following a comparison between all attributes then an alternative is chosen at random.

The specification of the TTB model involves two stages – the specification of the cues on which decisions are made, and
the order in which they will be compared. This specification of the TTB heuristic is described below. Following these descrip-
tions, the process by which they are involved in region-based selection will be outlined.

4.1.2.1. Cue specification. The cues specified for the TTB model must reflect those preferences that individuals consider impor-
tant and meaningful at a regional level. This refers to strategic elements of preference, that may be difficult to monitor at a
more granular spatial resolution. The cues chosen for inclusion within this model, outlined in Table 2, incorporate factors
relating to the minimisation of delay, distance travelled, and intra-regional deviation.

The cue values for each region are calculated along the least angular node path from the current location through the cur-
rent region to the potential gateway. For each node-to-node pair the five metrics are calculated, with the sum providing the
cue value for each region.

4.1.2.2. Cue ordering. The cue order is established by observing the choices undertaken during the trips within the calibration
dataset. In order to calculate cue values at each level of the node hierarchy (see Section 3.2), the calibration dataset was split
four ways, assigning 138,009 trips to each level in the hierarchy. The cue ordering observed across each trip within the cali-
bration dataset is undertaken according to the following process:

1. Identify the order of regions traversed en route to the destination.
2. Iterating through each region, identify a range of potential next regions according to the Stage 1 decision process

detailed above. Limit number of regions under consideration to two, but allowing multiple gateways into region.
3. Construct a node-to-node path to each potential next region based on a principle of minimising the angular deviation

from the target gateway. For each path extract the full range of attributes according to the methodology above.
4. Rank all regions according to their utility with respect to each assessed attribute.
5. Check rankings to see whether the observed selected region is ranked highest according to any of the attributes, and

where it is, the instance is recorded. A region can be ranked first according to more than one attribute, in all instances
these are counted.

Through an assessment of all regional selections, a ranking is derived as to the most popular reasons for the selection of a
region. The results from this process are shown in Table 3. These results indicate that individuals view the minimisation of
angular deviation within the region as the strongest cue for a favourable region selection. The minimal distance to target cue
is shown to be chosen with the lowest frequency, indicating that decisions are more likely made at the regional level, rather
than in sole reference to the location of the target. This order of cues is applied during the execution of the TTB process.



Table 2
Implementation of cues used in selecting between regions within TTB model.

Cue Method of implementation

Least total deviation from
gateway

For each node-to-node traversal the angular deviation between the target node and region gateway is calculated. These
deviations are summed for the complete route to provide this cue value

Least total distance Given the absence of certainty with respect to the exact travelled distance between nodes – with a naturally wide
variation of routes available between pairs of nodes – inter-nodal distances are calculated as the Euclidean distance
between nodes. Inter-nodal distances are summed for the region path to yield the cue value

Least historic travel time Calculated using travel times observed within the calibration dataset. For each observed node-to-node traversal the
travel time is extracted. Travel times between all nodes are summed and the mean calculated for all trips. Mean values
are summed for the entire region path to provide the cue value

Fastest historic mean
speed

Calculated for the complete region path as the mean travel time over the total Euclidean distance between node-to-
node pairs

Least distance from target Calculated as the Euclidean distance between the gateway exit node and the destination target location

Table 3
Cue order derived from region selections during 552,020 journeys.

Rank Cue Observed selections

1 Least total deviation from gateway 259,470
2 Least total distance 212,101
3 Least time 203,944
4 Fastest mean speed 141,843
5 Least distance from target 103,194
6 Random –
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4.1.2.3. Selection process. With the ordering of cues defined, the selection of the next region proceeds according to the TTB
methodology. Alternative regions are compared using each cue in order, until only one alternative remains. These alterna-
tives include only those regions that have passed through the initial EBA selection phase. The process is similar to that
adopted during the cue ordering – potential next regions are first preselected, and then ranked according to each cue –
the difference lies in step 5, where differentiating between alternatives. At this stage, instead one option that is clearly better
than the alternatives is sought.

This assessment is initially made using the top ranked cue – Least Total Deviation from Gateway – and if a clear difference
is not found between two or more alternatives, the next ranked cue is used to differentiate between those remaining alter-
natives. A clear difference is determined according to whether a considered alternative represents a specified percentage
improvement on the current best alternative. For this attribute, three specifications will be tested during the validation
phase, with 10%, 20% and 30% improvement thresholds chosen for consideration. An improvement is classed as a reduction
where travel time, angular deviation and distance are concerned, or an increase in the case of the speed cue. For example, if
one alternative holds an expected travel time of 200 s, and another of 178 s, the second option would be narrowly accepted
as it falls outside of the 10% threshold of the alternative (e.g. 180 s).

The assessment passes through until only one alternative remains. If this is not achievable using the five separate cues
then an alternative is selected at random from those that remain. The region selection process then restarts, taking that last
selected as the first region in the next iteration. This process continues until the destination region is found.

4.2. Node-based choice

The choice of nodes represents an increase in the granularity of the route plan, as initially laid out through the choice of
regions. This stage represents a less strategic and less cognitively intensive choice process than the selection of regions, con-
cerned only with the traversal of small, preselected regions rather than navigation across an entire city. As such, the ruleset
by which the node-based route is constructed is somewhat simpler.

The objective of this stage is to select a string of nodes that take the driver from the entrance to a region – the origin gate-
way – to the exit of that region – the target gateway. In view of the fine spatial scale at which these choices are made, it is
assumed that the individual will be well placed to make near optimal choices. As such, the optimal node route is chosen that
minimises angular deviation from the target gateway. The usage of this metric aligns with findings elsewhere within the
literature that individuals aim to minimise angular deviation from their target during route choice (Dalton, 2003; Turner,
2009). Once a node route has been specified between region gateways, a route is constructed for the subsequent regions
to the point at which the destination node is reached.

4.3. Road-based choice

The final stage of the route choice process involves the selection of roads. Within this model, the selection of roads is
considered the least cognitively intensive process, heavily influenced by the more strategic choices made during node
and region selection. Considering the fine spatial scale involved in this stage – be it navigating between subsequent nearby



204 E.J. Manley et al. / Transportation Research Part C 56 (2015) 195–209
nodes – there are unlikely to be many alternative routes available to an individual at this stage. As such, it was decided that
roads would be selected according to a simple minimal distance measure. Road-based routes are constructed between each
preselected node, and to the journey origin and destination points. This stage finalises the generation of the complete route.

4.4. Behavioural heterogeneity

The model described thus far is deterministic, not accounting for any potential variation in individual behaviour.
Behavioural heterogeneity in this model is generated by introducing two additional factors into the modelling framework
– one, referring to an individual’s ability to reason accurately over space, and second, bounding the extent of a decision-
maker’s spatial knowledge.

4.4.1. Estimation error
Within the model, decisions are made in relation to unseen objects, and thus naturally based on subjective interpretation.

It has been widely noted that the estimation of the attributes of unseen alternatives is prone to error (Golledge et al., 2001).
Thus in prescribing a deterministic representation of behaviour, one must reconsider the role of error in estimation across a
population of decision-makers.

Estimation, in the case of this route choice framework, is incorporated in the estimation of angular deviation, distance,
speed and travel time between locations. Previous literature provides some context on which bounds in error estimation
can be established.

Numerous studies have been previously carried out into individual ability to estimate the direction of unseen locations.
Such studies usually explore these errors by asking individuals to point towards unseen locations, within a small-scale
learned environment. In one such study, Barber and Lederman identified an unsigned mean error estimation in sighted
individuals of 18.8� with a 12.5� standard deviation (Barber and Lederman, 1988). Klatzky furthermore demonstrated
how errors increase with the size of the angle, producing the results shown in Table 4 (Klatzky et al., 1990).

In view of the richness of the dataset available, the Klatzky definitions are implemented. These errors are implemented
within the calculation of nodal path angularity within a region, adding error specifically into the calculation of the angular
deviation between two nodes. Errors are drawn from a normal distribution, where the mean is extracted from the error
estimations in Table 4 according to the angular bound within which the angle lies (e.g. all angles below 60� are designated
a mean error of 11�, below 90� drawn with 12� mean error). The standard deviation of the distribution is specified as r=2 (in
view of this data being unavailable). The error value is drawn from the distribution then signed either positive or negative
(according to a random uniform draw), and added to the actual angle specification. The value is utilised as any other calcula-
tion of angular deviation would be, within the region selection process.

Estimates for error within the remaining attributes are less forthcoming within existing literature, with little research
conducted into these processes, and nothing identified that is set within the urban context. As such, it was decided that a
Normal distribution would be utilised to represent errors in estimation for each of the remaining attributes. Normal dis-
tributions have been noted to widely correspond to a range of psychological and biological processes (Haslam et al.,
2003), thus would appear to represent a reasonable expectation for distribution of error around a value.

Errors relating to distance, speed and travel time are all drawn from a Gaussian distribution with a mean of 0 and stan-
dard deviation defined as a percentage, indicative of a percentage variation around the actual value. This standard deviation
value will be tested at both 10% and 20%, indicative of the anticipated error variation around the real value. An error term is
calculated separately for each of the attributes, then added to the total value in each case.

These error terms are applied only during the regional decision process, and not during node or road traversal. This is
because these actions are considered to be based upon local cues, rather than cognitive recollections of spatial relations.
In being close to the locations being traversed, an individual able to better understand the relationship between locations,
so reducing the potential for estimation error.

4.4.2. Bounded spatial knowledge
Spatial knowledge refers to an individual’s bounded memory of the spatial configuration of the environment around

them. This knowledge is driven by prior experiences, with regular interaction with areas of space leading to more compre-
hensive mental representations of that area. These experiences thus lead to a variation in the accuracy of an individual’s
knowledge across space, where some areas are very well known and others hardly known at all. This knowledge will influ-
ence the decision-making abilities of the individual.

During the construction of the nodal representation of space, a hierarchy in node definitions was identified (see
Section 3.2). At one end of the hierarchy are major junctions, at the other only very minor junctions. In modelling hetero-
geneity in spatial knowledge, it is assumed that there exists variation in spatial knowledge across the population, ranging
from only very basic knowledge to very detailed knowledge of the network. In line with the node hierarchy, four equal
classes of driver are introduced, ascribing 25% of drivers with knowledge of only level 1 nodes (only major junctions),
25% with level 1 and 2 nodes, another 25% with level 1, 2 and 3 nodes, and a final 25% with knowledge of all nodes across
each level. The drivers will only be able to use the nodes that they have knowledge of in constructing their route. This restric-
tion applies throughout the decision-making process, including the calculation of minimal angular paths during the TTB



Table 4
Error in estimation of angular direction of target location.

Angle (�) Approximate average unsigned error (�)

60 11
90 12
135 18
180 15
225 23
270 28
300 29
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stage. While the equal split of spatial knowledge in this way is limiting, and ignores interpersonal heterogeneity, no datasets
were identified to enable a more accurate specification.

The introduction of heterogeneity in spatial knowledge completes the specification of the model, providing an opportu-
nity to observe the role of this particular facet of the model. Fig. 4 shows the construction of two routes both running from a
location in north-west London to east London. The only factor altered during the construction of these two routes is the level
of spatial knowledge – the purple route constructed where the driver is granted only knowledge of level 1 nodes, the orange
route reflecting a journey that considers all nodes from level 1 through to level 4. The routes demonstrate that the more
experienced driver is able to select a route that avoids the straighter, yet more congested routes chosen by the less experi-
enced driver, leading to a lower expected travel time.
5. Model implementation and validation

For the purposes of model assessment, the route selections observed within the validation dataset – the remaining 20% of
routes not included during model definition (encompassing 138,009 routes) – are predicted using the modelling approach.
Any samples within this dataset falling below 500 metres in route length are excluded, as to not artificially increment the
accuracy of the modelling approach. Connections between nodes are assessed on the basis of whether the original journey
was taken during the daytime or evening.

In implementing the model, its sensitivity to the specification of a number of attributes must be explored. This includes
the influence of variation in the difference thresholds required between alternatives where comparing cues (detailed in
SubSection 4.1.2), and the role of standard deviation in estimation error (described in SubSection 4.4.1). The influence of
these attributes will be assessed during the first stage of the validation, and the best performing model configuration estab-
lished for complete route validation.

The approaches taken towards validation differ according to the level of hierarchy being assessed. At the node and region
levels, model predictions are compared directly against observed behaviours. This is because these incorporate more strate-
gic route planning choices, not so susceptible to variations in individual behaviours. Complete route accuracy is only
assessed across all routes, rather than on a route-by-route basis. This alternative method assesses whether the full variation
in fine-scale routing choices are accounted for within the complete modelling framework. Modelled and observed routes are
not compared directly due to the inherent heterogeneity in the production of both routes.

The final stage of validation tests the similarity between modelled and optimal routing. Given the widespread use of cost
minimisation within the model framework (albeit at a range of spatial scales), these tests will establish how closely route
sets generated through the heuristic modelling framework match those generated through simple shortest distance path
calculation.
5.1. Region and node choice accuracy

In assessing how well the model predicts observed selections requires an evaluation of both the region and node selection
processes. Region selections are assessed in three ways – firstly, correct identification during the EBA pre-selection phase;
second, correct selection of region during TTB phase; and third, correct prediction of the gateway selected between two
regions. During the second phase of region selections a range of models are tested, exploring the model’s sensitivity to varia-
tion in attribute assignment.
5.1.1. Pre-selection of regions
At the pre-selection phase, two regions are carried forward for further assessment, incorporating all valid connections

between the regions that are found. Validation journeys are compared region-by-region, with the presence or otherwise
of the next region following pre-selection is recorded. For all trips, it was found that the actual next selected region was iden-
tified within the top two options on 86.5% of occasions. This indicates that the pre-selection model functions effectively in
identifying potential next regions.



Fig. 4. Route choice variation by level of spatial knowledge.
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5.1.2. Selection of region and gateway from alternatives
Following the pre-selection of two potential next regions, the TTB heuristic sorts between all possible gateways into the

potential next regions. The next validation step therefore identifies whether the next region is correctly estimated. The
model is tested using different implementations of the similarity sensitivity measure (e.g. how different regions must be
to prompt a selection) and the error standard deviation (e.g. how much error is introduced at each selection). A range of val-
ues for these attributes are tested to provide an insight into the sensitivity of the model. The scores associated with each
implementation are shown in Table 5.

As one may observe from Table 5, each model configuration exhibits a reasonable ability to predict the next selected
region. Each configuration, furthermore, demonstrates an adequate performance in relation to its selection of the correct
gateway towards the chosen region, particularly where one considers that two regions may be connected by multiple poten-
tial gateways (particularly where more nodes are considered). However, it is further apparent that variations in both the
similarity and error scatter metrics impact very little on model performance, with each model performing similarly across
both indicators. This trend is indicative of there often existing a single alternative that clearly stands out above alternatives
during the selection process. As such, whether a 10%, 20% or 30% improvement threshold is utilised, one particular alterna-
tive will usually be selected. By the same token, variation in error overall makes little impact upon the selection of the alter-
native, only playing a role where a small difference exists between two alternatives.

In view of the results presented in Table 5, it was decided that Model C would be adopted for further testing. This selec-
tion was made due to performing better than any of the alternative models, albeit with only minimal improvement. This
model will be used in reporting all further test results.

Cue utilisation. Exploring the result for Model C in more detail, during the process the cue used to determine the selection
of a region and gateway was recorded. These results are shown in Table 6, demonstrating a high utilisation of the least total
deviation cue, with most of the additional cues barely utilised. This does suggest a strong reliance upon the least deviation
cue, relative to its selections identified during the ranking process, representing a possible limitation to this approach.
5.1.3. Selection of nodes through region
Beyond regional selections, node-to-node selection processes are of significant importance too, and provide a route into

comparing this modelling approach against those presented earlier. In this instance, node selections are modelled within
the context of the region they are within. Given an individual traversing a particular region, en route to a gateway into
another region, a path is constructed that minimises the deviation from that gateway. Next node selections are made
on the basis of the success rate of predicting a subsequent node, based on the observed current node, minimising deviation
from the observed gateway node. The model indicates a prediction success rate for predicting node-to-node selections of
81.5%.



Table 5
Model performance according to region and gateway selection by model type.

Model Model attributes Correct prediction (%)

Next region selected Next region and gateway selected

A Similarity 10%; error 10% 60.29 38.65
B Similarity 20%; error 10% 60.31 39.02
C Similarity 30%; error 10% 60.37 39.25
D Similarity 10%; error 20% 60.25 38.60
E Similarity 20%; error 20% 60.31 38.90
F Similarity 30%; error 20% 60.35 38.98

Table 6
Cues used for differentiation during 138,009 modelled journeys.

Rank Cue Taken selections Percentage selected

1 Least total deviation from destination 210,580 68.78
2 Least total distance 48,527 15.85
3 Least time 25,921 8.46
4 Fastest mean speed 15,459 5.05
5 Least distance from target 5650 1.85
6 Random 30,098 9.83
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5.2. Complete route accuracy

The second validation stage tests the accuracy of the complete route choice model. At this stage, equivalent routes are
modelled for each of the 138,009 observed routes (using the same origin and destination), incorporating the complete selec-
tion process from regional choice, to the node and road segment selection. The distribution of modelled routes is compared
against the observed set of routes using a range of tests.

In the first instance, statistical variation between the observed and modelled traffic flow on each road link is calculated.
On a summary level, 128,442 road segments were covered by the modelled routes with a mean flow of 151.19 (s.d. = 454.55).
This is comparable with the validation dataset that covers 146,596 road segments, with a mean flow of 125.15 (s.d. = 387.21).
Taking in the total distances of each route set, the modelled routes total a distance of 1.12 billion metres, averaging 8028.16
metres per journey, slightly longer than the observed mean distance of 7869.81 metres.

Comparing the model and observed flow on each road segment, the Mean Error (ME) in flow is found to be 8.465
(s.d. = 211.07). Taking absolute values, the Mean Absolute Error (MAE) is 60.37 (s.d. = 202.43).

In order to gain insight into the spatial variation in model fit, linear regression is calculated between the modelled and
observed traffic flow on a road-by-road basis. The line of regression passes along y ¼ 4:543þ 0:784x, where y represents
the real flows on each road and x the modelled flow. The model indicates a reasonable fit with the observed distribution,
with the R2 at 0.76. The strength of similarity is likely to in part associated with the matching distribution of origin and
destination locations. Inspecting the outliers, the regression indicates that the model underperforms along routes with very
high traffic flow, with an over-prediction of routes along minor roads.
5.3. Against shortest distance routing

The final stage of validation tests the similarity between heuristic modelled routes and those generated by optimal dis-
tance paths. Once again, the flows generated by each approach are compared on a road segment basis, providing an indicator
of overall similarity in generated traffic flow.

Where the heuristic model arrived at a mean flow of 151.19 (s.d. = 454.55) across 128,442 road segments, the equivalent
shortest distance path route set results in a mean flow of 128.19 (s.d. = 393.55) across 120,239 road segments. On a segment
basis, the Mean Error is found 31.43 (s.d. = 201.09), with the MAE falling roughly around the same point at 64.26
(s.d. = 193.12). The cause of these discrepancy is indicated by a difference in mean journey lengths, with the heuristic
approach averaging 8028.16 m per journey, where shortest distance routes are found to exhibit a considerably lower mean
distance of 6721.98 m per journey.

With the comparison of route set distributions through linear regression an R2 of 0.81 is found. It is clear that despite the
deviations in route flow indicated above, the distribution of traffic is broadly similar. However, like above, the strength of
similarity is likely to be strongly influenced by the matching distribution of origin and destination locations across the
network.
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6. Discussion and conclusions

The model of route choice introduced in this paper has sought to advance the representation of both bounded decision-
making and spatial cognition during the route choice process. The approach built on literature from diverse domains,
incorporating elements of quick and strategic decision-making, where rough, high-level plans are made initially and then
later refined, and variable spatial representations, reflecting the multifaceted nature of human cognition of space. The frame-
work outlined reflects a novel approach towards representing route choice, offering potential for incorporation within other
transportation models (particularly those that model individual behaviours explicitly, e.g. activity-based or agent-based
models). The results generated through the implementation of the framework are promising, however there are plenty of
areas for potential improvement and extension of the approach.

One area for potential elaboration surrounds the definition of the hierarchical representations of space. While the process
via which individuals utilise different spatial objects during route choice is well understood, the computational definition of
these objects is a novel research area. The definitions outlined in Section 3 offer one possible approach, yet these models
remain untested, and would require development for their application within other cities. While the usage of community
detection methods to establish functional spatial regions is novel, there are numerous ways by which regions may be per-
ceived or defined. Likewise, there is potential within this model of space for more fully incorporating heterogeneity in spatial
knowledge, something only crudely adapted during the implementation of the model (during Sections 4.1.2 and 4.4.2).
Future research should be directed towards closing the gap between those urban features used by drivers during route
choice and the computational representation of these features used within modelling this process.

The heuristic rule sets outlined in Section 4 aim to reflect the quick, bounded nature of route choice decision making. Yet
the implementation of these rules should be investigated further, particularly within the contexts of alternative cities. The
implementation of the framework indicated an over reliance upon the deviation cue and an under prediction along routes
with high traffic flow, further work may seek to address these limitations. Like the past work carried out in defining discrete
choice models with a wide range of different attributes, this decision-making framework may be manipulated in a multitude
of ways.

The modelling framework introduced during this paper is partly intended to act as a springboard for further research. The
model outlined aims to better incorporate aspects of bounded rationality, strategic decision-making and spatial cognition
that have been previously poorly incorporated within route choice models. While the implementation of this framework
is open to alteration, the model structure aims to serve as alternative approach to conventional discrete choice and optimal
route modelling approaches.
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