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1 Introduction

This paper develops a concrete formula for the asymptotic distribution of two-step, possibly

non-smooth semiparametric M-estimators under general misspecification. In particular, we

obtain a direct way of characterizing the asymptotic distribution of two-step semiparametric

M-estimators for which the first-stage nonparametric estimators may depend on unknown

finite-dimensional parameters. In addition, we allow for smooth and non-smooth objective

functions.

Our paper is closely related with Andrews (1994a), Newey (1994), Pakes and Olley

(1995), Chen and Shen (1998), Ai and Chen (2003), Chen, Linton, and Van Keilegom

(2003), and Chen (2005). Previous papers develop general forms to compute the asymptotic

distribution of semiparametric estimators.

In this paper, we go a step further and characterize the asymptotic variance formula. We

first characterize conditions under which the first-stage estimation of nonparametric com-

ponents do not affect the asymptotic distribution. Andrews (1994a) and Newey (1994) have

first derived sufficient conditions in the context of a smooth semiparametric GMM frame-

work. Our results are applicable to semiparametric M-estimators with possibly non-smooth

objective functions. Our results also provide a unifying interpretation of two apparently

different results of Newey (1994, Propositions 2 and 3).

All the existing semiparametric estimators we have examined have asymptotic distribu-

tions unaffected by the derivatives of the first-stage nonparametric estimators with respect

to the finite-dimensional parameters. We show that this is not the most general case and

characterize conditions under which the derivatives do affect the asymptotic distribution.

We also characterize conditions under which one can allow non-smooth objective func-

tions. When the nonparametric component depends on the finite-dimensional parameters,

we require that the objective function have a linear representation with respect to both

parametric and nonparametric components with regularity conditions on the remainder

term. When the nonparametric component does not depend on the finite-dimensional pa-

rameters, the objective function can be less smooth with respect to the nonparametric part.

We also require that the first-stage nonparametric estimator be differentiable with respect

to finite-dimensional parameters asymptotically.

Our approach is analogous to the standard analysis of the two-step parametric estimators

when the objective function is not smooth. To be more specific, our approach is based on a

Taylor series expansion of the expectation of the objective function (see, e.g. Pollard (1984)

and Sherman (1994)). Since the first stage involves nonparametric estimation and thus the
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objective function is a functional defined on the Cartesian product of a Euclidean space and

a function space, we need to use basic results of functional analysis and also need to modify

the concept of asymptotic linearity of the first-stage nonparametric estimator suitably.1 As a

result, calculating a formula for the asymptotic distribution involves Fréchet differentiation

of the expectation of an objective function. For many leading examples, this is often easy

to derive (see, e.g. Ichimura (2006)).

To establish the asymptotic theory, we make the use of the idea behind Pollard (1984,

pp.140-142) and apply empirical process methods of Van der Vaart and Wellner (1996)

to deal with remainder terms in the asymptotic expansion of the objective function. A

more common practice of using stochastic equicontinuity used by e.g, Andrews (1994a,b),

Newey (1994), Chen, Linton, and Van Keilegom (2003), and Ichimura (2006) is applicable

to semiparametric GMM estimators but is not directly applicable to semiparametric M-

estimators.

Our framework is illustrated by applying it to profiled estimation of a single index

quantile regression model. Due to the nature of profiled estimation and non-differentiability

of the check function it is non-trivial to analyze this estimator. Our general framework

allows us to calculate the asymptotic distribution of this estimator. Our framework is also

illustrated by applying it to semiparametric least squares estimation of Ichimura (1993)

under model misspecification. We show that while the first stage estimation does not affect

the asymptotic distribution regardless of whether the model is misspecified or not, the

asymptotic distribution is different under the two cases. The result of the latter example can

be viewed as a semiparametric analog of White (1981), who characterizes the asymptotic

distribution of parametric least squares for misspecified nonlinear regression models. To

the best of our knowledge, both of these results are new findings in the literature. Finally,

the paper considers a smoothed matching estimator to illustrate the effects of first-stage

estimation. This example shows the simple nature of the form of the correction term in our

characterization.

The paper is organized as follows. Section 2 defines a semiparametric M-estimator and

describes examples. Section 3 provides theoretical results, including regularity conditions

and general formulas for the asymptotic distribution. Section 4 demonstrates usefulness of

the main results of Section 3 by applying them to all the aforementioned examples. All the

proofs are in the Appendix.

1As an early paper that uses the functional analysis approach in econometrics, Äıt-Sahalia (1994) develops
a generalized delta method for functionals of nonparametric kernel estimators using functional derivatives.
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2 Estimation

Suppose that there exists a vector of finite-dimensional parameters θ0 that minimizes

E[m(Z, θ, f0(·, θ))] for an unknown, df -vector-valued function f0, where m(Z, θ, f0(·, θ))

is a known, real-valued function of data Z ∈ Rdz and θ directly and indirectly through f0.

Assume that f0(·, θ) is a function of Z, possibly indexed by θ. For simplicity in notation,

the arguments of f0 are denoted here by a dot. This notation is useful because we can allow

m(Z, θ, f0(·, θ)) to depend either on the whole function f0(·, θ) or on values of f0(·, θ) at

some data points.

Throughout the paper, let θ ∈ Θ denote finite dimensional parameters, where Θ is a

compact subset of Rdθ , and for each θ, let f(·, θ) ∈ F denote infinite dimensional parameters,

where F is a Banach space with the supremum norm.2 More concretely, the parameter space

Θ×F is a Cartesian product of Θ and F with a norm defined by ‖(θ, f)‖Θ×F = ‖θ‖+‖f‖F ,

where ‖θ‖ is the usual matrix norm and ‖f‖F = supθ∈Θ supz∈S ‖f(z, θ)‖ for any f ∈ F ,

where S is a subset of the support of the data Z.3 We will use the notation ‖·‖∞ to denote

the supremum norm. When f depends on θ, ‖f(·, θ)‖∞ will be understood as the supremum

norm with θ fixed. Thus, ‖f‖F = supθ∈Θ ‖f(·, θ)‖∞.

Assume that for each θ, a nonparametric estimator f̂n(·, θ) of f0(·, θ) is available. Fur-

thermore, assume that the observed data {Zi : i = 1, . . . , n} are a random sample of Z. A

natural sample analog estimator of θ0 is an M-estimator that minimizes

Ŝn(θ) ≡ n−1
n
∑

i=1

m(Zi, θ, f̂n(·, θ)).(2.1)

Let θ̂n denote the resulting estimator of θ0.

There are many examples of semiparametric estimators that can be viewed as special

cases of (2.1). Some well-known examples include: Robinson (1988), Powell, Stock, and

Stoker (1989), Ichimura (1993), and Klein and Spady (1993) among many others. To

illustrate the main result of this paper, we will analyze the following three examples.

Example 2.1. Profiled Estimation of a Single-Index Quantile Regression Model. This model

has the form

(2.2) Y = G0(X1 +XT
2 θ0) + U,

2Instead of the supremum norm, one may develop results parallel to those obtained in this paper using
a different norm, say the L2 norm.

3In examples considered in the paper, S is the intersection of the support of the data and the support of
the trimming function. This is due to the usual technical reason regarding the first-stage kernel estimation.
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where Y is the dependent variable, X = (X1, X2) ∈ Rdx is a vector of explanatory variables,

θ0 is a vector of unknown parameters, G0(·) is an unknown, real-valued function, and the

τ -quantile of U given X = x is zero for almost every x for some τ , 0 < τ < 1. Here,

T denotes a transpose. To guarantee identification, we assume that X1 is continuously

distributed and its coefficient is non-zero and is normalized to be one.

To describe our estimator of θ0, let ρτ (u) denote the ‘check’ function, that is ρτ (u) = |u|+

(2τ−1)u, let f0(t, θ) denote the τ -quantile of Y conditional onX1+X
′
2θ = t for each θ and on

the event that X ∈ T with a known compact set T , and let f̂n(t, θ) denote a nonparametric

estimator of f0(t, θ). Then G0(x1 + x2θ0) = f0(x1 + x2θ0, θ0). In principle, any reasonable

nonparametric estimator could be used, as long as a nonparametric estimator satisfies some

regularity conditions, which will be given in Section 3. To be specific, f̂n(X1i +XT
2iθ, θ) is

defined as a smoothed local linear quantile regression estimator (Chaudhuri (1991)), that is

f̂n(X1i+X
T
2iθ, θ) ≡ ĉni(θ), where ĉni(θ) ≡ [ĉni0(θ), ĉni1(θ)]

′ solves the following minimization

problem

min
(c0,c1)∈R2

n
∑

j=1

1(Xj ∈ Tn)ρ̃τ,n

[

Yj − c0 − c1(X1j +XT
2jθ −X1i −XT

2iθ)
]

×K

(

X1j +XT
2jθ −X1i −XT

2iθ

hn

)

.

(2.3)

Here, ρ̃τ,n is a smoothed version of ρτ (u) as in Horowitz (1998), 1(·) is the usual indicator,

K(·) is a kernel function, hn is a sequence of bandwidths that converges to zero as n→ ∞,

and Tn = {x : B(x; 2hn) ⊂ T }, where B(x, r) is a r-radius ball centered at x. The smoothed

estimator is used here to ensure that f̂n is Lipschitz continuous for both arguments with

probability tending to one.

An estimator of θ0 is now defined as

θ̂n = argminθn
−1

n
∑

i=1

1(Xi ∈ T )ρτ

[

Yi − f̂n(X1i +XT
2iθ, θ)

]

.(2.4)

As in Ichimura (1993), the trimming function 1(· ∈ T ) is necessary to ensure that the

density of X1 +XT
2 θ is bounded away from 0 on T for any θ.4

It is worth mentioning existing estimators of θ0. Chaudhuri, Doksum, and Samarov

(1997) developed average derivative estimators of θ0 and Khan (2001) proposed a two-

step rank estimator of θ0. The new estimator is applicable to more general cases than
4One can use a more sophisticated trimming function that converges to one as n → ∞. For example,

Robinson (1988) uses the trimming function 1(p̂(x) > cn), where p̂(x) is the kernel density estimator of X
and cn is a sequence of positive real numbers converging to zero at a sufficiently slow rate. See Ichimura
(2006).
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the estimators of Chaudhuri, Doksum, and Samarov (1997) in the sense that X can include

discrete variables and functionally dependent variables (e.g., the square of one of explanatory

variables) and than the estimator of Khan (2001) in the sense that monotonicity of f0 is

not required.

To apply the general result obtained in the paper, let

m(z, θ, f(·, θ)) =
1

2
1(x ∈ T )ρτ

[

y − f(x1 + xT
2 θ, θ)

]

,(2.5)

where z = (y, x) and x = (x1, x2). Our estimator θ̂n is an M-estimator in (2.1) with

m(z, θ, f(·, θ)) defined above.

Example 2.2. Semiparametric Least Squares Estimation under Misspecification. This ex-

ample is concerned with the asymptotic distribution of the semiparametric least squares

(SLS) estimator of Ichimura (1993) under model misspecification. Let ET denote an expec-

tation conditional on X ∈ T . As in the previous example, we assume that for identification,

there exists a continuously distributed component of X = (X1, X2), say X1, whose coeffi-

cient is non-zero and is normalized to be one. Let θ denote a vector of coefficients of X2

and θ0 denote the true value of θ in a sense that θ0 minimizes

E
[

1(X ∈ T ){Y − f0(X1 +XT
2 θ, θ)}

2
]

,(2.6)

where T is a known compact set and f0(t, θ) denotes the expectation of Y conditional on

X1 +XT
2 θ = t and on the event that X ∈ T for each θ. Therefore, under model misspecifi-

cation, f0(x1 + xT
2 θ0, θ0) can be interpreted as the best L2 approximation to ET [Y |X = x]

in the class of single-index models since f0(X1 +XT
2 θ, θ) is the best L2 approximation to

ET [Y |X = x] for each fixed θ and (2.6) implies that θ0 minimizes

E
[

1(X ∈ T ){ET [Y |X = x] − f0(X1 +XT
2 θ, θ)}

2
]

.(2.7)

The SLS estimator of Ichimura (1993), say θ̂n, minimizes a sample analog of (2.6). That

is, θ̂n solves

min
θ
n−1

n
∑

i=1

1(Xi ∈ T )
[

Yi − f̂n(X1i +XT
2iθ, θ)

]2
,(2.8)

where f̂n(·, θ) is a nonparametric kernel estimator of f0(·, θ) defined in Ichimura (1993,

p.78). The asymptotic distribution of the SLS estimator is established by Ichimura (1993)

under the assumption that the model is correctly specified, that is ET [Y |X = x] = f0(x1 +
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xT
2 θ0, θ0). In this paper, we establish the asymptotic distribution of the SLS estimator when

ET [Y |X = x] may not belong to a class of single-index models.

Let

m(z, θ, f(·, θ)) =
1

2
1(x ∈ T )

[

y − f(x1 + xT
2 θ, θ)

]2
,(2.9)

where z = (y, x) and x = (x1, x2). The SLS estimator θ̂n is an M-estimator withm(z, θ, f(·, θ))

defined above.

Example 2.3. Smoothed Matching Estimator. This example is concerned about estimating

the average treatment on the treated, that is θ0 = E[Y1 − Y0|D = 1, X ∈ T ], where Y1 and

Y0 are potential outcomes and D is the treatment status (e.g., Heckman, Ichimura, and

Todd (1998)). Note that the θ0 is defined conditional on the event that X ∈ T for some

compact set T over which both the densities of X given D = 0 and X given D = 1 are

bounded away from 0. The main estimation problem in this example is to construct the

counterfactual ET [Y0|D = 1]. Suppose that ET [Y0|X,D = 1] = ET [Y0|X,D = 0] for a high-

dimensional X (ignorability assumption). Then one may use a kernel estimator of f0(x) =

ET [Y0|X = x,D = 0] with a trimming function as in Examples 2.1 and 2.2. Assume that

{(Yi, Xi, Di) : i = 1, . . . , n} is a random sample of (Y,X,D), where Y = DY1 + (1 −D)Y0.

Then an estimator f̂n(x) can be defined as

f̂n(x) = [nhdx
n pn(x)]−1

n
∑

i=1

1(Xi ∈ Tn)(1 −Di)Y0iK

(

x−Xi

hn

)

,

where pn(x) = (nhdx
n )−1

∑n
i=1 1(Xi ∈ Tn)(1 − Di)K [(x−Xi)/hn], K is a kernel function

with a bandwidth hn, and dx is the dimension of X. A semiparametric estimator of θ0 can

be obtained by an M-estimator with

m(z, θ, f(·)) =
1

2
1(x ∈ T )d [θ − (y1 − f(x))]2 ,(2.10)

where z = (y1, d, x).
5

3 Asymptotic Results

3.1 Assumptions

In this subsection, we state assumptions that are needed to establish asymptotic results.

The consistency of a semiparametric M-estimator θ̂n can be obtained using general results
5Powell (1994) argues that this is a nonparametric formulation.

6



available in the literature. See, for example, Theorem 2.1 of Newey and McFadden (1994,

p.2121), Corollary 3.2.3 of Van der Vaart and Wellner (1996, p.287), and Theorem 1 of Chen,

Linton, and Van Keilegom (2003). Thus, we assume that θ̂n is consistent and consider only

a neighborhood of θ0. For any δ1 > 0 and δ2 > 0, define Θδ1 = {θ ∈ Θ : ‖θ − θ0‖ < δ1}

and Fδ1,δ2 = {f ∈ F : supθ∈Θδ1
‖f(·, θ) − f0(·, θ0)‖∞ < δ2}. For any function ψ of data,

let ‖ψ(Z)‖L2(P ) = [
∫

[ψ(Z)]2dP ]1/2, where P is the probability measure of data Z. That is,

‖·‖L2(P ) is the L2(P )-norm. To simplify the notation, we assume in Section 3 that df = 1,

i.e., f(·, θ) is a real-valued function.6

To establish asymptotic results, we make the following assumptions:

Assumption 3.1. (a) θ0 is an interior point in Θ, which is a compact subset of Rdθ .

(b) θ0 is a unique minimizer of E[m(Z, θ, f0(·, θ))].

(c) θ̂n →p θ0.

Condition (a) is standard, condition (b) imposes identification, and condition (c) as-

sumes the consistency of θ̂n to θ0 in probability.

Assumption 3.2. For any (θ1, f1) and (θ2, f2) in Θδ1 ×Fδ1 ,δ2, there exist linear operators

∆1(z, θ1 − θ2) and ∆2(z, f1(·) − f2(·)) and a function ṁ(z, δ1, δ2) satisfying

(a) |m(z, θ1, f1(·)) −m(z, θ2, f2(·)) − ∆1(z, θ1 − θ2) − ∆2(z, f1(·) − f2(·))|

≤ [‖θ1 − θ2‖ + ‖f1(·) − f2(·)‖∞] ṁ(z, δ1, δ2),

and

(b) ‖ṁ(Z, δ1, δ2)‖L2(P ) ≤ C (δα1

1 + δα2

2 )

for some constants C <∞, α1 > 0, and α2 > 0.7

Since ∆1 is a linear operator and θ is a finite-dimensional parameter, we write ∆1(z, θ1−

θ2) = ∆1(z) · (θ1 − θ2). Assumption 3.2 allows for both differentiable and non-differentiable

functions with respect to parameters.

6It is rather straightforward to extend our main result in Section 3 to a vector-valued f(·, θ) with the use
of more complicated notation. Appendix A presents the extension for the case df > 1.

7Here, ∆1, ∆2, and ṁ may depend on (θ2, f2(·)). However, we suppress the dependence on (θ2, f2(·)) for
the sake of simplicity in notation.
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Example 2.1 Continued: To verify Assumption 3.2, define

∆1(z) = 0,

∆2(z, f1(·) − f2(·)) = −1(x ∈ T )[τ − 1(y − f2(x) ≤ 0)](f1(x) − f2(x))

and

ṁ(z, δ1, δ2) = 1(x ∈ T )1(|y − f2(x)| ≤ δ2).

As in Pollard (1991), note that

1

2

∣

∣

∣
ρτ [y − {f(x, θ) + h(x)}] − ρτ [y − f(x, θ)] + 1(x ∈ T )[τ − 1(y − f(x, θ) ≤ 0)][h(x)]

∣

∣

∣

≤ |h(x)| 1(x ∈ T )1 {|y − f(x, θ)| ≤ |h(x)|} .

(3.1)

Then sincem depends on θ only through f , Assumption 3.2 (a) is satisfied by (3.1). To check

Assumption 3.2 (b), assume that |PY |X(y1|x)−PY |X(y2|x)| ≤ C(x)|y1−y2| for some function

C(x) such that E[1(X ∈ T )C(X)] < ∞, where PY |X(·|x) is the CDF of Y conditional on

X = x. Then notice that

‖ṁ(Z, δ1, δ2)‖
2
L2(P ) = E[1(X ∈ T )PY |X(f2(·) + δ2|X)] −E[1(X ∈ T )PY |X(f2(·) − δ2|X)]

≤ Cδ2

for some positive constant C, implying that Assumption 3.2 (b) is satisfied with α2 = 0.5.

Examples 2.2 – 2.3 Continued: In these examples, Assumption 3.2 is trivially satisfied

with α1 = 1 and α2 = 1.

Assumption 3.3. Let m∗(θ, f) = E[m(Z, θ, f)] for fixed θ and f . m∗(θ, f) is twice contin-

uously Fréchet differentiable in an open, convex neighborhood of (θ0, f0(·, θ0)) with respect

to a norm ‖(θ, f)‖Θ×F .

This assumption implies that a second-order Taylor expansion of m∗(θ, f) is well de-

fined.8 Let Dθm
∗(θ, f) and Dfm

∗(θ, f) denote the partial Fréchet derivatives of m∗(θ, f)

with respect to θ and f , respectively. In addition, let Dθθm
∗(θ, f), Dθfm

∗(θ, f), and

8Note that in Assumption 3.3, f is not indexed by θ. As a result, it is unnecessary to assume the
differentiability of f with respect to θ in this expansion; however, it is needed to evaluate the Taylor
expansion of m∗(θ, f) at (θ, f) = (θ, f(·, θ)). Hence, we assume that f(·, θ) belongs to the common space F
for any θ.
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Dffm
∗(θ, f) denote second-order partial Fréchet derivatives of m∗(θ, f).9 By Taylor’s The-

orem on Banach spaces (see, for example, Section 4.6 of Zeidler, 1986), if m∗(θ, f) is twice

continuously Fréchet differentiable in an open, convex neighborhood of (θ0, f0(·, θ0)) with

respect to a norm ‖(θ, f)‖Θ×F , then for any (θ, f) and (θ0, f0) in an open, convex neigh-

borhood of (θ0, f0(·, θ0)),

m∗(θ, f) −m∗(θ0, f0)(3.2)

= Dθm
∗(θ0, f0)[θ − θ0] +Dfm

∗(θ0, f0)[f − f0]

+

∫ 1

0
(1 − s)

[

Dθθm
∗(θs, fs)[θ − θ0, θ − θ0] + 2Dθfm

∗(θs, fs)[θ − θ0, f − f0]

+Dffm
∗(θs, fs)[f − f0, f − f0]

]

ds,

where θs = θ0 + s(θ − θ0) and fs = f0 + s(f − f0).

Example 2.1 Continued: Let m∗(θ, f) = E[m(Z, θ, f)] for fixed θ and f , where m(z, θ, f)

is defined in (2.5). First of all, since m depends on θ only through f(·, θ),

Dθm
∗(θ, f) = Dθθm

∗(θ, f) = Dθfm
∗(θ, f) ≡ 0.

Use (3.1) to obtain

|m∗(θ, f + h) −m∗(θ, f) +E[1(X ∈ T ){τ − 1(Y − f(X1 +XT
2 θ, θ) ≤ 0)}h(X)]|

≤ E[1{|Y − f(X1 +XT
2 θ, θ)| ≤ |h(X)|}|h(X)|]

≤ E[1{|Y − f(X1 +XT
2 θ, θ)| ≤ |h(X)|}] ‖h‖∞

= o(‖h‖∞)

for any h in a neighborhood of zero. Thus,

Dfm
∗(θ, f)[h] = −E[1(X ∈ T ){τ − 1(Y − f(X1 +XT

2 θ, θ) ≤ 0)}h(X)].(3.3)

To compute Dffm
∗(θ, f), let pY |X(y|x) denote the PDF of Y conditional on X = x.

Notice that

Dfm
∗(θ, f + h2)[h1] −Dfm

∗(θ, f)[h1]

= −E[1(X ∈ T ){τ − PY |X(f(X1 +XT
2 θ, θ) + h2(X)|X)}h1(X)]

+E[1(X ∈ T ){τ − PY |X(f(X1 +XT
2 θ, θ)|X)}h1(X)]

= E[1(X ∈ T )pY |X(f(X1 +XT
2 θ, θ)|X)h2(X)h1(X)] + o(‖h2‖∞)

9See monographs on nonlinear functional analysis such as Berger (1977) and Zeidler (1986) for well-
established results of Fréchet differentiation in Banach spaces.
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for any h1 and h2 in a neighborhood of zero. Thus,

Dffm
∗(θ, f)[h1, h2] = E[1(X ∈ T )pY |X(f(X1 +XT

2 θ, θ)|X)h1(X)h2(X)].(3.4)

Example 2.2 Continued: In this example, let m∗(θ, f) = E[m(Z, θ, f)] for fixed θ and

f , where m(z, θ, f) is defined in (2.9). As in Example 2.1, note that m depends on θ only

through f(·, θ). Hence,

∆1(z) = Dθm
∗(θ, f) = Dθθm

∗(θ, f) = Dθfm
∗(θ, f) ≡ 0.

To compute Dfm
∗(θ, f)[h], note that

m∗(θ, f + h) −m∗(θ, f) = −E[1(X ∈ T ){Y − f(X1 +XT
2 θ, θ))}h(X)] +E[1(X ∈ T )h2(X)]

for any h in a neighborhood of zero. Hence,

Dfm
∗(θ, f)[h] = −E[1(X ∈ T ){Y − f(X1 +XT

2 θ, θ))}h(X)].(3.5)

To compute Dffm
∗(θ, f)[h1, h2], note that

Dfm
∗(θ, f + h2)[h1] −Dfm

∗(θ, f)[h1] = E[1(X ∈ T )h1(X)h2(X)]

for any h1 and h2 in a neighborhood of zero. Therefore,

Dffm
∗(θ, f)[h1, h2] = E[1(X ∈ T )h1(X)h2(X)].

Example 2.3 Continued: It is easy to show that

Dfm
∗(θ, f)[h] = E[1(X ∈ T )D{θ − (Y1 − f(X))}h(X)]and(3.6)

Dffm
∗(θ, f)[h1, h2] = E[1(X ∈ T )Dh1(X)h2(X)].(3.7)

To take account of the effect of the first-stage nonparametric estimation, it is necessary

to consider a suitably-defined class of functions. In this paper, we consider a class of smooth

functions defined in Van der Vaart and Wellner (1996, p.154), denoted by Cα
M (X ).10 To be

10Although this class of functions seems to be quite general, in some applications, it may be more natural
to use different classes of functions, e.g., a VC-class of functions, a class of monotone functions or that of
convex functions. See Van der Vaart and Wellner (1996, in particular, Sections 2.6 and 2.7) for details for
alternative classes of functions.
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precise, we provide the exact definition of Cα
M (X ). Let α denote the greatest integer strictly

smaller than α, and for any vector k = (k1, . . . , kd) of d integers and let Dk denote the

differential operator

Dk =
∂k.

∂xk1

1 · · · ∂xkd

d

with k. =

d
∑

i=1

ki.

In addition, let

‖g‖α = max
k.≤α

sup
x

|Dkg(x)| + max
k.=α

sup
x,y

|Dkg(x) −Dkg(y)|

‖x− y‖α−α ,

where the suprema are taken over all x, y in the interior of X with x 6= y. Then Cα
M (X ) is

the set of all continuous functions g : X ⊂ Rd 7→ R with ‖g‖α ≤M .

Assumption 3.4. (a) For any θ ∈ Θδ1, f0(·, θ) is an element of Cα
M (X ) for some α >

d1/2, where d1 is the dimension of the first argument of f0(·, θ) and X is a finite union

of bounded, convex subsets of Rd1 with nonempty interior.

(b) For any θ ∈ Θδ1, f̂n(·, θ) ∈ Cα
M (X ) with probability approaching one.

(c) supθ∈Θδ1

∥

∥

∥
f̂n(·, θ) − f0(·, θ)

∥

∥

∥

∞
= Op(δ̃2) for δ̃2 satisfying n1/2δ̃1+α2

2 → 0.

(d) As a function of θ, f0(·, θ) is twice continuously differentiable on Θδ1 with bounded

derivatives on X .

(e) For any ε > 0 and δ > 0, independent of θ, there exists n0 such that for all n ≥ n0,

the following holds:

Pr
{∥

∥

∥
[f̂n(·, θ) − f̂n(·, θ0)] − [f0(·, θ) − f0(·, θ0)]

∥

∥

∥

∞
≤ δ ‖θ − θ0‖

}

≥ 1 − ε.(3.8)

Condition (a) imposes smoothness condition on f0(·, θ) for each fixed θ. It is reasonable

to assume that f0(·, θ) is a smooth function; however, a nonparametric estimator of f0(·, θ)

may not share the same smoothness for fixed sample size n. Condition (b) assumes that a

nonparametric estimator of f0(·, θ) shares the same smoothness condition with probability

tending to one. Condition (c) requires some uniform rate of convergence of f̂n(·, θ) in

probability. If α2 = 1 (smooth m), δ̃2 = o(n−1/4); when α2 = 0.5 (non-smooth m),

δ̃2 = o(n−1/3). In general, f̂n(·, θ) needs to converge at a faster rate whenm is less smooth.11

Condition (d) imposes some smoothness condition on f0(·, θ) as a function of θ.12 Condition
11Only α2 matters as long as α1 > 0, although α1 = α2 in many applications.
12In both Examples 2.1 and 2.2, the notation ∂f0(·, θ0)/∂θ is understood as ∂f0(x1 + xT

2 θ, θ)/∂θ|θ=θ0
since

the first argument of f0 also depends on θ.
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(e) requires that f̂n(·, θ) satisfy a stochastic equicontinuity-type restriction.13 This condition

is easily satisfied if f̂n(·, θ) is continuously differentiable with respect to θ (e.g. f̂n(·, θ) in

Examples 2.1 and 2.2). More specifically, Assumption 3.4 (e) is satisfied if Assumption

3.4 (d) holds and ∂f̂n(·, θ)/∂θ converges in probability to ∂f0(·, θ)/∂θ uniformly over both

arguments.

Remark 3.1. It is worth while to compare conditions of Assumption 3.4 with similar ones in

the literature, e.g. conditions of Theorem 2 of Chen, Linton, and Van Keilegom (2003) and

Theorem 4.1 of Chen (2005). Condition (c) of Assumption 3.4 is comparable to condition

(4.1.4)’ of Theorem 4.1 of Chen (2005), which is weaker than conditions (2.3) and (2.4) of

Theorem 2 of Chen, Linton, and Van Keilegom (2003). Condition (a) of Assumption 3.4

can be substantially weaker than similar ones imposed in Chen, Linton, and Van Keilegom

(2003, Theorem 3) and Chen (2005, Lemma 4.2). For semiparametric quantile regression

models such as Example 2.1 in this paper and Example 2 of Chen, Linton, and Van Keilegom

(2003), α > d1 is needed to satisfy sufficient conditions of Chen, Linton, and Van Keilegom

(2003, Theorem 3) and Chen (2005, Lemma 4.2). See Remark 3 (ii) of Chen, Linton, and

Van Keilegom (2003). Even when d1 = 1, the condition α > d1 can be substantially stronger

than our condition that α > d1/2.

Assumption 3.5. The following holds uniformly over θ in Θδ1:

∫ 1

0
(1 − s)

{

Dffm
∗(θ, f̂s(·, θ))[f̂n(·, θ) − f0(·, θ), f̂n(·, θ) − f0(·, θ)]

}

ds

−

∫ 1

0
(1 − s)

{

Dffm
∗(θ0, f̂s(·, θ0))[f̂n(·, θ0) − f0(·, θ0), f̂n(·, θ0) − f0(·, θ0)]

}

ds

= op

(

n−1/2 ‖θ − θ0‖
)

+ op

(

n−1
)

+ op(‖θ − θ0‖
2) + terms not depending on θ,

where f̂s(·, θ) = f0(·, θ) + s(f̂n(·, θ) − f0(·, θ)).

This condition ensures that the remainder term by the Taylor series expansion is negli-

gible. Assumption 3.5 is a high-level condition and more primitive conditions for this are

given below.

Proposition 3.1. (a) Assume that for any θ ∈ Θδ1, there exists w(θ, f(·, θ)) such that

Dffm
∗(θ, f(·, θ))[h1(·), h2(·)] =

∫

w(θ, f(·, θ))h1(·)h2(·) dP.(3.9)

13We are grateful to Songnian Chen, who suggested this. In a previous version, we impose a condition on
f̂n(·, θ) − f̂n(·, θ0) − [∂f0(·, θ0)/θT ](θ − θ0) rather than on [f̂n(·, θ) − f̂n(·, θ0)] − [f0(·, θ) − f0(·, θ0)].
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(b) Assume that one of the following holds:

(i) w(θ, f(·, θ)) does not depend on θ or f(·, θ) and is bounded.

(ii) ‖w(θ, f(·, θ)) − w(θ0, f0(·, θ0))‖ ≤ Cw ‖θ − θ0‖ for some finite constant Cw

and supθ∈Θδ1

∥

∥

∥
f̂n(·, θ) − f0(·, θ)

∥

∥

∥

∞
= op(n

−1/4).

(iii) ‖w(θ, f(·, θ)) − w(θ0, f0(·, θ0))‖ ≤ Cw [‖θ − θ0‖ + ‖f(·, θ) − f0(·, θ0)‖∞] for some

finite constant Cw and supθ∈Θδ1

∥

∥

∥
f̂n(·, θ) − f0(·, θ)

∥

∥

∥

∞
= op(n

−1/3).

(c) Assume that

Pr
{∥

∥

∥
[f̂n(·, θ) − f̂n(·, θ0)] − [f0(·, θ) − f0(·, θ0)]

∥

∥

∥

∞
≤ δ ‖θ − θ0‖

}

≥ 1 − ε.

Then Assumption 3.5 is satisfied.

The assumption (c) is the same as Assumption 3.4 (e).

Example 2.1 Continued: In view of (3.4), w(θ, f(·, θ)) in (3.9) has the form

w(θ, f(·, θ)) = pY |X(f(·, θ)|X).

Hence, conditions (a) and (b) of Proposition 3.1 are satisfied if pY |X(·|x) is Lipschitz con-

tinuous uniformly and supθ∈Θδ1

∥

∥

∥
f̂n(·, θ) − f0(·, θ)

∥

∥

∥

∞
= op(n

−1/3).

Examples 2.2 – 2.3 Continued: In Example 2.2, w(θ, f(·, θ)) = 1(X ∈ T ) and in

Example 2.3, w(θ, f(·, θ)) = 1(X ∈ T )D. Thus, conditions (a) and (b) of Proposition 3.1

are trivially satisfied.

We place the following assumption to characterize the effect of the estimation of f0(·, θ).

Later we discuss sufficient conditions for this higher level assumption.

Assumption 3.6. (a) As a function of θ, Dfm
∗(θ, f0(·, θ))[f̂n(·, θ) − f0(·, θ)] is twice

continuously differentiable on Θδ1 with probability approaching one.

(b) There exists a dθ-row-vector-valued Γ1(z) such that E[Γ1(Z)] = 0, E[Γ1(Z)ΓT
1 (Z)] <

∞ and nonsingular,

d

dθT

(

Dfm
∗(θ, f0(·, θ))[f̂n(·, θ) − f0(·, θ)]

) ∣

∣

∣

θ=θ0

= n−1
n
∑

i=1

Γ1(Zi) + op(n
−1/2).

(3.10)
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The term Γ1(z) captures effects of first-stage nonparametric estimation of f0(·, θ). There

are at least two cases in which it is easy to compute the derivatives ofDfm
∗(θ, f0(·, θ))[f̂n(·, θ)−

f0(·, θ)]. The first case is when f0(·, θ) does not depend on θ and the second case is

when Dfm
∗(θ, f0(·, θ))[f̂n(·, θ) − f0(·, θ)] is identically zero. In Examples 2.1 and 2.2,

Dfm
∗(θ, f0(·, θ))[f̂n(·, θ) − f0(·, θ)] = 0 for any θ, which will be shown below. Hence, As-

sumption 3.6 is trivially satisfied with Γ1(z) ≡ 0. WhenDfm
∗(θ, f0(·, θ))[f̂n(·, θ)−f0(·, θ)] =

0 for all θ ∈ Θδ1 , no adjustment term is needed in the asymptotic distribution of θ̂n.

Example 2.1 Continued: Notice that by evaluating (3.3) at (θ, f) = (θ, f0(·, θ)):

Dfm
∗(θ, f0(·, θ))[h] = −E[1(X ∈ T ){τ − 1(Y − f0(X1 +XT

2 θ, θ) ≤ 0)}h(X1 +XT
2 θ)] = 0,

(3.11)

where the last equality follows from the fact that f0(X1 + XT
2 θ, θ) is the quantile of Y

conditional on X1 +XT
2 θ and the event that X ∈ T .

Example 2.2 Continued: Suppose that h is a function of the index x1 + x2θ. Notice

that since f0(t, θ) is the expectation of Y conditional on X1 + XT
2 θ = t and the event

that X ∈ T for each θ, the law of iterative expectations implies that in view of (3.5),

Dfm
∗(θ, f0(X1+XT

2 θ, θ))[h(X1+XT
2 θ)] ≡ 0 for any fixed θ. Assumption 3.6 is satisfied with

Γ1 ≡ 0 for the SLS estimator whether or not the model is correctly specified. This implies

that even under model misspecification, the asymptotic distribution of the SLS estimator is

the same as if f0(·, θ) were known. As we discuss later, however, the asymptotic distribution

under misspecification is different from that under correct specification.

We now provide sufficient conditions for Assumption 3.6 for the case when Γ1 6= 0.

Example 2.3 is such a case. In particular, we will give an explicit expression for Γ1 in (3.10)

when f̂n(·, θ) is a smooth function of θ. This case includes nonparametric kernel estimators

of probability density functions and conditional expectations, as leading examples.

Let L2(P ) denote the L2 space defined on the probability space of Z.

Proposition 3.2. Assume that

(a)

Dfm
∗(θ, f0(·, θ))[h(·)] =

∫

h(·)g(·, θ)dP,(3.12)

(b) g(·, θ) is twice continuously differentiable with respect to θ with probability one,

14



(c) f̂n(·, θ) has an asymptotic linear form: for any θ ∈ Θδ1 ,

f̂n(·, θ) − f0(·, θ) = n−1
n
∑

j=1

ϕnj(·, θ) + bn(·, θ) +Rn(·, θ),(3.13)

where ϕnj(·, θ) is a stochastic term that has expectation zero (with respect to the j-

th observation), bn(·, θ) is a bias term satisfying supz,θ ‖bn(z, θ)‖ = o(n−1/2) , and

Rn(·, θ) is a remainder term satisfying supz,θ ‖Rn(z, θ)‖ = op(n
−1/2).

(d) f̂n(·, θ) is twice continuously differentiable with respect to θ with probability approach-

ing one and ∂f̂n(·, θ)∂θ also has an asymptotic linear form:

∂f̂n(·, θ)

∂θ
−
∂f0(·, θ)

∂θ
= n−1

n
∑

j=1

ϕ̃nj(·, θ) + op(n
−1/2),(3.14)

uniformly over (z, θ), where ϕ̃nj(·, θ) is a stochastic term that has expectation zero

(with respect to the j-th observation), and

(e) there exists a dθ-row-vector-valued Γ1(z) such that E[Γ1(Z)] = 0 and

max
1≤i≤n

‖Γn1(Zi) − Γ1(Zi)‖ = op

(

n−1/2
)

,

where

Γn1(Zi) =

∫

ϕ̃ni(·, θ0)g(·, θ0) dP +

∫

ϕni(·, θ0)
∂g(·, θ0)

∂θ
dP.(3.15)

Then Assumption 3.6 is satisfied.

Notice that under Assumption 3.2,

Dfm
∗(θ, f0(·, θ))[f(·, θ) − f0(·, θ)] = E[∆2(Z, f(·, θ) − f0(·, θ))].(3.16)

Thus for many cases, an expression for g(·, θ) can be obtained in a straightforward manner

by inspecting the form of the expectation on the right hand side of (3.16).

When f̂n(·, θ) does not depend on θ, then condition (d) is trivially satisfied and the

leading term has the term

Γn1(Zi) =

∫

ϕni(·)
∂g(·, θ0)

∂θ
dP,(3.17)

where the integral is taken with respect to the arguments of ϕni and g. Example 2.3 belongs

to this case.
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Remark 3.2. Define f0(ν(z), θ) = ET [ψ(Z, θ)|ν(Z) = ν(z)], where ψ(z, θ) is a known

function of z and θ and ν is a known, d1-vector-valued function of z. We now provide

an explicit form of Γn1(Zi) in (3.15) when the first-stage estimator is a kernel regression

estimator of f0(ν(z), θ) with a trimming function Tn and m(z, θ, f(·, θ)) depends on f(·, θ)

only through its value f(ν(z), θ).

Under some standard regularity conditions, ϕni(·, θ) and ϕ̃ni(·, θ) in (3.13) and (3.14)

have the form:

ϕni(ν(z), θ) = n−1
n
∑

i=1

1(ν(Xi) ∈ T )
ψ(Zi, θ) −ET [ψ(Z, θ)|ν(Z) = ν(Zi)]

hd1
n pT (ν(z))

K

(

ν(z) − ν(Zi)

hn

)

,

and

ϕ̃ni(ν(z), θ) = n−1
n
∑

i=1

1(ν(Xi) ∈ T )
∂ψ(Zi, θ)/∂θ −ET [∂ψ(Z, θ)/∂θ|ν(Z) = ν(Zi)]

hd1
n pT (ν(z))

K

(

ν(z) − ν(Zi)

hn

)

,

(3.18)

where pT (ν) is the joint density of ν(Z) and 1(ν(Z) ∈ T ). Then by usual changes of

variables,

Γ1(Zi) = {∂ψ(Zi, θ0)/∂θ −ET [∂ψ(Z, θ0)/∂θ|ν(Z) = ν(Zi)]}ET [g(Z, θ0)|ν(X) = ν(Xi)]

+ {ψ(Zi, θ0) −ET [ψ(Z, θ0)|ν(Z) = ν(Zi)]}ET

[

∂g(Z, θ0)

∂θ

∣

∣

∣

∣

ν(X) = ν(Xi)

]

.

(3.19)

Although we have only worked out details for the case of the kernel mean regression esti-

mator, it is straightforward to develop analogous results for other kernel-type estimators.

Example 2.3 Continued: It follows from (3.6) that

g(z, θ) = 1(x ∈ T )d{θ − (y1 − f0(x))}.

Also, ET [ψ(Z, θ)|ν(Z) = ν(z)] = ET [Y0|D = 0, X = x] and thus, by (3.19),

Γ1(Zi) = 1(Xi ∈ T )(1 −Di)[Y0i −ET [Y0|D = 0, X = x]]
pT (Xi, Di = 1)

pT (Xi, Di = 0)
.(3.20)

Note that pT (Xi, D = 1)/pT (Xi, D = 0) appears in the expression of Γ1(Zi) because the

first-stage estimation uses the D = 0 sample and the second-stage estimation uses the D = 1

sample.
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3.2 Theorems

This subsection presents the main results of the paper. Let ∆10(z) and ∆20(z, h) denote

∆1(z) and ∆2(z, h) in Assumption 3.2 with (θ1, f1) = (θ, f) and (θ2, f2) = (θ0, f0(·, θ0)).

Thus, ∆10(z)(θ−θ0)+∆20(z, f(·, θ)−f0(·, θ0)) is a linear approximation of m(z, θ, f(·, θ))−

m(z, θ0, f0(·, θ0)). Define ∆∗
20[h] = E[∆20(Z, h)] for fixed h. Also define a dθ-row-vector-

valued function Γ0(z) such that

Γ0(z) = ∆10(z) −E[∆10(Z)] + ∆20

[

z,
∂f0(·, θ0)

∂θT

]

− ∆∗
20

[

∂f0(·, θ0)

∂θT

]

+ Γ1(z),(3.21)

Ω0 = E[Γ0(Z)T Γ0(Z)], and

V0 =
d2m∗(θ, f0(·, θ))

dθ dθT

∣

∣

∣

θ=θ0

.

Notice that V0 is the Hessian matrix of m∗(θ, f0(·, θ)) with respect to θ, evaluated at θ = θ0.

The following theorem gives the asymptotic distribution of θ̂n.

Theorem 3.3. Assume that {Zi : i = 1, . . . , n} are a random sample of Z. Let Assumptions

3.1-3.6 hold. Assume that there exists C(z) satisfying ‖∆20[z, h(·, θ)]‖ ≤ C(z) ‖h(·, θ)‖∞

for any θ and ‖C(Z)‖L2(P ) < ∞. Also, assume that Ω0 exists and V0 is a positive definite

matrix. Then

n1/2(θ̂n − θ0) →d N(0, V −1
0 Ω0V

−1
0 ).

Let ∂1m
∗(θ, f) denote a vector of the usual partial derivatives of m∗(θ, f) with respect

to the first argument θ. In this notation, ∂1m
∗(θ, f(·, θ)) denotes the partial derivative of

m∗(θ, f) with respect to the first argument θ, evaluated at (θ, f) = (θ, f(·, θ)). Similarly,

let ∂2
1m

∗(θ, f) denote the usual Hessian matrix of m∗(θ, f) with respect to θ, holding f

constant. Using this notation, note that by the chain rule, the expression of V0 can be

written as14

V0 =
d2m∗(θ, f0(·, θ))

dθ dθT

∣

∣

∣

θ=θ0

= ∂2
1m

∗(θ0, f0(·, θ0)) +Dffm
∗(θ0, f0(·, θ0))

[

∂f0(·, θ0)

∂θ
,
∂f0(·, θ0)

∂θT

]

+ 2

{

Df

[

∂1m
∗(θ0, f0(·, θ0))

T
]

[

∂f0(·, θ0)

∂θ

]}

+Dfm
∗(θ0, f0(·, θ0))

[

∂2f0(·, θ0)

∂θ∂θT

]

.

(3.22)

14See Appendix A for the expression of V0 when df > 1.
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We now modify the main theorem for an important special case when f0(·, θ) is not a

function of θ, i.e. f0(·, θ) ≡ f0(·). In this case, the objective function can be less smooth with

respect to the nonparametric part in Assumption 3.2 and Assumption 3.4 can be weakened

in an obvious manner. Define Fδ2 = {f ∈ F : ‖f(·) − f0(·)‖∞ < δ2}.

Assumption 3.7. For any (θ1, f) and (θ2, f) in Θδ1 × Fδ2 , there exist a dθ-row-vector-

valued function ∆1(z, θ2, f) and a function ṁ(z, δ1) satisfying

(a) |m(z, θ1, f(·)) −m(z, θ2, f(·)) − ∆1(z, θ2, f)(θ1 − θ2)| ≤ ‖θ1 − θ2‖ ṁ(z, δ1),

(b) ‖ṁ(Z, δ1)‖L2(P ) ≤ Cδα1

1 for some constants C <∞ and α1 > 0,

and

(c) sup
f∈Fδ2

∥

∥

∥

∥

∥

n−1
n
∑

i=1

{∆1(Zi, θ0, f) −E [∆1(Z, θ0, f)]} − {∆1(Zi, θ0, f0) −E [∆1(Z, θ0, f0)]}

∥

∥

∥

∥

∥

= op

(

n−1/2
)

for any δ2 → 0.

Note that by conditions (a) and (b), m is assumed to have a linear expansion with

respect to only θ along with a restriction on the remainder term. Condition (c) is a high-

level, stochastic equicontinuity condition that can be verified, for example, using Sections

4 and 5 of Andrews (1994b) and Section 4 of Chen, Linton, and Van Keilegom (2003). In

particular, Chen, Linton, and Van Keilegom (2003, Theorem 3) distinguish the case when

∆1(z, θ0, f) is pointwise continuous from the case when ∆1(z, θ0, f) is not.

When ∆1(z, θ0, f) is not pointwise continuous with respect to h, then there exists an

interesting tradeoff between Assumption 3.2 and Assumption 3.7. In this case, to use

Assumption 3.7, it may be necessary to assume a smaller function space for f0(·) (e.g.,

Cα
M (X ) with α > d1 rather than α > d1/2) to verify the stochastic equicontinuity condition

(see (3.2) of Theorem 3 of Chen, Linton, and Van Keilegom (2003)), whereas conditions (a)

and (b) of Assumption 3.7 are weaker than Assumption 3.2.15

Assumption 3.8. (a) f0(·) is an element of Cα
M (X ) for some α > d1/2, where d1 is the

dimension of the argument of f0(·) and X is a finite union of bounded, convex subset

of Rd1 with nonempty interior.

(b) f̂n(·) ∈ Cα
M (X ) with probability approaching one.

15In this respect, it appears that it is better to use Assumption 3.2 than Assumption 3.7 when both
assumptions are satisfied. However, there are cases for which only Assumption 3.7 is satisfied. See, e.g., an
estimator of hit rates in Chen, Linton, and Van Keilegom (2003, Example 1).
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(c)
∥

∥

∥
f̂n(·) − f0(·)

∥

∥

∥

∞
= op(1).

The following theorem gives the asymptotic distribution of θ̂n when the first-stage non-

parametric estimator f̂n(·, θ) does not depend on θ.

Theorem 3.4. Assume that {Zi : i = 1, . . . , n} are a random sample of Z. Let Assumptions

3.1, 3.3, 3.5, 3.6, and 3.8 hold. Assume that either Assumption 3.2 or Assumption 3.7 holds.

Also, assume that Ω0 = E[Γ0(Z)T Γ0(Z)T ] exists and V0 is a positive definite matrix, where

Γ0(z) = ∆1(z, θ0, f0) −E [∆1(Z, θ0, f0)] + Γ1(z)

and

V0 =
∂2m∗(θ0, f0(·))

∂θ∂θT
.

Then

n1/2(θ̂n − θ0) →d N(0, V −1
0 Ω0V

−1
0 ).

3.3 Analysis of Effects of the First-Stage Estimation

This section provides some analysis of the correction term Γ1(z) in (3.10). We begin with

a sufficient condition under which the first-stage nonparametric estimation does not affect

the asymptotic distribution of θ̂n. This is called an asymptotic orthogonality condition

between θ0 and f0 (Andrews (1994a), equation 2.12). Newey (1994) discusses conditions

for the asymptotic orthogonality (see Propositions 2 and 3 of Newey (1994)).

To describe an asymptotic orthogonality condition in our setup, define H = {h(·) ∈ F :

Rd1 7→ Rdf }, that is a subset of F such that an element of H has the same arguments as

f0(·, θ) for each θ.

Theorem 3.5. If Dfm
∗(θ, f0(·, θ))[h(·)] = 0 for any θ ∈ Θδ1 and for any h(·) ∈ H, then

Γ1(z) ≡ 0. That is, θ̂n has the same asymptotic distribution that it would have if f0(·, θ)

were known.

As shown already in Section 3.1, the assumption of Theorem 3.5 is satisfied in Examples

2.1 and 2.2. There are a number of examples in which this assumption is not satisfied,

including Example 2.3, sample selection models with a nonparametric selection mechanism

(e.g., Ahn and Powell (1993) and Das, Newey, and Vella (2003)), average derivative esti-

mators (e.g., Powell, Stock, and Stoker (1989)), and regression estimators with generated

regressors (e.g., Ahn and Manski (1993)).
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It is interesting to see the connection between Theorem 3.5 and Propositions 2 and 3 of

Newey (1994). Theorem 3.5 can be viewed as an analogous version of Proposition 2 of Newey

(1994) for non-smooth semiparametric estimators. Furthermore, as in Examples 2.1 and

2.2, the assumption of Theorem 3.5 can be verified using the law of iterative expectations,

which is reminiscent of Proposition 3 of Newey (1994). In this regard, Theorem 3.5 provides

a unifying interpretation of two apparently different results of Newey (1994, Propositions 2

and 3).

To understand the effects of first-stage estimation more carefully, notice that by simple

calculus, the left-hand side of (3.10) can be written as

d

dθT

(

Dfm
∗(θ, f0(·, θ))[f̂n(·, θ) − f0(·, θ)]

)
∣

∣

∣

θ=θ0

= Dfm
∗(θ0, f0(·, θ0))

[

∂f̂n(·, θ0)

∂θT
−
∂f0(·, θ0)

∂θT

]

+
{

Df [∂1m
∗(θ0, f0(·, θ0))] [f̂n(·, θ0) − f0(·, θ0)]

}T

+Dffm
∗(θ0, f0(·, θ0))

[

f̂n(·, θ0) − f0(·, θ0),
∂f0(·, θ0)

∂θT

]

,

(3.23)

where the first and third terms appear because both f̂n(·, θ) and f0(·, θ) may depend on

θ and the second term shows up because of possible interactions between θ and f in the

definition of m∗(θ, f). In Example 2.3, only the second term of the right-hand side of (3.23)

is non-zero since f0(·, θ) does not depend on θ. If the first term of the right-hand side

of (3.23) is non-zero and is not cancelled out by other terms, then that is the case when

∂f̂n(·, θ0)/∂θ affects the asymptotic distribution; however, all the existing estimators we

have examined do not belong to this case.

4 Examples

This section gives asymptotic distributions of M-estimators considered in Examples 2.1 –

2.3.

4.1 Single-Index Quantile Regression Models

For simplicity, assume that PY |X(y|x) ≡ PY |X1+XT
2

θ0
(y|x1 + x′2θ0), that is the conditional

distribution of Y given X depends only on the index x1 + x′2θ0. Let pU |X1+XT
2

θ0
(0|t) be

the PDF of U conditional on X1 +XT
2 θ0 = t, and ṖU |X1+XT

2
θ0

[0|t] the partial derivative of

PU |X1+XT
2

θ0
[0|t] with respect to t. The weak consistency of θ̂n to θ0 is given in the Appendix
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(see Lemma B.8). Using arguments similar to those used in Klein and Spady (1993, pp.

401-403) and also the Implicit Function Theorem, it is not difficult to show that

∂G0(x1 + xT
2 θ0, θ0)

∂θ
=
ṖU |X1+XT

2
θ0

(0|x1 + x′2θ0)

pU |X1+XT
2

θ0
(0|x1 + x′2θ0)

(

x2 −E[X2|X1 +X ′
2θ0 = x1 + xT

2 θ0, X ∈ T ]
)

.

(4.1)

Then by Theorem 3.3,

n1/2(θ̂n − θ0) →d N(0, V −1
0 Ω0V

−1
0 ),

where

Ω0 = τ(1 − τ)E

[

1(X ∈ T )
∂G0(X1 +XT

2 θ0, θ0)

∂θ

∂G0(X1 +XT
2 θ0, θ0)

∂θT

]

and

V0 = E

[

1(X ∈ T )pU |X1+XT
2

θ0
(0|X1 +XT

2 θ0)
∂G0(X1 +XT

2 θ0, θ0)

∂θ

∂G0(X1 +XT
2 θ0, θ0)

∂θT

]

.

The asymptotic variance can be estimated consistently by a sample analog estimator based

on the expressions of Ω0, V0, and (4.1).

4.2 Semiparametric Least Squares Estimation under Misspecification

The asymptotic distribution of the SLS estimator is established by Ichimura (1993) under

the assumption that the model is correctly specified, that is E[Y |X = x] = f0(x1+xT
2 θ0, θ0).

In this section, we establish the asymptotic distribution of the SLS estimator when E[Y |X =

x] may not belong to a class of single-index models.

It follows from (3.21) that

Ω0 = E

[

1(X ∈ T ){Y − f0(X1 +XT
2 θ0, θ0)}

2 ∂f0(X1 +XT
2 θ0, θ0)

∂θ

∂f0(X1 +XT
2 θ0, θ0)

∂θT

]

.

In addition, observe that by (3.22),

V0 = Dffm
∗(θ0, f0(·, θ0))

[

∂f0(·, θ0)

∂θ
,
∂f0(·, θ0)

∂θT

]

+Dfm
∗(θ0, f0(·, θ0))

[

∂2f0(·, θ0)

∂θ∂θT

]

= E

[

1(X ∈ T )
∂f0(X1 +XT

2 θ0, θ0)

∂θ

∂f0(X1 +XT
2 θ0, θ0)

∂θT

]

−E

[

1(X ∈ T ){Y − f0(X1 +XT
2 θ0, θ0)}

∂2f0(X1 +XT
2 θ0, θ0)

∂θ∂θT

]

.

(4.2)
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Notice that the second term in the expression of V0 is zero only when the model is correctly

specified. Then by Theorem 3.3 combined with results obtained in this section, we have,

under model misspecification,

n1/2(θ̂n − θ0) →d N
(

0, V −1
0 Ω0V

−1
0

)

.(4.3)

The asymptotic variance in (4.3) is different from the asymptotic variance when the model

is correctly specified.

This suggests a new asymptotic variance estimator V̂ −1
n Ω̂nV̂

−1
n , where

Ω̂n = n−1
n
∑

i=1

1(Xi ∈ T ){Yi − f̂n(X1i +XT
2iθ̂n, θ̂n)}2 ∂f̂n(X1i +XT

2iθ̂n, θ̂n)

∂θ

f̂n(X1i +XT
2iθ̂n, θ̂n)

∂θT

and

V̂n = n−1
n
∑

i=1

1(Xi ∈ T )
f̂n(X1i +XT

2iθ̂n, θ̂n)

∂θ

f̂n(X1i +XT
2iθ̂n, θ̂n)

∂θT

− n−1
n
∑

i=1

1(Xi ∈ T ){Yi − f̂n(X1i +XT
2iθ̂n, θ̂n)}

∂2f̂n(X1i +XT
2iθ̂n, θ̂n)

∂θ∂θT
.

In contrast to a sample analog estimator of the asymptotic variance of the SLS estimator of

Ichimura (1993, Theorem 7.1), the new asymptotic variance estimator is consistent whether

or not the model is correctly specified. The result in this section can be viewed as a

semiparametric analog of Theorem 3.3 and Corollary 3.4 of White (1981), who characterizes

the asymptotic distribution of parametric least squares for misspecified nonlinear regression

models.

4.3 Smoothed Matching Estimator

Note that ∆10(z) = 1(x ∈ T )d[θ − (y1 − f0(x))]. It follows from (3.20) that

Γ0(z) = 1(x ∈ T )d[θ − (y1 − f0(x))]

+ 1(x ∈ T )(1 − d)[y0 − f0(x)]
pT (x,D = 1)

pT (x,D = 0)
.

(4.4)

Then

Ω0 = E
[

{θ0 − (Y1 − f0(X))}2
∣

∣

∣
D = 1, X ∈ T

]

Pr(D = 1, X ∈ T )

+E

[

Var(Y0|X,D = 0, X ∈ T )
p2
T (X|D = 1)

p2
T (X|D = 0)

]

Pr2(D = 1, X ∈ T )

Pr(D = 0, X ∈ T )
.
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Note that V0 = Pr(D = 1, X ∈ T ). Then by Theorem 3.3,

n1/2(θ̂n − θ0) →d N(0,Σ0),

where

Σ0 = E
[

{θ0 − (Y1 − f0(X))}2
∣

∣

∣
D = 1, X ∈ T

]

[Pr(D = 1, X ∈ T )]−1

+E

[

Var(Y0|X,D = 0, X ∈ T )
p2
T (X|D = 1)

p2
T (X|D = 0)

]

[Pr(D = 0, X ∈ T )]−1 .

This result corresponds to the result of Heckman, Ichimura, and Todd (1998) except that

they make a choice-based sampling assumption (independent and identically distributed

within each group) and we make a random sampling assumption on (Y,X,D).

Appendix

A Theorem for the General Case

It is straightforward to extend Theorem 3.3 for the general case. When df > 1, the asymp-

totic variance has the same form V −1
0 E[Γ0(Z)T Γ0(Z)]V −1

0 with general forms of V0 and

Γ0(z):

V0 =
∂2m∗(θ0, f0(·, θ0))

∂θ∂θT
+

df
∑

j=1

df
∑

k=1

Dfjfk
m∗(θ0, f0(·, θ0))

[

∂f0j(·, θ0)

∂θ
,
∂f0k(·, θ0)

∂θT

]

+ 2







df
∑

j=1

Dfj

[

∂1m
∗(θ0, f0(·, θ0))

T
]

[

∂f0j(·, θ0)

∂θ

]







+

df
∑

j=1

Dfj
m∗(θ0, f0(·, θ0))

[

∂2f0j(·, θ0)

∂θ∂θT

]

(A.1)

and

Γ0(z) = ∆10(z) −E[∆10(Z)] +

df
∑

j=1

{

∆20

[

z,
∂f0j(·, θ0)

∂θT

]

− ∆∗
20

[

∂f0j(·, θ0)

∂θT

]}

+ Γ1(z),

(A.2)
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where f0(·, θ0) = [f01(·, θ0), . . . , f0df
(·, θ0)], f̂n(·, θ0) = [f̂n1(·, θ0), . . . , f̂ndf

(·, θ0)] and Γ1 is

the leading term of the asymptotic expansion of d
dθT

(

Dfm
∗(θ, f0(·, θ))[̂fn(·, θ) − f0(·, θ)]

) ∣

∣

∣

θ=θ0

:

d

dθT

(

Dfm
∗(θ, f0(·, θ))[̂fn(·, θ) − f0(·, θ)]

)
∣

∣

∣

θ=θ0

=

df
∑

j=1

Dfj
m∗(θ0, f0(·, θ0))

[

∂f̂nj(·, θ0)

∂θT
−
∂f0j(·, θ0)

∂θT

]

+







df
∑

j=1

Dfj
[∂1m

∗(θ0, f0(·, θ0))] [f̂nj(·, θ0) − f0j(·, θ0)]







T

+

df
∑

j=1

df
∑

k=1

Dfjfk
m∗(θ0, f0(·, θ0))

[

f̂nj(·, θ0) − f0j(·, θ0),
∂f0k(·, θ0)

∂θT

]

.

(A.3)

B Proofs

Throughout the proofs, we will use C > 0 to denote a generic finite constant that may be

different in different uses. When it is necessary to denote a particular constant, then we

will use a C with a subscript.

Proof of Theorem 3.3. To prove the theorem, define

R(z, θ, f) = m(z, θ, f(·, θ)) −m(z, θ0, f0(·, θ0)) − ∆10(z)(θ − θ0) − ∆20[z, f(·, θ) − f0(·, θ0)].

As shorthand notation, let mi(θ, f) = m(Zi, θ, f(·, θ)), mi(θ0, f0(·, θ0)) = m(Zi, θ0, f(·, θ0)),

∆1i(θ − θ0) = ∆10(Zi)(θ − θ0), ∆2i(f(·, θ) − f0(·, θ0)) = ∆20(Zi, f(·, θ) − f0(·, θ0)), and

Ri(θ, f) = R(Zi, θ, f). Define

Sn(θ, f) = n−1
n
∑

i=1

[mi(θ, f) −mi(θ0, f0(·, θ0))] .

Also, let R∗(θ, f) = E[Ri(θ, f)] for fixed θ and f . Recall that ∆∗
20[h] = E[∆20(Z, h)] for

fixed h.

Write

Sn(θ, f) = Sn1(θ) + Sn2(f) + Sn3(θ, f) + S∗(θ, f),
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where

Sn1(θ) = n−1
n
∑

i=1

[∆1i −E(∆1i)] (θ − θ0),

Sn2(f) = n−1
n
∑

i=1

∆2i[f − f0(·, θ0)] − ∆∗
20[f − f0(·, θ0)],

Sn3(θ, f) = n−1
n
∑

i=1

Ri(θ, f) −R∗(θ, f), and

S∗(θ, f) = m∗(θ, f) −m∗(θ0, f0(·, θ0)).

Notice that θ̂n minimizes Sn(θ, f̂n(·, θ)) and θ0 minimizes S∗(θ, f0(·, θ)). Also, recall that

Θδ1 = {θ ∈ Θ : ‖θ − θ0‖ < δ1} and Fδ1,δ2 = {f ∈ F : supθ∈Θδ1
‖f(·, θ) − f0(·, θ0)‖∞ < δ2}.

Define

Γ̂n = n−1
n
∑

i=1

[∆1i −E(∆1i)] + [∆2i − ∆∗
20][∂f0(·, θ0)/∂θ

T ]

+
d

dθT

(

Dfm
∗(θ, f0(·, θ))[f̂n(·, θ) − f0(·, θ)]

)
∣

∣

∣

θ=θ0

.

For any δ1 → 0 and δ2 → 0, by Lemmas B.3-B.7 in subsections B.1-B.3,

Sn(θ, f̂n(·, θ)) =
1

2
(θ − θ0)

TV0(θ − θ0) + Γ̂n(θ − θ0)

+Op

[

n−1/2(δ1 + δ2) (δα1

1 + δα2

2 )
]

+ op(n
−1/2δ1)

+ op

(

n−1
)

+ op

(

‖θ − θ0‖
2
)

+RS ,

(B.1)

uniformly over θ ∈ Θδ1 , where RS is a term that is independent of θ.

Notice that Γ̂n = Op(n
−1/2) in view of (3.10). The theorem can be proved by applying

Theorems 1 and 2 of Sherman (1994) to (B.1). By Theorem 1 of Sherman (1994),

∥

∥

∥
θ̂n − θ0

∥

∥

∥
= max[Op(ε

1/2
n ) + op(n

−1/4δ
1/2
1 ), Op(n

−1/2)],(B.2)

where εn = n−1/2(δ1 + δ2) (δα1

1 + δα2

2 ) . As in Sherman (1994, comments following Theorem

1), we first obtain an initial rate of convergence when δ1 → 0. Note that

‖f(·, θ) − f0(·, θ0)‖∞ ≤ ‖f(·, θ) − f0(·, θ)‖∞ + C ‖θ − θ0‖

for some constant C. Hence, when δ1 → 0 and δ2 → 0, (B.2) implies that
∥

∥

∥
θ̂n − θ0

∥

∥

∥
=

op(n
−1/4). Then we shrink the parameter spaces Θδ1 and Fδ1,δ2 by taking δ1 satisfying

n1/4δ1 → 0 and δ2 = Cmax{δ̃2, δ1} with some constant C. It follow from (B.2) that the
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convergence rate can be improved such that
∥

∥

∥
θ̂n − θ0

∥

∥

∥
= op(n

−3/8). Repeated applications

of (B.2) give
∥

∥

∥
θ̂n − θ0

∥

∥

∥
= Op(n

−1/2), provided that n1/2δ̃1+α2

2 → 0. Note that Γ̂n converges

in distribution to N(0,Ω0) by (3.10) and the central limit theorem. Then the theorem

follows by applying Theorem 2 of Sherman (1994) to (B.1).

B.1 Asymptotic expansion of Sn3(θ, f)

Let H be a class of measurable functions with a measurable envelope function H. Let

N(ε,H, ‖·‖H) and N[ ](ε,H, ‖·‖H), respectively, denote the covering and bracketing numbers

for the set H (for exact definitions, see, for example, Van der Vaart and Wellner (1996,

p.83)). In addition, let J[ ](1,H, L
2(P )) denote a bracketing integral of H, that is

J[ ](1,H, L
2(P )) =

∫ 1

0

√

1 + logN[ ](ε ‖H‖L2(P ) ,H, L
2(P )) dε.

We will use the following lemmas. The first lemma is due to the last display of Theorem

2.14.2 of Van der Vaart and Wellner (1996, p.240).

Lemma B.1. Let H be a class of measurable functions with a measurable envelope function

H. Then there exists a constant C such that

E

[

sup
h∈H

∣

∣

∣

∣

∣

n−1/2
n
∑

i=1

{h(Zi) −E[h(Z)]}

∣

∣

∣

∣

∣

]

≤ CJ[ ](1,H, L
2(P )) ‖H‖L2(P ) .

Lemma B.2. Let F1 be a class of functions f : Z × Θ 7→ Rdf such that there exists a

universal constant CL satisfying

‖f(z, θ1) − f(z, θ2)‖ ≤ CL ‖θ1 − θ2‖(B.3)

for any f ∈ F1. Also, assume that for each fixed θ̄ ∈ Θ, the subclass {f(z, θ̄) ∈ F1} is

Cα
M (X ). Then for any ε1 > 0 and ε2 > 0, we have

N (ε1CL + ε2,F1, ‖·‖F ) ≤ N (ε1,Θ, ‖·‖) × sup
θ∈Θ

N (ε2, C
α
M (X ), ‖·‖∞) .

Proof. Let θ1, . . . , θp denote an ε1-net for (Θ, ‖·‖) with the additional restriction that

θ1, . . . , θp ∈ Θ, and for each θi, let fi1(z, θi), . . . , fiqi
(z, θi) denote an ε2-net for the sub-

class {f(z, θi) ∈ F1} with a norm ‖·‖∞. Then note that for any f(z, θ) ∈ F1, there exist θi

and fij(z, θi) such that

‖f(z, θ) − fij(z, θi)‖∞ ≤ ‖f(z, θ) − f(z, θi)‖∞ + ‖f(z, θi) − fij(z, θi)‖∞

≤ ε1CL + ε2.

This proves the lemma since for each θi, the subclass {f(z, θi) ∈ F1} is Cα
M (X ).
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It follows from Assumption 3.4 that with probability approaching one,

∥

∥

∥
f̂n(·, θ1) − f̂n(·, θ2)

∥

∥

∥

∞
≤ CL ‖θ1 − θ2‖(B.4)

with some finite constant CL. Hence, f̂n(·, θ) ∈ F1 with probability approaching one.

Therefore, we can restrict the parameter space of f(·, θ) to be F1.

To deal with Sn3(θ, f), consider a class of functions Mδ1,δ2

Mδ1,δ2 = {R(z, θ, f) : (θ, f) ∈ Θ ×F1, ‖θ − θ0‖ < δ1, and sup
{θ:‖θ−θ0‖<δ1}

‖f(·, θ) − f0(·, θ0)‖∞ < δ2},

where F1 is defined in Lemma B.2. Then by Assumption 3.2 (a), an envelope function

Mδ1,δ2 for the class Mδ1,δ2 has the form

Mδ1,δ2 = (δ1 + δ2)ṁ(z, δ1, δ2).

Let ‖Mδ1,δ2‖L2(P ) = [
∫

[Mδ1,δ2 ]
2dP ]1/2, where P is the probability measure of data Z.

Lemma B.3.

E

[

sup
Mδ1,δ2

|Sn3(θ, f)|

]

≤ Cn−1/2(δ1 + δ2) (δα1

1 + δα2

2 )

Proof. By Lemma B.1, there is a positive constant C such that

E

[

sup
Mδ1,δ2

∣

∣

∣
n1/2Sn3(θ, f)

∣

∣

∣

]

≤ CJ[ ](1,Mδ1 ,δ2 , L
2(P )) ‖Mδ1,δ2‖L2(P ) .(B.5)

First, note that by Assumption 3.2 (b),

‖Mδ1,δ2‖L2(P ) ≤ C(δ1 + δ2) (δα1

1 + δα2

2 ) .

Thus, to prove the lemma, it suffices to show J[ ](1,Mδ1 ,δ2 , L
2(P )) <∞. Since R(z, θ, f) is

Lipschitz in the parameters (θ, f) by Assumption 3.2 (a), we have, as in Theorem 2.7.11 of

Van der Vaart and Wellner (1996, p.164),

N[ ](2ε ‖ṁ(z, δ1, δ2)‖L2(P ) ,Mδ1,δ2 , L
2(P )) ≤ N

(

ε,Θδ1 × (Fδ1 ,δ2 ∩ F1), ‖·‖Θ×F

)

.

Then since ‖Mδ1,δ2‖L2(P ) = (δ1 + δ2) ‖ṁ(z, δ1, δ2)‖L2(P ), substituting ε(δ1 + δ2)/2 for ε in
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the both sides of the inequality above gives

N[ ](ε ‖Mδ1,δ2‖L2(P ) ,Mδ1,δ2 , L
2(P ))

≤ N
(

ε(δ1 + δ2)/2,Θδ1 × (Fδ1,δ2 ∩ F1), ‖·‖Θ×F

)

≤ N (ε(δ1 + δ2)/4,Θδ1 , ‖·‖) ×N (ε(δ1 + δ2)/4, (Fδ1 ,δ2 ∩ F1), ‖·‖F )

≤ N (εδ1/4,Θδ1 , ‖·‖) ×N (εδ2/4, (Fδ1 ,δ2 ∩ F1), ‖·‖F )

= N
(

ε/4, δ−1
1 Θδ1 , ‖·‖

)

×N
(

ε/4, δ−1
2 (Fδ1 ,δ2 ∩ F1), ‖·‖F

)

≤ N (ε/4,Θ, ‖·‖) ×N (ε/4,F1, ‖·‖F )

≤ N (ε/4,Θ, ‖·‖) ×N (ε/(8CL),Θ, ‖·‖) × sup
θ∈Θ

N (ε/8, Cα
M (X ), ‖·‖∞) ,

(B.6)

where the last inequality follows from Lemma B.2. By Theorem 2.7.1 of Van der Vaart and

Wellner (1996, p.155), there exists a constant CK depending only on M , α, diamX , and d1

(recall that d1 is the dimension of X ) such that

logN (ε, Cα
M (X ), ‖·‖∞) ≤ CK

(

1

ε

)d1/α

.(B.7)

Then it is straightforward to verify that J[ ](1,Mδ1 ,δ2 , L
2(P )) <∞ using the results obtained

in (B.6) and (B.7).

B.2 Asymptotic expansion of Sn2(f(·, θ))

Write Sn2(f(·, θ)) = Sn21(f(·, θ)) + Sn22(f(·, θ0)), where

Sn21(f(·, θ)) = n−1
n
∑

i=1

∆2i[f(·, θ) − f(·, θ0)] − ∆∗
20[f(·, θ) − f(·, θ0)]

Sn22(f(·, θ0)) = n−1
n
∑

i=1

∆2i[f(·, θ0) − f0(·, θ0)] − ∆∗
20[f(·, θ0) − f0(·, θ0)].

Notice that the second term Sn22(f(·, θ0)) does not depend on θ, therefore we can ignore

this term. To establish an asymptotic expansion of the first term, further write

Sn21(f(·, θ)) = n−1
n
∑

i=1

[∆2i − ∆∗
20][f0(·, θ) − f0(·, θ0)]

+ n−1
n
∑

i=1

[∆2i − ∆∗
20] [Lf (·, θ)] ,

where Lf (·, θ) = [f(·, θ) − f(·, θ0)] − [f0(·, θ) − f0(·, θ0)].
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To deal with the second term of Sn21(f(·, θ)), consider a class of functions Lδ1,δ2,δ3

Lδ1,δ2,δ3 =
{

∆20[z, Lf (·, θ)] − ∆∗
20[Lf (·, θ)] : (θ, f) ∈ Θ ×Fδ3 ,

‖θ − θ0‖ < δ1, and sup
{θ:‖θ−θ0‖<δ1}

‖f(·, θ) − f0(·, θ0)‖∞ < δ2

}

,

where Fδ3 is a class of functions f : Z × Θ 7→ Rdf that are in F1 and in addition, for any

δ3 > 0,

‖[f(·, θ) − f(·, θ0)] − [f0(·, θ) − f0(·, θ0)]‖∞ ≤ δ3 ‖θ − θ0‖ .(B.8)

Then by Assumption 3.4, for any δ3 > 0, f̂n(·, θ) ∈ Fδ3 with probability approaching one.

Therefore, we can restrict further the parameter space of f(·, θ) to be Fδ3 .

Since supθ ‖Lf (·, θ)‖∞ ≤ δ1δ3, an envelope function Lδ1,δ2,δ3 for the class Lδ1,δ2,δ3 is

Lδ1,δ2,δ3 = C(z)δ1δ3(B.9)

for some C(z) satisfying ‖∆20[z, Lf (·, θ)]‖ ≤ C(z) ‖Lf (·, θ)‖∞ for any θ.

Lemma B.4.

E

[

sup
Lδ1,δ2,δ3

∣

∣

∣

∣

∣

n−1
n
∑

i=1

[∆2i − ∆∗
20] [Lf (·, θ)]

∣

∣

∣

∣

∣

]

= o
(

n−1/2δ1

)

+ o
(

n−1
)

.

Proof. As in (B.5), there is a positive constant C such that

E

[

sup
Lδ1,δ2,δ3

∣

∣

∣

∣

∣

n−1/2
n
∑

i=1

[∆2i − ∆∗
20] [Lf (·, θ)]

∣

∣

∣

∣

∣

]

≤ CJ[ ](1,Lδ1,δ2,δ3 , L
2(P )) ‖Lδ1,δ2,δ3‖L2(P ) .

(B.10)

Note that for any ε > 0,

N[ ]

(

C[‖Lδ1,δ2,δ3‖L2(P )]ε,Lδ1,δ2,δ3 , L
2(P )

)

= N[ ]

(

ε, [‖Lδ1,δ2,δ3‖L2(P )]
−1Lδ1,δ2,δ3 , L

2(P )
)

≤ N[ ]

(

ε,L, L2(P )
)

.

where L is a class of functions such that

L =
{

∆20[z, Lf (·, θ)] − ∆∗
20[Lf (·, θ)] : (θ, f) ∈ Θ ×F

}

.

By arguments similar to those used in the proof of Lemma B.2, for any ε1 > 0 and ε2 > 0,

N[ ]

(

C(ε1 + ε2),L, L
2(P )

)

≤ N (ε1,Θ, ‖·‖) × sup
θ∈Θ

N (ε2, C
α
M (X ), ‖·‖∞)

for some C. It follows that J[ ](1,Lδ1,δ2,δ3 , L
2(P )) < ∞, provided that α > d1/2. Then the

lemma follows immediately.
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Lemma B.5.

Sn2(f̂n(·, θ)) = n−1
n
∑

i=1

[∆2i − ∆∗
20][∂f0(·, θ0)/∂θ

T ](θ − θ0) + op(n
−1/2δ1) + op(δ

2
1) +RSn2

uniformly over θ ∈ Θδ1 , where RSn2
is a term that is independent of θ.

Proof. The lemma follows immediately from Lemma B.4 since

n−1
n
∑

i=1

[∆2i − ∆∗
20][f0(·, θ) − f0(·, θ0)]

= n−1
n
∑

i=1

[∆2i − ∆∗
20][∂f0(·, θ0)/∂θ

T ](θ − θ0) + op

(

‖θ − θ0‖
2
)

.

B.3 Asymptotic expansion of S∗(θ, f(·, θ))

Define

H∗(θ, f(·, θ)) =

∫ 1

0
(1 − s)

{

Dffm
∗(θ, fs(·, θ))[f(·, θ) − f0(·, θ), f(·, θ) − f0(·, θ)]

}

ds

−

∫ 1

0
(1 − s)

{

Dffm
∗(θ0, fs(·, θ0))[f(·, θ0) − f0(·, θ0), f(·, θ0) − f0(·, θ0)]

}

ds,

where fs(·, θ) = f0(·, θ) + s(f(·, θ) − f0(·, θ)).

Lemma B.6. For any (θ, f(·, θ)) in an open, convex neighborhood of (θ0, f0(·, θ0)),

S∗(θ, f(·, θ)) =
1

2
(θ − θ0)

TV0(θ − θ0)

+
d

dθT

(

Dfm
∗(θ, f0(·, θ))[f(·, θ) − f0(·, θ)]

)
∣

∣

∣

θ=θ0

(θ − θ0)

+H∗(θ, f(·, θ)) + o(‖θ − θ0‖
2) +RS∗

uniformly over θ in Θδ1, where RS∗ is a term that is independent of θ and V0 is defined in

(3.22).

Proof. Write S∗(θ, f(·, θ)) = S∗
1(θ)+S∗

2(θ, f(·, θ)), where S∗
1(θ) = m∗(θ, f0(·, θ))−m

∗(θ0, f0(·, θ0))

and S∗
2(θ, f(·, θ)) = m∗(θ, f(·, θ)) −m∗(θ, f0(·, θ)).

First, consider S∗
1(θ). Since θ0 is a unique minimizer of m∗(θ, f0(·, θ)) and θ0 is in the

interior of Θ (see Assumption 3.1 (a) and (b)), dS∗
1(θ)/dθ = 0. Then by simple calculus,

S∗
1(θ) =

1

2
(θ − θ0)

TV0(θ − θ0) + o(‖θ − θ0‖
2),(B.11)
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where V0 is defined in (3.22).

Now consider S∗
2(θ, f(·, θ)). An application of Taylor’s Theorem of m∗(θ, f(·, θ)) around

(θ, f0(·, θ)) (equivalently, evaluating (3.2) at (θ, f) = (θ, f(·, θ)) and (θ0, f0) = (θ, f0(·, θ))

gives

S∗
2(θ, f(·, θ)) = Dfm

∗(θ, f0(·, θ))[f(·, θ) − f0(·, θ)]

+

∫ 1

0

{

(1 − s)Dffm
∗(θ, fs(·, θ))[f(·, θ) − f0(·, θ), f(·, θ) − f0(·, θ)]

}

ds,(B.12)

where fs(·, θ) = f0(·, θ) + s(f(·, θ)− f0(·, θ)). By Assumption 3.6 (a), a Taylor expansion of

the first term of the right hand side of (B.12) gives

Dfm
∗(θ, f0(·, θ))[f(·, θ) − f0(·, θ)] = Dfm

∗(θ0, f0(·, θ0))[f(·, θ0) − f0(·, θ0)]

+
d

dθT

(

Dfm
∗(θ, f0(·, θ))[f(·, θ) − f0(·, θ)]

)∣

∣

∣

θ=θ0

(θ − θ0)

+R∗
S2

(θ),

where the Taylor series remainder term R∗
S2

(θ) is of order o
(

‖θ − θ0‖
2
)

because f(·, θ) is

restricted to be in a neighborhood of f0(·, θ). Thus, this result yields

S∗
2(θ, f(·, θ)) =

d

dθT

(

Dfm
∗(θ, f0(·, θ))[f(·, θ) − f0(·, θ)]

)
∣

∣

∣

θ=θ0

(θ − θ0)

+H∗(θ, f(·, θ)) + o
(

‖θ − θ0‖
2
)

+RS∗

(B.13)

uniformly over θ in Θδ1 , where RS∗ is a term that is independent of θ, defined by

RS∗ ≡ Dfm
∗(θ0, f0(·, θ0))[f(·, θ0) − f0(·, θ0)]

+

∫ 1

0

{

(1 − s)Dffm
∗(θ0, fs(·, θ0))[f(·, θ0) − f0(·, θ0), f(·, θ0) − f0(·, θ0)]

}

ds.

The lemma now follows from (B.11) and (B.13).

Combining the lemma above with Assumption 3.5 gives the following result.

Lemma B.7. The following holds uniformly over θ in Θδ1:

S∗(θ, f̂(·, θ)) =
1

2
(θ − θ0)

TV0(θ − θ0)

+
d

dθT

(

Dfm
∗(θ, f0(·, θ))[f̂(·, θ) − f0(·, θ)]

)∣

∣

∣

θ=θ0

(θ − θ0)

+ op

(

n−1/2 ‖θ − θ0‖
)

+ op

(

n−1
)

+ op

(

‖θ − θ0‖
2
)

+RS∗ ,

where RS∗ is a term that is independent of θ and V0 is defined in (3.22).
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B.4 Additional Proofs

Proof of Proposition 3.1. To verify Assumption 3.5, note that the left-hand side of the

equation in Assumption 3.5 can be rewritten as R̂ff1(θ) + R̂ff2(θ) + R̂ff3(θ), where

R̂ff1(θ) =

∫ 1

0
(1 − s)

{

Dffm
∗(θ, f̂s(·, θ)) −Dffm

∗(θ0, f0(·, θ0))
}

× [f̂n(·, θ) − f0(·, θ), f̂n(·, θ) − f0(·, θ)] ds,

R̂ff2(θ) = −

∫ 1

0
(1 − s)

{

Dffm
∗(θ0, f̂s(·, θ0)) −Dffm

∗(θ0, f0(·, θ0))
}

× [f̂n(·, θ0) − f0(·, θ0), f̂n(·, θ0) − f0(·, θ0)] ds,

R̂ff3(θ) =

∫ 1

0
(1 − s)

{

Dffm
∗(θ0, f0(·, θ0))[f̂n(·, θ) − f0(·, θ), f̂n(·, θ) − f0(·, θ)]

−Dffm
∗(θ0, f0(·, θ0))[f̂n(·, θ0) − f0(·, θ0), f̂n(·, θ0) − f0(·, θ0)]

}

ds,

and f̂s(·, θ) = f0(·, θ)+s(f̂n(·, θ)−f0(·, θ)). Then it follows from (3.9) and one of conditions

(b) (i)-(iii) that that R̂ffk(θ) = op

(

n−1
)

+ op

(

n−1/2 ‖θ − θ0‖
)

for k = 1, 2 uniformly over

θ ∈ Θδ1 .

Let w0(·) = w(θ0, f0(·, θ0)). By (3.9), write

R̂ff3(θ) =
1

2

∫

w0(·)
{

[f̂n(·, θ) − f0(·, θ)]
2 − [f̂n(·, θ0) − f0(·, θ0)]

2
}

dP

=

∫

w0(·)
{

[f̂n(·, θ) − f̂n(·, θ0)] − [f0(·, θ)] − f0(·, θ0)]
}

×
{

[f̂n(·, θ) − f0(·, θ)] + [f̂n(·, θ0) − f0(·, θ0)]
}

dP

=

∫

w0(·)
{

[f̂n(·, θ) − f̂n(·, θ0)] − [f0(·, θ)] − f0(·, θ0)]
}2

+ term not depending on θ.

Since condition (c) is satisfied,

|R̂ff3(θ)| ≤ op(‖θ − θ0‖
2) + term not depending on θ.

uniformly over θ ∈ Θδ1 . Hence, we have proved the proposition.
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Proof of Proposition 3.2. It follows from conditions (a)-(d) and (3.12) that

d

dθT

(

Dfm
∗(θ, f0(·, θ))[f̂n(·, θ) − f0(·, θ)]

)
∣

∣

∣

θ=θ0

=
d

dθT

(
∫

[f̂n(·, θ) − f0(·, θ)]g(·, θ)dP

)

∣

∣

∣

θ=θ0

=

∫

[

∂f̂n(·, θ)

∂θ
−
∂f0(·, θ)

∂θ

]

g(·, θ)dP
∣

∣

∣

θ=θ0

+

∫

[f̂n(·, θ) − f0(·, θ)]
∂g(·, θ)

∂θ
dP
∣

∣

∣

θ=θ0

= n−1
n
∑

i=1

∫

ϕ̃ni(·, θ0)g(·, θ0) dP +

∫

ϕni(·, θ0)
∂g(·, θ0)

∂θ
dP + op(n

−1/2).

(B.14)

Then Assumption 3.6 is satisfied by condition (e).

Proof of Theorem 3.4. Since this theorem can be proved by modifying the proof of Theorem

3.3, we will only indicate the differences that arise from the fact that f(·, θ) ≡ f(·). Abusing

the notation a bit, we will use the same notation as in the proof of Theorem 3.3.

Re-define

R(z, θ, f) = m(z, θ, f(·)) −m(z, θ0, f(·)) − ∆1(z, θ0, f(·))(θ − θ0).

As shorthand notation, letmi(θ, f) = m(Zi, θ, f(·, θ)), ∆1i(θ, f) = ∆1(Zi, θ, f), andRi(θ, f) =

R(Zi, θ, f). Then Sn(θ, f) can be written as

Sn(θ, f) = Sn1(θ, f) + Sn2(f) + Sn3(θ, f) + S∗(θ, f),

where

Sn1(θ, f) = n−1
n
∑

i=1

[∆1i(θ0, f) − ∆∗
1(θ0, f)] (θ − θ0),

Sn2(f) = n−1
n
∑

i=1

[mi(θ0, f) −mi(θ0, f0))] ,

Sn3(θ, f) = n−1
n
∑

i=1

Ri(θ, f) −R∗(θ, f), and

S∗(θ, f) = m∗(θ, f) −m∗(θ0, f).

Notice that by condition (c) of Assumption 3.7,

Sn1(θ, f̂n(·)) = n−1
n
∑

i=1

[∆1i(θ0, f0) − ∆∗
1(θ0, f0)] (θ − θ0) + op(n

−1/2δ1)
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uniformly over θ ∈ Θδ1 . Also, notice that Sn2(f) can be ignored since this term does

not depend on θ. The third term Sn3(θ, f) can be bounded in probability by Cn−1/2δ1+α1

1

uniformly using arguments similar to those used to prove Lemma B.3. The last term S ∗(θ, f)

can be handled exactly the same as in Lemma B.7. Then the theorem can be proved by

arguments identical to those used in the proof of Theorem 3.3 with εn = n−1/2δ1+α1

1 .

Proof of Theorem 3.5. Since Γ1(z) ≡ 0 in view of Assumption 3.6 and the assumption

imposed here, this theorem is a direct consequence of Theorem 3.3.

Lemma B.8. [Consistency for Example 2.1] Assume that

(a) θ0 is an interior point in Θ, which is a compact subset of Rdθ ,

(b) Pr
{

1(X ∈ T )[f0(X1 +XT
2 θ, θ) 6= f0(X1 +XT

2 θ0, θ0)]
}

> 0 for every θ 6= θ0, and

(c) supθ∈Θ

∥

∥

∥
f̂n(·, θ) − f0(·, θ)

∥

∥

∥

∞
= op(1).

As n→ ∞, θ̂n →p θ0.

Condition (b) is a high-level condition that imposes identification of θ0 directly. Suffi-

cient conditions can be found in Ichimura (1993, Assumption 4.2).

Proof of Lemma B.8. Define

S̄n(θ) = n−1
n
∑

i=1

1(Xi ∈ T )ρτ

[

Yi − f̂n(X1i +XT
2iθ, θ)

]

− n−1
n
∑

i=1

1(Xi ∈ T )ρτ (Ui) ,(B.15)

where Ui = Yi − f0(X1i +XT
2iθ0, θ0). To prove the theorem, it is more convenient to work

with S̄n(θ) than (2.4). Write

S̄n(θ) = S̄n1(θ) + S̄n2(θ),

where

S̄n1(θ) = n−1
n
∑

i=1

1(Xi ∈ T )
{

ρτ

[

Yi − f̂n(X1i +XT
2iθ, θ)

]

− ρτ

[

Yi − f0(X1i +XT
2iθ, θ)

]

}

and

S̄n2(θ) = n−1
n
∑

i=1

1(Xi ∈ T )ρτ

[

Yi − f0(X1i +XT
2iθ, θ)

]

− n−1
n
∑

i=1

1(Xi ∈ T )ρτ (Ui) .
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By the triangle inequality and condition (c),

∣

∣S̄n1(θ)
∣

∣ ≤ Cn−1
n
∑

i=1

1(Xi ∈ T )
∣

∣

∣
f̂n(X1i +XT

2iθ, θ) − f0(X1i +XT
2iθ, θ)

∣

∣

∣
= op(1)

uniformly over θ ∈ Θ. By Lemma 2.4 of Newey and McFadden (1994, p.2129), S̄n2(θ)

converges uniformly in probability to S0(θ), where

S0(θ) = E
[

1(X ∈ T )
{

ρτ

[

Y − f0(X1 +XT
2 θ, θ)

]

− ρτ (U)
}]

.(B.16)

It can be shown that S0(θ) is uniquely minimized at θ = θ0 using the identification condition

directly imposed by condition (b). Therefore, the lemma can be proved by the standard

consistency theorem for m-estimators (for example, Theorem 2.1 of Newey and McFadden

(1994, p.2121)).
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