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Abstract

This paper uses revealed preference inequalities to provide the tightest possible (best)
nonparametric bounds on consumer responses to price changes using consumer level data
over a �nite set of relative price changes. These responses are allowed to vary nonpara-
metrically across the income distribution. This is achieved by combining the theory of
revealed preference with the semiparametric estimation of consumer expansion paths
(Engel curves). We label these expansion path based bounds as E-bounds. Deviations
from revealed preference restrictions are measured by preference perturbations which
are shown to usefully characterise taste change and to provide a stochastic environment
within which violations of revealed preference inequalities can be assessed.
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1 Introduction

This paper develops a new approach to measuring demand responses in the study of consumer

behaviour. It concerns the commonly occurring empirical setting in which there is only a

relatively small number of market prices but a large number of consumers within each of those

markets. This research builds on the earlier results in Blundell, Browning and Crawford (2003)

where a powerful method for detecting revealed preference violations was advanced which was

used to provide tight nonparametric bounds on welfare costs. The contribution here is to

use rich within-market consumer level data together with the minimum of restrictions from

revealed preference theory to provide the best bounds on consumer responses to new relative

prices. These E-bounds are shown to be much tighter than those derived from standard

revealed preference analysis.

A common situation in applied economics is that we have a set of observations on agents

in a �xed environment with particular realised economic variables and we wish to predict

their behaviour in the same environment but with new values for the economic variables.

For example, we observe demands at particular sets of prices and total expenditures and

we wish to predict demands at a new set of prices and total expenditure. With no other

structure, the observed behaviour is totally uninformative about the new situation and literally

anything that is logically possible is an admissible prediction. One way around this is to use

a parametric statistical model and interpolate (or extrapolate). An alternative is adopt a

theoretical position on what generates the observed behaviour and to use the theory and

the previous observations to make predictions. Usually this leads to bounds on predicted

behaviour rather than point predictions. Demand responses are set identi�ed in the sense of

Manski (2003). The relevant question then becomes: how plausible is the theory and how

tight are the bounds?

In this paper we derive bounds on predicted demand behaviour from observations on ex-

pansions paths (Engel curves) for a �nite set of prices and the imposition of the basic (Slutsky

or revealed preference) integrability conditions from economic theory. The plausibility of the

latter derives from them being, e¤ectively, the observable restrictions from assuming transi-

tivity which is the bedrock of consumer theory in economics. Moreover, the theory implies

testable restrictions so it is potentially rejectable. We give the tightest possible bounds on
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demands given observed expansion paths and the basic (nonparametric) theory, if the latter

is not rejected by the former. We �nd that the data and the theory give surprisingly tight

bounds if we consider new situations that are within the span of the observed data.

To introduce our methodology, imagine facing a set of individual consumers with a se-

quence of relative prices and asking them to choose their individual demands, given some

overall budget that each can expend. If they behave according to the axioms of revealed pref-

erence their vector of demands at each relative price will satisfy certain well known inequalities

(see Afriat (1973) and Varian (1982)). If, for any individual, these inequalities are violated

then that consumer can be deemed to have failed to behave according to the optimisation

rules of revealed preference. This is a very simple and potentially powerful experimental set-

ting for assessing the applicability RP theory. If, as in an experiment, one can choose the

budget at which individuals face each price vector then Proposition 1 of Blundell, Browning

and Crawford (2003) shows that there is a unique sequence of such budgets, corresponding

to the sequence of relative prices, which maximises the chance of �nding such a violation.

This is the Sequential Maximum Power path. If experimental data are not available then

the Blundell, Browning and Crawford (2003) study also shows how to use expansion paths to

mimic the experimental choice of this optimal sequence. Thus providing a powerful method

of detecting RP violations in observational as well as experimental studies. In this paper

we extend the previous analysis in three ways. The �rst of these is the derivation of the

tightest possible bounds on predicted demands for given relative prices and total outlay, for

observational data of the type collected in consumer expenditure surveys. To do this we �nd

it convenient to use the Strong Axiom of Revealed Preference (SARP) rather than the more

general GARP condition used in Blundell et al (2003). Second, we show exactly when having

more data (more observed relative price regimes) is informative in the speci�c sense of tight-

ening predicted bounds. The third innovation concerns how to deal with rejection of the RP

conditions. We show that we can �nd minimal local perturbations to the expansion paths

such that the perturbed data do satisfy the RP conditions and how these perturbations may

be interpreted in terms of taste changes. We also discuss explicitly how our analysis relates

to the emerging literature on set identi�cation (or partial identi�cation, see Manski (2003)).

To construct bounds we extend the analysis introduced in Varian (1983) by considering
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expansion paths for given relative prices rather than demands at some point. We label these

�expansion path based bounds�as E-bounds. The advantages of the E-bounds method devel-

oped here are that it can describe the complete demand response to a relative price change

for any point in the income distribution without recourse to parametric models of consumer

behaviour and it gives the tightest possible bounds, given the data and the theory. The

measurement of such price responses are at the centre of applied welfare economics, they

are a vital ingredient of tax policy reform analysis and is also key to the measurement of

market power in modern empirical industrial economics. Robust measurement is therefore a

prerequisite of reliable analysis in these �elds of applied microeconomics.

In our empirical analysis, the relative price variation occurs over time and we consider

consumer behaviour as it is recorded in standard repeated consumer expenditure surveys

such as the US Consumers Expenditure Survey and the UK Family Expenditure Survey. The

latter is the source for our empirical analysis. We observe samples of consumers, each of a

particular household type, at speci�c points in time. Assuming consumers are price-takers,

we can recover expansion paths by estimating Engel curves at each point in time. We present

E-bounds for own and cross price responses using these expansion paths.

Since the expansion paths are estimated, albeit by semiparametric techniques, they are

subject to sampling variation. Consequently, violations of the revealed preference inequalities

may simply re�ect sampling variation rather than rejections by the individuals in the popu-

lation under study. We develop a test statistic for the revealed preference inequalities and a

method for drawing inferences on the estimated demand bounds. Examining our consumer

expenditure data, we consider whether revealed preference inequality restricted expansion

paths can be found that are not rejected by the data. We �nd that preferences are generally

consistent with RP theory over sub-sequences of time periods in our data but that rejections

over longer sequences do occur. Where signi�cant rejections occur, there are a plethora of

alternatives to the simple model which has stable preferences for the household (the unitary

model). Some of these concern the supplementary assumptions we have to make on aggrega-

tion across households, aggregation of goods, the choice of an annual time period etc.. Other

alternatives are more fundamental. For example, one alternative is that the household does

have transitive preferences but these change over time. We present an explicit measure of
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such taste changes based on estimated perturbations to preferences. These provide a natural

metric against which to measure taste change. Another alternative is that since our sample is

for many-person households, the unitary assumption is incorrect and it is the individuals in

the household who have stable transitive preferences. In this regard Browning and Chiappori

(1998) present evidence, based on a parametric model, that couples do reject the usual Slutsky

conditions but not those for a non-unitary collective model. An important rationale for our

RP approach is that we can be sure that any rejections of the RP conditions for the unitary

model are not due to the choice of functional form. Where signi�cant rejections do occur, the

RP inequalities approach can be extended to allow for a collective model; see Cherchye et al

(2006).

The E-bounds on demand responses we construct are found to be informative. The ad-

vantage of adding in more relative price variation is carefully explored, both theoretically and

empirically. We show that it is the combination of the new prices and the quantity choice

implied by the new expansion path that determines whether the new observation is informa-

tive. We discuss precisely how such information tightens the bounds. Empirically we show

the value of allowing for sampling variation and of introducing perturbations. Bounds on de-

mands are improved and we are also able to detect slow changes in tastes. These bounds on

demand responses and the changes in tastes are found to di¤er across the income distribution.

Freeing-up the variation in relative price responses across the income distribution is one of

the key contributions of this research. Historically parametric speci�cations in the analysis of

consumer behavior have been based on the Working-Leser or Piglog form of preferences that

underlie the popular Almost Ideal and Translog demand models of Deaton and Muellbauer

(1980) and Jorgenson, Lau and Stoker (1982). Even though more recent empirical studies

have suggested further nonlinear income terms, (see, for example, Hausman, Newey, Ichimura

and Powell (1995), Lewbel (1991), Blundell, Pashardes and Weber (1993), Banks, Blundell

and Lewbel (1998)), responses to relative prices at di¤erent incomes for these parametric

forms remain unnecessarily constrained.

The remainder of the paper is as follows: In section 2 we examine bounds on demand

responses and develop a method for generating the best bounds. We also consider how

additional data impacts the bounds and in particular the circumstance under which new data
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are informative. In section Section 3 we describe how we apply our approach to the household

level data in the UK Family Expenditure Survey. We examine the semiparametric estimation

of expansion paths and the method used to detect revealed preference violations and to

impose revealed preference restrictions. In section 4 we estimate E-bounds on cross-price

and own-price responses and show that these can be quite narrow. In section 5 we consider

imposing revealed preference restrictions and introduce the idea of preference perturbations.

Although we �nd we can reject stability of preferences over the whole period from 1975 to

1999, we can �nd sub-periods over which stable preferences cannot be rejected. This is found

to substantially improve the bounds on demand responses. We also estimate bounds on

demands at di¤erent percentiles of the income distribution and show that these can di¤er in

important ways. Section 6 concludes.

2 Expansion Path Bounds on Demands

2.1 De�ning E-bounds.

We shall be concerned with predicting demands given particular budgets. To this end, we

assume that every agent responds to a given budget (p; x), where p is a J-vector of prices

and x is total expenditure, with a unique, positive demand J-vector:

Assumption 1. Uniqueness of demands: for each agent there exists a set of demand

functions q(p; x) : RJ+1++ ! RJ++ which satisfy adding-up: p0q(p; x) = x for all prices p and

total outlays x.

For a given price vector pt we denote the corresponding J-valued function of x as qt (x) (with

qjt (x) for good j) and refer to this vector of Engel curves as an expansion path for the given

prices. We shall also have need of the following assumption:

Assumption 2. Weak normality: if x > x0 then qjt (x) � qjt (x0) for all j and all pt.

This rules out inferior goods. Adding up and weak normality imply that at least one of the

inequalities in this assumption is strict and that expansion paths are continuous.

The question we address is: given a budget fp0; x0g and a set of observed prices and

expansion paths fpt;qt (x)gt=1;::T , what demands are consistent with these observed demands

and utility maximisation? Since we are working with a �nite set of observed prices, we

5



characterise consistency with utility maximisation in terms of revealed preference axioms.

Since we are requiring that demands be single valued (and not correspondences) we work with

the Strong Axiom of Revealed Preference (SARP) rather than the more usual Generalised

Axiom (GARP).1 If at prices pt the agent chooses qt and we have p0tqt � p0tqs then we say

that qt is directly revealed weakly preferred to qs: qtR0qs If we have a chain qtR0qu, quR0qv,

:::qwR
0qs then we say that qt is revealed weakly preferred to qs: qtRqs. Given this we have:

De�nition 1 SARP: qtRqs and qt 6= qs implies not qsR0qt for all s; t.

The de�nition of SARP does not rule that we might have the same demand for two di¤erent

price vectors.

The basic idea behind our analysis is shown in Figure 1 for a two good, two expansion path

example. In this example, the two expansion paths are shown as q1 (x) and q2 (x). These

intersect the new budget line fp0; x0g at q1 (~x1) and q2 (~x2) respectively so that p00q1 (~x1) =

p00q2 (~x2) = x0. We term demand vectors qt (~xt) which satisfy p00qt (~xt) = x0 intersection

demands; the two assumptions on demand above ensure that a unique intersection demand

exists for any fp0; x0g and qt (x). We also show the two budget lines at the intersection

demands, labelled fp1; ex1g and fp2; ex2g respectively. As drawn, the two intersection demands
satisfy SARP since neither is revealed weakly preferred to the other. The �nal step is to display

the set of points on the new budget line fp0; x0g that are consistent with these intersection

points and with SARP. This is shown as the interval labelled S (p0; x0); this set includes the

intersection demands and, for two goods, it is closed. We term this set the support set for

fp0; x0g. Any point on the new budget that is in the support set S (p0; x0) satis�es SARP

for the intersection demands and any point outside fails. For example, a point q0 within the

interior of the support set is weakly revealed preferred to the intersection demands (since

p00q0 = x0 � p00qt (~xt) for t = 1; 2), it is distinct from them but the intersection demands are

not directly weakly preferred to q0. Conversely, consider a point q0 that is not in S (p0; x0). In

this case SARP fails immediately since q1 (~x1)R0q0 (which implies q1 (~x1)Rq0), q1 (~x1) 6= q0
and q0R0q1 (~x1). Finally, the intersection points satisfy SARP and hence are in the support

set.
1Varian (1982) provides a discussion of the relationship between SARP and GARP; in brief, SARP requires

single valued demand curves, whilst GARP allows for set-valued demand correspondences (so that SARP
implies GARP).
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Figure 1: The Support Set
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Given Figure 1 and the de�nition of intersection demands it is straightforward to de�ne

the support set algebraically.2 Given a budget fp0; x0g the set of points that are consistent

with observed expansion paths fpt;qt (~xt)gt=1;:::;T and utility maximisation is given by the

support set :

S (p0; x0) =

�
q0 :

q0 � 0, p00q0 = x0
fp0;pt;q0;qt (~xt)gt=1;:::;T satisfy SARP

�
This di¤ers from the support set de�nition given in Varian (1982) in two major respects. The

Varian de�nition was based on T observed demand bundles whereas the present de�nition

makes use of T expansion paths. Furthermore this support set is de�ned using expansion

paths evaluated at speci�c budget levels; the intersection demands. We refer to the intervals

de�ned by expansion paths in this way as E-bounds - expansion curve based demand bounds.

These bounds on demands for the new budget are best in the sense that tighter bounds cannot

be found without either observing more expansion paths, imposing some additional theoretical

structure over and above utility maximisation (such as quasi-homotheticity or separability)

or assuming a functional form for preferences. To show this we de�ne an alternative support

set that uses points on the expansion paths that are not necessarily intersection points:

S 0 (p0; x0) =

�
q0 :

q0 � 0, p00q0 = x0
fp0;pt;q0;qt (xt)gt=1;:::;T satisfy SARP

�
2In all that follows we assume that the observed prices fp1; :::;pT g are relatively distinct in the sense that

pt 6= �ps for all s; t and any � > 0.
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The next proposition states that this set is always at least as large as the support set; (the

proof is given in the Appendix):

Proposition 1 If demands are weakly normal then S 0 (p0; x0) � S (p0; x0).

Thus there do not exist alternative bounds (derived from the same data) which are tighter

than the E-bounds. The E-bounds therefore make maximal use of the data and the basic

nonparametric theory in predicting in a new situation. The properties of the support set are

given in the following proposition:

Proposition 2 (1) S (p0; x0) is non-empty if and only if the data set fpt, qt (~xt)t=1;:::Tg

satis�es SARP. (2) If the data set fpt;qt (~xt)gt=1:::T satis�es SARP and p0 = pt for some t

then S (p0; x0) is the singleton fqt (~xt)g. (3) S (p0; x0) is convex.

The �rst statement establishes that there are some predicted demands for fp0; x0g if and

only if the intersection demands satisfy SARP. The second statement shows that the support

set is a single point if the new price vector is one that has been observed. Our decision to

consider SARP rather than GARP is largely to give this property; for GARP we would have

an interval prediction even for a previously observed price. The convexity is useful when it

comes to solving numerically for E-bounds. Note that, contrary to what Figure 1 suggests,

with more than two goods the support set is not necessarily closed.

The empirical analysis below requires that we compute E-bounds for given data but the

de�nition of S (p0; x0) is not particularly suited to empirical implementation as it stands. The

second set we de�ne gives a set of conditions that allow us to do this in a simple way using

linear programming (LP) techniques. If fpt;qt (~xt)gt=1;:::;T satis�es SARP we de�ne:

SLP (p0; x0) =

�
q0 :

q0 � 0; p00q0 = x0;
p0tq0 � p0tqt (~xt) ; t = 1; 2:::T

�
(1)

The set SLP is closed and convex. We now show that these this set is the same as the support

set, except (perhaps) on the boundary of the latter.3 If we denote the closure of S by cl (S)

then we have:
3If we had considered GARP rather than SARP then we would have S = SLP .
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Proposition 3 (1) cl (S (p0; x0)) = SLP (p0; x0). (2) SLP (p0; x0) nS (p0; x0) = fq 2 SLP (p0; x0) :

p0tq = ~xt and q 6= qt (~xt) for some tg

As we have seen, for two goods S (p0; x0) is closed so that it coincides with SLP (p0; x0) but for

more than two goods the set on the right hand side of the second statement is non-empty (so

long as S (p0; x0) is non-empty). SLP (p0; x0) gives us a feasible algorithm for displaying E-

bounds. We �rst de�ne intersection demands and test for SARP on the intersection demands.

If the intersection demands pass SARP, we can then display bounds for each good. For

example, to �nd the supremum predicted value for good j we maximise qj0 subject to the

constraints in (1). This is a standard linear programming problem.

2.2 When is a new observation informative?

We turn now to a consideration of when and how additional observations on expansion paths

lead to an improvement in our bounds. We consider the situation in which we have T observed

prices fp1;p2; :::pTg. Take a hypothetical budget fp0; x0g and suppose that the corresponding

intersection demands satisfy SARP; denote the support set by ST (p0; x0). Suppose now that

we add one more observed price and expansion path, fpT+1;qT+1 (x)g, �nd the corresponding

intersection demand qT+1 (~xT+1) and compute the new support set ST+1 (p0; x0).

We begin with the following observations. Firstly, the support set cannot increase with

the introduction of a new intersection demand; that is ST+1 (p0; x0) � ST (p0; x0) so that

additional information weakly shrinks the support set. Secondly, the introduction of a new

budget plane and corresponding intersection demand might cause a violation of SARP. If it

does then the new support set will be empty (by Proposition 2) and therefore, trivially, we

know that the support set will strictly shrink: ST+1 (p0; x0) = ? � ST (p0; x0). For the rest

of this section we will set this possibility aside and assume that the new observation does not

cause a violation. Given this we ask when a new observation will be informative and lead to a

strict shrinkage of the support set. The �rst result is trivial but is worth formally recording.

Proposition 4 If pT+1 = p0 6= pt for t = 1; :::T , ST (p0; x0) is non-empty and qt (~xt) 6=

qs (~xs) for some t and s then ST (p0; x0) � ST+1 (p0; x0).

This shows that if the newly observed price just happens to coincide with p0 then the new

support set will be smaller. The proof of this proposition, along with part 2 of proposition 2,

9



establishes that if the intersection points are distinct (which they will almost surely be) then

the set of predicted points is a singleton only if the new price p0 is equal to one of the observed

prices. More interesting is the case in which pT 6= p0. To present the characterisation for

this, we need one more de�nition:

De�nition 2 The budget plane fpT+1; ~xT+1g intersects with ST (p0; x0) if there exists some

q0 2 ST (p0; x0) such that p0T+1q0 = ~xT+1:

We now present conditions for strict shrinkage of the support set.

Proposition 5 Given ST+1 (p0; x0) 6= ? then ST+1 (p0; x0) � ST (p0; x0) i¤ the new budget

plane fpT+1; ~xT+1g intersects with ST (p0; x0).

This says that a new observation is only informative, in the sense that it will strictly shrink the

support set if the new budget plane intersects with the initial support set. It is therefore the

intersection with the initial support set which is the important feature of any new information

rather than the closeness of any new price observation to the p0 vector of interest. The

following three good example serves to illustrate this proposition and to emphasize the point

that, if the intersection condition does not hold then a new observation will be uninformative

regardless of how close the new price vector is to the hypothetical price vector. Consider the

following data for three goods and three periods:

fp1;p2;p3g =

24 0:64 0:19 0:90
0:26 0:77 0:89
1 1 1

35
fq1;q2;q3g =

24 1:895 1:768 0:399
1:571 1:141 1:901
1:267 1:545 1:850

35 (2)

and take the hypothetical budget given by [p10; p
2
0; p

3
0] = [0:5; 0:5; 1] and x0 = 3.

4 Suppose now

that we observe a new price p4 with an intersection demand:

q4 = [1; 1; 2]
0 (3)

4Note that values for the quantities have been rounded and do not exactly satisfy the intersection demand
condition p00qt = x0.
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We ask: what values of p4 lead to a strict contraction of the support set? With the values

given it is easy to show that any:

p4 = p0 � ["; "; 0]0 (4)

does not give a strict contraction for any " > 0. Thus we can take an new price vector that

is arbitrarily close to the hypothetical prices but does not lead to an improvement in the

bounds. Conversely, any price vector:

p4 = p0 + [0; "; 0]
0 (5)

gives a strict contraction for any " > 0, even if " is large. That is, new prices that are far

from the hypothetical prices may give a strict contraction of the support set.

As we have shown, adding a new data point may tighten bounds. But it may also lead to

a rejection of SARP so that more information is not an unmixed blessing. In the framework

presented so far violations of SARP leads to an empty support set so that we are unable to

make predictions about the demand curve. In the next section we consider how econometric

estimation of expansion paths might provide a stochastic structure in which we can make

progress in such a situation.

3 Estimating Bounds on Demand Responses

3.1 Data

In this analysis we take three broad consumption goods: food, other nondurables, and services5

and examine the E-bounds on demand responses. For this we draw on 25 years of British

Family Expenditure Surveys from 1975 to 1999. In many contexts these three consumption

goods represent an important grouping as the price responsiveness of food relative to services

and to other non-durables is of particular interest. For example, the price responsiveness at

di¤erent income levels is a key parameter in the indirect tax debate. Although food is largely

free of value added tax (VAT) in the UK, the discussions over the harmonisation of indirect

tax rates across Europe and the implications of a �at expenditure tax raised uniformly across

all consumption items requires a good understanding of food demand responses across the

5See the Data Appendix.
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income distribution. It is also important in general discussions of cost of living changes across

the income distribution. Relative food prices saw some abrupt rises as the tari¤ structure and

food import quotas were changed in Europe early in the period under study. To study further

disaggregations of goods with any precision some form of separability has to be assumed.

The Family Expenditure Survey (FES) is a repeated cross-section survey consisting of

around 7,000 households in each year. From these data we draw a relatively homogeneous

sub-sample of couples with children who own a car. This gives us between 1,421 and 1,906

observations per year and 40,731 observations over the entire period. We use total spending

on non-durables to de�ne our total expenditure variable. Table A1 in the Data Appendix

provides descriptive statistics for these data. Figure 2 illustrates the trends in mean budget

shares over the period. As can be seen, the mean budget share for food exhibits a large fall

whereas services are rising steadily over our data period.

75 77 79 81 83 85 87 89 91 93 95 97 99
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Food

Services

Non­durables

Figure 2: Mean budget shares.

The substantial relative price variation seen in the dated points in Figure 3. This �gure

shows the scatter plot of the prices of food and services relative to non-durables. The dashed

lines in the �gure illustrate the convex hull of the relative price data. The relative prices
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Figure 3: Relative prices, 1975� 1999.

show a dramatic change in the mid to late-1970�s. The annual price indices for these com-

modity groups are taken from the annual Retail Prices Index. Nondurables are treated as the

numeraire good. We see a steadily rising price for services relative to food and non-durables.

To compute the E-bounds on demand responses below we will consider variations in relative

prices around a central p0 vector de�ned by the mean price vector. We explore a sequence

of relative price changes in which the price of food is varied whilst the prices of non-durables

and services are held at their mean values. The line of crosses in Figure 3 shows the particular

sequence of the p0 vector we use. Note that this passes through a dense part of the relative

price distribution where we might expect (subject to the discussion in section 2) to be able

to produce quite informative bounds on demand responses. The path also starts and �nishes

in areas of very sparse price information outside the convex hull of the prices where, without

extrapolation, we would not expect to have much to say about likely demand responses. The

solid lines which make up the smaller hull in Figure 3 describe a set of contiguous periods over

which revealed preference conditions are not rejected. We return to this case in our analysis

of E-bounds bounds on demand responses, we �rst lay out the estimation of the expansion
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paths.

3.2 Empirical Expansion Paths

Consumers observed in the same time period and location are assumed to face the same

relative prices. In this analysis, relative prices are assumed to vary exogenously across markets

but we do allow for the endogeneity of total expenditure. Under this assumption, Engel curves

for each location and period correspond to expansion paths for each price regime. Blundell

and Duncan (1998) have shown the attraction of nonparametric Engel curves when trying to

capture the shape of income e¤ects on consumer behaviour across a wide range of the income

distribution. The analysis we present here is applicable to fully nonparametric Engel curves.

To make sure we have su¢ cient support across the income distribution it is often helpful

to pool across di¤erent household types. As in Blundell, Browning and Crawford (2003) we

adopt a shape invariant semiparametric speci�cation for pooling over di¤erent demographic

groups of households. This semiparametric speci�cation for Engel curves turns out to be a

parsimonious, yet accurate, description of behaviour.

Let di represent a (D � 1) vector of household composition variables relating to household

i = 1; :::; n. Our speci�cation takes the form

wij = gj (lnxi � �(d0i�)) + d0i
j + "ij (6)

where wij is the expenditure share for household i on good j:
6

The x variable is a measure of total outlay by the household on the set of goods under

analysis in period t: This is very likely to be jointly determined with the expenditure shares.

To account for the endogeneity of lnx we adopt the control function approach (see Blundell

and Powell (2003)).7 In particular, we specify

lnxi = z
0
i� + vi (7)

where z are a set of variables which include the demographic variables di and earned income

6Throughout this analysis we assume the nonseparable error form (6). As we note below generalisations
of this error speci�cation are an important direction for future research.

7This is analysed in Blundell, Chen and Kristensen (2003) and compared to a the fully nonparametric
instrument variables (NPIV) case. It is found to account quite well for the endogeneity of total expenditure
in comparison to a full NPIV approach.
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as an excluded instrument. The control function approach assumes that the error term for

each consumption good j satis�es:

E("ijj lnxi;di; vi) = 0: (8)

Following Newey, Powell and Vella (1999), semiparametric regression of each share equation

using an augmented equation (6) that includes vi will produce consistent estimates of gj, �

and 
 (see also Blundell and Powell (2003)).

In general, our interest is in consumer behaviour described by the vector of share equa-

tions w = g(lnx; lnp;d; ") where " is a J�1 vector of unobservable heterogeneity that enters

nonseparably in the share equation. An important problem for future research is to estimate

the distribution of demands across the heterogeneity distribution and not focus on average

demands as we do in this paper. In this case, global invertibility is required to identify the

complete distribution of demands, see Brown and Matzkin (1998) and Beckert and Blun-

dell (2005). Moreover generalisations of quantile regression are required for estimation, see

Matzkin (2006). For the more limited case of local average demands considered in this paper,

there is nevertheless a general condition, due to Lewbel (2001), that allows interpretation even

in the case of nonseparable unobserved heterogeneity. Assume F ("j lnx; lnp;d) =F ("jd) so

that preference heterogeneity conditional on demographics is independent of prices and total

outlay. The covariance between budget shares and the responsiveness of these to changes in

log total outlay, conditional on the observable determinants of demand is de�ned as

H(lnx; lnp;d) = cov

�
@g

@ lnx
;g0 j lnx; lnp;d

�
Lewbel (2001) shows that average demands of rational consumers satisfy integrability condi-

tions i¤ H(:) is symmetric and positive semide�nite.8 If H is small relative to the the Slutsky

matrix for these average demands, then the system will be �close�to integrable.

3.3 Testing Revealed Preference Restrictions

Because the expansion paths are estimated they will be subject to sampling variation. Con-

sequently violations of SARP may simply be due to estimation error and we now consider the

8For example, in the Almost Ideal Demand system (Deaton and Muellbuaer, 1980), heterogeneity in the
a(p) parameters would automatically satisfy this condition.
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use the stochastic structure of the estimated Engel curves to allow for this. The starting point

is the suggestion by Varian (1985) for testing optimising behaviour. We develop this idea by

using the precision of the semiparametrically estimated expansion paths at the speci�c income

levels corresponding to the intersection demands. We can then construct a signi�cance test

for violations of the revealed preference conditions and provide a measure of the precision for

the estimated E-bounds.

Let � denote the set of all intersection demands which are SARP-consistent for prices

fptgt=1;:::;T and the new budget fp0; x0g : If the intersection demands violate SARP then

fqt (ext)gt=1;:::;T =2 �. In order to estimate the restricted intersection demands, q�t ; that satisfy
the revealed preference conditions, consider the solution to following the minimum distance

problem

min
fq�t gt=1;:::T

fL
�
fq�tgt=1;:::T

�
=

TX
t=1

(q�t � qt (ext))0
�1t (q�t � qt (ext))g (9)

subject to fq�tgt=1;:::T 2 �; q�t�0; p00q
�
t = x0 8 t:

This weighted distance function de�nes a L2 loss function where the weight matrix 
�1t is the

inverse of the variance-covariance matrix of the estimated unrestricted intersection demands

qt (ext). These estimated demands are de�ned by the semiparametric conditional mean esti-
mator of the Engel curves for each t; evaluated at ext and using n consumer level observations
in each period. The solution to (9) de�nes the nearest set of nonnegative intersection demands

which are consistent with SARP. The support set can then be estimated using the restricted

intersection demands.

The distance function (9) evaluated at the restricted intersection demands provides a test

statistic for the revealed preference null hypothesis. The revealed preference conditions are

a set of moment inequalities and if the intersection demands satisfy the revealed preference

restrictions then the objective function will be minimised at zero. There will therefore be a

range of estimates at which the statistic can be identically zero. This statistic falls in to the

class of criterion functions for set identi�ed models investigated in Chernozhukov, Hong and

Tamer (2006). To carry out inference we construct a bn < n sub-sample bootstrap critical

value for this statistic (see Andrews and Guggenberger (2006)) and also use the sub-sample

bootstrap to provide inference on the estimated E-bounds.
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An interpretation of the restricted intersection demands q�t is as local perturbed demands

that conform to SARP. That is they measure the minimum perturbation to tastes necessary

to ensure preference stability. Consequently, the perturbations, q�t � qt (ext) ; themselves are
likely to be of interest: random taste behaviour would be re�ected in a corresponding random

pattern in perturbations; slowly changing tastes would be re�ected by a systematic evolution

of these perturbations. We investigate the estimated perturbations in our empirical analysis

below.

4 Empirical E-Bounds on Demand Responses

To construct E-bounds in our application to the FES data, we �rst estimate the three-good

Engel curve system as described in the previous section. Using the estimated expansion

paths we recover the intersection demands for each fp0; x0g and check the revealed preference

conditions for fpt;qt (~xt)g. Perhaps unsurprisingly these data contain some violations of

SARP. Searching for contiguous periods over which we cannot reject stable preferences we �nd

the periods 1982 through 1991 satisfy SARP. The potential cost of discarding other periods

can be seen by looking back to the smaller convex hull in Figure 3 which shows the price data

corresponding to the subset of SARP-consistent intersection demands. A comparison of the

two convex hulls shows the reduction in the space spanned once SARP-violating intersection

demands have been dropped.

In Figure 4 we present the E-bounds on the own demand curve for food at the median

income using the reduced set of SARP-consistent observations. As can be seen from a com-

parison with Figures 3, the bounds on the demand curve are particularly tight when the p0

vector is in the dense part of the observed price data. Outside the convex hull of the data the

E-Bounds widen and we cannot rule out extreme responses (such as households not buying

food if the price rises by more than 5%).

In Figures 5 and 6 we present the corresponding E-bounds for cross price responses. These

�gures show the power of E-Bounds: through the use of revealed preference inequalities and

without appealing to parametric models or extrapolation we have been able to construct tight

bounds on own and cross price responses. They also show the limitations in the sense that
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Figure 4: Own price demand bounds for food.

price experiments (by the standards typical of many policy simulation studies) can easily

take on values outside the range of observed price variations and produce bounds which are

necessarily very wide.
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Figure 5: Cross-price demand bounds for non-durables.

To construct E-bounds on demand curves we have exploited movements along the esti-

mated expansion paths and it is reasonable to ask whether this involved comparisons across

a wide range of incomes. In fact we �nd that these comparisons do not require implausibly
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Figure 6: Cross-price demand bounds for services.

wide variations across income levels. For example, to construct the curve in Figure 4, 10 in-

tersection demands are required. The range of income went from the 56th percentile in 1982

to the 40th percentile in 1991. This shows a further attractive feature of the local nature

of this analysis: nonparametric Engel are only required over a limited range of the income

distribution when constructing a speci�c demand bound at a particular income percentile.

5 Imposing Revealed Preference Restrictions

5.1 Constrained E-Bounds

In the previous section we searched for a contiguous period of SARP-consistent demands

and simply discarded those intersection demands which caused violations. In this section

we investigate the improvements which can be made if we impose SARP-consistency across

relative prices where violations occur using the criterion function (9). In principle this should

further tighten the bounds because (i) it will expand the convex hull of the prices in use

thereby potentially increasing the range over which we can tightly bound the demand curves,

and (ii) the extra information may include budget planes which intersect with the support

sets which underlie Figure 4, 5 and 6. By Proposition 5 this will strictly shrink the bounds.

We begin our examination of SARP-constrained E-bounds by constraining intersection

demands at all the relative prices such that they are theory consistent at each fp0; x0g budget
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Figure 7: Demand perturbations

along the demand curve. We do this using the weighted minimum distance procedure (9)

using the inverse of the pointwise variance covariance matrix of the estimated expansion

paths (evaluated at the intersection demands values) as the weight matrix.

Figure 7 illustrates the perturbations q�t � qt (ext) by good and period in the center of
the demand curves at the median income. Since there are three goods and 25 intersection

demands (one each of the 25 annual Engel curves) there are 75 perturbations. No structure

is imposed on these perturbations other than that the restricted intersection demand are

nonnegative and satisfy SARP. The �gure also contains 95% pointwise con�dence intervals

for some periods which suggests an extended period in the centre of this range where we may

be able to �nd a stable representation of preferences.

If demand behaviour were completely random, or if it were rational but contaminated with

classical measurement error, then we might expect that the perturbations would re�ect this.

Slowly changing tastes on the other hand would be re�ected by a systematic evolution of these

perturbations. In fact, the adjustments needed to make these data theory-consistent seem

to follow a reasonably systematic pattern. The perturbation to food demand, for example,

is generally increasing over time. It is negative in the early data indicating that the earlier

food demands needs to be adjusted downwards and the later observations need to be adjusted
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upwards. This can be interpreted as the perturbation necessary to adjust for a slow change

in preferences away from food towards services. Comparing this to Figure 2 we can see that

this adjustment would go some way to slowing the apparent decline in the food share over

the period.

The resulting own demand curve E-bounds are illustrated in Figures 8 and 9 along with,

for comparison, the E-bounds recovered by dropping SARP rejections (Figure 4: the solid

lines). As can be seen, there is an improvement/narrowing of the bounds when all of the

observations are used and constrained to be revealed preference consistent, compared to the

case in which some data points are just dropped. Nevertheless, the improvement is quite

small in the central part of the demand curve (see Figure 9) where the existing bounds were

already fairly tight. Note also that there is no reason for the new bounds to lie everywhere

inside the old bounds. Whilst the addition of theory-consistent data always weakly tightens

the bounds, the data being added here contains violations and has been perturbed as a result.

Consequently the restricted intersection demands can lead to the bounds widening at some

relative price points. The general pattern of the bounds are similar however, with typically

wider bounds the further the new price vector is from the most dense part of the observed

price distribution.

As before it is useful to examine the range of incomes (total budgets) over which compar-

isons have been made to construct these E-bounds for the median income consumer. Again

the range is quite limited going from a maximum of the 60 percentile in the mid-1970s to the

40th percentile at the end of the 1990s.

5.2 Price Responses Across the Income Distribution

The demand bounds on price responses presented above have been constructed at the median

income (expenditure). But we might expect demand responses to vary with income levels.

Figure 10 shows how the demand bounds vary according to the total budget. Three sets

of bounds are calculated corresponding to the 25th, 50th and 75th percentiles of the x0

distribution (the solid lines for the median are identical to the dashed lines in the preceding

�gure over this range). It is clear from this �gure that there is not a single elasticity that
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Figure 8: Constrained E-Bounds for Food
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Figure 9: Constrained E-Bounds for Food - Detail
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summarises price response behaviour. Price responses appear to be quite variable both along

each demand curve and also across income levels. The range of price responsiveness highlights

the local nature of our nonparametric analysis. The price responsiveness are local to both

income and relative prices. Unlike in the Stone-Geary model, for example, there is no reason

why price elasticities should not be increasing or decreasing with income. For some broad

aggregates such as food a price elasticity which is increasing with income would seem sensible

while for more disaggregated food items - rice and potatoes, for example - the reverse could

equally well be true.
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Figure 10: Demand Bounds for Food By Budget Percentile (log-log)

5.3 Revealed Preference Violations and Best RP-Consistent De-
mands

In the analysis so far we have investigated two approaches to dealing with violations of revealed

preference: dropping o¤ending intersection demands and imposing SARP restrictions on all

of the data. We have seen that the perturbations required to make the intersections demands

SARP-consistent are trended and are consistent with a story of systematic taste change over

the period. Using a 20% subsampling critical value for the statistic (9) convincingly rejects
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SARP with a p-value very close to zero.9 Simply imposing SARP across all the periods in

this data is clearly invalid.

We therefore return to our SARP-consistent dataset. As the perturbations in Figure 7

suggest it may be possible to add additional intersection demands outside this period without

rejecting the SARP restrictions. Using the criteria (9) we found that expanding the set of

intersection demands by adding the periods 93-95 did not reject SARP, the 20% subsample

p-value was 0.08. The extended convex hull of the relative price space spanned by these

periods is shown in Figure 11.
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Figure 11: Price scatter plot of the extended period

Using this extended set of intersection demands the resulting E-bounds on the own price

demand curve is in Figures 12 and 13. Figure 12 shows the demand curve using the original

SARP-consistent subset of the data (solid lines), and the demand curve obtained by imposing

SARP on the extended demand subset of the data.

Figure 13 gives a detailed view of the central part of the demand curve. At �0�the E-

bounds using the extended period are [9.6742, 9.8694] and the sub-sample 95% con�dence

9Rejection also occurs using a 25% and a 15% subsample.
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region is [9.4987, 9.9516]. As in our discussion of Figure 8, because the extended period uses

restricted intersection demands the new E-bounds do not necessarily lie everywhere inside the

bounds that simply use the 82-91 period.
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Figure 12: Best RP-Consistent E-Bounds for Food
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Figure 13: Best RP-Consistent E-Bounds for Food: Detail
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6 Summary and Conclusions

The aim of this paper has been to bound demand responses for new sets of relative prices

and total expenditure using revealed preference inequalities alone. We have focussed on the

situation where we see only a relatively small number of market prices but a large number

of consumers in each of these markets. Our approach has been to make use of this rich

within-market consumer-level data to estimate income expansion paths conditional on prices.

We have then shown how to derive best bounds on predicted demand behaviour from a

combination of observations on expansions paths and the imposition of the basic (Slutsky

or revealed preference) integrability conditions from economic theory. We �nd that these

E-bounds give surprisingly tight bounds, especially where we consider new situations that are

within the span of the relative price data in observed markets.

The E-bounds approach to measuring consumer behaviour allows price responses to vary

nonparametrically across the income distribution by exploiting micro data on consumer ex-

penditures and incomes over a �nite set of discrete relative price changes. We have introduced

the concept of preference perturbations, local to each income percentile, which characterise

the degree of congruence with RP conditions and provide a useful metric for describing taste

change.
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Appendix: Proofs of Propositions
Proof of Proposition 1.
Let S 0 (p0; x0) denote the support set

S 0 (p0; x0) =

8<:q0 :
p00q0 = x0, q0 � 0 and

fp0;pt;q0;qt (x)gt=1;:::;T satis�es SARP
and xt 6= ~xt for some t

9=;
where the qt (x) data are demands on expansion paths at arbitrary budget levels. Suppose
that there exists some demand vector q0 � 0 and p00q0 = x0 such that q0 2 S (p0; x0) but q0 =2
S 0 (p0; x0) : Then by de�nition of S 0 (p0; x0) it must be the case that fp0;pt;q0;qt (x)gt=1;:::;T
contains a violation of SARP. That is there is some element of fqt (x)gt=1;:::;T (call it qt (x))
such that either qt (x)Rq0 and q0R0qt (x) or q0Rqt (x) and qt (x)R0q0. Consider the �rst
case where q0R0qt (x). If demands are weakly normal then the corresponding intersection
demand qt (ext) used to de�ne S (p0; x0) must be such that qt (ext)R0qt (x). But qt (x)Rq0
and hence qt (x)Rqt (ext) and there is a contradiction of SARP. Now consider the second case
where qt (x)R0q0. Since q0 2 S (p0; x0) we know that by de�nition p0tq0 � p0tqt(~xt) and hence
qt (x)R

0qt(~xt). Therefore we have another contradiction of SARP. Hence q0 =2 S 0 (p0; x0))
q0 =2 S (p0; x0) :�

Proof of Proposition 2.
(1) S (p0; x0) is non-empty if and only if the data set fpt;qt (~xt)gt=1;:::T satis�es SARP.
If fpt;qt (~xt)gt=1;:::T fail SARP than so does fp0;pt;q0;qt (~xt)gt=1;:::;T for any fp0;q0g so that
the support set is empty. Conversely, if fpt;qt (~xt)gt=1;:::T pass SARP then these points satisfy
the conditions for inclusion in S (p0; x0) which is thus non-empty.
(2) S (p0; x0) is the singleton qt (~xt) if p0 = pt and the data set fpt;qt (~xt)gt=1;:::T satis�es
SARP.
Let p0 = pt and suppose there is a q0 2 S (p0; x0) with q0 6= qt (~xt). We have p00q0 = x0. By
construction qt (~xt)R0q0 which implies qt (~xt)Rq0. Since q0 satis�es SARP and q0 6= qt (~xt)
we have not (q0R0qt (~xt)) which is equivalent to p00q0 < p00qt (~xt) = p0tqt (~xt). Since both
sides of this strict inequality are equal to x0 this gives a contradiction.
(3) S (p0; x0) is convex.
Let the support set contain �q0 and ~q0. The convex combination ��q0 + (1� �) ~q0 for � 2
[0; 1] satis�es the non-negativity constraint and p00 (��q0 + (1� �) ~q0) = �x0 + (1� �)x0 =
x0. Finally, we have p0t�q0 � p0tqt(~xt) and p

0
t~q0 � p0tqt(~xt) so that p

0
t (��q0 + (1� �) ~q0) �

p0tqt(~xt).�

Proof of Proposition 3.
If fpt;qtgt=1;2:::T fails SARP then both sets are empty and the proposition holds trivially. In
the following we shall assume that fpt;qtgt=1;2:::T passes SARP. We shall �rst show SLP � S,
then part 2 of the proposition and then cl (S) � SLP .
SLP (p0; x0) � S (p0; x0).
Take any q0 2 S (p0; x0). We have q0 � 0 and p00q0 = x0 and fpt;qtgt=1;2:::T satis�es SARP.
Thus we only need to check the last condition in SLP . Since p00q0 = x0 = p00qt we have
q0R

0qt which implies q0Rqt. The de�nition of SARP then gives p0tqt < p0tq0 which is the
condition in the de�nition of SLP (p0; x0).
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For part 2 of the proposition we have:

SLP n S =

8<:
q0 : q0 � 0;p00q0 = x0;

p0tq0 � p0tqt (~xt) ; t = 1; 2; :::T
fp0;pt;q0;qt (~xt)gt=1;:::T fails SARP

9=;
If q0 = qt (~xt) q0 2 S so that we only need to consider q0 6= qt (~xt) for all t. This and the
failure of SARP implies either:
(A) qt (~xt)Rq0 and p00q0 � p0tqt (~xt) for some t. The �rst statement requires that there
is some s such that qs (~xs)R0q0 which implies p0sqs (~xs) � p0sq0. Combining this with the
condition p0sq0 � p0sqs (~xs) gives p0sq0 = p0sqs (~xs) as in the statement in the proposition.
or:
(B) q0Rqt (~xt) and p0tqt (~xt) � p00q0. In this case the latter statement and p0tq0 � p0tqt (~xt)
give the statement in the proposition.
cl (S) � SLP .
We have just shown that it is only boundary of SLP that are not in S. Thus the closure of S
contains SLP .�
Proof of Proposition 4.
Since pT+1 = p0 we have that ST+1 is a singleton (by part 2 of proposition 2). Since ST is
convex and there are two distinct intersection points in ST , there are a continuum of points
in ST . Hence ST strictly includes ST+1.�

Proof of Proposition 5.
1) We �rst show that intersection of the budget plane fpT+1; xT+1g with ST (p0; x0) implies
that ST+1 (p0; x0) � ST (p0; x0) : The de�nition of intersection between the new budget plane
fpT+1; xT+1g and ST (p0; x0) implies that qT+1 (~xT+1)R0q0. Since q0 2 ST (p0; x0) the de�-
nition of an intersection demand implies q0R0qT+1 (~xT+1). This gives a violations of SARP
in the dataset fpt;qt (~xt)gt=0;:::;T+1. Therefore q0 =2ST+1 (p0; x0) and hence ST+1 (p0; x0) �
ST (p0; x0).

2) We now show that ST+1 (p0; x0) � ST (p0; x0) implies intersection of the budget plane
fpT+1; xT+1g with ST (p0; x0) : Suppose ST+1 (p0; x0) � ST (p0; x0). This implies that there
exists at least one q0 2 ST (p0; x0) such that q0 =2ST+1 (p0; x0). In the following R0 denotes
"not R0". Since fpt;qt (~xt)gt=0;:::;T satis�es SARP, and since q0R0 fqt (~xt)gt=1;:::;T by the de�-
nition of intersection demands, this implies that fqt (~xt)gt=1;:::;T R0q0: Since q0 =2ST+1 (p0; x0)
the dataset fpt;qt (~xt)gt=0;:::;T+1 violates SARP. Given fqt (~xt)gt=1;:::;T R0q0 and the assump-
tion that ST+1 (p0; x0) 6= ? this violation must result from qT+1 (~xT+1)R

0q0 ) xT+1 �
p0T+1q0. Hence q0 must lie in the intersection of the convex set S

T (p0; x0) and the closed
half-space p0T+1q0 � xT+1. If there exists some q0 2 ST (p0; x0) such that p0T+1q0 < xT+1
then there must also exist some q0 2 ST (p0; x0) such that p0T+1q0 = xT+1 and therefore the
new budget plane fpT+1; xT+1g intersects with ST (p0; x0).�
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7 Appendix: Data Descriptives
Commodity Groups

�Food�: {bread,cereals,biscuits & cakes, beef, lamb, pork, bacon, poultry, other meats & �sh,
butter, oil & fats, cheese, eggs, fresh milk, milk products, tea, co¤ee, soft drinks, sugar &
preserves, sweets & chocolate, potatoes, other vegetables, fruit, other foods, canteen meals,
other restaurant meals and snacks}.

�Non-durables�: {beer, wine & spirits, cigarettes, other tobacco, household consumables,
petcare, mens outer clothes, women�s outer clothes, children�s outer clothes, other clothes,
footwear, chemist�s goods, audio visual goods, records and toys,book & newspapers, gardening
goods}

�Services�: {domestic fuels, postage & telephone, domestic services, fees & subscriptions,
personal services, maintenance of motor vehicles, petrol and oil, vehicle tax and insurance,
travel fares, tv licences, entertainment}.

Table A1. Descriptive Statistics, 1975 to 1999

Budget Shares Total Exp. Prices Children n
F ND S F S

1975 0.3587 0.3166 0.3247 33.7838 1.0000 1.0000 1.9893 1873
1976 0.3577 0.3076 0.3347 32.5127 1.0881 1.0687 1.9702 1642
1977 0.3564 0.3124 0.3312 32.3477 1.1574 1.0447 1.9429 1770
1978 0.3556 0.3136 0.3308 32.5452 1.1067 1.0398 .1.8828 1681
1979 0.3458 0.3196 0.3346 36.4990 1.1457 1.0414 1.8893 1689
1980 0.3384 0.3208 0.3408 36.6857 1.1145 1.1061 1.8619 1781
1981 0.3363 0.3061 0.3576 35.7316 1.1056 1.1836 1.8751 1906
1982 0.3218 0.3101 0.3681 35.8705 1.1262 1.2199 1.8539 1876
1983 0.3214 0.3129 0.3657 35.6571 1.0775 1.2429 1.8571 1743
1984 0.3162 0.3151 0.3688 37.5016 1.1081 1.2492 1.8438 1671
1985 0.3081 0.3207 0.3712 37.8100 1.0759 1.2242 1.8323 1622
1986 0.3088 0.3221 0.3692 38.4100 1.0556 1.2239 1.8645 1587
1987 0.3043 0.3228 0.3730 39.0197 1.0819 1.2372 1.8713 1632
1988 0.3042 0.3278 0.3680 41.5325 1.0807 1.2512 1.8744 1648
1989 0.3054 0.3222 0.3724 41.5346 1.0786 1.2713 1.8662 1652
1990 0.3017 0.3129 0.3854 44.2983 1.1084 1.3150 1.8966 1538
1991 0.2972 0.3103 0.3925 42.6966 1.0839 1.3207 1.8351 1510
1992 0.2882 0.3121 0.3997 41.5212 1.0616 1.3445 1.9068 1578
1993 0.2866 0.3077 0.4057 41.3798 1.0332 1.3533 1.8895 1511
1994 0.2825 0.3029 0.4146 40.9660 1.0305 1.3748 1.8838 1489
1995 0.2912 0.2912 0.4176 39.6002 1.0439 1.3645 1.8622 1502
1996 0.2889 0.2999 0.4112 41.8850 1.0671 1.3491 1.8638 1476
1997 0.2741 0.3041 0.4218 45.2517 1.0655 1.4071 1.8410 1421
1998 0.2788 0.2981 0.4230 44.0626 1.0551 1.4102 1.9099 1432
1999 0.2722 0.3032 0.4245 47.1033 1.0918 1.4367 1.8774 1501

Notes: F=Food, ND=Non-durab les, S=Services
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