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Abstract

The motile behaviour of bacteria underlies many important aspects of their actions, in-

cluding pathogenicity, foraging efficiency, and ability to form biofilms. In this thesis, we

apply mathematical modelling and analysis to various aspects of the planktonic motility

of flagellated bacteria, guided by experimental observations. We use data obtained by

tracking free-swimming Rhodobacter sphaeroides under a microscope, taking advantage

of the availability of a large dataset acquired using a recently developed, high-throughput

protocol. A novel analysis method using a hidden Markov model for the identification

of reorientation phases in the tracks is described. This is assessed and compared with

an established method using a computational simulation study, which shows that the

new method has a reduced error rate and less systematic bias. We proceed to apply the

novel analysis method to experimental tracks, demonstrating that we are able to suc-

cessfully identify reorientations and record the angle changes of each reorientation phase.

The analysis pipeline developed here is an important proof of concept, demonstrating a

rapid and cost-effective protocol for the investigation of myriad aspects of the motility

of microorganisms. In addition, we use mathematical modelling and computational sim-

ulations to investigate the effect that the microscope sampling rate has on the observed

tracking data. This is an important, but often overlooked aspect of experimental de-

sign, which affects the observed data in a complex manner. Finally, we examine the role

of rotational diffusion in bacterial motility, testing various models against the analysed

data. This provides strong evidence that R. sphaeroides undergoes some form of active

reorientation, in contrast to the mainstream belief that the process is passive.
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Foreword

In this thesis, we use mathematical modelling and analysis of experimental data to in-

vestigate the process of planktonic bacterial motility, also known as bacterial taxis. This

widely-studied phenomenon is implicated in bacterial infection and industrial biofouling,

which are responsible for severe health risks and vast financial losses. Furthermore, the

motile behaviour of bacteria may provide important information on how they are adapted

to inhabit a specific environmental niche. All of the present work is motivated by the

availability of new, unpublished tracking data, obtained using a novel high-throughput

experimental protocol. The subject organism is Rhodobacter sphaeroides, a rod-shaped

bacterium that occurs naturally in soil, freshwater and marine environments. The bio-

chemical systems underlying the motile behaviour of R. sphaeroides are more complex

than those of the more widely studied model bacterium Escherichia coli [158].

The tracking data represent a rich source of information on the motility of R. sphaeroides ,

but robust analysis techniques are required to extract reliable statistics. We dedicate part

of this thesis to the development of novel methodology to achieve this result. The re-

maining parts are concerned with modelling aspects of bacterial tracking data, including

a study of the effect that sampling frequency has on the information we extract from

tracking data, and an investigation of the effect of Brownian rotation on bacterial motil-

ity. The work is motivated, guided and verified throughout by comparison with the

experimental data. This approach ensures that the problems we investigate in this thesis

are biologically relevant and realistic.
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The field of bacterial motility, though the subject of a great number of studies, contains

many key areas in which further work is required. We now briefly identify the areas in

which, to our knowledge, this thesis has made novel contributions. First, the state of the

art in the analysis of bacterial tracking data remains, with a few exceptions, predomi-

nantly restricted to early work carried out by Berg and Brown [24] and contemporaries.

The analysis methods developed in Chapter 3 are a novel approach to the quantitative

study of tracking data. Our comparative assessment of their performance with simulated

data is the first such study for tracking analysis methods. The application of our meth-

ods to real experimental data leads to novel insight into the motion of R. sphaeroides , as

shown in Chapter 4. Furthermore, the analysis process presented in Chapters 3-4 demon-

strates an important proof of principal for the new experimental protocol, constituting a

new, low-cost, high-throughput methodology that is applicable to myriad biological in-

vestigations in which bacterial motility is a factor. Second, the study by Codling and Hill

[50] on the effect of sampling frequency on tracking data suggests several further areas

of investigation. We consider an extension of the model of motion used in this study in

Chapter 5. In addition, we show how a novel microscopic description of bacterial motion

permits a new analytic description of the role of sampling frequency. Finally, many mod-

els of bacterial motion ignore the role of noise, for example due to Brownian buffeting.

In Chapter 6 we consider two extensions to an existing model by Hagen et al. [83], which

describe the effect of Brownian rotation on motile bacteria. We test the predictions of

our models against experimental data and show how this novel approach yields important

insights regarding the reorientation mechanism in R. sphaeroides .

An overview of the contents of the thesis now follows. We begin by describing the bio-

logical background to bacterial motility in Chapter 1. In this chapter we also discuss the

main experimental methods used to investigate bacterial taxis. Chapter 2 provides an

overview of mathematical modelling approaches related to bacterial taxis and details the

particular modelling framework used throughout the remainder of the thesis. In Chapter
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3 we discuss the nature of the experimental data available to us and the information we

wish to obtain. Novel methods for analysing the datasets to achieve this are motivated

and proposed. We assess the performance of these methods with a simulation study.

Having established the suitability of the methods, in Chapter 4 we proceed to present

and analyse our experimental data. We study the effect of sampling frequency on the ob-

served tracking data in Chapter 5, demonstrating that this is an important consideration.

Finally, in Chapter 6 we address the role of Brownian rotation in bacterial motility, using

mathematical modelling and experimental data to address the open biological question

of the mechanism of reorientation in R. sphaeroides .
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Chapter 1

The biology of bacterial motility and

taxis

In this chapter, we discuss the biological background to bacterial motility, in particular

the process by which bacteria swim through a liquid medium without any attachment to a

solid surface. We review the relevant literature in this area and describe the experimental

techniques with which researchers have probed bacterial motility.

1.1 Bacterial motility and taxis

The term taxis refers to the change in the direction of movement of an organism in re-

sponse to an environmental cue. A related phenomenon is kinesis, which is also a response

to an external stimulus, but without any directional bias. The more general term motility

is used to describe movement that is not necessarily due to an external stimulus. There

are many specific forms of taxis, exhibited by a range of living organisms, which differ

in the nature of the environmental cue involved. For example, phototaxis is movement

mediated by light sources, phonotaxis is motion guided by sounds, and chemotaxis is a

response to specific chemicals detected in the surrounding environment. Many species

of bacteria are able to respond to a wide range of signals from their surroundings, most
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notably light levels and chemical concentrations [192]. In the latter category, chemotac-

tic bacteria alter their direction of movement in order to move towards beneficial carbon

sources such as certain sugars and amino acids, which are referred to as chemoattractants

[5]. Bacteria have also been shown to bias their motion away from certain chemorepel-

lents, such as phenol and various salts [198]. The term ‘adaptive klinokinesis’ is used in

some articles, with the same interpretation as bacterial chemotaxis [113, 145], but this

term is rarely used so we maintain the more common terminology.

Bacteria exhibit a wide range of motile behaviours [84, 94]. When attached to a surface

by their cell body, they are denoted sessile and variously exhibit swarming, gliding and

twitching motility, as well as combinations of these. Away from a surface, bacteria are

known as planktonic and have been shown to float and swim. The evolution of plank-

tonic motility in bacteria has occurred because it confers a selective advantage, enabling

them to migrate towards optimal environments. However, not all planktonic bacteria are

motile, as there exists a tradeoff between the energetic cost of generating the requisite

motility apparatus and the benefits conferred.

Many bacteria are able to switch between sessile and planktonic phenotypes, with a re-

sultant change in their motility [112]. Communities of sessile bacteria, known as biofilms,

are of biomedical interest as they are known to cause many human diseases, including

chronic lung infections, tooth decay and infectious endocarditis [95], in addition to being

the primary cause of failure and infection in indwelling medical devices [10]. Furthermore,

biofouling by biofilms in many industrial processes is believed to result in cumulative

losses of billions of pounds each year [64].

Planktonic motility is an important factor in the development of biofilms, as this pro-

cess controls the initial attachment of individual bacteria to a surface, prior to surface

colonisation [148, 160]. Several studies have noted substantially different behaviour of
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bacteria swimming near to a surface, compared with those swimming far from a surface

[26, 27, 58, 74, 117, 201]. In particular, the trajectories of Escherichia coli tend to become

approximately circular close to a surface. Several mechanisms for such behaviour have

been proposed, involving hydrodynamic models [117, 165] and electrostatic and chemical

interactions [201]. In general, the interactions between bacteria and solid surfaces are not

well understood, and many aspects of altered metabolism and surface-bound motility at

solid-liquid interfaces remain to be elucidated [84].

XXXXXXXXXXXXXXXXXXXX

Filament

Hook

Cell wall and membrane

Membrane-associated
motor components

45 nm

Figure 1.1: A simplified illustration of the components of the bacterial flagellar motor, adapted
with permission from [38].

Throughout this thesis, we consider only planktonic bacteria, which swim freely through

a liquid medium. With a few exceptions, such as the cyanobacterium Synechococcus [66],

all motile planktonic bacteria propel themselves using one or more flagella. A flagellum

is a structure comprising a long helical filament linked through a flexible joint to a rotary

flagellar motor, which is mounted on the bacterial cell body [126]. A simple cartoon of

the assembly is shown in Figure 1.1. The bacterial flagellar motor uses the transmem-

brane potential to generate torque, rotating the filament and propelling the cell forward.

The mechanisms behind bacterial motility based on flagella have been well-studied in

model organisms such as E. coli , Salmonella enterica, marine Vibrio and, more recently,

Rhodobacter sphaeroides [22, 158]. Despite similarities in the flagellar-mediated propul-

10



sive mechanisms, these and other species of bacteria differ in the number and arrangement

of flagella, as summarised in Figure 1.2(a). Peritrichous and lophotrichous bacteria pos-

sess two or more flagella, differing in their points of attachment around the cell. Flagella

emanate from the entire surface of the cell body in peritrichous bacteria and a from single

pole in lophotrichous bacteria. Figures 1.2(b) and 1.2(c) show representative microscope

images of E. coli and R. sphaeroides cells, respectively. These images demonstrate that

the organisms are, respectively, peritrichous and monotrichous (with the flagellum at-

tached medially).

(a)

(b) (c)

Figure 1.2: (a) Schematic diagram of the ways in which flagella may be arranged around a
bacterium (text, left), with specific examples of species which possess such rearrangements (text,
right) [11, 55, 90, 99, 125, 142]. (b) Digital contrast-enhanced image of an E. coli cell stuck
to a microscope coverslip. The cell is approximately 0.5µm in diameter along the short axis.
Six flagella are visible, splayed out on the coverslip. Reprinted with permission from [29]. (c)
Electron microscope image of a R. sphaeroides cell, with its single flagellum attached, measuring
approximately 0.75µm in diameter along the short axis. Reprinted with permission from [11].

Bacteria are also known to exhibit a range of swimming behaviours. Three predominant

modes of swimming are summarised in Figure 1.3. In run-and-twiddle motile behaviour
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(also referred to as run-and-tumble motion by some authors), first proposed by Berg and

Brown [24] to explain the observed motion of the peritrichous bacterium E. coli , bacteria

swim in approximately straight lines interspersed by random, brief reorientation events.

Swimming is achieved through counterclockwise rotation of all of the flagellar motors,

causing the multiple flagella to form a coherent bundle [22]. Reversal of one or more of

the flagellar motors causes the flagella to unbundle and leads to active reorientation [115].

Run-and-stop motion is similar, with the key difference that reorientation is achieved by

relaxing the single flagellum [12]. The exact mechanism of reorientation in R. sphaeroides

is still not understood [12]. We investigate this problem in Chapter 6. The stops observed

in R. sphaeroides are of greater duration than the twiddles observed in E. coli . In the

final mode of motion, run-and-reverse, bacteria are propelled forwards by a single flagel-

lum, the reversal of which causes the bacterium to reverse its direction of travel, with the

cell body being pulled by the flagellum. This type of motility is prevalent among marine

bacteria [139]. It is listed for completeness, but we do not consider it further. Figure 1.3

is not intended as an exhaustive list of motile behaviour; for example, recent evidence

suggests that some species, such as Vibrio alginolyticus, exhibit complex motility with

aspects of both run-and-reverse and run-and-twiddle behaviour [212].

Figure 1.3: Schematic diagram of three modes of motility commonly found in bacteria. (a)
Run-and-twiddle motion, exhibited by E. coli [24]. (b) Run-and-stop motion, exhibited by R.
sphaeroides [11]. (c) Run-and-reverse motion, exhibited by Shewanella putrefaciens [139].
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As a bacterium’s one or more flagella rotate and propel it forwards, the cell body rotates

in the opposite direction [44, 171]. This so-called ‘body roll’ occurs because the torque

required to drive each flagellum is generated by biological components in the bacterial

flagellar motor which are anchored to the cell body. In the case of R. sphaeroides , where

the flagellum is located away from the cell poles (see Figure 1.2 and [11, 86, 205]), the

rotation of the cell body is expected to be more visually pronounced than in monotri-

chous bacteria with a polar flagellum due to the larger radius of rotation. This effect

becomes more significant as the length of the cell increases. The phenomenon of body

roll is relevant to the experimental data that we will describe in Chapter 4.

Variations in the ratio of the torque produced by the bacterial flagellar motor to the flex-

ibility of the connecting hook have been shown in recent mathematical models to affect

the swimming behaviour of monotrichous bacteria [182]. A suboptimal ratio of these two

quantities can lead to large oscillations in the position of the centre of mass of a cell

during the course of a continuous swim, resulting in a helical trajectory. This can reduce

the motility efficiency, and hence the swimming speed, in such situations. Again, this

phenomenon is an important consideration when analysing data from experiments.

Various experimental studies of bacterial motility have noted large variations in swimming

behaviour between individual bacteria in a monoclonal population [12, 45, 150]. Such

phenotypic differences are common in bacteria, where significant stochastic variation

exists in gene expression levels [194]. Therefore it is necessary to study the motion of

many individuals from a bacterial population when carrying out an investigation into

the phenomenon of planktonic motility, in order to gather data that accurately describe

the whole population. Population-level experiments give information averaged over a

population or subpopulation. Conversely, experiments involving visualising individual

bacteria must be repeated a sufficient number of times.
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1.2 Experimental methods used to probe bacterial

motility

The earliest observations relating to bacterial motility were described by Engelmann in

1881 [61] and Pfeffer in 1884 [2]. Both used recently-developed microscopes to visualise

bacteria, with Engelmann describing phototaxis and Pfeffer investigating chemotaxis.

Adler and colleagues performed the first systematic research into bacterial motility [2],

isolating genetic mutants from wildtype E. coli and studying the effect of mutations upon

their motility and ability to undergo chemotaxis [152]. Much of this early work was car-

ried out using swarm plate experiments, in which bacteria are inoculated on semi-solid

agar plates and the rate at which they colonise the plate measured [206]. Another experi-

mental method involves trapping bacteria in a capillary containing a chemical attractant

and measuring their rate of accumulation [4]. Images of these two experiments are shown

in Figure 1.4.

(a) (b)

Figure 1.4: Images illustrating the early experimental methods used to probe bacterial chemo-
taxis. (a) Swarm plate assay carried out by Armstrong and Adler [13], reprinted with permission.
This image was taken 20 hours after the agar plate was streaked with an inoculum containing
E. coli. (b) Capillary assay carried out by Adler [3], reprinted with permission. Bacteria are
introduced to the capillary on the left-hand side, immersed in a solution of nutrients, then the
tube is sealed. This photograph is taken around 45 minutes after sealing, by which time two
separate bands of motile bacteria have travelled along the tube.
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Two prominent experimental methods were developed in the early 1970s that are still

used in many contemporary studies of bacterial motility. The first is the tethered cell as-

say, in which cells are tethered to the surface of a microscope slide by a sheared flagellum

[184]. The action of the flagellar motor causes the cell body to rotate, which is visualised

using a microscope, as illustrated in Figure 1.5(a). This provides information about the

speed and direction of rotation of the motor, in addition to any stops or reversals which

may occur [28]. A drawback of this method is that the rotation of the cell body is often

hindered through contact with the surface [85]. In addition, the motor is under high load

in such a configuration, as it must rotate the whole cell body, which is subject to a great

deal of viscous drag [38]. More recently, a related method has been developed where the

bacterium is tethered to the surface by its cell body [174]. A visible marker, commonly a

small latex bead, is attached to the sheared flagellum and observed using a microscope.

The flagellum rotates with the attached marker, and the motion is recorded, as shown in

Figure 1.5(b). The advantage of this method is that the load on the motor is reduced to

approximately natural levels. This method has been successfully used in many studies to

probe the detailed mechanisms underlying the bacterial flagellar motor [15, 167, 188].

(a) (b)

Figure 1.5: Illustrations of the tethered cell assay, reprinted with permission from [38]. (a)
The cell is tethered by its flagellum and the cell body rotates. (b) The cell is tethered by its
body, a bead is attached to the filament, and the movement of the bead is tracked with a laser
microscope. The yellow shaded cone illustrates the laser beam, which is focused upon the bead.
Arrows denote the direction of rotation.
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A second experimental method, pioneered by Berg [20], involves tracking swimming bac-

terial cells using a microscope. The technology developed to achieve this was based on a

microscope with a movable stage controlled by an electronic feedback loop from the de-

tected light intensity at fixed points in the image. This enables the tracking of individual

cells in three dimensions, and was used by Berg and Brown in the first systematic inves-

tigation of bacterial motility through tracking [24]. Similar experimental techniques have

since been used by many researchers to investigate bacterial motility [37, 62, 74, 123, 201].

This approach enables the experimenter to track an individual bacterium for a long time,

producing a detailed trajectory. In contrast with tethered cell assays, which monitor

motor function, tracking experiments directly reveal the complete phenomenon of swim-

ming behaviour. The method is however relatively laborious, producing a single track at

a time, which limits the number of tracks that can be generated. In three separate stud-

ies, Duffy and Ford [62], Frymier et al. [74] and Vigeant and Ford [201] presented data

for fewer than 100 cells, while Berg and Brown report tracking up to 200 cells per day

[37]. A related experimental method uses computer software to track bacteria swimming

through a fixed field of view [157, 175, 190]. All visible cells are tracked as they pass

through the field of view. The process is automated, and therefore less labour-intensive.

There exists a trade-off in the approaches discussed above. Methods based on a movable

microscope stage are able to track cells in three dimensions at, or away from, a surface,

but produce relatively small datasets. Software tracking methods typically operate in two

spatial dimensions and generate larger datasets, for example the study by Poole et al.

[157] involved around 500 tracks. These studies are limited, however, to tracking cells

that are swimming at the surface of a microscope coverslip. Although tracking multiple

cells in three dimensions has been demonstrated [193, 210], it has not yet been applied

in any systematic studies, possibly due to the difficulty in reproducing the experimental

protocol. For example, Wu et al. [210] developed a high-throughput three-dimensional

tracking assay, but this relies on inducing cells to fluoresce using a plasmid, which requires

additional experimentation and increases the complexity of the method.
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An important distinction exists between the tracking of single cells and simultaneous

tracking of all visible targets. Methods which require the researcher to manually select

cells for tracking may involve a strong bias towards individual bacteria whose swimming

behaviour is deemed ‘representative’ of the population. In reality, monoclonal wildtype

bacterial populations often contain cells exhibiting a wide range of swimming behaviours,

including a significant proportion of non-motile cells [152]. Studies involving manual selec-

tion may fail to represent this spread of motile behaviours. Although this is not explicitly

mentioned in [24], for example, it is highly likely to have been manifest in the populations

studied. When all bacteria within the microscope’s field of view are tracked, there is no

possibility of such user selectivity, although it is conceivable that certain swimming pat-

terns might be systematically under-represented if the tracking process fails more often

for cells exhibiting them. As we shall see in Chapter 4, the dataset analysed in this thesis

contains a wide variety of swimming behaviours.

The method used to gather the data presented in Chapter 4 represents an extension

to the tracking protocols mentioned above. We track multiple targets simultaneously

within a fixed field of view using phase-contrast microscopy, a similar approach to that

followed by Xie et al. [211]. The tracking is performed in two dimensions. This method

will be described in detail in Chapter 4; for now we restrict ourselves to discussing the

main advantages and disadvantages associated with this approach. A major advantage

of the method discussed here is the ability to track cells which are swimming away from

a surface. This has not, to the best of our knowledge, previously been possible using

traditional microscopy techniques available on standard commercial microscopes. Fur-

thermore, the method is high-throughput in terms of the number of tracks generated,

which is on the order of thousands for ten to twenty minutes of microscope footage. As

with any fixed field of view method, a disadvantage of this method is that tracks are

often short in comparison with moving stage methods. In addition, as we capture images
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and track in two dimensions, we lose information relating to the depth (the perpendicular

distance from the focal plane in the microscope) of the tracked bacteria.

Figure 1.6 highlights the differences between fixed field of view tracking and moving stage

tracking. Figure 1.6(a) shows a representative sample of tracks from the dataset used in

Chapter 4. These tracks vary in length from roughly 10 µm to 100 µm. Several different

swimming patterns are apparent, distinguished by the varying speeds and ‘jaggedness’ of

the tracks. In stark contrast, the single track shown in Figure 1.6(b), obtained by Frymier

et al. [74] using a moving stage tracking microscope, is several hundreds of microns long

and three-dimensional.

(a) (b)

Figure 1.6: Representative figures showing tracks from (a) the dataset used in this thesis, de-
scribed in Chapter 4, in which multiple cells are tracked simultaneously in two dimensions using
a fixed field of view, and (b) Frymier et al. [74], in which single cells are tracked mechanically.
Figure reprinted with permission.

Few studies have thus far demonstrated tracking of bacteria in a well-defined concentra-

tion gradient of chemoattractant, due to the technical difficulties involved with setting up

such a gradient. Notably, Berg and Brown [24] successfully tracked bacteria swimming

in a concentration gradient, although the exact nature of the concentration gradient is

not well characterised. Macnab and Koshland [127] observed Salmonella typhimurium in
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a concentration gradient set up using a peristaltic pumping device, but were not able to

systematically obtain statistics relating to the observed motion. Other researchers have

reported differences in bacterial motility observed in isotropic media with varying levels

of chemoattractant [157, 175]. The study conducted by Sager suggests that bacteria re-

spond to a stepwise change in concentration by altering their swimming patterns, before

adapting to return to their original behavioural patterns. These findings, obtained using

tracking experiments, are supported by other findings related to bacterial response and

adaptation [8, 45, 111, 156]. In the method used to obtain our tracking data, the bacteria

are in an time-invariant isotropic environment, hence we are considering the specific case

of bacterial motility in the absence of environmental cues. This is an acceptable limi-

tation because, as we shall see, there is much work to be done on the basal motility of

bacteria before we are able to consider their chemotactic swimming patterns in gradients

of chemoattractant.

1.2.1 Methods in development

Before moving on to describe in greater detail the process of tracking cells imaged under

a microscope, we take the opportunity to discuss briefly some of the developments which

are expected to lead to advances in experimentation in this field. Recent advances in

three-dimensional holography promise to extend the tracking method used in the present

work to three dimensions, in addition to improving the size of the field of view [217].

This technique should produce tracks which are, on average, of greater duration, as well

as avoiding any issues associated with projecting tracks onto a two-dimensional plane.

Advances in the field of microfluidics will also enable experimental studies of bacteria in

well-defined steady gradients of chemoattractant or repellent [6]. Recent improvements

to the original tethered cell assay have enabled high-throughput studies of the response

of bacteria to stepwise changes in concentrations [111]. The modified tethered cell assay,

in which bacteria are tethered by their cell body, has also seen a major improvement to
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the experimental protocol through the use of gold nanoparticles in place of latex beads

[189].

1.3 Tracking

We now focus on the problem of tracking bacterial cells that are imaged using a micro-

scope. We first present an outline of the general methods by which tracking is achieved

in a diverse range of contemporary research studies, before focusing on the specific case

of bacterial tracking.

The aim of a tracking procedure is to associate targets across consecutive video frames.

Automated tracking is a generic problem that is applicable to many research areas in-

cluding biology [93, 173, 176, 180], fluid dynamics [149], security and surveillance [39, 91]

and ecology [114]. There is a great deal of variation in the nature of the video images to

which tracking algorithms may be applied, the appearance of the targets to be tracked

and their motion. In many cases tracking is achieved in two stages: objects to be tracked

are first detected in each frame of the video to create a list of targets (the object detec-

tion stage), then the targets are connected across frames to form a trajectory (the target

association stage).

In most cases, the aforementioned object detection approaches require coupling to a data

association algorithm in order to link targets across frames. The problem is usually com-

plicated by the presence of spurious targets (caused by false positives from the detection

stage), missed detections (false negatives from the detection stage), track crossing, object

occlusion (full or partial overlapping of two or more objects) and track spawning (where

an object splits into two). The majority of the studies discussed in Section 1.2 imple-

ment a data association method known as the nearest neighbour algorithm [149], which

is sensitive to all of these complications, although this problem is rarely discussed in the
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references. Berg [20] gives anecdotal evidence of the issue of occlusion; he describes a

situation in which a motile bacterium strikes a non-motile bacterium whilst being tracked:

“the organism was seen . . . to collide with one which was not swimming; the

microscope locked onto this bacterium and the other swam out of focus.”

Similarly, the presence of false detections can cause the data association algorithm to

inadvertently incorporate spurious targets into a trajectory, rendering an incorrect track.

This provides a motivation for studies in which the main focus is upon improving the

accuracy of the object detection stage. In [210], for example, the bacteria to be tracked

are genetically engineered to fluoresce, to improve the contrast in the microscope image.

Similarly, in [190], the authors use dark field microscopy to improve image contrast. Xie

et al. [211] develop a sophisticated cell detection algorithm to improve the detection of

cells and reduce false detections. We describe the method used to acquire our datasets

in more detail in Chapter 4.

1.4 Conclusion and outlook

In this chapter, we have briefly summarised the biology behind bacterial motility, and

described the experimental methods which are used to investigate this phenomenon. The

current state of the art in video microscopy for obtaining tracking data is little changed

from some of the earliest methodologies developed. However, the methods used to process

such data have seen many advances, made possible in part by the availability of powerful

computers, in addition to the development of novel mathematical approaches. In our spe-

cific case, we use a recently developed tracking algorithm to improve the throughput of

the experiment. A straightforward, inexpensive and readily available microscopy method

is used to produce a large quantity of data, discussed in greater detail in Chapter 4.

The data we obtain must be interrogated in order to gain meaningful insight into the

phenomenon of bacterial motility. Only by quantifying certain aspects of the observed
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motion can we learn about the process. This represents a challenge: phenomena such

as non-motile cells and short tracks were not an issue in experiments where cells were

individually selected and tracked. We note that more recent studies into bacterial tracking

such as [190, 193, 210] focus on the tracking methodology, but lack substantial further

investigation into the nature of the tracks generated. This is in contrast with Berg and

Brown’s pioneering work [24], in which the authors present the characteristics relating to

the swimming of E. coli .
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Chapter 2

Mathematical methods and models

of bacterial motility and taxis

In this chapter, we motivate and review the mathematical modelling approaches that

have been applied in the area of bacterial motility and taxis. We also provide technical

details of mathematical and modelling methods that will be used throughout the thesis.

A large part of what we know today about the motile behaviour of planktonic bacteria is

due to the efforts of the physicist Howard Berg and co-workers; see [23] for an overview

of this work. Berg motivated the use of many physical models to explain the phenomena

he observed, including a fluid dynamical explanation for the generation of forward thrust

by the rotation of a helical filament [21], the effect of Brownian motion on swimming

patterns [21], and the mechanism by which cells detect changes in chemical concentra-

tions [25]. Thus, since the early 1970s, this field has benefited from the application of

mathematical modelling.

The range and diversity of models relating to bacterial motility and taxis have grown

a great deal over the last few decades. Such models have made many further contribu-

tions to our understanding of the biology underlying these processes. The benefits of

modelling are numerous. First, models have in several cases helped to further under-
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standing of specific mechanisms involved in chemotaxis and motility. A recent example

is the work by Tindall et al. [196] on the chemotaxis pathway in R. sphaeroides , in which

model predictions directly motivated further experimental work, which in turn elucidated

new mechanistic details. Second, models enable us to make predictions about observed

behaviour under certain assumptions. A key example is the effect of the image acquisition

rate on observed tracking data, presented in Chapter 4, in which we use the underlying

assumption of a particular model of motion to predict the effect of changing the imaging

rate on observed statistics. It would be impossible to investigate this effect systemat-

ically without the application of a model. Third, mathematical modelling is crucial in

formalising and quantifying the temporal and spatial scales that characterise a system.

For example, Othmer and Hillen [147] discuss the scaling required to relate a microscopic

model of motion to a diffusive process.

In Chapter 1, we presented a biological overview of planktonic bacterial motility and

taxis, and discussed the experimental methods used to probe this process. An important

conclusion is that novel data analysis methods are necessary to maximise the quantity of

meaningful information we can extract from recently developed high-throughput experi-

mental methods for cell tracking. This information, in the form of statistics relating to

the observed motion, can then be used to parameterise models of bacterial motility. We

remark that the flow of information suggested here, i.e. from data to statistics to models,

is an oversimplification: the process of creating analysis tools and extracting statistics

may itself be influenced by an assumed model of motion, as we shall see in Chapter 3.

2.1 Modelling bacterial motility and taxis: a multi-

scale problem

The processes responsible for, and resulting from, bacterial motility and taxis cover a

wide range of spatial and temporal scales, as illustrated in Figure 2.1. This represents
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a challenge from a modelling perspective because it is difficult to incorporate multiple

scales into an effective mathematical or computational model. Tindall et al. [197] provide

a recent comprehensive review of mathematical models relating to bacterial chemotaxis.

That no single model is able to span all time and length scales relating to chemotaxis is

noted by the authors, who state,

“. . . while mathematical modeling has aided in understanding bacterial chemo-

taxis on the individual cell scale and guiding experimental design, no single

model succeeds in robustly describing all of the basic elements of the cell.”

At the smallest spatial scale, underlying all observed motile and tactic behaviour, are the

biochemical reactions occurring at the surface of the cell and inside it. These interactions,

between proteins and other small molecules on the nanometre scale, are responsible for

detecting chemoattractants and chemorepellents, transmitting a signal to the one or more

motors and switching or stopping the motors. The timescales for these reactions vary

over several orders of magnitude: chemoattractant molecules bind to chemoreceptors on

a timescale of the order of milliseconds, adaptation occurs over seconds or minutes and

accumulation of populations occurs over hours or days [197].

Throughout this thesis we focus on the phenomenological description of bacteria swim-

ming in an isotropic environment, as the experimental tracking data that we consider is

best described in this manner. The observed behaviour is well described by a modelling

framework called the velocity jump (VJ) process, which describes the microscopic trajec-

tories of individual bacteria. We give a detailed explanation of this model in Section 2.2.

Before this, we give a brief overview of other successful modelling approaches that have

been used to describe the various facets of bacterial motility and taxis, in order to show

how our work relates to these descriptions. Wherever possible, we highlight the connec-

tions between the various modelling approaches and, where they exist, any attempts to

create hybrid models spanning different behaviours or scales.
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Figure 2.1: An illustration of the wide range of spatial scales involved in bacterial taxis.
The uppermost circle depicts a swarm plate assay, reproduced with permission from [110]. A
typical incubation period for this assay is one or more days. The right circle depicts individual
bacteria swimming. The timescale for the rotation of the flagella is on the order of 10−2 s. The
left circle illustrates the chemoreceptors responsible for response and adaptation in bacterial
chemotaxis, adapted with permission from [199]. Diffusion and binding of small signalling
and chemoattractant molecules occurs on a typical timescale of 10−3 s, an initial response to a
stimulus takes around 10−1 s, and the cell adapts to changes in the environment in approximately
101 − 102 s [197].



2.1.1 Models of response and adaptation

We first consider models of the biochemical reactions occurring within a bacterium, illus-

trated in the lower left of Figure 2.1. Some of the earliest studies of E. coli in chemoat-

tractant concentration gradients showed that they are able to migrate towards sources

of chemoattractants by modulating the frequency of their reorientations [2, 24]. Bacte-

ria subjected to a stepwise change in chemoattractant concentration have been observed

to respond to the change, before adapting and returning to their original motile be-

haviour. Response times for R. sphaeroides have been measured at around one second

for stimulation by chemoattractant [111] and light [28]. Similar investigations revealed a

response time of 0.2 s in E. coli [30]. Adaptation occurs on a longer timescale, from 5 s to

100 s in R. sphaeroides undergoing phototaxis [28], and over several minutes in E. coli [8].

The response and adaptation dynamics in bacterial chemotaxis have been the subject of

a great deal of theoretical research, with most studies dealing with the model organism

E. coli [197]. A large number of such models use the framework of ordinary differential

equations (ODEs) together with the Law of Mass Action to describe how the concen-

trations of various intracellular proteins and chemoreceptors evolve in time. In these

models, the cell is assumed to be a well-stirred reaction vessel and spatial details are

ignored. More recently, a few authors have modelled the spatiotemporal variation of the

same biological components using stochastic simulations [120, 121] and partial differential

equations (PDEs) [196].

Other aspects of the chemotactic response observed biologically are the very high sensitiv-

ity to even small changes in the chemoattractant concentration [178, 187], which requires

that an amplification of the signal (known as gain) occurs within the signalling pathway

[19, 34], and the robustness of the system to variations between cells of the concentrations

of various signalling components [8]. In particular, sensitivity and gain have been the

focus of many models in which clustering of the chemoreceptors is considered, initially
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proposed by Bray et al. [35]. Several models based on this premise have used the Ising

model to describe the interactions between neighbouring chemoreceptors [63, 181].

Models of the internal chemotactic signalling pathways may, to some extent, be incor-

porated in higher-level models of cell motility. The first published example is a study

by Erban and Othmer [70], in which the authors present a simplified two-state model

of internal signalling dynamics in a VJ description of bacterial motion and use this to

derive a macroscopic PDE governing the evolution of the system. They remark that the

current state of the art in response and adaptation modelling involves more than 20 vari-

ables describing the various signalling components, which is at present too complex to

incorporate into a VJ framework. The work in this area has since been extended, albeit

still with a minimal two-state internal model, by Xue and Othmer [214].

2.1.2 Hydrodynamical models of swimming

The bacterial flagellar motor rotates approximately 100 times per second in both R.

sphaeroides and E. coli , driven by the flow of protons through the motor complex [22, 156].

The observed rate of rotation varies substantially with the experimental conditions under

which it is measured: when R. sphaeroides are tethered by their flagellum to a microscope

slide and the rotating cell body imaged, the motor rotates approximately seven times per

second due to the high load caused by the drag on the cell body [151]. A simple model for

how a rotating helical filament (the flagellum) propels the cell, based on viscous drag, is

described by Berg [21]. Of particular interest in the field of hydrodynamical modelling is

the behaviour of bacteria swimming near solid surfaces. Ramia et al. [165] demonstrate

that such models predict the circular swimming motion of bacteria at surfaces. More

recently, Shum et al. [183] have performed a detailed numerical simulation of bacteria

swimming near surfaces. This study considered the efficency of swimming as a func-

tion of flagellum length, the wavelength of the flagellar helix, and the shape of the cell
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body. The authors conclude that the efficiency of the swimming process is robust both

to changes in these parameters and to the presence of a surface.

2.1.3 Population-level models

Whilst bacteria are unicellular organisms, and thus able to act independently of other

bacteria, bacterial populations (monoclonal or otherwise) can show collective behaviour.

Such behavioural traits occur due to interactions between bacteria and their environment

(for example sensing and consuming chemoattractant) and interactions between bacteria

(for example quorum sensing [135]). Mathematical models for such behaviour are broadly

divided into two categories: those which seek to describe the behaviour of chemotactic

bacterial populations, reviewed by Tindall et al. [195]; and those related to bacterial

biofilms, reviewed by Klapper and Dockery [106]. As models of biofilms are beyond the

scope of this thesis, we do not consider them further.

Keller and Segel [104] postulated the first model of population-level behaviour of chemo-

tactic bacteria in an attempt to explain the bands of bacteria observed by Adler in his

capillary assay [2]. They model the motion of bacteria as diffusive, with an additional

‘chemotactic’ drift term, describing the movement of bacteria up gradients of chemoat-

tractant. The chemoattractant is a diffusing chemical species, which undergoes decay

and consumption by the bacteria. The general form of the Keller-Segel (K-S) model is

given by
∂b

∂t
= ∇ · (µ(s)∇ b)−∇ · (χ(s)b∇ s) + g(b, s)− h(b, s),

∂s

∂t
= Ds∇2 s− f(b, s),

(2.1)

where b(x, t) is the population density of bacteria at position x and time t, s(x, t) is the

concentration of chemoattractant, µ(s) is the bacterial diffusion coefficient (often assumed

to be constant), χ(s) is the chemotactic coefficient, f(b, s) describes degradation of the
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chemoattractant, including both chemical degradation and consumption by the bacteria,

Ds is the diffusion coefficient of the chemoattractant, and the functions g and h describe

growth and death terms, respectively. Note that bacteria do not interact directly in the

K-S model; all interactions are mediated by the chemoattractant, s, such that consump-

tion of chemoattractant by one band of bacteria affects the motile behaviour of another

spatially distinct band.

An important result of the K-S model is that it permits travelling wave solutions when

the following simplifying assumptions are made: (1) bacteria neither reproduce nor die

on the timescale of the experiment, so that g = h = 0; (2) the chemoattractant does not

diffuse, Ds = 0; (3) χ takes the form χ(s) = χ/s; (4) a ‘speculative’ function is used

for f , which the authors admit has little biochemical basis (see [104] for details). The

travelling wave solutions thus generated agree reasonably well with the bands of bacteria

observed by Adler. This influential model has since been used as the basis for many

subsequent studies. Assumption (3) above is problematic, as it leads to a singularity in

the chemotactic coefficient as the chemoattractant concentration approaches zero. This

issue is discussed by Xue et al. [213], who emphasise that this form of χ leads to the

model producing unrealistically high theoretical cell migration speeds at low levels of

chemoattractant. Furthermore, more recent work based on the original K-S model has

considered more biologically realistic functional forms for the degradation term, f , with

similar outcomes: for examples, see the references in the review by Tindall et al. [195].

It has further been suggested that travelling waves solutions are obtained in extensions

to the K-S equations that incorporate growth and death of the bacterial population

[213]. Indeed, Lauffenburger et al. [116] investigate the possibility of achieving travel-

ling wave solutions to a simple reaction-diffusion description of the bacterial population

and chemoattractant in the absence of chemotactic drift, and show that travelling wave

solutions can arise due to growth, death, consumption of chemoattractant and diffu-
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sive behaviour. However, this result is unremarkable from a mathematical perspective:

Fisher’s equation, which models the diffusion and growth of a population in the absence

of chemotaxis, has long been known to give travelling wave solutions Murray [141], Xue

et al. [213].

The VJ modelling framework with the inclusion of an external bias due to, for example, a

chemoattractant gradient has been shown by Othmer and Hillen [147] to lead to a drift-

diffusion equation in the appropriate scaling limit. Furthermore, Erban and Othmer [70]

demonstrated a link between the VJ process with internal signalling dynamics and the

macroscopic K-S equations in one spatial dimension. This analysis was subsequently

extended to two- and three-dimensional models by the same authors [71]. This analysis

illustrates an important link between the various scales of modelling bacterial motility

and taxis. However, Erban and Chapman [69] used the VJ framework to model the

more complex phenomenon of chemotaxis in crawling ameboid cells and showed that the

resulting macroscopic equations differ from the K-S equations.

2.1.4 Random walk models of motion

The scale at which we wish to consider the process of bacterial motility is phenomenologi-

cal and based on detailed knowledge of observed swimming patterns. We do not explicitly

model the biochemical signalling pathways occurring within each individual bacterium,

neither do we model interactions between individuals, or between bacteria and their envi-

ronment. We restrict ourselves to this scale as it is the most appropriate when considering

data from a microscopic tracking experiment in which bacteria are sealed in an isotropic

and unvarying environment, as presented in Chapter 1, and analysed in Chapter 4. The

VJ model of microscopic motion is a specific example of a more general class of models

called random walks. We first briefly describe the random walk in full generality, before

focusing on our specific case. The random walk was first described in the form of an open

question by Pearson in 1905, entitled “The problem of the random walk” [153]:
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“A man starts from a point O and walks l yards in a straight line; he then

turns through any angle whatever and walks another l yards in a second

straight line. He repeats this process n times. I require the probability that

after these n stretches he is a distance between r and r+ dr from his starting

point, O.”

The request was soon answered by Rayleigh, who provided a solution in the limit of very

many steps [166]. There are two key properties that apply to random walks, bias and

correlation [51]. Bias refers to a global preferred direction; in the context of Rayleigh’s

problem, bias could be introduced by having the man turn more often in a northerly

direction, or stepping further when he is travelling in this direction than when he is

travelling in another direction. Correlation refers to the dependence between consecutive

moves; Rayleigh’s wanderer would be exhibiting a correlated random walk (CRW) if,

for example, the angle through which he turned between each move were not randomly

chosen, but instead were selected relative to the angle of travel from a non-uniform distri-

bution. If the mean cosine of the turning angle is greater than zero, the CRW exhibits the

property of persistence, meaning that directional information is maintained over consecu-

tive frames (circular statistics are discussed further in Section 2.4). This correlation will

eventually vanish with increasing numbers of steps, leading to the concept of persistence

time. The position of Rayleigh’s wanderer takes values in R2, as the angle through which

he turns is continuous on [−π, π). This type of random walk is known as an off-lattice

model. In contrast, the position of a wanderer in on-lattice models takes values defined

on a discrete grid, for example a regular square array in two dimensions. These general

concepts are illustrated in Figure 2.2 for some typical simulated tracks.

The simple random walk described by Pearson is known as a position jump process [146],

because the moving object, which we henceforth refer to as ‘particle’ for generality, shifts

position at random. The position of the particle is discontinuous between jumps; illustra-

tions of position jump processes such as those in Figure 2.2 usually portray the process
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Figure 2.2: Simulated on-lattice (a)-(c) and off-lattice (d)-(f) random walks. (a), (b) Simple
(unbiased and uncorrelated) random walk. (c), (d) Biased random walk, the off-lattice model
incorporates sinusoidal reorientation as described by Hill and Häder [88]. (e), (f) Correlated
random walk. In all simulated trajectories, the step length is constant. The dot indicates the
starting point. A detailed description of the algorithms and parameters used is given in Appendix
A.1.



as if it were continuous, but this is only for visual purposes. There is no direct corre-

lation between consecutive steps in position jump models, though they may be biased.

Pearson’s constant step length position jump model is a reasonable approximation of the

microscopic motion of particles undergoing Brownian diffusion [51]. This link has also

been demonstrated in other position jump models of motion [69]. Position jump pro-

cesses have been used to model a wide range of phenomena, including the dispersal of

soil particles [133], the migration of tumour cells [57] and the spread of populations of

oak trees and wingless beetles [185].

For the majority of living organisms, the assumption of uncorrelated moves is unrealistic

as an individual has a tendency to continue moving in the same direction on some non-

negligible timescale [51]. In such cases, the CRW is a more realistic model of the observed

motion, since observed motions are temporally correlated. This process is also known as

a VJ process, because it describes a particle that experiences random shifts in its velocity

[146]. Henceforth, we will use the term VJ process. Similarly to position jump processes,

a link between microscopic VJ models of motion and the macroscopic diffusion equation

has been established [69]. In contrast to the position jump process, the position of

the particle in the VJ process is continuous. As discussed, the VJ process is a natural

framework to describe the observed motion of planktonic flagellated bacteria, and has

been applied to model this phenomenon in previous studies [9, 49, 143, 146]. We shall

use this mathematical framework throughout the remainder of this thesis. In the following

section, we describe the VJ process in detail.

2.2 The velocity jump process

In describing the VJ process, we draw a distinction between a microscopic description

of the trajectory traced out by a single velocity jumping particle, which is inherently

stochastic, to a macroscopic and deterministic description of the temporal evolution of
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the probability density function (pdf) governing the position and velocity of a popula-

tion of particles. The two descriptions are complementary, providing access to different

aspects of the VJ process. For example, a microscopic description of the process permits

the definition of properties such as the observed distribution of step lengths and turning

angles in a track, whereas a macroscopic description may be used to derive expressions

for moments of the spatial distribution of a population. The distinction is in fact not

clear cut; these two approaches are merely different mathematical descriptions of the

same process, as we shall demonstrate below.

We first present a simple example of the VJ process in one spatial dimension in order

to introduce the mathematical methods that are frequently applied in this context. This

problem was first analysed by Goldstein [77] and considered later by Kac [100]. Much

of the mathematical analysis is included in [47] and [146]. The one-dimensional model

provides an illustrative example of the process of passing from a microscopic to a macro-

scopic description of the VJ process. In the following sections, we present details of the

general VJ process in a higher number of spatial dimensions.

2.2.1 The velocity jump process in one spatial dimension

Consider a particle moving in one dimension with constant speed c. At random times

the particle experiences an instantaneous jump in velocity, such that it reverses direction.

This process is illustrated in Figure 2.3. The velocity jumping process is Poisson with

rate λ [146]. Kac describes the model emotively in terms of a stochastic process on a

one-dimensional lattice [100]:

“ I start a particle from . . . x = 0 and the particle always moves with speed

v. It can move either in a positive direction or in the negative direction. I flip

a coin, let’s say, to determine which . . . So, what actually happens is that for

a time you move in the direction you have chosen. And then, all of a sudden,
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you flip over. For a time you move in the new direction. And then, all of a

sudden, disaster overtakes you. And so you will oscillate.”
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Figure 2.3: Illustration of the one-dimensional VJ process (the Telegraph process), computed
using equations (2.2) and (2.3) with λ = 0.2 s−1, c = 1 µms−1 and λτ � 1. A single particle
moves in one dimension, reversing direction at random intervals. The times at which reversals
occur are indicated by crosses on the vertical axis. The dashed line traces out one possible
trajectory. Dots indicate the position of the particle recorded at regular time intervals.

Othmer et al. [146] discuss the process of passing from this microscopic, stochastic de-

scription of the movement process to a macroscopic, deterministic description of the

evolution of the pdf of the particle’s position. We provide only the main results here;

further details may be found in Appendix A.2.

Consider a very large number of non-interacting particles, undergoing the process de-

scribed above. All particles start at x = 0 when t = 0. Denote the number density of

individuals moving with velocity v = c by p+(x, t), so that p+(x, t) dx gives the number of

particles travelling in the positive x-direction located in the interval [x, x+ dx] at time t.

The analogous number density of particles moving in the negative x-direction is denoted

p−(x, t). We now consider the change in the distribution of the particles after a small

time step τ . The distance moved by all particles in this time is δ = cτ . The probability

that a particle reverses direction in this time interval is given by λτ , by the definition of

a Poisson process, where λτ � 1 so that we may assume that at most one reversal occurs

in the time interval [t, t + τ). Considering the microscopic motion of the particles over
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the time step leads to the equations

p+(x, t+ τ) = λτp−(x− δ, t) + (1− λτ)p+(x− δ, t), (2.2)

p−(x, t+ τ) = λτp+(x+ δ, t) + (1− λτ)p−(x+ δ, t). (2.3)

Expanding equations (2.2) and (2.3) in the small parameters τ and δ and taking the limit

τ, δ → 0, such that δ/τ = c, we obtain after some manipulations

∂2P

∂t2
= c2∂

2P

∂x2
− 2λ

∂P

∂t
, (2.4)

where P = p+ + p− denotes the total population of particles. Equation (2.4) is variously

known as the Telegraph equation1 and a damped wave equation [102]. The solution to

equation (2.4) on the infinite, unbounded x domain, subject to the initial conditions

P (x, 0) = δ(x),
∂P

∂x
(x, 0) = 0, (2.5)

is given by [146]

P (x, t) =


e−λt

2

{
δ(x− ct) + δ(x+ ct) +

λ

c

[
I0(Λ) +

λt

Λ
I1(Λ)

]}
for |x| < ct,

0 for |x| ≥ ct,

(2.6)

where Λ = λ
√
t2 − x2/c2 and I0 and I1 denote modified Bessel functions of the first kind.

This solution is plotted for various time points in Figure 2.4, overlaid with a histogram

computed from the results of a stochastic simulation. Details of the stochastic simulation

algorithm are given in Section 2.5. The density of particles in the wavefronts decreases

with time (red bars), as fewer particles remain that have not undergone a single reversal

event. The terms in equation (2.6) containing the delta function represent the propaga-

tion of a wavefront at x = ct corresponding to particles which have not reversed by time

1The Telegraph equation is so named because its original derivation by Heaviside in 1880 was to
describe the transmission of signals along telegraph lines [215].

37



t. The wavefront decays exponentially, as expected, since the reversal process is Poisson.

The solution is identically zero in front of this wavefront, as particles cannot travel faster

than the fixed speed c.
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Figure 2.4: The solution to (2.4) on an infinite x domain with the initial conditions given in
(2.5). Bars represent the histogram of a stochastic simulation of the microscopic process with
104 particles. Red bars denote particles at the wavefront, |x| = ct, and blue bars denote the
remaining particles. The black dashed line is the analytic result in (2.6), plotted without delta
functions. The x-axis is scaled to show the region |x| ≤ ct in each plot. The parameters used
are λ = 1 s−1, c = 1 ms−1.

Equation (2.6) reduces to the solution of the diffusion equation for large t and x � ct

[102, 146]. To show this, we note that for large z, the modified Bessel functions Iν(z)

have the asymptotic expansion [1]

Iν(z) =
ez√
2πz

+O

(
1

z

)
. (2.7)

Let ξ = x2/c2t2, hence Λ = λt
√

1− ξ. We now consider the solution far from the

boundaries as t → ∞, so that |x| � ct and ξ � 1. In this regime, Λ ≈ λt(1 − ξ/2) and

equation (2.6) reduces to

P (x, t) ≈
√

λ

2πc2t
exp

(
−ξtλ

2

)
=

√
1

4πDt
exp

(
−x2

4Dt

)
, (2.8)
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where D = c2/2λ is the diffusion coefficient. Equation (2.8) is the solution to the diffusion

equation with the same delta function initial conditions as those in equation (2.5).

2.2.2 The velocity jump model in higher dimensions

The foregoing analysis was specific to the one-dimensional case. We now consider the

general VJ process in d spatial dimensions, with particular emphasis on the case d = 2,

since the experimental data available to us are two-dimensional. In addition, limiting the

dimensionality simplifies some of the mathematical analysis. In the general VJ process,

particles move in d spatial dimensions and undergo reorientations according to Poisson

process with rate λ, hence the time intervals between reorientation events are exponen-

tially distributed. During the reorientation process, particles undergo a random change

in velocity, described by a specified pdf. Particles are assumed to maintain a constant

velocity between reorientation events, so that the trajectory comprises straight line move-

ments between the sites of reorientation. We consider two models, in which reorientations

either take place instantaneously, called a run-only VJ process, or are accompanied by a

stationary rest phase of finite duration, denoted the run-and-stop VJ process. These two

processes approximate the observed motion of E. coli and R. sphaeroides , respectively

(see Figure 1.3). The run-only VJ process is a reasonable description of the run-and-

twiddle motion observed in E. coli , as the reorientations take place more rapidly than in

R. sphaeroides . We assume that the duration of these reorientations is negligible. We do

not discuss this further, as we mainly consider R. sphaeroides throughout this thesis.

As for the preceding one-dimensional case study, we may consider both macroscopic and

microscopic descriptions of the general VJ process. Since the macroscopic approach is

based on considering an appropriate large-number limit of the microscopic model, we

start with the latter.
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The microscopic run-only velocity jump process

With the exception of stochastic simulations (see Section 2.5), there are few examples

of microscopic descriptions of the VJ process in the literature. Figure 2.5 illustrates the

run-only VJ process in two dimensions. The trajectory of the particle comprises a series

of constant velocity runs, which we denote running phases, with instantaneous jumps in

velocity between phases. The duration of each running phase is random. Various species

are believed to move in a manner that is well described by the VJ process, in the sense

that their motility takes the form of approximately straight line movements, interspersed

by stochastic reorientations. In addition to bacteria, the random motion of ovipositing

butterflies [103], foraging bumblebees [33] and elk [73], and the clonal growth of the plant

species Solidago altissima [41] are examples of such species. In the case of the butterfly

and bumblebee flight, the trajectories are generated by only considering landing sites and

joining these with straight lines. Elk foraging motion consists of approximately straight

journeys between pauses. The plant growth was measured as a series of distances between

branching points where new growth starts, separated by approximately straight rhizomes.

A slightly different application of the VJ process is to species whose movement is not

well described by the model initially, but which conforms after spatial or temporal dis-

cretisation. The process of discretisation involves decomposing the continuous underlying

trajectory into a series of straight line moves with constant time or length intervals [103].

Since any device used to observe animal motion or track animals can only record at

discrete time points, this is performed automatically at the stage where data are gath-

ered. Nonetheless, further rediscretisation may be required to achieve the best possible

characterization of the movement pattern [103]. This approach has been used to model

movement in algae [88], ants [33], dolphins [16] and zebra [36]. In such cases, the VJ

model may have no biological relevance to the actual underlying motion. It is instead

used as a method to aid mathematical analysis of the movement patterns [18].
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Figure 2.5: Illustration of the two-dimensional run-only VJ process. A single particle moves in
two dimensions (denoted by the black line), reorientating instantaneously at random intervals
(indicated by black crosses). Filled circles show the location of the particle at regular time
intervals. Reorientations, shown as black crosses, result in a change in the speed and angle of
motion.

An important early application of a VJ process to a biological problem was published in

1974 by Nossal and Weiss [144]. The authors derive expressions for the first two spatial

moments of the position of a cell in two spatial dimensions after n reorientation events.

This is based on a model of cell motion in two dimensions, equivalent to that illustrated

in Figure 2.5, in which the rate of reorientation is a function of the direction of travel.

Importantly, the distribution of initial angle of travel is assumed to be uniform on a

circle. Kareiva and Shigesada [103] used a simplification of this representation, in which

the turning rate is assumed to be constant, to model the movement of butterflies and

caterpillars. The authors derive an expression for the mean squared displacement (MSD)

from the starting location after n reorientations, which they propose as a test for whether

observed data are compatible with the VJ model. This work was extended by McCulloch

and Cain [131], who determine the analytic form of the variance in squared displacement.

An additional microscopic property of VJ trajectories is their tortuosity. This is a mea-

sure of how many twists and turns a trajectory contains. There are many different

definitions used for calculating the tortuosity of a trajectory, which vary depending on

the application [46]. Intuitively, we expect that more frequent reorientation events and a

broader distribution of reorientation angles both lead to more tortuous trajectories in the
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VJ process. This has been mathematically formalised in two studies. In the first, Bovet

and Benhamou [33] define a property known as sinuosity, and establish a semi-empirical

relationship between the sinuosity of a trajectory in terms of a fixed step length (the

spatial rediscretisation interval). Later, Benhamou [18] derive a more general expression

for the sinuosity of a VJ trajectory with a fixed time interval, in which steps are not

necessarily of constant length. A key requirement of the derivation is that successive

angle changes are independent, thus Benhamou asserts that it may be necessary to apply

temporal rediscretisation to the data in order to avoid correlation between successive an-

gle changes at high sampling rates. We shall return to the topic of tortuosity in Chapter 4.

Macroscopic equations governing the general velocity jump model

The continuum description of the VJ process in higher dimensions is analogous to the

one-dimensional problem, however the full problem has no known analytic solution [146].

In the general model, particles run in a straight line with a given velocity v ∈ Rd and

switch velocity instantaneously as a Poisson process with rate λ. The density of particles

at a position in the interval [x,x + dx], where x ∈ Rd, with a velocity in [v,v + dv] at

time t is denoted p(x,v, t). As for the one-dimensional case, we may interpret the quan-

tity p(x,v, t) as the number density of a large population of identical, non-interacting

particles, or equivalently the pdf for the position and velocity of a single particle. Note

that we require a continuous dependence on the velocity, in contrast with the fixed speed

one-dimensional process, where it suffices to define two variables for the two possible par-

ticle velocities. For brevity, we henceforth use the more succinct notation p ≡ p(x,v, t),

except where the independent variables differ.

We now give a derivation of a macroscopic equation describing the evolution of the particle

density. This was originally described by Othmer et al. [146]; here, we reproduce their

results with additional explanation of the steps required. The VJ description of bacterial
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chemotaxis has been generalised more recently to incorporate internal cellular dynamics

[71]. We do not consider such models here, as the main focus of this thesis is to bacterial

motility in a homogeneous environment. We begin by considering an expression for the

total derivative of p with respect to t (also known as the material derivative). By the

chain rule, we have

dp

dt
=
∂p

∂t
+

dx

dt
· ∇x p+

dv

dt
· ∇v p. (2.9)

Newton’s laws of motion for a body of mass m subjected to a force F are given by

dx

dt
= v, (2.10)

dv

dt
=

F

m
. (2.11)

Substituting these into (2.9) yields

dp

dt
=
∂p

∂t
+ v · ∇x p+

F

m
· ∇v p, (2.12)

which gives the total time derivative of the density of particles with individual mass m

in the presence of an external force F. The external force could describe, for example, an

imposed external flow due to the environment. We will henceforth assume that no such

external force exists, as none is present in the data that we will be considering.

Equation (2.12) is known as a transport equation. The total derivative of the density of

particles is given by considering any reproduction and death processes and/or stochastic

events relating to the motion. We neglect reproduction and death processes, which gen-

erally occur on a much longer timescale than that considered here, as discussed in Section

2.1. The total derivative is therefore equal to a stochastic component that describes re-

orientation events and is fundamental to the VJ process. This aspect of the model differs

between the run-only and run-and-stop variants.
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Run-only velocity jump process

We define a turning kernel, T (v,v′), which gives the pdf for a change in velocity from v′

to v. This is non-negative and normalised, such that

∫
T (v,v′) dv = 1, (2.13)

where the vector integral notation is shorthand for multiple integration over all d dimen-

sions, ∫
f(v) dv =

∫
R

· · ·
∫
R

f(v1, . . . , vd) dv1 . . . dvd. (2.14)

The limits of integration will henceforth be over Rd for all vector integrals unless otherwise

stated. The normalisation condition (2.13) is required to ensure that number density is

conserved across jumps, so that no particles are lost or gained during reorientation events.

For a fixed initial velocity, v′, we define the mean velocity after reorientation by

v̄ =

∫
vT (v,v′) dv. (2.15)

Similarly, the mean speed after reorientation is given by

c̄ =

∫
‖v‖T (v,v′) dv, (2.16)

where ‖v‖ denotes the Euclidean norm of vector v. The mean cosine of reorientation is

then defined as

ψd =
v̄ · v′

s̄‖v′‖
, (2.17)

where ψd ∈ [−π, π). Note that v̄, c̄ and ψd may all be dependent upon the initial velocity

v′.

In the run-only model, the total derivative is equal to the change in p as a result of
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stochastic reorientation, given by

dp

dt
= −λp+ λ

∫
T (v,v′)p(x,v′, t) dv′. (2.18)

The first term on the right-hand side of this equation represents the movement of particles

out of the velocity space [v,v + dv] due to velocity jumping. The second term repre-

sents the reorientation of particles from all other velocities v′ to the interval [v,v + dv].

Equating (2.12) and (2.18), we obtain

∂p

∂t
+ v · ∇x p = −λp+ λ

∫
T (v,v′)p(x,v′, t) dv′. (2.19)

The partial integro-differential transport equation (2.19) describes the evolution of the

number density of particles undergoing a run-only VJ process.

Run-and-stop velocity jump process

We now consider the addition of a finite duration stationary phase in between runs, dur-

ing which the particle reorientates. It is assumed in this model that particles maintain a

perfect memory of their previous direction over the course of a stop of any duration, such

that the same turning kernel applies as in the run-only model. Switches from the running

phase into the stationary rest phase and the reverse transitions are modelled as Poisson

processes with rate parameters λ and µ, respectively. The run-and-stop VJ process and

the derivation of the governing transport equation were originally presented in [146]. The

density of moving particles, p(x,v, t), is defined as before. We also introduce a sepa-

rate subpopulation of stopped particles. The density of stopped particles at a position in

the interval [x,x+ dx] with a previous velocity in [v,v+ dv] at time t is denoted r(x,v, t).

In this model, the equation describing the stochastic process is given by

dp

dt
= −λp+ µ

∫
T (v,v′)r(x,v′, t) dv′. (2.20)
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Equation (2.20) differs from the run-only equation (2.18) only in the integrand: in the

run-and-stop model, particles switch out of the stationary phase into the running phase.

We also require a description of the population of stationary particles, which is given by

∂r

∂t
= λp− µr. (2.21)

From equations (2.12) and (2.20) we obtain

∂p

∂t
+ v · ∇x p = −λp+ µ

∫
T (v,v′)r(x,v′, t) dv′. (2.22)

The transport equations describing the evolution of particles in the run-and-stop VJ

process are thus given by equations (2.21)-(2.22).

2.3 Spatial moments of the general velocity jump

process

When comparing mathematical models of motion to experimental data, the data often

only reliably provide a few spatial moments of the observed motion [146]. In addition,

the run-only and run-and-stop VJ models described above have no known closed analytic

solution, and are computationally intensive to simulate numerically. Fortunately, it suf-

fices in some cases to model the temporal evolution of the spatial moments of the particle

density. The MSD is the second spatial moment of a movement process. It is commonly

used in the fields of ecology [103] and biological physics [132, 134] as a measure of the

rate at which a trajectory samples its environment. The MSD of a vector-valued random

variable, X ∈ Rd, with pdf fX (x) is defined by

∫
fX (x) ‖x‖2 dx.
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Othmer et al. [146] show that is is possible to derive a closed analytic expression for

the MSD of a VJ process directly from the transport equations. Both the run-only and

run-and-stop variants are considered. We reproduce the relevant results here; full details

of the derivations are given in Appendix A.3. In order to make analytic progress, we

assume that the speed of a particle does not change over the course of a reorientation,

only the angle. Furthermore, we assume, without loss of generality, that all particles are

initially located at the origin.

With these assumptions, the MSD of the run-only VJ process is given by

D2
p(t) =


2S2

p

λ0

[
t− 1

λ0

(
1− e−λ0t

)]
for ψd 6= 1,

S2
p t

2 for ψd = 1,

, (2.23)

where λ0 = λ(1−ψd), and S2
p is the second moment of the velocity (mean squared speed).

As we have assumed that the speed of a particle does not change following a reorienta-

tion event, S2
p is constant and equal to the mean squared initial speed of the particles.

The expression for the MSD in equation (2.23) exhibits different behaviour on different

timescales when ψd 6= 1. For small t, a Taylor expansion of the exponential component

shows that D2
p(t) ≈ S2

p t
2, which is indicative of a ballistic, or wave-like, process. In the

limit t → ∞, D2
p(t) ≈ 2S2

p t, which indicates a diffusive process. This is illustrated in

Figure 2.6. The interpretation is that particles initially have a strong directional per-

sistence, hence the population spreads out like a wave. This directional persistence is

lost over time, and the process instead becomes diffusive. Othmer et al. [146] define a

characteristic persistence time by P =
1

λ0

. This is equal to the intercept of the limiting

linear MSD regime with the x-axis, as indicated in Figure 2.6.

In the case of the run-and-stop VJ process, we have two populations, runners and stop-

pers. In reality, it is not practical to compute the MSD of running and stopped particles
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Figure 2.6: Theoretical MSD for a run-only (black solid line, equation (2.23)) and run-and-
stop (blue line, equation (2.25)) VJ process with λ = 4 s−1, ψd = 0.5, S2

p = 1 ms−1 and µ = 8 s−1

for the run-and-stop case. The dashed lines show limiting behaviour, as marked.

separately; instead the MSD observed experimentally is that of the total population. We

therefore solve the system of equations for the weighted MSD, defined by

D2(t) =
NpD2

p +NrD2
r

N0

, (2.24)

where Np and Nr are the total populations of runners and stoppers, respectively, and N0 =

Np +Nr is the total number of particles. We assume that the populations of running and

stopping states are initially in equilibrium, which is the case in most experimental systems,

providing the system is not deliberately perturbed immediately prior to observing it. As

before, we assume that the speed of a particle does not change following a reorientation

event, and that all particles are initially located at the origin. The solution subject to

these conditions is then given by

D2(t) =
2S2

p

λ0

µ

λ+ µ

{
t+

λ+ − λ0

λ−(λ+ − λ−)
(e−λ−t − 1)− λ− − λ0

λ+(λ+ − λ−)
(e−λ+t − 1)

}
, (2.25)
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where the coefficients λ± are defined by

λ± =
λ+ µ

2

[
1±

√
1− 4λ0µ

(λ+ µ)2

]
. (2.26)

The values of λ± are both real and positive, so the asymptotic behaviour of the weighted

MSD as t becomes large is linear. This indicates that the run-and-stop VJ process

becomes diffusive in the long time limit, as for the run-only case. The MSD for a run-

and-stop VJ process is plotted in Figure 2.6. The parameters are chosen such that the

mean duration of stops is half that of runs. The MSD has a similar form in both the

run-only and run-and-stop cases, but is always lower for the run-and-stop case, since the

stationary phase retards the propagation of particles.

2.4 Circular statistics

Reorientations in both the microscopic and macroscopic approaches in two or three spatial

dimensions are naturally described in terms of a simultaneous change in angle and speed.

Linear statistics cannot be applied to describe random changes in angle, due to the

periodic nature of angular variables. Instead, we must apply circular statistics, which

are extensively covered by Mardia and Jupp [130]. Throughout this thesis, we are only

concerned with two-dimensional circular statistics, with all angles defined in the range

[−π, π). A pdf defined on a circle, denoted a wrapped pdf, must be non-negative and

normalised, i.e.

fΘ (θ) ≥ 0 ∀ θ ∈ [−π, π), (2.27)

where asymmetric limits are included by convention, and

π∫
−π

fΘ (θ) dθ = 1. (2.28)
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The angular moments of a wrapped pdf[47] are defined by

an =

π∫
−π

cos(nθ)fΘ (θ) dθ, (2.29)

bn =

π∫
−π

sin(nθ)fΘ (θ) dθ, (2.30)

where n = 1, 2, . . .. From these definitions, it is clear that bn = 0 for all symmetric

wrapped pdfs. Writing the angular moments in polar form, we obtain

ρne
iφn = an + ibn, (2.31)

where ρn and φn are the nth length and angle moments, respectively. There are two

definitions of the standard deviation of a wrapped pdf. The first is defined by analogy

with the standard deviation in linear statistics [47]

σ =
√

2(1− ρ1), (2.32)

An alternative definition, arising from the wrapped normal distribution, is given by

σ′ =
√
−2 ln(ρ1). (2.33)

It is in principle possible to wrap any linear pdf around a circle to obtain a circular

distribution, however the resultant form is often difficult to work with analytically. We

now describe three relevant wrapped distributions, following Codling [47].

2.4.1 The wrapped uniform distribution

The uniform distribution on a circle has pdf

fΘ (θ) =
1

2π
. (2.34)
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Figure 2.7: A linear plot of the von Mises distribution with zero mean for κ = 1 (blue line)
and κ = 5 (red line), and the wrapped normal distributions with equivalent standard deviations
(black dashed lines).

This distribution has mean length ρ1 = 0 and standard deviation σ =
√

2. The alternative

definition of standard deviation, σ′, and the mean angle, φ1, are both undefined.

2.4.2 The wrapped normal distribution

The wrapped normal distribution is defined by

fΘ (θ;µ, σ′) =
1

σ′
√

2π

∞∑
k=−∞

exp

[
−(θ + 2πk − µ)2

2σ′2

]
, (2.35)

where µ = φ1 is the mean angle and σ′ is the standard deviation. The mean length is

related to standard deviation by ρ1 = e−σ
′2/2, from which we obtain equation (2.33).

2.4.3 The von Mises distribution

Owing to the complicated form of the wrapped normal distribution in equation (2.35),

the von Mises distribution is often used as a good approximation to it [49]. The von

Mises distribution is defined by

fΘ (θ;µ, κ) =
eκ cos(θ−µ)

2πI0(κ)
, (2.36)
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where I0 denotes the modified Bessel function of the first kind with order 0, µ = φ1 is the

angular mean and κ ≥ 0, denoted the concentration parameter, controls the ‘peakedness’

of the distribution [130]. Note that when κ = 0, the von Mises distribution is equivalent to

the wrapped uniform distribution. As κ→∞, the distribution becomes sharply peaked

around the mean angle [130]. The length moments for the von Mises distribution are

given by

ρn =
In(κ)

I0(κ)
, (2.37)

from which we can equate the concentration parameter and the standard deviation of the

wrapped normal using R̄ = ρ1 and equation (2.33) [130]. The von Mises distribution is

plotted in Figure 2.7 for two values of κ, overlaid with the wrapped normal distribution

with equivalent standard deviation.

2.5 Stochastic simulation algorithm

In the absence of an analytic solution to the general VJ process, we must resort to numer-

ical simulations to compute the outcome of the model for a given set of parameters. In

two or more spatial dimensions, the deterministic numerical solution of equation (2.19),

or equations (2.21)-(2.22), which govern the run-only and run-and-stop VJ processes,

respectively, is a challenging problem. Taking position and velocity components into ac-

count, the equation is posed in four or more dimensions, rendering numerical integration

extremely computationally intensive. Whilst some work has been conducted into finding

numerical solutions for related processes [172], the results are not immediately generalis-

able to our system. We therefore use a stochastic computational simulation to generate

realisations of the desired VJ process for a given set of parameters, a strong precedent

for which has been set in the related literature [40, 49, 50, 70, 92, 97].

We simulate identical, non-interacting particles undergoing a VJ process in one or two

spatial dimensions, though the algorithm has also been extended to three-dimensional
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problems. The particles run in straight lines and undergo reorientation events as a Pois-

son process. Reorientation events are fully described by a specified run speed and angle

change distribution. For example, many of the simulations carried out in this thesis are

performed with a constant speed movement process, with turning angles drawn from

the von Mises distribution. In the run-only simulation, reorientation events are instan-

taneous, with waiting times between events drawn independently from the exponential

distribution with rate parameter λ. In the run-and-stop simulation, reorientations follow

a stationary phase, whose duration is drawn from the exponential distribution with rate

parameter µ. The stochastic trajectory of a single particle is simulated in this way until

the time exceeds a predefined value, at which point the trajectory is ceased. This is

repeated for the desired number of trajectories.

The underlying movement model described by successive reorientation events is continu-

ous in time and space. In order to simulate the process of observing a moving particle, we

discretise these trajectories using a defined constant sampling interval. The position of

each simulated particle is calculated at sampling times separated by the sampling interval

under the assumption that a constant velocity is maintained between reorientation events.

We are also able to incorporate the effect of measurement noise and Brownian buffeting

into the simulations. This will be discussed in greater detail in Chapters 3 and 6. Figure

2.8 shows an illustration of the spatial density of a number of particles undergoing a

run-only VJ process, computed using the stochastic simulation algorithm. Initially, all

particles are located at the origin and travelling in the positive x-direction. In agreement

with the results and discussion in Section 2.3, the evolution of the particle density displays

ballistic and diffusive behaviour. The observed wavefront travels radially outwards in a

ballistic manner, whilst simultaneously spreading and becoming less concentrated around

a single density peak.

53



(a) (b)

Figure 2.8: The density of particles computed using a stochastic simulation of 1000 particles
undergoing a run-only VJ process with reorientation rate λ = 1 s−1, a constant run speed of
1 µms−1 and von Mises angular distribution (κ = 100), at times (a) t = 10 s and (b) t = 20 s.
Colour indicates density (arbitrary scale) from blue (low density) to red (high density). The
arrow in (a) indicates the initial velocity of all particles.

2.6 Conclusion and outlook

In this chapter, we have reviewed the mathematical approaches relevant to modelling

bacterial motility. We showed that the biological processes of bacterial motility and taxis

occur over many orders of temporal and spatial scales. The bacterial tracking data pre-

sented in Chapter 4 are well-described by a VJ process in the absence of any gradient

of chemoattractant. In Chapters 3, 5 and 6, we will use the VJ framework to describe

the phenomenological process of bacterial motility, with comparisons drawn and refer-

ence made to these datasets. We therefore reviewed the relevant foregoing mathematical

methods and analysis associated with the VJ process. Furthermore, we discussed the

stochastic numerical method used throughout the remainder of this thesis.
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Chapter 3

Analysis methods for inferring

stopping phases in tracking data

In order to characterise the motile behaviour of R. sphaeroides (or indeed any other

planktonic bacteria), various information relating to their motion is required. In the

specific case of R. sphaeroides , we model the motion using a run-and-stop VJ process,

as detailed in Chapter 2. Quantities of interest, which relate to the parameters in the

VJ model, are (i) the rate of switching from a run to a stop (λ, measured in s−1), (ii)

the rate of switching from a stop to a run (µ, measured in s−1), (iii) the run speed (c,

measured in µms−1), and (iv) the angle change between stops (θ, measured in radians).

We denote this final quantity the stopwise angle change for brevity. These quantities are

not necessarily constant and may be drawn randomly from a distribution, either across

the whole population or for each individual. A further complicating factor is that in-

terdependencies may exist between these quantities. For example, the stopwise turning

angle may be correlated with the speed of swimming immediately before a stop.

In order to construct and parameterise a VJ model of the motility exhibited by R.

sphaeroides , we should first consider what experimental data are available relating to the

system, and how this informs the choice of our model. There is generally little advantage
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in posing a model that contains more parameters than can be unambiguously assigned

from available data. This imposes several restrictions. First, due to the limited field of

view of the microscope, individual observed tracks are often short as bacteria swim out of

view. In addition, in bulk swimming experiments, bacteria are lost when they swim out of

focus, terminating the track. We cannot therefore reliably extract distributions relating

to individual bacteria due to a paucity of data in many of the tracks, and are limited to

population distributions. Hence we assume that the waiting times governing the dura-

tions of runs and stops, run speeds and angle changes made by bacteria are drawn from

the same population-wide distribution for all individuals. In reality, there is generally a

great deal of heterogeneity in the phenotype of clonal bacterial populations due, in part,

to the stochastic nature of gene expression [67]. We discuss the validity of this assump-

tion further in Chapter 4. A second restriction relates to correlation between variables.

In order to incorporate correlation, we would need to measure the joint distribution of

the variables of interest (for example the joint distribution of run speed and stopwise

turning angle). There are generally insufficient data to extract joint distributions from

the tracking data and we therefore assume independence of all the quantities listed above.

As discussed in Chapter 2, we assume for the purposes of the VJ model that switching

occurs as a Poisson process with defined constant rate parameters. The waiting times

between events are therefore exponentially distributed with a rate parameter, µ, for

switching from stops to runs, and another rate parameter, λ, for switching from runs to

stops. Each parameter is assumed to be constant for all bacteria within the population.

Similarly, we make no attempt to measure the distribution of run speeds in individual

bacteria, due to a paucity of data. We instead make the simplifying assumption that

the observed ensemble distribution of run speeds represents the whole bacterial popula-

tion. The same is true for the stopwise angle change distribution: each turning angle is

assumed to be randomly drawn from a population ensemble distribution. Following the

model proposed by Campos and Méndez [42], we assume that at each stop-to-run transi-
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tion event both a new relative angle and a new running speed are drawn at random from

the underlying distributions governing these quantities. Bacteria then run at a constant

speed until the next reorientation event.

In order to infer the parameters for our VJ model with the assumptions made above, we

seek to extract the following characteristics from the microscope videos:

1. the rate constants, λ and µ, governing the transitions between running and stopped

states;

2. the run speed for each frame in which the cell is running, denoted the framewise

speed;

3. the stopwise angle change, defined as the angle difference between the running

direction immediately before a stop and the running direction immediately following

a stop in a run-stop-run sequence.

The quantities of interest listed above have the common prerequisite that we are able to

label the running and stopped phases in a track. Without this information, we are not

able to extract quantities relating to differences between the two phases in an automated

manner. This labelling process is a central theme to the present chapter, in which we

present automated analysis methods to segment tracks into running and stopped phases.

As we shall see in Chapter 4, in addition to tracking data from wildtype bacteria, crucial

biological insight is gained from tracking data obtained from two mutant strains of R.

sphaeroides , one of which is unable to stop (non-chemotactic) and the other of which is

non-motile. Throughout this chapter, we assume that this information is available to us

when analysing bacterial tracks. We take advantage of the availability of these additional

datasets when analysing tracks, using them as a proxy for the two phases of movement

in wildtype tracks, as discussed below. The process of generating tracks from microscope

videos, details of experimental methods and additional analysis steps required when deal-
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ing with real data are omitted here and discussed in detail in Chapter 4.

In this chapter, we present novel analysis methods, based on a hidden Markov model

(HMM), to discern stopping and running phases in the observed tracks. There is no

established ‘gold standard’ method for analysing bacterial tracks. Many experimental

investigations of bacterial motility have made use of the Hobson Tracker [89], a piece of

equipment originally designed to track spermatozoa that simultaneously performs track-

ing and identifies stopping phases in the motion. However, no literature is available

explaining the internal workings of the device and it is known to suffer from hardware

limitations in the number of bacteria that may be simultaneously tracked [169]. In ab-

sence of information relating to the the analysis methods employed in the Hobson Tracker,

we therefore do not consider it further. The lack of a standard analysis method motivates

a comparison of different analysis techniques in order to establish how suitable they are

for this purpose. We use simulated tracking data to compare the novel analysis methods

with an existing procedure that is based on heuristic arguments. This is, to our knowl-

edge, the first example of a systematic comparison of analysis methods. We also show

how the rate parameters mentioned above can be independently estimated when working

with the approaches based on the HMM.

3.1 Analysis methods

The tracking algorithm used to generate tracks from experimental data, discussed in

Chapter 4, in common with all other tracking methodologies applicable to this field, out-

puts data as a vector of the form R = (r0, r1, . . . , rT ) for each track, where rt denotes

a two-dimensional position vector at frame t, and the number of frames in the track is

given by T + 1. Note that t is considered a discrete quantity throughout, as time is

measured in numbers of frames. In characterising running and stopped phases, we are

concerned not with the positions of cells in each frame, but with the motion of cells

58



between consecutive frames. The information of interest is thus the transitions between

consecutive position vectors within a track. These form a vector of displacement vectors,

D = (d0,d1, . . . ,dT−1) with dt = rt+1 − rt. The framewise speed is defined as the ob-

served speed of travel between two consecutive frames, ‖dt‖/∆t, where ∆t is the time

interval between frames. Note that we assume that consecutive images are acquired with

a fixed time interval, as is the case in most microscope video applications.

It will also be useful to compute the framewise angle changes between consecutive vec-

tors, which form a vector Θ = (θ0, θ1, . . . , θT−2), where θt ∈ [−π, π] is the difference in

polar angle between dt+1 and dt. Framewise angle changes are computed following the

procedure in Algorithm 1, where arctan(y, x) is corrected for the quadrant in which the

vector lies, computed using the built-in atan2 function in Matlab. The representation of

the data described above is illustrated in Figure 3.1.

Algorithm 1 Calculating framewise angle changes for a track

for i = 0 to T − 2 do
Compute angle of di relative to the horizontal, φ′ = arctan(di,y,di,x).
Compute angle of di+1 relative to the horizontal, φ = arctan(di+1,y,di+1,x).
Compute angle difference, θi = φ− φ′.
if θi > π then

θi = θi − 2π.
else if θi < −π then

θi = θi + 2π.
end if

end for

Defining stopping periods in bacterial swimming tracks is complicated by various sources

of noise in the data. Uncertainty in the position of the centroid of a cell in each image

may cause a track to appear jagged, for example when cells tumble whilst swimming.

Brownian buffeting may also cause deviations from straight-line swimming, and lead to

stops that are not perfectly stationary. Tracking errors caused by incorrectly linking cells

between consecutive frames, or by the disappearance of a cell for one or more frames, may
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Figure 3.1: An illustration of the mathematical representation of the tracking data. The vectors
rt denote the observed positions of the object being tracked at discrete sampling times t. The
vectors dt are the displacement vectors between consecutive position vectors, and the angles θt
are the angles between the displacement vectors.

also affect the appearance of a track. The observed framewise angle changes, θt, may be

due to such sources of noise, or due to a genuine reorientation event. As a result of this

added noise, the apparent motion exhibited during a stop phase may be misconstrued as

a run and vice versa. The effect of noise will be explored in more detail in Chapter 6.

We assume that the displacement vectors of each track, dt, correspond to either a run

state or stop state. The underlying state at frame t is denoted St, where we use the

convention throughout that St = 0 corresponds to a stop and St = 1 corresponds to

a run. For each track we define a state vector, S = (S0, S1, . . . , ST−1), describing the

sequence of states. One aim of the analysis is to infer the underlying state sequence for

each track. We therefore wish to assign to each displacement vector dt a probability of

being in a run (or stop) phase,

Pt(i) = P(St = i|dt),

where i ∈ {0, 1}.

Three methods for the determination of stops in tracks are now proposed, two of which

are based on the HMM, followed by an additional post-processing method which may

enhance the performance of all three methods. The analysis process is summarised in the

flow diagram in Figure 3.2, the stages of which we shall now describe in detail.
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Figure 3.2: Flow diagram summarising the analysis process for the methods described in this
chapter. Grey boxes denote inputs, in the form of simulated tracks, yellow boxes denote inter-
mediate quantities required by the methods, and the red box denotes the output of the methods.
Arrows indicate the flow of information in the process.

3.1.1 Heuristic analysis

The intuitive approach used by Taboada et al. [190] to identify stopping phases is to

define a threshold parameter ρCS and denote each transition as a run if the framewise

speed is greater than ρCS,

Pt(1) =


1,
‖dt‖
∆t
≥ ρCS,

0,
‖dt‖
∆t

< ρCS.

(3.1)

We call this approach the heuristic method.

The single parameter to be determined in the heuristic analysis method is the threshold

framewise speed, ρCS. The basis of the heuristic method is that there is a substantial

difference between the distribution of speeds observed during framewise runs and stops.
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If there is any overlap between the framewise speed distribution for run phases and stop

phases, due to the effect of noise and/or population heterogeneity, then this approach

will cause spurious inference in the crossover region. The value of ρCS should be selected

to maximise the number of correctly inferred transitions. We discuss the process of op-

timising ρCS in Section 3.3.2.

3.1.2 Analysis using a hidden Markov model

A more sophisticated approach utilises a state space model to infer the state probabilities.

We apply a HMM to the observed data. A brief discussion of the HMM follows; a more

detailed tutorial on the HMM is given in [164] and a good reference for details of the

implementation of the HMM is [161].

A Markov chain describes a directed graph linking M states with known transition prob-

abilities. Each state is directly observable and the transitions are ‘memoryless’: the

probability of a transition is determined only by the state immediately prior to that tran-

sition, a condition known as the Markov property. The system may be described in terms

of a list of transition probabilities, the initial state and a vector of state configurations

evolving over time. The transition probabilities give the probability of a transition oc-

curring between two states in a time interval, dt, denoted Aij dt = P(St+ dt = j|St = i),

where i, j ∈ {1, . . . ,M}. We assume that the Markov chain is homogeneous, meaning

that the transition probabilities are invariant with respect to time; the extension to time-

dependent transition probabilities is straightforward. This model, with M = 2, is a

reasonable representation of the motion of R. sphaeroides ; the bacterial locomotion is a

series of runs and stops with the frequency of both being a function of chemoattractant

concentration. In the absence of any concentration gradient we assume that the probabil-

ity of switching from a run to a stop (or vice versa) is constant per unit time and hence

that the transitions are Markovian. In addition, as discussed previously, we consider
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time in discrete units of frames, so that the transition probabilities may be rewritten as

framewise quantities:

Aij = P(St+1 = j|St = i). (3.2)

A hidden Markov model is appropriate for a similar system in which each state is not di-

rectly observable. In the current work, for example, the true run or stop states are not di-

rectly measurable. Instead the observable is the vector of data, Y = (Y0,Y1, . . . ,YT−1),

where each datum, Yt, is a random variable. The observed data are related in some

way to the underlying state. This relationship is expressed by the observation function,

defined by

bi(yt) = fYt|St (yt | i) , (3.3)

which gives the pdf of observing the datum yt at time t, conditional on the system being

in state i. The model, denoted Ψ, is fully described by bi(yt) and Aij.

The aims of the analysis are twofold. First, we wish to maximise the likelihood of the

model, defined by

L(Ψ | Y) = fY (Y; Ψ) , (3.4)

where fY (Y; Ψ) is the pdf governing the observed data for a given realisation of the model.

We henceforth denote the likelihood by L for brevity. We maximise this likelihood over

all of the parameters required in the model, which for our purposes amounts to finding

the correct transition probability parameters for switching between runs and stops, as

discussed below. Second, applying the maximum likelihood parameters, we evaluate Pt(i),

where i ∈ {0, 1}. In order to compute these probabilities and L, two new quantities must

first be evaluated. The cumulative forward probability, defined by

αt(i) = fY0,...,Yt|St (y0, . . . ,yt | i) , (3.5)

is the pdf of observing all data up to and including time t, conditional on the system
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being in state i at time t. This quantity may be calculated by summing over all possible

combinations of states up to time t− 1,

αt(i) =
∑
S

bS0(y0)

(
t−2∏
k=0

ASkSk+1
bSk+1

(yk+1)

)
ASt−1ibi(yt), (3.6)

with initial condition α0(i) = bi(y0), where S ∈ {0, 1}t denotes all possible state sequences

S0, · · · , St−1. Equation (3.6) may be interpreted as a series of transitions between discrete

states with transition probabilities given by Aij, with each state emitting an observation

governed by the pdf bi(yt). Two implicit assumptions are that the state is independent of

the observation and that the observations are independent of previous observations [17].

The number of configurations over which this summation is carried out is 2T , where T is

the number of observations (frames in our context). In this form, the cumulative forward

probability is computationally intractable for our purposes as T is typically of the order

of hundreds. A recursion formula that simplifies this computation is given by

αt(i) =
1∑
j=0

αt−1(j)Ajibi(yt). (3.7)

The likelihood of observing the data conditional upon Ψ is obtained by summing over all

possible final states:

L =
1∑
i=0

αT (i). (3.8)

Estimation of the optimal model is achieved by maximising this likelihood.

The quantity αt(i) alone does not take all of the available data into consideration for

t < T , only the data up to the time t. We therefore introduce a second quantity, the

cumulative backward probability, defined by

βt(i) = fYt+1,...,YT |St (yt+1, . . . ,yT | i) . (3.9)
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This quantity is the pdf of all data in the future of time t, given that the state at time t

is i. A similar definition to (3.6) applies, given by

βt(i) = AiSt+1bSt+1(yt+1)
∑
S

(
T−1∏
k=t+1

ASkSk+1
bSk+1

(yk+1)

)
, (3.10)

where S ∈ {0, 1}T−t again denotes all possible state probabilities St+1, · · · , ST . By con-

vention, βT (i) = 1, as there are no data to the future of time point T . Another useful

recursion relation also exists, given by

βt(i) =
1∑
j=0

βt+1(j)Aijbj(yt+1). (3.11)

The cumulative forward and backward probabilities may be combined to obtain the prob-

ability of a cell being in a given state at each time point,

Pt(i) =
αi(t)βi(t)

1∑
j=0

αj(t)βj(t)

. (3.12)

The normalisation factor in the denominator is required as the only possibilities allowed

by the model are the two states, although the actual probability of observing a complete

sequence of states is very low.

The observation function encodes prior information about the motion model for bacterial

swimming. Its functional form varies between the two HMM-based analysis methods and

is discussed in more detail below.

3.1.3 Speed-only model

For this approach we use the framewise speed, ‖dt‖/∆t, as the observable data, which

are hence scalars. From experiments with stopped and running-only bacterial strains we

are able to define the observation function bi(yt) empirically. This function expresses our
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prior knowledge of the process of bacterial swimming, and is specified by reference to

the non-chemotactic and non-motile mutant strains. The former is unable to reorientate,

swimming continuously in approximately straight lines, with deviations due to noise pro-

cesses as discussed. We assume that this mutant behaves as a wildtype bacterium in a

running phase. Similarly, the non-motile strain is unable to propel itself at all, hence

we assume that this mutant behaves as a wildtype bacterium in a stopped phase. These

assumptions are verified experimentally in Chapter 4. We reiterate that the non-motile

strain is not perfectly stationary under the microscope due to various sources of noise,

hence we must also record the motion in this case. As we discuss in Section 3.4, a rea-

sonable approximation exists to avoid the necessity for a non-motile strain. However, we

only arrive at this conclusion by considering the non-motile strain, so its inclusion here

is necessary.

In the speed-only model, we set the observation function b0(yt) equal to the estimate

of the pdf of framewise speeds in the non-motile mutant, and b1(yt) equal to the same

quantity in the non-chemotactic mutant. The estimation is carried out using a kernel

density estimate (KDE), as discussed in Appendix A.4. An illustration of the form of the

observation function is shown in Figure 3.3. By incorporating information from the mu-

tant strains, we are in effect creating an empirical prior of the underlying motion model.

The only free parameters remaining in the model, Ψ, are the probabilities for state tran-

sitions, Aij. It is assumed that switching between states occurs with a characteristic time

τij, where i and j are specified in the same manner as for A. The transition probabilities
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for transitions between states, independent of observations, are therefore given by

A00 = 1−∆t/τ01,

A01 = ∆t/τ01,

A10 = ∆t/τ10,

A11 = 1−∆t/τ10,

where ∆t denotes the duration of a single frame and ∆t � τij by design. We maximise

L over τ01 and τ10.
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Figure 3.3: An illustration of the pdfs of framewise speeds for the running (solid line) and
stopping (dashed line) phases. The observation functions b1 and b0, respectively, are set equal
to these in the speed-only HMM method.

The HMM formulation in equations (3.6) and (3.10) requires the assumption, discussed in

Section 3.1.2, that observations do not affect the probability of transitions between states.

In reality the probability of a cell being in a stopped phase beyond an experimentally

determined maximum framewise speed is negligible. In the standard HMM form, this

is implied by a very small value for the likelihood of the data given a stop relative to

the probability given a run, b0(yt) � b1(yt). In practice, however, both of these values

become very small for extreme values of the framewise speed. In this case, numerical
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rounding errors may cause the algorithm to fail by producing a result that does not

predict correctly that the probability of a stop is negligibly small. Figure 3.3 illustrates

this problem: the framewise run speed distribution and framewise stop speed distribution

would have numerically indistinguishable values for a speed of 60 µms−1. To avoid such

numerical errors with high-speed outliers we use modified transition probabilities with a

dependence on the observed speed, following Beausang and Nelson [17], given by

A′00 = 1−∆t/τ01,

A′01 = ∆t/τ01,

A′10 = (∆t/τ10)H,

A′11 = 1− (∆t/τ10)H,

(3.13)

where H ≡ H(‖dt‖/∆t − ρ) is a Heaviside step function and ρ is a maximum speed

parameter, determined from the data. We let ρ equal the framewise speed below which

99.99% of the density of the non-chemotactic KDE lies. This prevents numerical errors,

whilst simultaneously ensuring that we do not truncate the observation function b1(yt)

overly harshly at high framewise speeds. In the illustration in Figure 3.3, for example,

ρ ≈ 50 µms−1. Note that this modification is included purely to avoid numerical difficul-

ties. The value of ρ has no significant effect on the outcome of the analysis providing it

is set sufficiently high.

3.1.4 Full model

This approach uses both the framewise speed and the framewise angle between trajecto-

ries as the observable data. The observables are now vector quantities, yt = (‖dt‖/∆t, θt),

equivalent to a plane polar representation of the tracks. By incorporating the extra angu-

lar information into our analysis method we hope to improve the sensitivity and specificity.
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In order to incorporate angular information into the HMM some modifications are re-

quired. The first was introduced in Section 3.1.3; the same modified transition probabil-

ities, A′ij, are used here. Furthermore we seek an alternative formulation to that given

in equation (3.6) which avoids the assumption of independence of each observation and

the preceding state. The need for this modification is best explained by considering the

observation function. A running cell exhibits angular directional persistence, thus the

pdf of θt will be tightly centred on the origin in the case of a run-to-run transition. Con-

versely, the angular pdf in the case of a stop-to-run transition is uniform, as discussed

below. The angular component of the observation function thus depends not only on the

current state but also on the preceding state. A modified observation function is required

to overcome this dependency. We denote this by bij(yt), where i ∈ {0, 1} refers to St−1,

and j ∈ {0, 1} refers to St.

The functional form of the observation function bij(yt) is based on an empirical fit to

experimental data with non-motile and non-chemotactic bacterial strains, similar to the

case with the speed-only model. As for the speed-only model, a suitable approximation

may make it possible to form a reasonable observation function in the absence of a non-

motile strain. Again, this is discussed further in Section 3.4. The functional form differs

from the that used in the case of the speed-only model, as we include the observed angle

change in addition to the framewise speed. We assume independence of speed and angular

distributions so that bij(yt) is separable in these two components,

bij(yt) = fj(‖dt‖/∆t)gij(θt), (3.14)

where both fj and gij are normalised pdfs. This simplifying assumption is necessary

as we do not have sufficient data to extract such a joint distribution at an acceptable

resolution, as discussed previously. The speed component for each observation function,

fj(‖dt‖/∆t), is independent of the previous state and is identical to that used in the
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speed-only case (see Figure 3.3 for an illustration). The angular component, gij, is speci-

fied by comparison with the observed framewise angle changes in the two mutant strains.

Since the observed angle changes are distributed approximately symmetrically in the

non-chemotactic dataset, we take the absolute value of the observed angle changes1. We

fit the absolute observed angular data from the non-chemotactic dataset with an expo-

nential function, as this provides a good fit, and because strongly peaked data are not

suitable for use with the KDE. Note that, in the absence of noise, the angle change on

going from a run to a run would always be identically zero. In reality, the distribution is

concentrated around zero, but shows some departure due to various sources of noise, as

discussed further in Chapter 6. We do not fit the observed angular data from the non-

motile dataset, as this is known to follow a wrapped uniform distribution (see Chapter 5).

The dependence of the angular component on the previous state, in addition to the current

state, introduces additional complexity. The first running frame after a stop has the same

speed distribution as all subsequent running frames but a different angular distribution;

the angle selected after a stop is assumed to be approximately uniformly distributed. This

assumption is required in order to maintain the Markov property of the process; any di-

rectional persistence over the course of a stop would lead to a non-Markovian process. As

is shown in Section 4.2.7, this assumption may not accurately reflect the true underlying

process. It is, however, considered to be acceptable since the uniform distribution reflects

the prior uncertainty as to the possibility of directional persistence. The functional form

of the angular component is illustrated graphically in Figure 3.4(a). The complete ob-

servation function is illustrated in Figure 3.4 for the four possible combinations of i and j.

1As we shall see in the next chapter, there is in fact a statistically significant departure from the
symmetric distribution in the case of non-chemotactic bacteria tracked near a surface. However, this has
little effect on the form of the observation function, so the assumption of symmetry is justified.
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Implementing the modified observation function, equation (3.7) becomes

αt(i) =
1∑
j=0

αt−1(j)A′jibji(yt), (3.15)

with initial condition α0(i) = b0i(yt). Note that in the initial condition it is assumed

that cells were stopped immediately before the track begins. This is a simple way to

implement the uncertainty in the angle at the start of the track, since we do not know

the direction of travel immediately prior to the start of the track. This assumption as-

sures that the angular component is initially given by a wrapped uniform distribution.

An alternative approach to deal with this uncertainty would be to take the initial state

probabilities and direction of travel from the first displacement vector in the track, d0.

This would effectively shorten the track by one sample point at the start.

The modified form of equation (3.11) for βt is

βt(i) =
1∑
j=0

βt+1(j)A′ijbij(yt+1), (3.16)

with βT (i) = 1, as for the speed-only method.

3.1.5 Determining the maximum likelihood HMM transition

parameters

As discussed in Section 3.1.2, the two components describing the hidden Markov model

are the observation function bij and the transition probabilities in A′ij. The first compo-

nent is independently determined, as discussed above. The transition probabilities A′ij

are specified by the three parameters in equation (3.13), namely τ01, τ10 and ρ. The

threshold parameter ρ is fixed, as discussed in Section 3.1.3. It is possible to obtain a

maximum likelihood estimation of the final two parameters by maximising the likelihood
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Figure 3.4: (a) Illustration of the pdfs of framewise angle changes for the running (solid
line) and stopped (dashed line) phases. The angular components of the observation function
are set equal to the running distribution (g11) and the stopped distribution (g00, g10, and g01).
(b) Illustration of the functional form of the observation function, bij(yt), for the full HMM
method. The shaded area represents the pdf for observing the moving particle at a particular
point in space at the next sampling time, given that the particle is at the point marked by the
red dot at the current sampling time. Darker shades represent higher probabilities. The green
line shows an example trajectory in each case. (i) Run-to-stop transition, b10. (ii) Stop-to-stop
transition, b00. (iii) Stop-to-run transition, b01. (iv) Run-to-run transition, b11.



defined in equation (3.8).

The sampling time of the system, ∆t, imposes a restriction on our ability to determine the

parameters τ01 and τ10 as we require that ∆t� τij. To take this limitation into account,

we define two new variables, p01 = ∆t/τ01 and p10 = ∆t/τ10, which are interpreted as the

probability of a transition from a stop to a run (p01) and from a run to a stop (p10) be-

tween two consecutive frame intervals. Since these new parameters are probabilites, they

are restricted to take values in the range [0, 1]. We now focus on inferring p01 and p10,

bearing in mind that we can use these values to estimate the dwell times, τij, providing

that the above limitation on the sampling time is respected.

Das et al. [56] use a Markov chain Monte Carlo (MCMC) scheme to find the maximum

likelihood estimate of their rate parameters in a similar application to that described

here. In our case, the negative log-likelihood surface is always smooth and contains a

single global minimum (see Figure 4.14 for an example), so that a deterministic optimi-

sation routine is more computationally efficient. We use the Matlab function fmincon to

carry out a constrained optimisation of the negative log-likelihood. The function to be

minimised is defined by

h = −
N∑
i=1

logL(i), (3.17)

where L(i) denotes the likelihood of the data from the ith track, as defined in equation

(3.8), and N is the total number of tracks in the dataset. The logarithm operation is

required to avoid numerical errors, as the likelihood can become extremely small. As

the likelihood is a function of p01 and p10, the minimisation is carried out over a two-

dimensional vector space. The summation in equation (3.17) pools the results from all

of the tracks in the dataset, so that the final likelihood is averaged over all tracks in

the dataset. It is possible, in principle, to maximise the likelihood over each individual

track, however the performance of this approach is poor when dealing with short tracks
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(data not shown). The optimised parameters are subsequently used to compute the run

probabilities using equations (3.7), (3.11) and (3.12).

3.1.6 Post-processing the output of the analysis methods

Each of the three methods presented returns a vector for each track processed containing

the probability of a run between each observation point, (P1(1), . . . , PT−1(1)). In the case

of the heuristic method, every value is either equal to 1 or 0, whereas the HMM meth-

ods return values in [0, 1]. In the latter case, if we wish to assign every between-frame

motion to either a running or stopped state, we round all values to the nearest integer

(0 or 1). The resulting vector can be considered to represent the run status (as opposed

to run probability). This transformation is always carried out on the run probabilities

computed using the HMM-based methods. In the case of the heuristic method, there is

no distinction between the two properties.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

stop

run

stop

run

t (frames)

Figure 3.5: An illustration of the post-processing method applied to a run status vector. The
bottom line represents the output from one of the heuristic analysis methods. The top line shows
the result of applying post-processing techniques with τ0,min = τ1,min = 2. Running and stopped
phases which only last one frame are filtered out by this process.

An additional heuristic step may be applied to the run status vector of each track, which

in effect smooths the inferred path between the running and stopped phases. We de-

fine a run persistence parameter, τ1,min, and a stop persistence parameter, τ0,min, which

correspond to the minimum duration, in frames, of a running and stopped phase, re-

spectively. Running and stopped phases which have a duration shorter than τ1,min and

τ0,min, respectively, are relabelled. This proceeds in several stages, detailed in Algorithm
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2. The process is also illustrated graphically in Figure 3.5. The decision to relabel short

runs before short stops is arbitrary, and introduces a bias towards stops in the case of

a series of rapid oscillations between the two states (the short run sections will first be

converted to stops, resulting in a larger stopped section). Intuitively, a high density of

between-frame stops detected within a region suggests that at some point in the region

there was at least one stop. We choose to proceed in this fashion as we place greater

importance on identifying every stop, possibly at the expense of including some false

positives or inferring overly long stopping phases.

Algorithm 2 Post-processing of analysis method output

if Method is based on HMM then
Convert run probability vector to a run status vector.

end if
for All run phases do

Find the duration of the run phase.
if Duration of run < τ1,min then

Convert all runs in this phase to stops.
end if

end for
for All stopped phases do

Find the duration of the stopped phase.
if Duration of stop < τ0,min then

Convert all stops in this phase to runs.
end if

end for

The post-processing method presented here was originally developed for use with the

heuristic method, which often exhibits unrealistically rapid fluctuations between running

and stopped states, as there is substantial overlap between the distribution of the magni-

tude of between-frame displacements for runs and stops. Smoothing the state path helps

to remedy this situation. Nonetheless, as we shall see in Section 3.3, the application of

this post-processing method following the HMM-based analysis can substantially improve

the output when the noise level is high.
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3.2 Simulation study comparison of the analysis meth-

ods

Before we can apply the analysis methods discussed above to experimental data, we must

evaluate and compare their ability to correctly infer stop phases in tracks affected by

varying levels of noise. A traditional means of evaluating this performance is to compare

with the results of manual (‘by hand’) assignment of stopped phases in real tracks. This

approach suffers from several key drawbacks, however. First, manual tracking is a time-

consuming and often difficult process. As we shall see when the experimentally derived

tracks are presented in more detail in Chapter 4, the stop phases in microscope videos are

difficult to discern unambiguously by eye. A second limitation of manual analysis is the

dependence on the necessarily subjective interpretation of the person processing the data.

An alternative approach to manual analysis, and the approach used here, is a simula-

tion study. This is a common approach to assess the performance of automated analysis

methods, and is exemplified in [17, 56, 122]. We assume that experimentally-obtained

tracks are the result of a run-and-stop VJ process as described in Chapter 2. We define

the sampling interval to be ∆t = 0.02 s ( = 1 frame) to match the frame capture rate

of the microscope used to obtain experimental movies, and simulate each track for 5 s

(250 frames). We use a simplified model of the noise in the system by adding a normally

distributed perturbation to each coordinate of the recorded position in a track, with zero

mean and standard deviation equal to (2DWN∆t)1/2, where DWN is varied to modulate

the level of noise applied to the system. This description is equivalent to uncorrelated

Gaussian white noise; we note that the use of such a model to simulate the type of noise

exhibited in real experimental systems may be oversimplified; this is discussed in more

detail in Chapter 6. This simple implementation of noise is maintained for the present

study, however, in order to avoid obfuscating the problem. The true underlying state

sequence in the simulations, which is continuous in time, is recorded for later comparison
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with the state inferred by the analysis methods.

We use two different simulations to demonstrate the effect of different underlying motion

models on the performance of the analysis methods. In both simulations, the speed of each

running phase is an independent and identically distributed (IID) Weibull distributed

random variable with scale parameter 40.1 and shape parameter 4.1. This distribution

and these parameters are chosen as they provide a good match with the distribution of

framewise speeds seen in the experimental data (see Chapter 4). It is not clear a priori

to what extent the assumption that running phases occur with a constant speed between

each reorientation event is valid. For example, Packer et al. [151] observed large varia-

tions in flagellar motor rotation speeds between individuals in their study. Nonetheless,

this choice of model is a reasonable approximation to the true underlying motion for

the purposes of our simulation study. We discuss this further in Section 3.4. The first

simulation is of a run-only VJ process with λ = 2 s−1, and the second is of a run-and-stop

process with λ = 2 s−1 and µ = 10 s−1. These parameters are two to fourfold higher than

experimentally observed parameters [28], however all values cited in the literature for R.

sphaeroides are measured using the tethered cell assay, which may well differ substan-

tially from the values in free-swimming bacteria [157]. We discuss this in greater detail

in Section 4.3. The values used here approximate an observed track reasonably well,

and assure that the simulated tracks exhibit a sufficient number of stopping phases on

average. Again, we return to this discussion in Section 3.4.

The simulation method used here was described in full detail in Chapter 2. The inclusion

of a run-only simulation is intended as a control, to test whether the analysis methods

considered infer a stopped phase when none are present in the tracks. The level of noise

added was varied for each simulation to test the effect on the performance of the analysis

methods. This was achieved by varying DWN from 7.2 × 10−3 µm2s−1 (10−2 px2s−1, a

very low level of noise) to 7.2 µm2s−1 (10 px2s−1, a very high level of noise). Tracks from
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the run-and-stop simulated dataset with a number of different noise levels are shown in

Figure 3.6.

Figure 3.6: A representative selection of simulated tracks with different levels of added noise.
(a) DWN = 7.2 × 10−2 µm2s−1, (b) DWN = 7.2 × 10−1 µm2s−1, (c) DWN = 1.4 µm2s−1, (d)
DWN = 2.8 µm2s−1.

In carrying out the steps required to analyse the simulated datasets and compare their

performance, we mimic the process that we use when analysing real data in Chapter 4.

None of the parameters of the true underlying processes are assumed known to the analysis

methods. In order to compute the empirical prior component of the HMM, we require a

non-motile dataset and a non-chemotactic dataset. Since these are available in the real

experimental dataset, we simulate them here. The non-motile dataset is simulated by

setting the transition rate λ very high, and µ very low. In practice, values of 1012 s−1 and

10−12 s−1, respectively, suffice to generate a track that is effectively stopped throughout

its entire duration. The non-chemotactic dataset is simulated by setting λ very low, so

that tracks exhibit no reorientations at all.
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3.2.1 Discretising the underlying state sequence

The output of the analysis methods for each track is a vector of run status for the periods

between discrete sampling time points. The true underlying motion is, by contrast,

continuous in time. In order to facilitate a comparison between the output and the true

state sequence, we discretise the latter over the same time domain. Any period between

two consecutive sampling points that contains a stop phase is designated a stop in the

discretised true underlying run status.

3.2.2 Assessing the rate of false positives and false negatives

Two common measures of statistical error in an inference process are the rates of false

positives and false negatives, also known as type I and II errors, respectively. Here we

consider the inferred state sequence as a series of stopping phases and running phases,

where each phase consists of one or more consecutive framewise transitions identified as

a stop or a run. A false positive corresponds to an inferred stopping phase where none

is present in the true underlying state sequence. A false negative corresponds to an in-

ferred running phase where none is present in the true underlying state sequence. Figure

3.7 illustrates the problem of determining the accuracy of the analysis methods in terms

of the rates of false positives and negatives. The upper coloured bar indicates the true

(discretised) state sequence and the bottom bar the inferred sequence. There are several

discrepancies. A single frame stop has been inferred during the fourth running phase.

This is a false positive; there is another false positive at the end of the trace. Conversely,

during the fifth stopping phase the analysis method has inferred a single frame run. This

is a false negative. All of the mistakes noted here would be fixed by the application of

the post-processing method with τ01 and τ10 both greater than one (data not shown).

We assess the rate of false positives and false negatives as the ratio of the number of false

positives and false negatives to the number of actual stop events in each track, respec-
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Figure 3.7: An illustration of the problem of assessing the accuracy of analysis methods in
determining stopping phases. The trace represents the probability of running for each time
interval, as inferred by the HMM method, i.e. Pt(1). The grey line shows the value Pt(1) = 0.5,
above which we identify the interval as a run. The top shaded bar shows the true underlying
state sequence, where dark grey indicates a stop and light grey a run, and the bottom bar shows
the states inferred by the analysis method.

tively, averaged over all tracks in the dataset. All simulated tracks are verified to contain

at least one true stopping phase to avoid numerical singularities. Note that a value above

one in either of these instances means that the number of inference errors is greater on

average than the number of underlying stop events in each track.

3.3 Results

The previous section described in detail the methods we use to simulate tracks and sub-

sequently compare the performance of the analysis methods. The general procedure is

to simulate data, infer the necessary parameters for each analysis method, identify stops

in the tracks using the analysis methods, then compare these to the true underlying tra-

jectory. We carry out this process for a range of levels of added noise. In the case of

the heuristic method, we must estimate the threshold speed parameter, ρCS, whereas for

the HMM methods we must estimate the transition probabilities p01 and p10. We now

present the results of our simulation study, in terms of both the inferred parameters and
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state sequences.

3.3.1 Maximum likelihood HMM transition parameters

Figure 3.8 shows the negative log-likelihood surface for the run-only and run-and-stop

simulated datasets with DWN = 0.432 µm2s−1, computed by sampling the likelihood over

a range of values of the parameters p01 and p10. In both cases, the surface is similar for

all noise levels considered here (data not shown). Whilst the plots appear similar at first

glance, the run-and-stop surface has a clear global minimum at p01 ≈ 0.1, p10 ≈ 0.03,

whereas no such well-defined minimum exists for the run-only dataset. The run-only like-

lihood varies very little with the parameter p01, compared with the run-and-stop dataset.

This is as expected because the run-only tracks contain no stops, therefore the rate gov-

erning the stop to run transition has little effect. As a result of the flatness of the run-only

surface, the optimisation routine often fails to converge to a global minimum (data not

shown). We therefore no longer consider this dataset, since the absence of maximum

likelihood transition rates impedes any further analysis. This result demonstrates the

important point that the HMM is fundamentally defined by the underlying model, Ψ. If

this model is incorrect, as is the case when we apply the HMM designed for run-and-stop

motion to a run-only dataset, the inferences drawn may be spurious. We have deter-

mined that we should check the appearance of the negative log-likelihood surface before

proceeding.

Figure 3.9 shows the maximum likelihood transition rates, inferred using the two HMM-

based methods, for varying levels of noise. These are computed by multiplying the inferred

values for p01 and p10 by a factor of fifty, to convert from units of frames to seconds. Recall

that the true values are λ = 2, µ = 10. Both methods estimate these values approximately

correctly for low added noise, although there is still some discrepancy. In the case of µ,

both methods increasingly underestimate the value as the level of noise increases, whereas
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(a) (b)

Figure 3.8: Negative log-likelihood surfaces for the run-only (a) and run-and-stop (b) datasets,
computed using noise level DWN = 0.432 µm2s−1. The false colour runs from low (blue) to high
(red) positive values. Both plots are normalised in the same way.

for λ, the full HMM method generates overestimates as noise increases and the speed-only

method produces underestimates. This result indicates that we should be cautious when

interpreting the meaning of the maximum likelihood transition rates.
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Figure 3.9: Inferred rates for stop to run transitions (µ, black) and run to stop transitions (λ,
red), computed by minimising the negative log-likelihood. (◦) HMM full; (+) HMM speed-only.

3.3.2 Heuristic cutoff parameter

The basis of the heuristic method is that there is a substantial difference between the

distribution of speeds observed during framewise runs and stops. The value of ρCS should
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be selected to maximise the number of correctly inferred transitions. We approach this

problem by computing the observed framewise speeds for the non-chemotactic and non-

motile strains. We estimate the true pdf of framewise speeds in each case using a KDE

[32]. The parameter ρCS is then taken to be equal to the point at which the two estimated

pdfs intersect. This does not in general guarantee that the measure of the crossover re-

gion is minimised, however for our purposes it is a reasonable approximation. Figure 3.10

shows the values of ρCS determined by this method for different levels of added noise. As

expected, the cutoff level increases with noise level, since this causes the two distributions

to broaden. This is demonstrated further by Figure 3.11, which shows the KDEs for two

different noise levels. This figure also shows how the overlap region grows with noise level.
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Figure 3.10: The variation of heuristic cutoff speed, ρCS, with noise level, DWN, for the
simulated run-and-stop process.

3.3.3 Assessing and comparing the performance of the analysis

methods

Figure 3.12(a) shows the variation of false positive rate with noise strength. The heuristic

method is highly sensitive to noise, producing a very large proportion of false positives
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Figure 3.11: KDE of the observed framewise speeds in the non-chemotactic (black solid line)
and non-motile (black dashed line) datasets, for the simulated run-and-stop process with (a)
DWN = 0.288 µm2s−1, and (b) DWN = 0.864 µm2s−1. Grey dashed line indicates the automat-
ically identified crossover region in both cases.

even for low levels of added noise, with rates rising to greater than one at intermediate

levels of noise (data not shown), meaning that for every true stopping event a spurious

event is inferred. This occurs because the heuristic method often produces tracks with

rapid oscillations in the state sequence, as these are not penalised. This is in contrast to

the HMM-based methods, in which the low values of the transition probabilities p01 and

p10 penalise high-frequency switching. The heuristic false positive rate is reduced some-

what by application of the post-processing stage, however this method still performs

significantly worse than the methods based on the HMM at most noise strengths. The

full HMM method is also more sensitive to noise than the speed-only method, producing

a higher number of false positives as DWN is increased. This is rectified by the application

of the post-processing stage.

The false negative rate varies less between analysis methods, as Figure 3.12(b) shows. In

this case, the heuristic method is the most effective, rarely failing to detect a stop. The

speed-only method, in contrast to the results of the false positive rate, has the highest

number of false positives, and shows an approximately linear increase with noise.

The false positives generated by the different methods may bias the inferred distribution
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Figure 3.12: Variation with noise level of (a) the false positive rate, and (b) the false negative
rate. Data are computed for the simulated run-and-stop process, with the following analysis
methods: heuristic (×); heuristic with post-processing (◦); HMM speed-only (�); HMM speed-
only with post-processing (+); HMM full (4); HMM full with post-processing (♦).

of stopwise angles. We quantify this bias using simulated data in Figure 3.13. Black

bars indicate the inferred distribution of stopwise angle changes following the application

of the relevant analysis method. The angle change distribution in the VJ process used

to simulate our datasets is uniform, hence the inferred distribution should also be uni-

form. The heuristic method (Figure 3.13(a)) generates a distribution that is significantly

skewed towards lower turning angles. This departure from the predicted uniform distri-

bution is due to the presence of false positives, whose contribution is indicated by the

yellow bars. The false positives bias the inferred distribution substantially. Application

of the post-processing stage reduces the bias slightly, but it is still very marked (data not

shown). The bias is far smaller in the case of the full HMM method, though the smaller

number of false positives still bias the distribution towards low turning angles. The dis-

tribution generated by the speed-only HMM method, or either HMM-based method with

post-processing, is not significantly different from the result for the full HMM method

without post-processing (data not shown).

A second way in which the analysis methods may introduce bias is in the distribution

of stop durations. Figure 3.14 shows how the ratio of false positives to total number

of stopping phases (given by the sum of true stops and false positives) varies with the
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Figure 3.13: Histogram of the distribution of stopwise angle changes, as inferred by (a) the
heuristic method, and (b) the full HMM method, for a run-and-stop process with DWN =
0.432 µm2s−1. Black bars show all inferred stops, while grey bars indicate what proportion
of these are due to false positives.

duration of the stop, for an intermediate level of added noise. As for the stopwise angle

changes, the bias is most significant for the heuristic analysis method, although this

is somewhat rectified by the application of the post-proessing stage. The two HMM-

based methods perform better than the heuristic method in all duration ranges, with

the exception of the longest range considered, where the speed-only method and the

heuristic method with post-processing perform similarly. We note that Figure 3.14 shows

the fraction of false positives, not the absolute number; the expected number of stops

decreases exponentially with stop duration.

3.4 Discussion and conclusions

In this chapter, we have investigated the problem of analysing tracks from bacteria under-

going a run-and-stop VJ process. We proposed three methods to infer sections in tracks

that correspond to stopping events. The analysis methods were selected with a view to

analysing tracking data from R. sphaeroides , as the data presented in Chapter 4 is from

observations of this species. They are, however, generally applicable to tracks from any

bacterium that undergoes approximately discrete reorientation events, of sufficient dura-

tion that it is possible to capture them with a video microscope. The heuristic method
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Figure 3.14: The fraction of false positives for different durations of stops, computed for a
run-and-stop process with DWN = 0.432 µm2s−1. A fraction of 1 means that all inferred stops
with a duration in the range of interest are false positives. The four shades, darkest through to
lightest, denote the analysis method used to infer stops. In order, these are: heuristic, heuristic
with post-processing, speed-only HMM and full HMM.

is based on work by Taboada et al. [190]. Related analysis methods have been used in

other studies [24, 62], however several separate heuristics are applied in these studies and

it is unclear how the various parameters have been selected. The remaining two methods

are variations of the HMM.

We proceeded to use simulated data to compare the performances of the three analysis

methods for analysing tracks of freely swimming bacteria. This is, to the best of our

knowledge, the first example of such a systematic study to compare analysis methods

for tracking data. The simulation is based on the run-and-stop VJ process with simple

additive white noise applied at varying strengths. Running speeds are drawn from the

Weibull distribution, with parameters specified by a fit to the experimental data pre-

sented in Chapter 4. Following the model described by Campos et al. [43], we assume

that the running speed remains constant for the duration of each running phase and that

a new speed is selected at random upon each reorientation. We now discuss the validity

of the way in which noise and reorientations are modelled.
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The noise model used here may not capture all sources of noise in the system, however

it approximates measurement error reasonably. One could also consider incorporating

more sophisticated noise models, for example rotational Brownian motion, as considered

in Chapter 6. However, for the purposes of a simple yet robust performance test the

noise model considered here is adequate. We assume throughout that the VJ model is

appropriate when applied to bacterial motion, following good evidence in the literature

on the subject [24, 124].

The assumption that running speeds are maintained for the duration of a run has not

been tested experimentally using tracking data. However, Packer et al. [150] observe that

tethered cells exhibit a great deal of heterogeneity in their basal rotation rates, suggest-

ing that the speed may vary over the course of a running phase. For the purposes of the

simulation study, we opted for the present model, detailed by Campos et al. [43], as we

have not characterised the variability of running speeds in single bacteria. Further work

could involve extracting this information from bacterial tracking data. This is in principle

possible by a straightforward analysis of single tracks, however we did not perform this

analysis on the experimental data in Chapter 4 due to time constraints.

Our first test of the HMM-based methods was to apply them to inappropriate data from

a run-only simulation, to test whether the analysis would produce nonsensical results.

Numerical optimisation of the transition probability parameters was erratic, and the

negative log-likelihood surface showed that the transition parameter p01 had little effect

on the likelihood, as expected.

Further results presented in this chapter show that even low levels of noise cause the sim-

ple heuristic algorithm to fail and produce a very high incidence rate of false positives.

Coupling the heuristic method with post-processing improves the performance somewhat,
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but still does not make it competitive with the new HMM-based methods presented here.

In particular, the heuristic method introduces significant bias into the inferred sequence

of stopping phases, skewing the stopwise angle change and stopwise duration distribu-

tions towards lower values. In contrast, the HMM-based methods show very little bias in

the resultant distributions.

The two HMM-based methods differ only in their treatment of the observed data, with

the full model incorporating both framewise speed and angle change, whereas the speed-

only model ignores angular information. As a result, the speed-only HMM method is

less sensitive than the full HMM method, generating fewer false positives and more false

negatives. The application of post-processing to either of these methods makes little

difference to the level of such errors, with the exception of the false positive rate in the

full HMM method, which is decreased significantly at higher levels of noise with post-

processing.

Note that the results presented here are for a single choice of the parameters µ, λ, ∆t

and the Weibull speed distribution scale and shape factors. The Weibull parameters were

selected to closely match the experimental data presented in Chapter 4, while the sam-

pling rate, ∆t is chosen to match that of the microscope camera used in Chapter 4. The

transition rates are greater than those observed experimentally with tethered cell assays

(see, for example, [28]), but we note that results obtained with this very different experi-

mental method may not agree with tracking experiments [157]. Different values for these

parameters will result in a different distribution of stop durations in the simulated data,

which in turn will affect the performance of the analysis methods. For example, a slower

sampling time (increased ∆t) is expected to increase the number of false negatives across

all methods, as short stops become impossible to discern on the observation timescale.

Fixing ∆t and increasing the value of λ is expected to have a similar effect. Further work

is required to determine the nature of the sensitivity of the analysis methods to variations
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in these parameters.

An important advantage to the methods based on the HMM is the ability to obtain a

maximum likelihood estimate for the parameters p01 and p10 for the dataset being anal-

ysed. The maximum likelihood estimate of the value of these parameters allows us to

estimate λ and µ, as λ = p10/∆t and µ = p01/∆t. In the case of high noise strength,

we saw in Section 3.3.1 that the estimates for these parameters can differ from the true

underlying values by a factor of up to two. The estimates are, however, reasonable for a

range of intermediate noise levels. There is no straightforward method to estimate the

same parameters using the heuristic method, hence we did not attempt this. However, it

may be possible to fit an exponential distribution to the observed stop and run duration

data. It is likely that the presence of false positives and significant bias would render this

approach highly inaccurate, however.

A critical component of the HMM framework is the observation function, discussed in

Section 3.1.2. This represents our prior knowledge of the nature of running and stopped

phases in the observed data. In the simulation study, we form the observation function

by reference to simulated non-motile and non-chemotactic datasets, which represent the

two mutant strains that form part of the experimental R. sphaeroides dataset considered

in Chapter 4. Analogous strains have been reported for many other bacterial species,

for example E. coli [14], Campylobacter jejuni [191], and Caulobacter crescentus [68]. As

mentioned in Section 3.1.2, if the non-motile mutant were not available for any reason,

we propose that the observed motion of this strain may be approximated by a diffusive

process. Within such an approximation, it is possible to calculate a theoretical value for

the diffusion coefficient using Stokes’ law, as we show in Chapter 6. We demonstrate in

Chapter 6 that the observed motion of the non-motile R. sphaeroides strain does indeed

agree well with such an approximation. Further work is needed to ascertain whether this

constitutes a reasonable prior for other microorganisms of interest, however.
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In Chapter 4 we shall analyse real experimental data, hence the present study is critical

if we are to maximise the utility of our data and avoid false drawing false conclusions.

From the study presented in this chapter, we conclude that the HMM-based methods

are both far more reliable analysis methods than the heuristic approach. The simulation

results indicate that the two HMM analysis methods perform similarly well, but that the

full variant is more sensitive, and therefore more likely to generate false positives. It is

not clear which method will be best suited to analysing the experimental data, hence

we shall use both methods and compare the results. Furthermore, we shall consider the

estimated values of the transition rates with caution, in light of the strong dependence

of the accuracy on the noise level present in the data.

We are thus guided by the results of the simulation study, although, as we shall see, there

are several features of the real tracking data that differ significantly from the simulated

datasets considered here. The results from this chapter are furthermore applied as a

guideline in Chapter 6, where it is important to quantify the extent of bias due to false

positives from the analysis methods.
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Chapter 4

Analysis of experimental data

Chapter 3 motivated the use of tracking data from swimming bacteria to extract various

quantities necessary to characterise the motion of a bacterial swimmer. Analysis meth-

ods were presented in Chapter 3 that enable us to identify stopping phases in tracks and

estimate the switching rates between stops and runs. These methods were tested and

assessed using simulated tracks. In this chapter, we apply the methods of Chapter 3 to

real experimental data. We use analysis methods based on the HMM throughout, as

this was shown to perform substantially better than the proposed alternative heuristic

method. As in previous chapters, we consider the model bacterium R. sphaeroides . The

experimental setup used to obtain the data is described. We then discuss some additional

considerations, required in the analysis stage, that were unnecessary when working with

simulated data. Finally, we present and discuss relevant results obtained from our exper-

imental datasets.

4.1 Methods

We now present the details of the experimental and analytical methods used to estimate

quantities of interest relating to the swimming behaviour of R. sphaeroides . The process
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Table 4.1: Glossary of parameters used throughout this chapter.

Parameter Description Value

ρP Minimum cluster size to constitute a valid target 5 px
ρFS Maximum framewise speed 90 µms−1

ρEMS Minimum effective mean speed for non-chemotactic tracks 15 µms−1

ρE Minimum extent for wildtype tracks 6µm
ρMC Maximum median curvature for wildtype tracks 1.5 radµm−1

τ0,min Post-processing minimum stop duration 2 frames
τ1,min Post-processing minimum run duration 2 frames

of analysing tracks, which follows the imaging and cell tracking stages discussed below,

is illustrated in the flow diagram shown in Figure 4.1. It differs from the process used in

the simulation study in Chapter 3 (for comparison, see Figure 3.2) by the inclusion of a

censoring process to filter certain tracks out of the experimental dataset, which we discuss

in Section 4.1.6. We will also describe the process of selecting values for the parameters

which control the censoring process. After censoring, the process of computing maxi-

mum likelihood transition parameters and state sequences is identical to that described

in Chapter 3.

State sequence

Figure 4.1: Flow diagram of the stages involved in analysing the experimental tracking data.
Tracking data inputs are shaded blue, yellow denotes quantities required in the analysis methods
and red denotes the output quantity of primary interest.

4.1.1 Experimental methods

All work pertaining to the experimental data used in this thesis was carried out by David

Wilkinson, Department of Biochemistry, University of Oxford. Imaging and tracking were
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performed on three different strains of R. sphaeroides : wildtype (WS8N), a non-motile

mutant (467) and a non-chemotactic mutant that is incapable of stopping (1353). Details

of the experimental protocol used to create the mutant strains, and the growth conditions,

are given by Pilizota et al. [156]. Bacteria were transferred in motility buffer to a glass

tunnel slide [155] for observation under the microscope. Imaging was performed at 50

frames per second using a phase contrast microscope with a 40× magnification objective

lens. The images are captured in 256 level greyscale, 640 pixels (px) wide and 480 px in

height. The physical size of the microscope field of view was determined by imaging a

calibration slide, which showed that a single pixel is equivalent to 0.12µm. The field of

view is hence a rectangle 76.8µm wide and 57.6µm high. For each strain, imaging was

performed with the microscope focused both at the surface of the microscope coverslip

and approximately 100µm below the top coverslip. In the case of surface swimming,

most observed bacteria swim in the plane of the coverslip, as discussed in Chapter 1. In

the case of focusing below the surface, which we denote the ‘bulk dataset’, the observed

cells are swimming freely in the medium and may stray out of the focal plane. Typically

between 10 and 20 minutes of footage are acquired in each of the six cases (three strains,

both surface swimming and bulk swimming), from which we obtain between 3000 and

7000 tracks. Images from a surface swimming video and a bulk swimming video are

shown in Figure 4.2. Short video clips of the raw data are available online, see Appendix

B.1 for links. As we shall discuss in more detail in Section 4.3, the experimental method

presented here has the advantage of being relatively cheap and straightforward to imple-

ment compared to traditional methods, and high-throughput in terms of the number of

tracks acquired. In the case of the bulk dataset, the data obtained are a two-dimensional

projection of the underlying three-dimensional bacterial trajectories; in the same section

we also discuss this effect.
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(a) (b)

Figure 4.2: Representative images obtained with the setup described in the main text. (a)
The objective focus is approximately 100µm below the top coverslip (bulk swimming). (b) The
objective focus is at the top coverslip (surface swimming).

4.1.2 Tracking

The problem of tracking moving targets in videos was reviewed in detail in Section 1.3.

We approach the problem as a two-stage process, involving object detection followed by

data association. Representative images taken from our video dataset are shown in Fig-

ure 4.2 for surface and bulk swimming bacteria. Bacteria appear as light or dark objects

upon a grey background, depending on their perpendicular distance from the focal plane.

The majority of bacteria in the surface videos are observed as dark objects, indicating

that they are in the focal plane. Light objects represent bacteria swimming out of the

focal plane. The bulk videos exhibit greater variation in the appearance of cells, as they

are distant from the surface and thus able to swim out of focus. Interference patterns

are also visible in the forms of concentric rings of varying intensity, originating from cells

which are out of the focal plane.

Similar microscopy data have been analysed previously by Xie et al. [211], who use a

sophisticated kernel-based method of object detection followed by a data association

method based on a modified nearest neighbour approach. Our approach differs funda-

mentally as our main focus is on the data association stage. In order to track bacteria in

our videos, we employ a relatively simple object detection method followed by a recent
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implementation of the PHD filter using a Gaussian mixture model (denoted GM-PHD)

by Wood et al. [209]. The GM-PHD filter is a target association method that performs

well even when the number of false positives is high, which is not the case in the method

used by Xie et al. [211].

Object detection

The object detection stage is carried out in several steps:

1. compute the background as the mean intensity over all frames;

2. subtract the background from all frames;

3. find pixels in each frame with intensities after background subtraction above and

below specified threshold parameters;

4. cluster groups of pixels that are 4-connected, meaning that every pixel in a cluster

has another pixel in the same cluster in one of the four neighbouring sites around

it. This is achieved using the Matlab function bwlabel;

5. discard any clusters containing fewer than a defined number of pixels, ρP;

6. find the centroids (centre of mass) of each of the remaining clusters.

The centroids computed using this method now represent the targets present in each

frame. The choice of threshold parameters was made separately for each video based on

manual (by eye) verification that the regions correctly segmented bacterial cells in the

images. The values of these parameters were chosen to minimise the number of false

negatives, as the data association routine is robust to even high levels of spurious targets

[209]. The minimum cluster size constraint was applied to the region data to remove

spurious targets, which are often characterised by a small region size (typically fewer

than 5 px). The minimum cluster size was fixed at 5 px, which removed a reasonable

number of false positives whilst having no effect on true positives (real targets) as these
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regions generally enclose greater than 10 px.

Target association

For the purposes of associating targets in consecutive video frames, we use a multitarget

tracking method based on the multitarget Bayes filter. In contrast to the heuristic track-

ing algorithms based on the nearest neighbour scheme, this approach is probabilistic. The

multitarget Bayes filter can be considered analogous to the standard (single target) Bayes

filter, which gives a solution to the problem of updating our belief about the state of an

unknown system by a sequence of noisy measurements. In our case, the measurements are

the objects detected in each frame of the microscope movie, some of which correspond to

real cells and others of which are false detections (clutter). The state of the system is the

true position of a target in each frame. In most cases, the Bayes filter cannot be evaluated

analytically or computationally. An important exception is the Kalman filter [101], which

is used as the basis for many numerical approximation schemes in single particle tracking.

The multitarget Bayes filter introduces the additional complication that the number of

targets in a given scene is unknown. Mahler [128] developed a mathematical framework

to deal with such a problem, known as random finite set (RFS) theory. Just as the sin-

gle target Bayes filter does not generally have an analytic or computationally tractable

solution, neither does the multitarget filter. Instead the problem is simplified by only

propagating the first moment of the filter through time, known as the probability hy-

pothesis density (PHD), which gives the density of the expected number of targets at a

point in space [129]. Whilst this simplifies the problem, it has no closed-form solution

and further approximations are required to implement the PHD filter. The method de-

veloped by Wood et al. [209] uses a Gaussian mixture model to compute the PHD filter

and achieve multitarget tracking, with the result denoted the GM-PHD filter.
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The implementation of any tracker based on the Bayes filter requires the assumption

of an underlying motion model. Wood’s tracker was originally developed to deal with

sonar data and, as such, incorporates a straight-line motion model [207]. Changes of

direction and stops, as seen in the R. sphaeroides microscope movies, are handled by the

noise model. This incorporates Gaussian noise in the underlying velocity of each object

being tracked. Providing that the variance of the Gaussian noise is set sufficiently high,

changes in direction and pauses, such as those exhibited by wildtype R. sphaeroides ,

can be accommodated. Note that the tracking implementation can be extended to in-

corporate additional manoeuvring models [208]. The GM-PHD tracking approach copes

with the type of clutter present in bacterial tracking scenarios substantially better than

approaches based on the nearest neighbour algorithm [209].

We reiterate that the data output from the tracking algorithm is a vector of the form

R = (r0, r1, . . . , rT ) for each track, where rt designates a two-dimensional position vector

at time t. The output of the tracking algorithm is next processed with a mean filter with

a window width of three frames. The mean filter proceeds by replacing each position

coordinate at frame t, rt, with the mean value of the three coordinates rt−1, rt, and rt+1.

This stage smooths the tracks mildly, without significantly changing the appearance of

stopping phases.

Figure 4.3 provides an illustration of typical tracking data. All notation is consistent

with that introduced in Section 3.1. A bacterium swims in an approximately straight

line, enters an approximately stationary stopped phase for some time, then swims off in

a new direction. The crosses indicate observations made of the cell centroid at regular

intervals of 0.02 s.
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Figure 4.3: Illustration of the representation of the tracking data from a motile bacterium.
The black line indicates the true underlying trajectory of the bacterium, crosses correspond to
observations made during a running phase, and circles correspond to observations made during
a stopping phase.

4.1.3 Estimating the distribution of framewise speeds and frame-

wise angle changes

As discussed in Chapter 2, the estimated pdfs of framewise speeds and angle changes for

all tracks in a dataset are quantities of interest, as they contain information about the

motion of bacterial populations. Furthermore, we require the estimated pdf of framewise

speeds when determining the parameters controlling the censoring process for the non-

chemotactic dataset (indicated by the top left arrow in Figure 4.1). In order to estimate

this pdf, we first compute all framewise speeds and angles for each track, as detailed

in Section 3.1. In the case of framewise speeds, we next compute a KDE (see Section

A.4) to obtain an unbiased estimate of the underlying pdf of framewise speeds. The

KDE generally performs well on framewise speed data, since the distribution is often

well described by a normalised sum of Gaussians. The same is not generally true of

the distribution of framewise angle changes, which may, in the case of a track with

predominantly running transitions, be strongly peaked around zero. In such cases, which

we encounter when dealing with the non-chemotactic strain, plotting a histogram of the

observed framewise angle change data indicates that the distribution is approximately

exponential. The KDE fails to provide an accurate estimate of the pdf of the observed

data here, so we instead resort to fitting the data with an exponential distribution.
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4.1.4 Track tortuosity

Tortuosity is a measure of how tortuous a path is, meaning how many twists and turns

it contains (see Section 2.2.2). In the context of bacterial taxis, a tortuous track may

be produced by a bacterium that wobbles or rotates as it swims, so that it does not

travel in a straight line, but rather along a winding route. Similarly, bacteria that move

solely by Brownian motion (i.e. bacteria that are in a stopped phase), or that are stuck

to a surface, trace out a highly tortuous trajectory as they change direction often. We

are interested in estimating the tortuosity of a track as this is a key quantity used to

characterise the motion of swimming bacteria, as well as being a useful property for the

purposes of filtering the dataset (discussed in Section 4.1.6). Several methods have been

proposed for estimating tortuosity, many of which are evaluated by Grisan et al. [81].

We choose to employ a method proposed by Lewiner et al. [118], in which a three-point

estimator of the curvature of a track is used as a measure of the tortuosity. The curvature

is defined for a given position, ri, i = 1, . . . , T − 1, in a track by

κ(ri) =
∠(ri − ri−1, ri+1 − ri)

‖ri − ri−1‖+ ‖ri+1 − ri‖
=
∠(di−1,di)

‖di−1‖+ ‖di‖
, (4.1)

where the track notation is the same as defined in Chapter 3 and ∠(di−1,di) ∈ [−π, π)

denotes the turning angle between the vectors di−1 and di. The curvature is undefined

for the first and last points in a track, as we require three adjacent points to estimate

it. Every track therefore has T − 2 curvature values associated with it. We use the

median curvature value as a summary statistic, since this is more robust than the mean

to extreme values of κ(ri) that may occur when the denominator in (4.1) is close to zero.

We use the value of the median curvature when filtering tracks, as we discuss in Section

4.1.6.
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4.1.5 The minimum bounding radius and effective mean speed

of a track

A spatial characteristic of each track in the experimental datasets is the radius of the

smallest possible circle enclosing all points in the track, denoted the minimum bounding

radius (MBR). This can be computed numerically in an iterative fashion, as described in

Appendix B.2. The effective mean speed (EMS) of a track is defined as the MBR divided

by the total duration of the track. This quantity is interpreted as the mean speed of

the equivalent straight-line track; tracks that are approximately straight will have a true

mean speed close to the EMS, whereas tracks with many twists and turns will have a

higher true mean speed than the EMS.

4.1.6 Censoring tracks

When analysing experimental tracks from the wildtype or non-chemotactic datasets, there

are three important considerations that were not necessary when we were working with

simulated tracks in Chapter 3, namely: tracking errors, non-motile cells and highly tor-

tuous tracks. First, the tracking process used to extract tracks from microscope videos

(described in Sections 4.1.2 and 4.1.2) may fail with certain tracks and produce a purely

artefactual result. This is a particular concern if the resultant failed track displays be-

haviour which differs substantially from correct tracks, since even a small number of

failed tracks may affect the inferences we draw from the data. We aim to identify and

remove these tracks before we draw any conclusions from the experimental datasets using

a simple method to identify seriously anomalous behaviour based on the framewise speeds

observed in each track. Any tracks containing one or more framewise speeds greater than

a threshold value, denoted ρFS, are considered to be anomalous and discarded from the

dataset. We take ρFS = 90 µms−1, a value significantly greater than the mean swimming

speed of R. sphaeroides , which is approximately 40 µms−1. We allow such a large margin

for variation in the framewise speed as small errors in the object detection and associ-
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ation stages can generate large fluctuations. For example, an inaccuracy in the process

of detecting the centroid of an object in two consecutive frames (as depicted in Figure

4.4) could lead to the distance between the two centroids being exaggerated by 6 px

(0.72 µm), resulting in an artificial increase to the reported framewise speed of 36 µms−1

for a frame rate of 50 s−1. We do not wish to discard tracks containing a few instances of

such inaccuracies, since these quantities will not dominate the population average. This

effect is expected to be minor when all tracks in a dataset are considered, and we note

that an underestimation of the framewise speed is equally probable. Observed framewise

speeds above the cutoff value of ρFS are unlikely to arise from such a source of noise;

these are instead treated as a tracking error and the whole track is discarded.

Figure 4.4: An illustration of the error introduced into the measurement of framewise speeds
due to inaccurate centroid detection. The figure depicts a swimming R. sphaeroides cell which is
also rotating about its short axis, as observed over two consecutive frames. The true cell centre
is shown in blue in each position, and the inaccurately-determined centroid is shown in red. The
corresponding measurements of framewise distance are shown by the coloured arrows.

In addition to tracker errors, a second consideration is the presence of a significant portion

of non-motile tracked cells, as is usually observed in experiments of this kind [26, 152].

This is easily demonstrated by considering the tracks derived from the non-chemotactic

strain. As this mutant is unable to stop, the derived tracks should (with some rare ex-

ceptions due to failure of the tracker or cell collisions) partition into two distinct groups,

swimmers and non-motile cells. As Figure 4.6 and the related discussion in Section 4.2.2

demonstrate, the estimated distributions of framewise speeds and of median curvatures

across all tracks in the non-chemotactic dataset are indeed both bimodal, with one mode

corresponding to non-motile cells. Reasons for a lack of motility include cell death, a

defective component in the cellular motility machinery, cell damage due to experimental
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handling and (in the case of surface experiments) accumulation at the surface. In this

thesis we consider the swimming behaviour of bacteria, hence the non-motile subpopu-

lation is not relevant. It may play a role in the population-level description of bacterial

motion, however we learn nothing about its motion (which is approximately Brownian)

from the present analysis techniques.

The models used to simulate tracks (described in Section 3.2) incorporate a simple noise

model which is unlikely to capture all of the effects that cause bacteria to swim in imper-

fectly straight lines. A third way in which the experimental data differ from simulated

data is the wide range of tortuosities exhibited by real tracks, due to variation within the

populations of R. sphaeroides being studied. Several tracks appear to be very tortuous,

possibly as a result of discretization errors in the object detection stage when dealing

with bacteria swimming in severely helical paths or with substantial cell body motion,

as illustrated in Figure 4.4. This form of noise was noted by Hill and Häder [88] in their

tracking study on the motion of algae. Other possible causes for tortuous tracks are

bacteria with a damaged or defective flagellum, and two bacterial cells swimming whilst

stuck together, prior to cell division. None of the methods discussed in Chapter 3 are

able to cope with highly tortuous tracks, as these exhibit many large framewise angle

changes and low framewise speeds in the running phase. It is therefore very challenging

to discern stopping phases in such tracks, either automatically or by manual inspection.

Tortuous tracks are apparent in the non-chemotactic and wildtype datasets, both in the

bulk and at the surface, and it is necessary to remove them from the dataset before per-

forming any further analysis. The removal of these tracks in the present work is due to

the inability of the presently available analysis methods to cope with the wide range of

tortuosities observed in populations of motile R. sphaeroides , not because this behaviour

is not itself of interest. We discuss this further in Section 4.3. Highly tortuous tracks

constitute a small proportion of the total dataset: fewer than 10% of the tracks are
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discarded for this reason, a similar fraction to that observed by Dowd and Matsumura

[60] in their tracking study (see Table 4.2 and discussion in Section 4.2). Furthermore,

the tracks arising from non-motile cells are highly tortuous, as they involve very many

changes of direction, hence filtering to remove tracks from non-motile cells and filtering

to remove tortuous tracks are closely related. Indeed, a single filtering stage is sufficient

in the case of the non-chemotactic dataset to remove both tortuous and non-motile tracks.

The censoring processes applied to the non-chemotactic running-only strain and the wild-

type strain differ, as the bacteria from these strains have different patterns of motility.

We now discuss these processes for the two strains.

Filtering non-motile tracks from the non-chemotactic dataset

Non-chemotactic bacteria are expected to swim in approximately straight lines, with no

sharp reorientations or pauses; any track exhibiting such events is likely to be due to a

defective or non-motile cell and we wish to discard it. To identify such tracks, we assert a

minimum EMS, as defined in Section 4.1.5. This threshold value is denoted ρEMS. Tracks

with an EMS below this cutoff value are discarded.

In order to select an appropriate value for ρEMS, we consider the effect of the censoring

stage on two key quantities, (i) the fraction of tracks remaining in the dataset after

censoring, xremain, and (ii) the estimated fraction of tracks originating from motile cells

(as opposed to non-motile ones), xmotile. The latter quantity is computed using the

method illustrated in Figure 4.5. We first identify the modal framewise speeds for motile

and non-motile bacteria, which correspond to the global maximum in the estimated

framewise speed pdf in the case of very severe censoring (‘running peak’ dominates)

and no censoring (‘non-motile peak’ dominates). This process assumes that the pdf of

framewise speeds is dominated by the density from non-motile cells, which we ascertain

empirically (see Figure 4.6(a)). If this were not the case, a different method would be
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required. The intermediate framewise speed is defined as the mean of these two values.

In censoring cases between these two extremes, we identify the modal framewise speed

for motile and non-motile cells, denoted sm and snm, respectively, by searching for a

maximum above and below the intermediate framewise speed. The corresponding values

of the estimated framewise speed pdf at the motile and non-motile modes are denoted

fm and fnm. We approximate the proportion of motile cells in the sample by

xmotile =
fm

fm + fnm
. (4.2)

We seek to maximise a weighted linear combination of the values xremain and xmotile,

Figure 4.5: An illustration of the process used to estimate the proportion of tracks from motile
cells based on the estimated pdf of the framewise speeds of the whole dataset. Two extreme
censoring cases are first used to identify an intermediate framewise speed in-between the modal
peaks for motile and non-motile cells (middle and top plots, respectively). In intermediate
censoring cases, a local maximum is sought above and below the intermediate value, resulting in
the values sm and snm, with corresponding densities fm and fnm. The proportion of observed
tracks which are motile is then approximated by fm/(fm + fnm).

given by

γxremain + (1− γ)xmotile, (4.3)

where γ is the weighting coefficient, with 0 < γ < 1. The parameter ρEMS is varied
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over a range of values, and the corresponding values of xremain and xmotile are computed.

We compute the value of the weighted linear combination for several values of γ > 0.5.

This constraint on γ is imposed as we are more concerned with filtering the majority of

non-motile and highly tortuous tracks than preserving all tracks.

Filtering non-motile wildtype tracks

In the case of the wildtype R. sphaeroides , the censoring approach used for the non-

chemotactic strain is not appropriate, as the cells are able to reorientate by stopping and

therefore may not travel in an approximately straight line. The EMS of a valid wildtype

track, which we wish to retain, may therefore be substantially lower than the true mean

speed, so this is not a useful quantity for censoring the wildtype dataset. Since stopped

phases in R. sphaeroides tracks typically make up a small proportion of the total track,

the median curvatures of the tracks are not expected to be a great deal larger than those

of the non-chemotactic bacteria. We therefore filter tracks from the wildtype bulk dataset

based on their median curvature, with a maximum threshold value, denoted ρMC, chosen

manually by considering the nature of tracks over a range of median curvatures. As

described in Section 4.1.4, we use curvature as a quantitative measure of the tortuosity

of a track. In addition, we assert a minimum value for the MBR, called the minimum

extent and denoted ρE, and discard tracks whose MBR is lower than this cutoff value.

We set ρE = 6 µm (50 px), which ensures that the minimum bounding circle is required

to cover around 1/5 of the height of the field of view (around 1/6 of the width), and

approximately 1/40 of the area. Whilst this step may remove some short tracks that are

acceptable in the sense that they have low tortuosity and arise from a motile bacterium,

the majority of tracks covering such a small extent are either not of great interest (for

example they contain no stopping phase and merely consist of a short run), or due to a

non-motile cell.
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4.1.7 Analysis methods

Three methods for analysing tracks were described and assessed in Chapter 3. We showed

in the same chapter that there are several advantages to the HMM-based approaches.

In particular, the heuristic method generates a very large number of false positives, in

addition to producing highly biased statistics for stopwise angle changes. We therefore

use only the full and speed-only HMM methods to analyse the experimental data. The

analysis process is similar to that used on the simulated datasets in Chapter 3, with

the addition of the censoring stage presented in the previous section. Wherever post-

processing is applied, we use the same parameters (τ0,min = τ1,min = 2 frames) as were

used in Chapter 3. These parameters mean that the post-processing stage removes any

running phases or stopping phases that have a duration of a single frame from the run

status of all tracks being considered.

4.1.8 Determining the observation function for the analysis meth-

ods based on the HMM

A key component of the HMM-based methods is the observation function, denoted bij(yt)

for the full method and bi(yt) for the speed-only method, which was previously introduced

in Section 3.1.2. This function embodies our prior knowledge of the bacterial swimming

motion. We now discuss the process by which we determine this function for the per-

mitted values of i and j, both of which can take the values 0 and 1, corresponding to

stopping and running, respectively. In the case of the full HMM method, the observation

function depends on both the speed and the direction of motion relative to the previous

direction of motion. The speed and angular components are assumed to be independent,

as discussed in Section 3.1.4, so that the observation function is separable in the two in-

dependent variables. We now describe the process of estimating the observation function

for the full HMM method. We show that the speed-only observation function is then

calculated using a straightforward modification to the full observation function.
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We assume that stopping phases in wildtype R. sphaeroides are similar in terms of the

observed motion to the motion of the non-motile strain, and that running phases are

similar to the motion of the non-chemotactic strain, as discussed in Chapter 3. This

assumption is assessed in Section 4.2.3, with supporting experimental data. The speed

component is identical for the stop-to-stop case, (i, j) = (0, 0), and the run-to-stop case,

(i, j) = (1, 0), and is obtained using a KDE of the pdf of observed framewise speeds in

the non-motile strain. Similarly, the speed component for stop-to-run, (i, j) = (0, 1), and

run-to-run, (i, j) = (1, 1), cases is obtained by applying a KDE to the observed framewise

speeds from the non-chemotactic tracks, after censoring.

The angular component is the same for the stop-to-stop, run-to-stop, and stop-to-run

cases, all of which are assumed to follow a uniform distribution. We test this assumption

in Section 4.2, by computing the observed angle change distribution for the non-motile

dataset. We mentioned in Section 3.1.4 that the assumption of uniform angle changes

in going from a stop to a run may be an oversimplification; if R. sphaeroides bacteria

exhibit any angular persistence over the course of a stop, this assumption does not hold.

Nevertheless, the use of the uniform distribution constitutes a weak prior in this case,

meaning that the observed data are expected to influence the final probabilities to a

greater extent than the observation function. We require such an assumption to maintain

the Markov property of the movement process. The angular component of the run-to-run

case, (i, j) = (1, 1), is obtained by fitting an exponential distribution to the magnitude

of the observed framewise angle changes. This is achieved by setting the exponential

rate parameter to be equal to the reciprocal of the mean of the magnitude of observed

framewise angle changes. In contrast to the situation with the stop-to-stop case, this is

a relatively strong (informative) prior, since the exponential distribution will strongly

influence the final estimated probability of being in a particular state.

In using the magnitude of observed framewise angle changes, we are assuming that the
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distribution is symmetric. This was discussed previously in Section 3.1.4. The result

shown in Figure 4.18 below indicates that the motion is not perfectly symmetric in the

surface dataset, as the observed angle changes during running phases are biased towards

clockwise rotation. Although the bias is statistically significant, the skewness of the ob-

served angle change distribution is small, hence our assumption is justified.

The observation function for the speed-only HMM method may be determined by ignoring

the angular component of the observation function in the full method. The stopping

observation function, b0(yt), is therefore equal to the stop-to-stop speed component of

the full method, b00(yt). Similarly, the running observation function, b1(yt) is set to be

equal to the speed component of the run-to-run speed component of the full method,

b11(yt).

4.2 Results

We now present the results obtained when the methods described in Section 4.1 are ap-

plied to tracks obtained from real experimental data. Unless otherwise stated, the results

presented in this section are obtained from the bulk dataset. Where a comparison is

drawn between the bulk and surface datasets, we make clear that both datasets are being

considered. Selected analogous results for the surface dataset are presented in Appendix

B.3. The number of tracks in each of the datasets considered in this section before and

after the censoring stages is given in Table 4.2.

The estimated pdf of framewise speeds in the uncensored non-chemotactic tracks is shown

in Figure 4.6(a), along with that for the non-motile tracks. The distribution of framewise

speeds is in both cases dominated by a low speed peak due to non-motile cells. The sim-

ilarity of the estimated pdfs at low speeds motivates treating the non-chemotactic tracks

as comprising two distinct subpopulations, non-motile and motile, with the non-motile
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Table 4.2: The number of tracks in each of the datasets considered, before and after censoring.
NC denotes non-chemotactic, WT denotes wildtype.

Dataset NC bulk WT bulk NC surface WT surface

Number tracks 3773 6832 3171 4032
Number above ρFS 212 706 329 394
Number below ρE – 3138 – 2652

Number below ρEMS 2055 – 2150 –
Number above ρMC – 620 – 98
Number remaining 1506 2368 692 888

population behaving essentially identically to the non-motile strain. In reality, the situa-

tion is likely to be complicated by the presence of tracks exhibiting a range of tortuosities,

which may contribute to intermediate framewise speeds between these two extremes, but

we assume that such tracks do not contribute significantly to the distribution of frame-

wise speeds for the non-chemotactic dataset. This view is supported by the observed

distribution of tortuosities in the uncensored non-chemotactic dataset, shown in Figure

4.6(b), which appears to consist of two relatively well-separated clusters corresponding

to highly tortuous non-motile tracks and motile tracks with low tortuosity. Few tracks

lie between these two clusters.
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Figure 4.6: (a) Estimated probability distribution of framewise speeds for the non-chemotactic
(black line) and non-motile (red line) bulk datasets. The distributions have been scaled so
their maxima coincide. (b) Histogram of median curvature computed for all tracks in the non-
chemotactic bulk dataset. All tracks are included, with the exception of tracks containing frame-
wise speeds above 90 µms−1. Note that the y−axis is broken; the density at low curvatures
dominates the histogram. In both cases, the datasets are filtered to remove failed tracks.
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4.2.1 Initial characterisation and censoring of wildtype tracks

In order to ascertain how the median curvature of a track relates to its appearance, and

to its suitability for further analysis using the methods presented in Chapter 3, we plotted

tracks with a range of median curvatures from the wildtype bulk dataset, shown in Figure

4.7. The tracks become increasingly jagged as the median curvature increases, indicating

that this is a reasonable measure of tortuosity. There is also a tendency for tracks to have

a smaller MBR (and hence cover a smaller area) as the median curvature increases. This

is expected since tortuous tracks contain lots of high angle turns and therefore turn back

on themselves more often on average than less tortuous tracks. Highly tortuous tracks

also tend to have slower mean speeds. This is illustrated in Figure 4.8(a), which shows

scatter plots of median curvature against mean track speed for the wildtype bulk dataset,

after the removal of tracks exhibiting unrealistically high framewise displacements (blue

points). In both cases, there is a relatively clear correlation between increasing median

curvature and decreasing mean speed. This figure also shows the effect of removing tracks

whose MBR is below 6 µm (red points). Many tracks with low mean speeds are removed,

although a relatively large number of tracks remain in the dataset despite being highly

tortuous.

In order to proceed, it is necessary to filter out the remaining tortuous tracks, which

we achieve by discarding tracks with a median curvature above a specified cutoff value,

denoted ρMC. Comparison of tracks (a)-(d) in Figure 4.7 demonstrates the effect of a

stopping period in an otherwise smooth track. The median curvature of tracks (c) and

(d) is higher than that of tracks (a) and (b) due to the inclusion of a stop. We must

be careful to maintain such tracks, which contain useful information, when censoring by

tortuosity. In practise, censoring by median curvature alone is not sufficient to discern

all tracks with one or more genuine stops from those which are highly tortuous, however

we attempt to minimise the number of useful tracks that are discarded when selecting

ρMC. Guided by the appearance of tracks with varying median curvatures, similar to
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those illustrated in Figure 4.7, we select ρMC = 1.5 radµm−1. This is indicated in Figure

4.8(a) (grey dashed line).

Figure 4.7: Tracks from the wildtype bulk dataset with different median curvatures. (a)
0.07 radµm−1, (b) 0.33 radµm−1, (c) 1.04 radµm−1, (d) 1.45 radµm−1, (e) 1.93 radµm−1, (f)
2.96 radµm−1. In each case, the black bar represents 20µm.
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Figure 4.8: (a) Scatter plot of median curvature against mean track speed for the wildtype
bulk dataset. Blue points come from all tracks in the dataset, after removal of those exhibiting
unrealistically high framewise displacements. Red points are those remaining following censoring
by applying a minimum extent of 6 µm. Note that red points in all cases overlap with blue. The
grey dashed line represents the maximum median curvature value; tracks with median curvature
above this value will be discarded. (b) Estimated pdf of framewise speeds before censoring (solid
line) and after censoring (dashed line) for the wildtype dataset.

A random sample of thirty tracks from the wildtype bulk dataset, before and after the

application of the censoring process, is shown in Figure 4.9. Before censoring, the sample
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of tracks displayed comprises a large proportion of small, non-motile tracks, in addition

to several longer tracks, some of which are highly tortuous. Following removal of tracks

which fail to meet the specified constraints ρMC and ρE, the selected tracks are all clearly

due to motile cells. Several appear to contain reorientation events, indicating that we

have not inadvertently filtered these out.
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Figure 4.9: A random selection of 30 tracks from the wildtype dataset, (a) before and (b)
after censoring. In both cases, the dataset was first processed to remove failed tracks, using the
maximum framewise speed threshold. Censoring was carried out with ρE = 6µm and ρMC =
1.5 radµm−1.

Figure 4.8(b) shows the estimated distribution of framewise speeds for the wildtype

dataset, before and after the censoring process. The censoring process removes tracks

which contribute substantially to the lower speed region, roughly below 15 µms−1. This

is consistent with the removal of non-motile or highly tortuous tracks with a low mean

framewise speed. We cannot predict the expected distribution of framewise speeds a

priori, as is the case when dealing with the non-chemotactic dataset, where we aim to

minimise the density at low framewise speeds.
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4.2.2 Optimising censoring parameters for the non-chemotactic

strain

Figure 4.10 shows the effect of increasing the minimum EMS parameter, ρEMS, on the

estimated pdf of framewise speeds in the non-chemotactic dataset; the contribution of the

low speed peak diminishes considerably and a peak due to swimming cells appears centred

on approximately 42 µms−1. As ρEMS is increased, two contrasting effects are observed.

First, an increasing number of tracks are discarded, as expected, thus the quantity xremain

decreases towards zero. Furthermore, the estimate of the fraction of the tracks which are

due to motile bacteria, xmotile, increases towards one. Figure 4.11(a) shows these two

effects. A weighted linear combination of these two quantities, defined in equation (4.3),

is plotted in Figure 4.11(b) for several values of γ. The resulting estimate of the optimal

value of the ρEMS, in the sense of maximising this linear combination, changes relatively

little for 0.6 ≤ γ ≤ 0.9. The final value of this threshold parameter, which is used for all

subsequent analysis, is ρEMS = 15 µms−1, corresponding to γ ≈ 0.75.

Figure 4.10: Estimated pdf of framewise speeds for the non-chemotactic dataset after censor-
ing, varying ρEMS from 12 µms−1 to 48 µms−1 in intervals of 6 µms−1. The arrow shows the
direction of change for the stated parameter variation.

In contrast with the censoring process detailed in Section 4.2.1 for the wildtype dataset,
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in which minimum MBR and maximum median curvature filters are required, only the

minimum EMS criterion is required for effective censoring of the non-chemotactic dataset.

This is because both tortuous tracks and non-motile tracks exhibit a significantly lower

EMS than other tracks not in this category, hence a single constraint is sufficient.
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Figure 4.11: (a) The effect of varying ρEMS on xremain (blue) and xmotile (green). (b) Weighted
linear combinations of xremain and xmotile for γ ∈ {0.5, 0.6, . . . , 0.9}. The black arrow shows the
direction of increase of γ, and the black crosses indicate the position of the maximum. In the
case where γ = 0.5, the maximum value is found when ρEMS is set to zero (no censoring).

4.2.3 Validating the run-and-stop model of motility

As we discussed in Chapter 3, a central assumption in the analysis methods based on the

HMM is that the motion of non-chemotactic bacteria is similar to that of wildtype bac-

teria in a running phase, and likewise for the motion of non-motile bacteria and wildtype

stopping phases. Having determined censoring parameters for the non-chemotactic and

wildtype datasets, we are in a position to test this assumption. Figure 4.12(a) shows the

KDE of the observed framewise speeds in the all three strains, with the non-chemotactic

dataset censored as discussed in Section 4.2.2. Results from the wildtype strain are shown

before and after censoring, which is carried out as described in Sections 4.1.6 and 4.2.1.

The black dashed line in this figure and Figure 4.8(b) show the same distribution from

the censored wildtype dataset on different y- axis scales. The distribution is bimodal, as
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expected for tracks exhibiting running and stopping phases. The lower modal framewise

speed, which is putatively due to bacteria in a stopping phase, corresponds very closely

to that of the non-motile distribution. The agreement between the upper modal wildtype

framewise speed, assumed to arise from bacteria in a running phase, and that of the non-

chemotactic dataset is less good, but nonetheless qualitative. Figure 4.12(a) therefore

provides initial evidence that our assumption is justified.

We test our assumption further by fitting the distribution from the wildtype, censored

dataset with a linear combination of the distributions from the censored non-chemotactic

and non-motile datasets. The fitting is performed by minimising the sum of squared resid-

ual errors using trust-region algorithm, implemented in the Matlab function fmincon [54].

The results are shown in Figure 4.12(b). Again, the agreement is qualitative, but several

discrepancies are apparent. In particular, the non-chemotactic distribution is skewed to

greater framewise speeds than the censored wildtype dataset, with a modal value around

10 µms−1 higher. This discrepancy may be due to small differences in the swimming

speeds of the non-chemotactic and wildtype strains. A further way in which the dis-

tributions differ is seen at intermediate framewise speed of 15 − 20 µms−1. The linear

combination distribution has a significantly lower density in this region than the wildtype

distribution.

Having obtained the results shown in Figure 4.12, we are satisfied that our run-and-stop

model of motility is reasonable for application to the R. sphaeroides dataset. The agree-

ment in this figure, whilst not perfect, is encouraging considering that the distributions

arise from three different mutants.

4.2.4 Observation function

The distributions of observed framewise speeds and angle changes for the non-chemotactic

and non-motile strains are shown in Figure 4.13. The non-chemotactic data have been
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Figure 4.12: (a) Estimated pdf of framewise speeds for all three bulk datasets: (solid black)
uncensored wildtype, (dashed black) wildtype, censored with ρE = 6µm and ρMC = 1.5 radµm−1,
(solid red) non-chemotactic, censored with ρEMS = 15 µms−1, and (dashed red) uncensored non-
motile. All datasets have additionally been censored with the maximum framewise speed criterion
with ρFS = 90 µms−1. The distributions have been scaled so their maxima coincide. (b) (Dashed
black) estimated pdf of framewise speeds for the wildtype, censored dataset, (solid black) a linear
combination of the censored non-chemotactic and non-motile distributions, optimised to give
the closest fit to the wildtype, censored distribution.

censored to remove immotile cell tracks. As discussed in Section 4.1.8, the speed com-

ponent of the observation function for run-to-run and stop-to-run transitions is taken to

be equal to the KDE of the observed framewise speeds in the non-chemotactic dataset.

Similarly, the speed component for stop-to-stop and run-to-stop transitions is equal to

the KDE of the observed framewise speeds in the non-motile dataset. The angular com-

ponent of the observation function for run-to-run transitions is taken to be equal to

the exponential distribution that best fits the observed framewise angle changes in the

non-chemotactic dataset. Finally, the angular component for all other transitions (stop-

to-stop, run-to-stop, and stop-to-run) is assumed to be uniformly distributed on a circle,

indicated by the dashed line in Figure 4.13(d). The wrapped uniform distribution is

predicted from the theory of Brownian motion (see Chapter 6).

As Figure 4.13(d) shows, there is a discrepancy between the distribution of observed angle

changes for the non-motile dataset and the assumed wrapped uniform distribution. The

observed distribution is skewed towards small angles. This is likely due to a systematic
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Figure 4.13: The functional forms of the observation functions, as derived from the estimated
pdf of framewise speeds and angles for the non-chemotactic and non-motile bulk datasets. (a)
Non-chemotactic strain estimated distribution of framewise speeds after censoring. (b) Non-
motile strain estimated distribution of framewise speeds. (c) Non-chemotactic strain histogram
of angle changes after censoring (grey), fit with an exponential distribution (black). (d) Non-
motile strain histogram of observed angle changes (grey), with uniform approximation overlaid
(black dashed line).

bias in the tracking algorithm, which is designed primarily for tracking objects that are

moving in approximately straight lines. The tracker hence overestimates the number of

transitions that are approximately straight line moves. In addition, the tracker ‘fills in’

broken tracks when detections are missing, again assuming straight line motion. This

is reasonable for motile bacteria, but results in artefacts when applied to non-motile

strains. We discuss this issue in greater detail in Section 4.3. As discussed previously,

the assumption of a uniform angular distribution represents a weak prior. Faced with

tracker artefacts, we prefer to select a weak prior that represents the underlying motion
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reasonably, rather than tailoring our analysis to such artefacts. It is also possible to use

a linearly interpolated fit to the histogram, rather than assuming a uniform distribution.

We do not do so here due to time constraints, although we hypothesise that the results

would not be significantly different.

4.2.5 Determining maximum likelihood transition parameters

We use trust-region minimisation [54] to minimise the negative log-likelihood of the wild-

type bulk and surface datasets with respect to the transition probability parameters p01

and p10, as described in Section 3.1.5. The negative log-likelihood surfaces are plotted in

Figure 4.14 for the bulk and surface datasets, analysed using the full HMM method. The

surfaces are qualitatively similar when computed using the speed-only method, though

the likelihood values differ (data not shown). We convert the transition probabilities to

rates for run-to-stop (λ) and stop-to-run (µ) transitions by dividing by ∆t. We also com-

pute the mean durations of stops (τ01 = 1/µ) and runs (τ10 = 1/λ). The results are shown

in Table 4.3. The results from both HMM-based methods are in reasonable agreement,

with the speed-only method generating slightly higher estimates for both datasets. There

is an apparent tendency towards longer stopping phases in the surface dataset relative

to the bulk dataset. This is expected for cells swimming near a surface, as a fraction

of the observed stops may actually be due to cells adhering temporarily to the surface.

We note that the simulation study carried out in Chapter 3 showed that the transition

probabilities are not necessarily an accurate reflection of the true underlying values when

noise is present. We discuss these values and compare them with other literature values

in Section 4.3.
Table 4.3: Optimised values of the state duration and transition rate parameters for the two
datasets and both HMM methods.

Dataset Method τ01 (s) τ10 (s) µ ( s−1) λ ( s−1)

bulk full 0.29 0.63 3.45 1.59
bulk speed-only 0.41 0.80 2.44 1.25

surface full 0.49 0.65 2.04 1.54
surface speed-only 0.67 0.75 1.49 1.33
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(a) (b)

Figure 4.14: Negative log-likelihood surfaces computed using the full HMM analysis method for
the bulk (a) and surface (b) wildtype datasets. The white dot indicates the minimum, computed
using a numerical optimisation algorithm.

4.2.6 Assessing analysis method performance by manual inspec-

tion of tracks

When analysing tracks derived from experimental microscopy data, we have no ground

truth with which to compare the locations of stopping phases inferred by the analysis

methods. A robust and automated assessment of the analysis performance, similar to

that carried out in Chapter 3 on simulated data, is therefore not possible. Nevertheless,

a manual inspection of the inferred state sequence of tracks readily identifies a minority of

tracks in which the analysis output is unrealistic, for example when there are a large num-

ber of rapid oscillations between running and stopping states. Figure 4.15 shows some

individual tracks from the bulk wildtype dataset where the performance of the analy-

sis methods may be assessed manually. In the left panel, several well-defined stopping

regions within the tracks have been expanded for greater clarity. Note that, although

the speed-only HMM method was used to compute the run probabilities in this figure,

the results for these tracks are almost indistinguishable when the full HMM method is

used (data not shown). On the right of the figure are shown a track from a bacterium

swimming slowly in an exaggerated helical trajectory and a highly tortuous track. The

helical track appears to contain a single genuine stopping event, however both analysis
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methods incorrectly identify several of the helical turns as stopping phases, leading to

an unrealistically rapidly oscillating state sequence. Application of post-processing to

either analysis method circumvents this issue. It is not clear by looking at the tortuous

track where the true stopping phases are, if indeed it contains any. All of the analysis

methods infer multiple stopping phases along the length of the track, again leading to

high frequency oscillations in the state sequence. The presence of such a track in the

censored dataset motivated a manual examination of all tracks exhibiting either high me-

dian curvature or containing a large number of inferred stopping phases, which indicated

that, of the 2780 tracks included in the bulk wildtype dataset, fewer than five are clearly

identifiable as highly tortuous. Any effects from this minority of tracks, after pooling all

analysed data, will be insignificant.

Figure 4.15: Manual assessment of a selection of analysed tracks. Green indicates a running
phase, red indicates a stopping phase, small circles indicate the starting position of the track,
and pairs of arrows show the direction of travel of the bacterium immediately prior to and after
a stop. (Left) A selection of tracks that were manually identified as having stopping phases
correctly identified by the speed-only HMM method. Circled regions have been expanded for
clarity. (Right) Track from a bacterium swimming in a helical trajectory (top), and a tortuous
track with arrows removed for clarity (bottom). Lower case numerals denote analysis methods:
(i) full HMM, (ii) speed-only HMM, (iii) full HMM with post-processing, and (iv) speed-only
HMM with post-processing. The black bar is 10µm long.
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4.2.7 Characteristics of the motion of wildtype bacteria

Figure 4.16 shows the estimated pdf of framewise speeds during all running and stopping

phases identified in the wildtype bulk tracks. The estimated distributions were verified to

change negligibly with the analysis method and/or inclusion of post-processing (data not

shown). As expected, the framewise run speed distribution estimated from the wildtype

dataset is similar to that estimated from the non-chemotactic dataset (see Figure 4.13(a)

for comparison). Similarly, the estimated pdf of framewise speeds observed during stop-

ping phases appears like that computed from the non-motile dataset (see Figure 4.13(b)

for comparison).
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Figure 4.16: Estimated framewise speed pdfs for running (solid line) and stopping (dashed
line) phases in the bulk wildtype dataset, analysed using the full (black) and speed-only (red)
HMM methods. Applying post-processing in either case made no significant difference to the
estimation (data not shown).

The estimated pdf of absolute stopwise angle changes (the angle change over the course

of a run-stop-run transition) is shown in Figure 4.17(a) for the wildtype dataset. The

two HMM-based methods produce almost indistinguishable results. Post-processing also

makes little difference to the estimated distribution. Figure 4.17(b) shows an analogous

plot for E. coli by Berg and Brown [24]. In contrast with our results, the mode of the

distribution of stopwise angle changes in E. coli is not centred at zero. We discuss this

further in Section 4.3.
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Figure 4.17: (a) Estimated pdf of the stopwise turning angles for the bulk wildtype dataset,
computed using the full (black) and speed-only (red) HMM methods without (solid line) and with
post-processing (dashed line). (b) Observed distribution of stopwise angle changes in E. coli,
reprinted from [24] with permission.

The results shown in Figures 4.17(a) and 4.16, are encouraging, since they demonstrate

excellent agreement between the two analysis methods, irrespective of the application of

post-processing. The only tracks whose state sequences were found to vary significantly

between the methods in our manual assessment in Section 4.2.6 were a small number of

tortuous or helical tracks. The fact that the methods produce nearly identical results

therefore supports our earlier findings that such tracks are a minority and do not dis-

cernibly affect the pooled statistics.

The protocol used to obtain the tracks considered in this chapter permits us to draw

a comparison between bacteria swimming near and away from a surface. For example,

many of the surface tracks shown in Figure B.4(b) appear to show a marked degree of

curvature compared with the bulk tracks in Figure 4.9(b), in agreement with other studies

of bacterial motion near a surface [74, 117, 119]. This is borne out in the framewise angle

changes observed during a run, histograms of which are plotted in Figure 4.18. There is a

significant degree of asymmetry evident in the surface tracks, with a strong bias towards

clockwise rotation: 54.4% of the total number of non-zero framewise angle changes at
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the surface were negative (due to a clockwise rotation), compared with 50.0% in the

bulk. These values translate to highly significant evidence for unbiased swimming in the

bulk, with a Bayes factor of 233, and swimming with an asymmetric bias at the surface,

with a Bayes factor on the order of 1051. An explanation of the Bayes factor, and the

calculations required to obtain these results, are presented in Appendix B.4.
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Figure 4.18: Histogram of the observed framewise turning angles during a run, computed using
the speed-only HMM method without post-processing for (a) the wildtype bulk dataset, and (b)
the wildtype surface dataset. The results upon inclusion of the post-processing process and from
the full HMM method are very similar to the results shown here.

4.3 Discussion and conclusions

In this chapter, we have demonstrated the effective application of novel analysis methods

to experimental data acquired using a relatively simple and inexpensive experimental

protocol. The result is a high-throughput method to characterise bacterial motion. We

showed that this method can be used to estimate certain key distributions, such as the

pdf of stopwise angle changes, which is plotted in Figure 4.17(a). This pdf has previously

been measured in E. coli (see Figure 4.17(b)), but has until now not been studied in R.

sphaeroides . The distribution in R. sphaeroides is peaked about the origin, suggesting

that angular persistence is present across a stop. As Figure 4.17 illustrates, the estimated

pdf of stopwise angle changes measured here for R. sphaeroides differs from that recorded

by Berg and Brown [24] for E. coli . We find a unimodal distribution centred at zero,
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whereas Berg and Brown [24] find a bimodal distribution centred at approximately ±π/4.

This may be due to substantial differences in the reorientation mechanisms of the two

species: E. coli undergoes rapid, active reorientation, achieved through the reversal of

several flagellar motors, whereas R. sphaeroides reorientates more slowly, by an unknown

mechanism that involves cessation of the rotation of the single flagellar motor [12, 156].

We return to this topic in Chapter 6. Alternatively, the discrepancy may be due to the

substantially different experimental and analytic methods used in the two studies. For

example, Berg and Brown track individual bacteria at a frame rate of 12.6 s−1, whereas

we simultaneously track multiple bacteria at a frame rate of 50 s−1. In addition, Berg

and Brown apply a series of heuristic arguments in order to identify reorientation phases,

which may bias their findings towards larger angle changes, whereas we apply novel anal-

ysis methods based on the HMM.

Access to a sufficiently large dataset is important in order to elucidate more subtle ef-

fects, which might be missed if insufficient data are available. One such effect is the bias

towards moving in arcs rather than straight lines, demonstrated in Figure 4.18. This bias

has been predicted using a hydrodynamic model of bacterial swimming by Ramia et al.

[165], and is consistent with experimental observations of E. coli [26, 58, 74, 117]. With

the large dataset considered here, we are able to quantify this bias in R. sphaeroides .

Furthermore, since the current method also enables the tracking of cells swimming freely

away from a surface, we are able to show that such circular swimming is absent when bac-

teria are not near a surface, and demonstrate the statistical significance of the difference.

To the best of our knowledge, this is the first systematic quantification of the turning bias.

The method used to obtain experimental tracks is crucially dependent upon the tracking

algorithm, whose robustness to experimental noise makes it suitable for our application

where other tracking systems fail [209]. The tracking algorithm is still prone to errors,

however, and we have emphasised the necessity to identify and discard flawed tracks
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based on applying a maximum plausible framewise speed. These were shown to occur in

around 10% of tracks, for all of the datasets analysed. We have no reason to believe that

the failure of the tracker biases the results, which would be the case if the failed tracks all

exhibited a certain type of motile behaviour, and were hence underrepresented in the final

dataset. Manual analysis of several failed tracks suggests that failures generally occur in

complex scenes, such as when three or more bacteria approach one another closely (data

not shown).

A disadvantage of the tracker is evident in Figure 4.13(d), which shows the histogram of

observed framewise angle changes for the non-motile strain. The motion of non-motile

bacteria is expected to be approximately diffusive, in which case the predicted angle

change distribution is wrapped uniform (see Chapter 5 for a further discussion). Instead,

the density of observed framewise angle changes is concentrated at small angles. We

believe that this departure from uniformity is due to artefacts from the tracking algo-

rithm, which is able to propagate tracks for several frames in the absence of detections.

When this occurs, for example when a cell swims out of focus for one or more consecutive

frames and is not identified in the object detection stage, the algorithm ‘fills in’ the miss-

ing sections of the track with straight-line motion estimates. This is expected to lead to a

systematic bias towards small angle changes. This issue could be avoided in future work

by disabling this feature of the tracker, as the HMM-based approaches may be extended

to cope with missing data in a straightforward manner [177]. A further potential cause

is the presence of systematic discretisation errors in finding the centroid of the cells (dis-

cussed in Section 4.1.6). Further work to address this issue could include incorporating a

more sophisticated object detection stage, such as that used by Xie et al. [211]. Our use

of a uniform pdf for the observation function (shown in Figure 4.13(d), dashed line) in

the present work represents an uninformative prior (one which does not strongly affect

the inferences drawn). Using a piecewise fit to the histogram of observed angle changes

(Figure 4.13(d), red bars) for the observation function, instead of the uniform approxi-
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mation, should not affect the results a great deal, as the observed distribution is still far

broader than the equivalent framewise angle change distribution for the non-chemotactic

dataset (compare Figures 4.13(d) and 4.13(c), noting that the x-axis scale differs).

We considered several important effects that must be taken into consideration before ex-

perimental tracks can be meaningfully analysed, and showed how censoring the datasets

can help to mitigate such issues. In particular, the MBR and median curvature are very

useful characteristics for censoring tracks that might otherwise lead to spurious infer-

ences. A key example is the large proportion of non-motile cells, discussed in Section

4.1.6. A further, less prevalent but important concern are highly tortuous motile tracks,

such as those shown in Figure 4.15. We reiterate that censoring the dataset in such a way

to remove a significant proportion of tracks is not a desirable process, but is necessary

for the current analysis approaches considered. Further work is necessary if tracks ex-

hibiting a wide range of tortuosities are to be analysed. With a sufficiently large dataset,

for example, a series of observation functions (see Figure 4.13) could be defined, with

each corresponding to a range of tortuosities. The HMM-based methods might then be

applied to many more recorded tracks than we are able to deal with in the present study.

An important question raised by the censoring process is how to censor unknown sam-

ples. For example, we may wish to analyse the motility of a mutant strain to determine

whether it differs from the wildtype population. In such a case, we could not apply the

threshold determination method in Section 4.2.1, as this would mean censoring the wild-

type and unknown samples independently, and could introduce subjective bias. However,

using the wildtype threshold parameters for unknown samples could result in removing

bonafide tracks and falsely inferring that the motility in the unknown sample does not

differ significantly from wildtype behaviour. Further work is required to determine the

best practice in this situation, however we propose a method in which a fixed proportion

of the most tortuous tracks are removed. A similar approach has previously been used
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by Alon et al. [7], who sort tracks by the frequency of tumbles and discard the top and

bottom 10%. This method avoids the need to select single or multiple threshold values.

The negative log-likelihood surfaces were plotted for the two HMM-based analysis meth-

ods in Figure 4.14. Whilst the surfaces are qualitatively similar, numerical optimisation

to determine the minimum resulted in relatively different estimates for the transition

rates, presented in Table 4.3. The results are in agreement with the findings of the simu-

lation study in Section 3.3.1, in which the full HMM method generated larger estimates

than the speed-only method for both transition rates (and thus smaller estimates for the

mean duration). Furthermore, in the simulation study both methods generated estimates

that were up to twofold lower than the true value over the range of noise levels consid-

ered. The discrepancy between the two methods in the inferred transition rates is thus an

indication that any estimate of the rate parameters λ and µ should not be considered a

reliable estimate of the true underlying rates. Nonetheless, we compare our findings with

other values reported in the literature, shown in Table 4.4. It is immediately apparent

that a wide range of transition rates have been recorded in the studies cited, despite the

superficially similar experimental protocols. A few of the many possible explanations

include the use of different wildtype strains, small differences in the composition of the

motility buffer, and differences in the analysis methods. Comparing with our results, we

see that the inferred value of µ is in reasonable agreement with the findings of Berry and

Armitage [28] for the bulk dataset, and Brown [38] for the surface dataset. Our inferred

value of λ is threefold greater than the next highest estimate for R. sphaeroides , how-

ever. The agreement for λ is better when compared with the study of E. coli by Berg and

Brown [24]. We note that the tethered cell and tracking protocols differ a great deal. An

important demonstration of the difference is the observation, by Poole et al. [157], that

the use of antibody to tether R. sphaeroides cells to a microscope slide by their flagella

substantially reduced their rotation speed and decreased the number of observed stops.

This is consistent with our findings, as we estimate a larger value of λ than the tethered
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cell studies listed in Table 4.4, corresponding to an increased number of stopping phases.

Table 4.4: Summarised literature values of transition rates in bacterial taxis. Standard devi-
ations are given where they are available. The terms bulk and surf. refer to the dataset, while
full and speed-only refer to the HMM method used to analyse the data.

Reference Species Method µ ( s−1) λ ( s−1)

[24] E. coli Single cell tracking 7.1 1.16
[28] R. sphaeroides Tethered cell 3.7 0.59
[38] R. sphaeroides Tethered cell 1.5 0.31± 0.19
[45] R. sphaeroides Tethered cell 0.97± 0.40 0.22± 0.10
[150] R. sphaeroides Tethered cell 0.96 0.22± 0.17

Section 4.2 R. sphaeroides Tracking (bulk, full) 3.45 1.59
Section 4.2 R. sphaeroides Tracking (bulk, speed-only) 2.44 1.25
Section 4.2 R. sphaeroides Tracking (surf., full) 2.04 1.54
Section 4.2 R. sphaeroides Tracking (surf., speed-only) 1.49 1.33

A further important consideration when considering the value of the inferred transition

rates is the fact that they are computed for pooled data, so that individual variations

between tracks are averaged over an entire dataset. Packer et al. [150] noted that there

is considerable heterogeneity in switching rates within a bacterial population; this aspect

was not included in the simulation study in Chapter 3 for simplicity. Considering each

track separately would result in insufficient data being available for shorter tracks and

those containing no run-stop-run transitions, and we do not consider that problem here.

It may be possible to investigate population heterogeneity by applying the HMM-based

methods to individual tracks obtained using single-cell tracking methods, as these tracks

are generally longer (discussed in Section 1.2).

Unlike the simulation study in Chapter 3, the true state sequence is not known to us

when working with real experimental tracks, and we are limited to manual inspection of

the tracks to assess the performance of the analysis methods. A selection of tracks was

shown in Figure 4.15 where the analysis methods appear to have performed well. These

tracks were picked manually from the dataset because they appear easy to interpret, with

clear running and stopping phases. Two tracks were also presented in the same figure,
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for which one or more of the analysis methods had clearly failed to infer the correct run

probabilities. One appeared to be the result of a cell swimming in a helical trajectory,

while the other was highly tortuous and possibly arose from a bacterium with damaged

motility apparatus. In the first instance, inclusion of post-processing helped to correct

the inferred run probabilities. We note that the post-processing method is not included

until after the maximum likelihood transition probabilities are computed. Therefore any

tracks where the analysis methods fail could contribute towards a poor estimate for the

transition probabilities. Manual assessment of the tracks remaining in the bulk dataset

following censoring suggested that the failed tracks in Figure 4.15 were a minority, so this

is unlikely to be a concern in the present study.

Using our experimental approach, we obtain two-dimensional position coordinates for the

cell centroids. We have therefore implicitly projected the true three-dimensional motion

of the bacteria swimming in the bulk onto the microscope’s image plane. It is possible to

track bacteria in three dimensions, as first demonstrated by Berg in 1971 [20], and sev-

eral groups have made use of three-dimensional tracking methods to investigate bacterial

swimming [24, 37, 62, 74, 193, 201, 210]. The process for obtaining three-dimensional

tracks is, however, generally more complex than the method we use and in many cases this

leads to a reduced number of tracks available for analysis. In the case of [62, 74, 193, 201],

the authors were able to extract tracks for fewer than 100 cells. Brown and Berg [37]

report tracking up to 200 cells per day. The method used by Wu et al. [210] generated

over 600 tracks, but relies upon inducing fluorescence via a plasmid into a subpopulation

of bacteria to be tracked. In contrast, the datasets considered in this chapter were gener-

ated from approximately 20 minutes of microscope video footage. It is therefore perfectly

foreseeable that the number of tracks in the present datasets could be increased by one

or even two orders of magnitude. Furthermore, as this study is carried out in part as a

proof-of-concept for the new tracking protocol, various aspects of the experimental setup

are yet to be optimised. For example, the tracking process remains effective when a 20×
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magnification microscope objective is used, increasing the number of tracks per unit time

by approximately a factor of four [203].

The advantages of the experimental protocol in terms of simplicity and the large amount

of data produced are offset by certain caveats that must be carefully considered in order

to successfully interrogate the experimental observations. The tracking stage fails in ap-

proximately 10% of cases and the resulting tracks should be removed before processing.

In addition, as the method relies on tracking all cells within a field of view, a large propor-

tion of the cells may be non-motile for the various reasons discussed in Section 4.1.6, and

must also be discarded. Finally, a large proportion of tracks are highly tortuous and we

are currently unable to analyse these effectively, though further work on analysis methods

could improve this situation. Methods that involve tracking individual cells do not suffer

from the same pitfalls, since the experimentalist has control over which individual cells

to track and will avoid such cases. Such methods can never be as high-throughput as the

protocol presented here, however, as they require a great deal of intensive user involve-

ment. Furthermore, our approach, which involves tracking all detected objects visible

in any given frame, is not subject to the biases inherent in an experimental protocol

where the experimentalist must select which cells to track. Although we must resort to

discarding a large proportion of tracks, we are able to assess in a quantitative manner

the contribution of those tracks to the whole population.
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Chapter 5

The effect of sampling frequency

In the Chapter 4 we estimated the distribution of framewise run speeds and angle changes

from experimental data. These estimated distributions may be affected by the sampling

frequency of the digital camera used to acquire the original videos. In this chapter we

investigate the effect of varying the sampling frequency on the observed data. Common

examples of quantities of interest to experimentalists and modellers include:

1. pdf (how the cell density varies in space and time);

2. MSD;

3. angular distribution (for example, framewise angle change);

4. speed distribution (for example, framewise speed).

Of these, items 1 and 2 are not expected to vary with sampling frequency; in these cases

the sampling frequency simply restricts the temporal resolution with which we may ob-

serve the underlying continuous behaviour. These quantities are all measured relative

to the initial state. In contrast, quantities 3 and 4 are computed by considering the

difference between consecutive observations of the system, and therefore vary with the

sampling time. Figure 5.1 illustrates this point; although the underlying process has a

fixed speed, the observed speed will vary when the sampled points do not correspond

exactly with the jumps in velocity. Since jumps occur stochastically and sampling occurs
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with a fixed interval, this will in general never be the case.

The specific focus of this chapter is the dependency of observed framewise speeds and

angle changes on the sampling time. We first derive the analytic behaviour of these

quantities in the limit of very long intervals between samples, based on results relating to

diffusion. We then investigate the behaviour of the same quantities over a more realistic

range of sampling frequencies, using a combination of analysis and simulation. A glossary

of the mathematical notation used throughout this chapter is given in Table 5.1. Where

possible, we have maintained the same notation as used in previous chapters.

Figure 5.1: Illustration of the effect of sampling frequency on the observed trajectory. The
black solid line shows a simulated run-only, constant speed VJ trajectory, with reorientations at
the locations marked with crosses. The dashed lines show the observed trajectory for different
sampling intervals: (blue) τ/τ10 = 0.7, (red) τ/τ10 = 1.0, (green) τ/τ10 = 1.3.

5.1 Background and methods

We assume throughout this chapter that bacteria undergo an unbiased VJ process that

is sampled at regular time intervals. Each sample point records the position of the bac-

terium at that time. Both the run-only and run and stop variants are considered, as

133



Table 5.1: Glossary of notation used throughout this chapter.

Parameter Description

τ Sampling time interval.
τ10 Mean time between reorientations (τ10 = 1/λ).
c Constant speed of runs.
c̄ Mean observed speed.
σc Standard deviation of observed speeds.
σ∗c Standard error of observed speeds.
σδ True angular deviation.
σθ Observed angular deviation.

described in Chapter 2. These models are applicable to a wide range of motile bacteria,

including R. sphaeroides and E. coli (see Chapter 1 for details). The sampling time

interval is denoted τ and the mean time between switching events is denoted τ10, as per

the notation introduced in Chapter 3. The parameter τ10 is a characteristic timescale

defined by τ10 = 1/λ, where λ is the rate of reorientation in the case of the run-only

VJ process, and the rate of switching from a run to a stop in the case of the run and

stop VJ process. In the run and stop process, the parameter τ01 denotes the mean stop

duration, as in the previous two chapters. Following [50], we state our results in terms of

the non-dimensional ratio τ/τ10.

Codling and Hill [50] investigate a similar problem to the one considered here1. They

use stochastic simulations to investigate the effect of sampling time on three properties

of an unbiased VJ process with constant run speed, c, in two dimensions: the observed

angular standard deviation, σθ; the mean observed speed, c̄; and the standard error

of observed speeds, σ∗c . All of these properties are expected to depend upon τ . The

approach taken by the authors is strictly empirical. They show that the quantities listed

above exhibit various patterns of behaviour, but do not derive the mathematical forms

of the dependencies on sampling time. The main findings of Codling and Hill [50] are

summarised below.

Angular deviation The authors find that σθ = 0.79σδ
√
τ/τ10, where σδ is the true

1Note that in [50], the symbol τ̄ is used instead of τ10.
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angular deviation. This relationship breaks down for σθ > 1.2 rad.

Mean speed The observed mean speed for a VJ process with constant speed c = 1

is found to obey the relationship c̄ = exp(−0.074σ2
δτ/τ10) for c̄ < 0.75. The ex-

plicit dependence on the underlying constant speed c is not stated, however it is

straightforward to show that varying c leads to an equivalent multiplicative change

in c̄.

Standard error of speeds There is an approximately linear relationship between the

standard error of observed speeds, σ∗c , and the sampling time, τ . However, this

only holds for relatively small values of τ/τ10 and true angular deviations, σδ. In

addition, the authors note that there is “no obvious relation” between σδ and the

slope of the linear fit. Note that σ∗c quantifies the standard deviation of the mean

observed speed, and therefore varies with the number of samples observed.

Standard error of speeds when the underlying process has variable speeds In

this case the underlying process is assumed to have a normally distributed speed

with mean 1 and standard deviation cσ. The distribution is truncated, so that only

positive speeds are permitted. The authors find that σ∗c = cσ exp(−0.069σ2
δτ/τ10)

for σ∗c > 0.33.

Frequent reference in [50] is made to preceding work by Hill and Häder [88], in which the

authors assume an underlying biased random walk on a circle to analyse experimental

tracks of swimming algae. The authors use ‘rediscretization’ (varying the sampling time)

to extrapolate to the true value for the quantities discussed above.

5.1.1 Simulation parameters

Where simulations are used in this chapter, the method used is that described in Chapter

2. The simulated data are from a two-dimensional VJ process with a constant run speed

of 1 µms−1. All particles are initialised at the origin, with initial velocity in the positive
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x-direction. Note that the results are not affected if the initial location and velocity

are randomised. Reorientations are drawn from the von Mises distribution with zero

mean and a range of values of κ, corresponding to σδ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. The

conversion between κ and σδ is found by equating (2.33) and (2.37), which yields

σ′ =

√
−2 ln

(
I1(κ)

I0(κ)

)
. (5.1)

Table 5.2 lists the parameters used in the various simulations included in this chapter.

Where a parameter is omitted from the table, its value is varied and will be stated in the

main text of that section. Note that the parameters τ01 and c are chosen for simplicity;

the results for more realistic parameters would simply be a linear transformation of those

shown below. We do not incorporate noise in our simulations, as this would complicate

the situation and make it difficult to decouple the effect of noise from the effect of varying

the sampling rate. We consider the role of noise in Chapter 6.

5.2 Stationary distributions

When a VJ process is observed with large sampling intervals, many reorientation events

occur between consecutive observations and the observed process is diffusive [48, 51, 154].

We may therefore use results relating to Fickian diffusion to describe the asymptotic

behaviour of the VJ process in the diffusive limit. This provides a consistency check for

the results that follow in Section 5.3.

5.2.1 Observed speeds

Consider a particle undergoing Brownian motion in n dimensions. Between each sample

point, the particle moves through a vector denoted d = (d1, . . . , dn). The movements in
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Table 5.2: Simulation parameters used in this chapter. Here Ttotal is the total simulation time
and N denotes the number of particles.

Section Topic Simulation pa-
rameters

Figures

5.2 Long sampling time limit. τ10 = 1 s,
Ttotal = 5000 s,
N = 1000.

5.2, 5.3

5.3 Validation of our methodology by
comparison with [50] .

τ10 = 1 s,
Ttotal = 200 s,
N = 1000.

5.4

5.3 Simulation study of dynamic distri-
butions.

τ10 = 1 s,
Ttotal = 200 s,
N = 1000.

5.6, 5.7

5.4 Analytic study of dynamic distribu-
tions (forward problem).

τ10 = 5 s, τ = 1 s,
Ttotal = 200 s.

5.14, 5.15

5.4 Analytic study of dynamic distribu-
tions (inverse problem).

τ10 = 20 s,
τ = 1 s,
Ttotal = 200 s.

5.17

each of the dimensions are IID according to a normal distribution,

di ∼ N(0,
√

2Dτ), (5.2)

where D is the macroscopic diffusion coefficient as before and i ∈ {1, . . . , n}. In Section

2.3 we discussed the results of [146], which show that the slope of the MSD of a VJ

process is linear in the limit t → ∞. Since the slope of the MSD in each dimension

is equal to 2D, we have D = c2τ10/(1 − ρ1), where ρ1 denotes the mean length of the

angle change distribution (equivalent to the mean cosine for a symmetric distribution).

The absolute displacement between each sample point is equal to the Euclidean norm

of the vector d. The distribution of the random variable ‖d‖ is closely related to the χ

distribution, which describes the distribution of the square root of the sum of squared

137



standard normal variates. The variable Z, defined by

Z =

√√√√ k∑
i=1

X2
i , (5.3)

where X1, · · · , Xk are standard normal variates, follows a χ distribution with parameter

k. The χ distribution has mean

√
2

Γ((k + 1)/2)

Γ(k/2)

and variance σ2 = k − µ2.

The variates being summed in our case, di, are not standard normal as they have a

common standard deviation that depends upon the D and τ , as given in equation (5.2).

We therefore define a new variable, d′ = d/
√

2Dτ . The random variable ‖d′‖ now

follows a χ distribution. In two dimensions, the mean of this distribution is
√

2Γ(3/2)

and the variance is 2(1− Γ(3/2)2). The mean of ‖d‖ is therefore given by 2
√
DτΓ (3/2)

and the standard deviation is given by 2
√
Dτ
(
1− Γ (3/2)2). The observed speed of the

diffusing particle between two sample points is given by c(τ) = ‖d‖/τ . Therefore the

mean observed speed, denoted c̄, is given by

c̄ =

√
2

τ/τ10(1− ρ1)
Γ (3/2) (5.4)

Taking logarithms, we obtain

− log(c̄) =
1

2
[log (τ/τ10) + log(1− ρ1)− log(2)]− log (Γ (3/2)) . (5.5)

A plot of − log(c̄) against log(τ/τ10) should therefore be asymptotically linear, with slope

1/2.
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We evaluate the standard deviation of observed speeds, denoted σc, by a similar process,

giving

σc =

√
2

τ/(τ10(1− ρ1))

(
1− Γ (3/2)2). (5.6)

Taking logarithms we obtain

− log(σc) =
1

2
[log (τ/τ10) + log(1− ρ1)− log(2)]− log

(
1− (Γ(3/2))2) . (5.7)

Similar to the case for the mean observed speed, a plot of − log(σc) against log(τ/τ10) is

asymptotically linear with slope 1/2.

Equations (5.5) and (5.7) are verified in Figure 5.2, using simulated data with the parame-

ters listed in Section 5.1.1. In both cases, dashed lines indicate the asymptotic behaviour.

The simulated dataset with the greatest true angular variance relaxes most rapidly to the

diffusion limit (◦). This result is intuitive; trajectories with small angular variance have a

very long persistence time, as most reorientations incur only minor changes in direction,

therefore such trajectories only appear diffusive at long timescales, where the persistence

is lost. Conversely, a trajectory with high angular variance loses persistence rapidly, as

reorientations are often drastic.
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Figure 5.2: (a) Log-log plot of the observed mean speed against sampling time. (b) Log-log plot
of the standard deviation of observed speeds against sampling time. The data are computed for
a 2D run-only velocity jump process with σδ = 0.2(M), σδ = 0.4(�), σδ = 0.6(×), σδ = 0.8(+)
and σδ = 1.0(◦). Dashed lines have slope 1/2.
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5.2.2 Observed angle changes

For a particle undergoing Brownian motion, the observed angle changes between consec-

utive pairs of sampling points are distributed uniformly, as the solution to the diffusion

equation in an infinite domain is radially symmetric [72]. As discussed in Section 2.4,

the wrapped uniform distribution has a standard deviation of
√

2 if we use the definition

given in equation (2.32). Note that the alternative definition, given in equation (2.33), is

undefined for the same distribution. This result is verified in Figure 5.3. As for the mean

observed speed, the greater the true angular variance, the more quickly the observed

process relaxes to the diffusion limit.
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Figure 5.3: The observed angular variance, computed using the definition in equation (2.32),
against sampling time for a run-only VJ process. Symbols indicate the values of σδ, as in Figure
5.2. The dashed line indicates the asymptotic value of σθ =

√
2.

5.3 Simulation study of dynamic distributions

In the previous section we considered the long sampling time limit of the observed VJ

process. The behaviour at shorter sampling times is, however, of greater practical inter-

est. We now consider the effect of shorter sampling times, at which the observed process

is not purely diffusive. As reviewed above, Codling and Hill [50] investigated the effect of

variations in sampling time on the moments (mean and standard error) of the observed

speed and angle using simulated data. In this section, we use a similar computational

approach to investigate the observed pdfs of speeds and angle changes. The importance
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of the effect of sampling time on the observed pdf of these quantities was demonstrated in

Chapter 4: summary statistics such as the mean and standard deviation, whilst undoubt-

edly useful information, may be insufficient to distinguish the motion of different species

of bacteria, for example, whereas the pdf contains additional information. Furthermore,

we extend Codling and Hill’s study by considering a run and stop VJ process.
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Figure 5.4: (a) Plot of the negative logarithm of the observed mean speed against sampling
time. (b) Plot of the standard error of observed speeds against sampling time. The data are
computed for a two-dimensional run-only VJ process with σδ = 0.2(M), σδ = 0.4(�), σδ =
0.6(×), σδ = 0.8(+) and σδ = 1.0(◦).

Before commencing, we verify that our simulation approach is able to recreate the results

of Codling and Hill [50]. Figures 5.4(a) and 5.4(b) contain plots that are indistinguishable

from Figures 2 and 3(a) in their study. A comparison of our results with those of Codling

and Hill [50] is therefore permissible.

5.3.1 Run-only VJ process

A plot of the variation of particle density with position and time for two different values

of the angular variance, σδ, is shown in Figure 5.5. The greater value of the angular

variance leads to rapid spreading out of the particles from the origin in all directions

compared with the lesser value, where directional persistence is evident for longer.
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(d) σδ = 0.6, t = 160 s

Figure 5.5: The density of particles from simulated run-only data. Colour indicates density
(arbitrary scale) from blue (low density) to red (high density). All particles are initially located
at the origin and travelling in the positive x-direction.

Observed speed distributions

The observed speed distribution for different sampling times is shown in Figure 5.6 for

two different values of σδ. There is a greater spread of observed speeds in the case σδ = 0.6

compared with the case σδ = 0.1, because each reorientation event tends to result in a

larger change of direction. As τ is increased, the observed speed distribution becomes

broader. This occurs because each sampling interval has a greater probability of contain-

ing one or more reorientation events as the interval size increases. When a reorientation

event occurs in a sampling interval, the observed speed is always lower than the true

speed within that sampling interval.

The results in Figure 5.6 are in agreement with the findings of Codling and Hill [50]
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Figure 5.6: Observed speed distributions for different sampling times, computed with two dif-
ferent values of σδ. Stacked distributions correspond to different values of τ/τ10: (bottom to
top) 1, 2, 5, 10. The y-axis scale varies between stacked plots.

(see Figure 5.4). As we increase τ , the distribution of observed speeds is skewed towards

lower speeds. This decreases the mean observed speed (Figure 5.4(a)), and increases the

standard deviation of observed speeds (Figure 5.4(b)).

In the rapid sampling limit, τ/τ10 → 0, the distribution of observed speeds converges

to the true underlying distribution, as particles do not undergo reorientations between

sampling intervals. For the constant speed process considered here, the distribution of

observed speeds tends towards a delta function at the true underlying speed. This result

is not restricted to a constant speed process; when there is an underlying distribution of

speeds (for example the simulations used in Chapter 3), the observed speed distribution

converges to the true underlying distribution (data not shown).

Observed angle change distribution

Figure 5.7 shows the variation of the distribution of observed angle changes with sam-

pling time for two different values of σδ. Overlaid in red is the true underlying von Mises

distribution used for reorientation. Note that this distribution is constant in each figure;

the change in height is due to a rescaling of the y-axis. These results are in agreement

with the study by Codling and Hill [50], as the broadening of the distribution of observed
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angles results in an increase in σθ. In the short sampling limit, the distribution of ob-

served angle changes tends towards a delta function at the origin, since, in this limit, all

of the sampling intervals measure zero angle change because they contain no reorienta-

tion events. Thus the angular variance tends towards zero in this limit, as predicted by

Codling and Hill [50].
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Figure 5.7: Distributions of observed angle changes for different sampling times, computed with
two different values of σδ. Blue bars show the binned stochastic data and the red dashed line
shows the von Mises distribution used to simulate the process. Stacked distributions correspond
to different values of τ/τ10: (bottom to top) 1, 2, 5, 10. The y-axis scale varies between stacked
plots.

In contrast with the distribution of observed speeds, where the true underlying distri-

bution is obtained in the limit τ/τ10 → 0, at no sampling time does the distribution of

observed angle changes match the true underlying angle change distribution. This is due

to the nature of the fixed interval sampling; in order to regain the original distribution

we would need to sample each particle at every reorientation event. However, in the

absence of knowing when these jumps occur, we instead sample at regular intervals and

therefore sample both across and in-between reorientations. This accounts for the large

observed density at θ = 0 for both values of σδ when τ/τ10 = 1; although the sampling

interval matches the time between velocity jumps on average, there are many instances

in which two consecutive sample points do not have a jump between them and thus an

angle change of zero is recorded.

144



The above discussion raises the question of how we can infer the underlying turning kernel

from the inferred data. We return to this problem in Section 5.4.

5.3.2 Run and stop VJ process

Figure 5.8 illustrates the evolution of particle density over time for simulated data of

particles undergoing a run and stop VJ process with two values of σδ. Comparing this

figure with Figure 5.5, which shows the equivalent plots for run-only data, it is apparent

that the inclusion of a stopping phase retards the outward spread of particles. The particle

density is also considerably more inhomogeneous within a circular region in the run and

stop case than the equivalent run-only case, as particles have, on average, undergone fewer

reorientations, thus the increased particle density at the travelling front is maintained for

longer (compare Figures 5.5(b) and 5.8(b)).

Observed speed distributions

The simulated distribution of observed speeds for two values of σδ and τ01 are shown in

Figure 5.9. As for the run-only case, in the limit of rapid sampling, the distribution of

observed speeds relaxes to the true underlying distribution, this time with an additional

peak at zero due to stoppers, shown in red. The relative densities of the stoppers and

runners are determined by the ratio of the parameters τ01 and τ10. The observed speed

distributions have broader distributions than in the run-only case (compare with Figure

5.6), with larger values of τ01 shifting the distribution mean towards lower speeds, as

expected. Furthermore, the observed distribution of run speeds is not smooth, as was

the case for the run-only process. Instead, a sharp peak exists at a framewise speed

of 1 µms−1, corresponding to running particles that have not undergone any reorienta-

tions in a sampling interval. At sampling times τ/τ10 & 5, this peak is no longer apparent.

In Figure 5.10, we plot c̄ and σc against sampling time for different values of τ01. Note
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Figure 5.8: Histograms of the density of particles undergoing a run and stop VJ process with
τ01 = τ10 = 1 s. Colour indicates density (arbitrary scale) from blue (low density) to red (high
density).

that we do not include transitions that have an observed speed of exactly zero in the

calculation of these quantities, meaning that the density shown in red in Figure 5.9 is

ignored. In all cases, c̄ decays approximately exponentially with the sampling time, with

the rate of decay proportional to the value of τ01. Although the run-only case appears to

exhibit linear decay, we showed in Section 5.2 that c̄ decays exponentially in the limit of

long sampling times, so the appearance is due to the fact that we are considering sampling

times shorter than this limit here. The variation of σc is more complex, monotonically

increasing in the case of a run-only process and monotonically decreasing for all non-zero

values of τ01 over the range of sampling times considered. The explanation is facilitated

by comparison of Figures 5.6 and 5.9. In the run-only case, the distribution of observed

framewise speeds is tightly clustered around the true underlying value of c at low τ . This
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(b) σδ = 0.1, τ01 = 0.5 s
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(c) σδ = 0.6, τ01 = 1 s
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Figure 5.9: Observed speed distributions for different sampling times, computed with different
values of σδ and τ01. Blue bar indicates the speed distribution of runners. Red bar indicates
relative proportion of stopped cells (i.e. cells with speed equal to zero). Stacked distributions
correspond to different values of τ/τ10: (bottom to top) 1, 2, 5, 10. The y-axis scale varies
between stacked plots.

distribution broadens as τ increases. In contrast, there is a wide spread of speeds at low τ

when τ01 6= 0, with most clustered around the true value of c, but a significant proportion

distributed across the full range. The distribution effectively narrows as τ is increased,

as the density of speeds at the extremes decreases.

Observed angle change distributions

The computed distribution of observed angle changes is shown for σδ = 0.6 and τ01 = 1 s

in Figure 5.11. The distributions shown do not include angle changes for particles that

are stopped for the entirety of a sampling interval, as the angle change in these cases is
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Figure 5.10: Variation of the mean (a) and standard deviation (b) of observed framewise
speeds with τ/τ10 for a run and stop VJ process with σδ = 0.6 and τ01 = 0 s (×, equivalent to a
run-only process), τ01 = 0.2 s (♦), τ01 = 0.5 s (�), τ01 = 1 s (+), τ01 = 2 s (4) and τ01 = 5 s (◦).

not well defined. Comparing this figure with Figure 5.7, it is evident that the inclusion

of a stopping phase causes the distribution of observed angle changes to become more

concentrated about the origin. The shape of the distribution is, however qualitatively

similar in both cases.
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Figure 5.11: (a) Observed angle change distributions for different sampling times, computed
with σδ = 0.6 and τ01 = 1 s for a run and stop VJ process. Grey bars indicate the distribution
for running particles, dashed line shows the von Mises distribution used to simulate the process.
Stacked distributions correspond to different values of τ/τ10: (bottom to top) 1, 2, 5, 10. Note
that the y-axis scale varies between plots. (b) Enlarged plot of the distribution when τ/τ10 = 1.

Figure 5.12 shows the dependence of σθ on sampling frequency. As the figure shows, this

quantity increases monotonically with τ/τ10 over the range plotted. Further numerical
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simulations (not shown) indicated that the angular deviation has an asymptotic value

of σθ =
√

2 as τ/τ10 → ∞ in all cases, as predicted in Section 5.2. The value of τ01

affects how rapidly this asymptote is reached. As the mean duration of stopping phases

increases, the angular deviation decreases for a given value of τ/τ10. The underlying cause

of this result is not obvious, but may be as follows. A larger value of τ01 means that,

on average, fewer reorientation events will occur over a sample interval. Since the von

Mises distribution is concentrated about the origin, small angle reorientation events occur

with higher probability than more extreme angle changes. As a result, the distribution of

observed angle changes will have greater density at low values, and the standard deviation

of observed angle changes will be lower.
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Figure 5.12: Standard deviation of observed framewise angle changes against τ/τ10 for a
run and stop VJ process with σδ = 0.6 and τ01 = 0 s (×, equivalent to a run-only process),
τ01 = 0.2 s (♦), τ01 = 0.5 s (�), τ01 = 1 s (+), τ01 = 2 s (4) and τ01 = 5 s (◦).

5.4 Analytic study of dynamic distributions

Whilst computational simulations are useful for assessing the effect of sampling rate on

the observed VJ process, they are time-consuming, as many particles must be simulated

to obtain sufficiently smooth distributions. Furthermore, a new simulation is required

for each new set of parameters, making it hard to draw general conclusions about the

interplay between the parameters τ/τ10 and σδ. We now seek an analytic description of
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the underlying VJ process, for application to the sampling rate problem.

In the following, we consider a run-only, constant speed VJ process. As before, the con-

stant speed is denoted c. In contrast with the previous section, we require no assumptions

on the underlying reorientation kernel; we instead denote this pdf fΦ(φ). We make the

simplifying assumption that the sampling interval, τ , is sufficiently small relative to the

mean time between reorientations, τ10, that the probability of two or more reorientations

occurring between consecutive sample points is negligible. Using the fact that reorienta-

tions in the underlying VJ process occur as a Poisson process, this probability is given

by

P(N ≥ 2; τ, τ10) = 1− e−τ/τ10(1 + τ/τ10), (5.8)

where the random variable N denotes the number of reorientations in a time interval of

duration τ . By way of a numerical example, choosing τ/τ10 = 0.1 gives P(N ≥ 2; τ, τ10) ≈

0.005, so two or more reorientations are expected to occur within one sampling interval

once per 500 intervals.

(a)

X

Y

(b)

Figure 5.13: (a) Illustration of a portion of a VJ trajectory containing a single reorientation
phase. Black lines show the true path and the crosses joined by the dashed green line indicate
the observed path, after sampling. See main text for an explanation of the various labels. (b) A
simulated track (black lines and crosses) and the resulting canonical transitions (red lines).

Figure 5.13(a) illustrates the problem considered here with an example trajectory. The
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true underlying trajectory consists of two straight line sections (shown in black) separated

by an instantaneous reorientation of angle Φ, given relative to the previous direction of

travel. In contrast, the observed path (green dashed line) appears to contain two reorien-

tation events, with angles Θ1 and Θ2. The observed framewise displacement is denoted

R. The difference between the observed and true paths is due to the discretisation of the

continuous underlying trajectory. The length L is the distance between the last sampling

point and the reorientation event. Since we consider a constant speed process, the dis-

tance travelled by a particle between over the course of a sampling interval is given by

cτ . The remaining distance between the reorientation event and the next sampling point

is therefore given by cτ − L.

Two alternative representations of the trajectory are the pairs of random displacements

X and Y , where the axes are defined parallel and perpendicular to the previous direction

of travel, respectively, and the polar representation R and Θi, where i ∈ {1, 2}. The

mapping from the (L,Φ) plane to either of these representations is bijective. Since both

alternative representations are defined relative to the previous direction of travel, we must

rotate the transitions vt of tracks (either real or simulated) so that the previous direc-

tion of motion is effectively the positive x-direction, as in Figure 5.13(a). These rotated

transition vectors are denoted canonical transitions. An illustration of a simulated track

and its canonical transitions is shown in Figure 5.13(b). A complication with computing

the canonical transitions arises immediately after a reorientation event. Referring to the

final transition shown in Figure 5.13(a), it is evident that the observed prior direction of

travel (with angle Θ1) is not equal to the actual prior direction of travel (with angle Φ).

It is therefore necessary to use the value of Φ, and not Θ1, to compute the final canonical

transition.

We first solve the forward problem, which is the process of computing the joint pdf of

R and Θ1, denoted fR,Θ1(r, θ1), assuming that the functional form of the angular pdf
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fΦ(φ) and the value of c are both known. There is no need to specify the distribution

of the random variable L since this is prescribed by the definition of the VJ process, as

discussed below. Providing the resulting expression is integrable with respect to both

of the independent variables, we are then able to solve for the marginal pdfs, fR(r) and

fΘ1(θ1). The statistical properties of the VJ process are time-reversal invariant, meaning

that the pdfs governing Θ1 and Θ2 must be identical. The forward problem therefore

allows us to estimate the observed distribution of framewise speeds and angles for a given

sampling time, τ , given knowledge of the true underlying distribution of angle changes.

In order to tackle this problem, we make two consecutive transformations by change of

variables. We first transform to the (X, Y ) plane, which requires the following relation-

ships:

X = L+ (cτ − L) cos Φ, (5.9)

Y = (cτ − L) sin Φ. (5.10)

The joint pdf of X and Y is then given by

fX,Y (x, y) =

 |det Jl,φ|fL,Φ(l(x, y), φ(x, y)), if (x, y) ∈ C

0, otherwise,
, (5.11)

where the domain in which the transformation is valid is given by

C =
{

(x, y) : x2 + y2 ≤ (cτ)2
}
, (5.12)

and the Jacobian matrix associated with the transformation is given by

Jl,φ =


∂l

∂x

∂l

∂y

∂φ

∂x

∂φ

∂y

 .
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Manipulating equations (5.9) and (5.10), we obtain

L =
(cτ)2 −X2 − Y 2

2(cτ −X)
, (5.13)

Φ = arccos

(
Y 2 − (cτ −X)2

Y 2 + (cτ −X)2

)
. (5.14)

Differentiating equations (5.13) and (5.14) and evaluating the determinant yields

|det Jl,φ| =
1

cτ − x
. (5.15)

We now require an expression for the joint pdf fL,Φ(l, φ). Since the displacement and

angle change are independent, we have fL,Φ(l, φ) = fL(l)fΦ(φ). Recall that stops occur

as a Poisson process. It can be shown that for a Poisson process, the distribution of

events within an interval, conditional on the number of events, is uniform [80]2. The

distribution of the displacement L is therefore given by

fL(l) =
1

cτ
. (5.16)

Substituting into equation (5.11), we obtain

fX,Y (x, y) =


1

cτ(cτ − x)
fΦ

(
arccos

(
y2 − (cτ − x)2

y2 + (cτ − x)2

))
(x, y) ∈ C,

0 otherwise.

(5.17)

We now make a second transformation to obtain the pdf fR,Θ1(r, θ1),

fR,Θ1(r, θ1) =

 |det Jx,y|fX,Y (x(r, θ1), y(r, θ1)), if (r, θ1) ∈ C

0, otherwise,
(5.18)

2A proof is reproduced in Appendix A.5.
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where

Jx,y =


∂x

∂r

∂x

∂θ1

∂y

∂r

∂y

∂θ1

 ,

and the domain C is reinterpreted as

C = {(r, θ1) : 0 ≤ r ≤ cτ, θ1 ∈ [−π, π)} . (5.19)

Evaluating the determinant of the Jacobian matrix gives det Jx,y = r. Combining this

result with equations (5.9), (5.10), (5.17) and (5.18), we obtain

fR,Θ1(r, θ1) =


r

cτ(cτ − r cos θ1)
fΦ

(
arccos

[
r2 sin2 θ1 − (cτ − r cos θ1)2

r2 sin2 θ1 + (cτ − r cos θ1)2

])
, (r, θ1) ∈ C,

0, otherwise.

(5.20)

We may use equation (5.20) to compute the marginal pdfs governing the displacement R

and the angle Θ1, by integrating the joint pdf:

fR(r) =

π∫
−π

fR,Θ1(r, θ1) dθ1, (5.21)

fΘ1(θ1) =

∞∫
0

fR,Θ1(r, θ1) dr. (5.22)

We re-emphasise that Θ1 and Θ2 have the same marginal pdfs by symmetry, so that

fΘ2(θ2) is also given by equation (5.22).

In order to verify the forward problem by comparing with a stochastic simulation, we

must specify a turning angle pdf, fΦ(φ). As for previous sections in this chapter, we

use the von Mises distribution with zero mean and angular deviation σδ = 0.6. The

remaining parameters are τ10 = 1 s, τ = 0.2 s and c = 1 µms−1. Upon substituting the

functional form of the von Mises distribution (given by equation (2.36)) into (5.20), the
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integrals in (5.21) and (5.22) become too complex to perform analytically. We therefore

use adaptive Simpson numerical integration [161], implemented in the Matlab function

quad, to evaluate the pdf. The marginal pdf of framewise speeds requires a linear scaling

of the pdf of framewise displacements, fR(r), by a factor of cτ .
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Figure 5.14: Distribution of framewise speeds (a) and angle changes (b). In both cases the
results from a stochastic simulation are shown in blue and the numerically computed analytic
formulation plotted in red. Only positive angle changes are shown for clarity.

Figure 5.14 shows the observed pdf of framewise speeds and angle changes, computed

with the stochastic simulation algorithm, overlaid with the result of performing numer-

ical integration of equation (5.20) as discussed above. The stochastic simulation results

are first filtered to remove transitions in which no reorientations occur, as these result in

a large number of framewise angle changes exactly equal to zero, and framewise speeds

exactly equal to c. This is achieved by discarding transitions with a framewise angle

change whose magnitude is less than a defined numerical tolerance. The agreement is

good, and improves as the accuracy of the numerical integration is increased (data not

shown). This comparison shows that we are able to describe analytically the effect of

sampling a continuous VJ process on the observed data. By way of example, Figure 5.15

shows how the observed pdfs are affected by the underlying angular deviation, σδ.

We now turn our attention to the inverse problem, namely inferring the angle change
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Figure 5.15: Distribution of framewise speeds (a) and angle changes (b) for σδ = 0.1 (solid
line), σδ = 0.6 (dashed line), and σδ = 1.0 (dashed-dotted line). Only positive angle changes
are shown for clarity.

distribution fΦ(φ) from observed data. We assume that the value of c is known, as this

may be estimated by alternative methods. We also assume that τ � τ10, as discussed

above. In order to estimate fΦ(φ) from data, we consider a discretised domain in φ, and

use equation (5.14) to find the corresponding domain in the (x, y) plane. Note that the

data must be in the canonical form, as described above. For a region, φ ∈ [φ1, φ2), where

φ2 ≥ φ1, we obtain the following inequalities

φ1 ≤ arccos

(
y2 − (cτ − x)2

y2 + (cτ − x)2

)
< φ2

⇒

√
1 + cos(φ1)

1− cos(φ1)
≥ y

cτ − x
>

√
1 + cos(φ2)

1− cos(φ2)
.

(5.23)

Equation (5.23) indicates that the area in (x, y) is bounded by two straight lines and the

circle with radius cτ , as shown in Figure 5.16. The area of one of the shaded regions is

given by

A =
1

2
(φ2 − φ1 + sin(φ1)− sin(φ2)). (5.24)

Rearranging equation (5.17) gives

fΦ(φ(x, y)) = cτ(cτ − x)fX,Y (x, y). (5.25)
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Figure 5.16: The regions in (x, y) space corresponding to two different ranges of φ shown in
red and blue.

Integrating this quantity over a region, Ω = {(x, y) : φ(x, y) ∈ [φ1, φ2)}, we obtain

∫∫
Ω

fΦ(φ(x, y)) dx dy = cτ

∫∫
Ω

(cτ − x)fX,Y (x, y) dx dy. (5.26)

We are therefore able to estimate the probability density of φ within Ω as an approxima-

tion of the integral on the right hand side of equation (5.26), using the observed data.

Extracting this value from the tracks produced by experiment or stochastic simulation is

achieved by performing the following computations:

1. convert all transitions to canonical transitions;

2. discretise the turning angles φ, denoting each bin by φi;

3. for each φi, find the corresponding region in (x, y), denoted by Ωi, using equation

(5.23);

4. find all simulated data whose final position is within Ωi. Compute the mean value

of cτ − x for these matching results;

5. estimate fX,Y (x, y) in the region Ωi by taking the number of matches divided by

the area of the region, computed using equation (5.24);

6. the product of results from steps 4 and 5 gives an unnormalised estimate for the

probability density of φ within the bin φi. Normalise the estimated distribution.
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The result of performing this procedure on simulated data with varying numbers of tracks

is shown in Figure 5.17(a) along with the true von Mises turning distribution. Tracks

were simulated with τ10 = 20 s, τ = 1 s and σδ = 1.0 for a total simulation time of 200 s.

The inferred turning distribution is more accurate as the number of simulated trajec-

tories increases. The agreement is already good when 100 tracks are included, and the

improvement upon including 5000 tracks is minor. The estimate is less accurate at lower

values of φ, because the area of the enclosing region in the (x, y) plane is small. There

are therefore fewer data points available to estimate fX,Y (x, y) in the region, leading to

a larger error in the estimate relative to regions at higher values of φ. Further numerical

simulations show that this discrepancy at small values of φ increases with τ/τ10 (data

not shown).
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Figure 5.17: Plot of the inferred angle change distributions computed from simulated data. The
true underlying turning kernel is von Mises with σδ = 1.0, plotted in red. (a) Data simulated
with no added noise and a varying number of particle trajectories: 10 (green), 100 (blue), and
5000 (black). (b) Simulated data comprising 5000 trajectories and incorporating Gaussian noise
with D = 1× 10−3 µm2s−1.

A key difference between the simulated data used throughout this chapter and the ex-

perimental tracks in Chapter 4 is the lack of noise in the former. In order to assess the

suitability of the present analysis to real tracks, we test our solution to the inverse prob-

lem on simulated data with a low level of added white noise. The tracks are simulated

as described in Chapter 3, with noise strength D = 1 × 10−3 µm2s−1. Figure 5.17(b)
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shows the result of attempting to infer the underlying turning kernel with this noisy

data. The algorithm performs poorly, with particularly large discrepancies at low and

high values of φ. This failure occurs because transitions containing no reorientations,

which are straightforward to filter out when no noise is present, may escape the filtering

stage if the addition of noise makes them appear to be the result of a change in angle.

Furthermore, the algorithm is highly sensitive to small perturbations around the region

(x, y) = (cτ, 0). As Figure 5.16 illustrates, a small shift in position in this region can

drastically change the computed value of φ.

5.5 Discussion and conclusions

In this chapter, we have considered the effect of the sampling frequency used to obtain

data on an observed VJ process. We showed that this is an important factor to consider,

as several of the quantities that we are interested in extracting from our tracking data

are strongly affected by the sampling frequency. We initially derived results that are

valid at long sampling times, based on the assumption of a diffusive process. These pro-

vide a useful consistency check for the ensuing work. We next proceeded to analyse the

short and intermediate sampling time regimes using simulated tracks. In particular, we

have built upon the study carried out by Codling and Hill [50] by considering the effect

that sampling frequency has on the observed pdfs, rather than the summary statistics.

We also incorporated a stopping phase into the underlying process, the effect of which

has not been considered before. The results in Section 5.3 were shown to be consistent

with the findings in [50]. An important result arising from the simulation study was the

question of how to infer the underlying distribution of angle changes. Since sampling

times do not in general coincide with reorientation events, we cannot simply ‘read off’

the result from a histogram of framewise angle changes. This provided the motivation for

our analytic study in Section 5.4, in which we used mathematical modelling to describe

the sampling process and its effect on the observed data. Our approach proved useful in
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deriving the expected form of the pdf governing framewise speeds and angle changes for a

given underlying angle change distribution (the forward problem), subject to a condition

on the sampling time. Attempting to invert the process, in order to infer the underlying

angle change distribution from observed data, proved moderately successful on simulated,

noise-free data, although many tracks were required to ensure accurate inference.

The sampling times considered in Sections 5.2 and 5.3 are greater than or equal to the

value of τ10. This is in contrast to those considered in Section 5.4, in which we require

τ � τ10. The latter sampling regime is more realistic for the data that we presented

in Chapter 4, from which we inferred that τ10 ≈ 0.7 s. The data were obtained with

τ = 0.02 s, hence the sampling rate is theoretically sufficient to allow for comparison with

the results derived in Section 5.4. However, various complications, including the run-and-

stop motion exhibited by R. sphaeroides , and the fact that bacteria do not move with a

constant speed, prevent a detailed comparison at present. Indeed, this was not the main

goal of our present work. Instead, we have completed a more general modelling study

of the issue of sampling frequency, valid in different sampling time limits. Further work

could include a more detailed study of the effect of sampling frequency when τ � τ10,

for example including stopping phases or a variable run speed.

A further important omission from the present work is the inclusion of noise in the tracks.

A key example is the failure of our solution to the inverse problem when even low levels of

noise were included in the simulated tracks. With the exception of Codling and Hill [50],

who also neglect noise in their study, there are no investigations into the effect of sampling

frequency on observed data. We therefore opted to focus on the noise-free case in order

to address some of the open questions in this field. Further work could include a study of

the interplay between sampling rate and measurement noise. This is necessary if we are

to investigate the optimal sampling frequency, as measurement noise typically increases

with increasing sampling rate in microscope cameras, due to the resulting reduction in

160



image intensity [202]. Another open question relates to the effect of process noise, for

example Brownian buffeting, and how measurements extracted from such noisy tracks

vary with the sampling frequency. This is the motivation for Chapter 6, in which we

analyse the role of noise in bacterial motility.
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Chapter 6

Modelling the effect of Brownian

buffeting on motile bacteria

In the previous chapter, we saw that our analytic description of the effect of sampling

frequency on observations of the idealised velocity jump (VJ) process was of limited

application to experimental data due to the presence of noise. In particular, the VJ

model of bacterial motion is one of straight line movements punctuated by reorientations;

in reality various sources of noise cause a departure from this idealisation. Bacteria do not

swim in perfectly straight lines, as is evident from, for example, Figure 4.9. The sources

of noise that lead to such apparent departures from straight line motion include Brownian

buffeting, measurement error, and fluctuations in the conformation of the flagellum and

in the rotation rate of the flagellar motor. In the current chapter, we focus on the effect

of rotational diffusion, caused by Brownian buffeting, on bacterial motility, since the

physical and mathematical descriptions of such noise are well understood. We consider

three models to analyse the role of rotational diffusion in the motility of R. sphaeroides ,

and other monoflagellates with similar motile behaviour. The first is a model developed

by Hagen et al. [83] to describe the motion of a self-propelled particle that is subject to

rotational diffusion. The two other models are novel; both are based on a combination

of the self-propelled particle model and the VJ model described in Chapter 2. The
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phenomenon of rotational diffusion is reconciled with the VJ process by describing the

reorientation of a bacterium during a stopping phase in terms of rotational diffusion. A

comparison of this model with experimental data demonstrates the important point that

R. sphaeroides cannot reorientate by Brownian rotational motion alone. A simplified

model of an alternative active reorientation mechanism is proposed.

6.1 Background

The small size and mass of a bacterium means that its motion is dominated by viscous

forces; inertial forces are so small as to be negligible [21]. The relative importance of these

two effects for a body moving in a fluid is quantified by the Reynolds number, defined by

R =
vLρ

η
, (6.1)

where v is the velocity of the particle relative to the fluid, L is the length scale of the

particle, ρ is the density of the fluid and η is the fluid viscosity. For small bodies such as

bacteria, R is very small (on the order of 10−5 [21]). A numerical example of the impor-

tance of the low Reynolds regime is given by Purcell [163]. Approximating a bacterium as

a sphere with a diameter of 1µm moving with a speed of 20 µms−1, the coasting distance

of a bacterium upon instantaneous cessation of the flagellar motor is equal to 4×10−12 m,

or 4 millionths of the diameter of the bacterium. This quick calculation demonstrates

that, at such low Reynolds numbers, viscous effects are dominant, and objects are brought

to a halt almost immediately.

Whilst particles at low Reynolds number have extremely small coasting distances, they

are never completely stationary as they exhibit Brownian motion, also known as diffusion.

Brownian buffeting leads to two related random processes: translational and rotational

diffusion. These processes are illustrated in Figure 6.1. Translational diffusion leads to a

shift in the centre of mass of a particle, whereas rotational diffusion leads to a reorienta-
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Figure 6.1: Illustration of a bacterium undergoing translational (left) and rotational (right)
diffusion. In each case, the cartoon is of a single cell. Transparent cells indicate historic position
and orientation, with increasing transparency representing the more distant past. Red lines trace
the trajectory of the cell centroid over time in the translational case, and trace a point on the
flagellum to show the angle changes in the rotational case.

tion of the particle about its centre of mass. The understanding of the role of Brownian

buffeting on bacterial motility has been elucidated by Berg [21] using a theoretical model

of a self-propelled particle that is subject to rotational diffusion. A bacterium is mod-

elled as a particle propelled by a rigid helix. At random intervals, the cell undergoes an

instantaneous reorientation event, in which a new direction is selected from the wrapped

uniform distribution. Between these events, the bacterium is propelled forwards. This is

the classic VJ model of Othmer et al. [146]. The inclusion of rotational diffusion leads to

running phases in which the cell reorientates continuously, which is a departure from the

VJ model. As a result of rotational diffusion, cells do not trace out perfectly straight runs.

Mitchell [136] uses the model of a self-propelled particle to analyse the effect of cell size

and swimming speed on the efficiency and feasibility of bacterial motility in marine envi-

ronments. In order for bacteria to perform chemotaxis and bias their movements towards

sources of nutrients, they must be able to swim sufficiently quickly to detect a change in

nutrient concentration before rotational diffusion randomises the direction of swimming.

Purcell [163] describes this as the need to ‘out-swim diffusion’: nutrients undergo diffu-

sion in a liquid medium, thus a bacterium must move a certain distance in order to arrive

at a region with a detectably different nutrient concentration. Mitchell [136] equates this

minimum distance with the mean distance a bacterium travels before rotational diffusion

causes an orientation change of π/2. The extent of rotational diffusion scales with r−3,

where r is the radius of the bacterium, and is independent of speed [136]. Smaller cells
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must therefore swim more rapidly in order to undergo chemotaxis, as Figure 6.2 shows.

Figure 6.2: Numerical results from a theoretical model showing the dependence of minimum
swimming speed on cell size for bacteria with or without a flagellum. Reproduced with permission
from [137].

The extent of rotational diffusion is reduced when the frictional effects of the flagellum

are incorporated [137], as this increases the viscous drag acting on the bacterium. This is

termed ‘flagellar stabilization’. The dependence of minimum swimming speed on cell size

for bacteria with or without a flagellum is shown in Figure 6.2. Dusenbery [65] carried

out a similar analysis, and predicted that planktonic organisms with radii below around

0.6 µms−1 are unlikely to gain any advantage from swimming motility. This prediction

was borne out in a systematic investigation of known bacteria [65]. It is, however, un-

clear whether the more general prediction of Mitchell [137], that swimming speed should

correlate with cell size, holds in nature. A diverse study of marine bacteria carried out

by Johansen et al. [98] failed to find any such correlation.

Mitchell’s approach to considering the efficiency of bacterial chemotaxis also permits a

discussion of the relative advantages of the various methods of reorientation by motile

bacteria (see Figure 1.3) [138]. Of particular interest is the application of this model

of rotational diffusion to R. sphaeroides : Mitchell and Kogure [138] point out that this

bacterium is too large to reorientate efficiently by rotational Brownian diffusion alone.

This is also noted by Armitage et al. [12], whose experimental study suggests that an
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active reorientation mechanism may be present. However, bead assays in R. sphaeroides

have provided contradictory evidence, which suggests that the motor does indeed stop

[156]. We discuss this aspect, with novel supporting data and modelling, in more detail

below.

Further outcomes of the self-propelled particle model arise from a more in-depth analysis

of the relevant equations of motion, which take the form of coupled stochastic differential

equations (SDEs) (see Section 6.2 for a detailed discussion). This permits the derivation

of expressions for summary statistics such as the MSD, velocity auto-correlation function

(VACF), skewness and kurtosis [82, 83, 216].

6.2 Mathematical methods

Brownian motion is the name given to the random motion of a small particle in a liquid

medium, as first observed by the botanist Brown in 1827 while he was studying grains

of pollen in water under a microscope [52]. The motion arises from the net force acting

on the particle as a result of the very large number of collisions between the surrounding

molecules in the liquid and the Brownian particle. The time average of these collisions is

zero, however the instantaneous net force is a random property, causing the particle to

exhibit ceaseless small movements. In this chapter, we use a mathematical description of

Brownian motion called the Langevin equation. We present the details of the model in

one dimension, before extending the description to two dimensions, to enable comparison

of the model with our two-dimensional experimental data (see Chapter 2 for further dis-

cussion). The Langevin equation is a natural framework to use for the analysis of such

stochastic systems. In particular, appropriate analysis of the relevant equations gives us

access to the various moments mentioned previously. We now describe this equation, and

provide detail on some relevant mathematical methods for analysing stochastic processes.
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6.2.1 The Langevin equation

The Langevin equation is a SDE describing the forces experienced by a particle undergo-

ing Brownian motion in a liquid. In one dimension, the translational Langevin equation

is given by [52]

dx(t)

dt
= v(t), (6.2)

m
dv(t)

dt
= −ζv(t) + ξ(t), (6.3)

where x(t) is the time-dependent position of the particle, m is mass, ζ is the frictional

drag coefficient and ξ(t) is a random fluctuating force, discussed further below. The

left-hand side of (6.3) is the force exerted on the particle, which is equal to the sum

of a deterministic viscous drag term and a force arising from the random collisions of

the surrounding molecules in the liquid. The random quantity ξ(t) represents the net

force exerted on the particle over a time interval that is short relative to the timescale

of viscous relaxation, characterised by the quantity m/ζ, and long relative to the mean

time between collisions of the molecules in the medium. The ensemble average of this

force, denoted 〈ξ(t)〉, interpreted as the average over realisations of the random variable

ξ(t), is zero. The autocorrelation of the force ξ(t) is given by

〈ξ(t)ξ(t′)〉 = gδ(t− t′), (6.4)

where g is a constant, given by

g = 2kTζ, (6.5)

where k is the Boltzmann constant and T is temperature in units of kelvin. Equation

(6.5) is known as the Fluctuation-Dissipation Theorem [52]. This theorem thus links the

strength of random fluctuations in the Langevin equation to physical properties of the

system.
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The property summarised in equation (6.4) is known as delta correlation, and is a charac-

teristic of a white noise force [52]. We may interpret property (6.4) as a further statement

of the separation of the viscous relaxation timescale and the timescale of the motion of

the surrounding molecules. The number of collisions that occur on the timescale of the

motion of the Brownian particle is very large, so that the motion of the particle is approx-

imately independent of any previous motion. This is clearly an idealisation: there must

be some timescale on which the motion of the molecules in the surrounding medium are

correlated. However, this timescale is on the order of 10−12 s [52], whereas we are gener-

ally interested in timescales on the order of 10−3 s or greater (the timescale on which we

observe bacterial motility). Furthermore, the viscous relaxation timescale for a Brownian

particle is approximately 10−8 s for a spherical particle of radius ≈ 1µm (see calculation

below), so even if we were interested in this phenomenon, we could treat the oscillating

force as uncorrelated. The idealised white noise force is therefore a suitable approxima-

tion to the true fluctuating force acting on a Brownian particle.

6.2.2 Overdamped Langevin equation

The left-hand side of equation (6.3) represents the inertial forces acting on the particle.

This is significant for particles whose mass is large relative to the viscous drag coefficient

ζ. In the case of a bacterium, however, viscous forces dominate so that m/ζ � 1 s.

We can quantify this statement by considering the approximate values of the two con-

stants for a sphere of radius 1µm. By Stokes’ Law, ζ = 6πηr for a sphere, which gives

ζ ≈ 10−7 kg s−1 for a cell in water. Assuming that the density of a cell is approximately

equal to that of water at room temperature, m ≈ 10−15 kg. The ratio m/ζ, which gives

the characteristic viscous relaxation timescale, is hence on the order of 10−8 s.
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Combining equations (6.2)-(6.3), we obtain

m

ζ

d2x

dt2
+

dx

dt
=

1

ζ
ξ(t). (6.6)

The overdamped Langevin equation is obtained by neglecting intertial forces, which is

justified as m� ζ. We neglect the first term in equation (6.6) to obtain

dx

dt
=

1

ζ
ξ(t). (6.7)

The overdamped Langevin equation may be used as a starting point for modelling bac-

terial motility (see, for example, [82, 83]).

6.2.3 The rotational Langevin equation

As illustrated in Figure 6.1, translational and rotational diffusion are related, but dis-

tinct, processes. The process described by equations (6.2)-(6.3) is translational Brownian

motion. Consider an oriented sphere of uniform density with radius r and an orientation

vector µ(t), which is fixed relative to the sphere so that rotation of the sphere changes

the orientation vector accordingly. The related equations for the rotational Brownian

movement of the sphere in three dimensions are given by [52]

dµ(t)

dt
= ω(t)× µ(t), (6.8)

I
dω(t)

dt
+ ζω(t) = ξ(t), (6.9)

where I is the moment of inertia of the sphere, equal to 2mr2/5, ω is the angular mo-

mentum and ξ(t) is a vector-valued white noise force, with each component IID with the

same zero mean and delta correlation given in equation (6.4). As before, inertial terms

are small compared with viscous terms, I � ζ. Neglecting the first term in equation
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(6.9) and substituting into equation (6.8) gives

ζ
dµ(t)

dt
= ξ(t)× µ(t). (6.10)

Figure 6.3: Illustration of the orientation vector for a rotating sphere whose motion is confined
to two dimensions. See text for details.

Since we will be considering rotational diffusion in two dimensions, we now derive the

simplified two-dimensional form of equation (6.10), as used in [83]. In this case, the

orientation vector can be described in terms of a single degree of freedom, φ. This is the

angle that the orientation vector makes with the horizontal, as illustrated in Figure 6.3.

The orientation vector becomes

µ(t) =


cosφ

sinφ

0

 . (6.11)

Taking the dot product of equation (6.10) with the unit vector in the x-direction, we

obtain

dφ

dt
=

1

ζ
ξ(t), (6.12)

where ξ(t) is a single component of the white noise vector ξ(t).
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6.2.4 The Wiener process

The white noise force ξ(t) approximates the combined effect of very many collisions be-

tween the molecules in the surrounding medium and the Brownian particle. We have

already seen that two important properties of this force are that it has an ensemble av-

erage of zero, and is delta correlated (see equation (6.4)). A further property of ξ(t),

often assumed but not strictly necessary for the ensuing analysis, is that it is a Gaussian

process, i.e. it is normally distributed. This assumption may be justified by considering

that ξ(t) is the sum of very many identically distributed random collisions, hence by the

Central Limit Theorem we expect it to follow a normal distribution.

The Wiener process, denoted B(t), is best defined as the integral of the standard white

noise process X(t), which has zero mean and unit variance,

B(t) =

t∫
0

X(s) ds. (6.13)

For a more detailed discussion of the properties of the integral of a random process,

see [107]. The interpretation of the Wiener process defined in equation (6.13) is as the

position of a Brownian particle in one dimension at time t. From equation (6.13), it is

clear that B(0) = 0. The integral in equation (6.13) is a Riemann integral, hence we may

consider the Wiener process as the limit of a sum of Gaussian increments,

B(t) = lim
δn→0

n∑
i=1

X(ti)(ti − ti−1), (6.14)

where 0 = t0 < t1 < . . . < tn = t is a partition of the domain [0, t] into n intervals,

and δn = max
1≤i≤n

(ti − ti−1) is the length of the largest interval. Since B(t) is an infinite

sum of IID random variables, it is a Gaussian process by the Central Limit Theorem.

Non-intersecting increments of the Wiener process are stationary and independent, and

are normally distributed with zero mean and mean squared value proportional to the
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width of the increment,

〈B(t)−B(s)〉 = 0, (6.15)

〈[B(t)−B(s)]2〉 = |t− s|, ∀ s, t ≥ 0. (6.16)

Setting s = 0 gives similar results for an increment starting at time zero,

〈B(t)〉 = 0, (6.17)

〈B2(t)〉 = t, ∀ t ≥ 0. (6.18)

As B(t) is normally distributed, its characteristic function is given by

ϕB(t)(u) =
〈
eiuB(t)

〉
= e−u

2t/2, u ∈ R. (6.19)

In our case, the white noise process ξ(t) has a second moment equal to 2kTζ (see equation

(6.5)) hence ξ(t) =
√

2kTζX(t). Integrating (6.12) with the initial condition φ(0) = 0,

and applying the definition of the Wiener process, we obtain

φ(t) =
1

ζ

t∫
0

ξ(s) ds =

√
2kT

ζ

t∫
0

X(s) ds =

√
2kT

ζ
B(t). (6.20)

Using equation (6.18), the second moment of φ(t) is then given by

〈φ2(t)〉 =
2kT

ζ
t. (6.21)

6.2.5 Integral of a stochastic process

In Section 6.3, we shall encounter integrals of the form

Z(t) =

t∫
0

Y (s) ds,
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where Y (s) is a measurable stochastic process [80]. If

〈|Y (s)|〉 <∞ ∀ s ∈ [0, t], (6.22)

then we can compute 〈Z(t)〉 using the following manipulation [59]:

〈Z(t)〉 =

t∫
0

〈Y (s)〉 ds. (6.23)

This equality follows from the application of Fubini’s Theorem [162] to interchange the

order of integration, since the process of taking the ensemble average is actually an

integral over realisations of Y (s).

6.3 A model of rotational diffusion in bacterial motil-

ity

In this chapter, we consider three models to analyse the role of rotational diffusion in

flagellar-mediated bacterial motility. All three models are based on the overdamped

Langevin description of a self-propelled particle. Following Hagen et al. [83], we consider

only rotational diffusion, as translational diffusion has a relatively minor effect on the mo-

tion of a self-propelled particle when the rate of propulsion is sufficiently high, as is the

case here. Figure 6.4 illustrates the geometry of the model. The bacterium is modelled as

either a sphere or an ellipsoid that is propelled by a single flagellum, modelled as a rigid

helix. When the cell body is ellipsoidal, the flagellum is attached at the midpoint of the

long axis as is generally observed experimentally [11]. The unit vector in the axis that

runs through the centre of the flagellum and the centre of the cell is the orientation vector

µ, whose angle to the horizontal is denoted φ, as in Section 6.2.3. Since we consider only

motion in two dimensions, we assume that µ lies in the (x, y) plane. Note that the cell

body is three-dimensional, however. In all models, the cell is assumed to be propelled
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forward at a constant speed of 40 µms−1 when the propulsive force is active. This is the

approximate modal speed exhibited by wildtype R. sphaeroides (see Figure 4.16).

In the run-only model, the propulsive force is active at all times. This is a simplified rep-

resentation of the R. sphaeroides non-chemotactic mutant strain (see Chapter 2), which

is unable to stop. In the run-and-stop model, the propulsion force undergoes stochastic

switching events between running and stopping states as a Poisson process. In line with

the notation used in previous chapters, the rate of switching from a run to a stop is

denoted λ, and that of switching from a stop to a run is µ. Rotational diffusion continues

to act regardless of the the state of the propulsion force, hence the bacterium undergoes

passive diffusional reorientation in the stopping phases. This model attempts to capture

the details of a wildtype R. sphaeroides cell, assuming that stops occur by rotational

diffusion alone. Finally, in the run-and-active-stop model, we incorporate an additional

stochastic reorientating force in the stopping phases. This force acts in the same way

as passive rotational diffusion, but with increased variance, so that reorientation occurs

more rapidly in the stopping phase. This model represents a first step towards investi-

gating the mechanism of reorientation in R. sphaeroides .

6.3.1 Differing geometries for the bacterial cell body

As illustrated in Figure 6.4, we consider the effect of varying the geometry of the bacterial

cell body on the role of rotational diffusion. We model the bacterium as a prolate ellip-

soid, which is a rugby ball-shaped ellipsoid whose two shorter semi-principal axes are of

equal length. This approximation is commonly used when modelling bacteria [105, 108].

We denote the length of the axial semi-principal axis a, and the length of the equatorial

semi-principal axes b and c. For a prolate ellipsoid, a > b = c. We quantify the geometry

by the axial ratio, ρ = a/b, hence, for a prolate ellipsoid ρ > 1.
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Figure 6.4: Illustration of the model of rotational diffusion for a swimming bacterium. The
three-dimensional bacterium is confined to travel in the (x, y) plane. Dashed lines represent
alternative shapes for the cell body. The black cross indicates the centre of mass of the cell,
which is calculated neglecting the effect of the flagellum.

The translational and rotational diffusion coefficients of a general ellipsoid may be calcu-

lated using multiplicative adjustment to the values for a sphere of the equivalent volume,

known as Perrin friction factors [109]. Berg [21] gives approximate expressions for these,

however we use the exact forms here for greater accuracy when ρ ≈ 1. For brevity, we

define a new variable,

S =

2ρ tanh

(√
ρ2 − 1

ρ

)
√
ρ2 − 1

. (6.24)

Note that definition (6.24) is valid for prolate ellipsoids only. Since we consider a bac-

terium with a medially attached flagellum (see Figure 6.4), we are concerned with rotation

about the equatorial semi-principal axis; rotation about the axial axis would cause the

bacterium to swim out of the plane, breaking the assumptions of the model. The expres-

sion for Perrin’s friction factor about the equatorial semi-principal axis is [109]

Feq =

(
4

3

)
(1/ρ)2 − ρ2

2− S [2− (1/ρ)2]
. (6.25)

To compute the rotational frictional drag coefficient for an ellipsoidal cell, we multiply the

value of ζ for a sphere of equivalent volume by Feq. The volume of a prolate ellipsoid is
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given by 4πab2/3. We assume that there is little variation in the length of the equatorial

(shorter) semi-principal axis in bacteria, hence we fix b.

6.3.2 Run-only model

The governing Langevin equations for the run-only model are given by

dx(t)

dt
= c

 cosφ(t)

sinφ(t)

 , (6.26)

dφ(t)

dt
=

1

ζ
ξ(t), (6.27)

where c = 40 µms−1 is the speed of swimming. We assume, without loss of generality,

that x(0) = 0 and φ(0) = 0. We introduce the rotational diffusion coefficient, Dr, given

by

Dr =
kT

ζ
. (6.28)

The solution to equation (6.27) is the same as equation (6.20). Rewriting this in terms

of the rotational diffusion coefficient, we obtain

φ(t) =
√

2DrB(t), (6.29)

where B(t) is a Wiener process as before. The angle φ(t) is therefore normally distributed

with zero mean and variance equal to 2Drt. We now compute the first and second

moments of the position vector x(t). For simplicity, we consider each element in equation

(6.26) separately:

dx(t)

dt
= c cos

(√
2DrB(t)

)
, (6.30)

dy(t)

dt
= c sin

(√
2DrB(t)

)
. (6.31)
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Integrating equation (6.30) gives

x(t) = c

t∫
0

cos
(√

2DrB(s)
)

ds. (6.32)

Rewriting the cosine function in complex form and applying the definition of the charac-

teristic function in (6.19) yields

〈x(t)〉 =
c

Dr

(
1− e−Drt

)
. (6.33)

By symmetry, we have 〈y(t)〉 = 0. This result is intuitive: particles initially have no y

component in their velocity, and are equally like to travel in either the positive or negative

y-direction.

We now state expressions for the second moments, denoted 〈x2(t)〉 and 〈y2(t)〉. A detailed

derivation is presented in Appendix C.2. The second moments are given by

〈x2(t)〉 =

(
c

Dr

)2(
2

3
e−Drt +

1

12
e−4Drt − 3

4
+Drt

)
, (6.34)

〈y2(t)〉 =

(
c

Dr

)2(
4

3
e−Drt − 1

12
e−4Drt − 5

4
+Drt

)
. (6.35)

We note that equations (6.34) and (6.35) tend to zero as t → 0, as expected. On a

timescale that is short relative to the diffusion coefficient, t � 1/Dr, 〈x2(t)〉 ≈ (ct)2,

which indicates that movement is ballistic, as is also the case for the VJ process over

short timescales (see equation (2.23)). For times t � 1/Dr, both second moments vary

as c2t/Dr. This linear behaviour of the second moment is characteristic of a diffusive

process and, again, it is similar to that observed in the VJ process. The similarity of

the run-only VJ process and the run-only rotational diffusion model has led to both

models being considered by Campos et al. [43] to explain cell migration data. Several

important differences exist between the models, however. The transition from ballistic
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to diffusive motion in the VJ model occurs due to the discrete stochastic reorientation

events, without which the process would be ballistic on all timescales1. In contrast,

the run-only model considered here has no reorientation events; the same transition

is due to continuous rotational diffusion in this case. Even in the rapid turning limit

of the run-only VJ process, λ → ∞, so that the reorientation becomes approximately

continuous, the two models are not equivalent. Turning angles in the VJ model are IID

from an arbitrary circular distribution that is independent of λ, so that as the turning

rate increases, persistence is lost increasingly rapidly (see equation (2.23) and related

discussion). In contrast, the discrete approximation of the run-only model of rotational

diffusion, which is the method we use to simulate the process (see Section 6.3.5), has

turning angles whose pdf varies with the time step, and hence with the rate of turning.

6.3.3 Run-and-stop model

We now incorporate an additional stochastic process into the equations of motion of the

self-propelled particle. This process, denoted F (t), is a continuous time Markov process

with two states, F (t) ∈ {0, 1}, ∀ t ≥ 0. The stochastic process F is identical to the

underlying model used for the hidden Markov model in Chapters 3 and 4, such that the

bacterium is in a stopping phase when F (t) = 0, and in a running phase when F (t) = 1.

We assume that the bacterium is initially running, so that F (0) = 1. We require an

expression for the ensemble average of this process, denoted 〈F (t)〉. We compute this by

considering the evolution of the pdf π(t), defined by

π(t) =

 p0(t)

p1(t)

 , (6.36)

1This can be shown by taking the limit λ0 → 0 in equation (2.23).
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where pi(t) is the probability that F (t) = i, for i ∈ {0, 1}. The evolution of π(t) is

governed by the ODE [80]

dπ

dt
=

 −µ λ

µ −λ

π. (6.37)

The solution of this linear ODE is given by

π =
λ

λ+ µ


 1

µ/λ

−
 1

−1

 e−(λ+µ)t

 . (6.38)

Since F = 1 is the only allowable non-zero value, the ensemble average of F is simply

given by

〈F (t)〉 = p1(t) =
1

λ+ µ
(µ+ λe−(λ+µ)t). (6.39)

The Langevin equations governing the motion of the running and stopping particle are

given by

dx(t)

dt
= cF (t)

 cosφ(t)

sinφ(t)

 , (6.40)

dφ(t)

dt
=

1

ζ
ξ(t). (6.41)

Integrating equation (6.41) gives the same solution as equation (6.29). Integrating equa-

tion (6.40) gives

x(t) = c

t∫
0

F (s) cos
(√

2DrB(s)
)

ds, (6.42)

y(t) = c

t∫
0

F (s) sin
(√

2DrB(s)
)

ds. (6.43)
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We compute the ensemble average of x(t) as follows:

〈x(t)〉 = c

t∫
0

〈F (s)〉〈sin
(√

2DrB(s)
)
〉 ds

=
c

λ+ µ

[
µ

Dr

(1− e−Drt) +
λ

Dr + λ+ µ
(1− e−(Dr+λ+µ)t)

]
, (6.44)

where the first equality holds by interchanging the order of integration, as in Section 6.3.2,

and by the independence of F (s) and B(s). As for the run-only model, we have 〈y(t)〉 = 0.

As before, we derive expressions for the second moments of x(t) and y(t). The manipu-

lations are similar to the run-only case:

〈x2(t)〉 = c2

t∫
0

v∫
0

〈F (u)F (v)〉
{〈

cos
[√

2Dr(B(v) +B(u))
]〉

+
〈

cos
[√

2Dr(B(v)−B(u))
]〉}

du dv. (6.45)

The cosine terms are evaluated as before (see equations (C.2)-(6.34)). We require an

expression for the autocorrelation 〈F (u)F (v)〉, where u ≤ v ≤ t. For a non-stationary

continuous time Markov process X(t), this is given by [76]

〈X(s)X(t)〉 =
∑
x(t)

〈X(s) | X(t) = x〉xP(X(t) = x), 0 ≤ t ≤ s, (6.46)

where the summation is over all possible values of X(t), and the first term in the sum-

mation denotes the average value of X(s), conditional on X(t) taking the value x. In our

case, the summation only produces a single non-zero term,

〈F (s)F (t)〉 = 〈F (s) | F (t) = 1〉P(F (t) = 1). (6.47)

The final term, P(F (t) = 1) ≡ p1(t) is given by equation (6.39). The conditional mean,
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〈F (s) | F (t) = 1〉, is found by solving for p1(s), subject to the modified initial condition

F (t) = 1. The solution is given by

〈F (s) | F (t) = 1〉 =
1

λ+ µ

(
µ+ λe−(λ+µ)(s−t)) . (6.48)

Substituting (6.39) and (6.48) into (6.47), we obtain

〈F (s)F (t)〉 =

(
µ

λ+ µ

)2(
1 +

λ

µ
e−(λ+µ)t

)(
1 +

λ

µ
e−(λ+µ)(s−t)

)
. (6.49)

Substituting equation (6.49) into (6.45), and using the identities in equations (C.2) and

(C.3) gives

〈x2(t)〉 =

(
cµ

λ+ µ

)2
t∫

0

v∫
0

[
e−Dr(3u+v) + e−Dr(v−u)

]

×
[(

1 +
λ

µ
e−(λ+µ)u

)(
1 +

λ

µ
e−(λ+µ)(v−u)

)]
du dv.

(6.50)

The integral in equation (6.50) is straightforward to calculate but is not presented here

for the sake of brevity. A similar expression may be derived for the second moment of

y(t):

〈y2(t)〉 =

(
cµ

λ+ µ

)2
t∫

0

v∫
0

[
e−Dr(v−u) − e−Dr(3u+v)

]

×
[(

1 +
λ

µ
e−(λ+µ)u

)(
1 +

λ

µ
e−(λ+µ)(v−u)

)]
du dv.

(6.51)

6.3.4 Run-and-active-stop model

In this model, we incorporate an additional stochastic rotational force, which acts as a

multiplier to the rotational diffusion coefficient in stopping phases only. We denote this
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variable ω. The governing equations are given by

dx(t)

dt
= cF (t)

 cosφ(t)

sinφ(t)

 , (6.52)

dφ(t)

dt
=

1

ζ

[
F (t) + (1− F (t))

√
ω
]
ξ(t). (6.53)

We do not solve for the moments in this case, as the result would be algebraically cum-

bersome and not particularly instructive.

6.3.5 Numerical implementation

In order to verify our analytic results, in addition to gaining quantitative insight where

such results are not possible, we use a stochastic numerical simulation of the self-propelled

particle model. Our numerical simulation uses the Euler-Maruyama (EM) method, a well-

established method of generating a numerical approximation to the solution of SDEs [87].

The EM method is a discrete-time approximation to the underlying equations and there-

fore requires that we specify a simulation time step, denoted ∆t. The error in the EM

approximate solution decreases with ∆t (it has a weak order of convergence equal to 1

[87]). In addition, the algorithm is only stable for sufficiently small time steps, hence

we must set ∆t sufficiently small to ensure that our results are accurate. The algorithm

used to simulate the run-and-active-stop model is given in Algorithm 3 in Appendix C.1.

The run-only model is simulated by setting λ = 0, and hence preventing stops. The

run-and-stop model is simulated by setting ω = 1, in which case σrun = σstop and there is

no additional reorientation force.

All simulations carried out in this chapter had a time step ∆t = 0.02 s, a total simulation

time of 10 s and a temperature of T = 300 K. The viscosity of water at 300 K is 10−3 Pa s.

We simulate 5000 tracks each time the algorithm is run. The results are found in Section

6.4. We state where the results are computed using simulated data.

182



6.4 Results

6.4.1 Comparison of the theoretical and estimated translational

diffusion coefficient
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Figure 6.5: Extracting characteristics of noise from the R. sphaeroides non-motile dataset.
(a) The observed MSD with linear fit (red dashed line). The slope of the fit is 1.16 µm2 s−1.
(b) The estimated pdf of framewise displacements (solid line), with overlaid best fit to the χ
distribution (dashed line). Black: τ = 0.02 s, blue: τ = 0.04 s, red: τ = 0.1 s.

We first carry out a simple analysis of the data to estimate the translational diffusion

coefficient, Dt. This is achieved by fitting the MSD with a linear function. According

to the theory of translational diffusion, the MSD of a Brownian particle moving in two

dimensions is given by [21]

〈‖X(τ)‖2〉 = 4Dtτ, (6.54)

where τ is the time step, following the notation used in Chapter 5. We perform this

analysis on the non-motile R. sphaeroides dataset, since the motion observed in this

dataset is solely caused by Brownian buffeting. The results are shown in Figure 6.5(a).

The MSD does not appear linear for τ . 0.2 s, so we fit data outside of this region.

We attribute this departure from the predicted linear behaviour of a diffusing particle

to artefacts generated in the process of tracking. In particular, the tracking algorithm

may fill in any missed detections by assuming that the intervening motion took place

with a constant velocity, leading to an overestimation of the framewise displacements, as
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discussed in Section 4.3. This would lead to a non-linear MSD with a steeper slope, as

observed. This effect is only present at short time steps, as the tracking algorithm may

only fill in short gaps.

We carry out an additional check that the observed motion is approximately diffusive by

plotting the estimated distribution of displacements for various values of τ . We achieve

this by downsampling the data. For example, downsampling by a factor of two entails

discarding every even-numbered frame. The effective frame interval therefore increases

by a factor of two, hence τ is also doubled. As discussed in Section 5.2, the observed dis-

placements should follow a χ distribution, with 2 degrees of freedom. In each dimension,

the displacement of a Brownian particle over a time step τ is distributed normally with

zero mean and variance equal to 2Dtτ . Since the χ distribution gives the distribution

of the square root of the sum of squared standard normal variates, we are required to

rescale the distribution in order to fit to our data. We denote the displacement over a

time step of length τ by Z ≡ ‖X(τ)‖. The distribution of these displacements is given

by

fZ (z) =
1√

2Dtτ
fχ

(
z√

2Dtτ
, 2

)
, (6.55)

where fχ(x, k) denotes the pdf of the χ distribution with x as an independent variable

and k denoting the number of degrees of freedom. We fit the observed data with this pdf

and use the fitting parameter to extract an estimate of Dt. The observed and fitted dis-

tributions are shown in Figure 6.5(b) for three values of τ . The fit becomes progressively

better as τ increases, although it shows good qualitative agreement for all time lags. The

observed distributions further support our hypothesis that the departure from the theo-

retically predicted behaviour is due to an overestimation of step lengths by the tracking

algorithm: the observed distributions show a heavier tail than predicted for all values of τ .

Table 6.1 displays the estimates of the translational diffusion coefficient calculated using
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a linear fit to the MSD, fitting the χ distribution to the observed distribution of displace-

ments, and the theoretical value. The latter is calculated by approximating a bacterium

as a sphere of radius 1µm. Stokes’ Law for a sphere asserts that [21]

Dt =
kT

6πηr
, (6.56)

from which we obtain the estimate Dt = 0.22µm2 s−1. The various estimates are in

good agreement with the theoretical value, particularly considering that the radius varies

between cells in the population. For example, recalculating the theoretical value with

r = 0.75µm, which is still a realistic value for a bacterium of slightly smaller size, we

obtain Dt = 0.29µm2 s−1.

Table 6.1: Theoretical and estimated values of the translational diffusion coefficient. See text
for details.

Method Dt (µm2 s−1)

Theoretical 0.22

MSD linear fit 0.29

χ fit, τ = 0.02 s 0.19

χ fit, τ = 0.04 s 0.26

χ fit, τ = 0.1 s 0.31

6.4.2 Run-only model: comparison with experimental data

Using a similar analysis method as in the previous section, we may estimate the rota-

tional diffusion coefficient, Dr. In this case, we consider the non-chemotactic strain of

R. sphaeroides . Following appropriate censoring (detailed in Chapter 4), the remaining

tracks in this dataset should exhibit running phases only. These tracks are approxi-

mately described by the run-only model, described in Section 6.3. The mean squared

angle change (MSAC) in this model grows linearly with time, as given by (6.29). Fur-

thermore, we expect that angle changes should follow a wrapped normal distribution
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with zero mean and variance equal to the MSAC. Figure 6.6 shows the comparison of

the non-chemotactic dataset with the predictions of the model. As for the experimentally

observed MSD, the MSAC is not linear for τ . 0.2 s, but is approximately linear outside

of this region. From equation (6.29), we deduce that

〈φ2(t)〉 = 2Drt. (6.57)

Hence we may estimate the rotational diffusion coefficient from the data in Figure 6.6(a),

giving Dr = 0.13 rad2 s−1.
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Figure 6.6: Extracting characteristics of noise from the R. sphaeroides non-chemotactic
dataset. (a) The observed MSAC (black crosses) with linear fit (dashed line). The slope of the fit
is 0.255 rad2 s−1. (b) The estimated pdf of angle changes (solid line), overlaid with the wrapped
normal distribution with variance computed from the data (dashed line). Black: τ = 0.02 s,
blue: τ = 0.1 s, red: τ = 0.2 s.

Figure 6.6(b) shows the observed distribution of angle changes for three values of τ , over-

laid with the predicted wrapped normal distribution. There is a significant discrepancy

between the observed and predicted distributions. Two explanations are proffered here:

firstly, errors in finding the cell centroids of the bacteria, in addition to artefacts gen-

erated by the tracking algorithm, may contribute to an under-estimation of framewise

angle changes, leading to a more peaked distribution, as observed; secondly, the method

of computing φ is based on the assumption that framewise angle changes may be used
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to approximate changes in the orientation of the cell. We return to the latter point in

Section 6.4.3.

The theoretical value of the rotational diffusion coefficient is calculated using Stokes’ Law

for a spherical object [21], given by

Dr =
kT

8πηr3
. (6.58)

Approximating a bacterium as a sphere of radius r = 1µm, we obtain the theoretical

value Dr = 0.16 rad2 s−1, in close agreement with the value estimated from the data. We

note, however, that the theoretical value is highly sensitive to the value of r; choosing

r = 0.75µm gives Dr = 0.39 rad2 s−1. We repeat this calculation in Section 6.4.4 for a

bacterium modelled as an ellipsoid.

6.4.3 Run-only model: theoretical results

Figure 6.7(a) shows 20 trajectories simulated by solving equations (6.26) and (6.27) nu-

merically. The mean and standard deviation of the x and y coordinates of an ensemble of

particles, given in equations (6.33), (6.34) and (6.35) are shown in Figure 6.7(b). These

agree well with the results from simulations (not shown). The estimated pdfs of the x

and y coordinates of simulated particles are shown in Figure 6.8. There is no analytic

description for the distributions of these quantities.

We commented in Section 6.4.2 that the method we use to measure angle change is not

equivalent to the true underlying change in orientation. Figure 6.9(c) illustrates the dif-

ference between these two quantities. Figure 6.9(b) shows the MSAC of an ensemble

of simulated particles, computed using the two different methods. The solid line is cal-

culated using the true underlying orientation, φ(t). This line agrees well with equation

(6.57). The dashed line represents the measured MSAC, calculated by estimating angle
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Figure 6.7: (a) 20 sample trajectories computed by solving the run-only model. (b) Mean
(solid line) and mean ± standard deviation (dashed lines) for x (black) and y (red) position of
a particle in the run-only model.

changes from the position of the particles, denoted φmeas. The measured MSAC also

scales linearly with time, but with a constant of proportionality that is 60% of that in

the true MSAC. Misuse of the MSAC, by assuming that φ(t) ∼ φmeas and using the

latter quantity to compute Dr, could therefore lead to a substantial underestimate of the

rotational diffusion coefficient.
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Figure 6.8: Histograms of the x and y position of simulated particles in the run-only model
with τ = 0.1 s ((a) and (b), respectively).

Just as for the MSD, it is possible to check not only the MSAC against data, but also the

distribution of angle changes. The true distribution of φ(t) is a wrapped normal, with

variance proportional to time. It is not, however, obvious how φmeas(t) is distributed. In
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order to answer this question, we simulate a particle undergoing a run-only process with

rotational diffusion. Figure 6.9(a) shows the observed distribution of the measured angle

changes for three different values of τ ; the distribution is indiscernible from the normal

distribution in all three cases.
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Figure 6.9: (a) Histograms of the measured angle changes, φmeas, of simulated particles in the
run-only model. (Black) τ = 0.1 s, (yellow) τ = 0.16 s, (red) τ = 0.2 s. (b) The observed MSAC
over time for simulated tracks. (Solid line) angle change computed using the true underlying
orientation of the simulated particles, (dashed line) angle change computed by calculating the
framewise angle change from particle positions. (c) Illustration of the difference between the
true underlying angle change, φ (blue lines) and the measured angle change, φmeas (red lines)
of a swimming bacterium. The grey dashed line denotes the true trajectory of the bacterium.

6.4.4 The effect of cell geometry on rotational diffusion

We now consider how the geometry of the cell body affects the role of rotational diffusion

on bacterial motility. We consider cells with a constant equatorial radius, b = 1µm. We

then vary the length of the axial radius a so that we consider a range of prolate ellipsoids

(for which a > b). Figure 6.10(a) shows the effect of varying a on the rotational fric-

189



tional drag coefficient, ζ. The solid line corresponds to the drag coefficient for rotation

in the equatorial axis, and the dashed line indicates the drag coefficient for the sphere

of equivalent volume. This plot demonstrates that, as the axial ratio, ρ, increases, the

difference between the rotational drag coefficient for a sphere and the ellipsoid of equal

volume diverge. Ellipsoidal bacteria are therefore more stable to rotational diffusion than

spherical bacteria. We illustrate this by repeating the numerical example given in Section

6.4.2, in which we calculated Dr for a spherical bacterium, for an ellipsoidal bacterium

with the same volume. Figure 6.10(b) shows the variation of the diffusion coefficient

for rotation in the equatorial axis with ρ for an ellipsoid of fixed volume. The values

of Dr when ρ = 1 are the same as those calculated for a spherical cell in Section 6.4.2.

The rotational diffusion coefficient decreases with ρ, again indicating that an ellipsoidal

geometry stabilises the cell towards Brownian reorientation.
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Figure 6.10: (a) The variation of the rotational drag coefficient ζ with ρ for a prolate ellipsoid
with equatorial radius of length 1µm. The solid line represents the rotational drag coefficient
for rotation in the equatorial semi-principal axis, while the dashed line shows the rotational
drag coefficient for a sphere of equivalent volume. (b) The variation of the rotational diffusion
coefficient for rotation in the equatorial semi-principal axis with ρ for a prolate ellipsoid of fixed
volume. The radius of the equivalent sphere is 0.75µm in the case of the solid line, and 1µm
in the case of the dashed line.

We further illustrate this point by returning to the calculations of Mitchell [137], who

derives equations for the minimum useful swimming speed for bacteria in terms of the size

of the bacterium (see Figure 6.2). Mitchell defines a characteristic length, L, over which
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the change in the concentration of chemoattractant is sufficiently large to be detected.

This is given by

L =
√
Dmt, (6.59)

where Dm ≈ 1000 µm2s−1 is the translational diffusion coefficient of a molecule of

chemoattractant. Rearranging equation (6.57) for t, we obtain

t =
〈φ2〉
2Dr

. (6.60)

The minimum useful speed is given by vmin = L/t. Substituting (6.59)-(6.60) into this

expression and rearranging yields

vmin =

√
2DrDm

〈φ2〉
. (6.61)

We solve this equation with 〈φ2〉 = (π/2)2, indicating that a cell must travel a distance

L before its mean reorientation angle exceeds π/2. We note that this interpretation is

an approximation, as the equality 〈φ2〉 = (π/2)2 does not imply that 〈|φ|〉 = π/2. Figure

6.11(a) shows the variation of vmin with axial ratio, ρ, for cells with various equatorial

radii, b. Most wildtype R. sphaeroides cells have an equatorial radius in the range 0.5 <

b . 1µm [186, 204]. Figure 6.11(b) shows the mean swimming speed for each track in the

R. sphaeroides non-chemotactic bulk dataset. It is not possible to draw firm conclusions

from Figure 6.11, as we do not have detailed information about the sizes of the tracked

cells. Nonetheless, the plots are consistent in the sense that most cells swim sufficiently

quickly to meet the minimum useful speed, assuming that 0.5µm . b . 1µm and ρ & 1.5.

6.4.5 Run-and-stop model: comparison with experimental data

We now compare the predictions of the run-and-stop model with experimental data,

in order to assess how well the model captures the observed motile behaviour of R.

sphaeroides . For this purpose, we use the wildtype bulk dataset, censored as described
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Figure 6.11: (a) The variation of minimum useful speed, vmin, with axial ratio for ellipsoidal
bacteria with different fixed equatorial radii, b = 0.5µm (solid line), b = 0.75µm (dashed line),
and b = 1µm (dotted line). (b) Histogram of the mean speeds for each track in the R. sphaeroides
non-chemotactic bulk dataset.

in Chapter 4 and analysed using the full HMM method. We focus on the predicted vari-

ation of the variance of stopwise angle changes with stop duration. According to the

run-and-stop model, the evolution of the orientation angle φ during both running and

stopping phases is described by equation (6.29), which states that angle changes follow

the wrapped normal distribution with zero mean and variance equal to 2Drτ , where τ

is the stop duration. The theoretical distribution of stopwise angle changes is shown in

Figure 6.12(a) for several different stop durations.

A direct comparison of Figure 6.12(a) with the experimental data requires that we es-

timate the variance of the observed stopwise angle changes, denoted σ2
θ , for a variety of

stop durations. This process is complicated by the presence of artefacts from the analysis

procedure, as discussed in Section 3.3.3. The problem is summarised in cartoon form in

Figure 6.12(b). The observed density of stopwise angle changes (solid line) has a substan-

tial false positive component (dashed) line, which will skew our estimate of the variance.

The number of artefacts is greater for short duration stops (see Figure 3.14). Estimation

of the exact number and distribution of false positives is not possible, so we instead define

an acceptance region, |θ| > a, in which we assume that the density of false positives is

negligible. This is supported by the simulation study in Chapter 3, in which we show
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Figure 6.12: (a) The theoretical distribution of stopwise angle changes, as predicted by the
run-and-stop model, for stops of 0.1 s (×), 0.2 s (∆), 0.3 s (dotted line), 0.4 s (dashed line), and
0.5 s (solid line). (b) An illustration of the problem of false positives due to analysis artefacts
in the distribution of stopwise angle changes. The exact form of the dashed line distribution is
unknown, but we can estimate the cutoff value, a, reasonably well.

that the density of false positives decreases with increasing stopwise angle change (see

Figure 3.13). Based on our earlier simulation study, we choose a = π/2. We first bin

the observed stops by their duration. For each group, we estimate the total density of

stopwise angle changes in the acceptance region in two ways:

1. Assume no false positives, by taking the number of angle changes in the acceptance

region divided by the total number of angle changes.

2. Use the simulated dataset from Chapter 3 to estimate the false positive level outside

of the acceptance region, and hence to estimate the density within the acceptance

region, taking false positives into account.

We next use the estimated total density in the acceptance region to compute σ2
θ , as de-

scribed below. Method (1) provides a lower bound on the value of σ2
θ , since the presence of

false positives outside the acceptance region is ignored. These false positives are clustered

around the mean (i.e. zero), hence they artificially reduce the apparent variance. Method

(2) constitutes an improved estimate that is corrected in an approximate fashion for false

positives; note that this is not an upper bound, nor is it necessarily an accurate estimate,

however it is likely to be more accurate than method (1). The estimated proportion of
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false positives outside the acceptance region in the simulated dataset is shown in Table

6.2. We use the data simulated with the level of noise given by D = 0.288 µm2s−1, as

this value is in close agreement with the estimates of Dt listed in Table 6.1.

Table 6.2: The proportion of false positives outside the acceptance region for the simulated
dataset in Chapter 3.

Stop duration (s) Proportion false posi-
tives (HMM speed only)

Proportion false posi-
tives (HMM full)

0− 0.1 0.613 0.658
0.1− 0.2 0.476 0.407
0.2− 0.3 0.281 0.232
0.3− 0.4 0.222 0.191
0.4− 0.5 0.140 0.106

We now seek an expression linking the total density in the acceptance region to the

variance of the wrapped normal distribution with zero mean. Recall that the pdf of this

distribution is given by (equation (2.35))

fΘ(θ;σθ) =
1

σθ
√

2π

∞∑
k=−∞

e−θ
2/2σ2

θ .

The total density in the acceptance region is then given by

F (a) = 2
∞∑

k=−∞

1

σθ
√

2π

π∫
a

e−θ
2/2σ2

θ dθ. (6.62)

Each term in the summation is given by

Ik =
1

σθ
√

2π

π∫
a

e−θ
2/2σ2

θ dθ =
1

2

[
erf

(
π(2k + 1)

σθ
√

2

)
− erf

(
a+ 2πk

σθ
√

2

)]
. (6.63)

Substituting (6.63) into (6.62), we obtain

F (a) =
∞∑

k=−∞

[
erf

(
π(2k + 1)

σθ
√

2

)
− erf

(
a+ 2πk

σθ
√

2

)]
. (6.64)
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Having obtained an estimate for F (a) using either of the methods described above, we use

trust-region constrained numerical optimisation [54] (implemented in the Matlab function

fminbnd) to find σθ using equation (6.64). The results of this calculation, along with the

theoretically predicted result for a spherical bacterium, are shown in Figure 6.13. The

discrepancy between the lower bound estimate of σ2
θ and the theoretical value is striking.

Even assuming the small cell radius of 0.5µm, the theoretical variance is smaller than

the lower bound estimated from the data by a factor of between five and seven. This

demonstrates that R. sphaeroides does not reorientate passively by rotational Brownian

diffusion: the bacterium is too large for this to be an effective mechanism for reorien-

tation. To the best of our knowledge, the validity of the passive reorientation model in

R. sphaeroides has not previously been tested. We discuss this novel result further in

Section 6.5.
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Figure 6.13: The lower bound (black bars) and revised estimates (grey bars) of the variance of
stopwise angles, based on analysis of the wildtype R. sphaeroides bulk dataset with (a) the speed-
only HMM method, (b) the full HMM method. The inset in (a) shows the theoretical variance,
as predicted by the run-and-stop model, for a spherical cell with radius r = 1µm (solid line),
r = 0.75µm (dashed line), r = 0.5µm (crossed line).

6.4.6 Run-and-stop model: theoretical results

Figure 6.14 shows the analogous plots to those in Figure 6.7 for the run-and-stop model.

Whilst the figures are similar, two key differences are notable. Firstly, the trajectories
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are of varying lengths in Figure 6.14(a), since stopping phases cause the bacterium to

halt transiently. Secondly, the mean and standard deviation of x(t), and the standard

deviation of y(t), have lower magnitudes than the run-only analogues. This is as expected:

stopping phases cause the cell to halt, during which time it continues to reorientate, but

ceases to move. Figure 6.14(b) agrees well with simulated data (not shown).
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Figure 6.14: (a) 20 sample trajectories computed by solving the run-and-stop model. (b) Mean
(solid line) and mean ± standard deviation (dashed lines) for x (black) and y (red) coordinates
of a particle in the run-and-stop model.

6.4.7 Run-and-active-stop model

Figure 6.15 shows the same estimates of the variance of stopwise angle changes, binned by

stop duration, as used in Section 6.4.5, overlaid with predictions from the run-and-active-

stop model. We model a bacterium as an ellipsoid (dimensions given in figure legend),

as this approximately matches the true dimensions of R. sphaeroides . The multiplicative

factor ω increases the variance of angle changes linearly, as expected. The data are too

noisy to permit us to fit ω accurately, but the data suggest that wildtype R. sphaeroides

reorientate ∼ 5− 20 times more rapidly than predicted by the run-and-stop model.
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Figure 6.15: Estimates for the variance of stopwise angle changes overlaid with predictions
from the run-and-active-stop model. The estimated values are the same as in Figure 6.13: speed-
only HMM (yellow), and full HMM (blue). Theoretical results are for an ellipsoidal bacterium,
with b = 0.5µm, ρ = 2, and ω = 1 (solid line), ω = 2 (dashed line), ω = 5 (×), ω = 10 (♦),
and ω = 20 (4).

6.5 Discussion and conclusion

In this chapter, we have considered the role of Brownian diffusion in flagellar-mediated

bacterial motility. We chose to focus on rotational diffusion, ignoring translational diffu-

sion, since the former has a more significant effect. The motivation for this work is the

need to reconcile the idealised VJ model, considered in Chapter 5, with the immediately

apparent departure from the model in experimentally observed tracks. An important

example of the outcome of studies of noise in bacterial motility is work by Mitchell [137]

and Dusenbery [65], motivated by earlier work by Purcell [163]. These authors use a

description of rotational diffusion to consider the physical size and swimming speed con-

straints present in chemotactic bacteria.

We used the overdamped rotational Langevin equation, in the context of a self-propelled

particle model, to model rotational diffusion. The use of this framework is motivated

by a related study by Hagen et al. [83]. We stated three minimal models for bacterial

motility in two dimensions. The justification for only considering motion in two dimen-
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sions is that our experimental datasets only capture bacteria moving in a plane, to a first

approximation. These three models were chosen to describe different aspects of bacte-

rial motility. The run-only model is chosen to describe the motion of a R. sphaeroides

bacterium from the non-chemotactic strain. The run-and-stop and run-and-active-stop

models are two closely-related variants, both of which aim to describe the motion of a

wildtype R. sphaeroides bacterium.

We derived expressions for the first and second position moments in two of these models,

demonstrating how the SDE modelling framework is a convenient representation for the

random phenomenon of bacterial motility. Furthermore, we tested various fundamen-

tal predictions of the models directly against the experimental data, analysed using the

methods presented in Chapter 4. Whilst examples exist of studies of the random motion

of human dermal keratinocytes [179], and the amoeba Dictyostelium discoideum [31], to

our knowledge this is the first example of such a comparative study in bacteria. Further-

more, in [31], the authors take a more generalised approach to their analysis, allowing

departures from the standard Langevin formulation. It is not apparent how the more

general approach relates to the underlying physical theory of motion, or the biological

processes involved. In contrast, we robustly test the predictions of our minimal models.

Our results show good agreement between the theoretical and experimentally observed

translational diffusion coefficients, extracted by analysing the non-motile strain. In par-

ticular, we show that the distribution of displacements match the theoretical predictions

well; more commonly this test is ignored in favour of testing the MSD for linearity (see

for example [53, 200]). When data are scarce, this is an acceptable compromise, however

our analysis shows that a full comparison of the distribution, when possible, is a useful

test.

Consideration of the effects of the geometry of bacteria in our model led to the conclu-
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sion that the observed dimensions and shape of R. sphaeroides in our experiments is

compatible with the mean speeds observed in the tracks. Agreement between the non-

chemotactic dataset and the predictions of the run-only model was also reasonable based

on the MSAC. The rotational diffusion coefficient estimated in this way agreed with the

theoretically predicted value. However, we identified significant departures from the pre-

dicted distribution of angle changes. We attributed this discrepancy to errors in the image

analysis and tracking procedures, in addition to the method used to estimate framewise

angle changes. Expanding upon this latter point, we demonstrated the difference between

the true orientation of a bacterium, which is not observable, and an approximation that

is computed from the tracking data. Assuming that these two quantities are equal leads

us to underestimate the rotational diffusion coefficient.

In order to compare the predictions of the two models incorporating stochastic stopping

events with our wildtype data, we first needed to circumnavigate the issue of artefacts

in the analysed data. The simulation study carried out in Chapter 3 was of great util-

ity here, as it gave us an estimate of the level of false positives in the dataset. Guided

by these estimates, we were able to demonstrate the important biological result that R.

sphaeroides cannot reorientate purely passively by rotational diffusion. This was clear

from the strong incompatibility between the predictions of the run-and-stop model and

the observed data. However, we were subsequently unable to estimate accurately the

stochastic rotational force, ω, to explain the observed data in terms of the run-and-

active-stop model. Note that we did not include the additional frictional effects of the

flagellum in the current work, which may be expected to reduce the reorientation rate

even further [137]. Furthermore, we assumed a spherical cell body in Section 6.4.5; an

ellipsoidal geometry would also further reduce the reorientation rate, as demonstrated

in Section 6.4.4. Finally, using the run-and-active-stop model, we tentatively speculated

that a random reorientational force may explain the observed data.
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The issue of passive orientation in R. sphaeroides and related bacterial species has been

discussed before in the literature, with no strong consensus. In one theoretical study,

Mitchell [137] describes R. sphaeroides undergoing passive reorientation during a stop-

ping phase. However, Mitchell and Kogure [138], referring to the run-and-stop model

in a slightly later study, note that “... this method, while previously attributed to R.

sphaeroides , is currently not reported for any species”. No robust analysis of data has

previously been carried out with reference to a well-stated model. We believe that this

is an important and novel contribution to the field. The hypothesis that R. sphaeroides

exhibits some form of active reorientation mechanism was briefly discussed by Armitage

et al. [12]. The authors present a study in which they observed the various flagellar con-

formations of swimming and stopping R. sphaeroides cells. In particular, a conformation

was observed in stopped cells in which “once coiled against the cell body, the flagellum

often slowly rotated”. In the context of the present work, we speculate that such a

low-frequency movement of the flagellum during a stopping phase may lead to enhanced

rotational diffusion. A further speculative mechanism involves the elastic relaxation of

the flagellum upon entering a stop phase [75].

We contend that the present work represents an important contribution to the field

of bacterial motility, as it demonstrates the utility of minimal models and comparison

with experimental data in answering questions of fundamental biological interest. There

are many opportunities for further investigation. We showed several departures from

the theoretical predictions, particularly when comparing the non-chemotactic dataset

with the run-only model. We suggested that these differences may be explained by

artefacts introduced in the image analysis and tracking processes, or due to the method of

calculating the angle change. Further studies could test whether these departures contain

useful information about the biological processes underlying bacterial motility, or are

indeed due to artefacts introduced in the various analysis stages. A related consideration

is the variation in swimming speeds observed in a sample of bacteria. Several studies have
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noted the highly heterogeneous nature of bacterial populations in terms of swimming

speeds [12, 140, 157]. In our models, we fixed the swimming speed; an obvious extension

is to replace this with a fluctuating quantity. Random velocities have been considered in

the context of random walks [216], but have not been coupled with a model of rotational

diffusion. It is possible that this may further explain the departure of the experimental

results from the run-only model predictions. It is, however, unclear how the random

velocities should be distributed: we measured a population-level distribution of velocities

in Chapter 4, but a distribution on an individual -level would be required for this extension.
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Chapter 7

Discussion and conclusions

In this thesis, we have investigated various aspects of the phenomenon of planktonic

bacterial motility using mathematical modelling and analysis and comparison with ex-

perimental data. The motility of planktonic bacteria is a widely-studied process, not least

because the process is an important paradigm in the field of bacteriology and has major

implications in many health and industrial applications. However, due to the complexity

of the phenomenon, the fact that it occurs on multiple spatial and temporal scales, and

the complications involved in studying the process experimentally, there remain many

open problems relating to bacterial taxis, spanning a wide range of research fields.

The experimental method that is used as a source of comparison throughout this thesis is

the tracking of free-swimming bacteria under a microscope. The data generated by this

technique contain a great deal of information about the motile behaviour of the bacteria

being observed. This method is also less invasive than the popular technique of imaging

tethered cells. We initially summarised the experimental tracking protocols described in

the literature, and showed that there is currently no well-established, high-throughput

approach. Since current methods are generally laborious or costly, bacterial tracking is

not currently considered a standard experimental technique in this field. The availability

of a non-invasive, inexpensive, robust experimental protocol that can quickly generate

202



large quantities of data would therefore represent an important advance. Our collabo-

rators have recently developed a new tracking protocol that combines readily available

microscopy techniques with a recently-developed software tracking algorithm [209], which

promises to fulfill these requirements. Analysis of the tracks produced is, however, a chal-

lenge, since the datasets produced are approximately an order of magnitude larger than

those generated by most existing methods.

Since many bacterial species, for example the model bacterium R. sphaeroides , exhibit

run-and-stop motility, as discussed in Chapter 2, it is desirable to identify stopping phases

in experimental tracking data. This permits us to extract important quantities of inter-

est, such as the distribution of running and stopping durations, running speeds, and

angle changes over the course of a stopping phase. The process of identifying stopping

phases is complicated by the presence of various sources of noise in the experimental

tracks, such as inaccuracies in estimating the location of the cell centre of a bacterium

under the microscope. In Chapter 3, we approached this problem, presenting two novel

analysis methods to identify stopping phases, based on the HMM. Both methods exploit

the availability of mutant strains of bacteria to gain prior information on the appearance

of stopping and running phases. Existing analysis methods are all heuristic and specific

to the species being studied and experimental setup. In contrast, the methods described

here are applicable to a wide range of species and experimental conditions with no need

for modification, as the analysis is supported by reference data from mutant strains.

We next compared the performance of the new analysis methods with an established one

in a systematic computational simulation study. This has not been attempted before, and

represents an important development in the field. In order to create simulated tracks,

we assumed that bacteria undergo a VJ process, as detailed in Chapter 2, with added

noise. The simulation study demonstrated that the novel HMM-based methods perform

substantially better than a heuristic approach for a wide range of added noise levels.

203



Furthermore, the study allowed us to quantify the extent to which bias is introduced in

the analysed data due to the presence of false positives. This is an important result, as

it allows us to state later conclusions with greater confidence, since we have an under-

standing of the expected level of bias.

In Chapter 4, we proceeded to analyse real experimental data, obtained for the model

bacterium R. sphaeroides using the new experimental protocol, with the novel analy-

sis methods from Chapter 3. In this chapter, we discuss several additional factors that

must be considered when working with real data. An important example is the need to

filter various tracks out of the dataset, as they arise from non-motile or defective cells.

We present several methods for achieving this goal, accompanied with a discussion of

how to determine the various parameters involved. The results from the analysis of the

censored experimental datasets are very promising: the identified stopping phases were

checked manually over many tracks and found to agree with the best ‘by-eye’ assessment

of the tracking data. We also showed tracks where the analysis process had failed, and

verified that these constitute a minority of the total dataset. Using analysed tracks, we

finally presented several novel biological results, including the observed distribution of

angle changes over the course of a stopping phase. Furthermore, we quantified the bias

towards swimming in an arc for bacteria swimming at a surface, which has important

biological implications. The work in Chapter 4 represents an important advance for two

reasons. First, we have demonstrated that we are able to gain novel biological insight by

the appropriate analysis of tracking data. More importantly this work represents a proof

of the principle behind the new tracking protocol, paving the way for a host of further

studies on bacterial motility (see Section 7.1).

The new datasets analysed in Chapter 4 are not necessarily optimised in terms of the ex-

perimental protocol, as we noted in Section 4.3. This provides a motivation for applying

mathematical modelling to the problem of optimising the experimental design. In Chap-
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ter 5, we investigated the effect of the sampling frequency of the microscope camera on

the tracking data, by assuming that tracks arise from an underlying VJ process. This in-

vestigation is an example of the application of mathematical modelling to study a process

that would be expensive and time-consuming to probe experimentally. Furthermore, the

conclusions that we drew from the mathematical study of this process are more general

than those arising from an experimental study would be. The role of sampling frequency

on observations of motile bacteria remains a relatively open research area; Codling and

Hill [50] have considered the problem previously, but did not include a stopping phase, as

we did. Furthermore, in Section 5.4, we derived a novel analytic result for the observed

distribution of framewise speeds and angle changes in the limit of rapid sampling. This

result is novel; the study in [50] is based on empirical assessment of simulation results,

rather than an analytic approach. We next attempted to take an alternative approach

to inferring the distribution of stopwise angle changes, by inverting our previous analytic

solution. We showed that this approach is successful when applied to noise-free simulated

tracks, but that it fails completely when noise is included.

The limited applicability of our analytic work in Chapter 5 in the presence of noise pro-

vides the motivation for Chapter 6, in which we considered the role of Brownian buffeting

in the phenomenon of bacterial taxis. We selected this particular type of noise for further

investigation because it is the best understood; there are many other possible sources of

noise in the experimental and analysis protocols, but the statistical properties of these

fluctuations have not been studied. Furthermore, rotational Brownian motion has a vital

effect on bacteria, as it imposes a lower limit on the speed at which bacteria must swim in

order to benefit from their motility, as studied previously by Mitchell [137]. In this final

chapter, we posed three simple models for the effect of Brownian motion on a motile bac-

terium. We described how the models are related to the VJ process used in Chapters 3-5

and made testable predictions. The predictions of the models were then compared with

various aspects of the experimental data, such as the distribution of observed framewise
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speeds, to assess how well the observed data agree with the models. To our knowledge,

no studies exist in which simple model predictions relating to Brownian buffeting in

bacteria have been tested against experimental data. Agreement with predictions from

the theory of translational diffusion was good (see Section 6.4.1). In contrast, in Sec-

tion 6.4.2, significant departures from the predictions of the rotational diffusion were

observed. We proceeded to show in Section 6.4.3 that these may arise from an easily

overlooked difference between the mathematical description of the orientation of a bac-

terium in the model, and the estimation of the same quantity from the experimental data.

An important conclusion drawn from Chapter 6 was that R. sphaeroides cannot reorien-

tate in a passive fashion, mediated solely by rotational diffusion. In order to compare our

model predictions with experimental observations in this case, we needed to revisit the

results of the simulation study in Chapter 3, to assess the extent of bias in the distribution

of experimentally observed stopwise angle changes. This is an important demonstration

of the importance of fully characterising the analysis methods. The ensuing comparison

in Section 6.4.5 is a novel result: studies have suggested that rotational diffusion may

occur too slowly to reorientate a bacterium such as R. sphaeroides [138, 12], but this is

the first time that the theory has been tested with real tracking data. A simple model

was finally proposed to account for the observed data.

7.1 Further work

As stated previously, there are many open problems in the field of bacterial motility. The

research in this thesis has made substantial progress towards filling some of these gaps,

but it has equally opened many more avenues of enquiry, some of which are discussed here.

In Chapter 3, we noted that the need to pool all tracks in a dataset for the purposes of the
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analysis stems from the short duration of each track. Any attempt to analyse individual

tracks is unlikely to be successful, since many do not contain even a single stopping phase.

This restriction would be lifted if data were made available in which tracks are of greater

mean duration. Whilst traditional single cell tracking approaches produce this type of

data, they typically produce smaller datasets, with greater potential for experimental

bias (see Section 3.4). Recently, promising developments have been made in the field

of digital holographic microscopy, for example, that may make sufficiently long tracks

available in sufficient quantities [217]. These tracks may then be amenable to individual

analysis, in order to infer the transition rates in each individual bacterium.

A related extension is to tracking in three spatial dimensions. The current protocol is

limited to imaging in a plane, hence we are unable to obtain information about the depth

of the observed bacteria. Hill and Häder [88] discusses the effect of projecting tracks

from algae onto a plane, concluding that the effect is not of great significance for his

application. Nonetheless, the HMM-based analysis methods may be readily modified to

include three-dimensional data, which could also lead to longer tracks in the bulk dataset,

as cells will not swim out of focus so often. Again, digital holographic microscopy is a

promising method for acquiring such tracks.

A further possibility identified in Chapter 3 is to consider further representations of the

tracking data, for example track curvature [159], or a recently proposed measure called

spatiotemporal entropy [168].

The analysis of experimental data carried out in Chapter 4 suggested several possible

modifications to improve the experimental approach. One important example is the pos-

sibility of imaging at a lower magnification, in order to visualise more bacteria in the field

of view at any one time. There is a compromise to be found between extracting detailed

microscopic trajectories (which require higher magnification) and maximising the number
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and duration of tracks produced. The density of bacteria also affect the performance of

the tracker; an upper limit remains to be determined.

A natural extension to Chapter 5 is a related question on the role of measurement error

in the sampling process. Although we discounted noise for the purposes of the present

study, a simple model of measurement error, as introduced by the imaging and object

detection stage, would produce some valuable guidelines relating to the optimal sampling

frequency. For example, as the sampling frequency increases, the observed track is ex-

pected to become more jagged, as the effect of noise plays an increasingly significant role.

Thus we expect there to be some maximum recommended sampling rate, which depends

on the extent of measurement error. A further investigation could predict the optimal

magnification level by relating this property to the measurement error. Both suggestions

are fine examples of the use of mathematical modelling to address questions that are

experimentally inaccessible or costly.

We finally suggest an experimental study that would be ideally suited to the analysis

methods developed in Chapter 3. As we have discussed, Chapter 4 represents a crucial

proof of principle for the new, high-throughput tracking protocol. For example, a study of

the effect of varying the viscosity or viscoelasticity of the surrounding medium on bacterial

swimming may yield an insight into the way in which bacteria have evolved to occupy

certain environmental niches. This study could be carried out across multiple species of

bacteria. Providing that mutant strains are available (and, in some cases, even if they are

not: see Section 4.3), the analysis methods are applicable to any bacterial species whose

motion is well described as a run-and-stop VJ process. Such an investigation could probe

the fundamental evolutionary differences between enteric bacteria, such as E. coli , and

marine bacteria, such as R. sphaeroides .
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Appendix A

Mathematical methods

A.1 Algorithms for simulating random walks

In this section, we provide details of the algorithms used to simulate the random walks

shown in Figure 2.2. In all cases, we use the same constant step length, whose absolute

value has no effect other than to scale the tracks. Similarly, the time step is constant

across all simulations and does not affect the appearance of the figure. A full description of

the stochastic simulation algorithm used to generate realisations of the velocity jump (VJ)

process throughout the rest of the thesis is given in Section 2.5. In all cases, the algorithm

begins with a single particle located at the origin.

Unbiased, uncorrelated on-lattice random walk

At each time step, the particle moves one step length up, down, left or right with equal

probability.

Unbiased, uncorrelated off-lattice random walk

At each time step, the particle moves moves step length in a direction drawn from the

wrapped uniform distribution (see Section 2.4 for details).
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Biased on-lattice random walk

In this model, motion is biased towards the right with a strength quantified by the

parameter εBon ∈ [0, 0.75]. At each time step, the particle moves one step length right

with probability 1/4 + εBon, and up, down or left with probability 1/4− εBon/3. We use

εBon = 0.2 to generate the figure.

Biased off-lattice random walk

For this model of motion we use a model of sinusoidal reorientation proposed by Hill and

Häder [88]. The strength of the bias is quantified by the parameter εBoff The particle

is biased towards rightward motion, in which direction the angle is defined as zero. At

each time step, the particle moves one step length in a direction drawn from the von

Mises distribution (see Section 2.4 for details) with a concentration parameter of 2 and a

mean of −εBoff sin(θ), where θ is the previous direction of travel. Thus, the particle has

a tendency to orient itself towards the right. We use εBoff = 0.1 to generate the figure.

Correlated on-lattice random walk

In this model, the particle is restricted to move on a lattice by only permitting motion

parallel to the x and y axes. The extent of correlation between successive time steps is

quantified by the parameter εCon. The particle is initially travelling rightward. At each

time step, the particle continues moving in the same direction with probability 1/4+εCon,

and turns through an angle of −π, −π/2, or π/2 with probability 1/4− εCon/3. We use

εCon = 0.2 to generate the figure.

Correlated off-lattice random walk

In this model, the initial direction of travel is chosen from the wrapped uniform distri-

bution. At each time step, the particle moves one step length in a direction given by

rotating through an angle drawn from the von Mises distribution with a concentration
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parameter of 2 and zero mean. Thus each new angle is chosen relative to the previous

direction, which introduces correlation, quantified by the concentration parameter of the

von Mises distribution.

A.2 Derivation of the one-dimensional Telegraph equa-

tion

We now provide full details of the steps required to derive the Telegraph equation, given

in Section 2.2.1 by equation 2.4. We start with equations (2.2) and (2.3) in the same

section. Dropping the explicit dependence of p± on x and t for brevity, and expanding

both equations as Taylor series in the small parameters τ and δ, we obtain

p+ + τ
∂p+

∂t
+O

(
τ 2
)

= λτ

(
p− − δ∂p

−

∂x
+O

(
δ2
))

+ (1− λτ)

(
p+ − δ∂p

+

∂x
+O

(
δ2
))

, (A.1)

p− + τ
∂p−

∂t
+O

(
τ 2
)

= λτ

(
p+ + δ

∂p+

∂x
+O

(
δ2
))

+ (1− λτ)

(
p− + δ

∂p−

∂x
+O

(
δ2
))

. (A.2)

Rearranging gives

∂p+

∂t
= λ(p− − p+) + λδ

(
∂p+

∂x
− ∂p−

∂x

)
− c∂p

+

∂x
+O (δ) +O

(
δ2
)

+O (τ) , (A.3)

∂p−

∂t
= λ(p+ − p−) + λδ

(
∂p+

∂x
− ∂p−

∂x

)
+ c

∂p−

∂x
+O (δ) +O

(
δ2
)

+O (τ) , (A.4)

where we have used the fact that δ/τ = c. We now take the limit τ, δ → 0, such that the

ratio δ/τ = c remains constant, to obtain

∂p+

∂t
= λ(p− − p+)− c∂p

+

∂x
, (A.5)

∂p−

∂t
= λ(p+ − p−) + c

∂p−

∂x
. (A.6)
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Equations (A.5)-(A.6) describe the macroscopic evolution of the number density of right-

and left-moving particles. The interpretation is straightforward: λ is the rate of switching

directions, and hence states, which leads to the reaction-like terms on the right-hand

side. The remaining terms describe advection due to the movement of the particles.

These equations can be combined into a single equation by defining two new variables,

P (x, t) = p+ + p− and j(x, t) = p− − p+. These represent, respectively, the combined

population of left- and right- moving particles, and the net leftward flux of particles.

Summing equations (A.5)-(A.6) we obtain

∂P

∂t
= c

∂j

∂x
, (A.7)

which we may differentiate to obtain

∂2P

∂t2
= c

∂2j

∂t∂x
. (A.8)

Subtracting equation (A.5) from (A.6) gives

∂j

∂t
= c

∂P

∂x
− 2λj, (A.9)

which we may differentiate to obtain

∂2j

∂x∂t
= c

∂2P

∂x2
− 2λ

∂j

∂x
. (A.10)

Substituting equation (A.10) into (A.8) and using (A.7) gives
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A.3 Deriving expressions for the spatial moments of

the general velocity jump process

In Section 2.3 we presented expressions for the mean squared displacement (MSD) of the

run-only and run-and-stop VJ processes, as derived by [146]. We repeat the authors’

analysis here to illustrate the steps required. The original paper contains only scant

details of the mathematical analysis. Codling fills in the gaps in his thesis [47]; we

combine and adapt these analyses.

A.3.1 Run-only velocity jump process

We take equation (2.19) as a starting point, repeated here for convenience:

∂p

∂t
+ v · ∇x p = −λp+ λ

∫
T (v,v′)p(x,v′, t) dv′. (2.19)

We assume that p has compact support in x and v for finite t, such that there exist

regions V, V ′ ∈ Rd for which p(x,v, t) = 0 ∀ x /∈ V,v /∈ V ′. This assumption expresses

the requirement that all particles must have a finite velocity and be located within a

finite region of space, which is valid for all physically realistic distributions of particles.

All vector integrals may thus be considered over regions V and V ′, rather than Rd. This

will allow us to apply the Divergence Theorem later, which requires an integral over a

compact space.

The total number of runners is defined as

Np =

∫∫
p(x,v, t) dv dx. (A.11)

Particle density is conserved as there are no birth or death processes, therefore Np is

constant and equal to the initial total density of runners.
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The second position moment of p, equivalent to the MSD, is defined by

D2
p(t) =

1

Np

∫∫
‖x‖2p(x,v, t) dv dx, (A.12)

where we divide by Np in order to normalise p. We may also define the mixed velocity-

position moment and second speed moment (the mean squared speed) in a similar manner:

Bp(t) =
1

Np

∫∫
(x · v)p(x,v, t) dv dx, (A.13)

S2
p (t) =

1

Np

∫∫
‖v‖2p(x,v, t) dv dx. (A.14)

Multiplying the transport equation (2.19) by ‖x‖2 and integrating over x and v, we

obtain∫∫
‖x‖2∂p

∂t
dx dv +

∫∫
‖x‖2v · ∇x p dx dv =

− λNpD2
p + λ

∫∫∫
‖x‖2T (v,v′)p(x,v′, t) dv′ dx dv.

(A.15)

The first term in this equation may be simplified by recognising that x and v are inde-

pendent of t, hence using equation (A.12) we obtain

∫∫
‖x‖2∂p

∂t
dx dv =

dNpD2
p

dt
. (A.16)

Rewriting the integrand in the second term and applying the Divergence Theorem gives

∫∫
‖x‖2v · ∇x p dx dv = −2NpBp. (A.17)

We change the order of integration in the final integral in equation (A.15) using Fubini’s
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theorem [162] and use the normalisation property (2.13) to obtain

∫∫∫
‖x‖2T (v,v′)p(x,v′, t) dv′ dx dv = NpD2

p. (A.18)

Combining equations (A.16), (A.17) and (A.18), we obtain

dD2
p(t)

dt
= 2Bp(t). (A.19)

Multiplying equation (2.19) by x · v and integrating over x and v leads to

dNpBp
dt

+

∫∫
(x · v)v · ∇x p dx dv =

− λNpBp + λ

∫∫∫
(x · v)T (v,v′)p(x,v′, t) dv′ dx dv.

(A.20)

Rewriting the left-hand integrand and applying the Divergence Theorem gives

∫∫
(x · v)v · ∇x p = −NpS2

p . (A.21)

Changing the order of integration in the right-hand integral, we have

∫∫∫
(x · v)T (v,v′)p(x,v′, t) dv′ dx dv =

∫∫
p(x,v′, t)x · v̄ dx dv′, (A.22)

where the mean vector after reorientation, v̄, is defined in equation (2.15). Recall that v̄

may depend upon v′. In order to make further progress, we must make some additional

assumptions about the nature of the reorientation. Following Othmer et al. [146], we

assume that the speed of a particle does not change with reorientation, only the direction.

Furthermore, we assume that the turning kernel depends only upon the magnitude of the

angle between v′ and v, not on their absolute magnitude or direction. Under these

assumptions, v̄ will always be parallel to v′ and s̄ = ‖v′‖. Equation (2.17) therefore
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becomes

ψd =
‖v̄‖
s̄

=
‖v̄‖
‖v′‖

, (A.23)

hence ψd is independent of the direction of v′. Since v̄ is parallel to v′, we also have

v̄ = ψdv
′. Given these two assumptions, equation (A.22) may be rewritten:

∫∫
p(x,v′, t)x · v̄ dx dv′ =

∫∫
p(x,v′, t)x · (ψdv′) dx dv′ = NpBp. (A.24)

Combining equations (A.20), (A.21) and (A.24), we obtain

dNpBp
dt

= NpS2
p − λ(1− ψd)NpBp. (A.25)

As particles are assumed to maintain their speed over reorientations, S2
p is constant, so

we can solve equation (A.25) subject to initial conditions on Bp. An obvious choice for

initial conditions is to assume that all particles start at the origin, hence Bp(0) = 0. The

solution in this case is given by

Bp(t) =


S2
p

λ0

[
1− e−λ0t

]
for ψd 6= 1,

S2
p t for ψd = 1.

(A.26)

Substituting this solution into equation (A.19), we solve subject to D2
p(0) = 0, to obtain

the solution given in equation (2.23).

A.3.2 Run-and-stop velocity jump process

We start by considering equations (2.21) and (2.22), again repeated here for convenience:

∂p

∂t
+ v · ∇x p = −λp+ µ

∫
T (v,v′)r(x,v′, t) dv′, (2.22)

∂r

∂t
= λp− µr. (2.21)
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Using similar mathematical analysis to that employed in the previous section, we can

convert these two equations into a system of ordinary differential equations (ODEs). The

analysis is complicated by the presence of two species, p and r, leading to a larger system

of ODEs than was found in the previous section. Making the same assumptions as those

required in the analysis of the run-only velocity jump process, in addition to further rea-

sonable assumptions on the initial conditions, it is possible to solve for the MSD. Here

we present a brief outline of the mathematical analysis, again adapted from [146].

Multiplying equations (2.21) and (2.22) by ‖x‖2 and integrating over x and v, we obtain

dNpD2
p

dt
= 2NpBp − λNpD2

p + µNrD2
r , (A.27)

dNrD2
r

dt
= λNpD2

p − µNrD2
r , (A.28)

where D2
r is the second position moment of r, defined by

D2
r(t) =

1

Nr

∫∫
‖x‖2r(x,v, t) dv dx, (A.29)

and Nr is the total population of stopped particles, given by

Nr =

∫∫
r(x,v, t) dv dx. (A.30)

Multiplying equations (2.21) and (2.22) by x · v and integrating over x and v leads to

dNpBp
dt

= NpS2
p − λNpBp + µψdNrBr, (A.31)

dNrBr
dt

= λNpBp − µNrBr, (A.32)

where Br is the mixed velocity-position moment, given by

Br(t) =
1

Nr

∫∫
(x · v)r(x,v, t) dv dx. (A.33)
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As before, we assume that particles maintain their speed upon reorientation, so that S2
p

is constant. We also assume that the populations of running and stopping particles are

initially in equilibrium and that the total population remains constant, hence

Np =
µN0

λ+ µ
, (A.34)

Nr =
λN0

λ+ µ
, (A.35)

where N0 is the initial number of particles. Under these assumptions, equations (A.27),

(A.28), (A.31) and (A.32) constitute a closed linear system. In reality, it is not practical

to compute the MSD of running and stopped particles separately; instead the MSD

found experimentally is that of the total population. We therefore solve the system of

equations for the weighted MSD, defined in equation (2.24). The solution subject to the

initial condition D2(0) = 0 is given in equation (2.25).

A.4 Kernel density estimation

It is often desirable to estimate the underlying probability density function (pdf) of a

one-dimensional process based on a finite number of observations. A typical approach

involves generating a histogram of the observed data and using this as a piecewise linear

approximation to the true underlying pdf. An alternative approach involves fitting the

histogram with an analytic function, and using this as the approximation. Both methods

suffer from the necessity of choosing a histogram bin width, which can have a strong effect

on the resulting estimate. In a related method, an alternative estimate is obtained by

assuming that each datum represents a Gaussian function with a mean at the observed

value, and a common width amongst all of the observations. The normalised sum of these

Gaussian functions then represents an estimate of the underlying pdf. Again, a width

must be specified, which may significantly influence the estimated pdf.
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The kernel density estimate (KDE) framework is a well-established, non-parametric

method for estimating a pdf from a finite number of observed data [170]. The KDE

method enables us to automatically select an optimal value for the common Gaussian

width (denoted the bandwidth), based on the available data. Throughout this thesis, we

estimate the bandwidth using the method proposed by Botev et al. [32], implemented in

Matlab.

A.5 Conditional distribution of interarrival times in

a Poisson process

Here, we prove that the distribution of interarrival times, conditional on the number of

events, is uniform in a Poisson process. Consider events occurring as a Poisson process

with rate λ. We denote the number of events that occur within the time interval [0, t)

by N(t). Suppose that we know that exactly one event occurs during this interval, so

that N(t) = 1. We seek an expression for the pdf of the time at which this event occurs,

denoted T . We start by considering the conditional cumulative distribution function,

P(T ≤ x | N(t) = 1) =
P(T ≤ x ∩N(t) = 1)

P(N(t) = 1)

=
P(T ≤ x ∩N(t)−N(x) = 0)

λte−λt

=
x

t
,

where the final equality follows since the probabilities of events occurring in the non-

overlapping intervals [0, x) and [x, t) are independent. Differentiating the result with

respect to x, we see that the distribution of event times within an interval, conditional

on one event occurring, is uniform on that interval.
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Appendix B

Analysis of experimental data

In this appendix, we present additional information to support the methods, results and

conclusions in Chapter 4.

B.1 Links to online video clips

Short clips of the raw microscopy video data of three strains of R. sphaeroides , presented

in Chapter 4, are available online at the following locations (all videos are hosted on

Youtube):

1. Wildtype, bulk swimming: http://youtu.be/NSr5ZTAq-BM

2. Wildtype, surface swimming: http://youtu.be/GU8woZGEDpQ

3. Non-chemotactic, bulk swimming: http://youtu.be/Hkoeofh2oP0

4. Non-chemotactic, surface swimming: http://youtu.be/1_2RM-jaWOo

5. Non-motile, bulk swimming: http://youtu.be/ye9sj8DJrMg
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B.2 Computational method for finding the minimum

bounding circle

In order to implement the censoring methods described in Section 4.1.6, we use the Matlab

code minboundcircle1 to find the minimum bounding radius (MBR) of a list of two-

dimensional coordinates. The algorithm initially discards those coordinates that do not

lie on the edge of the convex hull of the supplied coordinate list. Next, three coordinates

are initially selected and denoted the active set. The algorithm then enters a loop, in

which the circle passing through the three coordinates in the active set is computed, and

the remaining coordinates are tested for whether they lie inside this circle. If any do not,

one of the coordinates in the active set is discarded and replaced with the coordinate lying

furthest from the active set circle. The algorithm thus iterates, exchanging coordinates

in the active set, until no coordinates are found outside of the active set circle. At this

stage, the minimum bounding circle has been found.

B.3 Results from the surface swimming dataset

In this section we present results obtained by analysing the tracks from surface bacteria

swimming near the surface of the microscope coverslip. These are analogous to the results

obtained from the bulk dataset, which are found in Section 4.2.

The estimated pdf of observed framewise speeds for the non-chemotactic and non-motile

surface datasets are plotted in Figure B.1. This plot is analogous to Figure 4.6(a), which

illustrates the same plot for the bulk dataset. The data have been filtered to remove failed

tracks. In addition, the non-chemotactic dataset has been filtered to remove tracks whose

MBR is below the cutoff value ρE = 1.2µm. This additional censoring step is required in

order to observe separation of the two pdfs, which is not required in the case of the bulk

1Code by John d’Ericco, available on the Matlab Central File Exchange website: http://www.

mathworks.com/matlabcentral/fileexchange/.
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dataset. We manually verified that many of the tracks that are removed by this censoring

procedure appear to be stuck to the surface and spinning in circles. The contribution of

these tracks to the observed framewise speed distribution differs substantially from that

of the non-motile tracks. Following their removal, it is clear that the estimated pdfs are

very similar for the bulk and surface datasets.
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Figure B.1: Estimated pdf of framewise speeds for the censored non-chemotactic (black line)
and non-motile (red line) surface datasets. The distributions have been scaled in height so their
maxima coincide.

B.3.1 Initial censoring and characterisation of wildtype tracks

Figure B.2 shows tracks with a range of tortuosities from the wildtype surface dataset.

The analogous plot for tracks from the bulk dataset is shown in Figure 4.7. The figure

shows a qualitatively similar trend to that in the bulk dataset.

A scatter plot of median curvature against mean track speed is plotted in Figure B.3,

analogous to Figure 4.8(a). The range of curvatures in the dataset with no censoring

except for the removal of failed tracks is greater in the surface dataset. However, the

effect of censoring by median curvature is similar in both cases. We therefore use the

same threshold value to censor the wildtype surface dataset as that used for the wildtype
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Figure B.2: Tracks from the wildtype surface dataset with different median curvatures. (a)
0.04 radµm−1, (b) 0.13 radµm−1, (c) 0.61 radµm−1, (d) 0.95 radµm−1, (e) 1.17 radµm−1, (f)
1.68 radµm−1. In each case, the black bar represents 12 µm.

bulk dataset, ρMC = 1.5 radµm−1.
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Figure B.3: Scatter plot of median curvature against mean track speed for the wildtype surface
dataset. Blue points come from all tracks in the dataset, after filtering with ρFS. Red points are
those remaining following censoring by applying a minimum extent of 6 µm. The grey dashed
line represents the maximum median curvature value; tracks with median curvature above this
value will be discarded.

Figure B.4 shows a random sample of thirty tracks taken from the surface dataset, before

and after censoring. The analogous plot for the bulk dataset is shown in Figure 4.9.

Figure B.4(a) contains two tracks that roughly trace out circles. These are a common

feature of the surface dataset, due to bacteria becoming stuck to the coverslip by their

flagella and rotating on the spot. This also appears to occur transiently in one of the
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post-censoring tracks in Figure B.4(b) (dark blue line).
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Figure B.4: A representative selection of 30 tracks from the wildtype surface dataset, (a) before
and (b) after censoring. Censoring was carried out with ρE = 6µm and ρMC = 1.5 radµm−1.

The estimated pdf of framewise speeds is shown in Figure B.5, before and after censoring.

The analogous figure for the bulk dataset is 4.8(b). The uncensored distributions differ

significantly between the bulk and surface datasets, with the modal speed appearing

much lower in the uncensored surface data, while the distributions after censoring are

qualitatively very similar. The difference in the uncensored distributions is likely to be

due to the presence of stuck cells in the surface dataset, as discussed above and apparent

in Figure B.4(a).

B.3.2 Censoring the non-chemotactic surface swimming dataset

Figures B.6 and B.7 are analogous to Figures 4.10 and 4.11, respectively, in Chapter 4.

The results are qualitatively similar, with ρEMS = 24 µms−1.

B.3.3 Characteristics of the motion of wildtype bacteria

The estimated pdf of framewise speeds observed during stopped and running phases is

shown for the wildtype surface dataset in Figure B.8(a). This plot is analogous to Figure

4.16. The discrepancy between the two hidden Markov model (HMM) methods is larger
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Figure B.5: Estimated pdf of framewise speeds before censoring (solid line) and after censoring
(dashed line) for the wildtype surface dataset.

Figure B.6: Estimated probability distribution of framewise speeds for the non-chemotactic
strain swimming near a surface after censoring, varying the minimum effective mean speed
parameter from 12 µms−1 to 48 µms−1 in intervals of 6 µms−1. The arrows show the direction
of change for the stated parameter variation.

than it was for the bulk dataset, particularly for the running phase. Nonetheless, the

inferred distributions do not differ a great deal.

Figure B.8(b) shows the estimated pdf of stopwise angle changes for the wildtype surface

dataset. This is analogous to Figure 4.17(a) for the bulk dataset. The results are qual-
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Figure B.7: (a) The effect of varying the minimum effective mean speed on xremain (black) and
xmotile (red). (b) Weighted linear combinations of xremain and xmotile for γ ∈ {0.6, 0.7, 0.8, 0.9}.
The black arrow shows the direction of increase of γ, and the black crosses indicate the position
of the maximum.
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Figure B.8: (a) Estimated framewise speed pdfs for running (solid line) and stopping (dashed
line) phases in the surface wildtype dataset, analysed using the full (black) and speed-only (red)
HMM methods. Applying post-processing in either case made no significant difference to the
estimation (data not shown). (b) Estimated pdf of the stopwise turning angles for the wildtype
surface dataset, computed using the full HMM method (black) and speed-only HMM method
(red), without (solid line) and with post-processing (dashed line).

itatively similar for the bulk and surface datasets, though the results from the surface

dataset exhibit a more noticeable difference between the estimated pdf computed using

the speed-only HMM method and that computed using the full HMM method with post-

processing, with the full method producing a more peaked distribution. In addition, both

methods show a more significant change when post-processing is applied than is the case

when we consider the bulk dataset. These differences may be due to the greater sensi-

tivity of the full method, compared to the speed-only method (see Section 4.3). Tracks
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in the surface dataset are generally more tortuous than those in the bulk dataset, as

shown by the mean median curvature after censoring, which is 0.19 radµm−1 for the bulk

dataset and 0.25 radµm−1 for the surface dataset. The median curvatures also have a

larger spread in the censored surface dataset, with a standard deviation of 0.31 radµm−1,

compared with 0.25 radµm−1 for the bulk dataset.

B.4 Bayes factor for hypothesis testing

In this section we describe the method used to assess the statistical significance of the

bias towards rotation in the surface dataset, discussed in Section 4.2.7. For this purpose,

we use the Bayes factor, which is a ratio whose value allows us to compare how well two

hypotheses, or models, match observed data [79]. One of these hypotheses is designated

the null hypothesis, H0, which reflects a prior belief about the data. We seek to evaluate

the probability of an alternative hypothesis, H1, in light of the observed data. The Bayes

factor allows us to compare these hypotheses and thus to evaluate the model selection

problem. Unlike the p-value that is used in frequentist statistical tests to achieve this

comparison, the Bayes factor may not be used to represent the significance of the observed

results (indeed, the p-value is arguably not meaningful in this sense either [78]). Instead,

its value reflects the extent to which our prior belief in the null hypothesis is affected

after observing the data. For example, a Bayes factor of ten means that our prior belief

in the null hypothesis should be strengthened tenfold. The interpretation of the Bayes

factor is therefore only meaningful relative to the strength of our prior belief in H0, and

it is not possible to assign a significance level, as we may do when working with p-values.

However, certain guidelines for the interpretation of the Bayes factor are found in [96].

The Bayes factor is defined as

B =
P(Data|H0)

P(Data|H1)
. (B.1)
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Designating the set of parameters in model Hi as θi, the numerator in (B.1) is defined as

P(Data|H0) =

∫
P(θ0|H0)P(Data|H0, θ0) dθ0, (B.2)

and similarly for the denominator, with parameter set θ1. Note that the integrals involved

may be multidimensional and that there is no requirement for the number of parameters

in θ0 and θ1 to be equal.

Applying the above definition to the problem in Chapter 4 of assessing the likelihood of an

asymmetric framewise turning distribution in the motion of R. sphaeroides images at the

surface of a coverslip, the null hypothesis is that turns follow a symmetric distribution.

We compare this to an alternative hypothesis that turns follow an asymmetric distri-

bution. We make no assumptions about the nature of the distribution, other than the

symmetry property; the framewise turning angles are simply considered as clockwise or

anticlockwise, based on their sign. We now compare the two hypotheses using a binomial

distribution; the null hypothesis is that the probability of a clockwise turn is exactly 0.5

and the alternative hypothesis is that the probability is anything other than 0.5. There

are a total of N recorded framewise angle changes, of which n are clockwise. The null

hypothesis has no parameters, so the numerator in equation (B.1) reduces to

P(Data|H0) =

(
N

n

)(
1

2

)N
. (B.3)

The alternative hypothesis has a single parameter, the probability of a clockwise turn, q.

For the denominator, we must integrate over all possible values of this parameter:

P(Data|H1) =

(
N

n

) 1∫
0

qn(1− q)N−n dq =
1

N + 1
. (B.4)

The Bayes factor is equal to the ratio of these values. Table B.1 shows the values computed

for the bulk and surface wildtype datasets. In practice, the numerical values computed
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Table B.1: Bayes factor and related quantities for assessing the probability of the null hypothe-
sis (H0) that bacteria turn with a symmetric distribution against the alternative hypothesis (H1)
that turns are asymmetrically distributed.

Dataset N n log(P(Data|H0)) log(P(Data|H1)) Bayes factor

Wildtype bulk 87052 43507 -5.9212 -11.3 233.47
Wildtype surface 32113 14654 -128.07 -10.38 ≈ 10−52

using (B.3) and (B.4) are very small. We therefore compute the logarithm of the values

in order to avoid numerical errors, and compute the logarithm of the Bayes factor, given

by

log(B) = log (P(Data|H0))− log (P(Data|H1)) . (B.5)

We present the computed values of B in Table B.1. The results show that the data

increase our belief in the null hypothesis by a factor of over 200 in the case of the bulk

dataset. This is very strong evidence for the symmetry of turns [96]. The data decrease

our belief in the null hypothesis by a very large factor in the surface dataset, so that there

is no significant probability that q = 0.5, regardless of our prior belief in the symmetry

of turns.

Note that the Bayes factor is independent of the inferred value of q in the alternative

hypothesis; we have shown that q 6= 0.5 in the surface dataset, but not by how much q

differs from one half.
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Appendix C

Modelling the effect of Brownian

buffeting on motile bacteria

C.1 Implementation of the Euler-Maruyama algorithm

Algorithm 3 shows pseudo-code for simulating the run-and-active-stop process. The al-

gorithm for the run-and-stop model is obtained by setting ω = 1, and the run-only

simulation is obtained by setting ω = 1 and λ = 0.

C.2 Derivation of second moments for the run-only

model

In this section, we show how we arrive at equations (6.34) and (6.35), which give expres-

sions for the second position moments of the run-only model. The second moment of the

run-only process in the x-coordinate is given by

〈x2(t)〉 = c2

〈 t∫
0

cos
(√

2DrB(u)
)

du

t∫
0

cos
(√

2DrB(v)
)

dv

〉
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Algorithm 3 Numerical simulation of a single track of total duration N∆t in the run
and active stop model.

ζ = 8πηr3.
Dr = kT/ζ.
σrun =

√
2Dr∆t.

σstop =
√

2Drω∆t.
φ(t0) = x(t0) = y(t0) = 0.
F (t0) = 1.
for i = 1 to N do

Propagate particle:
x(ti) = x(ti−1) + F (ti−1)c cos(φ(ti−1)),
y(ti) = y(ti−1) + F (ti−1)c sin(φ(ti−1)).
Update φ, F :
Draw random variable u ∼ U(0, 1).
if F (ti−1) = 1 then

Draw random variable ξ(ti) ∼ N(0, σrun).
if u < λ∆t then

F (ti) = 0,
else

F (ti) = 1.
end if

else
Draw random variable ξ(ti) ∼ N(0, σstop).
if u < µ∆t then

F (ti) = 1,
else

F (ti) = 0.
end if

end if
φ(ti) = φ(ti−1) + ξ(ti).

end for



= 2c2

〈 t∫
0

v∫
0

cos
(√

2DrB(u)
)

cos
(√

2DrB(v)
)

du dv

〉

= c2

t∫
0

v∫
0

2
〈

cos
(√

2DrB(u)
)

cos
(√

2DrB(v)
)〉

du dv,

where, in the final step, we again interchange the order of operation using Fubini’s The-

orem. We now seek an expression for the ensemble average in the integrand. We first

note that

2
〈

cos
(√

2DrB(u)
)

cos
(√

2DrB(v)
)〉

=
〈

cos
[√

2Dr(B(v) +B(u))
]〉

+
〈

cos
[√

2Dr(B(v)−B(u))
]〉
.

(C.1)

The domain of integration is defined such that u ≤ v ≤ t. The Wiener increment B(v)−

B(u) is therefore normally distributed with zero mean and variance equal to v− u, using

equation (6.16). It is not immediately apparent whether the sum B(v)+B(u) is normally

distributed, however we can demonstrate this property by rewriting the expression as

follows:

B(v) +B(u) = 2B(u) + (B(v)−B(u)).

Both 2B(u) and the difference B(v)−B(u) are normally distributed with zero mean, the

former with variance 4u, and the latter with variance v − u. It follows that B(v) +B(u)

is the sum of two normally distributed random variables and is therefore itself a normal

random variable with zero mean and variance 3u + v. Applying this to equation (C.1)

we obtain

〈
cos
[√

2Dr(B(v) +B(u))
]〉

= e−Dr(v+3u), (C.2)〈
cos
[√

2Dr(B(v)−B(u))
]〉

= e−Dr(v−u). (C.3)
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Integrating these expressions gives

〈x2(t)〉 = c2

t∫
0

v∫
0

e−Dr(v+3u) + e−Dr(v−u) du dv, (C.4)

the evaluation of which yields equation (6.34). A similar process may be followed to

obtain an expression for 〈y2(t)〉, which is given in equation (6.35).

233



Bibliography

[1] Abramowitz, M., Stegun, I. A., 1965. Handbook of Mathematical Functions, 1st

Edition. Dover Publications.

[2] Adler, J., 1966. Chemotaxis in bacteria. Science 153, 708–716.

[3] Adler, J., 1966. Effect of amino acids and oxygen on chemotaxis in Rhodobacter

sphaeroides . J. Bacteriol. 92, 121–129.

[4] Adler, J., 1973. A method for measuring chemotaxis and use of the method to

determine optimum conditions for chemotaxis by Rhodobacter sphaeroides. J. Gen.

Microbiol. 74, 77–91.

[5] Adler, J., Hazelbauer, G. L., Dahl, M. M., 1973. Chemotaxis toward sugars in

Rhodobacter sphaeroides. J. Bacteriol. 115, 824–847.

[6] Ahmed, T., Shimizu, T. S., Stocker, R., 2010. Microfluidics for bacterial chemotaxis.

Integr. Biol. 2, 604–629.

[7] Alon, U., Camarena, L., Surette, M. G., Aguera, Liu, Y., Leibler, S., Stock, J. B.,

1998. Response regulator output in bacterial chemotaxis. EMBO J. 17, 4238–4248.

[8] Alon, U., Surette, M. G., Barkai, N., Leibler, S., 1999. Robustness in bacterial

chemotaxis. Nature 397, 168–171.

[9] Alt, W., 1980. Biased random walk models for chemotaxis and related diffusion

approximations. J. Math. Biol. 9, 147–177.

234



[10] Archer, N. K., Mazaitis, M. J., Costerton, W. W., Leid, J. G., Elizabeth, M.,

Shirtliff, M. E., 2011. Staphylococcus aureus biofilms: properties, regulation, and

roles in human disease. Virulence 2, 445–459.

[11] Armitage, J. P., Macnab, R. M., 1987. Unidirectional, intermittent rotation of the

flagellum of Rhodobacter sphaeroides. J. Bacteriol. 169, 514–518.

[12] Armitage, J. P., Pitta, T. P., Vigeant, M. A., Packer, H. L., Ford, R. M., 1999.

Transformations in flagellar structure of Rhodobacter sphaeroides and possible re-

lationship to changes in swimming speed. J. Bacteriol.. 181, 4825–4833.

[13] Armstrong, J. B., Adler, J., 1967. Genetics of motility in Rhodobacter sphaeroides :

complementation of paralysed mutants. Genetics 56, 363–373.

[14] Armstrong, J. B., Adler, J., Dahl, M. M., 1967. Nonchemotactic mutants of

Rhodobacter sphaeroides. J. Bacteriol. 93, 390–398.

[15] Bai, F., Branch, R. W., Nicolau Jr, D. V., Pilizota, T., Steel, B. C., Maini, P. K.,

Berry, R. M., 2010. Conformational spread as a mechanism for cooperativity in the

bacterial flagellar switch. Science 327, 685–689.

[16] Bailey, H., Thompson, P., 2006. Quantitative analysis of bottlenose dolphin move-

ment patterns and their relationship with foraging. J. Anim. Ecol. 75, 456–465.

[17] Beausang, J. F., Nelson, P. C., 2007. Diffusive hidden Markov model characteri-

zation of DNA looping dynamics in tethered particle experiments. Phys. Biol. 4,

205–219.

[18] Benhamou, S., 2004. How to reliably estimate the tortuosity of an animal’s path:

straightness, sinuosity, or fractal dimension? J. Theor. Biol. 229, 209–220.

[19] Berg, H., 2009. The gain paradox. Prog. Biophys. Mol. Biol. 100, 2–3.

[20] Berg, H. C., 1971. How to track bacteria. Rev. Sci. Instrum. 42, 868–871.

235



[21] Berg, H. C., 1993. Random Walks in Biology. Princeton University Press.

[22] Berg, H. C., 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72,

19–54.

[23] Berg, H. C., 2006. Marvels of bacterial behavior. P. Am. Philos. Soc. 150, 428–442.

[24] Berg, H. C., Brown, D. A., 1972. Chemotaxis in Rhodobacter sphaeroides analysed

by three-dimensional tracking. Nature 239, 500–504.

[25] Berg, H. C., Purcell, E. M., 1977. Physics of chemoreception. Biophys. J. 20, 193–

219.

[26] Berg, H. C., Turner, L., 1990. Chemotaxis of bacteria in glass capillary arrays.

Rhodobacter sphaeroides, motility, microchannel plate, and light scattering. Bio-

phys. J. 58, 919–930.

[27] Berke, A. P., Turner, L., Berg, H. C., Lauga, E., 2008. Hydrodynamic attraction of

swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102–038105.

[28] Berry, R. M., Armitage, J. P., 2000. Response kinetics of tethered Rhodobacter

sphaeroides to changes in light intensity. Biophys. J. 78, 1207–1215.

[29] Block, S. M., Fahrner, K. A., Berg, H. C., 1991. Visualization of bacterial flagella

by video-enhanced light microscopy. J. Bacteriol. 173, 933–936.

[30] Block, S. M., Segall, J. E., Berg, H. C., 1982. Impulse responses in bacterial chemo-

taxis. Cell 31, 215–226.
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