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ABSTRACT 
 
 This paper is concerned with inference about a function g  that is identified by a 
conditional moment restriction involving instrumental variables.  The function is nonparametric.  
It satisfies mild regularity conditions but is otherwise unknown.  The paper presents test of the 
hypothesis that g  is the mean of a random variable Y  conditional on a covariate X .  The need 
to test this hypothesis arises frequently in economics.  The test does not require nonparametric 
instrumental-variables (IV) estimation of g  and is not subject to the ill-posed inverse problem 
that nonparametric IV estimation entails.  The test is consistent whenever g  differs from the 
conditional mean function of Y  on a set of non-zero probability.  Moreover, the power of the test 
is arbitrarily close to 1 uniformly over a set of functions g  whose distance from the conditional 

mean function is O n , where  is the sample size. 1/ 2( − ) n
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A NONPARAMETRIC TEST OF EXOGENEITY 
 
 

1.  INTRODUCTION 

 Let Y  be a scalar random variable, X  and W  be continuously distributed random 

scalars or vectors, and g  be a function that is identified by the relation 

(1.1) . [ ( ) | ]Y g X W− =E 0

In (1.1), Y  is the dependent variable, X  is an explanatory variable, and W  is an instrument for 

X .  The function g  is nonparametric; it is assumed to satisfy mild regularity conditions but is 

otherwise unknown.  Define the conditional mean function ( ) ( | )G x Y xX= =E .  We say that X  

is exogenous if ( ) ( )g x G x=  except, possibly, if x  is contained in a set of zero probability.  

Otherwise, we say that X  is endogenous.  This paper presents a test of the null hypothesis, 0H , 

that X  is exogenous against the alternative hypothesis, 1H , that X  is endogenous.  Under mild 

conditions, the test is consistent whenever ( ) ( )g x G x≠  on a set of non-zero probability.  

Moreover, in large samples the power of the test is arbitrarily close to 1 uniformly over a set of 

functions g  whose “distance” from  is , where  is the sample size.   G 1/ 2( − )O n n

 The problem of testing exogeneity arises frequently in economics.  For example, suppose 

that  denotes the hourly wage of a randomly sampled individual and that Y X  includes the 

individual’s level of education among other variables.  The random variable U Y  

normally includes personal characteristics such as “ability” that are not observed by the analyst.  

If high-ability individuals tend to choose high levels of education, then education is correlated 

with ability, thereby causing U  to be correlated with at least some components of 

( )g X≡ −

X .  When this 

happens, ( ) ( )g x G x≠ , and the precision of any nonparametric estimator of g  is typically much 

lower than that of an estimator of  (Hall and Horowitz 2003).  Thus, there is a large loss of 

estimation efficiency from unnecessarily treating 

G

X  as endogenous.  On the other hand, 

erroneously assuming that X  is exogenous produces a specification error that may be highly 

misleading.  Therefore, it is important have ways to test exogeneity of X .  If g  is known up to a 

finite-dimensional parameter, then exogeneity can be tested by using methods developed by 

Hausman (1978), Bierens (1990), and Bierens and Ploberger (1997).  However, these tests can 

give misleading results if g  is misspecified.  This paper presents the first test of exogeneity for a 

nonparametric g .  
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 One possible way to make such a test is to compare nonparametric estimates of g  and 

.  Nonparametric estimators of G g  have been developed by Newey, Powell and Vella (1999); 

Newey and Powell (2003); Darolles, Florens, and Renault (2002); Blundell, Chen, and 

Kristensen, (2003); and Hall and Horowitz (2003).  However, (1.1) is a Fredholm equation of the 

first kind, which leads to an ill-posed inverse problem (O’Sullivan 1986, Kress 1999).  

Consequently, the rate of convergence in probability of a nonparametric estimator of g  is 

typically very slow.  Depending on the details of the probability distribution of , the 

rate may be slower than O n

( , ,Y X )W

(p )ε−  for any 0ε >  (Hall and Horowitz 2003).  Therefore, a test 

based on direct comparison of nonparametric estimates of g  and  is likely to have low power.  

Moreover, obtaining the asymptotic distribution of a nonparametric estimator of 

G

g  is very 

difficult, and no existing estimator has a known asymptotic distribution.  Therefore, it is desirable 

to avoid nonparametric estimation of g  in forming a test of 0H . 

 The test developed here does not require nonparametric estimation of g  and is not 

affected by the ill-posed inverse problem of nonparametric instrumental-variables estimation.  

Consequently, the “precision” of the test is greater than that of any nonparametric estimator of g .  

The rate of convergence in probability of a nonparametric estimator of g  is always slower than 

.  In contrast, the test described in this paper can detect a large class of functions 1/ 2(pO n− ) g  

whose distance from the conditional mean function G  in a suitable metric is O n .  

Nonparametric estimation and testing of conditional mean and median functions is another setting 

in which the rate of testing is faster than the rate of estimation.  See, for example, Guerre and 

Lavergne (2002) and Horowitz and Spokoiny (2001, 2002).   

1/− 2( )

 Section 2 of the paper presents the test.  Section 3 presents the results of a Monte Carlo 

investigation of the finite-sample performance of the test.  Section 4 presents an economics 

application that consists of testing the hypothesis that the income variable in an Engel curve is 

exogenous.  The proofs of theorems are in the appendix. 

2.  THE TEST STATISTIC AND ITS PROPERTIES 

Rewrite (1.1) as  

(2.1) , ( , ) ; ( | , ) 0Y g X Z U U Z W= + E =

where  and U  are scalar random variables, Y X  and W  are random variables whose supports 

are contained in a compact set that we take to be [0,1]p  ( 1p ≥ ), and Z  is a random variable 
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whose support is contained in a compact set that we take to be [  ( 0 ).  If , then 0,1]r r ≥ 0r = Z  is 

not included in (2.1).  We say that X  and Z , respectively, are endogenous and exogenous 

explanatory variables.  W  is an instrument for X .  The inferential problem is to test the null 

hypothesis, H0, that 

)z

)

]p rB +⊂

XZWf

}n , , )Z W

,Z W

X= = [0∈z 2L

( , ξ

[0∈

)z w

]r

d

z

)(G

[0,∈

z

)z

1/− 0r >

1( ,z z

[0,1]r

ψ

2[0L ( ( , )T x z ) (zLTψ ψ=

)(G

(2.2)  ( | , 0U X x Z= = =E

except, possibly, if ( ,x z  belongs to a set of probability 0.  The alternative hypothesis, 1H , is that 

(2.2) does not hold on some set [0,1  that has non-zero probability.  The data, 

 are a simple random sample of .   { , , , : 1,i i i iY X Z W i = ..., ( ,Y X

2.1  The Test Statistic 

To form the test statistic, let  denote the probability density function of ( , )X .  

Define .  For each , define the operator T  on ( , ) ( | , )G x z Y x Z zE = ,1]r
z [0,1]p  by 

 ( , ) ) ( , )z zT x z t x z dψ ξ ψ ξ= ∫ , 

where for each ( , 2
1 2 ) ,1] px x , 

1 2 1 2( , ) ( , , ) ( , ,z XZW XZWt x x f x z w f x w= ∫ . 

Assume that T  is nonsingular for each .  Then z [0,1∈ 0H  is equivalent to  

(2.3)  ( , ) ( , ) 0zS x z T g x z≡ − =�

for almost every ( , ) 1]p rx z + .  1H  is equivalent to the statement that (2.3) does not hold on a 

set [0,1]p rB +⊂

( ,S x∫ �
1/ 2

 with non-zero Lebesgue measure.  A test statistic can be based on a sample 

analog of , but the resulting rate of testing is slower than n  if .  The rate 

 can be achieved by carrying out an additional smoothing step.  To this end, let A  

denote the kernel of a nonsingular integral operator, , on .  That is,  is defined by 

2)z dxd 2

L

n− 2 )

L 2L

( ) ( , ( )L z dψ ζ ζ ζ= ∫ A  

and is nonsingular.  Define the operator T  on ,1]p r+  by ) ( , )x z .  Then 

0H  is equivalent to  

(2.4)  ( , ) ( , ) 0S x z T g x z≡ − =

 3 
 



 

for almost every ( , ) [0,1]p rx z +∈ .  1H  is equivalent to the statement that (2.4) does not hold on a 

set [0,1]p rB +⊂

2( , )S x z dxd∫

 with non-zero Lebesgue measure.  The test statistic is based on a sample analog 

of . z

 The motivation for basing a test of 0H  on  can be understood by observing that 

, where 

( , )S x z

( |Y Z1( , ) ( , )zg x z T Q x z−= |)Z W( , ) ( [ , ) ( , , ) | )]Z XZWQ x z f z z W f x z W Z z= = =E E  and Zf  

is the probability density function of Z  (Hall and Horowitz 2003).  T 1
z
−  is a discontinuous 

operator, and this discontinuity is the source of the ill-posed inverse problem in estimating g .  

Basing the test of 0H  on  avoids this problem because ( , )S x z ( , ) ( )( ,zS x z L Q T G x )z= − , which 

does not involve T .  1
z
−

 To form a sample analog of , observe that  ( , )S x z ( , ) {[ ( , )]S x z Y G X Z= −E

( , , ) ( , )}XWf x z W Z z× A .  Therefore, the analog can be formed by replacing G  and XWf  with 

estimates and E  with the sample average in {[ ( , )] ( ,XWY G X Z f , ) ( , )}x z W Z z−E

hK

A .  To do this, 

let  and , respectively, denote leave-observation-i-out “boundary kernel” estimators of 

 and .  To describe these estimators, let 

( )ˆ i
XZWf − ( )ˆ iG −

XZWf G ( , )⋅ ⋅  denote a boundary kernel function with 

the property that for all [0,1]ξ ∈  and some integer  2≥s

(2.5) 
1( 1) 1  if 0

( , )
0 if 1 1.

j j
h

j
h u K u du

j s
ξ

ξ
ξ

+− + =
=  ≤ ≤ −∫  

Here,  denotes a bandwidth, and the kernel is defined in generalized form to overcome edge 

effects.  In particular, if  is small and 

0h >

h ξ  is not close to 0 or 1, then we can set 

( , ( / )hK u K u h)ξ = , where  is an “ordinary” order s kernel.  If K ξ  is close to 1, then we can set 

( , ( / )hK u K u h)ξ = , where K  is a bounded, compactly supported function satisfying 

0

1  if 0
( )

0 if 1 1.
j j

u K u du
j s

∞ =
=  ≤ ≤ −∫  

If ξ  is close to 0, we can set ( , ) ( / )hK u K u hξ = − .  There are, of course, other ways of 

overcoming the edge-effect problem, but the boundary kernel approach used here works 

satisfactorily and is simple analytically. 

Now define 

( )( ) ( )
,

1
( , ) ,

p
k k

p h h
k

K x K xξ ξ
=

=∏ , 
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where ( )kx  denotes the ’th component of the vector k x .  Define  similarly.  Then ,r hK

( ) ( ) (1 1 1

( )

, , ,2
11

ˆ ( , , )

1 , ,

i
XZW

n

p h j p h j r h jp r
j
j i

f x z w

K x X x K w W w K z Z
nh

−

+
=
≠

=

− −∑ ), z−

 

and  

( ) (2 2

( )
, ,( )

12

1ˆ ( , ) , , ,ˆ ( , )

n
i

i p h j r h jp r i
jXZ
j i

G x z Y K x X x K z Z z
nh f x z

−
+ −

=
≠

= −∑ )−  

where  and h  are bandwidths, and  1h 2

( ) (2 2

( )
, ,

12

1ˆ ( , ) , ,
n

i
p h j r h jXZ p r

j
j i

)f x z K x X x K z Z z
nh

−
+

=
≠

= −∑ −

i

. 

The sample analog of  is ( , )S x z

 . ( )1/ 2 ( )

1

ˆˆ( , ) [ ( , )] ( , , ) ( , )
n

ii
n i i i i iXZW

i
S x z n Y G X Z f x Z W Z z−− −

=

= −∑ A

The test statistic is 

  2 ( , )n nS x z dxdzτ = ∫
0H  is rejected if nτ  is large.   

2.2  Regularity Conditions 

This section states the assumptions that are used to obtain the asymptotic properties of 

nτ .  Let 1 1 1 2 2 2( , , ) ( , , )x z w x z w−  denote the Euclidean distance between the points ( ,1 1 1, )x z w  

and 2 2 2, )( ,x z w 2,1] in [0 p r+

0 ( , , )XZW XZD f x z w f=

XZ

.  Let  denote any ’th partial or mixed partial derivative of 

.  Set .  Let  be an integer.  Define V Y , 

and let 

j XZWD f

( , ,W x z w

j

2XZWf ) s ≥ ( , )G X Z= −

f  denote the density of ( , )X Z .  The assumptions are as follows. 

 1.  (i) The support of ( , , )X Z W  is contained in [0 2,1] p r+ .  (ii) ( , , )X Z W  has a 

probability density function  with respect to Lebesgue measure.  (ii)  There is a constant 

 such that 

XZWf

X0XC > ( , )XZf x z C≥  for all ( , ) supp( , )x z X Z∈ .  (iv) There is a constant C f < ∞  

such that | ( , , ) |Wj XZ fD f x z w C ( ,≤  for all 2, ) [0,1] p rx z w +∈  and 0,j 1,..., s= , where derivatives 
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at the boundary of supp( , , )X Z W

2 2( , , ) |z w

 are defined as one-sided. (iv) 

1 1 1 2| ( , , )s XZW s XZWD f x z w D f x− 1 1 1 2 2 2( , , ) ( , , )C x z w x z w≤ −f  for any s ’th derivative 

and any ( , 2[0,1]1 1 1 2 2 2, ), ( , , ) p rx z w x z w +∈

( | ,U Z z W= =E

.  (v) T  is nonsingular for almost every . z

) 0w = E

[0,1]r∈

) [0,

z

( ,2( | , ) UVU Z z W w C= = ≤ z w ∈

UVC < ∞ ( , ) | gg x z C≤ g < ∞

( , ) [0,1]p rx z +∈

( , ) |j fD G x z C≤ ( , ) [0,x z ∈

0,1,...,j s= 1 1,D G x z 2 2) ( ,s sD G x z− ) | 1 1 2 2( , ) ( , )fC x z x z− s

2(
1 1 2 2, , ) [0,1] )p rx z x z +∈ 2( |V XE , ) UVx Z z C= = ≤ ) [0,1]p+∈

hK 2 1) ( , ) | |h h KK u C u,K u ξ ξ− ≤ 2 ,

[0,1]ξ ∈ K < ∞ [0,1]ξ ∈ (hK h

[( 1) / , / ]h hξ ξ− ∩K ξ

0, [0,1],
sup | ( , ) |h

h u
K hu

ξ
ξ

> ∈ ∈K

1h

< ∞

1/(2
1 1

2 )s p r
hh c n− + +

1h= < ∞

2 2 hh c 2n α−
2hc= < ∞ /( 1/( )p r< < +

f

( , , )X Z W

}nXZW }nXZff

( , )nXZ nf x z C≥ ( , ) [0,1]p qx z +∈ }nC

( )ˆ i−

nτ 4p r+ ≥

nτ 0H , )i iZX=

 2.  (i)  and  for each 1]p r+  

and some constant .  (ii) |  for some constant  and all C

. 

 3.  The conditional mean function G  satisfies |  for all 1]p r+  

and . (ii) | (  ≤  for any ’th derivative 

and any ( , .  (iii)  for each ( , rx z . 

4.  (i)  satisfies (2.5) and | ( 2 | /u h−  for all u , all u

, and some constant C .  For each , , )ξ  is supported on 

, where K  is a compact interval not depending on .  Moreover, 

1 1

. 

(ii)  The bandwidth  satisfies , where c  is a constant.  (iii) The 

bandwidth, h , satisfies , where  is a constant and 1 2 )s α .  

 Assumption 1(ii) is used to avoid imprecise estimation of G  in regions where XZ  is 

close to 0.  The assumption can be relaxed by replacing the fixed distribution of  by a 

sequence of distributions with densities {  and {  ( n 1,2,...= ) that satisfy 

 for all  and a sequence {  of strictly positive constants that 

converges to 0 sufficiently slowly.  This complicates the proofs but does not change the results 

reported here.  Assumption 4(iii) implies that the estimator of G  is undersmoothed.  

Undersmoothing prevents the asymptotic bias of G  from dominating the asymptotic 

distribution of .  Assumption 4 requires the use of a higher-order kernel if .  The 

remaining assumptions are standard in nonparametric estimation.   

2.3  Asymptotic Properties of the Test Statistic 

To obtain the asymptotic distribution of  under , define V Y (i i G−  
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1/ 2

1
( , ) [ ( , , ) ( , ) / ( , )] ( ,

i

n

n i XZW i i i Z i XZ i i i
i

)B x z n U f x Z W V t X x f X Z Z z−

=

= −∑ A , 

and  

1 1 2 2 1 2( , ; , ) [ ( ) ( )]n nR x z x z B z B z= E . 

Under 0H , U .  The distinction between U  and V  in the definition of i V= i i i nB  will be used later 

to investigate the distribution of nτ  when 0H  is false.  Define the operator Ω  on 2[0,1]p rL +  by 

 
1

0
( )( , ) ( , ; , ) ( , )x z R x z d dψ ξ ζ ψ ξ ζ ξ ζΩ = ∫ . 

Let { : 1,2,...}j jω =  denote the eigenvalues of Ω  sorted so that 1 2 ... 0ω ω≥ ≥ ≥

n

.  Let 

 denote independent random variables that are distributed as chi-square with one 

degree of freedom.  The following theorem gives the asymptotic distribution of 

2
1{ jχ : 1,2,...}j =

τ  under 0H . 

 Theorem 1:  Let 0H  be true.  Then under assumptions 1-4, 

2
1

1

d
n j

j
jτ ω χ

∞

−

→ ∑ . 

2.4  Obtaining the Critical Value 

The statistic nτ  is not asymptotically pivotal, so its asymptotic distribution cannot be 

tabulated.  This section presents a method for obtaining an approximate asymptotic critical value.  

The method is based on replacing the asymptotic distribution of nτ  with an approximate 

distribution.  The difference between the true and approximate distributions can be made 

arbitrarily small under both the null hypothesis and alternatives.  Moreover, the quantiles of the 

approximate distribution can be estimated consistently as .  The approximate 1n →∞ α−  critical 

value of the nτ  test is a consistent estimator of the 1 α−  quantile of the approximate distribution.   

We now describe the approximation to the asymptotic distribution of nτ .  Under 0H , nτ  

is asymptotically distributed as 

2
1

1
j j

j
τ ω χ

∞

=

≡∑� . 

Given any 0ε > , there is an integer Kε < ∞  such that  

2
1

1
0 (

K

j j
j

t t
ε

)ω χ τ
=

 
 < ≤ − ≤
 
 
∑P P � ε< . 
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uniformly over t .  Define 

2
1

1

K

j j
j

ε

ετ ω χ
=

=∑� . 

Let zεα  denote the 1 α−  quantile of the distribution of ετ� .  Then 0 ( )zεατ α ε< > − <P � .  Thus, 

using zεα  to approximate the asymptotic 1 α−  critical value of nτ  creates an arbitrarily small 

error in the probability that a correct null hypothesis is rejected.  Similarly, use of the 

approximation creates an arbitrarily small change in the power of the nτ  test when the null 

hypothesis is false.  The approximate 1 α−  critical value for the nτ  test is a consistent estimator 

of the 1 α−  quantile of the distribution of ετ� .  Specifically, let ˆ jω  ( 1,2,...,j )Kε=  be a 

consistent estimator of jω  under 0H .  Then the approximate critical value of nτ  is the 1 α−  

quantile of the distribution of  

2
1

1

ˆ ˆ
K

n j
j

ε

jτ ω χ
=

=∑ . 

This quantile can be estimated with arbitrary accuracy by simulation. 

At the cost of additional analytic complexity, it may be possible to let 0ε →  and 

 as , thereby obtaining a consistent estimator of the asymptotic critical value of Kε →∞

n

n →∞

τ .  However, this would likely require stronger assumptions than are made here while providing 

little insight into the accuracy of the estimator or the choice of Kε  in applications.  This is 

because the difference between the distributions of τ�  and ετ�  is a complicated function of the 

spacings and multiplicities of the jω� ’s (Hall and Horowitz 2004).  The spacings and 

multiplicities are unknown in applications and appear difficult to estimate reliably.  

 The remainder of this section explains how to obtain the estimated eigenvalues { ˆ }jω .  

Because V  under U= 0H , a consistent estimator of 1 1 2 2( , ; , )R x z x z  can be obtained by replacing 

unknown quantities with estimators on the right-hand side of  

1 1 2 2

21 2
1 2

( , ; , )

( , ) ( , )( , , ) ( , , ) ( , ) ( , )
( , ) ( , )

Z Z
XZW XZW

XZ XZ

R x z x z

t X x t X x
1 2f x Z W f x Z W Z z Z z V

f X Z f X Z

=

     − −    
     

E A A

 

To do this, let  be a kernel estimator of  with bandwidth .  Define ˆ
XZWf XZWf h

1
1 2 1 20

ˆ ˆˆ ( , ) ( , , ) ( , , )z XZW XZWt x x f x z w f x z w dw= ∫ . 
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Estimate the V ’s by  i

( )ˆˆ ( ,i
i i i iV Y G X Z−= − ) . 

1 1 2 2( , ; , )R x z x z  is estimated consistently by 

1 1 2 2

1 21 2
1 2

1

ˆ( , , , )

ˆ ˆ( , ) ( , )ˆ ˆ ˆ( , , ) ( , , ) ( , ) ( , )ˆ ˆ( , ) ( , )
i i

n
Z i Z i

XZW i i XZW i i i i i
XZ i i XZ i ii

R x z x z

t X x t X x
n f x Z W f x Z W Z z Z z V

f X Z f X Z
−

=

=

   
− −   

      
∑ A A1 2 .

 

Define the operator Ω  on ˆ
2[0,1]p rL +  by 

 
1

0
ˆ ˆ( )( , ) ( , ; , ) ( , )x z R x z d dψ ξ ζ ψ ξ ζ ξ ζΩ = ∫ . 

Denote the eigenvalues of  by {Ω̂ ˆ : 1,2,...}j jω =  and order them so that 1 2ˆ ˆ ... 0M Mω ω≥ ≥ ≥ .  

The relation between the ˆ jω ’s and jω ’s is given by the following theorem. 

Theorem 2:  Let assumptions 1-4 hold.  Then  as 

,for each  

2 1/ 2ˆ [(log ) /( ) ]p r
j j po n nhω ω +− =

n →∞ 1,2,...j =

To obtain an accurate numerical approximation to the ˆ jω ’s, let ˆ ( , )F x z  denote the 1n×  

vector whose i ’th component is [ (ˆ ˆ, , ) ( ( ( ,
iXZW i i Z i W i

ˆ , )]i i, ) / X )f x Z W t X x X z− f Z ZA , and let ϒ  

denote the  diagonal matrix whose  element is V .  Then n× n ( , )i i 2
î

 1
1 1 2 2 1 1 2 2

ˆ ˆ( , ; , ) ( , ) ( , )ˆR x z x z n F x z F x z− ′= ϒ . 

The computation of the eigenvalues can now be reduced to finding the eigenvalues of a finite-

dimensional matrix.  To this end, let { : 1,2,...}j jφ =  be a complete, orthonormal basis for 

2[0,1]p rL + .  Then 

1 1

ˆ ˆ( , , ) ( , ) ( , ) ( , )XZW jk j k
j k

f x z W Z z d x z Z Wφ φ
∞ ∞

= =

=∑ ∑A , 

where  
1 1 1 1

1 2 1 2 1 1 20 0 0 0
ˆ ˆ ( , , ) ( , ) ( , ) ( , )jk XZW j kd dx dz dz dwf x z w z z x z zφ φ= ∫ ∫ ∫ ∫ A w

k

, 

and 

1 1

ˆ ˆ( , ) ( , ) ( , ) ( , )Z jk j
j k

t X x Z z a x z X Zφ φ
∞ ∞

= =

=∑ ∑A , 

where 
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1

1 1 1 1
1 2 1 2 1 2 1 2 2 2 10 0 0 0

ˆˆ ( , ) ( , ) ( , ) ( , )jk z j ka dx dx dz dz t x x z z x z xφ φ= ∫ ∫ ∫ ∫ A 1z . 

Approximate ˆ ( , , ) ( , )XZWf x z W Z zA  and t X  by the finite sums ˆ ( , ) ( , )z x Z zA

1 1

ˆ( , , , ) ( , ) ( , )
L L

f jk j
j k

kx z W Z d x z Z Wφ φ
= =

Π =∑ ∑  

and 

1 1

ˆ( , , , )) ( , ) ( , ).
L L

t jk j
j k

kx z X Z a x z X Zφ φ
= =

Π =∑ ∑  

for some integer .  Since  and L < ∞ ˆ
XZWf A Zt A  are known functions,  can be chosen to 

approximate  and 

L

ˆ
XZWf A Ẑt  with any desired accuracy.  Let A Φ  be the n L×  matrix whose (  

component is 

, )i j

1/ 2

1

ˆ ˆˆ[ ( , ) ( , ) / ( , )
L

ij jk k i i jk k i i XZ i i
k

n d Z W a X Z f Xφ φ−

=

Φ = −∑ ]Z .   

The eigenvalues of  are approximated by those of the Ω̂ L L×  matrix ′Φ ϒΦ .   

2.5  Consistency of the Test against a Fixed Alternative Model 

In this section, it is assumed that 0H  is false.  That is, .  

Define .  Let 

[ , : ( , ) ( , )] 1X Z g X Z G X Z= <P

( , ) ( , ) ( , )q x z g x z G x z= − zα�  denote the 1 α−  quantile of the distribution of nτ  

under sampling from the null-hypothesis model Y G( , )X Z , ( | , ) 0V V X Z= + =E .  The following 

theorem establishes consistency of the nτ  test against a fixed alternative hypothesis. 

 Theorem 3:  Suppose that 
1 2
0
[( )( , )] 0Tq x z dxdz >∫ . 

Let assumptions 1-4 hold.  Then for any α  such that 0 1α< < , 

lim ( ) 1n
n

zατ
→∞

> =P � . 

 Because T  is nonsingular, the nτ  test is consistent whenever ( , )g x z  differs from 

 on a set of (( , )G x z , )x z  values whose probability exceeds zero. 

2.6  Asymptotic Distribution under Local Alternatives 

This section obtains the asymptotic distribution of nτ  under the sequence of local 

alternative hypotheses 
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(2.6) , 1/ 2( , ) ; ( | , ) 0; ( | , ) ( , )Y g X Z U U Z W U X Z n X Z−= + = = ∆E E

where  is a bounded function on [∆ 0,1]p r+ .  Under (2.6), the distributions of U  and V  depend 

on , , and G X .  To provide a complete 

characterization of the sequence of alternative hypotheses, it is necessary to specify the 

dependence of the distributions of U  and V  on .  Here, it is assumed that  

n 1/ 2 ( ) ( ,n U V X Z− = ∆ ) 1/ 2) ( , ) ( , )g X Z n X Z−= + ∆

n

( , Z

(2.7) 1/ 2V nν ε−= + , 

where ε  and ν  are random variables whose distributions do not depend on , n

( | ) ( , ) 0Z W,X Z |ν ν= =E E , ( )Var ν < ∞ , ( | , ) 0X Zε =E , ( | , ) [ ( , ) | , ]Z W X Z Z Wε = − ∆E E , 

and Va ( )r ε < ∞ .  It follows from (2.6)-(2.7) that 

(2.8) 1/ 2 1/ 2( , )U n X Z nν ε− −= + ∆ + , 

The following additional notation is used.  Define 

1/ 2

1
( , ) [ ( , , ) ( , ) / ( , )] ( , )

i

n

n i XZW i i Z i XZ i i
i

iB x z n f x Z W t X x f X Z Z zν−

=

= −∑� A  

and 1 1 2 2 1 1 2 2( , ; , ) [ ( , ) ( , )]n nR x z x z B x z B x z= E� � � .  Define the operator Ω�  on 2[0,1]p rL +  by 

1

0
( )( , ) ( , ; , ) ( , )x z R x z d dψ ξ ζ ψ ξ ζ ξ ζΩ = ∫� � . 

Let {( , ) : 1,2,...}j j jω ψ =�

( , ) ( )( , )

 denote the eigenvectors and orthonormal eigenvectors of .  Define Ω�

x z T x zµ = ∆  and  

1

0
( , ) ( , )j jx z x z dxdµ µ ψ= ∫ z

}

. 

Let  denote independent random variables that are distributed as non-

central chi-square with one degree of freedom and non-central parameters { /

2 2
1{ ( / ) : 1,2,...}j j j jχ µ ω =�

2
j jµ ω� .  The 

following theorem states the result. 

 Theorem 4:  Let assumptions 1-4 hold.  Under the sequence of local alternatives (2.6)-

(2.8),  

2 2
1

1
( /d

n j j j
j

)jτ ω χ µ ω
∞

−

→ ∑ � � . 

It follows from Theorems 2 and 4 that under (2.6)-(2.8), 

ˆlimsup | ( ) ( ) |n n
n

z zεα ατ τ ε
→∞

> − > ≤P P  

for any 0ε > , where ẑεα  denotes the estimated approximate α -level critical value. 
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2.7  Uniform Consistency 

This section shows that for any 0ε > , the nτ  test rejects 0H  with probability exceeding 

1 ε−  uniformly over a set of functions g  whose distance from G  is .  The following 

additional notation is used.  Define 

1/ 2(O n− )

( , )q x z ( ( , )g x G x z, )z= −

ncF

[ , ) | ] 0X Z W

.  Let  be fixed.  For each 

 and finite C , define  as a set of distributions of  such that: (i) 

 satisfies assumption 1; (ii) 

XZWf

( , , ,Y X Z W1,n =

XZWf

2,... 0> )

(Y g ,Z− =E  for some function g  that satisfies 

assumption 2 with U Y ; (iii) ( ,g X )Z= − [ (G , ) | ,Y X Z X Z ] 0− =E

, )X Z

 for some function  that 

satisfies assumption 3 with V Y ; (iv) 

G

(G= − 1/ 2n C−≥Tq , where ⋅  denotes the  norm; 

and (v) 

2L

1 (log )sh n /q Tq = (1)o  as .   is a set of distributions of  for 

which the distance of 

n →∞ ncF ( , ,Y X ,Z )W

g  from G  shrinks to zero at the rate  in the sense that F  includes 

distributions for which 

1/n− 2
nc

1/ 2(n− )q O= .  Condition (v) rules out distributions for which  

depends on 

q

( , )x z  only through sequences of eigenvectors of T  whose eigenvalues converge to 0 

too rapidly.  For example, let 1p = , 0r = , so Z  is not in the model.  Let { , : ,1,2 ...}j j jλ φ

0

=  

denote the eigenvalues and eigenvectors of T  ordered so that 1 2 ...λ λ≥ ≥ > .  Suppose that 

1( )G x ( )xφ= , 1(( ) ) ng x x (x)φ φ= + , and the instrument is W .  Then 1(φ= )W�

2
1 T 2

1 // q nh q h λ= .  Because , condition (v) is violated if .  The 

practical significance of condition (v) is that the 

1/ 6−
1h n∝ 1/( − 3)nλ = o n

nτ  test has low power when g  differs from  

only through eigenvectors of T  with very small eigenvalues. 

G

 The following theorem states the result of this section. 

 Theorem 5:  Let assumption 4 hold.  Then given any 0δ > , any α  such that 0 1α< < , 

and any sufficiently large (but finite) C ,  

 lim inf ( ) 1
nc

n
n

zατ δ
→∞

> ≥ −P
F

 

and  

 ˆlim inf ( ) 1 2
nc

n
n

zεατ δ
→∞

> ≥ −P
F

. 

2.8  Alternative Weights 

 This section compares nτ  with a generalization of the test of Bierens (1990) and Bierens 

and Ploberger (1997).  To minimize the complexity of the discussion, assume that 1p =  and 
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0r = , so Z  is not in the model.  Let ( , )H ⋅ ⋅  be a bounded, real-valued function on [  with the 

property that 

20,1]

1

0∫
)s w [0,1]∈

nH

nH

)w =

( )]iX

(H z

XWf

α nHτ H

nτ

α α α

α

)XW iB W

)nHB

( , )R z z = E 1 2( ,z

Ω H

2
( , ) ( ) 0H z w s w dw =   

only if  for almost every ( 0= w .  Then a test of 0H  can be based on the statistic 

1 2
0

( )nHS z dτ = ∫ , z

where 

1/ 2 ( )

1

ˆ( ) [ ( , )
n

i
i i

i
S z n Y G H z W− −

=

= −∑ . 

If  for a suitably chosen function , then , ( )H zw� H� nHτ  is a modification of the statistic 

of Bierens (1990) and Bierens and Ploberger (1997) for testing the hypothesis that a conditional 

mean function belongs to a specified, finite-dimensional parametric family.  In this section, it is 

shown that the power of the nHτ  test can be low relative to that of the nτ  test.  Specifically, there 

are combinations of density functions  and local alternative models (2.6)-(2.8) such that an 

-level  test based on a fixed  that does not depend on the sampled population has 

asymptotic local power arbitrarily close to α , whereas the α -level nτ  test has asymptotic local 

power that is bounded away from α .  The opposite situation cannot occur under the assumptions 

of this paper.  That is, it is not possible for the asymptotic power of the α -level  test to 

approach  while the power of the -level nHτ  test remains bounded away from .  

 The conclusion that the power of nHτ  can be low relative to that of nτ  is reached by 

constructing an example in which the -level nτ  test has asymptotic power that is bounded away 

from α  but the nHτ  test has asymptotic power that is arbitrarily close to α .  To minimize the 

complexity of the example, assume that G  is known and does not have to be estimated.  Define 

1/ 2

1
( ) ( ,

n

n i
i

z n U f z−

=

= ∑ , 

1/ 2

1
( ) ( ,

n

i i
i

z n U H z W−

=

= ∑ , 

1 2 1 2[ ( ) ( )]n nB z B z , and 1 2) [ ( ) ( )]H nH nHR z B z B z= E .  Also, define the operators 

 and Ω  on  by 2[0,1]L
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1

0
( )( ) ( , ) ( )z R z x xψ ψΩ = ∫ dx  

and 
1

0
( )( ) ( , ) ( )H Hz R z x xψ ψΩ = ∫ dx . 

Let { , : 1,2,...}j j jω ψ =  and { , : 1,2,...}jH jH jω ψ =  denote the eigenvalues and eigenvectors of 

Ω  and HΩ , respectively, with the eigenvalues sorted in decreasing order.  For  defined as in 

(2.6), define 

∆

( ) ( )( )z T zµ = ∆ ,  

1 1

0 0
( ) ( ) ( , ) ( , )H XWz x H x w f x wµ = ∆∫ ∫ dxdw ,  

1

0
( ) ( )j jz z dµ µ ψ= ∫ z , 

and 
1

0
( ) ( )jH H jHz zµ µ ψ= ∫ dz . 

Then arguments like those used to prove Theorem 4 show that under the sequence of local 

alternatives (2.6)-(2.8) with a known function G ,  

2 2
1

1
( /d

n j j j
j

)jτ ω χ µ ω
∞

−

→ ∑  

and 

2 2
1

1
( /d

nH jH j jH jH
j

τ ω χ µ
∞

−

→ ∑ )ω  

as .  Therefore, to establish the first conclusion of this section, it suffices to show that for a 

fixed function , 

n →∞

H XWf  and  can be chosen so that ∆ 2
1

/ jj
µ ω∞

=∑  is bounded away from 0 

and 2
1

/H jHj
µ ω∑∞

=
 is arbitrarily close to 0.   

 To this end, let 1( ) 1xφ =  and 1/ 2
1( ) 2 cos( )j x j xφ π−
+ =  for .  Let  be a finite 

integer.  Define  

1j ≥ 1>A

2

1  if  1 or 

  otherwise.j j

j

e
λ −

== 


A
 

Let 
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1/ 2
1 1 1

1
( , ) 1 ( ) ( )XW j j j

j
f x w x wλ φ φ

∞

+ + +
=

= +∑ . 

Let  for all .  Then 2( | )U W w= =E 1 [0,1]w∈ 1 2 1 2( , ) ( , )R z z t z z= , j jω λ= , and 
1 jj
ω∞

=∑  is 

non-zero and finite.  Set ( ) ( )x D xφ∆ = A  for some finite .  Then 0D > 2 2 2 2D Dµ λ= =A .  Since 

 is fixed, it suffices to show that  can be chosen so that H A 2
Hµ  is arbitrarily close to 0.  To do 

this, observe that  has the Fourier representation ( ,H z )w

, 1
( , ) ( ) ( )jk j k

j k
H z w h z wφ φ

∞

=

= ∑ , 

where {  are constants.  Moreover, : , 1,2,...}jkh j k = 2 2
1

2
H jj

D hµ ∞

=
= ∑ A

0

.  Since  is bounded, 

 can be chosen so that  for any 

H

A 2
1

/jj
h ε∞

=
<∑ A

2D ε > .  With this A , 2
Hµ ε< , which 

establishes the first conclusion.   

 The opposite situation (a sequence of local alternatives for which 2µ  approaches 0 

while is 2
Hµ  remains bounded away from 0) cannot occur.  To show this, assume without loss 

of generality that the marginal distributions of X  and W  are U ,  for all 

, and 

[0,1] 2( | )U W w= =E 1

[0,1w∈ ]
1

1jHj
ω∞

=
=∑ .  Also, assume that 2 C∆∆ <  for some constant .  Then,  C∆ < ∞

1 1 2
0 0

1
( , ) jH

j
H z w dzdw ω

∞

=

=∑∫ ∫ . 

It follows from the Cauchy-Schwartz inequality that 
21 1 12 2

0 0 0 0

21

0 0

2 2

2

( , ) ( , ) ( )

( , ) ( )

.

H XW

XW

H z w dzdw f x w x dx dw

f x w x dx dw

T

C

µ

µ∆

  ≤ ∆    

 = ∆  

≤ ∆ ∆

≤

∫ ∫ ∫ ∫

∫ ∫




 

Therefore, 2µ  can approach 0 only if 2
Hµ  also approaches 0. 
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3.  MONTE CARLO EXPERIMENTS 

This section reports the results of a Monte Carlo investigation of the finite-sample 

performance of the nτ  test.  In the experiments, 1p =  and 0r = , so Z  does not enter the model.  

Realizations of ( , )X W  were generated by ( )X ξ= Φ  and W ( )ζ= Φ , where  is the cumulative 

normal distribution function, 

Φ

~ (0,1N )ζ , 2 1/) 2(1ξ ρζ ρ ε= + − , (0,1)Nε ∼ , and 0.7ρ = .  

Realizations of Y  were generated from  

(3.1) 0 1 UY X Uθ θ σ= + + , 

where 0 0θ = , 1 0.5θ = , 2 1/ 2(1 )U ηε η= + − ν (0,1)N, ν ∼ , 0.2Uσ = , and η  is a constant 

parameter whose value varies among experiments.  0H  is true if 0η =  and false otherwise.  To 

provide a basis for judging whether the power of the nτ  test is high or low, we also report the 

results of a Hausman (1978) type test of the hypothesis that the ordinary least squares and 

instrumental variables (IV) estimators of 1θ  in (3.1) are equal.  The instruments used for IV 

estimation of (3.1) are .  In addition, we report the results of simulations with (1, )W nHτ .  The 

weight function is  and is taken from Bierens (1990).  The bandwidth used to 

estimate 

( ,H x ) exp( )w xw=

XWf  was selected by cross-validation.  The bandwidth used to estimate Xf  is  

times the cross-validation bandwidth.  The kernel is 

1/n 5 7 / 24−

2 25 ) (|I( ) (1K v /16)(1 v |v 1)= − ≤

25=

, where  is 

the indicator function.  The asymptotic critical value was estimated by setting .  The 

results of the experiments are not sensitive to the choice of 

I

Kε

Kε , and the estimated eigenvalues 

ˆ jω  are very close to 0 when .  The experiments use a sample size of  and the 

nominal 0.05 level.  There are 1000 Monte Carlo replications in each experiment. 

25j > 500n =

 The results of the experiments are shown in Table 1.  The differences between the 

nominal and empirical rejection probabilities of the nτ  and Hausman-type tests are small when 

0H  is true.  When 0H  is false, the power of the nτ  test is, not surprisingly, somewhat smaller 

than the power of the Hausman-type test, which is parametric, but the differences in power are 

not great.  The performance of nHτ  is worse than that of nτ .  When 0H  is true, difference 

between the nominal and empirical rejection probabilities of the hHτ  test is relatively large, and 

the power of the nHτ  test is lower than that of the nτ  test. 
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4.  AN EMPIRICAL EXAMPLE 

This section presents an empirical example in which nτ  is used to test the hypothesis that 

the right-hand side variable of an Engel curve is exogenous.  The curve is given by (2.1) with 

1p =  and , where Y  denotes the expenditure share of services, 0r = X  denotes the logarithm of 

total expenditures, and W  denotes annual income from wages and salaries of the head of 

household.  Engel curves are important in the analysis of consumer behavior.  Parametric 

specifications are often linear or quadratic in X  (Muellbauer 1976; Banks, Blundell, and Lewbel 

1998).  There is also increasing use of nonparametric estimators (Deaton 1998).  However, X  is 

arguably jointly determined with household budgeting decisions and, therefore, endogenous. 

The data consist of 1518 household-level observations from the British Family 

Expenditure Survey.  This is a diary-based household survey that is supplemented by recall 

information.  We use a subsample consisting of married couples with one or two children and an 

employed head of household.  W  should be a good instrument for X  if income from wages and 

salaries is not influenced by household budgeting decisions. 

The bandwidths for estimating XWf  were selected by the method described in the Monte 

Carlo section.  The kernel is the same as the one used in the Monte Carlo experiments.  As in the 

experiments, the critical value of nτ  was estimated by setting 25Kε = .   

 The nτ  test of the hypothesis that X  is exogenous gives 0.162nτ =  with a 0.05-level 

critical value of 0.151.  Thus, the test rejects the hypothesis that X  is exogenous.  The hypothesis 

was also tested by comparing the OLS and IV estimates of 1θ  and 2θ  in the quadratic model 

2
0 1 2Y X Xθ θ θ= + + +U . 

The instruments are .  The hypothesis that the OLS estimates of 2(1, , )W W 1θ  and 2θ  equal the 

IV estimates is rejected at the 0.05 level.  Thus, the nτ  test and the parametric test both reject the 

hypothesis that the logarithm of total expenditures is exogenous.  

APPENDIX:  PROOFS OF THEOREMS 

To minimize the complexity of the presentation, it is assumed here that 1p =  and 0r = .  

The proofs for 1p >  and/or  are identical after replacing quantities for  with the 

analogous quantities for the more general case.  Let 

0r > 1,p r= 0=

XWf  denote the density function of ( , )X W .   

Define 
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1/ 2
1

1
( ) ( , )

n

n i XW
i

S z n U f z W−

=

= ∑ i

XW i

XW i

i

W i

W i

j

, 

1/ 2
2

1
( ) [ ( ) ( )] ( , )

n

n i i
i

S z n g X G X f z W−

=

= −∑ , 

1/ 2 ( )
3

1

ˆ( ) [ ( ) ( )] ( , )
n

i
n i i

i
S z n G X G X f z W− −

=

= −∑ , 

( )1/ 2
4

1

ˆ( ) [ ( , ) ( , )]
n

i
n i i XWXW

i
S z n U f z W f z W−−

=

= −∑ , 

( )1/ 2
5

1

ˆ( ) [ ( ) ( )][ ( , ) ( , )]
n

i
n i i i XXW

i
S z n g X G X f z W f z W−−

=

= − −∑ , 

and 

( )1/ 2 ( )
6

1

ˆˆ( ) [ ( ) ( )][ ( , ) ( , )]
n

ii
n i i i XXW

i
S z n G X G X f z W f z W−− −

=

= − −∑ . 

Then 
6

1
( ) ( )n n

j
S z S z

=

=∑ . 

Define V Y . ( )i i iG X= −

 Lemma 1:  As , n →∞

 , 1/ 2
3

1
( ) ( , ) / ( ) ( )

n

n i i X i
i

S z n V t X z f X r z−

=

= +∑ n

where . 
1 2
0

( ) (1)n pr z dz o=∫
 Proof:  Define 

2

( )
1

2 1

1( ) ( , )
( )

n
i

j h jn
X j

j i

R x V K x
nh f x

−

=
≠

= −∑ X x , 

2

( )
2

2 1

1( ) [ ( ) ( )] ( , )
( )

n
i

j hn
X j

j i

jR x G X G x K x
nh f x

−

=
≠

= −∑ X x− , 

( )1/ 2
3 1

1
( ) [ ( ) ( , )]

n
i

n a i i XW in
i

S z n R X f z W−−

=

= ∑E  

where iE  denotes the expected value over i-subscripted random variables, 
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( ) ( )1/ 2
3 1 1

1
( ) { ( ) ( , ) [ ( ) ( , )]

n
i i

n b i XW i i i XW in n
i

S z n R X f z W R X f z W− −−

=

= −∑ E }, 

and 

( )1/ 2
3 2

1
( ) ( ) ( , )

n
i

n c i XW in
i

S z n R X f z W−−

=

= ∑  

Standard calculations for kernel estimators show that 

2

2
( ) 4

2
2 21

1 (ˆ ( ) ( ) [ ( )] ( , )
( )

i
j h j

X j
j i

nG x G x Y G x K x X x O h
nh f x nh

−

=
≠

log ) 
− = − − + + 

  
∑  

uniformly over .  Therefore,  [0,1]x∈

3 3 3 3( ) [ ( ) ( ) ( )] (1)n n a n b n cS z S z S z S z o= − + + + p  

uniformly over . Lengthy but straightforward calculations show that  [0,1]z∈

1 12 2
3 30 0

( ) (1), ( ) (1)n b n cS z dz o S z dz o= =∫ ∫E E   

as .  Therefore,  n →∞

(A.1)  
1 2

30
( ) (1)n b pS z dz o=∫

and 

(A.2)  
1 2

30
( ) (1)n c pS z dz o=∫

by Markov’s inequality.  Moreover, we can write 

2

( )
1

1

02 1

1
1

[ ( ) ( , )]

1 [ ( , ) ( , ) / ( )] ( , )

1 [ ( , ) / ( ) ( , )],

i
i i XW in

n

j XW XW X h j
j
j i

n

j j X j n j
j
j i

R X f z W

V f x w f z w f x K x X x dxd
nh

V t X z f X X z
n

ρ

−

=
≠

=
≠

= −

= +

∑ ∫

∑

E

w

2

 

where 2
1( , ) ( )n x z O hρ =  uniformly over .  Therefore, 2( , ) [0,1]x z ∈

(A.3)  1/ 2
3 2

1
( ) ( , ) / ( ) ( )

n

n a i i X i n
i

S z n V t X z f X zρ−

=

= +∑

where  as .  The lemma follows by combining (A.1)-(A.3).  Q.E.D. 
1 2

20
( ) (1)n z dz oρ =∫E n →∞
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Lemma 2:  As ,  . n →∞
1 2

40
( ) (1)n pS z dz o=∫

 Proof:  Define 

1 ( ) ( )1
0

1 1

ˆ ˆ[ ( , ) ( , )][ ( , ) ( , )]
n n

i j
n i j i XW i i XW jXW XW

i j
j i

D n U U f z W f z W f z W f z W dz− −−

= =
≠

= −∑ ∑ ∫E −

2 z

. 

Then 

1 1 ( )2 1 2
40 0

1

ˆ( ) [ ( , ) ( , )]

(A.4) (1).

n
i

n n i i X iX
i

n

S z dz D n U f z W f z W d

D o

−−

=

= + −

= +

∑∫ ∫E E

 

Now define 

( ) (
1 1

( , )
2
1 1

,

1ˆ ( , ) , ,
n

i j
h k h kXW

k
k i j

)f z w K z X z K w W w
nh

− −

=
≠

= − −∑  

and 

( ) (1 12
1

1( , ) , ,j h j hz w K z X z K w W w
nh

δ = − − )j

3

)i

. 

Then , where 1 22n n n nD D D D= + +

1

1 ( , ) ( , )1
0

1 1

ˆ ˆ[ ( , ) ( , )][ ( , ) ( , )]

n

n n
i j j i

i j i XW i i XW jXW XW
i j

j i

D

n U U f z W f z W f z W f z W dz− − − −−

= =
≠

=

− −∑ ∑ ∫E

 

1 ( , )1
2 0

1 1

ˆ[ ( , ) ( , )] ( ,,
n n

i j
n i j i XW i jXW

i j
j i

D n U U f z W f z W zδ− −−

= =
≠

= −∑ ∑ ∫E W dz

i

, 

and 

11
3 0

1 1
( , ) ( ,, )

n n

n i j i j j
i j

j i

D n U U z W z Wδ δ−

= =
≠

= ∑ ∑ ∫E dz . 

But .  Therefore, ( | ) 0U W =E 1 2 0n nD D= = , and 2 1
3 1[( ) ]nD O nh −= .  The lemma now follows 

from Markov’s inequality.  Q.E.D. 
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 Lemma 3:  As , n →∞ 6 ( ) (1)n pS z o=  uniformly over [0,1]z∈ .   

 Proof:  This follows from ( ) 2 1/ 2 2
1

ˆ ( , ) ( , ) [(log ) /( ) ]i
XWXW 1f x w f x w O n nh h− − =

( ) 1/ 2 2
2 2

ˆ ( ) ( ) [(log ) /( ) ]iG x G x O n nh h− − = +

+  almost 

surely uniformly over ( ,  and  almost surely 

uniformly over .  Q.E.D. 

2) [0,1]x w ∈

,1][0x∈

 Proof of Theorem 1:  Under 0H , 2 5( ) ( ) 0n nS z S z= =  for all [0,1]z∈ .  Therefore, it 

follows from Lemmas 1-3 that 
1 2
0

( ) (1)n n pB z dz oτ = +∫ . 

The result follows by writing 
1 2
0
[ ( ) ( ) ]n n

2B z B z d−∫ E z  as a degenerate U  statistic of order two. 

See, for example Serfling (1980, pp. 193-194).  Q.E.D. 

 Proof of Theorem 2:  ( )ˆˆ j j Oω ω| |− = Ω −Ω��  by Theorem 5.1a of Bhatia, Davis, and 

McIntosh (1983).  Moreover, standard calculations for kernel density estimators show that 
2 1/ 2
1

ˆ [(log ) /( ) ]O n nhΩ−Ω =� .  Part (i) of the theorem follows by combining these two results.  

Part (ii) is an immediate consequence of part (i).  Q.E.D. 

Proof of Theorem 3:  Let zα�  denote the 1 α−  quantile of the distribution of 

2
11 j jj

ω χ∞

=∑ � .  Because of Theorem 2, it suffices to show that if 1H  holds, then under sampling 

from Y g ,  ( )X U= +

 . lim ( ) 1n
n

zατ
→∞

> =P �

This will be done by proving that  
11 2
0

plim [( )( )] 0n
n

n Tq z dzτ−

→∞
= >∫ . 

To do this, observe that by a uniform law of large numbers of Pakes and Pollard (1989, Lemma 

2.8),  uniformly over 1/ 2
2 ( )nn S z− = ( )( ) (1pTq z o+ ) [0,1]z∈ .  Moreover,  

uniformly over  because 

1/ 2
5 ( ) (1)n pn S z o− =

2 1/ 2 2
1 1( ) ][0,1]z∈ ( )ˆ ( , ) ) [(log ) /i

XW ( ,XWf z w w O n− − =f z nh h+  a.s. 

uniformly over ( , .  Combining these results with Lemmas 1-3 yields 2) [0,1]∈z w

1/ 2 1/ 2( ) ( ) ( )( ) ( )n nn S z n B z Tq z r z− −= + + n  
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where  as .  It follows from Theorem 1 that .  

Therefore, .  Q.E.D. 

1 2
0

( ) (1)n pr z dz o=∫
1

0
[(p

nn τ− → ∫

n →∞

1 2)( )]Tq

11 2
0

( ) (1)n pn B z dz o− =∫

z dz

Proof of Theorem 4:  The conclusions of lemmas 1-3 hold under (2.6)-(2.8).  Therefore,  

2 5( ) ( ) ( ) ( ) ( )n n n n nS z B z S z S z r z= + + + , 

where .  Moreover,  
1 2
0

( ) (1)nr z dz o=∫ p

i

W i

( )1
5

1

ˆ( ) ( )[ ( , ) ( , )]

(1)

n
i

n i i XWXW
i

S z n X f z W f z W

o

−−

=

= ∆ −

=

∑
 

almost surely uniformly over .  In addition z

1
2

1
( ) ( ) ( , )

( ) (1)

n

n i X
i

S z n X f z W

z oµ

−

=

= ∆

= +

∑
 

almost surely uniformly over .  Therefore, z ( ) ( ) ( ) ( )n n nS z B z z r zµ= + + .  But 

( ) ( ) (1)n n pB z B z o= +�  

uniformly over .  Therefore, it suffices to find the asymptotic distribution of [0,1]z∈

1 2 2
0

1
[ ( ) ( )] ( )n j

j
B z z dz bµ µ

∞

=

+ = +∑∫ ��
j

dz

j

, 

where  
1

0
( ) ( )j n jb B z zψ= ∫� � . 

The random variables bj µ+�  are asymptotically distributed as independent ( , )j jN µ ω�  variates.  

Now proceed as in , for example, Serfling’s (1980, pp. 195-199) derivation of the asymptotic 

distribution of a degenerate, order-2 U  statistic.  Q.E.D. 

 The following definitions are used in the proof of Theorem 5.  For each distribution 

ncπ ∈F , let ( )A π  be a random variable. Let { : 1,2,...}nc n = be a sequence of positive constants.  

Write ( )p ncA O=  uniformly over  if for each ncF 0ε >  there is a constant Mε  such that 

sup [| ( ) | / ]
nc

nA c Mε
π

π ε
∈

> <P
F

. 
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For each ncπ ∈F , let { ( ) : 1,2,...}nA nπ =

0

 be a sequence of random variables.  Write  

uniformly over F  if for each 

(1)n pA o=

nc ε >  

lim sup [| ( ) | ] 0
nc

nn
A

π
π ε

→∞ ∈
> =P

F
. 

 Proof of Theorem 5:  Let zα  denote the critical value of nτ .  Observe that zα  is bounded 

uniformly over .  The arguments used to prove lemmas 1-3 show that  for 

 and ∫  uniformly over .  In addition, an application of Markov’s 

inequality shows that  uniformly over F .  Define  

ncF

1 2
3S z

1 2
0

(1)nj pS z z o=∫ ( )d

4,6j =
0

( ) (1)n dz O=

1 2
10
( )nS z d∫

p

z =

ncF

(1)Op nc

1 3 4 6( ) ( ) ( ) ( ) ( )n n n n nS z S z S z S z S z= + + +�  

and 

2 5( ) ( ) ( )n n nD z S z S z= + . 

Let ⋅

=

 denote the  norm.  Use the inequality  with  and 

 to obtain 

2[0,1]L 2 20.5 ( )a b b≥ − − 2a

5n

na S=

2nb S S+

22( ) 0.5n g n nz D S zα ατ  > ≥ − > 
 

P P � . 

For any finite , 0M >

( )

2 22 2

2 22

22

0.5 0.5 ,

0.5 ,

0.5 .

n n n n n

n n n

n n

D S z D z S S M

D z S S M

2

D z M S M

α α

α

α

  − ≤ = ≤ + ≤  
  

 + ≤ + > 
 

 ≤ ≤ + +  
 

P P

P

P P

� �

� �

�




>

�

 

(1)n pS O=�  uniformly over .  Therefore, for each ncF 0ε >  there is Mε < ∞  such that for all 

M Mε>  

( )22 20.5 .5n n nD S z D z Mα α ε − ≤ ≤ ≤ + + 
 
P P�  

for all distributions in .  Equivalently, ncF

( )22 20.5 .5n n nD S z D z Mα α ε − > ≥ > + − 
 
P P�  
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and 

(A8) ( )2( ) .5n nz D z Mα ατ ε> ≥ > + −P P . 

Now 

( )1/ 2

1

ˆ( ) [ ( ) ( )] ( , )
n

i
n i i XW

i
iD z n g X G X f z W−−

=

= −∑ . 

Therefore, 

1/ 2 2
1

1
( ) [ ( ) ( )][ ( , ) ( )]

n

n i i XW i
i

nD z n g X G X f z W h R z−

=

= − +∑E E , 

where ( )nR z  is nonstochastic, does not depend on g  or G , and is bounded uniformly over 

.  It follows that  [0,z∈ 1]

1/ 2 1/ 2 2
1( ) ( )( )nD z n Tq z O n h q = +  E  

and 

  1/ 2( ) 0.5 ( )( )nD z n Tq z≥E

for all distributions in  and all sufficiently large n .  Moreover, ncF

( ) ( )1/ 2 ( )

1

( ) ( )1/ 2 ( )

1

1 2

ˆ ˆ( ) ( ) [ ( ) ( , ) ( ) ( , )]

ˆ( )[ ( , ) ( , )]

( ) ( ),

n
i ii

n n i iXW XW
i

n
i ii

i i iXW XW
i

n n

iD z D z n q X f z W q X f z W

n q X f z W f z W

D z D z

− −− −

=

− −− −

=

− = −

+ −

≡ +

∑

∑

E E E

E  

where ( )i−E  denotes the expectation with respect to the distribution of 

{ , : ..., ; }j j 1,X W j n j i= ≠ .  It is clear that 2
1 (1)n pD O=  uniformly over .  Moreover, it 

follows from the properties of kernel estimators that 

ncF

2
1 1

1/ 2

1

log| ( ) | | ( ) |

log [ | ( ) | ( )],

n
n

n i
n i

n
p

r nD z q X
nh

r n q X O n
h

=

−

≤

= +

∑

E

 

uniformly over , where  almost surely as  and depends only on the 

distribution of 

ncF

, )

(1)nr O= n →∞

(X W .  Therefore,  
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2
2 2

1/ 2
1

log ( | |) (1) (1)n
n n p p

r nD D n q O O
n h

 
 − ≤ +
 
 

E E . 

A further application of  with a2 20.5 ( )a b b a≥ − − 2
nD=  and b nD= E  gives 

2 4 2
2 2 1

1/ 2 3 2
1

2
2

1/ 2 3
1

log ( | |).125 (1) (1)

log.125 (1) (1)

n
n p

n
p p

r n h qD n Tq O O
n h Tq

r nn Tq o O
n h

   ≥ − +     

   = − +     

E
p

 

uniformly over .  Therefore, if  is sufficiently large, ncF C 20.5 nD z Mα> +  with probability 

approaching 1 as  uniformly over F .  Q.E.D. n →∞ nc
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Table 1:  Results of Monte Carlo Experiments 
 
 

               Empirical Probability 
             that H0 Is Rejected Using 
 η           nτ       Hausman test     nHτ  
         __       __________          ____ 

 
0.0        0.048         0.055       0.025  

 
0.1        0.256         0.304       0.187  

 
0.15       0.539         0.590       0.429  

 
0.20       0.814         0.876       0.724  

 
0.25       0.945         0.971       0.922  
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