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Defects of mitochondrial dynamics are emerging causes of neurological disease. In two children presenting with severe neurological

deterioration following viral infection we identified a novel homozygous STAT2 mutation, c.1836 C4A (p.Cys612Ter), using

whole exome sequencing. In muscle and fibroblasts from these patients, and a third unrelated STAT2-deficient patient, we

observed extremely elongated mitochondria. Western blot analysis revealed absence of the STAT2 protein and that the mitochon-

drial fission protein DRP1 (encoded by DNM1L) is inactive, as shown by its phosphorylation state. All three patients harboured

decreased levels of DRP1 phosphorylated at serine residue 616 (P-DRP1S616), a post-translational modification known to activate

DRP1, and increased levels of DRP1 phosphorylated at serine 637 (P-DRP1S637), associated with the inactive state of the DRP1

GTPase. Knockdown of STAT2 in SHSY5Y cells recapitulated the fission defect, with elongated mitochondria and decreased P-

DRP1S616 levels. Furthermore the mitochondrial fission defect in patient fibroblasts was rescued following lentiviral transduction

with wild-type STAT2 in all three patients, with normalization of mitochondrial length and increased P-DRP1S616 levels. Taken

together, these findings implicate STAT2 as a novel regulator of DRP1 phosphorylation at serine 616, and thus of mitochondrial

fission, and suggest that there are interactions between immunity and mitochondria. This is the first study to link the innate

immune system to mitochondrial dynamics and morphology. We hypothesize that variability in JAK-STAT signalling may con-

tribute to the phenotypic heterogeneity of mitochondrial disease, and may explain why some patients with underlying mitochon-

drial disease decompensate after seemingly trivial viral infections. Modulating JAK-STAT activity may represent a novel

therapeutic avenue for mitochondrial diseases, which remain largely untreatable. This may also be relevant for more common

neurodegenerative diseases, including Alzheimer’s, Huntington’s and Parkinson’s diseases, in which abnormalities of mitochondrial

morphology have been implicated in disease pathogenesis.
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Introduction
Mitochondrial diseases are clinically, biochemically and

genetically heterogeneous disorders characterized by

dysfunction of mitochondria, which are highly dynamic or-

ganelles with multitudinous functions including energy

generation by oxidative phosphorylation (OXPHOS).

Although the dynamic nature of mitochondria was

recognized nearly 100 years ago, only recently have the

processes determining mitochondrial morphology been

unravelled (Lewis and Lewis, 1914; Archer, 2013).

Mitochondrial networks are defined by a delicate balance

of fusion and fission events that link mitochondrial biogen-

esis to mitophagy, a quality control process for removing

dysfunctional mitochondria in the mitochondrial ‘life cycle’.

When this balance is perturbed, mitochondrial disease

ensues (Table 1) (Chan, 2006; Youle and van der Bliek,

2012).

Several factors necessary for mitochondrial fusion and fis-

sion have been identified (Archer, 2013). Mitochondrial

fusion is mediated by several large membrane guanosine

triphosphatases (GTPases): the mitofusins (MFN1 and

MFN2) on the outer membrane, and optic atrophy 1

(OPA1) on the inner membrane. Factors involved in fission

include dynamin related protein 1 (DRP1, encoded by

DNM1L), receptor proteins MiD49 (MIEF2) and MiD51

(MIEF1), mitochondrial fission protein 1 (FIS1) and mito-

chondrial fission factor (MFF) (Palmer et al., 2011; Losón

et al., 2013). However, the exact processes coordinating

fission and fusion remain unknown.

Previously mutations in the fission factors DRP1 and

MFF have been implicated in causing human mitochondrial

fission defects (Waterham et al., 2007; Shamseldin et al.,

2012). We have now used whole exome sequencing to

identify mutations in STAT2, encoding a component of

the JAK (janus kinase)-STAT (signal transduction and acti-

vation of transcription) cytokine signalling pathway (Steen

and Gamero, 2013), as a novel cause of disrupted mito-

chondrial fission in three patients from two unrelated pedi-

grees. These data are the first to implicate signalling

pathways of the innate immune system in the regulation

of mitochondrial dynamics.

Materials and methods

Patients

Patient 1 is the elder child of non-consanguineous Albanian
parents. He was well and developing normally until 12
months of age when he developed a febrile illness 1 week
after mumps, measles and rubella (MMR) vaccination unre-
sponsive to antibiotics. CSF cell count was normal. Pyrexia,
lethargy, conjunctivitis, inflamed throat and lymphadenopathy
continued, leading to a diagnosis of atypical Kawasaki disease,
treated with intravenous immunoglobulin. Measles serology
prior to immunoglobulin administration was consistent with
recent MMR vaccination. C-reactive protein (CRP) was ini-
tially raised but rapidly fell to normal levels.

One month later, he was readmitted with opsoclonus-
myoclonus. EEG and brain MRI were normal, but repeat
CSF examination revealed 12 � 106/l lymphocytes and low
glucose, with negative bacterial cultures and viral PCRs. He
was treated empirically with intravenous acyclovir and ster-
oids, and improved. Immunology investigations demonstrated
low CD4-positive T cells. Major Histocompatibility Complex
II deficiency and HIV were excluded, and proliferative re-
sponse to phytohaemagglutinin was normal. He remained
well until 2.5 years when he presented with fever, diarrhoea,
hypoglycaemia, impaired renal and liver function, metabolic
acidosis (pH 7.15), hyperammonaemia, markedly elevated
CRP and thrombocytopaenia (Supplementary Table 1). He
then developed opsoclonus-myoclonus and seizures, with neu-
roimaging suggestive of meningoencephalitis. He received
treatment with antimicrobials, antifungals and steroids.
Seizures were very difficult to control, and he developed sig-
nificant neurological impairment including four-limb spasticity,
chorea and severe cortical visual impairment, which has not
recovered. He remains on triple anticonvulsant therapy, re-
placement immunoglobulin and antibiotic prophylaxis.

Patient 2, the younger sister of Patient 1, was well until aged
13 months when she developed a febrile illness 1 week after
MMR vaccine. She was anaemic and lymphopaenic with
deranged clotting. CSF was normal except for a positive
PCR for mumps virus. Throat swab PCR was positive for
measles, mumps and rubella. She had detectable antibodies
to all three viruses, suggesting an appropriate immunological
response to the vaccine (Supplementary Table 1). She was
treated with intravenous acyclovir, and was readmitted aged
15 months with persistent fever and malaise. She developed
septic shock with metabolic acidosis requiring intensive care.
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CSF culture and PCR for herpes simplex virus (HSV), varicella
zoster virus (VZV) and enterovirus were negative. She was
treated with intravenous ceftriaxone, clindamycin and acyclo-
vir. Her blood counts normalized, and bone marrow aspirate
and lymph node biopsy showed no haemophagocytic lympho-
histiocytosis. Autoantibodies were negative. She made a slow
recovery with no neurological or other deficit, and has re-
mained well other than a diarrhoeal illness, during which im-
munological testing revealed marked lymphopaenia with low B
and T cells. Over the next 12 months her lymphocyte count
and T and B cell numbers normalized. Due to the apparent
association with infection, she remains on replacement im-
munoglobulin. In addition to neurological and immune dys-
function, both children had evidence of mild renal
tubulopathy. Detailed clinical data are provided in
Supplementary Table 1.

Patient 3 (Hambleton et al., 2013), from an unrelated
family, was reported previously to have experienced a pro-
longed febrile illness with multisystem involvement following
MMR. Her affected cousin developed a sterile encephalitic ill-
ness following the same vaccine (Hambleton et al., 2013).

Histological analysis of
mitochondrial morphology in skeletal
muscle and fibroblasts

Electron microscopy

Open skeletal muscle and skin biopsies were performed after
informed parental consent. For ultrastructural examination of
skeletal muscle and cultured skin fibroblasts, samples were
fixed in 2.5% glutaraldehyde buffered with 0.1 M sodium
cacodylate (pH 7.2), postfixed in 1% osmium tetroxide,
dehydrated in ascending grades of alcohol, processed through
propylene oxide and embedded in Epon

TM

resin. Ultrathin
sections were cut with a diamond knife on a Leica
Ultracut UCT Ultramicrotome, placed on copper grids and
stained with uranyl acetate and lead citrate. Examination
was carried out with a JEOL 1400 transmission electron
microscope.

Live cell imaging

Live cell imaging using confocal microscopy was used to visu-
alize tetramethyl rhodamine methyl ester (TMRM)-labelled
mitochondria in fibroblasts. Primary skin fibroblasts cultured
under standard conditions as described previously (Fassone
et al., 2010) were labelled with 25 nM TMRM (Invitrogen)

prior to visualizing mitochondria with the use of a Zeiss
LSM 700 �63 oil immersion objective. Identical detector/
gain settings were used for all samples. To determine mem-
brane potential, mean fluorescence intensity (background cor-
rected) of TMRM-labelled mitochondria was analysed using
ImageJ (n = 3; 427 cells analysed for each n).

Genetic analyses

Mitochondrial DNA analysis

The whole mitochondrial genome was sequenced in muscle
from Patient 1 using Sanger sequencing, and mtDNA copy
number per diploid nuclear genome was determined in patient
and control fibroblasts by Droplet Digital

TM

PCR (Bio-Rad).
The primers and probes used in this study have been published
previously (Bai and Wong, 2005).

Candidate nuclear gene sequencing

Candidate nuclear genes (DRP1, MFF and FIS1) previously
implicated in mitochondrial fission were analysed by Sanger
sequencing of DNA extracted from blood from Patients 1
and 2.

Homozygosity mapping

Genome-wide SNP (single nucleotide polymorphism) array was
performed using Illumina HumanCytoSNP 12 in Patient 1,
Patient 2 and both parents to search for regions of homozy-
gosity by descent that might contain the mutated gene.

Whole exome sequencing and filtering criteria

The whole exome was sequenced in Patients 1 and 2 using the
Illumina HiSeq 2000 platform. Sample preparation and enrich-
ment was performed according to Agilent’s SureSelect Protocol
Version 1.2. Concentration of each library was determined
using Agilent’s QPCR NGS Library Quantification Kit
(G4880A). Samples were pooled prior to sequencing, with
each sample at a final concentration of 10 nM. Read files
(Fastq) were generated from the sequencing platform via
runs to an average 50� coverage on an in-house HiSeq
2000 system (Illumina). Raw fastq files were aligned to the
GRCh37 reference genome using novoalign version 2.08.03.
Duplicate reads were marked using Picard tools
MarkDuplicates. Calling was performed using the haplotype
caller module of GATK (https://www.broadinstitute.org/gatk,
version 3.1-1), creating gVCF formatted files for each
sample. The individual gVCF files for the exomes discussed
in this study, in combination with �3000 clinical exomes

Table 1 Molecular defects leading to disturbed mitochondrial dynamics

Genetic defect Mechanism Clinical features

DNM1L (DRP1) Impaired fission Fatal infantile encephalopathy (cardiomyopathy in a mouse model)

MFF (mitochondrial fission factor) Impaired fission Encephalopathy and neuropathy

MFN2 (mitofusin 2) Impaired fusion Charcot–Marie–Tooth disease type 2 A (peripheral neuropathy, sometimes with

optic atrophy)
OPA1 Impaired fusion Autosomal dominant optic atrophy

PINK1 (PTEN-induced kinase 1) Impaired mitophagy Autosomal recessive juvenile parkinsonism

PARK2 (parkin) Impaired mitophagy Autosomal recessive juvenile parkinsonism
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(UCL-exomes consortium), were combined into merged VCF
files for each chromosome containing on average 100 samples
each. The final variant calling was performed using the GATK
GenotypeGVCFs module jointly for all samples (cases and con-
trols). Variant quality scores were then recalibrated according
to GATK best practices separately for indels and SNPs.
Resulting variants were annotated using ANNOVAR.
Candidate variants were filtered based on function (non-syn-
onymous, presumed loss-of-function or splicing) and minor
allele frequency (50.5% minor allele frequency in our internal
control group, as well as the NHLBI exome sequencing data
set).

STAT2 lentiviral transduction and
silencing

STAT2 transduction

Lentiviral transduction of patient fibroblasts with wild-type
STAT2 was performed to determine whether the mitochon-
drial fission defect could be rescued by exogenous wild-type
STAT2. The human STAT2 gene was cloned into the self-
inactivating HIV1-derived lentiviral vector plasmid as previ-
ously described (Demaison et al., 2002). The plasmid uses
the spleen focus-forming virus promoter to drive expression
of the STAT2. Expression was linked to enhanced green fluor-
escent protein through an internal ribosomal entry site.

HEK293T cells were cultured in Dulbecco’s modified Eagle
medium (Invitrogen) supplemented with 10% foetal calf serum
(Sigma). These cells were seeded in T175 flasks and grown
overnight to reach 80% confluency. Each flask was transfected
with 50 mg vector plasmid, 17.5 mg vesicular stomatitis virus
(VSV) envelope plasmid (pMDG), and 32.5 mg gag/pol packa-
ging plasmid (pCMV�8.74) using 2.5 nM polyethylenimine.
Viral supernatant was harvested 48 and 72 h after transfection,
filtered at 0.22 mm and concentrated by ultracentrifugation at
23 000g for 2 h at 4�C using a Beckmann ultracentrifuge.
Virus particles were resuspended in Opti-Mem

�
and stored

at �80�C. The number of viral infectious particles was calcu-
lated by flow cytometry to measure GFP in HEK293T cells,
72 h after transduction with serial dilutions of virus.

STAT2 silencing

Silencing the STAT2 gene in SHSY5Y cells was achieved by
transducing the cells with the pGIPZ shRNAmir vector, as
previously described (Fassone et al., 2010). Stably transduced
clones were selected in 1 mg/ml puromycin (Gibco-Invitrogen).
STAT2 knockdown efficiency was tested by quantitative PCR
and immunoblot analyses.

Cellular analyses

Transcript expression

Total RNA was extracted from patient and control cells using
RNAqueous

�
-4PCR (ABI). For each sample, 1mg of total RNA

was reverse transcribed to cDNA using the high capacity RNA
to cDNA kit (ABI). Oligonucleotide primers for quantitative
real time PCR were designed using the universal probe library
(Roche Molecular Biochemicals), and synthesized at Sigma-
Genosys. Quantitative real time PCR was performed using
the Power SYBR

�
green mix (ABI) on a StepOne

TM

quantitative

PCR machine (ABI). The target genes analysed were DRP1,

MFN1, MFN2 and OPA1, with ACTB (encoding b-actin) as a
reference gene. Relative quantification of gene expression in
patient samples was carried out against control 1 (C1).

Protein expression

For immunodetection of STAT2, DRP1 (and phospho-DRP1)
and the fusion proteins MFN1, MFN2 and OPA1, cell pellets
of fibroblasts cultured in Dulbecco’s modified Eagle medium
containing GlutaMAX

TM

-I and 50 mM glucose (Life

Technologies) were extracted on ice in PBS, 1.5% n-dodecyl-
b-D-maltoside. Equal concentrations of protein were denatured
in Laemmli sample Buffer and 10 mM dithiotreitol, resolved
on 4–15% Mini-Protean

�
TGX Stain-Free

TM

gels with Precision

Plus Protein standards and blotted onto 0.2 mm PVDF mem-
branes with a Trans-blot

�
Turbo

TM

Transfer System (all from
Bio-Rad). Blots were blocked in PBS, 10% skimmed milk
powder (Fluka) and incubated overnight with primary anti-

body. For the phospho-immunoblots, the primary antibodies
used were: rabbit anti-Phospho-DRP1 (Ser616), rabbit anti-
Phospho-DRP1 (Ser637), rabbit anti-DRP1 (D6C7), rabbit
anti-STAT2 (Sigma) and anti-phosphorylated STAT1 antibo-

dies (all from Cell Signaling). For western blots the primary
antibodies used were: anti-DRP1 (BD Transduction
Laboratories), anti-MFN1 (Abcam), anti-MFN2 (Abcam),
anti-OPA1 (BD Transduction Laboratories), anti-MTCO2

(Abcam), anti-TOM20 (Santa Cruz Biotechnology) and anti-
b-actin (Abcam). Blots were incubated with the appropriate
secondary antibody (polyclonal goat anti-mouse or anti-
rabbit IgG/HRP from Dako) and were developed for 5 min

with Clarity
TM

Western ECL substrates (Bio-Rad) and visua-
lized on a ChemiDoc

TM

MP imager (Bio-Rad).

DRP1 localization

Cells were grown on glass chamber slides (Ibidi), fixed with
paraformaldehyde and incubated with anti-DRP1 primary
antibody (Cell Signaling) overnight and anti-rabbit FITC con-
jugated secondary antibody (Sigma) for 1 h. Nuclei were

stained with Hoechst and mitochondria were stained with
anti-TOM20 (Santa Cruz Biotechnology). Cells were viewed
under a Zeiss LSM 700 �63 oil immersion objective using
appropriate filters.

Fluorescence-activated cell sorting for detection of

STAT1 phosphorylation

To detect STAT1 phosphorylation, native and transduced pa-
tient fibroblasts were either left unstimulated or stimulated
with 105 units/ml of IFN� (Stratech Scientific Limited). Cells

were then lysed, fixed, washed and permeabilized before
adding 5ml anti-STAT1 phosphorylated tyrosine antibody
(BD Bioscience) as previously described (Walshe et al.,
2009). Ten thousand fibroblasts were acquired and analysed

(FACSCalibur and CELLQest software 2.1.1, BD Biosciences).
The percentage change in phosphorylated cells was calculated
by subtracting the percentage of unstimulated cells from that
of the stimulated cells. Experiments were performed in tripli-

cate and expression levels were expressed as mean � standard
error (SE).
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Apoptosis assay

Apoptosis was analysed in fibroblasts derived from the STAT2
deficient index patient (Patient 1) and compared to fibroblasts
derived from healthy individuals. Cultured fibroblasts were left
unstimulated or stimulated with 100 U/ml IFN� (PBL
Interferon Source), 10 mg/ml anti-fasL IgM (activating antibody
from Millipore) to crosslink the fasL receptor or phytohaem-
agglutinin (10 mg/ml, BioStat). Five hours post stimulation,
cells were stained with Annexin V (Life Technologies) and
7AAD (BD Biosciences). Ten thousand cells were acquired
on a FACSCalibur and analysed using CellQuest Pro (BD
Biosciences) and the percentage of apoptotic cells defined as
annexin V+7AAD+ .

Results

Clinical findings and laboratory
analyses

The siblings Patients 1 and 2 presented with severe neuro-

logical deterioration following live attenuated viral immun-

ization, and also had evidence of immune deficiency. The

multisystem nature of their disease, together with mildly

elevated plasma and CSF lactate levels in Patient 1

(Supplementary Table 1), led to clinical suspicion of a mito-

chondrial disorder. The elevated CSF neopterin levels

observed in Patients 1 and 2 (Supplementary Table 1)

were also compatible with an underlying mitochondrial

disorder (Hasselmann et al., 2010). Consequently open

muscle biopsies were performed in both siblings.

Spectrophotometric analysis of mitochondrial respiratory

chain enzyme activities (OXPHOS complexes I–IV) was

normal in skeletal muscle from Patients 1 and 2

(Supplementary Table 1) but in-gel activity of ATP synthase

(complex V) was reduced on blue-native gel electrophoresis,

particularly in Patient 1 who was clinically more severely

affected (data not shown).

Histological analyses

Light microscopy of skeletal muscle was unremarkable but

electron microscopy of muscle and fibroblasts from both

children revealed abnormally long mitochondria, between

8–10 mm in length (Fig. 1A), suggesting defective mitochon-

drial fission.

Genetic analyses

Homozygosity mapping and candidate gene analysis

Genome-wide SNP array revealed several 1 Mb regions of

homozygosity shared by the siblings, and an extended

region of homozygosity (10.6 Mb) on chromosome 12 (pos-

ition: 52 648 837–63 282 047). Sanger sequencing excluded

mtDNA mutations and mutations in candidate genes

known or predicted to cause defective mitochondrial fission

(DRP1, MFF and FIS1) (Waterham et al., 2007;

Shamseldin et al., 2012; Shen et al., 2014). Absolute

quantification of mtDNA copy number per cell showed a

2-fold increase in Patient 1 compared to five paediatric

controls [increased from a mean � standard deviation

(SD) of 658 � 136 in controls to 1310 in Patient 1].

Whole exome analysis

Whole exome sequencing did not demonstrate any

pathogenic mutations in known or putative mitochon-

drial disease genes in these siblings, but did reveal a

novel homozygous stop-gain mutation c.1836 C4A

(p.Cys612Ter) in STAT2, located within the region of ex-

tended homozygosity on chromosome 12.

Molecular and functional characterization of

mutated STAT2

The homozygous c.1836 C4A (p.Cys612Ter) mutation,

located within the SH2 domain of STAT2 which is critical

for transcriptional function, was confirmed by Sanger sequen-

cing and shown to be heterozygous in both parents (Fig. 1B).

STAT2 lentiviral transduction and
silencing

STAT2 transduction

Confocal microscopy demonstrated dense, elongated mito-

chondria in patient fibroblasts compared to controls in

80% confluent cell cultures (Fig. 2) We found that mito-

chondria from a clinically similar but unrelated patient

(Patient 3), previously reported with a homozygous splice

mutation in STAT2 (c.381 + 5 G4C), were also elongated

and tubular (Fig. 2), confirming the association between

STAT2 deficiency and mitochondrial elongation.

Furthermore patient cells were transduced with wild-type

STAT2 and the delivery of the correct version of STAT2

was confirmed by green fluorescent microscopy (Fig. 3A).

Analysing the mitochondrial length using TMRM (Fig. 2)

and quantitative methods such as ImageJ (Fig. 3B)

and IMARIS X64 software (Fig. 3C) revealed an average

3-fold decrease in mitochondrial length in patient fibro-

blasts compared to controls following transduction with

wild-type STAT2.

STAT2 silencing

To confirm the specific role of STAT2 as a determinant of

mitochondrial structure, SHSY5Y cells were transduced

with siRNA targeting STAT2. Quantitative analysis

showed a 4-fold increase in mitochondrial length in

STAT2-knockout SHSY5Y cells compared to wild-type

(Fig. 2B and C).

Cellular analyses

Transcript expression

We observed no difference in expression of genes encoding

fission (DNM1L, also known as DRP1) and fusion
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(MFN1, MFN2 and OPA1) proteins between patient and

control fibroblasts (Fig. 4A).

Protein expression

Western blot analysis revealed that STAT2 protein was un-

detectable in fibroblasts from all three patients Patients 1–3

(Fig. 5A), confirming nonsense mediated decay. We exam-

ined the effects of STAT2 deficiency on proteins involved

in mitochondrial fission and fusion. Steady-state levels of

DRP1 were similar in cytoplasmic protein extracts of cul-

tured fibroblasts from Patient 1 and Patient 3, compared to

six control subjects. However, the outer and inner mitochon-

drial membrane fusion proteins MFN1, MFN2 and OPA1

were increased in Patient 1 and Patient 3 compared to the six

control fibroblasts (Fig. 4B). Further analyses demonstrated

that the steady-state levels of mitochondrial cytochrome c

oxidase subunit II (MT-CO2) and the translocase of outer

mitochondrial membrane 20 (TOM20, encoded by

TOMM20) were similarly increased in the patients (Fig. 4B).

DRP1 localization

For DRP1 to exert its effects on initiation of mitochondrial

fission, it first needs to be localized to the mitochondria.

Using confocal microscopy, we examined DRP1 localiza-

tion in Patient 1 and control fibroblasts, and found DRP1

to be co-localized with the outer mitochondrial membrane

protein TOM20 in both patient and control fibroblasts.

Thus a deficiency of STAT2 protein does not appear to

affect DRP1 localization to the mitochondria (Fig. 4C).

DRP1 phosphorylation

To further investigate the underlying cause of the long mito-

chondria, we measured activation of DRP1, the main fission

factor in human mitochondria. As DRP1 levels and localiza-

tion were normal in patient cells, we hypothesized that

DRP1 might be inactive in patient cells and therefore

unable to complete the fission process. DRP1 activity is

dually regulated by phosphorylation at two key serine resi-

dues. Post-translational modification by phosphorylation at

Figure 1 Analysis of muscle and cultured skin fibroblasts. (A) Representative electron micrographs of muscle (longitudinal sections, top)

and fibroblasts (bottom) in patients and controls. Red arrows show mitochondria. (B) Top: Electropherograms showing Sanger sequence con-

firmation of novel homozygous stop gain mutation c.1836 C4A (p.Cys612Ter) in STAT2 identified by whole exome sequencing in Patients 1 and 2.

Parents are both heterozygous for the mutation. Bottom: The mutation leads to a stop-gain at amino acid position 612 of the highly conserved SH2

domain of STAT2 protein. P represents phosphorylation sites on STAT2.
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serine residue 616 (P-DRP1S616) is known to activate DRP1,

whereas phosphorylation at serine 637 (P-DRP1S637) is asso-

ciated with the inactive state of the GTPase. Reduced P-

DRP1S616 and increased P-DRP1S637 was observed in all

three patients compared to controls (Fig. 5), indicating that

DRP1 is inactive in STAT2 deficiency. Introduction of wild-

type STAT2 into patient fibroblasts using lentiviral transduc-

tion reversed the phenotypes; we observed increased P-

DRP1S616, decreased P-DRP1S637 and shorter mitochondria,

reflecting a state of increased fission. Conversely, knock

down of STAT2 in SHSY5Y cells led to increased P-

DRP1S637and reduced P-DRP1S616 (Fig. 5) and extremely

elongated mitochondria (Fig. 2B), recapitulating the pheno-

type in STAT2-deficient fibroblasts.

STAT1 phosphorylation detected by fluorescence-

activated cell sorting

As well as STAT2, phosphorylation of another STAT pro-

tein called STAT1, was also disrupted in Patient 1 and

Patient 2 fibroblasts compared to controls and recovered

significantly after transducing the cells with wild-type

STAT2 (Fig. 6A and B), confirming disturbance of the

IFN� pathway and explaining the susceptibility to viral in-

fection in these patients.

Apoptosis assay

ImageJ analysis of TMRM stained fibroblasts revealed

reduced mitochondrial membrane potential in all three pa-

tient fibroblasts Patients 1–3 (Fig. 6C). We therefore inves-

tigated apoptosis in Patient 1 cells compared to healthy

controls. Induction with phytohaemagglutinin and anti-

fasL both induced comparable apoptosis in patient and

control cells. However, the STAT2 deficient cells failed to

undergo apoptosis in response to IFN� (Fig. 6D). Both

phytohaemagglutinin and anti-fasL induction of apoptosis

resulted in the activation of caspase 3. These results indi-

cate that there is not an inherent apoptotic defect in these

cells but that IFN� induced apoptosis is severely impaired,

Figure 2 Mitochondrial length analysis using TMRM staining and confocal microscopy. (A) TMRM labelled mitochondria in Patients

1–3 fibroblasts (top), transduced with wild-type STAT2 (middle), and DRP1�, STAT1� and healthy control (HC) cells (bottom); all cells at 70%

confluency. Minus sign represents autosomal dominant mutation. (B) TMRM labelled mitochondria in SHSY5Y cells, wild-type (left) and STAT2

knockout (right). (C) ImageJ quantitation of mitochondrial perimeter length in fibroblasts (top) and SHSY5Y cells (bottom). **P5 0.005.
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consistent with previous observations in STAT2 knock-

down cell models (Romero-Weaver et al., 2010).

Discussion
We have found that STAT2, a component of the JAK-

STAT cytokine signalling pathway, is a novel regulator of

mitochondrial fission. This provides new insight into how

the cell may orchestrate mitochondrial morphology and dy-

namics in concert with other cellular compartments.

Modulation of mitochondrial shape can be detrimental to

organelle function and can lead to a distinct shift in cell

viability with unregulated fission reported in neurodegen-

erative disorders such as Alzheimer’s, Huntington’s and

Parkinson’s diseases (Dagda et al., 2009; Wang et al.,

2009; Kim et al., 2010).

DRP1 is the master regulator of mitochondrial fission,

though how it is ultimately recruited to the mitochondrial

outer membrane remains largely unknown (Palmer et al.,

2011; Losón et al., 2013). Complicating the issue further is

the fact that DRP1 can undergo numerous post-

translational modifications by the action of various proteins

at different stages of the cell cycle. In this report, studies of

mitochondrial morphology in three patients from two un-

related pedigrees with STAT2 mutations revealed an elon-

gated mitochondrial network. It appears that these patients

harbour decreased levels of DRP1 phosphorylated at serine

616 (P-DRP1S616) and increased levels of DRP1 phosphory-

lated at serine 637 (P-DRP1S637). Both post-translational

modifications render DRP1 largely inactive in the cytosol,

unable to polymerise into higher order structures and as-

semble into the fission apparatus on the mitochondrial

outer membrane—thus causing a block in the fission

Figure 3 Image analysis of mitochondria in transduced patient and control fibroblasts. (A) Confirmation of lentiviral transduction

in patient fibroblasts using GFP tag. Patient fibroblasts transduced with STAT2, stained with TMRM (left) and GFP expression upon reintroduc-

tion of STAT2 (right). Scale bar = 20 mm. (B) TMRM stained mitochondria in STAT2 transduced patient and control fibroblasts. Mito-Morphology

Macro was installed on ImageJ, which measures mitochondrial interconnectivity and elongation from epifluorescence micrographs of cells

stained for mitochondria. The perimeter length of the selected mitochondria is then measured using the software. Scale bar = 50 mm.

(C) Three-dimensional representations of mitochondria in Patient 1 fibroblasts before (top) and after (middle) transduction with STAT2,

and control fibroblasts (bottom). Confocal z-stack images of mitochondria stained with TMRM were reconstructed using IMARIS X64 soft-

ware (version 7.6.3, Bitplane) to give 3D representations of the mitochondria present in each cell. Single connected mitochondria depicted as

yellow.
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process (Taguchi et al., 2007; Chang and Blackstone, 2010;

Gomes et al., 2011). Deducing what is a block in fission

and what is stress induced hyperfusion is at times difficult;

however, hyperfusion is most commonly observed as an

acute response to stress and is a transient state before mito-

chondrial fragmentation (Gomes et al., 2011).

We observed normal steady state levels of DRP1 and

increased protein levels of the fusion proteins MFN1,

MFN2 and OPA1 and also other mitochondrial proteins

(MTCO2 and TOM20) compared to controls. This sug-

gests that the relative mitochondrial hyperfusion, as a

result of defective fission following DRP1 inactivation in

STAT2 deficiency, leads to an increase in mitochondrial

mass and results in raised levels of mitochondrial proteins,

including MFN1, MFN2 and OPA1, but does not affect the

levels of cytosolic proteins, such as DRP1. The increase in

mitochondrial mass is further corroborated by the doubling

in mtDNA copy number in cultured fibroblasts from

Patient 1 (data not shown). Given the reduction in en-

dogenous levels of P-DRP1S616 in these patients with

STAT2 mutations, it would seem that a modulation in

the activity of DRP1 is directly responsible for the mito-

chondrial phenotype and results in defective fission.

Intercurrent infection frequently triggers severe decom-

pensation in patients with mitochondrial disease. It has

been assumed that the underlying energy defect limits

the ability of the patient to cope with the added meta-

bolic stress of infection. However, more recently, we have

observed in our clinical practice that very specific infec-

tions can trigger fatal outcomes in patients who were not

previously known to have mitochondrial disease prior to

the viral illness. For example, we demonstrated that a

previously well infant with overwhelming cardiomyopathy

following respiratory syncytial virus infection had muta-

tions in the NDUFAF1 gene encoding an assembly

factor of complex I, a key enzyme of OXPHOS

Figure 4 Transcript and protein expression of fission and fusion proteins and DRP1 localization. (A) Quantitative PCR analysis of

DRP1, MFN1, MFN2 and OPA1 in three controls (C1–C3) and two patients (Patients 1 and 3). The samples were normalized to C1 and ACTB

encoding b-actin was used as an endogenous control (n = 3). (B) Western blot analyses of 14mg protein extracted with 1.5% n-dodecyl-b-D-

maltoside from control (C1–6) and patient (Patients 1 and 3) fibroblast cultures. Blots were probed with antibodies raised against DRP1, MFN1,

MFN2, OPA1, MTCO2 and TOM20 as indicated. An antibody raised against b-actin served as loading control. (C) DRP1 localization was carried

out by labelling the mitochondria with TOM20, DRP1 with FITC conjugated secondary antibody and nuclei with Hoechst and visualized under a

confocal microscope. Overlaid images show DRP1 co-localization with TOM20 on the mitochondria.

STAT2, a novel regulator of mitochondrial fission BRAIN 2015: Page 9 of 13 | 9

by guest on A
ugust 11, 2015

D
ow

nloaded from
 



(Fassone et al., 2011). We also found mutations in an-

other complex I assembly factor in another previously

well infant who died of severe cardiomyopathy following

parainfluenza infection (unpublished data). STAT2-knock-

out mice have severe susceptibility to viral infection, and

STAT2 is a binding target for measles, a possible culprit

in these patients (Park et al., 2000; Rarnachandran et al.,

2008; Alazawi et al., 2013).

In view of the endosymbiotic hypothesis (which proposes

that mitochondria originate from bacteria which were en-

gulfed by and subsequently developed an endosymbiotic

relationship with the host eukaryotic cell (Margulis,

Figure 5 DRP1 phosphorylation in patients and controls. (A) Protein samples (20 mg) from fibroblasts and SHSY5Y cells were separated

by sodium dodecyl sulphate polyacrylamide gel electrophoresis and immunoblotted with the indicated antibodies. STAT2 protein was not

detectable in the three patients (P1–3) confirming nonsense mediated decay; STAT2 levels were restored after lentiviral transduction with STAT2

(top). Total DRP1 protein levels remained constant throughout (second panel from top), but DRP1 phosphorylation at serine 616 was very low in

STAT2 deficient cells and increased after lentiviral transduction with wild-type STAT2 (third panel), whilst phosphorylation at serine 637 reduced

after STAT2 transduction (fourth panel). Actin was used as a loading control (bottom). (B) Quantitative analysis of phosphorylation at serines 616

and 637 of DRP1 in STAT2 transduced patient and control fibroblasts (left) and SHSY5Y wild-type and STAT2 knockout cells (right). Data were

normalized to the total level of DRP1 and represent the mean � SD of three independent experiments. *P5 0.05, **P5 0.005.
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1975), it is not surprising that components of the innate

immune system may also interact with, and perhaps even

regulate, mitochondria. The data from this study suggest an

unexpected link between innate immunity and mitochon-

drial function and suggest a potential new avenue for de-

veloping pharmacological strategies to treat mitochondrial

diseases, for which virtually no effective curative treatments

exist at present (Kanabus et al., 2014).

Seven known mammalian STATs have been reported to be

transcription factors with diverse biological functions, includ-

ing immune regulation and development (Meier and Larner,

2014). Recently, non-canonical STAT functions have

emerged, suggesting they play fundamental roles in cellular

homeostasis (Meier and Larner, 2014). STAT3, the first to

be found in mitochondria, has been implicated in the function

of OXPHOS complexes I and II, suggesting that STAT3 is

required for optimal energy production (Wegrzyn et al.,

2009). Basal pools of STAT1 and STAT2 have recently also

been identified within mitochondria, and have been postulated

to down regulate mitochondrial transcription (Goswami et al.,

2013; Lartigue and Faustin, 2013), possibly to co-ordinate the

immune response and energy production. This is particularly

interesting in light of a recent report that DRP1 may control

T-cell activation at the immune synapse (Baixauli et al.,

2011). Previously cyclin B1-cyclin-dependent kinase and

cAMP-dependent protein kinase A have been demonstrated

to phosphorylate DRP1 on Ser616 and Ser637 respectively

(Archer, 2013). We now suggest that STAT2 is an additional

phosphorylase capable of phosphorylating DRP1 on Ser616.

In summary, STATs have increasingly recognized roles in

mitochondrial function, and we have demonstrated that

STAT2 is a novel regulator of mitochondrial fission

(Fig. 7). Manipulation of the JAK-STAT pathway may rep-

resent a novel therapeutic strategy for mitochondrial dis-

eases, by fine-tuning the balance of mitochondrial fission

and fusion.

Figure 6 STAT1 phosphorylation before and after stimulation with IFNa, membrane potential and apoptosis levels.

(A) Representative FACS dot blot graph showing phosphorylated STAT1 in STAT2 transduced cells compared to non-transduced STAT2 deficient

cells after stimulation (results for Patient 3 shown). (B) The percentage change in phosphorylated cells was calculated from the data from

A [patient cells, transduced cells and SHSY5 wild-type (WT) and STAT2 knockout (KO) cells]. Data represents the mean � SD (n = 3). *P5 0.05,

**P5 0.005 (C) Membrane potential analysis in control and patient cells using TMRM staining. The mean fluorescence intensity was analysed via

confocal microscopy and Image J (n = 3;427 cells analysed for each n, � SEM) *P5 0.05, **P5 0.005. (D) Apoptosis was analysed in fibroblasts

derived from the STAT2 deficient patient (Patient 1) and compared to fibroblasts derived from healthy individuals. Cultured fibroblasts were left

unstimulated or stimulated with 100 U/ml IFN�, 10 mg/ml anti-fasL IgM or phytohaemagglutinin. Cells were analysed using CellQuest Pro and the

percentage of apoptotic cells defined as annexin V+7AAD+ .
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