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Abstract. In this paper we demonstrate a simulation framework that
enables the direct and quantitative comparison of post-processing meth-
ods for diffusion weighted magnetic resonance (DW-MR) images. DW-
MR datasets are employed in a range of techniques that enable estimates
of local microstructure and global connectivity in the brain. These tech-
niques require full alignment of images across the dataset, but this is
rarely the case. Artefacts such as eddy-current (EC) distortion and mo-
tion lead to misalignment between images, which compromise the quality
of the microstructural measures obtained from them. Numerous meth-
ods and software packages exist to correct these artefacts, some of which
have become de-facto standards, but none have been subject to rigorous
validation. The ultimate aim of these techniques is improved image align-
ment, yet in the literature this is assessed using either qualitative visual
measures or quantitative surrogate metrics. Here we introduce a simu-
lation framework that allows for the direct, quantitative assessment of
techniques, enabling objective comparisons of existing and future meth-
ods. DW-MR datasets are generated using a process that is based on
the physics of MRI acquisition, which allows for the salient features of
the images and their artefacts to be reproduced. We demonstrate the
application of this framework by testing one of the most commonly used
methods for EC correction, registration of DWIs to b=0, and reveal the
systematic bias this introduces into corrected datasets.

1 Introduction

Diffusion-weighted magnetic resonance (DW-MR) imaging is a powerful, non-
invasive technique that allows us to probe the microstructure of biological tissue.
The technique is well suited to the brain, and is used by clinicians and researchers
studying its structure in health and disease.

A DW measurement is made by applying a diffusion-sensitising gradient in a
particular direction across a sample, before acquiring an MR image. The image
contains information on the diffusion of water in this direction. This diffusion is
influenced by the underlying microstructure, and by acquiring a range of images
with varying gradient strength and direction we can probe this structure. Many
techniques, both model-based [1] and model-free [2] use the rich information
provided by such datasets to characterise brain microstructure.



Unfortunately images acquired with DW-MRI are susceptible to a number
of artefacts [3]. For example, B0 field inhomogeneities and the uneven mag-
netisation of the brain due to its magnetic susceptibility can lead to spatial
displacements of several pixels. This prevents comparison between these images
and others that do not contain these artefacts, such as T1- and T2-weighted
images. Some artefacts lead to spatial offsets between the DW-MR images in
a dataset, which compromises their anatomical correspondence and undermines
the estimates of microstructure obtained from them. For example, motion can
lead to rigid offsets between images, and eddy currents lead to a shear, scaling
and translation of the image in the phase encoding (PE) direction that varies
according to the amount of diffusion sensitisation used (typically summarised by
the b-value) and the direction it is applied in.

Techniques for dealing with these artefacts can broadly be divided into those
implemented at acquisition time, involving either some modification to the ac-
quisition process or the collection of supplementary data, and post-processing
methods implemented after acquisition time. Post-processing techniques are the
most widely used, as they have several advantages: they can be applied retro-
spectively to already acquired data, a user can revert to the original data if the
technique does not work as hoped, and they don’t require additional scan-time,
which is often expensive.

The literature contains a vast body of post-processing techniques and soft-
ware packages for correcting artefacts in DW-MRI [4–6]. Ideally their corrections
would be validated by comparison to the ground truth, i.e. a map of the spatial
deformations caused by the artefacts, but these cannot be obtained for real data.
As a result the literature relies on either qualitative visual assessments of image
alignment [7], or quantitative assessments of surrogate measures of alignment
that have questionable validity, such as tract length [8], or reduced residuals
from fits to microstructural models [9]. The lack of an objective ground truth
means existing techniques cannot be systematically assessed, preventing end-
users from making an informed choice. The development of new methods is also
hindered, as any improvements over existing ones are difficult to demonstrate.

Simulation could provide us with a ground truth that would enable us to
assess methods objectively, allowing researchers to make informed decisions when
selecting post-processing methods. Simulation systems exist for MRI [10, 11]
but there is nothing satisfactory for DW-MRI. Several systems are designed
to simulate DWIs of white matter bundles [12] but these are unable to generate
the full brain images required for the assessment of post-processing methods.
Methods that do attempt to simulate full-brain DWIs exhibit at least one of
two serious limitations. The first is the failure to model the full process of image
acquisition [13], i.e. the recording of a signal in frequency space which is Fourier
transformed to generate a spatial image, which precludes the inclusion of realistic
artefacts. The second is the use of a heavily simplified model to create the DW
contrast, which means the simulations do not capture some of the features of
DWIs that makes their processing uniquely challenging, such as the variation of
contrast with the direction of diffusion weighting [14].



In this work we introduce a simulation framework that allows for realistic
DW-MR images to be generated, enabling the effectiveness of correction tech-
niques to be assessed objectively and directly. The framework simulates the
physics of MRI acquisition by solving Bloch’s and Maxwell’s equations, which
ensures the images and their artefacts capture the key features of their real-
world counterparts. The complexity of diffusion contrast is captured using a
model-based approach. The framework is flexible, and allows for a range of arte-
facts to be modelled including EC, motion, B0 inhomogeneities and magnetic
susceptibility. We demonstrate an application of this framework to EC artefacts,
by providing a quantitative assessment of the most commonly used correction
technique, registration of all DWIs to b=0.

2 Methods

In this section we describe our simulation framework for producing realistic
DW-MR images, and discuss its application to validating eddy-current correc-
tion schemes. An overview of the framework is discussed in Section 2.1, our
implementation of it in 2.2 and its application in 2.3.

2.1 Simulation Framework

The framework (Figure 1) combines a physics-based approach to the MR im-
age acquisition process with a model-based representation of diffusion in order to
simulate realistic DW-MR datasets. To provide a meaningful validation a simula-
tion must capture the key characteristics of DW-MR images and their artefacts.
Many of the artefacts are introduced during the acquisition of the MR signal in
k-space, so it is necessary to reproduce this process for a faithful simulation.

The framework takes four main inputs. The first is a geometric object that
specifies the proton density and location of white matter (WM), grey matter
(GM) and cerebrospinal fluid (CSF) along with their T1 and T2 values. The
second is a representation of diffusion-weighting. These two inputs are combined
to produce a geometric object with its proton density reduced by an attenuation
factor determined by the diffusion model. The third input is a pulse sequence,
detailing the RF pulses and gradients. The fourth are details of any artefacts to
be included, e.g. motion. The effects of eddy currents are included in the pulse
sequence. The MR simulator takes the attenuated object, pulse sequence and
artefacts and solves Bloch’s and Maxwell’s equations at each point in the object,
summing the resultant signal in order to generate the k-space measurements.
This is Fourier transformed to produce the output DWI.

2.2 Implementation

A full-brain segmentation was used as the geometric object input. It was created
with T1- and T2-weighted images from a single subject from the WU-Minn HCP
dataset [15], using FSL’s FAST [16]. Diffusion weighting was achieved using
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Fig. 1: The pipeline for simulating DWIs.

the diffusion tensor (DT) [17]. Although the DT can not faithfully represent
complex WM anatomy, such as crossing fibres, empirically we find it adequate
for capturing the main features that make the processing of DWIs particularly
challenging: the contrast between WM, GM and CSF, as well as the variation of
signal with both the direction and strength of diffusion weighting (see Fig. 3). To
account for the departure from Gaussian diffusion at higher b-values, separate
tensors were fit to the b=1000 s mm−2 and b=2000 s mm−2 DWIs in the HCP
dataset using FSL’s DTIFIT. The tensor from the b=1000 s mm−2 shell was used
to predict attenuation for simulated DWIs with b ≤1000 s mm−2, and the tensor
from the b=2000 s mm−2 shell was used for simulations with b-values above this.

Eddy currents were added to the pulse sequence using the method in [14], by
superposing a sum of decaying exponentials on each gradient field:

GE
x,y,z =

∑

i

±εGdiff
x,y,z exp [−(t− ti)/τ ] (1)

where ti corresponds to the time each diffusion gradient is turned on or off, τ is
the decay time, ε is a constant determining the relationship between the strength
of eddy and diffusion gradients and a + or - is selected depending on whether
the gradient is being turned on or off. We performed simulations with Gdiff =
40 mT m−1, and selected ε = 0.006 and τ=100 ms to represent typical values
found in a clinical scanner [9].

We used POSSUM [11] to simulate the physics of MR acquisition. POSSUM
allows for the creation of pulse sequences, signal generation and image recon-



struction. By solving for the magnetization vectors over time at every voxel in
the object it allows for effects such as spin history, motion during pulse readout
and B0 inhomogeneities to be accounted for. By default, POSSUM simulates
gradient-echo echo-planar imaging (EPI) sequences. To simulate the spin-echo
EPI sequences typically used for DWI acquisition, we replace the default tissue-
specific T2* values with their corresponding T2 values.

2.3 Application to Eddy-Current Artefacts

To demonstrate the application of our framework we use it to assess one of the
most routinely employed methods for EC correction, registration of all DWIs to
b=0, by comparing evaluated and ground truth displacement fields.

Comparison of spatial displacement fields is the most direct way to evaluate
post-processing methods. For the case of EC distortions, we obtain a mapping
from distorted to undistorted space from an analysis of how the influence of
eddy currents on k-space translates into geometric distortions in image space.
The relationship between k-space and image space is expressed as a Fourier
transform:

ρ(x, y) =

∫∫
S(kx, ky) exp (ikxx) exp (ikyy) dkx dky (2)

where ki =
∫
γ̄Gi(t) dt, γ̄ is the gyromagnetic ratio, Gx and Gy are the imaging

gradients applied, S(kx, ky) is the MR signal in k-space, and ρ(x, y) is the image
in real space. In the presence of eddy currents, our imaging gradients are modified
by additional gradients

(
GEx , G

E
y , G

E
z

)
and a spatially invariant term ε0, causing

our phase term to become modified. Assuming the phase-encoding (PE) direction
is aligned with the y-axis, our signal equation becomes [9]:

ρ(x, y) =

∫∫
S(kx, ky) exp (ikxx) exp (ikyy

′) dkx dky (3)

where

y′ =

[(
1 +

∆kEy
ky

)
y +

∆kEx
ky

x+
∆kEz
ky

z +
∆k0

ky

]
(4)

Neglecting the decay of the EC field, which we have found has a negligible effect
on our obtained displacement fields, the ratios ∆ki

ky
are constants. As a result the

effects of EC induced gradients is to introduce two shears and a scaling which
correspond to displacements along the PE direction in image space, as shown in
Figure 2. For any given slice z is constant, so we observe these deformations as
a shear, scaling and translation of the image. The simulation framework allows
us to find the EC induced offsets ∆ki

ky
and thus obtain the transformations they

lead to in image space; this gives us a ground truth displacement field that we
can compare to the output of each EC correction tool.
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Fig. 2: The top row shows the k-space offsets that occur when EC induced
gradients are added to the x-, y- and z-gradient channels, and their corresponding
image space shifts are shown in the bottom row. K-space displacements are
obtained from the simulation framework, and the image space displacement fields
calculated according to the analytical relationship described in Section 2.3.

3 Experiments and Results

In this section we explain our experiment design and show results for our vali-
dation of the simulation framework (Section 3.1) and its application to assessing
registration to b=0 for EC correction (Section 3.2).

3.1 Validation of the Framework

We first assess how well the simulated images capture the most important char-
acteristics of real images. POSSUM has been shown to provide realistic MR sim-
ulation without diffusion weighting [11, 18], so here we focus on assessing the sim-
ulation of diffusion weighting. In the case of DW-MR the key characteristic is the
variation in contrast as the strength and direction of diffusion weighting changes.
To test this we compared a real and a simulated, artefact-free dataset with identi-
cal parameters: a 3T scanner with three shells, b=300/700/2000s mm−2, 8/32/64
directions with 1/4/8 b=0 images, TR/TE = 3000/109ms. Figure 3a compares
the changes in contrast with varying b-value. Figure 3b compares changes in
contrast with varying direction of b-vector.

3.2 Application to Eddy-Current Artefacts

To assess the effectiveness of registration to b=0 as a method for eddy cor-
rection we applied three techniques to a simulated dataset. The first is FSL’s
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(a) Variation in contrast with respect to b-value. Both real and simulated datasets
normalised against their respective b=0 images. The direction of diffusion weighing is
the same for both datasets.
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(b) Variation in contrast with respect to direction of diffusion weighting. Each column
represents an image acquired at b=2000 s mm−2 with a different b-vector, b̂1-b̂4. Real
and simulated datasets are normalised against their respective b=0 images and shown
on one intensity scale.

Fig. 3: Comparison of real and simulated data.



eddy correct, which performs registration of each DWI to b=0. To provide some
comparison we also used a method designed to circumvent registration to b=0,
proposed by Zhuang et al [8]. Zhuang’s technique assumes eddy-distortions are a
function of the applied diffusion gradients and obtains this relationship by only
registering DWIs with similar contrast. It predicts a shear, scaling and transla-
tion parameter for every slice of each volume. Zhuang’s technique is tailored to
ECs, and uses a constrained, 3 degree of freedom (DOF) registration algorithm,
whilst eddy correct uses a full 12 DOF. To control for this, our third method
registers each DWI to b=0 using the same constrained, 3 DOF registration al-
gorithm used by Zhuang.

The simulated dataset consisted of two shells, b=700/2000s mm−2, 32/64
directions with 4/8 b=0 images, TR/TE = 3000/90ms, 78×110×60 with isotropic
voxel size 1.85 mm. Rician noise was added to give SNR=20. EC gradients were
added to the pulse sequences according to the model in Section 2.2. No other
artefacts were added.

The three correction methods were also applied to a real dataset, to see if
the findings from simulation manifest themselves in real data. The dataset was
acquired on a 3T Siemens scanner with similar parameters to the simulated
dataset: b=700/2000s mm−2, 32/64 directions with 4/8 b=0 images, TR/TE =
7500/103ms, 96×96×55 with isotropic voxel size 2.5 mm. To test the effectiveness
of correction an outline was drawn around the b=0 image for the dataset, which
is not affected by EC distortions, and then superposed on the corrected DWIs.
This allows for a visual assessment of correction.

Figure 4 reports the mean error in the displacement fields predicted by the
three eddy correction methods. Figure 5 shows the spatial distribution of these
errors for a typical slice from one gradient of the b=2000s mm−2 shell. Figure 6
shows the results for correction on a real dataset.

4 Discussion and Conclusions

We have presented a simulation framework that allows for DW-MR datasets to
be generated for the purposes of testing, providing an objective and quantita-
tive means of assessing post-processing techniques. Our framework improves on
previous attempts at simulation in two key areas. Firstly, our simulated images
are able to provide a much more realistic representation of the contrast differ-
ences found across DW-MR datasets. This is demonstrated in Figure 3a, which
shows that the signal attenuation with increasing b-value is well matched to the
attenuation found in real data, and Figure 3b, which shows that variations in
contrast with varying b-vector are captured, particularly noticeable in the white
matter. Previous simulations have used a single representative mean diffusivity
or diffusion tensor for each tissue type to provide diffusion-weighting [13, 14],
which leads to vastly oversimplified contrast which will bias assessments of cor-
rection schemes. The second improvement comes from our modelling of the MR
acquisition process. Some attempts at simulations have modelled artefacts by
applying geometric transforms in the spatial domain [13]. These distortions are
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Fig. 6: Correction applied to real data. Anterior portion of the brain shown.
Red outlines were drawn on the b=0 images. Note these outline are different for
the b=700 and b=2000 images as the CSF in the b=0 has been cut out in the
b=2000 image. This is because the CSF rim is attenuated fully in the b=2000
data and this needs to be reflected in the outline for it to be a useful guide for
testing alignment.

not fully realistic, and furthermore without simulating the full image generation
process certain artefacts cannot be introduced, such as those caused by motion
during the read-out phase. Our approach extends both the range and realism of
artefacts that can be simulated.

The simulation framework allowed us to quantitatively assess registration to
b=0 as a method for correcting eddy currents. Figure 4 shows that registration to
b=0 performs poorly for both b=700 and b=2000 shells. In the b=700 shell the
displacement fields obtained from eddy correct are off by 0.5-1 pixels, and this
rises to 1-2.5 pixels for the b=2000 images. By contrast Zhuang’s scheme, which
explicitly avoids registration to b=0, is able to provide correction with mean er-
rors of less than 0.5 pixel for both shells. This performance cannot be attributed
to Zhuang’s method explicitly modelling the two shears and one scaling that
ECs gives rise to because results from the constrained, 3 DOF registration to
b=0 were poor, particularly for the b=2000 shell where it performed worse than
eddy correct. It is notable that the constrained registration performed slightly
better than eddy correct for the b=700 shell and slightly worse for the b=2000
shell. This is likely because the registration used by eddy correct is better op-
timised which allows it to cope better with the decreased SNR in the b=2000
shell. Figure 5 shows how these errors are spatially distributed in the brain. As
expected, these errors are largest at the edges of the brain, where the scalings
have the largest effect.

The results from simulation corroborate with our findings on real data. Fig-
ure 6 shows that data corrected by the two methods for registration to b=0
overscaled the images, causing them to overlap with the b=0 outlines. This ef-
fect is particularly noticeable for the b=2000 shell, where overlaps of more than
two pixels are clear, in agreement with our findings on simulated data.

These results are important in the context of techniques that use DW-MR
data. Data is most commonly acquired at b=1000, and our results indicate we
can expect errors of more than 0.5 pixels in such images if they are corrected



using registration to b=0. These are enough to cause anatomical misalignment
in regions of partial volume, such as the boundaries between grey matter and
CSF which will compromise any information on microstructure obtained from
such data. Our results demonstrate this effect will be even more severe for data
acquired at b=2000, which is becoming more common with the increasing pop-
ularity of high angular resolution (HARDI) techniques.

Future work will focus on further development of the framework. A more
realistic model of diffusion could be used, such as NODDI [1], to prevent the
need to fit multiple diffusion tensors. Currently a single T1 and T2 value is used
for each tissue type, which could be replaced by spatial maps which will allow for
variations within tissue types. The inclusion of spatially varying EC gradients
will allow for higher order effects to be modelled, allowing us to model artefacts
at much higher b-values.

Using the simulation framework, we can quantitatively assess the effective-
ness of artefact correction schemes. In demonstrating the framework’s applica-
tion to ECs, we have shown that one of the most commonly used correction
techniques introduces a systematic error that is significant enough to undermine
any analysis performed on data corrected using this scheme. The framework is
flexible and allows for simulation of the full range of artefacts found in DW-
MR, including motion, susceptibility and B0 inhomogeneities. We hope that this
framework will become a key aspect of the validation of any post-processing
schemes, which will allow users to make decisions on their choice of processing
techniques that are informed by objective, quantitative evidence.
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