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Abstract

This paper is concerned with estimating the additive components of a nonparametric
additive quantile regression model. We develop an estimator that is asymptotically
normally distributed with a rate of convergence in probability of n−r/(2r+1) when the
additive components are r-times continuously differentiable for some r ≥ 2. This result
holds regardless of the dimension of the covariates and, therefore, the new estimator
has no curse of dimensionality. In addition, the estimator has an oracle property and is
easily extended to a generalized additive quantile regression model with a link function.
The numerical performance and usefulness of the estimator are illustrated by Monte
Carlo experiments and an empirical example.
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1 Introduction

This paper is concerned with nonparametric estimation of the functions m1,α, . . . ,md,α in

the quantile regression model

Y = µα +m1,α(X
1) + · · ·+md,α(X

d) + Uα,(1.1)

where Y is a real-valued dependent variable, X j (j = 1, . . . , d) is the j’th component of

random vector X ∈ Rd for some finite d ≥ 2, µα is an unknown constant, m1,α, . . . ,md,α

are unknown functions, and Uα is an unobserved random variable whose α-th quantile con-

ditional on X = x is zero for almost every x. Estimation is based on an iid random sample

{(Yi,Xi) : i = 1, . . . , n} of (Y,X). We describe an estimator of the additive components

m1,α, . . . ,md,α that converges in probability pointwise at the rate n−r/(2r+1) when the mj,α

are r times continuously differentiable. This result holds regardless of the dimension of

X, so asymptotically there is no curse of dimensionality. Moreover, our estimator has an

oracle property. Specifically, the centered, scaled estimator of each additive component is

asymptotically normally distributed with the same mean and variance that it would have

if the other components were known. Finally, it is straightforward to extend our estimator

to the generalized additive model

G(Y ) = µα +m1,α(X
1) + · · ·+md,α(X

d) + Uα,

where G is a known, strictly increasing function.

Additive modeling is an important way to achieve dimension reduction in multivariate

nonparametric mean or quantile regression. There are many applications in which simple

parametric models fit the available data poorly and, therefore, a more flexible approach to

estimation is needed (e.g., Härdle (1990), Horowitz (1993), Horowitz and Lee (2002), and

Horowitz and Savin (2001), among many others). Fully nonparametric estimation avoids

the problem of poor fit but is usually unattractive in multivariate settings because the

curse of dimensionality typically causes fully nonparametric estimates to be very imprecise

with samples of the sizes found in applications. Nonparametric additive models reduce

the effective dimension of the estimation problem, thereby achieving greater estimation

precision than is possible with fully nonparametric methods, but provide greater flexibility

in the shape of the regression function than is possible with parametric models. This makes

additive modeling attractive when simple parametric models do not fit the data well. Other

examples of dimension reduction methods are index models (e.g., Ichimura (1993), Powell,
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Stock, and Stoker (1989), and Hristache, Juditsky, and Spokoiny (2001) for mean regression

models; Chaudhuri, Doksum, and Samarov (1997) and Khan (2001) for quantile regression

models) and partially linear models (e.g., Robinson (1988) for mean regression models; He

and Shi (1996) and Lee (2003) for quantile regression models). These are non-nested with

additive models and, therefore, not substitutes for them. Examples of empirical applications

of nonparametric additive models include: Hastie and Tibshirani (1990), Fan and Gijbels

(1996), and Horowitz and Lee (2002), among many others.

To the best of our knowledge, there are three existing methods for estimating model

(1.1): spline, backfitting, and marginal integration estimators. Doksom and Koo (2000)

consider a spline estimator, but they do not provide pointwise rates of convergence or an

asymptotic distribution. This makes inference with spline estimators difficult, though it is

not necessarily impossible if the sample is sufficiently large. Bertail, Politis, and Romano

(1999) show how to use subsampling to carry out inference when neither the asymptotic

distribution nor the pointwise rate of convergence of an estimator is known. It is not known

whether spline estimators can achieve the optimal pointwise rate. Huang (2003) discusses

the difficulty of obtaining pointwise asymptotic normality with spline estimators in the

context of additive nonparametric mean regression models. Fan and Gijbels (1996, pp. 296-

297) propose a backfitting estimator of (1.1). However, as with spline estimators, the rate of

convergence and other asymptotic distributional properties of the backfitting estimator are

unknown. De Gooijer and Zerom (2003) develop a marginal integration estimator of (1.1).

This estimator is asymptotically normal and, therefore, enables inference to be carried

out in a relatively straightforward way. However, marginal integration begins with an

unrestricted, d-dimensional, nonparametric quantile regression. Consequently, marginal

integration suffers from the curse of dimensionality and is likely to be imprecise when d

is large (see Remark 6 of De Gooijer and Zerom 2003). In summary, existing methods

for estimating (1.1) either have unknown pointwise rates of convergence and asymptotic

distributions, which makes inference difficult, or suffer from the curse of dimensionality,

which makes them imprecise in multidimensional settings.

This paper presents an estimator of (1.1) that is asymptotically normally distributed,

thereby permitting relatively straightforward inference in applications, and avoids the curse

of dimensionality. We show through theoretical calculations and Monte Carlo experiments

that our estimator is more precise than the marginal integration estimator when d is large.

The comparison with the marginal integration estimator is important because marginal
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integration is the only other existing method that has a known rate of convergence and

asymptotic distribution.

The estimator presented here builds on Horowitz and Mammen (2004) (hereinafter HM),

who develop an estimator of the additive components of a nonparametric additive mean re-

gression model with a link function. The estimator of HM converges in probability pointwise

at the rate n−2/5 when the additive components are twice continuously differentiable, re-

gardless of the dimension of X. Thus, the estimator has no curse of dimensionality. This

paper extends the HM approach to additive quantile regression models. As in HM, we

use a two-stage estimation procedure that does not require full-dimensional, unrestricted

nonparametric estimation. In the first stage, the additive components are estimated by

a series quantile-regression estimator that imposes the additive structure of (1.1). In the

second stage, the estimator of each additive component is obtained by a one-dimensional

local polynomial quantile regression in which the other components are replaced by their

first-stage series estimates. Although the estimation method proposed here is similar in

concept to that of HM, mean and quantile regressions are sufficiently different to make the

extension of HM to quantile regressions non-trivial and to require a separate treatment.

The key to the ability of our estimator to avoid the curse of dimensionality is that by im-

posing additivity at the outset, the first-stage series estimator achieves a faster-converging

bias than does a full-dimensional nonparametric estimator. Although the variance of the

series estimator converges relatively slowly, the second estimation step creates an averag-

ing effect that reduces variance, thereby achieving the optimal rate of convergence. The

approach used here differs from typical two-stage estimation, which aims at estimating a

single parameter by updating an initial consistent estimator. Here, there are several un-

known functions, but we update the estimator of only one. We show that asymptotically,

the estimation error of the other functions does not appear in the updated estimator of the

function of interest.

The remainder of this paper is organized as follows. Section 2 provides an informal

description of the two-stage estimator. Section 3 applies the estimator to an empirical

example. Asymptotic properties of the estimator are given in Section 4. Section 5 reports

the results of a Monte Carlo investigation in which we compare the finite sample performance

of the new estimator and two existing estimators. Concluding comments are in Section 6.

All the proofs are in the Appendix. We use the following notation. We let subscripts index

observations of random variables and superscripts denote components of vectors. Thus, if
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X is a random vector, Xi is the i’th observation of X, Xj is the j’th component of X,

and Xj
i is the i’th observation of the j’th component. We suppress the subscript α in the

notation whenever this can be done without causing confusion.

2 Informal Description of the Estimator

This section describes a two-stage procedure for estimating mj(·). For any x ∈ Rd, define

m(x) = m1(x
1) + . . .+md(x

d), where xj is the j-th component of x. We assume that the

support of X is X ≡ [−1, 1]d, and normalize m1, . . . ,md so that

∫ 1

−1
mj(v)dv = 0

for j = 1, . . . , d. There is no loss of generality of this normalization since the location of mj

is not identified without further restrictions.

To describe the first-stage series estimator, let {pk : k = 1, 2, · · · } denote a basis for

smooth functions on [−1, 1]. Conditions that the basis functions must satisfy are given in

Section 4. For any positive integer κ, define

Pκ(x) = [1, p1(x
1), . . . , pκ(x

1), p1(x
2), . . . , pκ(x

2), . . . , p1(x
d), . . . , pκ(x

d)]′.

Then for θκ ∈ Rκd+1, Pκ(x)
′θκ is a series approximation to µ+m(x). To obtain asymptotic

results, κmust satisfy certain conditions as n→∞. Upper and lower bounds on the number

of terms κ are given in Section 4. For a random sample {(Yi,Xi) : i = 1, . . . , n}, let θ̂nκ be

a solution to

min
θ

Snκ(θ) ≡ n−1
n∑

i=1

ρα[Yi − Pκ(Xi)
′θ],(2.1)

where ρα(u) = |u|+(2α− 1)u for 0 < α < 1 is the the check function. The first-stage series

estimator of µ+m(x) is defined as

µ̃+ m̃(x) = Pκ(x)
′θ̂nκ,

where µ̃ is the first component of θ̂nκ. For any j = 1, . . . , d and any xj ∈ [−1, 1], the

series estimator m̃j(x
j) of mj(x

j) is the product of [p1(x
j), · · · , pκ(xj)] with the appropriate

components of θ̂nκ. The same basis functions {p1, . . . , pk} are used to approximate each

mj(·). No cross products are needed because of the additive form of (1.1).
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To describe the second-stage estimator of (say) m1(x
1), define

m−1(X̃i) = m2(X
2
i ) + · · ·+md(X

d
i ) and m̃−1(X̃i) = m̃2(X

2
i ) + · · ·+ m̃d(X

d
i ),

where X̃i = (X2
i , . . . , X

d
i ). Assume that m1 is at least r-times continuously differentiable on

[−1, 1]. Then the second-stage estimator ofm1(x
1) is a (r−1)-th local polynomial estimator

with m−1(X̃i) replaced by the first-stage estimates m̃−1(X̃i). Specifically, the estimator

m̂1(x
1) of m1(x

1) is defined as m̂1(x
1) = b̂0, where b̂n = (b̂0, b̂1, . . . , b̂r−1) minimizes

Sn(b) ≡ (nδn)
−1

n∑

i=1

ρα

[

Yi − µ̃− b0 −
r−1∑

k=1

bk
[
δ−1
n (X1

i − x1)
]k − m̃−1(X̃i)

]

K

(
x1 −X1

i

δn

)

,

(2.2)

K (kernel function) is a probability density function on [−1, 1], and δn (bandwidth) is a

sequence of real numbers converging to zero as n→∞. The regularity conditions for K and

δn are given in Section 4. The second-stage estimators of m2(x
2), . . . ,md(x

d) are obtained

similarly. The estimator of the regression surface is µ̃+ m̂1(x
1) + . . .+ m̂d(x

d). The value

of r in (2.2) can vary according to the additive component mj that is being estimated if

different components are known to have different orders of differentiability. If the orders of

differentiability of the mj ’s are unknown in an application, we suggest setting r = 2 (local

linear estimation). This achieves dimension reduction and reasonable precision without

assuming the existence of higher-order derivatives.

Since quantile regression is equivariant to monotone transformations of Y (i.e., quantiles

of monotone transformations of Y are equal to monotone transformations of quantiles of

Y ), it is straightforward to extend the estimator of (1.1) to a generalized additive model

that has the form

G(Y ) = µ+m1(X
1) + · · ·+md(X

d) + U,(2.3)

where G is a known, strictly increasing function, and the α-th quantile of U conditional

X = x is zero for almost every x. The estimator of the α-th quantile of Y conditional X = x

can be easily obtained by G−1[µ̃+ m̂1(x
1)+ · · ·+ m̂d(x

d)], where µ̃+ m̂1(x
1)+ · · ·+ m̂d(x

d)

is obtained by the estimation procedure described above with G(Yi) being substituted for

Yi.

We end this section by mentioning computational aspects of the estimation procedure.

Both the first-stage and second-stage minimization problems, (2.1) and (2.2) are linear

programming problems and therefore can be solved easily by using computation methods
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developed for linear quantile regression methods. Moreover, the new estimator does not

require iterations (backfitting approach) or n first-stage estimates (marginal integration

method).

3 An Empirical Example

This section provides an empirical example that illustrates the usefulness of our estimator.

Yafeh and Yosha (2003) used a sample of Japanese firms in the chemical industry to exam-

ine whether ‘concentrated shareholding is associated with lower expenditure on activities

with scope for managerial private benefits’. In this section, we concentrate on only one of

regressions considered by Yafeh and Yosha (2003). The dependent variable Y is general

sales and administrative expenses deflated by sales (denoted by MH5 in Yafeh and Yosha

(2003)). This measure is one of five measures of expenditures on activities with scope for

managerial private benefits considered by Yafeh and Yosha (2003). The covariates include a

measure of ownership concentration (denoted by TOPTEN, cumulative shareholding by the

largest ten shareholders), and firm characteristics: the log of assets, firm age, and leverage

(the ratio of debt to debt plus equity). The regression model used by Yafeh and Yosha

(2003) is

MH5 = β0 + β1TOPTEN+ β2log(Assets) + β3Age + β4Leverage + U.(3.1)

The sample size is 185. This dataset is available at the Economic Journal web site at

http://www.res.org.uk.

We estimated the additive conditional median function using the two-stage estimator.

Estimation results for other conditional quantile functions are available on request. Before

estimation begins, the covariates are standardized to have mean zero and variance 1. B-

splines were used for the first-stage with κn = 4, which is equal to κ̂n + 1, where κ̂n = 3

minimizes the following Schwarz-type information criterion (see He and Shi (1996) and

Doksum and Koo (2000))

QBIC(κn) = n log

(
n∑

i=1

ρα[Yi − Pκ(Xi)
′θ̂nκ]

)

+ 2(log n)κn.(3.2)

Overfitting is needed to reduce the asymptotic bias (see Assumption 4.8 (a)). Local linear

fitting was used for the second-stage with the bandwidths δn = (0.42, 0.40, 0.45, 0.47) for

estimation of each additive component, respectively. The bandwidths δn are chosen by
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using a simple rule of thumb described in Fan and Gijbels (1996, p.202). The kernel K is

taken to be the normal density function. Varying δn from 0.75δn to 1.25δn did not change

estimation results significantly. All the computation in this paper is carried out in R using

libraries ‘splines’ (to generate B-spline basis) and ‘quantreg’ (to solve (2.1) and (2.2)). The

R language is available as free software at http://www.r-project.org.

Figure 1 summarizes estimation results. Each panel shows the estimated function of

interest and 90% symmetric pointwise confidence interval (without bias correction). The

confidence interval was obtained using asymptotic approximation based on Theorem 4.3.

The unknown components of the asymptotic variance in Theorem 4.3 were estimated by

kernel density estimators.

It can be seen that the effects of ownership concentration (TOPTEN) are nonlinear.

This suggests that the relationship between MH5 and TOPTEN conditional on firm char-

acteristics cannot be well described by a linear location-shift model. The effects of firm size

(log(Assets)) are also highly nonlinear. This may be due to the fact that MH5 includes

expenditures that are not related with managerial private benefits. The effects of firm age

are also very nonlinear, indicating that newly established firms are different from mature

firms. The effects of leverage are quite linear.

The estimation results suggest that the linear model is misspecified. To verify this, we

used the test of linearity for median regression models in Horowitz and Spokoiny (2002).

The test gives a test statistic of 2.192 with a 5% critical value of 1.999. Thus, the test

rejects the linear median regression model at the 5% level. Rejection of linearity does

not mean necessarily that the additive model fits the data well. To check whether the

additive model is a good fit, we consider an informal graphical method. Figure 2 shows

plots of estimated residuals against covariates. It can be seen that residuals scatter around

and show no obvious evidence of misspecification, although the plots show some skewness.

To check additivity formally would require a specification test. None is available in the

literature, and developing one is beyond the scope of this paper. Tests for additivity of a

mean regression model are available (see, for example, Gozalo and Linton (2001)), but these

have not been extended to quantile regressions.

In summary, our estimation results indicate that a model that is more flexible than a

linear median regression model is needed to study the relationship between concentrated

shareholding and expenditures for managerial private benefits.
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4 Asymptotic Results

This section gives asymptotic results for the estimator described in Section 2. We need

some additional notation. For any matrix A, let ‖A‖ = [trace(A′A)]1/2 be the Euclidean

norm. Let d(κ) = κd+ 1 and bκ0(x) = µ+m(x)− Pκ(x)
′θκ0.

To establish asymptotic results, we need the following conditions.

Assumption 4.1. The data {(Yi,Xi) : i = 1, . . . , n} are i.i.d. and the α-th quantile of Y

conditional on X = x is µ+m(x) for almost every x ∈ X .

Assumption 4.2. The support of X is X ≡ [−1, 1]d. The distribution of X is absolutely

continuous with respect to Lebesgue measure. The probability density function of X (denoted

by fX(x)) is bounded, is bounded away from zero, is twice continuously differentiable in the

interior of X , and has continuous second-order one-sided derivatives at the boundary of X .

Assumption 4.3. Let F (u|x) be the distribution function of Uα conditional on X = x.

Assume that F (0|x) = α for almost every x ∈ X and that F (·|x) has a probability density

function f(·|x). There is a constant Lf < ∞ such that |f(u1|x) − f(u2|x)| ≤ Lf |u1 − u2|
for all u1 and u2 in a neighborhood of zero and for all x ∈ X . Also, there are constants

cf > 0 and Cf <∞ such that cf ≤ f(u|x) ≤ Cf for all u in a neighborhood of zero and for

all x ∈ X .

Assumption 4.4. For each j, mj(·) is r-times continuously differentiable in the interior

of [−1, 1] and has continuous r-th-order one-sided derivatives at the boundary of [−1, 1] for
some r ≥ 2.

Assumption 4.5. Define Φκ = E[f(0|X)Pκ(X)Pκ(X)′]. The smallest eigenvalue of Φκ is

bounded away from zero for all κ, and the largest eigenvalue of Φκ is bounded for all κ.

Assumption 4.6. Define ζκ = supx∈X ‖Pκ(x)‖. The basis functions {pk : k = 1, 2, . . .}
satisfy the following conditions:

(a) each pk is continuous,

(b)
∫ 1
−1 pk(v)dv = 0,

(c)

∫ 1

−1
pj(v)pk(v)dv =

{ 1 if j = k
0 otherwise,
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(d) as κ→∞,

ζκ = O(κ1/2),(4.1)

(e) there are vectors θκ0 ∈ Rd(κ) such that

sup
x∈X

|µ+m(x)− Pκ(x)
′θκ0| = O(κ−r)(4.2)

as κ→∞.

Assumption 4.7. (κ4/n)(log n)2 → 0 and κ1+2r/n is bounded.

Assumption 4.1 defines a data generating process. If necessary, the bounded support

condition in Assumption 4.2 can be satisfied by carrying out a monotone transformation of

X, provided that the probability density function of the transformed X is bounded away

from zero. Among other things, Assumption 4.3 requires that f(·|x) be bounded away

from zero in a neighborhood of zero uniformly over x. This is a convenient condition to

establish asymptotic results. Without this condition, the rate of convergence could be

slower and the asymptotic distribution could be non-normal. See, for example, Knight

(1998) for asymptotic results for linear median regression estimators under more general

assumptions on f(u|x). The smoothness assumptions on F (u|x) in Assumption 4.3 and on

mj(·) in Assumption 4.4 are reasonable in a wide variety of applications and include most

parametric specifications of F (u|x) and mj(·) as special cases. As in Newey (1997) and HM,

Assumption 4.5 insures the non-singularity of the covariance matrix of the asymptotic form

of the first-stage estimator. Assumption 4.6 imposes restrictions on the basis functions.

When fX is bounded away from zero and mj is continuously r-times differentiable, the

conditions in Assumption 4.6 are satisfied by B-splines. Assumption 4.6 (e) restricts the

order of asymptotic bias. Due to the additive structure of (1.1), the uniform approximation

error in (4.2) is of order O(κ−r) regardless of the dimension of X. This helps the second-

stage estimator avoid the curse of dimensionality.

The following theorem gives a uniform convergence result for the first-stage series esti-

mator.

Theorem 4.1. Let Assumptions 4.1-4.7 hold. Then as n→∞,

(a)
∥
∥
∥θ̂nκ − θκ0

∥
∥
∥ = Op

[

(κ/n)1/2
]

,
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and

(b) sup
x∈X

|m̃(x)−m(x)| = Op

[

κ/(n1/2)
]

.

He and Shi (1994, 1996) obtained L2 rates of convergence for B-spline estimators of

univariate and bivariate quantile regression models and Portnoy (1997) and He and Portnoy

(2000) derived local asymptotic properties of smoothing splines for d ≤ 2.

The following theorem establishes a Bahadur-type expansion of the first-stage estimator.

Theorem 4.2. Let Assumptions 4.1-4.7 hold. Then as n→∞,

θ̂nκ − θκ0 = n−1Φ−1
κ

n∑

i=1

Pκ(Xi)
{

α− 1
[
Ui ≤ 0

]}

+ n−1Φ−1
κ

n∑

i=1

f(0|Xi)Pκ(Xi)bκ0(Xi) +Rn,

where the remainder term Rn satisfies

‖Rn‖ = Op

[

(κ2/n)3/4(log n)1/2 + κ3/2/n
]

+ op(n
−1/2).

To state asymptotic results for the second-stage estimator, we need additional assump-

tions.

Assumption 4.8. (a) κ = Cκn
ν for some constant Cκ satisfying 0 < Cκ <∞ and some

ν satisfying

1

2r + 1
< ν <

2r + 3

12r + 6
.

(b) δn = Cδn
−1/(2r+1) for some constant Cδ satisfying 0 < Cδ <∞.

Assumption 4.9. The function K is a bounded, continuous probability density function

on [−1, 1] and is symmetrical about 0.

Assumption 4.8 (a) requires that r ≥ 2. Assumption 4.8 (b) and Assumption 4.9 are

standard in the nonparametric estimation literature.

Define

P̄κ(x̃) = [1, 0, . . . , 0
︸ ︷︷ ︸

κ

, p1(x
2), . . . , pκ(x

2), . . . , p1(x
d), . . . , pκ(x

d)]′,

where x̃ = (x2, . . . , xd). The following condition is used to establish the limiting distribution

of the two-stage estimator.
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Assumption 4.10. The largest eigenvalue of E[P̄κ(X̃)P̄κ(X̃)′|X1 = x1] is bounded for all

κ and each component of E[P̄κ(X̃)P̄κ(X̃)′|X1 = x1] is twice continuously differentiable with

respect to x1.

Let µj =
∫ 1
−1 u

jK(u) du denote the moments of K and let S(K) be the (r × r) matrix,

whose (i, j) component is µi+j−2. Also, let e1 = (1, 0, . . . , 0) be the unit column vector.

As in Ruppert and Wand (1994) and Fan and Gijbels (1996, pp. 63-66), let K∗(u) =

e′1S(K)−1(1, u, . . . , ur−1)′K(u) be the ‘equivalent kernel’. K∗ is a kernel of order r if r is even

and of order r+1 for odd r. The higher-order property of the equivalent kernel is useful for

analyzing higher-order local polynomial fitting. Let fX1(x1) denote the probability density

function of X1, f1(u|x1) the probability density function of Uα conditional on X1 = x1, and

Dkmj(x
j) the k-th order derivative of mj . The main result of the paper is as follows:

Theorem 4.3. Let Assumptions 4.1-4.10 hold. Also, assume that r ≥ 2 is even, where r

is defined in Assumption 4.4. Then as n→∞, for any x1 satisfying |x1| ≤ 1− δn,

(a) |m̂1(x
1)−m1(x

1)| = Op

[

n−r/(2r+1)
]

.

(b) nr/(2r+1)[m̂1(x
1)−m1(x

1)]→d N[B(x1), V (x1)],

where

B(x1) =

{∫ 1

−1
urK∗(u) du

}

{r!}−1Cr
δD

rm1(x
1) and

V (x1) =

{∫ 1

−1
[K∗(u)]

2 du

}

C−1
δ α(1− α)/{fX1(x1)[f1(0|x1)]2}.

(c) If j 6= 1, then nr/(2r+1)[m̂1(x
1) −m1(x

1)] and nr/(2r+1)[m̂j(x
j) −mj(x

j)] are asymp-

totically independently normally distributed for any xj satisfying |xj | ≤ 1− δn.

The theorem implies that the second-stage estimator achieves the optimal rate of con-

vergence for a nonparametric estimator of a function with r derivatives. In addition, it has

the same asymptotic distribution that it would have if m2, . . . ,md were known. Parts (b)

and (c) of Theorem 4.3 imply that estimators of m1(x
1), . . . , md(x

d) are asymptotically

independently distributed. Because of Assumption 4.8 (a), it is required that mj be at

least twice continuously differentiable. This required differentiability is independent of the

dimension of X and, therefore, our estimator avoids the curse of dimensionality. Although

Theorem 4.3 is established only for interior points of X , it is expected that the second-stage

estimator does not require boundary modifications (see Fan, Hu, and Truong (1994) for

asymptotic properties of the local linear quantile regression estimator at boundary points).
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When (r − 2) local polynomial fits are used in (2.2) with even r ≥ 2 (for example,

a local constant estimator is used under the assumption that r = 2), the results in the

theorem would be the same except that the asymptotic bias depends on DfX1(x1)/fX1(x1)

and therefore is not design-adaptive. To be specific, in this case B(x1) in Theorem 4.3 has

the form

B(x1) =

{∫ 1

−1
urK∗(u) du

}{
Dr−1m1(x

1)DfX1(x1)

(r − 1)!fX1(x1)
+
Drm1(x

1)

r!

}

Cr
δ .

When r ≥ 2 is odd, for any x1 satisfying |x1| ≤ 1− δn, it can be shown that

n(r+1)/(2r+3)[m̂1(x
1)−m1(x

1)]→d N[B(x1), V (x1)],

where

B(x1) =

{∫ 1

−1
ur+1K∗(u) du

}{
Drm1(x

1)DfX1(x1)

r!fX1(x1)
+
Dr+1m1(x

1)

(r + 1)!

}

Cr+1
δ and

V (x1) =

{∫ 1

−1
[K∗(u)]

2 du

}

C−1
δ α(1− α)/{fX1(x1)[f1(0|x1)]2}

with δn = Cδn
−1/(2r+3) for some constant Cδ satisfying 0 < Cδ <∞. Again, the asymptotic

variance is the same but the asymptotic bias involves DfX1(x1)/fX1(x1). See, for example,

Ruppert and Wand (1994) and Fan and Gijbels (1996, pp. 61-63) for the asymptotic bias

and variance of estimators of local polynomial mean regression models.

5 Monte Carlo Experiments

This section reports the results of a small set of Monte Carlo experiments in which we com-

pare the finite-sample performance of the two-stage estimator and two existing estimators.

We first compare the performance of the two-stage estimator with that of the marginal

integration estimator of De Gooijer and Zerom (2003). Experiments were carried out with

d = 2 and d = 5. The experiments with d = 2 were carried out with the design identical

to that of De Gooijer and Zerom (2003, Section 4). Specifically, the experiments consist of

estimating m1 and m2 in

Y = m1(X
1) +m2(X

2) + 0.25ε,(5.1)

where m1(x
1) = 0.75x1 and m2(x

2) = 1.5 sin(0.5πx2). The covariates X1 and X2 are

bivariate normal with mean zero, unit variance, and correlation ρ. We consider α = 0.5
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and sample sizes n = 100 and 200. As in De Gooijer and Zerom (2003), experiments were

carried out with ρ = 0.2 (low correlation between covariates) and ρ = 0.8 (high correlation).

B-splines were used for the first-stage of the two-stage estimator with κn = 4 and local

linear fitting was used for the second-stage. Also, the kernel K is taken to be the normal

density function. The bandwidth δ1n = 3σ̂X1n−1/5 was chosen for estimation of m1 and

δ2n = σ̂X2n−1/5 was for estimation of m2, where σ̂Xj is the sample standard deviation of

Xj for j = 1, 2. The normal density function does not satisfy the finite support condition

in Assumption 4.9, but these kernel and bandwidths were chosen to be identical to those

in De Gooijer and Zerom (2003) in order to compare the finite-sample performance of the

two-stage estimator vis-à-vis those of the marginal integration method and the backfitting

approach reported in De Gooijer and Zerom (2003).

To see whether the two-stage estimator avoids the curse of dimensionality in finite-

samples, three additional covariates were added to (5.1). More specifically, the experiments

with d = 5 consist of estimating m1 and m2 in

Y = m1(X
1) +m2(X

2) +X3 +X4 +X5 + 0.25ε,

where Xj are independently distributed as U [−1, 1] for j = 3, 4, 5. Since the local linear

fitting is used, the second stage estimator has the rate of convergence n−2/5 regardless of d.

There were 100 Monte Carlo replications per experiment and the absolute deviation

error (ADE) was computed for each estimated function on the interval [−2, 2]. An average

of the ADE’s (AADE) was the criterion used in De Gooijer and Zerom (2003).

The upper panel of Table 1 shows the AADE values for the marginal integration and

two-stage estimators for combinations of d, ρ and n. We computed the pilot estimator of

the marginal integration estimator directly through the check function method, whereas

De Gooijer and Zerom (2003) obtained the pilot estimator by inverting the conditional

distribution function. As in De Gooijer and Zerom (2003), local linear approximation is

adopted in the direction of interest and local constant approximation is used in the nuisance

directions. The asymptotic distribution of the marginal integration estimator is identical

regardless of the choice between two alternative pilot estimators. As was reported by De

Gooijer and Zerom (2003), the marginal integration estimator performs poorly when there is

high correlation among covariates. When d = 2 and ρ = 0.8, the finite-sample performance

of the two-stage estimator is considerably better than that of the mariginal integration

estimator. Also, the performance of the two-stage estimator is comparable between ρ = 0.2
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and ρ = 0.8 when d = 2. That is also the case between d = 2 and d = 5 for both ρ = 0.2 and

ρ = 0.8. These are consistent with the asymptotic results established in Section 4 because

the limiting distribution of the two-stage estimator does not depend on d or ρ. However,

the marginal integration estimator performs very poorly when d = 5 and ρ = 0.8. In that

case, the AADE’s for the marginal integration estimator are more than twice as large as

those for the two-stage estimator.

We now compare the finite-sample performance of the two-stage estimator with a spline

estimator. We consider the same Monte Carlo design with d = 2. B-splines were used

for the spline estimator with data-dependent choice of κ̂n. Specifically, κ̂n is chosen by

minimizing Schwarz-type information criterion given by (3.2). For the first-stage of the

two-stage estimator, κ̂n + 1 is used since asymptotic results require overfitting. For the

second-stage of the two-stage estimator, the bandwidth δn is chosen by using a simple rule of

thumb described in Fan and Gijbels (1996, p.202). This time there were 1000 Monte Carlo

replications per experiment since the spline and two-stage estimators do not entail long

computation times. The lower panel of Table 1 shows the AADE values for the spline and

two-stage estimators for combinations of ρ and n. Notice that the finite-sample performance

of the two-stage estimator is marginally better for estimation of m1 and virtually as good as

that of the spline estimator for estimation of m2. One could use an updated (second-stage)

estimator of m1 to estimate m2 or vice versa. We carried out a Monte Carlo experiment

for this approach, only finding that there was no gain in the finite sample performance for

this additional updating (full results are not reported but available on request).

In summary, the results of experiments suggest that the two-stage estimator outperforms

the marginal integration estimator when there is high correlation among covariates and/or

the dimension of covariates is relatively large. Also, the experiment results indicate that

the two-stage estimator performs better or as well as the spline estimator, with which it

would be difficult to carry out inference.

6 Conclusions

This paper has developed an estimator of the additive components of a nonparametric

additive quantile regression model. It is shown that the estimator converges in probability

of n−r/(2r+1) when the unknown functions are r-times continuously differentiable for some

r ≥ 2. This result holds regardless of the dimension of the covariates. In addition, the

estimator has an oracle property. Specifically, the estimator of each additive component
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has the same asymptotic distribution that it would have if the other components were

known. Finally, the estimator described here is easily extended to a generalized additive

quantile regression model with a known link function.
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A Appendix: Proofs

Throughout the Appendix, let C denote a generic constant that may be different in different uses.

Let λmin(A) and λmax(A) denote minimum and maximum eigenvalues of a symmetric matrix A.

A.1 Proofs of Theorems 4.1 and 4.2

It is useful to introduce some additional notation that is used in Koenker and Bassett (1978) and

Chaudhuri (1991). Let N = {1, . . . , n} and Hκ denote the collection of all d(κ)-element subsets of

N . Also, let B(h) denote the submatrix (subvector) of a matrix (vector) B with rows (components)

that are indexed by the elements of h ∈ Hκ. In particular, let Pκ(h) denote a d(κ) × d(κ) matrix,

whose rows are the vectors Pκ(Xi)
′ such that i ∈ h, and let Yκ(h) denote a d(κ)× 1 vector, whose

elements are Yi such that i ∈ h. Let Pκ denote a n × d(κ) matrix, whose rows are the vectors

Pκ(Xi)
′ for i = 1, . . . , n.

The following lemmas are useful to prove Theorems 4.1 and 4.2. The first lemma is from Koenker

and Bassett (1978, Theorem 3.1).

Lemma A.1. Suppose that Pκ has rank = d(κ). Then there is a subset hκ ∈ Hκ such that the

problem (2.1) has at least one solution of the form θ̂nκ = Pκ(hκ)
−1Yκ(hκ).

Define

Hn1κ(θ̂nκ) =

n∑

i=1,i∈hcκ

{

α− 1
[
Yi ≤ Pκ(Xi)

′θ̂nκ
]}

Pκ(Xi)
′Pκ(hκ)

−1.

Lemma A.2. θ̂nκ = Pκ(hκ)
−1Yκ(hκ) is a unique solution to (2.1) almost surely for all sufficiently

large n.

Proof. The matrix Pκ has rank = d(κ) almost surely for all sufficiently large n. By Lemma A.1,

there exists a hκ ∈ Hκ such that the problem (2.1) has at least one solution of the form θ̂nκ =

Pκ(hκ)
−1Yκ(hκ).

As in Theorem 3.3 in Koenker and Bassett (1978) [see also Fact 6.4 in Chaudhuri (1991)],

θ̂nκ = Pκ(hκ)
−1Yκ(hκ) is a unique solution to (2.1) if and only if each component in Hn1κ(θ̂nκ) is

strictly between α − 1 and α, i.e. Hn1κ(θ̂nκ) ∈ (α − 1, α)d(κ). Also, if θ̂nκ = Pκ(hκ)
−1Yκ(hκ) is a

solution to (2.1), then Hn1κ(θ̂nκ) ∈ [α− 1, α]d(κ).

Since the distribution of Pκ(Xi) is absolutely continuous with respect to Lebesgue measure

(except for the first component), the probability that Hn1κ(θ̂nκ) lies on the boundary of the cube

[α−1, α]d(κ) is zero for all sufficiently large n. Therefore, θ̂nκ = Pκ(hκ)
−1Yκ(hκ) is a unique solution

almost surely for all sufficiently large n.
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Let Φnκ = n−1
∑n

i=1 f(0|Xi)Pκ(Xi)Pκ(Xi)
′. Let 1n be the indicator function such that 1n =

1{λmin(Φnκ) ≥ λmin(Φκ)/2}. As in the proofs of Theorem 1 of Newey (1997) and Lemma 4 of HM,

one can show that ‖Φnκ − Φκ‖2 = Op(κ
2/n) = op(1). Thus, Pr(1n = 1)→ 1 as n→∞.

Define

Gnκ(θ) = n−1Φ−1
nκ

n∑

i=1

{

α− 1
[
Ui ≤ Pκ(Xi)

′(θ − θκ0)− bκ0(Xi)
]}

Pκ(Xi),

G∗nκ(θ) = n−1Φ−1
nκ

n∑

i=1

{

α− F
[
Pκ(Xi)

′(θ − θκ0)− bκ0(Xi)
∣
∣Xi

]}

Pκ(Xi),

and G̃nκ(θ) = Gnκ(θ)−G∗nκ(θ).

Lemma A.3. As n→∞,

1n

∥
∥
∥G̃nκ(θκ0)

∥
∥
∥ = Op

[

(κ/n)1/2
]

.

Proof. Notice that since the data are i.i.d., f(·|x) is bounded away from zero in a neighborhood of

zero for all x (in particular, f(0|x) ≥ cf for all x), and the smallest eigenvalue of Φnκ is bounded

away from zero (when 1n = 1),

E

[

1n

∥
∥
∥G̃nκ(θκ0)

∥
∥
∥

2 ∣
∣
∣X1, . . . ,Xn

]

≤ 1nn
−2

n∑

i=1

[

E
[{

F
[
− bκ0(Xi)

∣
∣Xi

]
− 1
[
U ≤ −bκ0(Xi)

]}2∣
∣
∣Xi

]

Pκ(Xi)
′Φ−2

nκPκ(Xi)
]

≤ C1nn
−2

n∑

i=1

trace
[

Pκ(Xi)
′Φ−2

nκPκ(Xi)
]

≤ C1nn
−2

n∑

i=1

c−1
f f(0|Xi)trace

[

Pκ(Xi)
′Φ−2

nκPκ(Xi)
]

≤ C1nn
−1trace

{

Φ−2
nκ

{

n−1
n∑

i=1

f(0|Xi)Pκ(Xi)Pκ(Xi)
′
]}

= C1nn
−1trace

(

Φ−1
nκ

)

≤ Cn−1d(κ).

Therefore, the lemma follows from Markov’s inequality.

Lemma A.4. As n→∞,

1n

∥
∥
∥Gnκ(θ̂nκ)

∥
∥
∥ ≤ Cζκκ/n almost surely.
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Proof. By Lemma A.2, there is a unique index set hκ ∈ Hκ such that θ̂nκ = Pκ(hκ)
−1Yκ(hκ) almost

surely for all sufficiently large n. Now write Gnκ(θ̂nκ) = Gnκ1(θ̂nκ) +Gnκ2(θ̂nκ), where

Gnκ1(θ̂nκ) = n−1Φ−1
nκ

n∑

i=1,i∈hκ

{

α− 1
[
Ui ≤ Pκ(Xi)

′(θ̂nκ − θκ0)− bκ0(Xi)
]}

Pκ(Xi),

and

Gnκ2(θ̂nκ) = n−1Φ−1
nκ

n∑

i=1,i∈hcκ

{

α− 1
[
Ui ≤ Pκ(Xi)

′(θ̂nκ − θκ0)− bκ0(Xi)
]}

Pκ(Xi).

Notice that max1≤i≤n 1n
∥
∥Φ−1

nκPκ(Xi)
∥
∥ ≤ Cmax1≤i≤n ‖Pκ(Xi)‖ = Cζκ for some constant C < ∞

since the smallest eigenvalue of Φnκ is bounded away from zero (when 1n = 1). Thus, we have

1n

∥
∥
∥Gnκ1(θ̂nκ)

∥
∥
∥ ≤ Cζκd(κ)/n.

Now consider Gnκ2(θ̂nκ). Notice that Gnκ2(θ̂nκ)
′ = n−1Hn1κ(θ̂nκ)Pκ(hκ)Φ

−1
nκ . As was ex-

plained in the proof of Lemma A.2, each component in Hn1κ(θ̂nκ) is between α − 1 and α. Thus,
∥
∥
∥Hn1κ(θ̂nκ)

∥
∥
∥ ≤ d(κ)1/2. Since the smallest eigenvalue of Φnκ is bounded away from zero (when

1n = 1), we can find a constant C <∞ (independent of κ) such that

1n
∥
∥Pκ(hκ)Φ

−1
nκ

∥
∥ ≤ C ‖Pκ(hκ)‖ .

Also notice that

‖Pκ(hκ)‖2 = trace[Pκ(hκ)
′Pκ(hκ)] = trace[Pκ(hκ)Pκ(hκ)

′]

=
∑

i∈hκ

‖Pκ(Xi)‖2 ≤ ζ2
κd(κ).

Hence, ‖Pκ(hκ)‖ ≤ ζκd(κ)
1/2. Therefore,

1n

∥
∥
∥Gnκ2(θ̂nκ)

∥
∥
∥ ≤ n−1

∥
∥
∥Hn1κ(θ̂nκ)

∥
∥
∥ 1n

∥
∥Pκ(hκ)Φ

−1
nκ

∥
∥ ≤ Cζκd(κ)/n.

Since arguments used in this proof hold uniformly over hκ, the lemma follows immediately.

The next lemma is based on the elegant argument of Welsh (1989).

Lemma A.5. As n→∞,

sup
‖θ−θκ0‖≤C(κ/n)1/2

1n

∥
∥
∥G̃nκ(θ)− G̃nκ(θκ0)

∥
∥
∥ = Op

[

d(κ)1/2ζ1/2
κ (d(κ)/n)3/4(log n)1/2

]

.

Proof. Let ηn = (d(κ)/n)1/2, γn = d(κ)/n5/2, and Bn = {θ : ‖θ − θκ0‖ ≤ Cηn}. As in the proof

of Theorem 3.1 of Welsh (1989), cover the ball Bn with cubes C = {C(θl)}, where C(θl) is a cube
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containing θl with sides of length C(d(κ)/n5)1/2 such that θl ∈ Bn. Then the number of the cubes

covering the ball Bn is L = (2n2)d(κ). Also, we have that ‖θ − θl‖ ≤ Cγn for any θ ∈ C(θl), where
l = 1, · · · , L.

First note that

sup
θ∈Bn

1n

∥
∥
∥G̃nκ(θ)− G̃nκ(θκ0)

∥
∥
∥

≤ max
1≤l≤L

sup
θ∈C(θl)

1n

∥
∥
∥G̃nκ(θ)− G̃nκ(θl)

∥
∥
∥+ max

1≤l≤L
1n

∥
∥
∥G̃nκ(θl)− G̃nκ(θκ0)

∥
∥
∥ .(A.1)

Now using the fact that 1[u ≤ ·] and F [·|x] are monotone increasing functions and that |A − B| ≤
|A1 −B|+ |A2 −B| for any A, A1, A2, and B satisfying A1 ≤ A ≤ A2, we have

sup
θ∈C(θl)

1n

∥
∥
∥G̃nκ(θ)− G̃nκ(θl)

∥
∥
∥

≤ sup
θ∈C(θl)

n−1
n∑

i=1

1n
∥
∥Φ−1

nκPκ(Xi)
∥
∥

×
∣
∣
∣
∣

{

1
[
Ui ≤ Pκ(Xi)

′(θ − θκ0)− bκ0(Xi)
]
− F

[
Pκ(Xi)

′(θ − θκ0)− bκ0(Xi)
∣
∣Xi

]}

−
{

1
[
Ui ≤ Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)
]
− F

[
Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)
∣
∣Xi

]}
∣
∣
∣
∣

≤ n−1
n∑

i=1

1n
∥
∥Φ−1

nκPκ(Xi)
∥
∥

∣
∣
∣
∣

{

1
[
Ui ≤ Pκ(Xi)

′(θl − θκ0)− bκ0(Xi) + ‖Pκ(Xi)‖ γn
]

− F
[
Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)− ‖Pκ(Xi)‖ γn
∣
∣Xi

]}

−
{

1
[
Ui ≤ Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)
]
− F

[
Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)
∣
∣Xi

]}
∣
∣
∣
∣

+ n−1
n∑

i=1

1n
∥
∥Φ−1

nκPκ(Xi)
∥
∥

∣
∣
∣
∣

{

1
[
Ui ≤ Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)− ‖Pκ(Xi)‖ γn
]

− F
[
Pκ(Xi)

′(θl − θκ0)− bκ0(Xi) + ‖Pκ(Xi)‖ γn
∣
∣Xi

]}

−
{

1
[
Ui ≤ Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)
]
− F

[
Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)
∣
∣Xi

]}
∣
∣
∣
∣

≤
∣
∣
∣
∣
n−1

n∑

i=1

1n
∥
∥Φ−1

nκPκ(Xi)
∥
∥

×
[{

1
[
Ui ≤ Pκ(Xi)

′(θl − θκ0)− bκ0(Xi) + ‖Pκ(Xi)‖ γn
]

− F
[
Pκ(Xi)

′(θl − θκ0)− bκ0(Xi) + ‖Pκ(Xi)‖ γn
∣
∣Xi

]}

−
{

1
[
Ui ≤ Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)− ‖Pκ(Xi)‖ γn
]

− F
[
Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)− ‖Pκ(Xi)‖ γn
∣
∣Xi

]}
]∣
∣
∣
∣
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+ 2n−1
n∑

i=1

1n
∥
∥Φ−1

nκPκ(Xi)
∥
∥

{

F
[
Pκ(Xi)

′(θl − θκ0)− bκ0(Xi) + ‖Pκ(Xi)‖ γn
∣
∣Xi

]

− F
[
Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)− ‖Pκ(Xi)‖ γn
∣
∣Xi

]}

.(A.2)

Consider the second term in (A.2). By Assumption 4.3,

max
1≤l≤L

n−1
n∑

i=1

1n
∥
∥Φ−1

nκPκ(Xi)
∥
∥

{

F
[
Pκ(Xi)

′(θl − θκ0)− bκ0(Xi) + ‖Pκ(Xi)‖ γn
∣
∣Xi

]

− F
[
Pκ(Xi)

′(θl − θκ0)− bκ0(Xi)− ‖Pκ(Xi)‖ γn
∣
∣Xi

]}

≤ Cγn max
1≤i≤n

1n
∥
∥Φ−1

nκPκ(Xi)
∥
∥ ‖Pκ(Xi)‖

≤ Cγnζ
2
κ.(A.3)

Now consider the second term in (A.1), that is max1≤l≤L 1n

∥
∥
∥G̃nκ(θl)− G̃nκ(θκ0)

∥
∥
∥. Let ∆

(j)

G̃nκ
(θl)

denote the j-th element of [G̃nκ(θl)− G̃nκ(θκ0)]. Then we have

1n∆
(j)

G̃nκ
(θl) = 1ne

′
(j)[G̃nκ(θl)− G̃nκ(θκ0)],

where e(j) is a unit vector whose components are all zero except for the j-th component being

one. Notice that conditional on {X1, . . . ,Xn}, the summands in 1n∆
(j)

G̃nκ
(θl) are independently

distributed with mean 0 and that the summands in 1n∆
(j)

G̃nκ
(θl) are bounded uniformly (over j and

l) by n−1Cζκ for all sufficiently large n. Furthermore, the variance of 1n∆
(j)

G̃nκ
(θl) conditional on

{X1, . . . ,Xn} is bounded by

Cn−2
n∑

i=1

1n|e′(j)Φ−1
nκPκ(Xi)|2|Pκ(Xi)

′(θl − θκ0)|.

Notice that using the fact that f(0|x) is bounded away from zero (that is, f(0|x) ≥ cf for all x) and

that the smallest eigenvalue of Φ−1
nκ is bounded away from zero (when 1n = 1) for all κ,

n−1
n∑

i=1

∣
∣
∣e′(j)Φ

−1
nκPκ(Xi)

∣
∣
∣

2

|Pκ(Xi)
′(θl − θκ0)|

≤ n−1
n∑

i=1

c−1
f f(0|Xi)

∣
∣
∣e′(j)Φ

−1
nκPκ(Xi)

∣
∣
∣

2

|Pκ(Xi)
′(θl − θκ0)|

≤ C max
1≤i≤n

|Pκ(Xi)
′(θl − θκ0)| e′(j)Φ−1

nκ

[

n−1
n∑

i=1

f(0|Xi)Pκ(Xi)Pκ(Xi)
′

]

Φ−1
nκe(j)

≤ Cζκηnλmax(Φ
−1
nκ)

≤ Cζκηn

uniformly (over j and l) for all sufficiently large n. Therefore, the conditional variance of 1n∆
(j)

G̃nκ
(θl)

is bounded uniformly (over j and l) by n−1Cζκηn for all sufficiently large n.
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Let εn = d(κ)1/2ζ
1/2
κ (d(κ)/n)3/4(log n)1/2. An application of Bernstein’s inequality (see, for

example, van der Vaart and Wellner (1996, p.102)) to the sum ∆
(j)

G̃nκ
(θl) gives

Pr
(

max
1≤l≤L

1n

∥
∥
∥G̃nκ(θl)− G̃nκ(θκ0)

∥
∥
∥ > Cεn

∣
∣
∣X1, . . . ,Xn

)

≤
L∑

l=1

Pr

(

1n

∥
∥
∥G̃nκ(θl)− G̃nκ(θκ0)

∥
∥
∥ > Cεn

∣
∣
∣X1, . . . ,Xn

)

≤
L∑

l=1

d(κ)
∑

j=1

Pr

(

1n

∣
∣
∣∆

(j)

G̃nκ
(θl)
∣
∣
∣ > Cεnd(κ)

−1/2
∣
∣
∣X1, . . . ,Xn

)

≤ 2 (2n2)d(κ)d(κ) exp

[

−C ε2
nd(κ)

−1

n−1ζκηn + n−1ζκεnd(κ)−1/2

]

≤ C exp
[
2d(κ) log n+ log d(κ)− Cd(κ) log n

]

≤ C exp
[
− Cd(κ) log n

]
(A.4)

for all sufficiently large n. In particular, it is required here that ζκ = O(κ1/2) and (κ2/n)(log n)2 → 0.

Now consider the first term in (A.2). Let T̃nκ(θl) denote the expression inside | · | in the first

term in (A.2). Notice that conditional on {X1, . . . ,Xn}, the summands in T̃n(θl) are independently

distributed with mean 0 and with range bounded by n−1Cζκ and that the variance of the summands

in T̃nκ(θl) conditional on {X1, . . . ,Xn} is bounded by n−1Cζ3
κγn uniformly over l for all sufficiently

large n. Another application of Bernstein’s inequality to T̃n(θl) gives

Pr( max
1≤l≤L

|T̃nκ(θl)| > Cεn|X1, . . . ,Xn) ≤
L∑

l=1

Pr(|T̃nκ(θl)| > Cεn|X1, . . . ,Xn)

≤ 2 (2n2)d(κ) exp

[

−C ε2
n

n−1γnζ3
κ + n−1ζκεn

]

≤ 2 (2n2)d(κ) exp [−Cnεn/ζκ]

≤ C exp
[
2d(κ) log n+ log d(κ)− Cd(κ)n1/4(log n)1/2

]
(A.5)

for all sufficiently large n. Now the lemma follows by combining (A.3), (A.4), and (A.5).

Lemma A.6. As n→∞,

sup
‖θ−θκ0‖≤C(κ/n)1/2

1n ‖Gnκ(θ)−G∗nκ(θ)‖ = Op

[

(d(κ)/n)1/2
]

.

Proof. Using triangle inequality, write

sup
‖θ−θκ0‖≤C(κ/n)1/2

1n ‖Gnκ(θ)−G∗nκ(θ)‖

≤ sup
‖θ−θκ0‖≤C(κ/n)1/2

1n

∥
∥
∥G̃nκ(θ)− G̃nκ(θκ0)

∥
∥
∥+ 1n

∥
∥
∥G̃nκ(θκ0)

∥
∥
∥ .

Then the desired result follows immediately from Lemmas A.3 and A.5.
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Lemma A.7. As n→∞,

1nG
∗
nκ(θ) = −1n(θ − θκ0) + 1nn

−1Φ−1
nκ

n∑

i=1

f(0|Xi)Pκ(Xi)bκ0(Xi) +R∗nκ,

where ‖R∗nκ‖ = O
[
ζκ ‖θ − θκ0‖2 + ζκκ

−2r
]
.

Proof. Define

1nG̃
∗
nκ(θ) = −1n(θ − θκ0) + 1nn

−1Φ−1
nκ

n∑

i=1

f(0|Xi)Pκ(Xi)bκ0(Xi).

Using a first-order Taylor series expansion, Assumptions 4.3 and 4.5, and equation 4.2, we have

1n

∥
∥
∥G∗nκ(θ)− G̃∗nκ(θ)

∥
∥
∥ ≤ C max

1≤i≤n
1n
∥
∥Φ−1

nκPκ(Xi)
∥
∥

[

n−1
n∑

i=1

{
Pκ(Xi)

′(θ − θκ0)− bκ0(Xi)
}2

]

≤ Cζκ

{

(θ − θκ0)
′Φnκ(θ − θκ0) + max

1≤i≤n
bκ0(Xi)

2
}

≤ Cζκλmax(Φnκ)(θ − θκ0)
′(θ − θκ0) + Cζκ max

1≤i≤n
bκ0(Xi)

2

≤ O
[
ζκ ‖θ − θκ0‖2

]
+O(ζκκ

−2r)(A.6)

for all sufficiently large n, which proves the lemma.

Lemma A.8. As κ→∞,

1n

∥
∥
∥
∥
∥
n−1Φ−1

nκ

n∑

i=1

f(0|Xi)Pκ(Xi)bκ0(Xi)

∥
∥
∥
∥
∥
= O(κ−r).

Proof. Let B̄κ be a (n × 1) vector whose elements are f(0|Xi)
1/2bκ0(Xi) and P̄κ be a (n × d(κ))

matrix whose rows are f(0|Xi)
1/2Pκ(Xi)

′. Then Φnκ = P̄′κP̄κ/n and

n∑

i=1

f(0|Xi)Pκ(Xi)bκ0(Xi) = P̄′κB̄κ.

Therefore, using the fact that P̄κ(P̄
′
κP̄κ)

−1P̄′κ is idempotent (so that its largest eigenvalue is just

one),

1n

∥
∥
∥
∥
∥
n−1Φ−1

nκ

n∑

i=1

f(0|Xi)Pκ(Xi)bκ0(Xi)

∥
∥
∥
∥
∥

2

= 1n
∥
∥Φ−1

nκP̄′κB̄κ/n
∥
∥

2

= 1nn
−2B̄′κP̄κΦ

−2
nκP̄′κB̄κ

≤ 1nn
−2λmax(Φ

−1
nκ)B̄

′
κP̄κ(P̄

′
κP̄κ/n)

−1P̄′κB̄κ

≤ 1nn
−1λmax(Φ

−1
nκ)λmax[P̄κ(P̄

′
κP̄κ)

−1P̄′κ]
∥
∥B̄κ

∥
∥

2

≤ C max
1≤i≤n

bκ0(Xi)
2

for all sufficiently large n. The lemma now follows from equation (4.2).
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Proof of Theorem 4.1. We will obtain the rate of convergence using ‘convexity’ arguments similar

to those used in the proof of Theorem 1 of He and Shi (1998). Define Mnκ(θ) = −(θ− θκ0)
′Gnκ(θ).

Notice that Mnκ(θ) is a convex function, thereby implying that

‖Gnκ(θ)‖ ≥Mnκ[t(θ − θκ0) + θκ0]/t ‖θ − θκ0‖(A.7)

for any t ≥ 1. Also, notice that the right-hand side of inequality (A.7) is weakly increasing in t. Let

ηn = (κ/n)1/2. As in equation (A.4) of He and Shi (1998), for any θ,

inf
‖θ−θκ0‖≥Cηn

1n ‖Gnκ(θ)‖

≥ inf
‖θ−θκ0‖=Cηn

inf
t≥1

1nMnκ[t(θ − θκ0) + θκ0]/t ‖θ − θκ0‖

≥ inf
‖θ−θκ0‖=Cηn

1nMnκ(θ)/ ‖θ − θκ0‖

= inf
‖θ−θκ0‖=Cηn

−(θ − θκ0)
′1n {G∗nκ(θ) + [Gnκ(θ)−G∗nκ(θ)]} / ‖θ − θκ0‖

= inf
‖θ−θκ0‖=Cηn

(θ − θκ0)
′(θ − θκ0)/ ‖θ − θκ0‖+ ηnOp(1) +O(κ−r),

where the last equality follows from Lemmas A.6, A.7, and A.8. In view of this and Lemma A.4, for

any ε > 0 and any positive constant C,

Pr
(∥
∥
∥θ̂nκ − θκ0

∥
∥
∥ ≥ Cηn

)

≤ Pr
(∥
∥
∥θ̂nκ − θκ0

∥
∥
∥ ≥ Cηn, 1n

∥
∥
∥Gnκ(θ̂nκ)

∥
∥
∥ < Cηn

)

+ Pr
(

1n

∥
∥
∥Gnκ(θ̂nκ)

∥
∥
∥ ≥ Cηn

)

< ε,

provided that κ2/n → 0. This implies that
∥
∥
∥θ̂nκ − θκ0

∥
∥
∥ = Op

[
(κ/n)1/2

]
, which proves part (a).

Part (b) follows by combining part (a) with ζκ = O(κ1/2) since

sup
x∈X

|m̃(x)−m(x)| ≤ sup
x∈X

‖Pκ(x)‖
∥
∥
∥θ̂nκ − θκ0

∥
∥
∥ .

Proof of Theorem 4.2. Write

1nGnκ(θ̂nκ) = 1nG̃nκ(θκ0) + 1n[G̃nκ(θ̂nκ)− G̃nκ(θκ0)] + 1nG
∗
nκ(θ̂nκ).(A.8)

By Lemma A.7, (A.8) can be rewritten as

1n(θ̂nκ − θκ0) = −1nGnκ(θ̂nκ) + 1nG̃nκ(θκ0) + 1n[G̃nκ(θ̂nκ)− G̃nκ(θκ0)]

+ 1nn
−1Φ−1

nκ

n∑

i=1

f(0|Xi)Pκ(Xi)bκ0(Xi) +R∗nκ.(A.9)
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By applying Lemmas A.4, A.5, and A.7, and Theorem 4.1 (a) to (A.9), we have

1n(θ̂nκ − θκ0) = 1nG̃nκ(θκ0) + 1nn
−1Φ−1

nκ

n∑

i=1

f(0|Xi)Pκ(Xi)bκ0(Xi) +Rn,

where the remainder term Rn satisfies

‖Rn‖ = Op

[

(κ2/n)3/4(log n)1/2 + κ3/2/n
]

.

Define

Ḡnκ(θκ0) = n−1Φ−1
nκ

n∑

i=1

{

α− 1
[
Ui ≤ 0

]}

Pκ(Xi).

By using arguments similar to those used in the proof of Lemma A.3, we have

E

[

1n

∥
∥
∥G̃nκ(θκ0)− Ḡnκ(θκ0)

∥
∥
∥

2 ∣
∣
∣X1, . . . ,Xn

]

≤ Cn−1d(κ) sup
x∈X

|bκ0(x)|.

Hence,

1n

∥
∥
∥G̃nκ(θκ0)− Ḡnκ(θκ0)

∥
∥
∥ = op(n

−1/2)

by Markov’s inequality. The theorem now follows from the fact that ‖Φnκ − Φκ‖ = Op(κ
2/n) = op(1)

and Pr(1n = 1)→ 1 as n→∞.

A.2 Proof of Theorem 4.3

We need additional notation to prove Theorem 4.3. Recall that Dkmj(x
j) denotes the k-th order

derivative of mj . Define

βn(x
1) =

[

m1(x
1), δnD

1m1(x
1), . . . , δr−1

n D(r−1)m1(x
1){(r − 1)!}−1

]′

,

Zni(x
1) =

[

1, δ−1
n (X1

i − x1), . . . , {δ−1
n (X1

i − x1)}(r−1)
]′

,

Kni(x
1) = K

(
x1 −X1

i

δn

)

, and

Bi(x
1) = m1(X

1
i )−m1(x

1)−
(r−1)
∑

k=1

{k!}−1Dkm1(x
1)(X1

i − x1).

To simplify the notation, dependence on x1 of βn(x
1), Zni(x

1),Kni(x
1), and Bi(x

1) will be sup-

pressed throughout the proof (when there is no confusion). For example, Bi = m1(X
1
i ) − Z ′niβn.

Also, define

b̄κ0(x̃) = µ+m−1(x̃)− P̄κ(x̃)
′θκ0.
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where P̄κ(x̃) is defined in the main text. Recall that

P̄κ(x̃) = [1, 0, . . . , 0, p1(x
2), . . . , pκ(x

2), . . . , p1(x
d), . . . , pκ(x

d)]′.

Then µ̃+m̃−1(X̃i) = P̄κ(X̃i)
′θ̂nκ and [µ̃−µ]+[m̃−1(X̃i)−m−1(X̃i)] = P̄κ(X̃i)

′(θ̂nκ−θκ0)−b̄κ0(X̃i).

Finally, define

Gn(b, x
1) = (nδn)

−1
n∑

i=1

{

α− 1
[
Ui ≤ Z ′ni(b− βn)−Bi

]}

ZniKni,

G̃n(b, x
1) = (nδn)

−1
n∑

i=1

{

α− 1
[
Ui ≤ Z ′ni(b− βn)−Bi + P̄κ(X̃i)

′(θ̂nκ − θκ0)− b̄κ0(X̃i)
]}

ZniKni,

G∗n(b, x
1) = (nδn)

−1
n∑

i=1

{

α− F
[
Z ′ni(b− βn)−Bi

∣
∣Xi

]}

ZniKni,

G̃∗n(b, x
1) = (nδn)

−1
n∑

i=1

{

α− F
[
Z ′ni(b− βn)−Bi + P̄κ(X̃i)

′(θ̂nκ − θκ0)− b̄κ0(X̃i)
∣
∣Xi

]}

ZniKni,

∆Gn
(b, x1) = Gn(b, x

1)−G∗n(b, x
1), and ∆G̃n

(b, x1) = G̃n(b, x
1)− G̃∗n(b, x

1).

The following lemmas are useful to prove Theorem 4.3.

Lemma A.9. As n→∞, for any x1 such that |x1| ≤ 1− δn,

∥
∥
∥G̃n(b̂n, x

1)
∥
∥
∥ = O

[
(nδn)

−1
]
almost surely.

Proof. Notice that the minimization problem (2.2) is just a kernel-weighted linear quantile regression

problem and therefore, it has a linear programming representation. Also, notice that each component

of Zni is bounded by one whenever Kni is nonzero. Then the lemma can be proved by using

arguments identical to those used in the proof of Lemma A.4.

Lemma A.10. As n→∞, for any x1 such that |x1| ≤ 1− δn,

∥
∥∆Gn

(βn, x
1)
∥
∥ = Op

[

(nδn)
−1/2

]

.

Proof. Notice that the mean of ∆Gn
(βn, x

1) is zero. Then the lemma follows by calculating E[
∥
∥∆Gn

(βn, x
1)
∥
∥

2
]

and then applying Markov’s inequality.

Lemma A.11. As n→∞, for any x1 such that |x1| ≤ 1− δn,

sup
‖b−βn‖≤C(nδn)−1/2

∥
∥∆Gn

(b, x1)−∆Gn
(βn, x

1)
∥
∥ = Op

[

(nδn)
−3/4(log n)1/2

]

.
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Proof. The proof of Lemma A.11 is analogous to that of Lemma A.5. Let B̃n = {b : ‖b− βn‖ ≤
C(nδn)

−1/2}. As in the proofs of Lemma A.5 and Theorem 3.1 of Welsh (1989), cover the ball B̃n

with cubes C̃ = {C(bl)}, where C(bl) is a cube containing bl with sides of C(n5δn)
−1/2 such that

bl ∈ B̃n. Then the number of the cubes covering the ball B̃n is L̃ = (2n2)r. Also, we have that

‖(b− βn)− (bl − βn)‖ ≤
√
rC(n5δn)

−1/2 ≡ γ̃n for any b ∈ C(bl), where l = 1, · · · , L̃.
As in the proof of Lemma A.5 (in particular, equations (A.1) and (A.2)),

sup
b∈B̃n

∥
∥∆Gn

(b, x1)−∆Gn
(βn, x

1)
∥
∥

≤ max
1≤l≤L̃

sup
(b−βn)∈C(bl)

∥
∥∆Gn

(b, x1)−∆Gn
(bl, x

1)
∥
∥+ max

1≤l≤L̃

∥
∥∆Gn

(bl, x
1)−∆Gn

(βn, x
1)
∥
∥

≤ max
1≤l≤L̃

∥
∥∆Gn

(bl, x
1)−∆Gn

(βn, x
1)
∥
∥

+ max
1≤l≤L̃

∣
∣
∣
∣
(nδn)

−1
n∑

i=1

‖ZniKni‖

×
[{

1
[
Ui ≤ Z ′ni(bl − βn)−Bi + ‖Zni‖ γ̃n

]
− F

[
Z ′ni(bl − βn)−Bi + ‖Zni‖ γ̃n

∣
∣Xi

]}

−
{

1
[
Ui ≤ Z ′ni(bl − βn)−Bi − ‖Zni‖ γ̃n

]
− F

[
Z ′ni(bl − βn)−Bi − ‖Zni‖ γ̃n

∣
∣Xi

]}
]∣
∣
∣
∣

+ 2 max
1≤l≤L̃

(nδn)
−1

n∑

i=1

‖ZniKni‖
{

F
[
Z ′ni(bl − βn)−Bi + ‖Zni‖ γ̃n

∣
∣Xi

]

− F
[
Z ′ni(bl − βn)−Bi − ‖Zni‖ γ̃n

∣
∣Xi

]}

.(A.10)

Now with some modifications, arguments similar to those in the proof of Lemma A.5 yield the

desired result.

Lemma A.12. As n→∞, for any x1 such that |x1| ≤ 1− δn,

∥
∥∆G̃n

(b, x1)−∆Gn
(b, x1)

∥
∥ = Op

[

(nδn)
−1/2[κ2/n]1/4(log n)1/2

]

for any b satisfying ‖b− βn‖ ≤ C(nδn)
−1/2.

Proof. To prove the lemma, define

H̃n(b, x
1, θ) = (nδn)

−1
n∑

i=1

{

α− 1
[
Ui ≤ Z ′ni(b− βn)−Bi + P̄κ(X̃i)

′(θ − θκ0)− b̄κ0(X̃i)
]}

ZniKni,

H̃∗
n(b, x

1, θ) = (nδn)
−1

n∑

i=1

{

α− F
[
Z ′ni(b− βn)−Bi + P̄κ(X̃i)

′(θ − θκ0)− b̄κ0(X̃i)
∣
∣Xi

]}

ZniKni,

and

∆H̃n
(b, x1, θ) = H̃n(b, x

1, θ)− H̃∗
n(b, x

1, θ).
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Then G̃n(b, x
1) = H̃n(b, x

1, θ̂nκ), G̃
∗
n(b, x

1) = H̃n(b, x
1, θ̂nκ), and ∆G̃n

(b, x1) = ∆H̃n
(b, x1, θ̂nκ).

The lemma follows if one can show that

sup
‖θ−θκ0‖≤C[κ/n]1/2

∥
∥∆H̃n

(b, x1, θ)−∆Gn
(b, x1)

∥
∥ = Op

[

(nδn)
−1/2[κ2/n]1/4(log n)1/2

]

for any b satisfying ‖b− βn‖ ≤ C(nδn)
−1/2. This can be proved by using virtually the same

arguments as in the proofs of Lemmas A.5 and A.11.

Define

Qn = (nδn)
−1

n∑

i=1

f(0|Xi)ZniZ
′
niKni.

Lemma A.13. As n→∞, for any x1 such that |x1| ≤ 1− δn,

G̃∗n(b̂n, x
1) = −Qn(b̂n − βn) +Op(δ

r
n ) +Op

[

(b̂n − βn)
2
]

+ op

[

(nδn)
−1/2

]

.

Proof. Let ∆̃i(b̂n, x
1) = Z ′ni(b̂n − βn) − Bi + P̄κ(X̃i)

′(θ̂nκ − θκ0) − b̄κ0(X̃i). A first-order Taylor

expansion of F
[
∆̃i(b̂n, x

1)
∣
∣Xi

]
gives

G̃∗n(b̂n, x
1) = −(nδn)−1

n∑

i=1

∆̃i(b̂n, x
1)f(0|Xi)ZniKni

− (nδn)
−1

n∑

i=1

∆̃i(b̂n, x
1)
[
f(∆̃∗i (b̂n, x

1)|Xi)− f(0|Xi)
]
ZniKni

≡ G̃∗n1(b̂n) + G̃∗n2(b̂n),

where ∆̃∗i (b̂n, x
1) is between 0 and ∆̃i(b̂n, x

1).

Write G̃∗n1(b̂n) further as

G̃∗n1(b̂n) = G̃∗n11 + G̃∗n12 + G̃∗n13 + G̃∗n14,(A.11)

where

G̃∗n11 = −(nδn)−1
n∑

i=1

Z ′ni(b̂n − βn)f(0|Xi)ZniKni,

G̃∗n12 = (nδn)
−1

n∑

i=1

Bif(0|Xi)ZniKni,

G̃∗n13 = −(nδn)−1
n∑

i=1

P̄κ(X̃i)
′(θ̂nκ − θκ0)f(0|Xi)ZniKni,

and

G̃∗n14 = (nδn)
−1

n∑

i=1

b̄κ0(X̃i)f(0|Xi)ZniKni.
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The first term is G̃∗n11 = −Qn(b̂n − βn). Next consider the second term G̃∗n12. Notice that

max1≤i≤n |Bi| ≤ Cδ r
n since m1 is continuously r-times differentiable. Also, it is easy to see that

∥
∥
∥
∥
∥
(nδn)

−1
n∑

i=1

f(0|Xi)ZniKni

∥
∥
∥
∥
∥
= Op(1).

Therefore,

∥
∥
∥G̃∗n12

∥
∥
∥ = Op

(

max
1≤i≤n

|Bi|
)

= Op(δ
r
n ).

Now consider the third term G̃∗n13 in (A.11). Using Theorem 4.2, we have

G̃∗n13 = −(n2δn)
−1

n∑

i=1

P̄κ(X̃i)
′Φ−1

κ Pκ(Xj)
{

α− 1
[
Uj ≤ 0

]}

f(0|Xi)ZniKni

− (nδn)
−1

n∑

i=1

P̄κ(X̃i)
′B̄nκf(0|Xi)ZniKni

− (nδn)
−1

n∑

i=1

P̄κ(X̃i)
′Rnf(0|Xi)ZniKni

≡ G̃∗n131 + G̃∗n132 + G̃∗n133,

where the remainder term Rn is defined in Theorem 4.2 and

B̄nκ = n−1
n∑

j=1

Φ−1
κ f(0|Xj)Pκ(Xj)bκ0(Xj).

First, consider G̃∗n131. To show that

∥
∥
∥G̃∗n131

∥
∥
∥ = op

[

(nδn)
−1/2

]

,(A.12)

define, for k = 1, . . . , r,

g(k)
n =

n∑

j=1

a
(k)
j

{
α− 1

[
Uj ≤ 0

]}
,

where

a
(k)
j = −n−3/2δ−1/2

n

n∑

i=1

P̄κ(X̃i)
′Φ−1

κ Pκ(Xj)f(0|Xi)Z
(k)
ni Kni

≡ −n−3/2δ−1/2
n

n∑

i=1

A
(k)
ij Kni

and Z
(k)
ni is the k-th component of Zni. Then the k-th component of G̃∗n131 is (nδn)

−1/2g
(k)
n for

k = 1, . . . , r. Therefore, to prove (A.12), it suffices to show that g
(k)
n = op(1) for k = 1, . . . , r. Notice

that E
[

g
(k)
n

∣
∣
∣X1, . . . ,Xn

]

= 0 and Var
[

g
(k)
n

∣
∣
∣X1, . . . ,Xn

]

≤ C
∑n

j=1

[

a
(k)
j

]2

. Hence,

max
1≤j≤n

∣
∣
∣a

(k)
j

∣
∣
∣ = op(n

−1/2)(A.13)
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implies that g
(k)
n = op(1). This equation (A.13) can be proved using arguments similar to those used

in the proof of Lemma 7 of HM. The proof of (A.13) will be given at the end of the appendix.

Next consider G̃∗n132. By Kni = 1(|x1 −X1
i | ≤ δn)Kni and the Schwarz inequality,

∥
∥
∥G̃∗n132

∥
∥
∥ ≤

[

(nδn)
−1

n∑

i=1

{

P̄κ(X̃i)
′B̄nκ1(|x1 −X1

i | ≤ δn)
}2
]1/2

×
[

(nδn)
−1

n∑

i=1

‖f(0|Xi)ZniKni‖2
]1/2

.(A.14)

By the standard methods for bounding kernel estimators,

(nδn)
−1

n∑

i=1

‖f(0|Xi)ZniKni‖2 = Op(1).(A.15)

Also,

∥
∥
∥
∥
∥
(nδnfX1(x1))−1

n∑

i=1

P̄κ(X̃i)P̄κ(X̃i)
′1(|x1 −X1

i | ≤ δn)− E
[

P̄κ(X̃)P̄κ(X̃)′|X1 = x1
]
∥
∥
∥
∥
∥

2

= Op

(
κ2/n+ κ2δ4

n

)
= op(1),(A.16)

where fX1(x1) is the density of X1. Then by (A.16) and Assumption 4.10, the largest eigenvalue of

the first term inside ‖·‖ in (A.16) is bounded for all sufficiently large n. It follows that

(nδn)
−1

n∑

i=1

{

P̄κ(X̃i)
′B̄nκ1(|x1 −X1

i | ≤ δn)
}2

≤ CB̄′nκ

[

(nδnfX1(x1))−1
n∑

i=1

P̄κ(X̃i)P̄κ(X̃i)
′1(|x1 −X1

i | ≤ δn)

]

B̄nκ

≤ C
∥
∥B̄nκ

∥
∥

2

for all sufficiently large n. In view of Lemma A.8, it can be shown that
∥
∥B̄nκ

∥
∥ = O(κ−r). Therefore,

by (A.14),

∥
∥
∥G̃∗n132

∥
∥
∥ ≤ Op(κ

−r)Op(1) = op

[

(nδn)
−1/2

]

(A.17)

provided that δn ∝ n−1/(2r+1) and nr/(2r+1)κ−r → 0. In particular, if κ ∝ nν , then

ν >
1

2r + 1
.(A.18)

Now consider G̃∗n133. Arguments identical to those used to prove (A.17) gives

∥
∥
∥G̃∗n133

∥
∥
∥ ≤ Op(‖Rn‖)Op(1) = Op

[

(κ2/n)3/4(log n)1/2 + κ3/2/n
]

= op

[

(nδn)
−1/2

]
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provided that δn ∝ n−1/(2r+1) and κn−(2r+3)/(12r+6)(log n)1/3 → 0. In particular, if κ ∝ nν , then

ν <
2r + 3

12r + 6
.(A.19)

Combining (A.19) with (A.18) gives

1

2r + 1
< ν <

2r + 3

12r + 6
,(A.20)

which requires that r must be larger than or equal to 2. Combining the results for G̃∗n13k for

k = 1, 2, 3 gives

G̃∗n13 = op

[

(nδn)
−1/2

]

.

Next consider the fourth term G̃∗n14 in (A.11). Notice that

∥
∥
∥G̃∗n14

∥
∥
∥ ≤

[

(nδn)
−1

n∑

i=1

‖f(0|Xi)ZniKni‖
]

O(κ−r)

= Op(1)O(κ−r)

= op

[

(nδn)
−1/2

]

.

Therefore, combining the results for G̃∗n1k for k = 1, 2, 3, 4 gives

G̃∗n1(b̂n) = −Qn(b̂n − βn) +Op(δ
r
n ) + op

[

(nδn)
−1/2

]

.

Now consider G̃∗n2(b̂n). It follows from Assumption 4.3 and Theorem 4.1 (b) that

G̃∗n2(b̂n) = Op

[

{∆̃i(x
1, b̂n)}2

]

= Op

[

(b̂n − βn)
2 + δ2r

n + k2/n+ κ−2r
]

= Op

[

(b̂n − βn)
2
]

+ op

[

(nδn)
−1/2

]

.

Then the lemma follows from combining the results for G̃∗nk(b̂n) for k = 1, 2.

Proof of Theorem 4.3. Part (a) can be proved using arguments identical to those used in the proof

of Theorem 4.1 (a) with Lemmas A.9-A.13.

To prove part (b), write

G̃n(b̂n, x
1) = ∆Gn

(βn, x
1) + [∆Gn

(b̂n, x
1)−∆Gn

(βn, x
1)]

+ [∆G̃n
(b̂n, x

1)−∆Gn
(b̂n, x

1)] + G̃∗n(b̂n, x
1).(A.21)

Combining Lemmas A.9, A.11 - A.13, and (A.21) with part (a) of the theorem gives

Qn(b̂n − βn) = Gn(βn, x
1)−G∗n(βn, x

1) + G̃∗n12 + rn1,
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where G̃∗n12 was defined in the proof of Lemma A.13, and the remainder term rn1 satisfies ‖rn1‖ =
op

[

(nδn)
−1/2

]

. By a first-order Taylor expansion and Assumption (4.3), it is easy to show that

∥
∥
∥G̃∗n12 −G∗n(βn, x

1)
∥
∥
∥ = Op

({

max
1≤i≤n

∣
∣Bi

∣
∣

}2
)

= Op(δ
2r
n ) = op

[

(nδn)
−1/2

]

.

Therefore, it follows that

∥
∥
∥b̂n − βn −Q−1

n Gn(βn)
∥
∥
∥ = op

[

(nδn)
−1/2

]

(A.22)

for all sufficiently large n. Furthermore, methods similar to those used to establish asymptotic

properties of kernel estimators give ‖Q∗n −Q∗‖ = op(1), where

Q∗ =

∫

x̃∈[−1,1]d−1

f(0|x1, x̃)fX(x1, x̃)dx̃

∫ 1

−1





1 u . . . ur−1

. . .
ur−1 ur . . . u2(r−1)



K(u) du

= [f1(0|x1)fX1(x1)]S(K).

Then it follows that

m̂1(x
1)−m1(x

1) = e′1(b̂n − βn) = e′1Q
−1
∗ Gn(βn) + rn2,

where the remainder term rn2 satisfies ‖rn2‖ = op

[

(nδn)
−1/2

]

.

Recall that e′1S(K)−1(1, u, . . . , ur−1)′K(u) is a kernel of order r. Then parts (b) and (c) can

be proved by using arguments identical to those used to establish asymptotic normality of local

polynomial estimators.

Proof of (A.13). To show (A.13), first notice that

a
(k)
j = −n−3/2δ−1/2

n A
(k)
jj Knj − n−3/2δ−1/2

n

n∑

i=1,i6=j

A
(k)
ij Kni

= −n−3/2δ−1/2
n

n∑

i=1,i6=j

A
(k)
ij Kni +Op

(

n−3/2δ−1/2
n ζ2

κ

)

= −n−3/2δ−1/2
n

n∑

i=1,i6=j

A
(k)
ij Kni + op

(

n−1/2
)

uniformly over j. Write

n−3/2δ−1/2
n

n∑

i=1,i6=j

A
(k)
ij Kni

= n−3/2δ−1/2
n

n∑

i=1,i6=j

E[A
(k)
ij |Xi]Kni + n−3/2δ−1/2

n

n∑

i=1,i6=j

{

A
(k)
ij − E[A

(k)
ij |Xi]

}

Kni

≡ a
(k)
j1 + a

(k)
j2 .
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By E[Pκ(Xj)|Xi] = E[Pκ(Xj)] for j 6= i, Kni = 1(|x1 −X1
i | ≤ δn)Kni, and the Schwarz inequality,

∣
∣
∣a

(k)
j1

∣
∣
∣ ≤ n−3/2δ−1/2

n

n∑

i=1,i6=j

∣
∣
∣P̄κ(X̃i)

′Φ−1
κ E[Pκ(Xj)]f(0|Xi)Z

(k)
ni Kni

∣
∣
∣

≤ n−1/2δ1/2
n



(nδn)
−1

n∑

i=1,i6=j

{

P̄κ(X̃i)
′Φ−1

κ E[Pκ(Xj)]1(|x1 −X1
i | ≤ δn)

}2





1/2

×



(nδn)
−1

n∑

i=1,i6=j

{

f(0|Xi)Z
(k)
ni Kni

}2





1/2

.(A.23)

As in (A.15) and (A.16),

(nδn)
−1

n∑

i=1,i6=j

{

f(0|Xi)Z
(k)
ni Kni

}2

= Op(1)(A.24)

and

∥
∥
∥
∥
∥
∥

(nδnfX1(x1))−1
n∑

i=1,i6=j

P̄κ(X̃i)P̄κ(X̃i)
′1(|x1 −X1

i | ≤ δn)− E
[

P̄κ(X̃)P̄κ(X̃)′|X1 = x1
]

∥
∥
∥
∥
∥
∥

2

= Op

(
κ2/n+ κ2δ4

n

)
= op(1).(A.25)

Then by (A.25) and Assumption 4.10, the largest eigenvalue of the first term inside ‖·‖ in (A.25)

is bounded for all sufficiently large n. Furthermore, in view of Assumption 4.6 (c), elements of

E[Pκ(Xj)] are the Fourier coefficients of the density of X. Since the density of X is bounded,

E[Pκ(Xj)]
′E[Pκ(Xj)] converges as κ→∞. Combining all these gives

(nδn)
−1

n∑

i=1,i6=j

{

P̄κ(X̃i)
′Φ−1

κ E[Pκ(Xj)]1(|x1 −X1
i | ≤ δn)

}2

≤ CE[Pκ(Xj)]
′Φ−1

κ



(nδnfX1(x1))−1
n∑

i=1,i6=j

P̄κ(X̃i)P̄κ(X̃i)
′1(|x1 −X1

i | ≤ δn)



Φ−1
κ E[Pκ(Xj)]

≤ CE[Pκ(Xj)]
′E[Pκ(Xj)]

≤ C

for all sufficiently large n, where the constant C can be chosen uniformly over j. Combining this

and (A.24) with (A.23) proves that max1≤j≤n

∣
∣
∣a

(k)
j1

∣
∣
∣ = op(n

−1/2).
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Now, it remains to prove that max1≤j≤n

∣
∣
∣a

(k)
j2

∣
∣
∣ = op(n

−1/2). To do so, notice that

E

[∣
∣
∣a

(k)
j2

∣
∣
∣

2
∣
∣
∣
∣
{Xi}ni=1,i6=j

]

= n−3δ−1
n

n∑

i=1,i6=j

n∑

l=1,l 6=j

P̄κ(X̃i)
′Φ−1

κ

× E

[

{Pκ(Xj)− E[Pκ(Xj)]}{Pκ(Xj)− E[Pκ(Xj)]}′
∣
∣
∣
∣
{Xi}ni=1,i6=j

]

× Φ−1
κ P̄κ(X̃l)f(0|Xi)Z

(k)
ni Knif(0|Xl)Z

(k)
nl Knl

≤ Cn−3δ−1
n

n∑

i=1,i6=j

n∑

l=1,l 6=j

P̄κ(X̃i)
′Φ−1

κ P̄κ(X̃l)f(0|Xi)Z
(k)
ni Knif(0|Xl)Z

(k)
nl Knl

≤ Cn−1δn



(nδnfX1(x1))−1
n∑

i=1,i6=j

KniP̄κ(X̃i)
′



Φ−1
κ

×



(nδnfX1(x1))−1
n∑

l=1,l 6=j

P̄κ(X̃l)Knl





≤ Cn−1δn E
[

P̄κ(X̃)
∣
∣
∣X1 = x1

]′

E
[

P̄κ(X̃)
∣
∣
∣X1 = x1

]

for all sufficiently large n. Elements of E[P̄κ(X̃)|X1 = x1] are the Fourier coefficients of the condi-

tional density of X̃ given X1 = x1, which is bounded. Hence, E[P̄κ(X̃)|X1 = x1]′E[P̄κ(X̃)|X1 = x1]

converges as κ→∞, implying that

E

[∣
∣
∣a

(k)
j2

∣
∣
∣

2
∣
∣
∣
∣
{Xi}ni=1,i6=j

]

= op(n
−1)

uniformly over j. This in turn implies that max1≤j≤n

∣
∣
∣a

(k)
j2

∣
∣
∣ = op(n

−1/2) by Markov inequality.
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Table 1. Results of Monte Carlo Experiments

ρ n Results for m1 Results for m2

MI 2S MI 2S

d = 2
0.2 100 0.0834 0.0783 0.1430 0.1497

200 0.0560 0.0519 0.0964 0.1125

0.8 100 0.1638 0.0920 0.2957 0.1620
200 0.1331 0.0621 0.2602 0.1146

d = 5
0.2 100 0.1268 0.0688 0.1914 0.1466

200 0.0917 0.0534 0.1293 0.1176

0.8 100 0.1810 0.0893 0.4060 0.1618
200 0.1650 0.0638 0.3578 0.1208

ρ n Results for m1 Results for m2

S 2S S 2S

d = 2
0.2 100 0.0758 0.0708 0.1089 0.1104

200 0.0536 0.0492 0.0798 0.0803

0.8 100 0.0842 0.0798 0.1133 0.1153
200 0.0599 0.0557 0.0825 0.0834

Note: The values shown in Table 1 are the average absolute deviation errors (AADE’s) for
the marginal integration (MI), spline (S) and two-stage (2S) estimators.
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Figure 1. Estimation Results

Note: The estimated additive components of a nonparametric additive median regression

model are shown along with their 90% pointwise confidence intervals.
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Figure 2. Residual Plots

Note: The estimated residuals are plotted against each of covariates.
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