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Summary

Hepatocytes form a crucially important cell layer that separates
sinusoidal blood from the canalicular bile. They have a uniquely
organized polarity with a basal membrane facing liver sinusoidal
endothelial cells, while one or more apical poles can contribute
to several bile canaliculi jointly with the directly opposing hepato-
cytes. Establishment and maintenance of hepatocyte polarity is
essential for many functions of hepatocytes and requires carefully
orchestrated cooperation between cell adhesion molecules, cell
junctions, cytoskeleton, extracellular matrix and intracellular traf-
ficking machinery. The process of hepatocyte polarization requires
energy and, if abnormal, may result in severe liver disease.

A number of inherited disorders affecting tight junction and
intracellular trafficking proteins have been described and demon-
strate clinical and pathophysiological features overlapping those
of the genetic cholestatic liver diseases caused by defects in
canalicular ABC transporters. Thus both structural and functional
components contribute to the final hepatocyte polarity pheno-
type. Many acquired liver diseases target factors that determine
hepatocyte polarity, such as junctional proteins. Hepatocyte
depolarization frequently occurs but is rarely recognized because
hematoxylin-eosin staining does not identify the bile canaliculus.
However, the molecular mechanisms underlying these defects
are not well understood. Here we aim to provide an update on
the key factors determining hepatocyte polarity and how it is
affected in inherited and acquired diseases.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the
European Association for the Study of the Liver. This is an open
access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).
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Introduction

A defining feature of metazoans is the existence of polarized lay-
ers of epithelium which give rise to the three dimensional shapes
of body parts and types. The formation and maintenance of a
polarized epithelium is complex and requires specific cell adhe-
sion molecules, cytoskeletal factors and intracellular trafficking
components [1]. These give rise to apical and basolateral plasma
membrane domains which separate interior from external envi-
ronments and permit directional absorption and secretion of pro-
teins and other solutes. Most epithelial cells, such as intestinal and
renal tubular cells, are polarized in the plane of the tissue [2]. In
contrast, hepatocytes have a unique polarization arrangement in
which each of two adjacent cells contributes an apical plasma
membrane that form one or more capillary-like structures, the
bile canaliculus (BC), which is the smallest branch of the bile duc-
tal system (Fig. 1) [3]. The BC is functionally sealed by tight junc-
tions (TJs) and, with its microvilli, constitutes �13% of total
hepatocyte plasma membrane [4]. Defects in hepatocyte polariza-
tion leads to major pathophysiological consequences.

Hepatocyte polarity

Structural polarity

• Each hepatocyte contributes apical membrane domain 
to one or more canaliculi.

• Bile canaliculi are sealed by tight junctions and form a 
complex interconnected network.

• Microvillae dramatically increase the surface area of 
canalicular membrane.

Functional polarity

• Polarized flow of various molecules across canalicular 
and basolateral (sinusoidal) membranes.

• Intrahepatocyte retention of bile components due to 
the genetic defects in canalicular ATP binding cassette 
(ABC) transporters leads to structural depolarization.

Key points
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Fig. 1. Comparison of hepatocyte and columnar epithelial phenotypes. (A)
Adjacent hepatocytes form bile canaliculi (green) at their cell-cell contacting
domains (blue) and are strengthened by surrounding tight junction belt (yellow).
A single hepatocyte can form bile canalicular lumina with three neighbours (BC).
Hepatocytes can also have two basal domains that face the adjacent sinusoids. (B)
Columnar epithelia feature a central lumen formed by the apical domains of
individual cells, which are perpendicular to their cell-cell contacting domains
(black) and separated from the latter by tight junctions (yellow). The basal
domains are in contact with a basal lamina (adapted with permission from Müsch
A. Exp Cell Res, 2014) [153].
Polarization elements

• Extracellular matrix provides a scaffold for adhesion of 
hepatocytes and a signaling platform that determines 
hepatocyte differentiation.

• Cell junctions including tight and adherens junctions, 
desmosomes and gap junctions connect hepatocytes. 
Loss of tight junctions results in hepatocyte 
depolarization.

• Intracellular protein trafficking: newly synthesized 
proteins are sorted at Trans Golgi Network into 
specific trafficking pathways. Rab11a positive recycling 
endosomes, dynamic microtubules and actin filaments 
play crucial roles in determining localization of apical 
transmembrane transporters.

• Mitochondrial energy production is essential for 
polarization and is regulated by AMPK.

Key points

Protein defects in inherited disorders of polarity

Tight junction proteins:

• Claudin 1 (NISCH syndrome)
• TJP2 (PFIC-4 and Familial Hypercholanaemia)

Intracellular trafficking proteins:

• VPS33B or VIPAR (ARC syndrome)
• Myosin 5B (MVID)

Canalicular membrane transporters:

• ATP8B1 (PFIC-1)
• ABCB11 (PFIC-2)
• ABCB4 (PFIC-3)
• ABCC2 (Dubin Johnson syndrome)

Basolateral membrane transporters:

• Combined OATP1B1 and OATP1B3 defect (Rotor 
syndrome)

Key points

Review
Basic understanding of hepatocyte polarity

Hepatocyte polarity mechanisms may be divided into structural
and functional components. Structural polarity includes morpho-
logic integrity of TJs and apical plasma membranes with their
1024 Journal of Hepatology 2015
microvilli, and BC network formation. In cultured hepatocytes
and cell lines, reversion to planar polarity phenotype and loss
of BC has been demonstrated as a result of deletion or inhibition
of individual components of the complex polarization machinery
[5–7]. In contrast, functional polarity is predominantly defined by
the action of canalicular ATP binding cassette (ABC) transporters.
The scope is expanding to include acquired diseases although
pathologists rarely comment on hepatocyte polarization because
BC cannot be visualized by hematoxylin and eosin staining and
vol. 63 j 1023–1037
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require imaging of canalicular proteins such as 5’nucleotidase,
ABCB1, ABCB11 or others [8]. In the presence of functional polar-
ity defects canalicular morphology is initially retained but even-
tually can be damaged as a consequence of intracellular retention
of biliary components, particularly bile acids [9].

Although most basic studies of components and mechanisms
of polarity were identified in polarized cell lines, such as MDCK,
WIF-B and HepG2; corroborating investigations in mammalian
hepatocytes generally support similar mechanisms. Cell lines
and primary hepatocyte cultures have significant limitations for
polarization studies; however, collagen sandwich cultures of
mammalian hepatocytes have proven useful because they are
non-dividing, do not undergo autophagy, have stable gene
expression for about two weeks and, most importantly, sequen-
tially form a canalicular network similar to that seen in vivo
(Fig. 2) [6,10].

When and how does polarity become manifest?

Embryologically, hepatoblasts are non-polarized and give rise to
hepatocytes on stimulation by Oncostatin M (OSM) and
TNF-alpha, and cholangiocytes, which are signaled by NOTCH
and TGF-beta [11–13]. In mice, hepatocytes begin polarization
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Fig. 2. Progressive canalicular network formation in sandwich cultures of rat primar
and the apical marker ABCB1 (red). Diagram of canalicular network formation. Mean can
from Fu et al. J Cell Sci, 2010) [6].
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on fetal day 14; however, mature BC do not appear until fetal
day 21 [14,15]. Early canalicular network occurs by day 20 and
rapid postnatal network formation occurs within two-three days
after birth. During development, tight junctional complexes form,
and apical and basolateral proteins including transporters
become associated with specific plasma membrane domains
(Fig. 3) [16]. These changes are associated with activation of
7-alpha-hydroxylase and synthesis of bile acids which may par-
ticipate in regulating canalicular network formation similar to
effects observed in hepatocyte cultures in which bile acids acting
through a cAMP-Epac-MEK-AMPK pathway accelerate canalicular
network formation (Fig. 4) [7].

Acquisition of polarity requires an evolutionarily conserved
interconnected network of determinants that have been discov-
ered in Drosophila and which specify future polarization domains
in differentiating epithelial cells [17,18]. Crumbs complex
(including Crumbs, Patj, and Pals1) provides apical identity and
is linked to Par complex (Par3, Par6, and alpha-PKC), which pro-
motes TJs and apical targeting after phosphorylation of Par3 and
Crumbs by alpha-PKC. Scribble complex (containing Lg1, Dlg, and
Scribble) defines the basolateral domain. How these systems
work in hepatocytes is unknown. The complexity of subsequent
processes makes it difficult to identify specific signaling events,
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Fig. 3. Intracellular pathways to canalicular and basolateral plasma mem-
branes. Basolateral membrane proteins, including the LDL receptor, ASGP and
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transporters ATP binding cassette proteins, such as ABCB1, ABCB11, ABCC2, and
ABCB4, traffic from the TGN to the canalicular membrane either directly or via the
large apical recycling endosomal (ARE) compartment from which they endoge-
nously cycle to and from the canalicular membrane, or delivered into the
degradation pathway to lysosomes. Segregation of apical and basolateral cargo
proteins is thought to occur at the TGN although additional intracellular sorting
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Fig. 4. Signaling pathways in hepatocyte polarity. The relation between LKB1,
AMPK and hepatocellular polarization is schematized based on experimental
observations in sandwich cultured mouse hepatocytes (adapted from Homolya
et al., 2014) [22]. AMPK activation inhibits processes which utilize ATP with the
exception of polarization machinery. In addition, protein catabolism is enhanced.
How LKB1 participates in polarization and apical trafficking of ABCB11 and other
ABC transporters is not known; however, the process is associated with AMPK
activation and canalicular network formation. Taurocholate stimulates micro-
tubular-dependent trafficking by activating the cAMP-Epac pathway, whereas, in
Lkb1�/� mice, the stimulating effect of taurocholate and Epac is prevented;
however, cAMP activation restores intracellular trafficking by a PKA-dependent
mechanism which is independent of AMPK. PP2C-protein phosphatase 2C
removes phosphate from phosphor-AMPK. AICAR activates AMPK in a manner
similar to cAMP.
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which explicitly shape polarization. These events, for the most
part, involve protein trafficking, which has been extensively stud-
ied in canine-derived MDCK cells and to a limited extent in hep-
atocytes [19]. In only a few cases have the signaling events
involved in canalicular network formation been demonstrated.
For example, bile canalicular network formation is impaired in
HNF-4alpha [20] and LKB1 knockout mice [21,22], and acceler-
ated by STAT3 [23] and OSM [24]. OSM is an IL-6-related cytokine
secreted by the hematopoietic cells in the fetal liver [25] and is
able to activate transcription factors STAT3 and HNF-4alpha
[23,26] as well as G-protein K-Ras [27]. OSM promoted cell-cell
adhesion and adherens junction formation in cultured embryonic
murine hepatic cells and bile canalicular formation in fetal
human hepatocytes [28,29]. It has been shown that OSM func-
tions in protein kinase A pathway by inducing the expression of
the cell cycle inhibitor p27KIP that keeps cells in G1 and may
couple centrosome-associated signaling to canalicular domain
formation [24,30–32].

The key elements in polarization

Hepatocyte polarization and canalicular network formation
require coordinated expression of several key evolutionarily con-
served elements each of which consists of many components.
These elements are extracellular matrix (ECM), adherens and
tight junctions, intracellular protein trafficking machinery includ-
ing recycling endosomes, cytoskeleton and energy production.

Extracellular matrix

The ECM is a complex macromolecular structural network which
forms a scaffold for adhesion and provides a signaling platform
by sequestering or releasing cytokines, anchoring processing
enzymes and activating hepatocyte surface integrins which trig-
ger intracellular signaling [33,34]. Chemical and physical proper-
ties of the ECM largely determine hepatocyte differentiation.
Unlike other epithelia, hepatocytes are not attached to a tough
basal lamina. Instead they are surrounded by a low density
ECM, that contains hepatocyte secreted components. Mature
hepatocytes are embedded in the ECM that lacks laminin which,
however, is present during hepatocyte differentiation in liver
development and regeneration, suggesting a crucial role for lami-
nin during polarization [35]. The absence of a basal lamina allows
the exchange of macromolecules between the sinusoid and Disse
space through endothelial cell fenestra which exclude cells. In
cirrhosis, excess deposition of ECM into the space of Disse results
in distortion of liver architecture and abnormal hepatocyte func-
tion [36]. Collagen sandwich cultures demonstrate in vitro that
the trapping of hepatocyte secreted ECM proteins, such as colla-
gen IV, laminin and fibronectin, and possibly growth factors on
both non-opposing surfaces is required for the development of
hepatocyte polarity phenotype [6,37].

Experiments in MDCK and WIF-B cells demonstrated that
Par1b, a serine/threonine kinase activated by LKB1 (see below),
is a crucial determinant of hepatocyte-like polarity phenotype
[38]. MDCK cells with overexpressed Par1b demonstrated
hepatocyte-like polarity with interrupted staining of collagen IV
and laminin at the basal surface and appearance of collagen IV
and laminin at the apical surface [39]. Interestingly, seeding
Par1b overexpressing MDCK cells on high collagen IV concentra-
tion ECM reverted the phenotype back to columnar [38]. In
vol. 63 j 1023–1037
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parallel, reduced expression of Par1b in WIF-B cells disrupted
hepatocyte-like polarity. Studies in HepG2 cells proposed RhoA
GTPase as the effector of ECM signaling that determines the posi-
tion of the lumen [40,41]. Work in MDCK cells and hepatocyte
cell lines established that integrins, cadherins and junctional
adhesion molecule A (JAMA) act as transducers that transfer the
signal from the ECM to RhoA GEFs and GAPs in order to induce
the cytoskeletal changes required to establish a biliary lumen
[34,42–44].

Cell junctions

Hepatocytes connect through intercellular tight, anchoring
(adherens and desmosomes) and gap junctions [45–47]. The tight
junctional complex consists of several claudins, occludins, TJP
(also called ZO) proteins [48], and prevents paracellular flux of
molecules. Disruption of the TJs in transgenic mice [49], collagen
sandwich cultured hepatocytes and tissue sections of various
hepatobiliary diseases results in depolarization and eventual
hepatocellular injury. In non-polarized hepatocytes and other
epithelial cells, TJ proteins and some apical transporters relocate
to intracellular sites including the microtubular organizing center
where they colocalize with Rab11a and Myosin 5b [5].
Identification of pathogenic mutations causing disruption of
TJP2 and Claudin1 in patients with severe liver disease confirms
the importance of TJs in maintaining hepatocyte structure and
function [50,51].

Intracellular protein trafficking

Apical protein trafficking in hepatocytes involves at least two dis-
tinct pathways (Fig. 3). Hepatocytes target polytopic membrane
proteins, such as ATP transporters, from the Trans Golgi
Network (TGN) either directly to the bile canalicular domain or
to the Rab11a recycling endosome (RE) pool from which they
cycle to the canalicular membrane [52,53]. In contrast, hepato-
cytes target single membrane spanning and GPI anchored bile
canalicular membrane proteins to the basolateral plasma mem-
brane from which they transcytose in endosomes through the cell
to the canalicular membrane [16,53]. A specific pathway that tar-
gets copper (Cu) transporter ATP7B to the canalicular membrane
via lysosome exocytosis has recently been reported [54]. It was
found that in response to increasing intracellular concentrations
of Cu, ATP7B is trafficked to a subset of lysosomes where Cu gets
stored until the threshold concentration is reached. Once the
threshold level is reached ATP7B is delivered to the canalicular
portion of PM and Cu gets released. How cargo for the transport
pathways is sorted at the TGN or elsewhere, and whether these
pathways intersect in recycling or other endosomes has not been
fully established in hepatocytes (Figs. 3 and 5). Several studies in
HepG2 and WIF-B cell lines identified candidate lipid and protein
determinants that contribute to sorting of canalicular proteins
into distinct pathways [55–57]. The presence of different mecha-
nisms may relate to the extensive secretion of proteins from hep-
atocytes into the circulation in contrast to the selective secretion
of bile acids, metabolites, etc. into the bile [1]. Precise regulation
of membrane sorting and of the endosomal recycling system is
required to sustain hepatocyte polarity and specificity of function
in the various plasma membrane domains. Approximately half of
the proteins of a typical plasma membrane are endocytosed per
hour, whilst only �8% of the hepatocyte basolateral plasma
Journal of Hepatology 2015
membrane is internalized per hour [58]. The difference in traf-
ficking of different types of canalicular proteins and the impor-
tance of the Rab5 dependent endosomal pool to trafficking of
GPI anchored proteins, such as DPPIV and proteins trafficked
via RE such as ABCB11, was demonstrated in an in vivo knock-
down of Rab5 homologues. In mice with Rab5 knockdown
DPPIV remained at the basolateral membrane, whilst ABCB11
relocated to REs [59]. In contrast, the localization of ABCC2 was
unaffected suggesting an independent trafficking mechanism
for this protein.

Largely based on studies in cell lines and schematized in
Figs. 3 and 5, the TGN is the site for release and sorting of proteins
destined for the apical plasma membrane. The involvement of
specific endosomal pools has not been characterized in hepato-
cytes but has been revealed in pulse chase experiments in liver
and in cell lines. RE constitutes a large reservoir for ABC trans-
porters which is at least six times greater than the content of
those proteins in the canalicular membrane [52]. The pool is
mobilized by bile acids which circulate in the enterohepatic cir-
cuit, and by postprandially secreted peptide hormones which
increase cAMP production in hepatocytes to cope with the
increased demand for bile acid secretion. Taurocholate and
cAMP activate distinct signaling pathways to mobilize ABC trans-
porters to the canalicular domain [60]. Regulation of these two
responses differs. Increase in cAMP concentration results in
PKA-mediated stimulation of PI3K but not taurocholate stimu-
lated incorporation of ABCB11 into the canalicular membrane
(Fig. 4) [61].

The RE component of the secretory pathway plays a critical
role in apical as well as basolateral localization of various
vol. 63 j 1023–1037 1027
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proteins [62]. This cargo-bearing structure contains a complex
including one or more Rab protein GTPases and an
actin-associated molecular motor, Myosin 5b, as well as adaptor
proteins Rab11a, Fip1 and Fip2 as shown by the work in the
MDCK cells [63]. Inhibition of Rab11a or Myosin 5b prevented
polarization in WIF-B cells and primary hepatocytes and, when
introduced into polarized cells, prompted depolarization and
internalization of apical proteins [5]. These observations
indicated that the RE is a major determinant of polarization not
due to its ABC transporter cargo. Some of the endosome compo-
nents which provide cues for apical membrane polarization have
been previously characterized [64–68]. Mutations in MYO5B
encoding Myosin 5b, which acts as a molecular motor not only
for Rab11a, but also Rab11b, Rab25, and Rab8, cause
MicroVillus Inclusion Disease (MVID) in which malabsorption
results from the absence of the intestinal brush border [69].
Recent studies reveal that many patients with MYO5B mutations
also manifest cholestasis and progressive liver disease [70].
Mouse Rab8 conditional knockouts mimic MVID; furthermore,
patients with MVID without Myosin 5b defects were found to
have mutations affecting Syntaxin 3, an apical membrane
SNARE (family of membrane proteins that ensure fusion between
opposing membranes), suggesting that Myosin 5b, Rab8, and
Syntaxin 3 may be involved in the same trafficking pathway
[71,72]. As the liver disease in mice with Rab8 deficiency or
MVID patients with Syntaxin 3 defects has not been described
thus far, it is possible that Rab8 and Syntaxin 3 role in this path-
way is not as important in hepatocytes as it is in the intestine.
Discovery of loss of function mutations in genes encoding
RE-associated proteins such as Myosin 5b in MVID, VPS33B,
and VIPAR in Arthrogryposis, Renal dysfunction and cholestasis
syndrome (ARC) [73] supports the importance of the RE in estab-
lishment and maintenance of hepatocyte polarity (Fig. 6).
Inherited hepatocyte polarity disorders
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Cytoskeletal microfilament and microtubular systems

Proper endosomal trafficking and recycling of proteins to all
plasma membrane domains requires an intact actin and micro-
tubular cytoskeletal system [74,75]. In particular, dynamic
microtubules mediate trafficking of secreted and canalicular
proteins [76]. Newly synthesized ABCB11, the canalicular bile
acid transporter, and other canalicular ABC transporters traffic
from the TGN along microtubules [77]. However, microtubules
do not attach to the canalicular membrane and their cargo
endosomes are transferred to the pericanalicular actin system
(Fig. 5). The complete mechanism for cargo transfer is not
known; however, microtubules become associated with actin
through a pericanalicular actin-binding complex containing
CLIP170, IQGap, APC, Hax-1, and cortactin proteins [78]. Live cell
imaging studies reveal that selective plasma membrane localiza-
tion of transporter proteins is predominantly due to the local-
ization of specific docking proteins. In polarized WIF-B cells,
ABCB11 and ABCB1 were shown to traffic along microtubules
throughout the cell but only attach to sites on the canalicular
membrane [77]. The docking site has been proposed to be
Syntaxin 3 that facilitates fusion of protein sorting vesicles with
the inner leaflet of the canalicular membrane [79,80]. Radixin
also participates in this process and links some cargo molecules
such as ABCC2, to the pericanalicular actin system [81]. Radixin
knockout mice manifest impaired ABCC2 localization to the
canalicular domain which becomes progressively devoid of
microvilli resulting in hepatocyte injury [82]. Assembly and dis-
assembly of short actin filaments involved in endosomal trans-
port are under the control of formin [83]. Work in HepG2 cell
line demonstrated the requirement for INF2, CDC42 and trans-
membrane protein MAL2, for trafficking of canalicular mem-
brane proteins in the transcytotic pathway.

Energy

Hepatocyte polarization is energy-dependent but the mechanism
is unclear. AMPK, a serine threonine kinase containing a catalytic
alpha subunit and a regulatory beta and gamma subunits,
controls energy metabolism within cells by sensing the cellular
AMP to ATP ratio [84]. Activation of AMPK by phosphorylation
of the alpha subunit Thr172 decreases energy consumption and
increases energy production during cellular stress such as hypox-
ia, glucose deprivation and ischaemia, and has an important role
in hepatic metabolism through effects on glucose, lipid and pro-
tein homeostasis and mitochondrial biogenesis (Fig. 4) [85].
Long-term effects involve regulation of the glycolytic and lipo-
genic pathways [86]. In collagen sandwich hepatocyte cultures,
AMPK activation by metformin, cAMP activators, 2 deoxyglucose,
AICAR or taurocholate increased canalicular network formation
[6]. Phosphorylation of AMPK Thr172 is performed by LKB1, an
upstream serine threonine kinase which is activated by various
growth factors [87]. AMPK and LKB1 regulate polarity in
Drosophila, polarized cell lines, neurons and hepatocytes [86]. In
collagen sandwich cultured hepatocytes, the stress of isolation
resulted in depolarization, ATP depletion and mitochondrial frag-
mentation [7,88]. Mitochondrial fusion occurred within two days
associated with increased ATP synthesis from oxidative phospho-
rylation and canalicular network formation. Subsequent AMPK
activation upregulated glucose uptake, glycolysis and a further
increase in ATP. These in vitro studies reveal that, after stress,
vol. 63 j 1023–1037
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hepatocytes preferentially restore polarity even at low ATP levels,
suggesting that polarity is a prime requirement for cellular activ-
ity [7]. Mitochondrial fission and fusion are important in polarity
maintenance. In other studies, LKB1 conditional liver knockout
mice reveal polarity defects, cholestasis and liver injury [21,22].
Whether LKB1 and/or AMPK enhance polarization through direct
effects on mitochondrial bioenergetics and/or specific phospho-
rylation of downstream polarity components, such as TJs, RE or
cytoskeleton, is unknown.
Table 1. Rare disorders affecting hepatocyte polarity.

Disorder
(OMIM phenotype 
number)

Affected gene 
(inheritance, MIM 
number)

Hepatic disease

Progressive familial 
Intrahepatic cholestasis 
(PFIC)
PFIC-1 (211600)
Benign recurrent 
Intrahepatic 
Cholestasis-1 (243300)
Cholestasis, 
Intrahepatic of 
pregnancy (147480)

ATP8B1 (AR, 
602397)

PFIC-1: severe pruritus, infantile 
intrahepatic cholestasis, canalicula
membrane defect on electron micr
hepatosplenomegaly, normal gGT
Disease progresses to fibrosis, cir
liver failure.
BRIC-1: intermittent episodes of 
cholestasis that resolves within we
months.
In some patients the disease prog
as in PFIC-1.
Heterozygous carriers of mutation
in ATP8B1 are prone to intrahepat
cholestasis of pregnancy [154].

PFIC-2, BRIC-2 
(601847)

ABCB11 (AR, 
603201)

PFIC-2: pruritus, intrahepatic 
cholestasis and giant cell hepatitis
in infancy.  Progression to cirrhosi
Risk of hepatocellular carcinoma a
cholangiocarcinoma.
BRIC-2: intermittent episodes of 
cholestasis, rarely can progress to
severe disease.
Female carriers predisposed to 
intrahepatic cholestasis of pregnan

PFIC-3 (602347)
Cholestasis, 
Intrahepatic of 
pregnancy, 3 (614972)
Gallbladder disease 1 
(600803)

ABCB4 (AR, 
171060)

Recurrent cholestasis from infancy
progressing to severe liver disease
with hepatosplenomegaly. High gG
Liver biopsy with non-specific port
inflammation, extensive portal fibro
cirrhosis.
Carriers are predisposed to intrahe
cholestasis of pregnancy and galls

PFIC-4 (615878) TJP2 (AR, 607709) Only 12 patients from 8 families de
so far. Progressive liver disease w
normal or slightly increased gGT. L
transplantation required in early ag
most patients. Incidence of hepato
carcinoma reported in 2 patients [9

Familial 
hypercholanaemia
(607748)

EPHX1 (AR, 
132819)
TJP2 (AR, 607709) 
incomplete 
penetrance
BAAT (AR, 
602938), also 
modifier of TJP2 
mutant phenotype

Cholestasis with normal liver 
transaminases, raised alkaline 
phosphatase. Chronic active hepa
some cases, canalicular cholestas
others. 
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Disorders of polarization

Typically, diseased liver loses its polarized structure. Polarity
defects are seen in single-gene rare inherited disorders (Table 1
and Fig. 6) as well as common infections such as hepatitis C, in
which damage to hepatocyte polarization can be restored by
treatment [89], and multifactorial diseases like cancer, as genes
involved in polarity have been implicated in its pathogenesis
(Table 2) [90].
Other abnormalities Molecular pathology
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pancreatitis, 
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Transport of phospholipids from outer to 
the inner leaflet of hepatocyte canalicular 
membrane. Involved in signaling to bile 
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protects hepatocytes from bile salt 
damage [101]. 
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A combination of bile acid biosynthesis 
defect and a defect in the barrier function 
of hepatocyte tight junctions [91].

(continued on next page)

vol. 63 j 1023–1037 1029



Table 1 (continued)

Disorder
(OMIM phenotype 
number)

Affected gene 
(inheritance, MIM 
number)

Hepatic disease Other abnormalities Molecular pathology

Dubin-Johnson 
syndrome 
(237500)

ABCC2 (AR, 
601107)

Chronic or intermittent conjugated 
hyperbilirubinaemia, associated 
with intercurrent illness, hepatocyte 
accumulation of brown pigment

Canalicular multispecific organic anion 
transporter (cMOAT), also known as 
MRP2.

Rotor syndrome
(237450)

SLC01B1 (605495)
SLC01B3 (604843)
Digenic inheritence

Neonatal conjugated jaundice. Markedly 
increased total coproporphyrin excretion 
in the urine. No abnormal hepatic 
pigmentation. 

Simultaneous deficiencies of the 2 
proteins, which mediate uptake and 
clearance of conjugated bilirubin across 
the hepatic sinusoidal membranes into 
bile.

Arthrogryposis, renal 
dysfunction and 
cholestasis syndrome
ARCS1 (208085)
ARCS2 (613401)

VPS33B (AR, 
608552)
VIPAS39 (AR, 
613401)

Mislocalisation of apical membrane 
proteins including BSEP, gGT, CEA. 
Cholestasis, neonatal hepatitis.

Renal dysfunction 
including 
proteinuria, renal 
fanconi syndrome; 
Arthrogryposis, 
defective platelet 
alpha granule 
biosynthesis; 
ichthyosis, failure to 
thrive.

Disturbed intracellular membrane 
trafficking affecting canalicular membrane 
protein localization.

Microvillus inclusion 
disease (251850)

MYO5B (AR, 
606540)
STX3 (AR, 600876)

Severe cholestasis associated with 
parenteral nutrition is described in patients 
with MYO5B mutations but not with STX3 
mutations so far. 

Intractable 
diarrhoea.

Myosin 5b is an actin-based molecular 
motor effector protein for recycling 
endosome-associated Rab11 a/b, 
Rab25, Rab10 and Rab 8 which regulate 
polarized epithelial protein trafficking from 
the endoplasmic reticulum. Syntaxin 3 
is an apical membrane SNARE protein 
proposed as a docking site on canalicular 
membrane for vesicles trafficking ABC 
transporters.

Neonatal ichthyosis 
sclerosing cholangitis 
syndrome
NISCH (607626)

CLDN1 (603718) Variable liver histology: 1) sclerosing 
cholangitis, 2) congenital paucity of 
bile ducts, 3) portal fibrosis with bile 
duct proliferation or 4) intracellular and 
canalicular cholestasis with normal liver 
architecture. Initially normal gGT in some 
patients. 

Ichthyosis, 
leukocyte vacuoles, 
alopecia, enamel 
dysplasia and 
hypodontia.

Abnormal formation of tight junctions 
in epithelial cells including hepatocytes 
and cholangiocytes leading to increased 
paracellular permeability.

Review
Inherited defects in junctional proteins

Defects in several apical junction proteins have been associated
with inherited human liver diseases (Fig. 6). CLDN1 and TJP2
encode integral TJ proteins; mutations in CLDN1 were found in
neonatal ichthyosis-sclerosing cholangitis syndrome (NISCH)
and TJP2 mutations cause familial hypercholanemia (FHC) and a
newly described subtype of Progressive Familial Intrahepatic
Cholestasis syndrome (PFIC-4) [50,51,91]. Patients with NISCH
are born with generalized skin, hair and nail abnormalities. The
liver disease is said to affect both cholangiocytes and hepatocytes
and the biopsy appearance varies even in patients with the same
mutation, and can demonstrate typical sclerosing cholangitis fea-
tures or non-specific hepatocellular and canalicular cholestasis
with normal bile ducts [92]. The variability of phenotype expres-
sion suggests that variants in other genes may influence liver dis-
ease severity. The likely mechanism for liver injury is increased
paracellular permeability due to abnormal TJ formation, resulting
in bile regurgitation [93].

FHC patients have elevated serum bile acid concentrations,
pruritus and fat malabsorption. FHC can be caused by defects in
several proteins including TJP2 and also enzymes involved in bile
acid biogenesis. FHC patients have normal liver enzymes apart
1030 Journal of Hepatology 2015
from increased serum alkaline phosphatase activity, and variable
findings on liver biopsy that include canalicular cholestasis and
minimally active chronic hepatitis. Symptoms usually respond
to treatment with ursodeoxycholic acid. Some patients have a
combination of homozygous missense V48A mutations in TJP2
with a heterozygous BAAT (Bile acid-CoA:amino acid
N-acyltransferase) M76V mutation (which in the homozygous
state can also cause FHC).

Frame shift deletions and duplications, and splice site TJP2
mutations identified in all patients with PFIC-4 so far are pre-
dicted to result in the absence of the protein product [51]. The
described patients had normal gamma glutamyl transpeptidase
(gamma-GT) cholestasis and progressive liver disease course,
with most children requiring lifesaving early liver transplanta-
tion. Two patients with severe TJP2 mutations were reported to
have developed hepatocellular carcinoma at 24 and 26 months
of age [94].

Inherited defects in intracellular trafficking

Defects in four intracellular trafficking machinery proteins
(Myosin 5b, Syntaxin 3, VPS33B, and VIPAR) cause related inher-
ited disorders with polarity defects [69,70,72,73]. Abnormalities
vol. 63 j 1023–1037



Table 2. Polarity genes associated with common liver disorders.

Gene (OMIM, protein+/- 
alternative name)

Involvement in common 
hepatic disease

Inherited disorder 
(inheritance, MIM phenotype number)

Known molecular pathway and link to cell polarity

STK11 (602216, serine/
threonine protein kinase 
11, LKB1)

Mutations and allelic loss of 
STK11 gene are frequently 
found in hepatocellular 
carcinoma [155,156].

Peutz-Jeghers syndrome (175200) STK11 is a kinase activating energy sensing 
kinase AMPK that is activated during polarization 
and stimulates increased energy production 
required for polarization.

CTNNB1 (116806, 
β-catenin)

Somatic mutations are 
associated with hepatoblastoma 
and hepatocellular carcinoma, 

Adherens junction protein, essential for 
establishment and maintenance of the epithelial 
polarity. Involved in Wnt signaling when 
undergoes cytoplasmic and nuclear translocation.

APC (611731, APC) Somatic mutations 
are frequently seen in 
hepatoblastoma and 
hepatomas.

Familial Adenomatous Polyposis 
(175100)

Multiple functions including negative regulation 
of beta-catenin signaling, reorganization of 
intermediate filament reorganization during cell 
migration, 

AXIN1 (603816, axis 
inhibitor 1)

Somatic mutations found in 
hepatocellular carcinoma

AXIN1 binding of LRP5 and activation of 
LEF1 are important for Wnt signaling via axin1 
β-catenin binding.

PIK3CA (171834, 
phosphatidyl inositol 
3-kinase, catalytic, alpha)

Somatic mutations found in 
hepatocellular carcinoma

Cowden syndrome (158350) Generates PIP3 important in apical membrane 
formation

INPPL1 (600829, 
INOSITOL 
POLYPHOSPHATE 
PHOSPHATASE-LIKE 1, 
SHIP2)

Decreased expression by 
hepatitis C infection

Opsismodysplasia (258480) Regulates polarity by converting PtdIns(3,4,5)P3 
to PtdIns(3,4)P2.

GPC3 (300037, Glypican3) Hepatoblastoma occurs in 
patients with Simpson Golabi 
Behmel syndrome. Marker and 
potential therapeutic target in 
hepatocellular carcinoma.

Simpson Golabi Behmel syndrome type 
1 (312870)

Glypicans are involved in cell polarity by 
regulating Shh and Wnt signaling [157,158].
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in Myosin 5b and recently described defects in Syntaxin 3 cause
MVID which typically present in infants with intractable diarrhea
and characteristic features include hypoplastic villous atrophy
with intracytoplasmic inclusions of brush border microvilli
detected by electron microscopy. Many patients with MVID
develop cholestatic liver disease similar to that in PFIC-1 and -2
[70]. Cholestasis becomes particularly prominent when par-
enteral nutrition is introduced. Immunostaining of ABCB11 and
Rab11a in liver biopsies from patients with Myosin 5b defects
demonstrated abnormal distribution of these proteins, suggesting
that mislocalization of ABCB11 due to abnormal trafficking could
be responsible for the liver disease, at least in this subgroup of
MVID [70]. Liver disease has not yet been described in patients
with Syntaxin 3 defects. As mentioned above Myosin 5b is an
actin-based molecular motor whose mechanism of action is clo-
sely linked with the RE-associated Rab family proteins, which
regulate polarized epithelial protein trafficking. Syntaxin 3 is an
apical membrane SNARE that may act as a hepatocyte docking
site for the vesicles delivering canalicular membrane transporter
proteins from the REs.

ARC is an autosomal recessive multisystem disorder caused by
mutations in VPS33B and VIPAS39 encoding VPS33B (vacuolar
protein sorting 33 homologue B) and VIPAR (VPS33B interacting
protein, apical-basolateral polarity regulator). Characteristic pre-
sentation of ARC includes neonatal cholestatic jaundice, renal
tubular acidosis, arthrogryposis and severe failure to thrive.
Patients have normal gamma-GT but significantly increased alka-
line phosphatase activity, consistent with the canalicular damage
[95]. Patients’ liver biopsies show evidence of giant cell hepatitis,
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bile duct hypoplasia and accumulation of intrahepatocyte
lipofuscin granules. Most patients described so far carry severe
nonsense, splice site or frame shift mutations resulting in the
absence of protein product, and fail to survive past the first year
of life. However, affected children with an attenuated ARC pheno-
type have been identified. A splice site c.1225+5 G>C mutation in
VPS33B results in production of an abnormal protein transcript
that retains some function and appears to confer the mild pheno-
type [96]. VPS33B and VIPAR form a stable complex and interact
with Rab11a suggesting a role for the VPS33B-VIPAR complex in
RE trafficking pathway. Moreover, localization of bile salt export
pump ABCB11, which is trafficked to canalicular membrane via
Rab11a positive RE was predominantly cytoplasmic in the liver
of ARC patients [73]. Localization of other canalicular membrane
proteins in ARC patients’ liver was found to be variable. For
example CECAM5, which is a GPI anchored protein was predom-
inantly localized to the basolateral membrane, while the location
of MRP2 in hepatocyte canaliculi was unchanged. Furthermore
structural and functional abnormalities in the apical junction
complex (AJC) was found in mIMCD3 cells with VPS33B and
VIPAR knockdown, although the mechanism behind this defect
is not clear and is likely to be caused by transcriptional downreg-
ulation of some AJC proteins such as E-Cadherin and Caludin-1
[73].

Functional polarity defects

Defects in hepatocyte transporter proteins are the most common
collective cause of inherited forms of cholestasis. A scope of
vol. 63 j 1023–1037 1031



Review

severity has been demonstrated with more severe protein
defects manifesting in infants, with milder abnormalities
conferring susceptibility to drug induced and pregnancy induced
cholestasis.

Inherited defects in canalicular membrane transporter proteins

Progressive Familial Intrahepatic Cholestasis types I and II
(PFIC-1 and PFIC-2) are characterized by persistent cholestasis
with normal gamma-GT and progressive liver damage that often
requires liver transplantation in childhood. Reduced concentra-
tions of primary BA are found in bile [97,98]. A scope of severity
exists in PFIC and a range of mutations resulting in the absence or
mistrafficking of the proteins has been described. The majority of
patients with this phenotype have mutations in ATP8B1 (PFIC-1)
and ABCB11 (PFIC-2) although patients with a similar phenotype
and mutations in TJP2 (PFIC-4) were described recently (see
above) [51,99,100]. ABCB11, also known as bile salt export pump
(BSEP) is responsible for the transport of salts of primary bile
acids across the canalicular membrane [101]. Patients with
ABCB11 mutations are at increased risk of hepatobiliary malig-
nancy [102]. ATP8B1 is a member of the type 4 subfamily of
P-type ATPases and is present in the apical membrane of many
epithelial cells, including hepatocytes and enterocytes. It was
found to translocate aminophospholipids such as phos-
phatidylserine (PS), from the outer to the inner leaflet of the
plasma membrane bilayer [103–105]. The extrahepatic manifes-
tations of ATP8B1 deficiency include diarrhea, recurrent pancre-
atitis, sensorineural deafness, delay in growth and puberty and
elevated sweat chloride concentration [106].

Patients with milder missense mutations in ABCB11 or ATP8B1
that may confer partial instability to the protein display a benign
recurrent intrahepatic cholestasis (BRIC) phenotype, in which
cholestasis can completely resolve between relapses [107].

Mutations in ABCB4 encoding ABCB4 are associated with
PFIC-3 [108]. ABCB4, also called multidrug resistance protein 3
(MDR3) is a P-glycoprotein that translocates phospholipids from
the internal to the external leaflet of the canalicular membrane
[109]. Unlike PFIC-1, -2, and -4, PFIC-3 patients have high serum
gamma-GT values, ductular reaction and early fibrosis on liver
biopsy. ABCB4 deficiency cause abnormal phosphatidylcholine
secretion into bile leading to hepatocyte and cholangiocyte dam-
age due to absent emulsification of bile acids [110]. A number of
cholestatic disorders have been associated with partial ABCB4
deficiency, including neonatal hepatitis and biliary cirrhosis
[111,112].

Mutations in ABCC2 cause Dubin-Johnson syndrome. Patients
with this condition have recurrent episodes of jaundice without
plasma bile acid accumulation. The liver biopsy demonstrates
intrahepatocyte deposits of dark pigment often without any obvi-
ous hepatobiliary injury [113]. Treatment is recommended only
for severe neonatal cases. Upregulation of other transporters such
as ABCC3 in Dubin-Johnson syndrome patients may explain a
mild phenotype [114].

ABCC2 encodes ABCC2 or MRP2, which is a member of the
multidrug resistance protein subfamily that exports anionic
glutathione and glucuronate conjugates (including bilirubin)
from hepatocytes into canaliculi [115]. ABCC2 is expressed on
the apical membranes of many epithelial cells including hepato-
cytes, proximal renal tubules, gallbladder, small intestine,
bronchi and placenta [116].
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Basolateral membrane protein defects

Rotor syndrome is caused by simultaneous recessive mutations
in SLCO1B1 and SLCO1B3 genes and phenotypically is similar to
Dubin-Johnson syndrome [117]. It manifests with mild jaundice
that can be detected in the neonatal period or childhood. In con-
trast to Dubin-Johnson syndrome there are no intrahepatocyte
pigment deposits present and delayed plasma clearance of
unconjugated bromsulphthalein can be found [118]. SLCO1B1
and SLCO1B3 encode organic anion transporting polypeptides
OATP1B1 and OATP1B3, which localize to the sinusoidal mem-
brane of hepatocytes and mediate sodium-independent cellular
uptake of multiple compounds, including bilirubin glucuronide,
bile acids, steroid and thyroid hormones, as well as numerous
drugs [119].
Hepatocyte polarity determinants and acquired liver diseases

MicroRNA

MicroRNAs (miRNAs), are small 18–24 nucleotide noncoding
RNAs that regulate gene expression by binding to mRNAs and
interfering with translation [120,121]. Typically, miRNAs
downregulate expression of their target genes by binding to the
30 untranslated region (UTR). However miRNAs may also
upregulate target gene expression when interacting in a non-30

UTR-dependent fashion. More than 1000 mammalian miRNAs
are known [122]. The miRNA-target gene interaction is complex
and probably exist as part of carefully regulated transcription fac-
tor networks [123]. More than one miRNA can affect expression
of the same gene and each miRNA can influence dozens of gene
transcripts. The exact roles of miRNAs in the establishment and
maintenance of hepatocyte polarity are not known, but evidence
is emerging that miRNA influence expression of adherens and TJ
proteins and cytoskeleton remodelling. miR-155 was found to be
upregulated after TGF-beta induction in an epithelial cell line
NMuMG which resulted in loss of polarity [124]. Moreover
numerous studies identified specific alterations in miRNAs
signatures in different liver diseases. ZEB1 and ZEB2, the
transcriptional repressors of E-cadherin are influenced by
members of the miRNA-200 family and lead to epithelial to
mesenchymal transition [125,126]. Upregulation of miRNAs
miR-200a and miR-200b in liver fibrosis is consistent with their
influence in this disease mechanism [127]. A role in regulating
the PTEN – TGF-beta axis was ascribed to a network of miRNAs
(including miR-106a, miR-106b, miR-18a, miR-18b, and others)
that results in EMT of hepatocytes thus suggesting potential for
this miRNA network to promote neoplastic transformation of
hepatocytes [128].

Liver cancer

Cancer cells become depolarized and there is evidence for the
role of disturbed polarity pathways in oncogenesis.
Beta-catenin is a constituent protein of adherens junctions and
is critical for establishment and maintenance of epithelial polar-
ity. It can dissociate from the junctions and is translocated to the
nucleus where it may transmit the contact inhibition signal.
Mutations that lead to accumulation of intracytoplasmic and
nuclear Beta-catenin were identified in more than half of patients
vol. 63 j 1023–1037
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with sporadic hepatoblastoma (HB), a malignant childhood liver
tumor [129]. Such Beta-catenin translocation is likely to upregu-
late the Wnt signaling pathway. Furthermore mutations in
CTNNB1, which encodes Beta-catenin are associated with
increased Wnt signaling were identified in � 20% of patients with
hepatocellular carcinoma (HCC), including a patient with primary
PFIC-2 diagnosis [130].

Inactivating mutations in APC cause familial adenomatous
polyposis and approximately 10% of patients with HB have germ-
line APC mutations [131,132]. APC is a tumor suppressor that
downregulates the Wnt signaling pathway by decreasing the
amount of translocated Beta-catenin. APC forms a complex with
glycogen synthase kinase 3 beta (GSK3B) and AXIN1 that binds
and phosphorylates cytoplasmic Beta-catenin, facilitating its
ubiquitination and proteasomal degradation. Understanding sig-
naling events underlying HCC lead to development of novel treat-
ments. A complete resolution of tumors in an in vivo mouse
model of HCC with Beta-catenin mutations was recently demon-
strated after treatment with a ‘‘locked nucleic acid’’ antisense
approach to inactivation of Beta-catenin driven Wnt signaling
[133]. In another project, MET/DN90-b-catenin mutant model
of HCC was employed to test the effect of in vivo nanoparticle
mediated siRNA inhibition of integrin subunits, which slowed
down progression of HCC and was proposed as a possible novel
treatment for this tumor [134]. Germline mutations in PTEN
and more recently PIK3CA and AKT1 were found in patients with
‘‘Cowden’’ or ‘‘multiple hamartoma’’ syndrome, an inherited
disorder that leads to multiple hamartomas including biliary
hamartomas, and predisposes patients to several types of cancer.
PIK3CA encodes the catalytic subunit of PI3K, which adds a
phosphate to phosphatidylinositol-4,5-biphosphate (PIP2) to
form phosphatidylinositol-3,4,5-triphosphate (PIP3) at the
cellular membrane. PTEN dephosphorylates PIP3, which is
required for recruitment of AKT1 to the cell membrane where it
is phosphorylated. The PIP3 pathway is important for apical
membrane formation. PI3KCA somatic mutations are also occa-
sionally seen in HCCs and other cancers [135].
Viral hepatitis

Hepatitis B and C both promote hepatocarcinogenesis, which is
associated with E-cadherin downregulation and Beta-catenin
activation. Hepatitis C virus (HCV) enters hepatocytes using the
TJ proteins claudin1 and occludin as co-receptors and a tetraspa-
nin CD81 [136–139]. Hepatitis B virus (HBV) entry into hepato-
cytes is dependent upon hepatocyte polarization and it is
suggested that the putative viral cell receptor is located in the
basolateral membrane, although its identity is not yet known
[140]. HBV X protein is thought to activate the Wnt signaling
pathway by binding to APC [141].

The work in hepatoma cell lines demonstrated that HCV infec-
tion upregulates VEGF which disrupts tight junction integrity
promoting viral transmission [89].

HCV core protein expression was associated with disrupted
apical polarity in MDCK cells, which may be a result of deactiva-
tion of PI phosphatase SHIP2 which converts PtdIns(3,4,5)P3 to
PtdIns(3,4)P2 [142]. Furthermore, HCV-induced liver inflamma-
tion is associated with upregulation of Wnt signaling and
increased miR-155 expression [143]. Expression of another HCV
protein, HCV-NS5A, in primary hepatic precursors and immortal-
ized hepatocyte cell lines led to epithelial to mesenchymal
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transition (EMT) through activation of Twist2, which regulates
EMT [144].

HCV entry into via hepatocyte TJs was targeted by the novel
approach to therapy. Inhibition of HCV entry using anti-CLDN1
antibody in human liver-chimeric mice successfully treated
chronic HCV infection and provides a novel therapeutic approach
to this devastating disease [145].

Primary biliary cirrhosis

Genome wide association studies are helping to unravel path-
ways involved in the pathogenesis of common human diseases.
Primary biliary cirrhosis is the most common autoimmune liver
disease primarily affecting women over the age of 40. Recent
studies found significant association between defects in several
molecular pathways and primary biliary cirrhosis, including
known polarity pathways such as mTOR, PI3K, MAPK, Hh, and
Wnt signaling, and adherens junctions [146]. In cirrhosis and
inflammatory hepatic diseases, depolarization of hepatocytes
occurs; however its frequency and contribution to pathology
have not been studied in depth. A recent study has shown that
induction in oxidative stress by administration of carbon tetra-
chloride disrupted Par-3 – alpha-PKC complex formation result-
ing in disassembly of TJ and depolarization of hepatocytes.
These changes led to cholestasis and cirrhosis [147]. The mobi-
lization of fibrogenic cells has been proposed to involve conver-
sion of polarized hepatocytes and biliary epithelial cells into
mesenchymal cells with concomitant loss of epithelial polariza-
tion and acquisition of a mobile phenotype, but this is controver-
sial [148,149].
Conclusions

Improved understanding of hepatocyte polarization benefited
from the work in cell lines, model organisms and discoveries of
inherited mutations in patients with cholestatic diseases. The
unique role of the canalicular membrane in bile acid secretion
and the deleterious intracellular effects of their retention prompt
the hypothesis that links polarity, bile acid retention, mitochon-
drial damage, energy metabolism and cholestasis. Hepatocyte
polarization and canalicular membrane formation are likely to
be dependent upon stimulation by bile acids and LKB1 phospho-
rylation of AMPK and Par1b, as well as activation of STAT3 and
TNFa transcription factors by cytokine OSM. The unique impor-
tance of ECM composition and localization in hepatocyte differ-
entiation has been further defined by research efforts in the
liver regeneration field. Hepatocytes have specific trafficking
pathways for GPI anchored and single transmembrane domain
canalicular membrane proteins that utilise the transcytotic route
while polytopic ABC transporters traffic from TGN, either via RE
or directly to the canalicular membrane. Cholestasis of various
etiologies eventually results in inhibition of the direct and tran-
scytotic protein trafficking pathways resulting in bile acid reten-
tion within hepatocytes and damage to mitochondria, Golgi and
other organelles [150–152]. Interdependence of polarization
and mitochondrial damage may well underlie cholestasis associ-
ated with viruses, drugs, shock and other factors.

Identification of the molecular defects responsible for
pathogenesis of rare and common diseases affecting liver polarity
provides desirable targets for drug design, and although there are
no known therapeutic agents that can restore hepatocyte
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polarity, the research into drug development has already bene-
fited from the understanding of the involvement of polarity fac-
tors in disease. Researchers have successfully tested an
antisense oligonucleotide approach to treating HCC in an in vivo
model with Beta-catenin mutations. This treatment can poten-
tially benefit more than 20% of patients with this tumor that is
driven by Wnt signaling activation. Furthermore blocking HCV
entry via claudin1 with a monoclonal antibody approach elimi-
nated chronic HCV infection, which is one of the most common
causes of liver cancer. Better understanding of the miRNA role
in liver polarity and disease will provide new RNA based
approaches to treatment. For these reasons a better understand-
ing of hepatocyte polarity and the increasing arsenal of potential
therapeutic approaches give optimism for future treatment
development in liver diseases.
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