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Abstract 
1. Effects of conspecific neighbours on survival and growth of trees have been found to be 

related to species abundance. Both positive and negative relationships may explain 
observed abundance patterns. Surprisingly, it is rarely tested whether such relationships 
could be biased or even spurious due to transforming neighbourhood variables or 
influences of spatial aggregation, distance decay of neighbour effects and standardization 
of effect sizes. 

2. To investigate potential biases, we simulated communities of 20 identical species with 
log-series abundances but without species-specific interactions. We expected no 
relationship of conspecific neighbour effects on survival or growth with species 
abundance. Survival and growth of individual trees was simulated in random and 
aggregated spatial patterns using no, linear, or squared distance decay. 

3. Regression coefficients of statistical neighbourhood models were unbiased and unrelated 
to species abundance. However, variation in the number of conspecific neighbours was 
positively or negatively related to species abundance depending on transformations of 
neighbourhood variables, spatial pattern and type of distance decay. Consequently, effect 
sizes and standardized regression coefficients were also positively or negatively related 
to species abundance depending on transformation of neighbourhood variables, spatial 
pattern and distance decay. 

4. We argue that tests using randomized tree positions and identities provide the best bench 
marks by which to critically evaluate relationships of effect sizes or standardized 
regression coefficients with tree species abundance. 

 
Keywords: community dynamics; multiple regression; neighbourhood model; population 
dynamics; tropical forest. 
 

1. Introduction 
Whether or not conspecific negative density dependence (CNDD) at small neighbourhood 
scales shapes species abundances in tropical tree communities at larger scales is far from 
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resolved and we probably should not even expect the answer to be simple. In principle, 
there are several possibilities. First, the strength of CNDD is unrelated to abundance. 
Second, the strength of CNDD is negatively related to abundance (strong CNDD for 
abundant but weak CDNN for rare species). This would prevent abundant species  
becoming even more abundant and thereby competitively excluding other species. 
Moreover, it would confer a rare-species advantage and possibly lead to a community 
compensatory trend (CCT, Connell et al. 1984). Third, the strength of CNDD is positively 
related to abundance (strong CNDD for rare but weak for abundant species). This would 
explain the rarity and low abundance of the species with strong CNDD and the high 
abundances of species with weak CNDD (Comita et al. 2010). There remain though two 
further possibilities which are that either a mix of positive and negative processes is 
operating, or the observed relationships are simply spurious (i.e. the result of a statistical 
artefact). 
 
In an empirical study(Newbery & Stoll (2013) showed negative effects of conspecific 
neighbours on absolute growth rate (agr) of medium-sized trees. The argument was that 
reduced growth of an individual tree will – other factors being equal – translate into 
survivorship reductions and hence affect species abundances. Nevertheless, others argue 
that effects of conspecifics on survival are more relevant for population dynamics of different 
species within communities (??). Therefore, the tests reported here simulate individual 
survival and use a framework of neighbourhood analysis similar to that of Newbery & Stoll 
(2013) to show that all possible relationships of the strength of CNDD and abundance may 
emerge without any species-specific or effects of abundances. 
 
Relationships between the strength of CNDD and abundance were investigated using a 
simple, spatially explicit and individual-based, model which simulated identical species 
without any species-specific interactions. Thus, any relationships between the strength of 
CNDD and abundance in communities simulated under these assumptions would not be 
expected. Nevertheless, relationships do emerge because of interfering effects of spatial 
patterns and distance decay (i.e. the functional form relating neighbour effects to distance 
from focal trees, Fig. 1) and, perhaps more importantly, due to the scaling and transforming 
of the input variables. For example, if rare species have lower variance in the number of 
conspecifics in their local neighbourhoods compared to common species, scaling is 
expected to decrease effect sizes (or standardized partial correlation coefficients) of rare 
relative to common species, possibly leading to spurious negative relationships between the 
strength of CNDD and abundances. Scaling or standardization is recommended (e.g., 
Schielzeth 2010) and applied especially in hierarchical Bayesian modelling to speed up or 
even ensure numerical convergence (e.g., Gelman & Hill 2007). 
 
Motivation to investigate the relationships between the strength of CNDD and abundance 
more carefully using simulations came from the contrasting outcomes of two recent 
publications. A consistent negative relationship between the strength of CNDD (i.e. effect 
sizes derived from statistical neighbourhood models) and abundance (total basal area of 
species) in randomization tests was shown by Newbery & Stoll (2013). But, by contrast, a 
strong positive relationship between the strength of CNDD and abundance was found by 
Comita et al. (2010). Whilst such different results are interesting, and might be explained by 
different underlying biological mechanisms operating on different species at different 
locations, before making such a conclusion possible differences arising from the various 
artefacts of the statistical methods should first be ruled out. 
 

2. Materials and Methods 
A completely neutral forest without any species-specific effects was simulated. Initial size 
distributions of individuals (basal area, ba) were log-normal with mean 2 and standard 
deviation 1. Individuals of 20 identical species with log-series abundances (i.e. 2827, 1408, 
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935, 699, 557, 462, 395, 344, 305, 273, 248, 226, 208, 192, 179, 167, 157, 147, 139, 132) 
were placed on plots (200 x 400 m) either randomly or with aggregated spatial patterns. The 
aggregated pattern was realized by dispersing individuals around ‘parent trees’ (assigned 
random locations according to a homogeneous Poisson process), using a Gaussian 
dispersal kernel with mean 0 and standard deviation 3 m. Thus the species distributions 
were modeled as a Thomas cluster process, which in turn is a special case of a Neyman-
Scott cluster process (Neyman & Scott 1952), and this method means species are spatially 
independent of one another. 
 
Individual survival was simulated in three steps. First, a linear predictor (y) for survival was 
simulated for individuals within a border of 20 m using the following multiple regression 
equation: 
 



y  0  1 log(ba) 2 heterospecificneighbours
r

  3 conspecificneighbours
r

 (1)

 

with 0 t3 the regression coefficients, ba the initial size (basal area) of individuals and the 
two neighbour terms simply summing the number of heterospecific or conspecific 
neighbours within a neighbourhood radius (r) of 20 m without taking size or relative size 
differences between focal individuals and neighbours into account. The regression 

coefficients were chosen to lead to roughly 50% mortality for each species. Specifically, 0 = 

5, 1 = 2.5, and 2 = 3 = -0.05. Second, the linear predictor was converted to individual 
survival probabilities using the inverse logit transformation. Third, binomially distributed 
errors were used to convert the probabilities to the binary variable survival (0’s and 1’s) by 
drawing from binomially distributed random numbers. Survival was then used in logistic 
regressions as the dependent variable. Regressions were run for each species separately. 
Standardized regression coefficients (b) were obtained from regressions with independent 
variables standardized by subtracting their mean and dividing by their standard deviation 
(i.e. scaled). Unlike in the neighbourhood analysis for absolute growth rate (agr) as 
dependent variable (see below), neighbourhood radii were fixed for the logistic regressions 
at 20 m. To investigate effects of transformations, the same multiple regression approach as 
described above, but now with log-transformed neighbour terms was used: 

 



y  0  1 log(ba) 2 log(1 heterospecificneighbours)
r

  3 log(1 conspecificneighbours)
r

 (2)

 

with 0 and 1 as above, and 2 = 3 = -1.3. Again, unstandardized () and standardized (b) 
regression coefficients were estimated by logistic regressions (general linear models with 

binomially distributed error terms). Finally, 3 and b3, as well as variability in numbers of 
conspecific neighbours within r for each species, were correlated with species abundances 
(i.e. log[number] of individuals of each species at the plot level). 
 
In the simulations of individual growth, different distance decays and relative size differences 
were also taken into account because competition is often size- and distance dependent. 
For each individual, one single growth increment (absolute growth rate, agr) was simulated 
for individuals within a border of 20 m using the following multiple regression equation: 
 



log(agr)  0  1 log(ba) 2 log(1 baHETr
 /w) 3 log(1 baCON /w)r

  error (3)

 
with w = 1 (no distance decay), w = distance (linear distance decay) or w = distance2 
(squared distance decay, Fig. 1). The neighbourhood terms (baHET and baCON) summed the 
basal areas of bigger heterospecific (HET) or bigger conspecific (CON) neighbours within a 
neighbourhood radius (r) of 20 m. The random error term was N (0, 0.3). Regression 

coefficients were 0 = -0.1, 1 = 0.3 and 2 = 3 = -0.2. To verify the simulations, test runs 
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with random errors set to N (0, 0) were performed. The simulations were realized using C++ 
(computer code is given in Appendix A of the supplementary material). 
 
Neighbourhood models (as in Stoll & Newbery 2005) were then fitted to the simulated data 
over all possible combinations of radii for HET and CON neighbours using R (R 
Development Core Team 2012) and parameter estimates taken from those models yielding 
the highest adjusted R2-values. Five runs with different seeds were performed and estimates 
of regression coefficients from best fitting neighbourhood models, effect sizes (Cohen 1988; 
Nakagawa & Cuthill 2007) or standardized regression coefficients (e.g., Warner 2012) 
averaged across the five runs. Effect sizes (i.e. squared partial correlation coefficients, t2 /[t2 

+ residual degrees of freedom], t = t-value) and standardized regression coefficients (b = ’s 
obtained from regressions with all input variables standardized by subtracting their mean 
and dividing by their standard deviation) were then correlated with species abundances (i.e. 
plot level basal area, BA, log transformed). In the case of continuous (as opposed to discrete 
or binary dependent variables) standardized regression coefficients can also be calculated 

from unstandardized ’s as b =  * SDX / SDY. A positive correlation of b with abundance 

implies that less abundant, rare species have stronger CON effects –  is more negative – 
(as in Comita et al. 2010), whereas a negative relationship implies more abundant species 
have stronger CON effects (as in Newbery & Stoll 2013). Note, however, that possible 
correlations of b with abundance may be biased due to correlations of SDX (or SDY) with 

abundance. But if ’s are negative, large SDX lead to large negative b-values and the 
relationship with abundance may switch direction not because of a difference in the strength 
of conspecific interactions between rare and common species, but because of differences in 
the variability of  number or abundance of conspecific neighbours. Moreover, because the 
simulations and analyses for both survival and agr as dependent variables are based on a 
multiple regression approach, the basic consequences described above (i.e. possible biases 
in standardized regression coefficients because of differences in SDX between rare and 
common species) are essentially the same independent of the nature of the dependent 
variable 
 
3.  Results 
There were no significant regressions for negative conspecific density-dependent effects 

(regression coefficient 3 in Eq. 1) on survival and species abundance (Fig. 2) regardless of 
whether untransformed or log-transformed number of conspecific neighbours were used to 
quantify neighbourhood. However, variability in number of conspecific neighbours was 
positively correlated with abundance if untransformed (Eq. 1) but negatively related if log-
transformed (Eq. 2). Consequently, standardized regression coefficients were negatively 
correlated with abundance if number of conspecific neighbours was quantified on the 
untransformed but positively correlated with abundance if number of conspecific neighbours 
were log-transformed. Frequency distributions for rare and common species on 
untransformed and log-transformed scales (Fig. 3) demonstrate that log-transforming the 
number of conspecific neighbours for rare species (small values) expands variability but 
compresses the variability in number of conspecific neighbours for common species (large 
values). This variability in number of conspecific neighbours increases from rare to common 
species on untransformed scales but decreases from rare to common species on 
transformed scales. 
 
There were no significant regressions for negative conspecific density-dependent effects on 

growth (regression coefficient 3 in Eq. 3) and species abundance (plot level basal area) 
regardless of distance decay or spatial pattern (Fig. 4). Variation in parameter estimates was 
largest for squared distance decay and random spatial pattern. Best fitting radii for bigger 
conspecific neighbours were unbiased in neighbourhood models without distance decay and 
random spatial pattern (Table 1). However, in the aggregated pattern and with linear 

distance decay they were slightly underestimated. With estimates (mean  SD) of 15.9  2.6 
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in the random spatial pattern and 14.5  3.2, the underestimation was more pronounced with 
squared distance decay. 
 
Variance in local conspecific neighbour density (within 20 m) varied depending on distance 
decay and spatial pattern (Fig. 5). A strong negative regression with abundance emerged 
without distance decay in both spatial patterns. With linear distance decay, the regression 
was not significant with random spatial pattern but still negative in the aggregated pattern. 
With squared distance decay, the regression switched to positive in the random pattern, but 
it was not significant in the aggregated pattern. 
 
As a consequence of variation in local conspecific neighbour density, effect sizes (Fig. 6) 
and standardized regression coefficients (b3, Fig. 7) showed various relations with 
abundance depending on distance decay and spatial pattern. Without distance decay both 
effect sizes and standardized regression coefficients were positively related with abundance, 
regardless of spatial pattern. This was also the case for effect sizes and linear distance 
decay, whereas standardized regression coefficients were not significantly related with 
abundance in random spatial pattern but still positively related with abundance in the 
aggregated pattern. For squared distance decay, both effect sizes and standardized 
regression coefficients were negatively related with abundance in random spatial patterns 
but unrelated in aggregated patterns. Apparently, the squared distance decay cancelled the 
effect of aggregation. 
 
4.  Discussion 
The simulations and neighbourhood analyses with individual survival or growth as 
dependent variable showed that estimates of regression coefficients were unrelated to 
species abundances independent of transformations, spatial pattern and distance decay —  
as expected based on the simulations of identical species without species-specific 
interactions. However, variance in local density of conspecifics showed various relationships 
with species abundances depending on transformations of neighbourhood variables, degree 
of spatial pattern and form of distance decay. As a consequence, relationships between 
effect sizes, or standardized regression coefficients, and species abundances were either 
non-significant, positive or negative. 
 
If untransformed scales are used to quantify conspecific neighbourhoods, relationships with 
variability and abundance are expected to be generally positive (Fig. B2 in Appendix B) at 
least in the cases and range of abundances investigated here. In these cases, relationships 
between standardized effect sizes with abundance will be negative. If, however, log-
transformed scales are used to quantify conspecific neighbourhoods, relationships with 
variance and abundance (Fig. B2) can be modified in all possible ways, i.e. be absent, 
positive or negative, depending on spatial pattern, exact form of distance decay, but also on 
whether or not relative size differences are taken into account. There are many and 
sometimes rather non-transparent possibilities making it very difficult to systematically 
evaluate the published literature on neighbourhood models and possible relationships 
between the strength of CNDD and species abundance, especially where details of how 
variables were handled are incompletely reported, and data have not been archived to allow 
independent checks. 
 
By using neighbourhood models without distance decay and unstandardized input variables, 
in single-species analyses, a negative relationship between CNDD and forest-level 
abundance was found, at least for the first of the two 10-year periods analyzed (Newbery & 
Stoll 2013). Using no distance decay, yet standardizing before fitting their models, Lin et al. 
(2012) found positive relationships over their dry-season interval. Using an exponential 
distance decay, Comita et al. (2010) centered (subtracted the mean) but did not standardize 
(divide by standard deviation) their input variables (L. Comita, pers. comm.) and found a 
strong positive relationship too. Whereas Lin et al. (2012) fitted mixed models using  
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maximum likelihood estimation, i.e. without any prior information being involved, Comita et 
al. (2010) used a hierarchical Bayesian analysis with non-informative priors distributed 
according to the scaled inverse-Wishart function. This conjugate distribution models the 
covariance matrix of the species-level regression. Nevertheless, both studies did find 
positive relationships, thereby apparently supporting one another’s conclusions. 
 
The specific scale and distribution of the priors used by Comita et al. (2010) might have 
introduced additional critical information that determined in part the estimation of their 
coefficients, in a similar way as standardization did in our simulations, and may also have 
done for Lin et al. (2012). Gelman and Hill (2007) discuss the use of the inverse Wishart 
distribution in some detail, and highlight in particular the need to confirm that Bayesian priors 
are indeed non-informative across the same ranges of independent variables that result in 
the posterior probabilities. Dennis (1996) has discussed fundamental issues concerning the 
use of non-informative priors and Bayesian analysis for ecology in general. 
 
The results of Newbery & Stoll (2013) dealt with effects of conspecific neighbours (as large 
tree abundance) on growth of small trees, whereas those of Comita et al. (2010) concerned 
conspecific neighbour effects (as either local tree seedling density or tree abundance) on 
survival of those seedlings. Their result could be more generally important if it were be 
shown to be fully robust to statistical treatment. It might then support the notion  that 
fundamentally different DD processes are likely operating at the seedling as opposed to the 
small-tree stage in tropical forest dynamics (Uriarte et al. 2004 a, b; Newbery and Stoll 
2013). 
 
Because of conceptual similarities of neighbourhood analyses of Comita et al. (2010) and 
those of others (e.g., Uriarte et al. 2004a, b; Lin et al. 2012), the analysis presented here 
could be more widely relevant. Since standardization can lead to spurious relationships 
between CNDD and species abundances, its potential influence needs to be carefully 
considered when interpreting relationships of small-scale effects of conspecific neighbours 
on larger scale abundance patterns within diverse tree communities. Similarly, care should 
be taken when specifying and justifying prior information in hierarchical Bayesian analyses. 
Our recommendation, following from Newbery and Stoll (2013), is that tests that randomize 
tree positions and identities indeed provide the best benchmark by which to critically 
evaluate and judge relationships between effect sizes, or standardized regression 
coefficients, and tree species abundances. 
 
5.  Supplementary Materials 
Appendix A 
Documented computer code used for the simulations. A detailed description of input 
parameters and simulation output is provided in the file named growth_files.rtf. 
 
Appendix B 
Relationships of variability in local neighbourhoods with species abundances in different 
competitive scenarios, spatial patterns and various distance decays. 
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Table 1 

Average best fitting radii  standard deviation (SD) for bigger conspecifics in neighbourhood 
models (Eq. 1) across 20 species with identical initial size distributions and log-species 
abundances and random or aggregated spatial patterns. 
 

 Spatial pattern 

Distance decay random aggregated 

no 20.0  0.0 19.8  0.4 

linear 19.6  0.5 19.1  1.0 

squared 15.9  2.6 14.5  3.2 
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Figure legends 

Figure. 1. Distance decay of neighbourhood effects. In the cut-off model (dashed), the sizes 
of bigger neighbours with a distance < cut-off are summed. In the linear distance decay 
(black), the sizes of bigger neighbours are weighed by 1/distance. This is similar to an 
exponential distance decay (red), which, however, gives somewhat more weight at 
intermediate distances. A decay of 1/distane2 (blue) yields a very rapidly decreasing 
function. Beyond 20, all three functions give essentially zero weights. 
 

Figure. 2. Regressions of conspecific effects (regression coefficient, 3 in Eq. 1) on individual 
survival, variability in number of conspecific neighbours within neighbourhood radius (r = 20), 
and standardized regression coefficients (b3) against species abundances (number of 
individuals at plot level). Twenty species with identical initial size distributions and log-series 
abundances were simulated in a random spatial pattern. Note that in the panels of the 
bottom row, the number of neighbours was log-transformed. Data points are means (± 1 SD) 

from five replicate simulations. The simulated input value of 3  (dotted lines) was -0.05 (top 
left) and -1.3 (bottom left). Continuous lines indicate significant (P < 0.05) positive (blue) or 
negative (red) regressions. 
 
Figure. 3. Frequency distributions of number of conspecfic neighbours within neighbourhood 
radius r (20 m) for individuals of rare and common species in simulated communities with 
random spatial patterns. Note that the x-axis in the panels of the top row have identical 
scales. This is also true for the panels of the bottom row. Moreover, the number of 
conspecific neighbours was log-transformed in the panels of the bottom row. SD indicates 
the standard deviation of each distribution. 
 
Figure. 4. Regressions of conspecific negative density dependence (regression coefficient, 

3 in Eq. 1) and species abundances (plot level basal area). Twenty species with identical 
initial size distributions and log-series abundances were simulated without, linear 
(1/distance) or squared (1/distance2) distance decay of conspecific neighbour effects within 
20 m radius in random or aggregated spatial patterns. Data points are means (± 1 SD) from 

five replicate simulations. The simulated input value of 3 was -0.2 (green line). 
 
Figure. 5. Regressions of variation in conspecific neighbour density (expressed as SD in 
basal area of bigger conspecifics, baCON within 20 m) and species abundances (plot level 
basal area). Twenty species with identical initial size distributions and log-series abundances 
were simulated with random or aggregated spatial patterns without, linear (1/distance) or 
squared (1/distance2) distance decay of conspecific neighbour effects. Data points are 
means (± 1 SD) from five replicate simulations. Continuous lines indicate significant (P < 
0.05) negative (red) or positive (blue) regressions. 
 

Figure. 6. Regressions of effect sizes (squared partial correlation coefficients of 3 in Eq. 1) 
and species abundances (plot level basal area). Twenty species with identical initial size 
distributions and log-series abundances were simulated with random or aggregated spatial 
patterns without, linear (1/distance) or squared (1/distance2) distance decay of conspecific 
neighbour effects within 20 m radius. Data points are means (± 1 SD) from five replicate 
simulations. Continuous lines indicate significant (P < 0.05) positive (blue) or negative (red) 
regressions. 
 
Figure. 7. Regressions of standardized regression coefficients (b3) and species abundances 
(plot level basal area). Twenty species with identical initial size distributions and log-series 
abundances were simulated with random or aggregated spatial patterns without, linear 
(1/distance) or squared (1/distance2) distance decay of conspecific neighbour effects within 
20 m radius. Data points are means (± 1 SD) from five replicate simulations. Continuous 
lines indicate significant (P < 0.05) positive (blue) or negative (red) regressions. 
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