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Abstract 21 

Genetic marker based identification of distinct individuals and recognition of duplicated individuals 22 

has important applications in many research areas in ecology, evolutionary biology, conservation 23 

biology and forensics. The widely applied genotype mismatch (MM) method, however, is 24 

inaccurate because it relies on a fixed and suboptimal threshold number (TM) of mismatches, and 25 

often yields self-inconsistent pairwise inferences. In this paper I improved MM method by 26 

calculating an optimal TM to accommodate the number, mistyping rates, missing data and allele 27 

frequencies of the markers. I also developed a pairwise likelihood relationship (LR) method and a 28 

likelihood clustering (LC) method for individual identification, using poor-quality data that may 29 

have high and variable rates of allelic dropouts and false alleles at genotyped loci. The 3 methods 30 

together with the relatedness (RL) method were then compared in accuracy by analysing an 31 

empirical frog dataset and many simulated datasets generated under different parameter 32 

combinations. The analysis results showed that LC is generally one or two orders more accurate for 33 

individual identification than the other methods. Its accuracy is especially superior when the 34 

sampled multilocus genotypes have poor quality (i.e. teemed with genotyping errors and missing 35 

data) and highly replicated, a situation typical of noninvasive sampling used in estimating 36 

population size. Importantly, LC is the only method that guarantees to produce self-consistent 37 

results by partitioning the entire set of multilocus genotypes into distinct clusters, each cluster 38 

containing one or more genotypes that all represent the same individual. The LC and LR methods 39 

were implemented in a computer program COLONY for free download from the internet.  40 

  41 
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Introduction 42 

Identification of distinct individuals and recognition of duplicated individuals from genetic marker 43 

data is important in many research areas in ecology, evolutionary biology, conservation biology and 44 

forensics. It has been used to estimate population size (or species abundance) in the traditional 45 

capture-mark-recapture (CMR) framework (Palsbøll et al. 1997; Schwartz et al. 1998; Creel et al. 46 

2003; Luikart et al. 2010), to track individuals across different life cycle stages in studying 47 

population parameters such as survivorship (Ringler et al. 2015) and migration, to infer colonal 48 

reproduction rates (Escaravage et al. 1998; Halkett et al. 2005), and to trace illegally killed animals 49 

or illegal trading animal products in wildlife forensics (Alacs et al. 2010). It can and should also be 50 

routinely used as a data cleaning tool to remove accidentally duplicated individuals before 51 

conducting various analyses of the raw genotype data. This is because, similar to close relatives but 52 

to a greater extent, duplicated individuals inadvertently included in a genetic analysis can reduce the 53 

estimates of genetic diversity, bias the estimates of fixation indices (FIS, FIT and FST), induce 54 

deviations from Hardy-Weinberg and linkage equilibrium, and ruin a population structuring 55 

inference (Anderson & Dunham 2008; Rodríguez‐Ramilo & Wang 2012). 56 

 When marker information is ample (i.e. many polymorphic loci) and completely reliable (i.e. 57 

no mutations and no genotyping errors), individual identification is straightforward. In this ideal 58 

situation, identical multilocus genotypes (MGs) represent duplicated individuals and non-identical 59 

MGs correspond to distinct individuals. Nowadays with the wide application of highly polymorphic 60 

markers such as microsatellites and many genomic markers of SNPs, information content is no 61 

longer considered a constraint in practice. However, data quality could be a serious problem, 62 

especially in the case of noninvasive DNA samples such as hair, feathers and scats (Taberlet et al. 63 

1999; Pompanon et al. 2005). Due to the limited quantity and quality of DNA extracted from 64 

noninvasive samples, the presence of PCR inhibitors and DNA contaminations, noninvasive 65 

genotype data are characterized by high rates of missing data, false alleles and allelic dropouts 66 

(Bonin et al. 2004). Indeed, genotyping errors are a rule rather than an exception. Even genotypes 67 

obtained from DNA of high quality and quantity (e.g. extracted from fresh tissue or blood samples) 68 

are not exempt from mistypings (Pompanon et al. 2005). The more markers are genotyped, the 69 

higher the probability that an MG contains genotyping errors. 70 

 Unfortunately, individual identification is particularly vulnerable to genotyping errors in 71 

comparison with other genetic data analyses such as population genetic diversity or structure, 72 

because just one single error in an MG could create a false (ghost) individual. Even if genotyping 73 

errors occur at a very low rate e per locus, the probability that an MG contains one or more errors, 74 
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𝐸 = 1 − (1 − 𝑒)𝐿, can be high, and increases rapidly with the number of loci L. For example, a 10-, 75 

50- and 250-locus genotype is expected to contain at least one mistyping with a probability of 1.0%, 76 

4.9% and 22.1% respectively when e=0.001, of 9.6%, 39.5% and 91.9% respectively when e=0.01, 77 

and of 40.1%, 92.3% and 100% respectively when e=0.05. This result has prompted several 78 

researchers to suggest that individual identification should use the minimum number of loci 79 

required to attain a low probability of identity among samples from different individuals (Waits et 80 

al. 2001; Creel et al. 2003). This suggestion can reduce ghost individuals due to genotyping errors, 81 

but unfortunately it could also seriously limit the power of individual identification, especially in 82 

the difficult situation where many close relatives such as full siblings are present (Waits et al. 2001). 83 

The problems of and difficulties in individual identification due to genotyping errors are 84 

made more prominent by high sample replications where many replicated samples could be 85 

collected from a single individual. Scat or hair based non-invasive samples (e.g. Creel et al. 2003) 86 

often exhibit massive replications with potentially tens to hundreds of replicated samples per 87 

individual. At this high level of replications, even a very small genotyping error rate could result in 88 

extreme overestimates of distinct individuals and of population size (Waits & Leberg 2000; Creel et 89 

al. 2003; McKelvey & Schwartz 2004). High sample replications coupled with genotyping errors 90 

and missing data can also result in numerous conflicts in pairwise inferences by any method 91 

(including the mismatch method) that compares pairs of samples (multilocus genotypes). For 92 

example, sample A may be inferred to be a duplicate of both sample B and sample C, but B and C 93 

may be inferred to come from distinct individuals. 94 

 A more robust and error-tolerant approach is to accept the presence of genotyping errors and 95 

accommodate them in recognizing individuals from MG data by the mismatch (MM) method. A 96 

common practice is that two samples having identical genotypes at all but 1 or 2 loci are accepted as 97 

being from a single individual and the mismatches are regarded as genotyping errors. This approach 98 

has been implemented in several computer programs, such as GENECAP (Wilberg & Dreher 2004). 99 

The allowance of a small threshold number, Tm, of 1 or 2 mismatches could reduce ghost 100 

individuals substantially. However, this threshold is obviously arbitrary, the optimum being 101 

dependent on factors such as the mistyping rates and the number of loci. While 1 or 2 mismatches 102 

may be sufficient to reduce ghost individuals when both mistyping rates and number of loci are low 103 

(say, e<0.05 and L<20), more mismatches should be allowed for when e or/and L are high. To 104 

overcome the problem, Galpern et al. (2012) proposed to determine Tm as the value where the 105 

number of individuals with more than one MG in a sample has a second minimum. Although their 106 

Tm no longer relies on a predefined value, it depends on a similarity index defined to penalize 107 

arbitrarily missing and mismatched genotypes at a locus by 1/(2L) and 1/L respectively. 108 
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Furthermore, analyses of simulated (Galpern et al. 2012, Table 3) and empirical data (Ringler et al. 109 

2015) showed that this flexible Tm approach has a similar accuracy to the approach with a fixed Tm 110 

=2. 111 

 A more powerful approach to individual identification is via pairwise relatedness analysis. 112 

Relatedness analysis is resilient to genotyping errors (Wang 2007), and can use allele frequency as 113 

well as genotype information in identifying duplicated individuals from other competitive 114 

relationships such as full siblings (Ringler et al. 2015). In diploid species, two MGs are expected to 115 

have a relatedness, r, of 1 and 0.5 if they come from the same individual and from two first-class 116 

relatives (full sibs and parent-offspring), respectively. Therefore, MGs are inferred to represent 117 

duplicates of the same individual when their estimated relatedness is closer to 1 than to 0.5 (i.e. 118 

when their estimated relatedness is above an appropriate threshold r value, say Tr =0.75). Otherwise, 119 

they are inferred to represent distinct individuals. 120 

 In this study, I will improve the mismatch method by calculating and using an optimal Tm 121 

that takes into account mistyping rates, missing data, and the number and allele frequencies of 122 

markers. I also propose two new likelihood approaches to efficient individual identification from 123 

genotype data of low quality. One is based on calculating the likelihood values of two MGs for their 124 

candidate relationships of clone mates (duplicates) and close competitive relationships (full siblings 125 

and parent offspring), and the other is based on partitioning (in a likelihood framework) the entire 126 

set of MGs into clusters with each cluster containing one or more genotypes that all represent the 127 

same individual. Both approaches accommodate genotyping errors and use allele frequency 128 

information, and the likelihood clustering method abandons the pairwise approach such that the 129 

inferences are guaranteed to be consistent and are especially accurate for the difficult situation of 130 

high sample replications. The accuracy of these approaches is evaluated and compared by analysing 131 

many simulated and an empirical dataset.  132 

Methods 133 

Dyadic mismatch method (MM) 134 

The threshold value of mismatches, Tm, is critical for the mismatch method. The number of distinct 135 

individuals will be overestimated and underestimated when Tm is too small and too large, 136 

respectively. The optimal Tm that minimizes falsely detected (α-error) and undetected (β-error) 137 

individuals depends on the rate of genotyping errors, the number of loci, the allele frequencies of 138 

each locus, and the actual genetic structure (i.e. the actual relationships) of the focal set of MGs. 139 
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The latter is unknown and is the target of the analysis, but the former three pieces of information are 140 

usually available and can be used to resolve an approximately optimal Tm. 141 

 Suppose locus l has Kl alleles with estimated frequencies pli, where i=1, 2, …, Kl and l=1, 142 

2, …, L. I assume that a genotype Gl at locus l may be mistyped to be a phenotype gl due to allelic 143 

dropouts (ADO) at rate εl1 and false alleles (FA) at rate εl2. ADOs and FAs are the most common 144 

genotyping errors in microsatellites (Bonin et al. 2004; Pompanon et al. 2005). For ADO, I assume 145 

each of the two gene copies in a diploid genotype has the same probability of dropping out during 146 

PCR, and double dropouts (i.e. both gene copies dropping out to produce no PCR products) are rare 147 

and negligible. Under this model, ADO affects heterozygote genotypes only, and a heterozygote Gl 148 

={w,x} (w≠x) is observed to be a phenotype gl ={w,x}, {w,w} and {x,x} with probabilities 1 ̶ 2el1, 149 

el1 and el1 respectively, where 𝑒𝑙1 = 𝜀𝑙1/(1 + 𝜀𝑙1). For FA, I assume that any allele in any genotype 150 

is independently and equally probable to be mistyped to be any one of the other alleles, at a rate el2 151 

= εl2/(Kl  ̶ 1).  152 

 Given allele frequencies (pli) and mistyping rates (𝜀𝑙1 and 𝜀𝑙2), and assuming genotype 153 

frequencies at Hardy-Weinberg equilibrium (HWE), I can apply the above ADO and FA models to 154 

each of the Kl (Kl  + 1)/2 genotypes twice to generate two phenotypes, and derive the probability 155 

that two phenotypes from the same genotype match, Ql. The expression for Ql is however a very 156 

complicated function of pli, 𝜀𝑙1 and 𝜀𝑙2, and is not enlightening. For simplicity, Ql is determined by 157 

simulations. First, a genotype is drawn at random from a population in HWE with allele frequency 158 

pli. Second, a phenotype is generated from the genotype, following the ADO model. Third, the 159 

phenotype is further modified according to the FA model. Fourth, steps 2 and 3 are repeated to 160 

generate another phenotype independently from the same genotype. Fifth, the two phenotypes are 161 

compared to determine whether they match or not. Steps 1-5 are repeated for a sufficiently large 162 

number of replicates, and the frequency of matching phenotypes gives a good estimate of Ql. 163 

 The average number of mismatches between two phenotypes having the same underlying 164 

genotype at a set of L loci is calculated by ∑ (1 − 𝑄𝑙)
𝐿
𝑙=1  rounded to the nearest integer. This 165 

optimal Tm value is expected to minimise both α and β errors in individual identification by the MM 166 

method. Note that Tm is calculated for each pair of MGs in a sample such that missing data can be 167 

easily accommodated. If any or both MGs have missing data at locus l, then Ql is set to 1 for the 168 

locus in the calculation. Therefore the calculated Tm values are dyad specific and lower for dyads 169 

with more missing data. In contrast to the widely applied fixed Tm =2, this Tm value calculated from 170 

Ql accounts for allele frequencies, mistyping rates, number of loci, and missing data. Two MGs are 171 



8 
 

inferred to be from a single and two distinct individuals when their observed number of mismatches 172 

is not and is greater than their Tm value, respectively.  173 

Dyadic relatedness method (RL) 174 

The genetic relatedness, r, between two MGs can be calculated by a marker-based moment or 175 

likelihood estimator (Wang 2007; 2014). Duplicated individuals and first-order relatives (e.g. full-176 

sib or parent-offspring) are expected to have an r value of 1 or close to 1 and of 0.5 or close to 0.5, 177 

respectively, even when they have mismatches at a small fraction of loci due to genotyping errors 178 

(Wang 2007). To distinguish duplicated individuals from first-order relatives and to minimise both 179 

α- and β-error rates, I choose a threshold r value of Tr=0.75, which is the midpoint between the 180 

expected r values for duplicates and first-order relatives. Two MGs are inferred to be duplicates and 181 

distinct individuals when their r value is and is not greater than Tr, respectively. There are quite a 182 

few r estimators available (Wang 2014), among which I chose to use the one based on phenotype 183 

similarity, proposed by Lynch (1988) and improved by Li et al. (1993). It is chosen because it is 184 

simple to calculate and is expected to have a higher accuracy than other moment estimators when 185 

applied to close relationships such as identical twins (duplicates) and full sibs (Wang 2007).  186 

Dyadic likelihood relationship method (LR) 187 

It is also possible to calculate directly the likelihoods of two MGs for the candidate relationships of 188 

duplicates (clone mates or identical twins, denoted by DP), full sibs (FS), half sibs (HS), parent 189 

offspring (PO) and unrelated (UR). If DP has the highest likelihood, then the two MGs are inferred 190 

to come from the same individual. Otherwise, they are inferred to come from distinct individuals. 191 

In contrast to pairwise relatedness estimation, relationship inference is highly vulnerable to 192 

genotyping errors. A single error could exclude truly duplicated MGs from being inferred as such. 193 

The more markers one uses, the more serious the false exclusion problem will become. The 194 

likelihood functions of FS, HS and PO are available in the literature, but they do not account for 195 

genotyping errors (e.g. Goodnight & Queller 1999) or account for ADO only (e.g. Wagner et al. 196 

2006). Herein I show the general likelihood function applying to any pairwise relationship 197 

(including DP, FS, HS, PO and UR) and allowing for both ADO and FA occurring at rates variable 198 

across loci.  199 

 The genetic relationship between two non-inbred individuals is fully specified by 3 identical 200 

by descent (IBD) coefficients Δi, where Δi is the probability that the two individuals share exactly i 201 

(i=0, 1, 2) pairs of gene copies IBD at a locus. Obviously, Δ0 + Δ1 + Δ2 ≡1. In diploid species, Δ0, Δ1 202 

and Δ2 have values 0, 0 and 1 for DP, 0.25, 0.5 and 0.25 for FS, 0, 0.5, 0.5 for HS, 0, 1 and 0 for PO, 203 
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and 0, 0, 1 for UR. The probability of observing a phenotype gA={a,b} for individual A and a 204 

phenotype gB={c,d} for individual B at a locus with K codominant alleles, given their relationship 205 

defined by Δ0, Δ1 and Δ2, is (Wang 2006) 206 

Pr[𝑎, 𝑏; 𝑐, 𝑑|∆0, ∆1, ∆2] = ∑∑∑ ∑R[𝑢, 𝑣;𝑤, 𝑥|∆0, ∆1, ∆2]

𝐾

𝑥=𝑤

𝐾

𝑤=1

𝐾

𝑣=𝑢

𝐾

𝑢=1

Pr[𝑎, 𝑏|𝑢, 𝑣] Pr[𝑐, 𝑑|𝑤, 𝑥] , (1) 208 

where 207 

R[𝑢, 𝑣; 𝑤, 𝑥|∆0, ∆1, ∆2]209 

= (2 − 𝛿𝑢𝑣)𝑝𝑢𝑝𝑣 (∆0(2 − 𝛿𝑤𝑥)𝑝𝑤𝑝𝑥 +
1

4
∆1(2 − 𝛿𝑤𝑥)((𝛿𝑢𝑤 + 𝛿𝑣𝑤)𝑝𝑥)210 

+ (𝛿𝑢𝑥 + 𝛿𝑣𝑥)𝑝𝑤) + ∆2(𝛿𝑢𝑤𝛿𝑣𝑥 + 𝛿𝑢𝑥𝛿𝑣𝑤 − 𝛿𝑢𝑤𝛿𝑣𝑥𝛿𝑢𝑥𝛿𝑣𝑤))                            (2) 211 

is the probability that A and B have genotype {u,v} and {w,x} respectively conditional on their 212 

relationship or IBD coefficients ∆0, ∆1, ∆2, and 𝛿𝑢𝑣 (and similarly for other 𝛿 variables) is the 213 

Kronecker delta variable with values 1 and 0 when u=v and u≠v, respectively. In (1), Pr[𝑢, 𝑣|𝑤, 𝑥] 214 

is the probability that a genotype {w,x} shows a phenotype {u,v} due to ADO and FA. It is derived 215 

as (Wang 2004) 216 

Pr[𝑢, 𝑣|𝑤, 𝑥] =

{
 
 

 
 (1 − 𝜀2)

2 + 𝑒2
2 − 2𝑒1𝑒3

2                                                                 (𝑢 = 𝑤, 𝑣 = 𝑥)

𝑒2(1 − 𝜀2) + 𝑒1𝑒3
2                                                 (𝑢 = 𝑣 = 𝑤) or (𝑢 = 𝑣 = 𝑥) 

(2 − 𝛿𝑢,𝑣)𝑒2
2                                                          (𝑢 ≠ 𝑤, 𝑢 ≠ 𝑥, 𝑣 ≠ 𝑤, 𝑣 ≠ 𝑥)

𝑒2𝑒3                                                                                                        (otherwise)

   (3) 217 

for a heterozygous genotype (w≠x) where 𝑒3 = 1 − 𝜀2 − 𝑒2, and 218 

Pr[𝑢, 𝑣|𝑤, 𝑥] = {

(1 − 𝜀2)
2                                                                                               (𝑢 = 𝑣 = 𝑤)

2𝑒2(1 − 𝜀2)                                                 (𝑢 = 𝑤, 𝑣 ≠ 𝑤) or (𝑣 = 𝑤, 𝑢 ≠ 𝑤)

(2 − 𝛿𝑢,𝑣)𝑒2
2                                                                                   (𝑢 ≠ 𝑤, 𝑣 ≠ 𝑤)

     (4) 219 

for a homozygous genotype (w=x) under the ADO and FA models described above.  220 

Note that equations (1-4) give the likelihood of a relationship for a single locus l, and 221 

subscript l is dropped from error rates (𝜀𝑙1, 𝜀𝑙2, 𝑒𝑙1, 𝑒𝑙2) and allele frequencies (𝑝𝑙𝑖) for clarity. The 222 

multilocus likelihood is simply a product of single locus likelihood values, assuming linkage 223 

equilibrium among loci. 224 

Likelihood clustering method (LC) 225 

The above 3 methods take a pairwise approach, which considers whether two MGs are duplicates or 226 

not in isolation of others. When an individual has more than 2 replicated MGs, pairwise approaches 227 
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may yield conflicting results. Among 3 replicated MGs A, B and C of an individual, for example, A 228 

and B as well as A and C may be inferred as DP while B and C may be inferred as distinct 229 

individuals. This happens when, for an example, A, B and C have genotypes identical at all but a 230 

single locus at which A has missing data while B and C show different alleles. The 3 pairwise 231 

inferences are obviously in conflict. The frequency of these inconsistencies increases rapidly with 232 

an increasing level of individual replications, and decreasing data information quality and quantity. 233 

Furthermore, pairwise approaches do not use marker information fully, and thus are expected to 234 

have a lower power (accuracy) than approaches that consider the relationship among all MGs 235 

simultaneously (Wang 2004). 236 

 A more desirable approach is to partition the entire set of MGs into N (unknown) individual 237 

clusters, with each cluster containing one or more MGs that all represent the same individual. To 238 

reduce both α and β errors, the clustering should be better made by considering several competitive 239 

relationships such as DP, FS and HS which could generate similar patterns of MGs. The algorithm 240 

used for sibship inference (Wang 2004) can be modified to identify individuals, as shown below. 241 

 First, assuming each MG corresponds to a distinct individual, a sibship analysis is conducted 242 

to partition the entire set of individuals into full-sib clusters. The analysis could adopt the simple 243 

monogamy model (i.e. no inference of half sibs), or the sophisticated polygamy model (i.e. 244 

inference of half sibs). The monogamy model is preferred because it runs much faster than, but has 245 

the same or very similar accuracy to, the polygamy model for individual identification. This is 246 

because DP is much closer to FS in relatedness than to HS and is thus much less likely to confuse 247 

with HS than FS. Second, each inferred FS cluster is further partitioned by a likelihood approach 248 

into a number of individual clusters, with each cluster containing one or more MGs that all 249 

represent the same individual. The first step has been described before (Wang 2004), and the second 250 

step is detailed below. 251 

 Suppose an inferred FS cluster contains M (≥1) MGs. If M=1, then no further analysis is 252 

needed. Otherwise, the MGs can be divided into one of a number of BM possible partitions (or 253 

configurations), where BM is the Bell number. A partition contains a number of m (where m≥1 and 254 

m≤M) individual clusters, with each cluster containing one or more MGs that all represent the same 255 

individual. Three MGs (M=3) of A, B and C, for example, have B3=5 different partitions, which are 256 

{(A), (B), (C)}, {(A, B), (C)}, {(A, C), (B)}, {(B, C), (A)}, {(A, B, C)} where all MGs in a pair of 257 

parentheses come from the same individual and constitute an individual cluster. Partition {(A, B), 258 

(C)}, for example, has two individual clusters which are (A, B) and (C), meaning that A and B 259 

come from one individual and C comes from another individual. Each partition is evaluated for its 260 
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likelihood which is equal to the probability of the genotype data given the partition, and the one 261 

with the maximum likelihood is returned as the best estimate. The challenge is to construct, and 262 

calculate the likelihood values of, the BM partitions, where BM increases explosively with M. Even 263 

for small M value of 5, 10 and 15, for example, the corresponding BM values are 52, 115975 and 264 

1382958545, respectively. 265 

 Instead of using the simulated annealing approach in sibship analysis (Wang 2004), I take a 266 

systematic approach to individual identification. The approach is deterministic and fast, because a 267 

FS cluster is usually small. For a FS cluster with M MGs, the algorithm starts with an initial 268 

configuration, C0, of M individual clusters, each containing one MG. Round 1 searching works on 269 

C0. Each of the M(M  ̶  1) / 2 possible configurations is constructed by merging two of the M 270 

clusters, and is evaluated for likelihood. The best of these configurations, C1, with the maximum 271 

likelihood value is then compared with C0. If the former has a smaller likelihood, then C0 is 272 

returned as the best estimate and the searching process terminates. Otherwise, C0 is abandoned and 273 

C1 is accepted, and round 2 searching is initiated to improve on C1. Following exactly the same 274 

procedure in constructing new configurations as in round 1, round 2 returns the best configuration 275 

with M  ̶  2 clusters, C2. If C2 has a lower likelihood than C1, then the latter is reported as the best 276 

estimate and the searching process terminates. Otherwise, C1 is replaced by C2, and round 3 277 

searching is initiated to work on C2, following the same process as in previous rounds. The whole 278 

searching process stops when, at round m, the best of the (M  ̶  m+1) (M  ̶  m) / 2 reconfigurations, 279 

Cm, has a lower likelihood than that of the previous round, Cm-1, which is returned as the best 280 

estimate. 281 

 Now consider the likelihood of a configuration with m (=1~M) individual clusters, with 282 

cluster i (=1, 2, …, m) containing ni genotypes gij (j=1, 2, …, ni) at a locus with K alleles. All 283 

genotypes within a cluster are duplicates of the same individual, and genotypes from different 284 

clusters represent different individuals. Obviously, we have ∑ 𝑛𝑖
𝑚
𝑖=1 ≡ 𝑀. The likelihood function is 285 

∑𝑝𝑢∑𝑝𝑣

𝐾

𝑣=1

𝐾

𝑢=1

∑𝑝𝑤

𝐾

𝑤=1

∑𝑝𝑥

𝐾

𝑥=1

∏
1

4
( ∑ ∑ ∏Pr[𝑔𝑖𝑗|𝑎, 𝑏]

𝑛𝑖

𝑗=1𝑏=𝑤,𝑥𝑎=𝑢,𝑣

)

𝑚

𝑖=1

,                                                                 (5) 286 

where the probability of observing a phenotype 𝑔𝑖𝑗 given its underlying genotype 𝐺𝑖𝑗={a,b}, 287 

Pr[𝑔𝑖𝑗|𝑎, 𝑏], is calculated by (3-4). The computational cost of (5) can be much reduced by pooling 288 

all unobserved alleles in the FS cluster into a single “allele” and by pooling identical parental 289 

genotypes (e.g. {u,v} and {v,u}) and parental genotype combinations (e.g. {{u,v}, {w,x}} and 290 

{{w,x}, {u,v}}), as in sibship likelihood calculations (Wang 2004). For multiple loci in linkage 291 
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equilibrium, the likelihood is simply the product of single locus values calculated by (5). When one 292 

or both parents of the FS family are assigned to candidate adults with genotype data, the likelihood 293 

function is slightly more complicated and is not shown herein. 294 

Simulations 295 

Simulated data were generated and analysed comparatively by the above described 4 methods to 296 

evaluate their accuracies. A number of factors are expected to affect individual identifications, and 297 

are thus considered in the simulations. 298 

 First, the simulations considered the actual relatedness structures of the sampled individuals. 299 

Presence of close relatives, such as full sibs, makes individual identification more difficult by 300 

increasing β errors. I considered 3 sibship structures to reflect low, medium and high relatedness. 301 

These are denoted by 40(1, 1), 16(1, 1, 3) and 4(1, 2, 3, 4, 10), where the value before the brackets 302 

gives the number of replicate half-sib families and the values within the brackets are the sizes of 303 

full-sib families that are nested within a half-sib family. For example, 16(1, 1, 3) means there are 16 304 

half-sib families, and each family has a single father mated with 3 mothers who give 1, 1, and 3 full 305 

siblings. Each of the 3 sibship structures yields 80 distinct individuals (genotypes) in a sample. 306 

Other close relatives such as parent-offspring may also be present in a practical sample. However, 307 

these relationships have much smaller effect on individual identification than full sibs, because the 308 

latter are more likely to generate identical or nearly identical MGs. Therefore, relatives other than 309 

full sibs are not considered in the simulations. 310 

  Second, the simulations allowed for different extents of individual replications. The number 311 

of individual genotype replications is assumed to follow a Poisson distribution with parameter λ, 312 

taking values between 0 and 5. For each of the 80 distinct individuals in a sample, a random number 313 

R~Poisson[λ] is generated and the MG of the individual is replicated by R times. 314 

 Third, the simulations considered different numbers and polymorphisms of markers. For 315 

given numbers of loci (L) and alleles (Kl) per locus, allele frequencies were drawn from a uniform 316 

distribution at each locus, and the 80 MGs in a given sibship structure were generated by assuming 317 

Hardy-Weinberg and linkage equilibrium. These MGs were faithfully replicated according to 318 

Poisson[λ] as described above. When considering the impact of Kl, I vary Kl and L simultaneously 319 

such that the total number of independent alleles across loci, ∑ (𝐾𝑙 − 1)
𝐿
𝑙=1 , is fixed at 160. 320 

 Fourth, the simulations allowed for different rates of ADO, FA and missing data at each 321 

locus. After replications, each MG is modified independently at each locus for ADOs, FAs, and 322 

missing data to generate the corresponding multilocus phenotype. Suppose ADO, FA and missing 323 
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data occur at rates εl1, εl2 and εl3 at locus l, respectively. A maximum of 3 steps are required to 324 

generate the phenotype at this locus from its genotype. In step 1, a random number R uniformly 325 

distributed in the range [0,1] is drawn. If R≤ εl3, then the phenotype becomes {0,0} to indicate 326 

missing data. Otherwise, the genotype is subject to ADO in step 2. Another random number R is 327 

drawn. If the genotype is a heterozygote and R≤ εl1/(1+εl1), then the phenotype is returned as a 328 

homozygote for an allele drawn at random from the genotype. Otherwise, the genotype has no 329 

changes in step 2. In both cases, the genotype is subject to FA in step 3. For each allele in the 330 

genotype, a random number R is drawn. If R ≤ εl2, then the allele is changed to another allele 331 

randomly drawn from the K-1 alleles. Otherwise, no change is made to the allele. 332 

 Fifth, all methods except for RL use ADO and FA rates at each locus. In practice, these 333 

mistyping rates are usually unknown, but are estimated from duplicated genotyping or pedigree 334 

based analysis (Creel et al. 2003; Pompanon et al. 2005). It is important to know how robust these 335 

methods are to mis-specified mistyping rates. For this purpose, I simulated data with a true 336 

mistyping rate of 𝜀𝑙1=𝜀𝑙2=0.1 for each locus l, but analysed the data assuming values of 𝜀𝑙1=𝜀𝑙2 in 337 

the range of 0 to 0.2. 338 

Accuracy assessment 339 

Accuracy is assessed by the proportion of MG dyads in a dataset that are from a single individual 340 

but are incorrectly identified as from distinct individuals (α errors, falsely identified individuals), 341 

and that are from distinct individuals but are incorrectly identified as from a single individual (β 342 

errors, unidentified individuals). The overall accuracy including both types of errors is measured by 343 

the proportion of MG dyads in a dataset that are incorrectly inferred to be non-duplicates or 344 

duplicates, γ. These α-, β- and total-error rates were calculated for each dataset and averaged across 345 

100 replicate datasets for a given parameter combination. Because most applications are affected by 346 

both α- and β-errors, I report the total error rate, γ, to indicate overall accuracy in this paper to save 347 

space. 348 

Empirical data 349 

Ringler et al. (2015) showed that microsatellites can be used to reliably mark amphibian larvae and 350 

to re-identify them after metamorphosis. They genotyped 1800 tadpoles of the dendrobatid frog 351 

(Allobates femoralis) at 14 highly polymorphic microsatellite loci before releasing them on a 5-ha 352 

river island which was previously uninhabited by this species. They surveyed the island and 353 

sampled 42 juvenile individuals six months after the release, and sampled 36 males and 31 females 354 

one year after the release. The sampled juveniles and adults were released to their capture sites after 355 
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taking DNA samples, which were genotyped at the same set of 14 loci as the tadpoles. Based on 356 

their unique ventral patterns, 20 of the 67 adults were identified to correspond to one of the 42 357 

juveniles. These 20 individuals sampled as both juveniles and adults were mostly confirmed by 358 

relatedness analysis of marker data. Individual identification between tadpoles and juveniles or 359 

between tadpoles and adults was based on the mismatch and relatedness methods. In the present 360 

study, the genotype data are comparatively analysed by the 4 individual identification methods. 361 

Results 362 

Simulations under the three sibship structures yield qualitatively similar results, and thus only the 363 

analysis results for sibship structure 4(1, 2, 3, 4, 10) are reported below. 364 

Effect of the number of markers 365 

The optimal Tm determined by the simulation procedure gives an unbiased estimate of the average 366 

number of mismatches between duplicated MGs for different numbers of loci L (Fig. 1) and for 367 

different mistyping and data missing rates (not shown). For a given L, calculated Tm values vary 368 

because different MG dyads may have different numbers of loci at which genotype data are missing, 369 

and because different loci may have different Ql values. However, the variation of Tm values is 370 

much smaller than the variation of the observed numbers of mismatches, and the difference 371 

increases with L. Part of the reason that the mismatch method is less accurate than other methods 372 

(see below) is the high variation of the observed number of mismatches around Tm, which results in 373 

high rates of both α- and β-errors. 374 

With an increasing number of markers, the accuracy of mismatch (MM) method is almost 375 

constant, while that of relatedness (RL), likelihood relationship (LR), and likelihood clustering (LC) 376 

methods increases rapidly (Fig. 1). This means RL, LR and LC are statistically consistent, but MM 377 

is not, even when an optimal Tm value was calculated and used in the analysis. MM makes 378 

decreasing β-errors (undetected individuals) but increasing α-errors (falsely detected individuals) 379 

with an increasing L, as expected. As a result, the overall error rate γ is almost constant with an 380 

increasing L (Fig. 1). If a fixed value of Tm =2 were used, MM method would perform much worse 381 

with a much higher γ due to excessive β-errors when L < 10 or excessive α-errors when L >10. 382 

 LC is the most accurate method for different numbers of markers, followed by LR. These 383 

two methods become more and more accurate than RL method with an increasing number of loci. 384 

When L=80, perfect inference (α = β = 0) is obtained by both LC and LR methods. 385 

Effect of the number of alleles 386 
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For different numbers of alleles per locus and thus different numbers of loci when the total number 387 

of independent alleles is fixed at 160, LC method always has the lowest α error rate and the second 388 

lowest β error rate (Fig. 2).  LR has an α error rate only slightly larger than LC, but has the highest 389 

β error rate. MM has an α error rate much larger and a β error rate much smaller than the other three 390 

methods. Overall, LC is the most accurate, making much fewer α and β errors than the other 391 

methods. 392 

At a fixed total number of 160 independent alleles, the overall accuracy of the 4 methods 393 

first increases and then decreases with an increasing number of alleles per locus, K (Fig. 2). The 394 

maximal accuracy is achieved when K=5 for all methods except for the mismatch (MM) method. 395 

The RL and LR methods have an indistinguishable overall accuracy, which is higher than that of 396 

MM but much lower than that of LC for different numbers of alleles per locus. The accuracy 397 

differences among methods increases with a decreasing number of alleles per locus and 398 

correspondingly an increasing number of loci.   399 

Effect of the extent of individual replication 400 

Contrasting behaviours of different methods are observed for different levels of individual 401 

replications, λ (Fig. 3). With an increasing λ, the accuracy of LR is almost constant, that of MM and 402 

RL decreases, while that of LC increases. When a sample contains no replicated individuals (i.e. 403 

λ=0), MM has the lowest overall error rate γ because it has no chance to falsely identify individuals 404 

(α errors) to which the method is particularly vulnerable. However, MM quickly becomes the least 405 

accurate method at a low value of λ=0.3, when roughly each of 30% individuals is replicated only 406 

once. The clustering method LC always outperforms the 3 pairwise approaches when there exist 407 

replicated individuals in a sample, and this advantage increases steadily with the replication level λ.  408 

Effect of mistyping and missing data rates 409 

Genotyping errors and missing data decrease marker information and increase noises. As a result, 410 

all 4 methods show a decreasing accuracy with an increasing mistyping and missing data rate (Fig. 411 

4). The mismatch method is especially susceptible to mistyping and missing data. Its accuracy 412 

quickly reduces to the lowest when 𝜀𝑙1=𝜀𝑙2=𝜀𝑙3 raises to a low value of 0.01 for each of 20 loci. For 413 

the entire range of mistyping and missing data rates from 0 to 0.16, LC has the highest accuracy, 414 

followed by LR. 415 

Robustness to mis-specified mistyping rates 416 
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The relatedness method does not use (account for) mistyping rates and thus its accuracy is 417 

unaffected by the assumed mistyping rate 𝜀̂ (Fig. 5). The behaviour of MM is perplexing, as its 418 

accuracy increases slowly with an increasing 𝜀̂ when it is actually larger than the true simulated 419 

mistyping rate 𝜀. This is because the dominating errors made by MM when marker information is 420 

not small are falsely identified individuals (α errors), which can be reduced by the use of an 421 

overestimated mistyping rate. The two likelihood methods, LR and LC, have the highest accuracy 422 

when 𝜀̂ is roughly equal to 𝜀. Their accuracy decreases as 𝜀̂ deviates from 𝜀. Relatively, LR is much 423 

more vulnerable than LC to mis-specified mistyping rates, and becomes the least accurate method 424 

when roughly 𝜀̂ > 1.25𝜀. Although LC is also affected by mis-specified 𝜀̂, it is always the most 425 

accurate method in the range between  𝜀̂=0 and 𝜀̂ = 2𝜀. 426 

Results of empirical data analysis 427 

The 1909 MGs (1800 tadpoles, 42 juveniles, 67 adults) were partitioned by LC into 1766 individual 428 

clusters, each corresponding to an inferred distinct individual. Among these clusters, 1651, 92 and 429 

23 are singletons, dyads, and trios, each containing 1, 2 and 3 MGs, respectively. Among the 23 430 

trios, each of 20 contains a morphologically identified juvenile-adult dyad and a tadpole, one 431 

contains 2 tadpoles and a juvenile, one contains 2 tadpoles and an adult, and one contains 3 tadpoles. 432 

The first 20 trios confirm morphological observations and are highly likely to be correct, while the 433 

last 3 trios are probably incorrect if no tadpoles are actually replicated in the sample. The last 3 trios 434 

have similar numbers of missing and mismatched genotypes to the first 20 trios. 435 

Because juveniles and adults are subsamples of tadpoles, we expect each juvenile or adult 436 

should have a corresponding tadpole. Indeed, each of all 67 adults and each of 38 juveniles was 437 

inferred to match a tadpole, and each of the 4 remaining juveniles was inferred to match no tadpoles. 438 

This means the α error (falsely identified individuals) rate of LC for this dataset is low, only about 439 

3.6% (4 out of 109). It is also possible to calculate β error (unidentified individuals) rate of LC for 440 

this dataset, if no individuals within a life stage (tadpoles, juveniles, adults) are actually replicated. 441 

Among the 1821186 possible dyads, only 41 dyads within a life stage were identified by LC as 442 

single individuals, giving a β error rate of 0.0000225. It turns out that all of the 41 dyads are 443 

tadpoles, and no adults and no juveniles were found duplicated. This is not surprising because 444 

tadpoles are much more numerous than juveniles and adults, and many tadpoles were inferred to 445 

come from large full sib families (data not shown). 446 

 The distributions of the numbers of loci with missing data and mismatches between a pair of 447 

MGs for various classes of dyads are shown in Fig. 6, and explain the low power and accuracy of 448 

the mismatch method. As expected, there is essentially no difference in missing data for dyads of 449 
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various relationship classes. The average number of loci with missing data for a dyad is 2, no matter 450 

the dyadic MGs come from a single individual, two full siblings, or two non-full siblings. However, 451 

the distributions of mismatches differ among dyads of different classes. A dyad coming from a 452 

single individual most often has 0, 1 or 2 mismatches, but can occasionally have a maximal number 453 

of 7 mismatches. A full sib dyad on average has 8 mismatches, but can have a minimal number of 454 

only 2 mismatches. A non-full sib dyad on average has 11 mismatches, with the minimal number of 455 

mismatches being 6. Using a threshold value of mismatches Tm =6 or 7, the mismatch method can 456 

confidently identify duplicated MGs (Fig. 6, E and F) and unrelated individuals (Fig. 6H) with a 457 

small α and β error rates. However, it has tremendous difficulties to distinguish duplicated MGs 458 

from full siblings (Fig 6G). Using the optimum Tm value of 4 or 5, it still could result in substantial 459 

α and β error rates. The analysis shown in Fig. 6 also demonstrates that the optimal Tm value is not 460 

only marker property (e.g. number, polymorphisms, genotyping error rates, data missing rates) but 461 

also sample genetic structure (i.e. distributions of relatedness among MGs) dependent. The optimal 462 

Tm value would be 6~7 and 4~5 if full siblings occur at a very low rate and at a substantial rate, 463 

respectively. It should decrease with an increasing rate of full siblings and also a decreasing rate of 464 

duplicates to minimize both α and β errors. Unfortunately, however, sample genetic structure is 465 

usually unknown, and is the focus of an individual identification study. 466 

 Results from pairwise approaches are much less accurate, as expected from the simulation 467 

results and from the fact that this dataset has a large number of individuals and contains very large 468 

full sib families. Take the LR method as an example. Among the 1821186 possible dyads, 153 469 

dyads within a life stage were identified as single individuals, yielding a β error rate 3.73 times 470 

larger than that of LC. A serious problem with the pairwise approach is self-conflicted inferences. 471 

Fig. 7 shows the pairwise relationships among 5 MGs inferred by LR. Obviously, these pairwise 472 

inferences are incompatible. The higher the level of individual replications, the more severe will be 473 

the problem of pairwise approaches. 474 

 475 

Discussion 476 

Although the mismatch method is the simplest and the most widely applied method for marker-477 

based individual identification in molecular ecology, it has unfortunately several weaknesses and as 478 

a result is the least accurate method. First, the fixed threshold, typically Tm = 1 or 2, is arbitrary. It is 479 

too small when the number of loci or/and the mistyping rate is high, resulting in too many ghost 480 

individuals. It is too large when the number of loci and mistyping rate are very low, or/and close 481 

relatives are frequent. It is also too rigid and inappropriate for pairs of MGs having missing data at 482 
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different numbers of loci. These properties of MM have been well recognized, and have led to the 483 

suggestion that the fewest possible number of markers that have sufficient power for individual 484 

identification should be used to avoid excessive mismatches and exclusions (Waits et al. 2001; 485 

Creel et al. 2003). In reality, the markers used in individual identification can be highly variable in 486 

polymorphisms and mistyping rates, and the background relationship (e.g. sibship and parentage) 487 

structure of a sample can also be highly variable. It is difficult for any fixed value of Tm to cater for 488 

all scenarios. Second, the mismatch method fails to use the mismatch information efficiently. Two 489 

single locus genotypes are regarded matched when they are identical, and mismatched when they 490 

have either one or both alleles different. Obviously, mismatched genotypes give more evidence of 491 

distinct individuals when they have both alleles rather than a single allele different. This kind of 492 

information is however unused by the mismatch method. Third, the mismatch method treats all loci 493 

equally, while they can be highly heterogeneous in information (polymorphism) and noise 494 

(mistyping) contents. The method simply counts the number of mismatches, regardless of the loci at 495 

which the mismatches occur. Obviously, mismatched MGs give more support for distinct 496 

individuals when the mismatches occur at loci with lower mistyping rates or/and higher 497 

polymorphisms. 498 

 I showed in this study that an optimal Tm value can be calculated by simulations, 499 

accommodating the number of loci, the mistyping and missing data rates and the allele frequencies 500 

at each locus. The optimal Tm gives an unbiased estimate of the average number of mismatches 501 

between truly duplicated MGs (Fig. 1). Applying the optimal Tm value determined by simulations, 502 

the mismatch method has almost a constant accuracy independent of the number of loci (L, Fig. 1). 503 

If the fixed Tm=2 were applied, the accuracy would have decreased rapidly with L when it is larger 504 

than 20 because of the excessive α errors. Compared with other methods, however, the mismatch 505 

method using the optimal Tm value is still the least accurate for various parameter combinations 506 

considered in the simulations (Figures 1-5). It is impossible for the mismatch method to use as 507 

much marker information (e.g. mistyping rates, allele frequencies) and thus to have a comparable 508 

accuracy as the other methods. 509 

 Relatedness method has rarely been used in individual identifications. However, recently 510 

Ringler et al. (2015) showed that it is much more accurate than mismatch method for analysing 511 

their frog data. Relatedness method has several advantages over mismatch method. First, it uses 512 

allele frequency information. For example, two matched genotypes lend more support for a single 513 

individual if they are rare (i.e. containing rare alleles) than if they are common. Second, relatedness 514 

calculation is robust to the presence of mistypings. The relatedness estimates between close 515 

relatives (such as duplicates and full sibs) are reduced only slightly by assuming perfect data when 516 
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they are actually not (Wang 2007). My simulations conducted for different parameter combinations 517 

confirm Ringler et al.’s conclusion that relatedness method is more accurate than mismatch method. 518 

Importantly, relatedness method is statistically consistent. With an increasing number of markers, 519 

even though they suffer from genotyping errors, the method always becomes increasingly more 520 

accurate (Fig. 1). 521 

 Like the mismatch method, the relatedness method requires a threshold value, Tr, to 522 

determine the relationship between two MGs. The dyad is concluded to be a single and two distinct 523 

individuals when their relatedness is greater and not greater than Tr, respectively. Ideally, the 524 

optimal Tr value that minimises both α- and β-errors should be obtained by considering the 525 

frequencies of DPs and the most close relationship (e.g. FS) in the sample. These frequencies are 526 

usually unknown, and the close relatives are most often full siblings and parent offspring, both 527 

having an expected relatedness of 0.5. Using the average relatedness of first degree relatives (0.5) 528 

and DPs (1.0) as threshold, I obtained Tr=0.75 and used it in simulated data analysis. This value is 529 

slightly smaller than the value obtained by Ringler et al. (2015), 0.8, in their frog data analysis. 530 

They derived this value from the estimated relatedness of the 20 juvenile-adult pairs identified as 531 

identical from morphology. In practice, whenever a sufficient number of known duplicated 532 

individuals are available, Ringler et al.’s approach should be followed to determine a dataset 533 

specific Tr. Otherwise, a generic Tr =0.75 can be used in individual identification, bearing in mind 534 

that the optimal value depends on the relative frequencies of DPs and the most close relationships as 535 

well as genotyping error rates and other factors (e.g. number and polymorphisms of markers). 536 

Further study (via simulation or meta-analysis) is needed to investigate the optimal Tr and the 537 

factors affecting it.  538 

 Individual identification from a pairwise likelihood relationship (LR) analysis does not 539 

require a threshold. We calculate the probability of two MGs conditional on each of a number of 540 

candidate relationships, and the probability is the likelihood of the relationship. We then simply 541 

select the relationship that has the maximal likelihood as the best estimate. Similar to the 542 

considerations in relatedness analysis, we choose FS, HS, PO as well as DP as the candidate 543 

relationships. Unlike relatedness analysis, however, relationship inference is highly susceptible to 544 

mistypings, and a relationship (such as PO and DP) can be erroneously excluded because of 545 

genotyping errors. For this reason, I used the error models of Wang (2004) to account for false 546 

alleles (FA) and allelic dropouts (ADO) separately. Overall, LR method performs slightly better 547 

than, but is more susceptible to mis-specified FA and ADO rates (Fig. 5) than relatedness (RL) 548 

method. Recently, researchers have recognized the ubiquitous presence of mistypings and its large 549 

impact on many downstream analyses (Bonin et al. 2004; Pompanon et al. 2005), and increasingly 550 
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quantified and reported mistyping rates. Therefore, the application of LR method should 551 

increasingly less limited by the lack of mistyping information. 552 

 A common problem of the above three methods is that they consider each pair of MGs in 553 

isolation of others. These pairwise approaches waste marker information and thus have low 554 

accuracy. For an example, let’s consider n+1 MGs which are identical except for a single locus at 555 

which there are n heterozygous genotypes {A,B} and 1 single homozygous genotype {A,A}. These 556 

n+1 MGs would support the hypothesis that they come from a single individual rather than two 557 

distinct individuals when ADO or FA rate is not very small at the locus showing different 558 

genotypes and when n is large. The larger the value of n, the greater is the support. However, this 559 

support is much reduced when only 2 genotypes are considered as in the pairwise approach. 560 

Confirming the reasoning, Fig. 3 shows contrasting behaviours between LC and the 3 pairwise 561 

approaches. As the replication level increases, LC becomes more accurate, while pairwise 562 

approaches either remain the same accuracy or become less accurate. As a result, the difference in 563 

accuracy between LC and pairwise approaches increases with an increasing level of individual 564 

replication. 565 

 Another common problem of the above three methods is that they frequently yield self-566 

incompatible inferences, as shown in a real example (Fig. 7). In practice, what one needs is usually 567 

the MG clusters, each corresponding to a single individual. This means one has to go through these 568 

pairwise inferences and assemble them into individual clusters. The process is not only tedious 569 

because of so many pairwise inferences, in the order of N(N-1)/2 where N is the number of MGs, 570 

but may fail to produce valid clusters. 571 

 Although the simulated data contain half sibs, they were analysed by LC by assuming 572 

monogamy for both sexes such that half sibs were not inferred. This is because half sibs are not of 573 

our interest and also have much smaller effect on individual identification than full sibs. 574 

Abandoning half sib inferences can however speed up the computation substantially and is thus 575 

especially favourable for a simulation study. In analysis of real data, it is also safe to ignore half 576 

sibs when individual identification is the purpose of analysis. 577 

 Highly polymorphic microsatellites from noninvasive samples have been used in identifying 578 

individuals and estimating population size (Waits & Leberg 2000; Creel et al. 2003; McKelvey & 579 

Schwartz 2004). It is anticipated that SNPs would become more and more widely used in the near 580 

future because of their low cost and high automation in genotyping. Although much less 581 

informative (usually biallelic) individually than microsatellites, SNPs can be genotyped at a much 582 

larger number of loci at ease and collectively they can be much more informative. My simulations 583 
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(Fig. 2) showed that all four methods can use markers of widely different polymorphisms in 584 

individual identification. However, the performance of the mismatch method, even when improved 585 

by using an optimal Tm, deteriorates rapidly with a decreasing marker polymorphism because of the 586 

excessive false identifications of individuals (α errors). The problem is much more severe if a fixed 587 

Tm value is used. In contrast, the LC method is especially more accurate than other methods with 588 

many markers of low polymorphisms. Using a number of 160 SNPs, each having 2 alleles and a 589 

mistyping rate of 0.05, LC has an overall accuracy several orders higher than other methods.  590 

Except for the mismatch method that uses a fixed Tm value, allele frequencies are needed in 591 

inferring duplicates. Usually these frequencies are unavailable in practice, but can be estimated 592 

from the genotype data under the assumption that all homologous genes (within and between 593 

individuals) at a locus are non-identical by descent. The assumption is obviously violated when 594 

some sampled individuals are duplicated or otherwise related. However, violation of the assumption 595 

does not seem to cause a serious problem for all 4 methods investigated in this study, even when 596 

individual replication level is high (Fig. 3). The LC method implemented in Colony program does 597 

have the ability to account for the inferred genetic structure in refining allele frequency estimates, 598 

and has been proved to be effective in improving pedigree reconstruction when the families 599 

included in a sample are highly unbalanced in sizes (Wang 2004; Wang & Santure 2009).  600 

 My simulations assumed an outbred species without inbreeding. However, inbreeding or 601 

population structure could have some effects on the inference of duplicates. While it is not 602 

immediately apparent how to extend the MM, RL and LR methods to account for inbreeding, the 603 

LC method in Colony can actually accommodate inbreeding, including selfing, in relationship 604 

inference (Wang & Santure 2009). It can estimate inbreeding and relationship jointly. However, 605 

how much improvement in individual duplicate inference can be gained by allowing for inbreeding 606 

is yet to be investigated in a further study. 607 

 The simulation results for less related family structures, 40(1, 1) and 16(1, 1, 3), are similar 608 

to those shown in Figures 1-5. All methods become slightly more accurate, because full sib 609 

frequency is smaller and thus the chance of α errors is reduced. Overall across all simulated datasets 610 

and the empirical dataset, the LC method performs substantially better than the pairwise approaches, 611 

and is highly recommended for use in practice. 612 

 The LC and LR methods are implemented and added to the computer program COLONY 613 

version 2.0.5.3, which was used in analysing the data shown in this paper. The program is 614 

downloadable from the website http://www.zsl.org/science/software/colony. 615 

 616 
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Figure Captions 698 

Fig. 1 Effect of the number of markers. The upper graph plots the observed (x axis) and threshold 699 

Tm (y axis) numbers of mismatches of each simulated duplicated MG dyad for different number of 700 

markers (L). The lower graph plots the error rate (γ) of 4 individual identification methods as a 701 

function of the number of markers (L). The four methods are mismatch (MM), relatedness (RL), 702 

likelihood relationship (LR), and likelihood clustering (LC). For both graphs, the parameters used in 703 

the simulations are family structure 4(1, 2, 3, 4, 10), Kl =10 and 𝜀𝑙1=𝜀𝑙2=𝜀𝑙3=0.05 for each locus l 704 

(=1, 2, …, L), λ=0.5. 705 

Fig. 2 α-, β- and total-error rates of 4 individual identification methods as a function of the number 706 

of alleles per marker (K). The four methods are mismatch (MM), relatedness (RL), likelihood 707 

relationship (LR), and likelihood clustering (LC). The parameters used in the simulations are family 708 

structure 4(1, 2, 3, 4, 10), L=160, 80, 40, 20, 10, 5 when K =2, 3, 5, 9, 17 and 33 respectively, 709 

𝜀𝑙1=𝜀𝑙2=𝜀𝑙3=0.05 for each locus, and λ=0.5. 710 

Fig. 3 Error rate (γ) of 4 individual identification methods as a function of the extent of individual 711 

replication (λ). The four methods are mismatch (MM), relatedness (RL), likelihood relationship 712 

(LR), and likelihood clustering (LC). The parameters used in the simulations are family structure 713 

4(1, 2, 3, 4, 10), L=10, K =10, 𝜀𝑙1=𝜀𝑙2=𝜀𝑙3=0.05 for each locus, λ (x axis) varies between 0 (no 714 

replication) to 3.2 (an individual is on average replicated by 3.2 times). 715 

Fig. 4 Error rate (γ) of 4 individual identification methods as a function of the rate of mistyping and 716 

missing data at a locus (𝜀). The four methods are mismatch (MM), relatedness (RL), likelihood 717 

relationship (LR), and likelihood clustering (LC). The parameters used in the simulations are family 718 

structure 4(1, 2, 3, 4, 10), L=20, K =10, λ =0.5, 𝜀𝑙1 ≡ 𝜀𝑙2 ≡ 𝜀𝑙3 (x axis) varies between 0 (perfect data 719 

with no mistyping and no missing data) to 0.16 at each locus l. 720 

Fig. 5 Error rate (γ) of 4 individual identification methods as a function of the assumed rate of 721 

mistyping at a locus (𝜀̂). The four methods are mismatch (MM), relatedness (RL), likelihood 722 

relationship (LR), and likelihood clustering (LC). The parameters used in the simulations are family 723 

structure 4(1, 2, 3, 4, 10), L=20, K =10, λ =0.5, 𝜀𝑙1 ≡ 𝜀𝑙2 = 0.1, 𝜀𝑙3 =0.05. The analysis was 724 

conducted assuming a mistyping rate (x axis) of 𝜀𝑙̂1 ≡ 𝜀𝑙̂2 between 0 (perfect data with no mistyping) 725 

to 0.2 at each locus l. 726 

Fig. 6 Distributions of the numbers of loci with missing data (A-D) and mismatches (E-H) between 727 

two MGs in the frog dataset. Row 1 (A and E) is for the 60 dyads in the 20 inferred trios that 728 

contain morphologically identified juvenile-adult pairs, row 2 (B and F) is for the 106 other dyads 729 
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inferred to be duplicates, row 3 (C and G) is for the inferred 16620 full sib dyads, and row 4 (D and 730 

H) is for the inferred 1804400 non-full-sib dyads. 731 

Fig. 7 The relationships among 5 MGs inferred by LR for the frog dataset. In the 5 MG names, “it”, 732 

“m” and “ij” indicate tadpoles, male adults, and juveniles respectively. Two MGs are inferred by 733 

LR to come from a single individual if they are linked by a line, and from distinct individuals if they 734 

are not linked by a line.  735 
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