© 2015. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2015) 8, 817-829 doi:10.1242/dmm.020362

he Company of
f Biologists

RESEARCH ARTICLE

Optineurin deficiency in mice contributes to impaired cytokine

secretion and neutrophil recruitment in bacteria-driven colitis
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ABSTRACT

Crohn’s disease (CD) is associated with delayed neutrophil
recruitment and bacterial clearance at sites of acute inflammation as
a result of impaired secretion of proinflammatory cytokines by
macrophages. To investigate the impaired cytokine secretion and
confirm our previous findings, we performed transcriptomic analysis in
macrophages and identified a subgroup of individuals with CD who
had low expression of the autophagy receptor optineurin (OPTN). We
then clarified the role of OPTN deficiency in: macrophage cytokine
secretion; mouse models of bacteria-driven colitis and peritonitis; and
zebrafish Salmonellainfection. OPTN-deficient bone-marrow-derived
macrophages (BMDMs) stimulated with heat-killed Escherichia coli
secreted less proinflammatory TNFo and IL6 cytokines despite
similar gene transcription, which normalised with lysosomal and
autophagy inhibitors, suggesting that TNFo is mis-trafficked to
lysosomes via bafilomycin-A-dependent pathways in the absence of
OPTN. OPTN-deficient mice were more susceptible to Citrobacter
colits and E. coli peritonitis, and showed reduced levels of
proinflammatory TNFo in serum, diminished neutrophil recruitment to
sites of acute inflammation and greater mortality, compared with wild-
type mice. Optn-knockdown zebrafish infected with Salmonella also
had higher mortality. OPTN plays a role in acute inflammation and
neutrophil recruitment, potentially via defective macrophage
proinflammatory cytokine secretion, which suggests that diminished
OPTN expression in humans might increase the risk of developing CD.

KEY WORDS: Crohn’s disease, Macrophages, TNFa, Escherichia
coli, Cytokines

INTRODUCTION
Crohn’s disease (CD) is a chronic relapsing inflammatory disorder,
primarily affecting the gastrointestinal tract (Baumgart and
Sandborn, 2012). The hallmark of CD is the presence of transmural
inflammation with granulomas that commonly involves the terminal
ileum.

We previously showed that individuals with CD have defective
clearance of bacteria from their tissues, which was associated with
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inadequate neutrophil recruitment (Segal and Loewi, 1976; Marks
et al,, 2006; Smith et al., 2009). The impaired secretion of
proinflammatory cytokines from macrophages upon bacterial
stimulation (Smith et al., 2009; Sewell et al., 2012) could be
responsible for this delay in neutrophil recruitment. This abnormal
neutrophil response does not occur as a consequence of chronic
inflammation: it was not seen in ulcerative colitis (UC) or
rheumatoid arthritis (Segal and Loewi, 1976; Marks et al., 2006;
Smith et al., 2009). A clear example of the connection between
disordered neutrophil function and CD comes from the archetypal
neutrophil defect of chronic granulomatous disease (CGD), in
which 40% of patients develop bowel disease indistinguishable
from CD (Marks et al., 2009). In CGD there is a gross defect of
components of the NADPH oxidase that is responsible for the
respiratory burst in neutrophils. Mutations in components of this
oxidase that are damaging, but not severe enough to cause the
oxidase to be seriously compromised, are associated with an
increased incidence of early-onset CD (Dhillon et al., 2014).

This led us to propose a ‘three-stage’ model for the pathogenesis
of CD. The first stage involves penetration of faecal contents into
the bowel wall, which results in the second central causal stage of
incomplete bacterial clearance by competent neutrophils. The
incomplete clearance of bowel contents from the tissues results in
the third stage of a secondary adaptive immune response (Sewell
et al., 2009).

The complexity of the cause of CD has been highlighted by recent
large-scale genetic studies (Khor et al., 2011). Genome-wide
association studies (GWAS) have identified single-nucleotide
polymorphisms (SNPs) within 163 susceptibility loci (Franke
et al., 2010; Jostins et al., 2012). These loci highlight the
importance of genes of the innate immune system that recognise
pathogen-associated molecular patterns, such as nucleotide-binding
oligomerisation domain-containing 2 (NOD2) (Hugot et al., 2001;
Ogura et al., 2001), and autophagy, for example autophagy-related
16-like 1 (ATG16L1) (Franke et al., 2010; Murthy et al., 2014).
However, given the heterogeneity of the CD phenotype and the
GWAS limitation of identifying common variants of small effect, it is
unsurprising that the GWAS CD-associated variants are calculated to
account foronly 23% ofthe total CD heritability (Franke etal., 2010).

In an attempt to identify molecules that might be responsible
for disordered macrophage function in CD, we performed a
transcriptomic analysis of macrophages from these individuals.
Optineurin (OPTN) was identified as a gene with abnormally low
expression in approximately 10% of CD patients (Smith et al.,
2015). Knockdown of OPTN using siRNA resulted in reduced
proinflammatory tumour necrosis factor-o. (TNF) and interleukin-6
(IL6) secretion upon bacterial stimulation of THP-1 cells, providing
evidence that alterations in the expression have a direct impact on
the innate immune response to bacterial challenge (Smith et al.,
2015).
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TRANSLATIONAL IMPACT

Clinical issue

Crohn’s disease (CD) is a chronic inflammatory disorder of the
gastrointestinal tract. CD is associated with delayed neutrophil
recruitment and bacterial clearance at sites of acute inflammation
owing to impaired pro-inflammatory cytokine secretion by macrophages.
A subset of individuals with CD have been identified that have reduced
macrophage expression of optineurin (OPTN), an autophagy receptor
with a role in vesicle trafficking. This study aims to elucidate the role of
OPTN deficiency in macrophage cytokine secretion using mouse and
zebrafish models of infection.

Results

In this study, the authors showed that mouse OPTN-deficient
macrophages secrete lower levels of pro-inflammatory cytokines upon
E. coli stimulation owing to cytokine mis-trafficking to lysosomes via
autophagy-dependent pathways. Mice lacking OPTN were significantly
more susceptible to Citrobacter colitis and E. coli peritonitis owing to
reduced neutrophil recruitment to sites of acute inflammation and
impaired pro-inflammatory cytokine secretion. Optn-knockdown
zebrafish infected with Salmonella also showed higher mortality.

Implications and future directions

This study is the first to implicate OPTN in the innate immune response
to bacteria in the gut. Reduced OPTN expression is associated with
an impaired neutrophil response that increases the risk of
developing bacteria-driven colitis and potentially CD. CD due to an
innate immunodeficiency resulting from an impaired macrophage and
neutrophil response might benefit from the use of lysosomal and
autophagy modulators as a new therapeutic strategy in forthcoming
clinical trials.

OPTN has been shown to regulate exocytosis of secretory vesicles
via interaction with Rab8 and myosin VI at the Golgi complex
(Sahlenderetal.,2005; Bond etal., 2011), and has arole in post-Golgi
protein trafficking and positioning of lysosomes via an interaction
with huntingtin (HTT) (del Toro et al., 2009), indicating that
dysfunction of OPTN could lead to disordered cytokine secretion.
Additionally, phosphorylation of OPTN has been found to promote
autophagy of ubiquitylated Salmonella (Wild et al., 2011).

OPTN gene mutations have previously been associated with
primary open angle glaucoma (POAG) (Rezaie et al.,, 2002),
amyotrophic lateral sclerosis (ALS) (Maruyama et al., 2010) and
Paget’s disease of the bone (Albagha et al., 2010). The most widely
studied POAG OPTN mutant is the commonest ESOK mutation.
Mice overexpressing ESOK-OPTN have thinner retinas with loss of
retinal ganglion cells (RGCs) (Chi et al., 2010) and impaired post-
Golgi trafficking in human retinal pigment epithelium and RGCs. In
individuals with ALS, OPTN was found to colocalise with
superoxide dismutase 1 (SODI1) and fused in sarcoma (FUS) in
inclusion bodies (Maruyama et al., 2010; Ito et al., 2011). Further
novel risk variants have been identified in an Italian and Dutch

Table 1. Outlier analysis of OPTN gene expression in unstimulated
MDMs

Batch 1 Batch 2 Combined
Group OPTN™™a OPTN'®Y OPTN™™3 OPTN'Y OPTN™™3 OPTN'*
HC 42 0 33 0 75 0
cD 51 7+ 43 4 94 1qxx#
uc 49 0 - - 49 0

Fisher's Exact Test; CD vs HC *P<0.05 and **P<0.01; CD vs UC #p<0.05.
HC, healthy controls; CD, Crohn’s disease; UC, ulcerative colitis.
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cohort (Del Bo et al., 2011; Tumer et al., 2012), but three other
studies did not support the association of OPTN with ALS (Belzil
et al.,, 2011; Millecamps et al., 2011; Solski et al., 2012). The
involvement of OPTN in ALS therefore remains to be further
elucidated. In 2010, a GWAS into Paget’s disease of the bone
identified three candidate loci, one of which was mapped to OPTN
on chromosome 10p13 (Albagha et al., 2010). However, to date the
disease-associated variant in OPTN has not been identified, nor
have the functional consequences that result in Paget’s disease.

In this study, we show that OPTN plays an important role in the
inflammatory response and in neutrophil recruitment, which are
important in controlling bacterial infection in the bowel (Chew
etal., 2014). These studies are the first to identify a role for OPTN in
antibacterial responses in the gastrointestinal tract and demonstrate
that reduced expression can have a profound effect on the immune
response, increasing the likelihood of developing a chronic
inflammatory disease such as CD.

RESULTS

OPTN deficiency was identified in 10% of CD patients and is
associated with inheritance of a minor SNP

To verify our previously reported link between low OPTN expression
and CD (batch 1) in monocyte-derived macrophages (MDMs)
(Smith et al., 2015), we recruited an additional 47 CD patients and
33 healthy controls (HC) (batch 2). Transcriptomic analysis
and qPCR verification (data not shown) confirmed our previous
findings (Table 1). Low OPTN expression was defined as expression
below a defined threshold at which the significance (P-value) of
the standard deviation and fold change of OPTN expression in
each CD patient when compared to mean expression in HC was
P<0.005 and 1 on the log, scale, respectively (Smith et al., 2015).

Of the 105 CD patients in total, 11 (10.5%) were expressing
OPTN significantly below the range in HC (»=75). By contrast, UC
patients (#=49) demonstrated normal OPTN expression (P=0.003
and P=0.02 comparing individuals with CD with HC and UC,
respectively). Having established a link with CD, we looked for any
demographic association with low OPTN expression. A weak
association was found between low OPTN expression and male CD
patients (P=0.011), but otherwise no association was found with
age, medication or smoking status (Table 2).

Ten out of eleven of the OPTN'Y CD patients had ileal
involvement (Table 3). Ileal biopsies from four OPTN'™ CD
patients were stained for OPTN (supplementary material Fig. S1).
OPTN staining in lamina propria cells of the ileum is possibly weaker
in OPTN'®¥ patients compared with an OPTN™™2! CD patient (data
not shown) and HC small bowel (supplementary material Fig. S1),
which suggests that OPTN expression might be reduced in the ileum.
We further interrogated a published online dataset (GSE16879)
(de Bruyn et al., 2014), which contains ileal biopsy material from 6
controls and 18 CD patients (supplementary material Fig. S2), and
found that ileal OPTN expression was significantly lower in the CD
patients compared with controls (P=0.01). To investigate leukocyte
OPTN expression, immunoblotting was performed, which
demonstrated that OPTN is expressed in monocytes, lymphocytes
and MDMs but was undetected in neutrophils (supplementary
material Fig. S3).

OPTN is upregulated and localises with TNF at the Golgi
complex upon exposure to bacteria in human MDMs

OPTN was upregulated at the transcriptional and protein levels
(Fig. 1A,B) after stimulation with bacteria and microbial ligands in
MDMs. Heat-killed Escherichia coli (HkEc) and lipopolysaccharide
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Table 2. Demographics of healthy controls, CD patients and OPTN'®" CD patients

Healthy controls Crohn’s disease OPTN"™" P-value®
n 75 94 11
Gender, n (M:F) 40:35 38:56 9:2 0.011
Mean agetstandard deviation 39.7£11.6 39.3+13.8 45.3+x17.0 0.185
Age range 22-69 20-70 23-65
Smokers, n (%) 11(12.1) 2(18.2) 0.629
Non smokers 80 (87.9) 9(81.8)
Medication, n (%)
Nil 23 (24.5) 2(18.2) 1.000
Budesonide/Prednisolone 5 mg 1(1.1) 1(9.1) 0.200
5-aminosalicylates 52 (55.3) 4 (36.4) 0.340
Immunomodulators 26 (27.7) 4 (36.4) 0.506
Anti-TNF 11 (11.7) 1(9.1) 1.000
Montreal classification for Crohn’s disease, n (%)
Age onset
A1: <16 19 (20.2) 3(27.3) 0.695
A2: 17-40 62 (66.0) 5 (45.4) 0.200
A3: >40 13 (13.8) 3(27.3) 0.367
Location
L1: ileal 29 (30.9) 5 (45.5) 0.329
L2: colonic 22 (23.4) 1(9.0) 0.449
L3: ileocolonic 41 (43.6) 5 (45.5) 1.000
L4: upper Gl 10 (10.6)* 1(9.0)* 1.000
Behaviour
B1: non-stricturing, non-penetrating 52 (55.3) 4 (36.4) 0.340
B2: stricturing 23 (24.5) 5 (45.5) 0.158
B3: penetrating 27 (28.7) 6 (54.5) 0.096
p: perianal 24 (25.5) 4 (36.4) 0.479

*Two patients have purely upper Gl disease; *patient also has lower Gl disease.
#P-values shown are comparisons between OPTN'®* and Crohn’s disease. Bold indicates significance.

(LPS) were the most potent inducers of OPTN transcription and
resulted in the highest levels of intracellular protein, whereas the Toll-
like receptor 2 (TLR2) ligand Pam; was a less potent inducer.

Previous studies have localised OPTN to multiple intracellular
locations, including the Golgi complex (Sahlender et al., 2005).
Subcellular fractionation was performed on HkEc-stimulated THP-1
cells (Fig. 1C). The majority of OPTN was localised to the
cytoplasmic fractions and, to a lesser extent, the Golgi-enriched
fraction 5. There was minimal overlap between OPTN- and LAMP1-
positive fractions, which suggests that OPTN is not localised to
lysosomes.

Immunoprecipitation of OPTN was performed on THP-1 cells,
verified by immunoblotting (Fig. 1D) and co-precipitated proteins
were identified using shotgun proteomics (supplementary material
Table S1). Proteins that co-precipitated with OPTN were subjected to
Gene Ontology (GO) analysis, which identified GO-terms associated
with intracellular vesicles and the Golgi-network (supplementary
material Table S2). The strongest signal associated with the myosin

Table 3. Demographics of the OPTN'®" CD patients

complex was the unconventional myosin 18A (MYO18A), which
localises to the trans-Golgi membrane (Dippold et al., 2009).

To confirm the subcellular localisation of OPTN, confocal
microscopy was performed. HkEc-stimulated MDM were co-
stained for OPTN and the Golgi marker, GM130 (Fig. 1E). There
was overlap between OPTN and GM130, replicating the Golgi
localisation of OPTN found on subcellular fractionation and
immunoprecipitation. OPTN staining was also present within the
cytoplasm.

Our previous finding of reduced TNF secretion in OPTN-
deficient cells led us to investigate whether TNF and OPTN
colocalise in the cell (Smith et al., 2015). Confocal images of HkEc-
stimulated MDM demonstrated overlap between OPTN and TNF
within the Golgi complex (Fig. 1F, supplementary material Fig. S4).
A number of vesicles stained positively for TNF or OPTN, but only
12% of TNF vesicles also co-stained for OPTN (Fig. 1G). Previous
studies have shown that TNF is trafficked from the Golgi complex
through a Rabll recycling endosomal pathway in murine

Montreal classification

Age Sex Age onset Location Behaviour Treatment (when MDMs grown) Smoking status

1 23 M A1 (10) L3 B2+B3p Azathioprine, Adalimumab Non smoker
2 23 M A1 (11) L1 B2+B3p Methotrexate Non smoker
3 26 M A1 (13) L1+L4 B1 5-aminosalicylate Non smoker
4 34 M A2 (29) L3 B1 5-aminosalicylate Non smoker
5 36 M A2 (21) L3 B2+B3p Nil Non smoker
6 50 M A2 (20) L1 B2 Azathioprine Non smoker
7 58 M A3 (42) L3 B3p Methotrexate Non smoker
8 60 M A2 (23) L1 B3 Prednisolone 5 mg Non smoker
9 61 F A2 (40) L1 B2+B3 Nil Smoker

10 62 F A3 (60) L2 B1 5-aminosalicylate Non smoker
11 65 M A3 (52) L3 B1 5-aminosalicylate Smoker
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Fig. 1. OPTN is upregulated and colocalises with TNF at the Golgi complex upon bacterial stimulation in macrophages. (A) OPTN expression in
MDMs stimulated with Pam; (TLR2), LPS (TLR4) and HKEc compared to unstimulated (US) MDMs (n=10-23/group). (B) Immunoblot for OPTN in MDMs after
TLR2, TLR4 and HkEc stimulation (n=4). (C) Subcellular fractions of HKEc-stimulated THP-1 cells were immunoblotted for OPTN and markers for the Golgi
complex (golgin-245 and GM130), lysosomes (LAMP1) and cytosol (GAPDH). (D) Immunoblot for OPTN after immunoprecipitation of OPTN from THP-1 cells.
(E) Confocal microscopy in an MDM (white outline) stimulated with HkEc for 4 h were stained for GM130 (i) and OPTN (ii). Single-stained GM130 Golgi complex
(white arrowheads) and double-stained OPTN and GM130 (pink arrowheads) are visible (iv). (F) Confocal microscopy in an MDM (white outline) stimulated
with HKEc for 4 h were stained for TNF (i) and OPTN (ii), which colocalised within the Golgi complex (iii). Single-stained OPTN vesicles (pink arrowheads) and
TNF vesicles (white arrowheads) are visible (iv). (G) Quantification of TNF vesicles that colocalised with OPTN and EEA1 (n=8-16 cells/person, 2 persons
performed). (H) Confocal microscopy in an MDM (white outline) stimulated with HKEc for 4 h were stained for TNF (i) and early endosome antigen 1 (EEA1) (ii).
Double-positive peripheral vesicles (pink arrowheads) and single-positive TNF vesicles (white arrowheads) are shown (iv). Results shown are meants.e.m.,
quantified immunoblots are normalised to actin (**P<0.01 and ***P<0.001; one-way ANOVA and Bonferroni’s test for multiple comparisons). All images were

taken with a 63x oil-immersion objective. Scale bars: 20 pm.

macrophages (Manderson et al., 2007). Human MDMs traffic TNF
predominantly through the early endosomal pathway (Fig. 1G,H).
A total of 70% of TNF-positive vesicles also expressed the
endosomal marker early endosome antigen 1 (EEA1), suggesting
that human and mouse macrophages might secrete TNF through
slightly different endosomal pathways.

Loss of OPTN in mouse BMDMSs results in reduced
proinflammatory cytokine secretion on bacterial challenge
We previously showed that OPTN deficiency in human MDMs had
no bearing on cytokine gene transcription but diminished the
secretion of TNF and IL6 (Sewell et al., 2012; Smith et al., 2015).
This pattern of abnormal cytokine secretion was also found in CD
patients and associated with defective intracellular protein
trafficking (Smith et al., 2009). To investigate the effect of
deleting the OPTN gene on inflammation and cytokine secretion
in vivo, we studied Optn™'~ mice. Optn~'~ mice were generated on a
C57BL/6 background by insertion of a promoter-driven Neo
targeting cassette upstream of exon 3 (supplementary material
Fig. S5A) (Skarnes et al., 2011), resulting in a 115-bp splice

820

acceptor (SA) insert between exon 2 and 3 on transcription
(supplementary material Fig. S5D), which causes a frameshift and
multiple predicted premature termination codons on translation.

Whereas cytokine gene transcription in HkEc-stimulated bone-
marrow-derived macrophages (BMDMs) were upregulated to
similar levels in both Opm™* and Optn™~ mice (Fig. 2A),
cytokine secretion differed significantly (Fig. 2B), with reduced
TNF (P=0.006) and IL6 (P=0.023) and elevated IL10 (P=0.028)
and chemokine (C-X-C motif) ligand 1 (CXCL1) (P=0.024) in
Optn~~ BMDMs. This cytokine secretion defect occurred despite
normal E. coli phagocytosis and killing, autophagy induction, and
the absence of a difference in endoplasmic reticulum stress in
Optn~~ BMDM (supplementary material Figs S6-S8).

TNF trafficking via the endosomal pathway in BMDMs was
investigated by confocal microscopy, which demonstrated reduced
levels of intracellular TNF (Fig. 2C, supplementary material
Fig. S9) and significantly less colocalisation of TNF-positive
vesicles with EEA1 in Optn~~ BMDMs (Fig. 2D). Immunoblotting
of TNF further confirmed the reduced intracellular TNF in HkEc-
stimulated Optn~~ BMDMs (Fig. 2E,F).
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Fig. 2. OPTN-deficient BMDMs secrete lower levels of proinflammatory cytokines on bacterial challenge. (A) Tnf, II6, 1110 and Cxcl1 gene expression in
Optn™'* and Optn™'~ BMDMs after stimulation with HKEc was measured with qRT-PCR (n=5 mice/group over 5 experiments). (B) TNF, IL6, IL10 and CXCL1

cytokine release in Optn*’* and Optn™'~ BMDMs after stimulation with HKEc was quantified using a multiplex cytokine plate (n=5 mice/group over 5 experiments).
(C) Confocal microscopy in BMDMs stimulated with HKEc for 4 h and stained for intracellular TNF were quantified using ImagedJ (n=177-178 cells/genotype over 2

experiments). (D) Confocal microscopy in BMDMs stimulated with HKEc for 4 h and stained for intracellular TNF and EEA1 were quantified using ImageJ
(n=62-66 cells/genotype over 2 experiments). (E) Representative TNF immunoblot of whole cell lysates from BMDMs exposed to HKEc in the presence of
lysosomal inhibitors. (F) Quantification of immunoblots for TNF showed significantly less intracellular 26-kDa precursor TNF in the BMDMSs from Optn™'~
mice, which is normalised to wild-type levels on addition of lysosomal inhibitors monensin, NH,CI or chloroquine (n=3-8 mice/genotype over 3-5 experiments).
(G) Representative TNF immunoblot of whole cell lysates from naive and HkEc-stimulated BMDMs in the presence of brefeldin A or bafilomycin A.

(H) Quantification of immunoblots for TNF in the presence of brefeldin A shows undetectable levels of the 17-kDa secreted form of TNF, whereas

bafilomycin A results in significantly higher levels of the 17-kDa secreted TNF in Optn~'~ BMDMs (n=3-8 mice/genotype over 3-5 experiments). Results shown are
meanzs.e.m., all immunoblots are normalised to actin (*P<0.05, and **P<0.01; two-tailed, unpaired t-test).

To investigate whether the reduced intracellular TNF was due to
defective protein translation in Optn™~ BMDMs, we included
brefeldin A, a potent inhibitor of protein transport from the
endoplasmic reticulum to the Golgi. Intracellular TNF has
previously been shown to exist as a membrane-bound 26-kDa
precursor and a 17-kDa secreted form (Shurety et al., 2000).
Stimulation of BMDMs with HkEc in the presence of brefeldin A
resulted in elevation of the 26-kDa precursor TNF and loss of the

+/+ /=

17-kDa secreted form to similar levels in both Optn ™" and Optn~
BMDMs (Fig. 2G,H), demonstrating that TNF is translated
normally in the absence of OPTN.

By contrast, the inclusion of bafilomycin A, an inhibitor of vacuolar
type H'-ATPase that blocks fusion between autophagosomes and
lysosomes, resulted in higher intracellular levels of the 17-kDa
secreted TNF form (P=0.041) in the Optn '~ compared with Optn ™"
BMDMs, with no difference in the 26-kDa precursor TNF form,
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indicating that, in the absence of OPTN, a greater proportion of the
secreted form of TNF is trafficked through a bafilomycin-A-sensitive
intracellular compartment in BMDMs.

Inhibition of lysosomal proteases has been shown to increase
intracellular cytokine levels in HkEc-stimulated human MDMs and
to correct the deficient levels found in cells from CD patients (Smith
et al., 2009). Therefore, we investigated the role of the lysosome in
intracellular TNF trafficking with the inclusion of monensin,
chloroquine and NH4CI. In HkEc-stimulated BMDMs, all three
inhibitors of lysosomal degradation increased intracellular levels of
TNF to equal levels in Optn™~ and Optn™" cells when compared
with HkEc stimulation alone (Fig. 2E,F), indicating that a greater
proportion of intracellular TNF is directed to lysosomal degradation
in the absence of OPTN.

OPTN confers protection against bacterial infection in mice
and zebrafish
To determine the importance of OPTN in host antibacterial response,
we employed models of infection in two evolutionarily divergent
species. When peritonitis was induced in mice with live E. coli, there
was a dose-dependent increase in the mortality of both Optn™* and
Optn™" mice (Fig. 3A), but the Optn™~ mice seemed to be slightly
more susceptible to E. coli inoculation. Compatible with the observed
reduction of the release of TNF from cultured macrophages, the
levels of TNF in the circulation were lower in Optn ™~ mice (Fig. 3B).
The numbers of macrophages and neutrophils in the naive
peritoneum of Optn™" and Optn™~ mice were not different
(Fig. 3C,D). 24 h after induction of E. coli peritonitis, there was a
significant reduction in the number of macrophages in the peritoneal
washout in both Opm™”* and Optn™~ mice (Fig. 3C), with no
significant difference between them. By contrast, neutrophil
numbers were significantly increased (Fig. 3D) but the elevation
in Optn™" animals was significantly greater than in Optn™'~ mice
(P=0.007) (Fig. 3D,E).

To determine the importance of OPTN in antibacterial response
across species, we performed preliminary experiments in a zebrafish
infection model involving Salmonella enterica. As previously
shown in human MDMs (Fig. 1A,B) and mouse macrophages
(supplementary material Fig. S5E), whole zebrafish optn expression
was elevated after bacterial stimulation with Salmonella via both an
oral (immersion) infection and direct injection of bacteria into
embryos (supplementary material Fig. S10). To study the
consequence of Optn deficiency in zebrafish antibacterial
responses, optn-specific morpholinos (MOs) were used. optn
knockdown resulted in an increased susceptibility to Salmonella
infection compared with wild-type fish and those treated with
control MO (supplementary material Fig. S11).

OPTN deficiency results in an exaggerated Citrobacter-
induced colitis

To investigate the antibacterial role of OPTN in the bowel, a
Citrobacter-induced colitis model was used. Following Citrobacter
inoculation, the Optn ™'~ mice demonstrated increased susceptibility
in the first 2 days with significantly greater weight loss (Fig. 4A) and
mortality (Fig. 4B). This increased susceptibility was not due to a
Citrobacter bacteraemia (data not shown) or differences in faecal
Citrobacter levels (supplementary material Fig. S12).

Citrobacter inoculation resulted in increased serum levels of TNF,
IL6 and CXCLI1 in Optn ™" and Optm™" mice at day 2 compared with
naive animals (Fig. 4C-E). In the Opm™" mice, there was a further
increase in the levels of IL6 and CXCLI1 at day 9, whereas the level of
TNF remained similar to that on day 2. Optn™~ mice released
equivalent levels of CXCL1 at day 2 but demonstrated a less
pronounced increase in TNF and IL6 in comparison to wild-type
animals. By day 9 post Citrobacter inoculation, TNF, IL6 and CXCL1
were all significantly lower in Optn™~ compared to Optn™" mice.
TNF mRNA expression in the bowel at day 2 and day 9 was no
different from wild-type mice (supplementary material Fig. S13).
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To investigate the cellular composition of the inflammatory milieu,
we performed flow cytometry of cells recovered from whole colonic
tissue. Naive tissue contained equivalent numbers of macrophages, B
cells, T cells and neutrophils in both Opt™** and Optn™" mice
(Fig. SA-E). At 3 days after infection with Citrobacter, there was a
significant increase in neutrophil numbers within the Optn™" and
Optn~'~ colons (Fig. 5A). This early recruitment of neutrophils was
significantly attenuated in Op#n '~ mice (P=0.024), which equalised
by day 9 (Fig. 5A,B). There were no changes in the numbers of
macrophages or T cells at day 3 but, by day 9, both populations had
significantly increased (Fig. 5C,D). B cells were unchanged
throughout the inflammatory episode (Fig. SE).

Uninfected colons of Opm™* and Optn™~ mice were
histologically indistinguishable, with no evidence of inflammation
(Fig. 5F). At 9 days after Citrobacter infection, both groups of mice
developed colitis (Fig. 5F), but the colitis score was significantly
higher in the Optn~'~ mice (Fig. 5G).

By contrast, Optn™~ mice exhibited a dextran sodium sulphate
(DSS)-induced colitis phenotype indistinguishable from wild-type
animals, with similar weight loss, mortality and levels of serum
TNF (supplementary material Fig. S14).

DISCUSSION

The present results demonstrate a role for OPTN in bowel
inflammation in vivo. Bacterial exposure upregulates OPTN
expression, whereas OPTN deficiency results in impaired
proinflammatory cytokine secretion, diminished recruitment of
neutrophils into acutely inflamed tissue, an exaggerated colitis and
increased susceptibility to bacterial infection. The phenotype of
diminished neutrophil recruitment identified in OPTN-deficient
mice mirrors our published findings in CD patients (Smith et al.,
2009), reinforcing the suggestion that reduced expression of OPTN
could play an important role in the development of bacteria-driven
colitis in humans.

The identification of reduced OPTN expression in approximately
atenth of our CD patients provided evidence that it might play a role
in the cytokine secretion defect observed in CD, underpinned by its
established role in vesicle trafficking and secretion (Sahlender et al.,

2005). None of the commonly published glaucoma, ALS and
Paget’s variants was identified in these OPTN'®" CD patients. The
low OPTN expression in human macrophages has previously been
associated with the inheritance of a minor allele (rs12415716) in an
intronic region downstream of the last exon of the OPTN gene
(Smith et al., 2015), which tags a region spanning exons 7-16. The
expression of OPTN in MDMs influenced by inheritance of this
minor allele was shown to be exaggerated in individuals with CD;
the cause of this difference is still unknown.

We previously demonstrated that proinflammatory cytokine
secretion was reduced upon depletion of OPTN in the monocytic
cell line THP-1 (Smith et al., 2015). We have expanded these initial
findings and identified a major in vivo role for OPTN in the
inflammatory response in the bowel. The loss of OPTN in knockout
mice and diminished levels in CD patients did not result in complete
loss of cytokine secretion. However, partial impairment of the
secretion of proinflammatory cytokines might be pathologically
relevant when the host is exposed to a large quantity of bacteria
requiring an immediate, robust inflammatory response. This type of
defect is highly relevant in the case of CD, for which we have
previously demonstrated a dose-dependent immune deficiency in
these individuals (Farthing, 2004; Smith et al., 2009). A breach in
the mucosal wall could result in the exposure of the underlying
tissue to an enormous bacterial challenge, which needs rapid
containment and clearance. Reduced OPTN expression, or
inheritance of NOD2, ATGI6L1 variants or congenital
monogenic innate immunodeficiencies will impact directly on the
efficiency of this response, failure of which could result in
inadequate clearance of foreign material and the development of
chronic inflammation.

OPTN has been shown to localise to the Golgi complex in
multiple cell types and play an important role in vesicle trafficking
through the formation of complexes with binding partners such as
Rab8, HTT and myosin VI. The role and composition of the OPTN-
containing complex in vesicle trafficking is only partially
elucidated. Previous studies have provided evidence of a role in
protein sorting within the Golgi complex and trafficking to the
plasma membrane (Sahlender et al., 2005). Replacement of OPTN’s
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Fig. 5. OPTN-deficient mice recruit fewer neutrophils during the early acute phase of Citrobacter infection, resulting in a more severe colitis. (A) Large
bowel from naive mice, day 3 and day 9 after Citrobacter inoculation, were digested and flow cytometry for CD11b™ Gr1™ neutrophils was performed (n=10-11
mice/genotype over 3 experiments). (B) Representative flow cytometry plots for CD11b* Gr1* neutrophils in naive mice, day 3 and day 9 after Citrobacter
inoculation, are shown with percentage of neutrophils. (C) Flow cytometry for CD11b" F4/80" macrophages, (D) CD3" T cells and (E) CD19" B cells in large
bowels from naive mice, day 3 and day 9. (F) Representative image of haematoxylin and eosin (H&E)-stained naive and day 9 after Citrobacter inoculation large
bowel tissue (20x magnification, scale bar: 200 um). (G) Blinded colitis scoring of H&E-stained large bowel sections at day 9 in Optn™* and Optn™'~ mice (n=17-20
mice/genotype, over 2 experiments). Results shown are meants.e.m. (*P<0.05; two-tailed, unpaired t-test).

binding partner HTT with a 111Q polyglutamine mutant resulted in
reduced localisation of OPTN to the Golgi complex and impaired
post-Golgi trafficking in striatal cells (del Toro et al., 2009).
Depletion of OPTN with siRNA in HeLa cells also resulted in
dramatically reduced exocytosis. However, these studies did not
look at the role of OPTN in the context of bacterial or TLR
stimulation that is relevant in the context of CD. Recently, a mouse
in which wild-type OPTN was replaced by the polyubiquitin-
binding-defective OPTN mutant demonstrated an abrogated
response to LPS in BMDMs due to impaired activation of TANK-
binding kinase 1 (Gleason et al., 2011). This was associated with
defective interferon-f release, but TNF and IL6 secretion was
described as normal (Munitic et al., 2013). This is in contrast to our
findings of defective cytokine secretion, which indicates that TNF
and IL6 secretion is partially dependent on the expression of OPTN
but independent of its ability to bind ubiquitin in BMDM:s.
Cytokine trafficking in macrophages is complex and only
partially understood. Previous work in murine macrophages has
shown that TNF and IL6 share a common pathway of secretion from
the trans-Golgi network to endosomes (Murray et al., 2005;
Manderson et al., 2007). OPTN only minimally colocalises to the
endosomal compartment (Mankouri et al., 2010). BMDM s that lack
OPTN demonstrate a reduced overlap between TNF and the
endosomal compartment. These findings would suggest that the role
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of OPTN in the defective release of TNF and IL6 in BMDMs lies in
its role in sorting proteins for transport at the Golgi complex.
Inclusion of a range of protein trafficking inhibitors results in
increasing the level of TNF within the cells. The reduction in
secreted protein coupled with the generation of equivalent levels of
intracellular protein after bacterial stimulation provides evidence to
support our previous findings in CD patients of cytokine mis-
trafficking. Inclusion of bafilomycin A, an inhibitor of vacuolar H*-
ATPases, results in a greater intracellular build-up of the 17-kDa
secreted form of TNF in Optn~~ BMDMs than wild-types. These
findings suggest that, in the absence of OPTN, a greater proportion
of TNF is trafficked through a V-ATPase-dependent compartment
and degraded instead of being released at the plasma membrane
(Fig. 6).

Reduced TNF and IL6 release was shown to coincide with
defective neutrophil recruitment after bacteria-induced inflammation
in the bowel and peritoneum of Optn™" mice. In both inflammatory
models, an increased systemic response was recorded that contributed
to an increased colitis and greater mortality. Alterations in cytokine
levels can have profound effects on inflammatory episodes. Lamina
propria macrophages are replenished from peripheral blood
monocytes (Ginhoux and Jung, 2014) and remain one of the key
regulators of the immune response (Medzhitov, 2008; Smith et al.,
2009) in the large bowel. TLR stimulation results in the induction of
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Fig. 6. Schematic diagram of TNF trafficking in murine macrophages. TNF
is translated in the endoplasmic reticulum (ER), transferred to the trans-Golgi
network (TGN) for post-translational modification before packaging into
vesicles, and is trafficked via early endosome antigen 1 (EEA1)-positive
vesicles to the plasma membrane for secretion (black arrows). In the absence
of OPTN, a greater proportion of TNF is trafficked and degraded via
bafilomycin-A-dependent pathways (red arrows). Monensin, chloroquine and
NH,4Cl inhibit lysosomal function, whereas brefeldin A blocks ER-to-Golgi
transfer.

local cytokine production (Marks et al., 2006), which will contribute
to the neutrophil recruitment seen during Citrobacter-induced
inflammation. It is therefore plausible that, in OPTN-deficient
animals, the loss in cytokine secretion from lamina propria
macrophages results in diminished recruitment of neutrophils. It is
also possible that other OPTN-deficient cells in the bowel, such as
intestinal epithelial cells, might, alone or in conjunction with
macrophages, contribute to defective neutrophil recruitment.
However, the attenuated neutrophil recruitment and reduced
cytokine secretion in the bowel is also seen in the peritoneum,
suggesting that a similar defect is active in both sites. Macrophages
have been shown to play a central role in gut Citrobacter infection
(Schreiber et al., 2013) and peritoneal E. coli infection (Dunn et al.,
1985). This, coupled with the fact that BMDMSs from OPTN-deficient
animals release significantly reduced levels of TNF and IL6 after
Citrobacter and E. coli stimulation, is highly suggestive that
macrophages are responsible for the observed phenotype.

Other studies have demonstrated an elevation in inflammation
resulting from a deficiency in TNF expression (Marino et al., 1997).
TNF-knockout mice are more susceptible to bacterial infection and
generate a more severe colitis than control mice (Naito et al., 2003;
Xu et al., 2007). These findings provide evidence that TNF has a
protective role in the acute phase of an inflammatory response and
the release of suboptimal levels could result in the development of
chronicity. TNF and IL6 have also been shown to be protective in
Citrobacter colitis (Goncalves et al., 2001), and suppression of TNF
and IL6 expression inhibits intestinal immunity to Citrobacter
infection (Yan et al., 2012).

The difference in response to DSS and Citrobacter might
highlight the role of OPTN in bacterial handling, in contrast to
simply responding to chemical-induced tissue damage and
inflammation. The precise mechanism of DSS-induced colitis is
still not fully understood but is widely accepted to result from direct
damage to the colonic epithelial monolayer by DSS, allowing
the penetration of proinflammatory intestinal contents into the
underlying tissue (Perse and Cerar, 2012). The major site of

inflammation in DSS-induced colitis is the distal colon, more akin to
UC (Chassaing et al., 2014), resulting in the accumulation of innate
and adaptive cells in the acute colitis phase (Hall et al., 2011). In
contrast to DSS, infection by Citrobacter predominantly infects the
proximal colon, resulting in the most pronounced inflammation
occurring here (Collins et al., 2014). The alternative sites of
inflammation, inflammatory stimulus and induction of different
inflammatory cell types might provide some explanation for the
different response to DSS and Citrobacter observed in the OPTN-
deficient mice. These findings are not unique, because mice deficient
in NOD2, which is strongly associated with CD, are similarly
susceptible to a Citrobacter (Kimetal., 2011) and Salmonella (Claes
et al., 2014) colitis but not to DSS (Kobayashi et al., 2005). NOD2
deficiency results in impaired cytokine secretion and diminished
phagocyte recruitment during Citrobacter infection compared to
wild-type animals, a phenotype that mirrors the one we have
identified in the Optn™~ mice (Kim et al., 2011). These findings
reinforce the theory that an impaired innate immune response to
bacterial infection can lead to the development of chronic bowel
inflammation.

Preliminary data in zebrafish suggests that OPTN is protective
against bacterial infection, replicating the findings in mice. These
results suggest an evolutionarily conserved role for OPTN in
immunity against bacterial infection. This preservation in function
is maintained in zebrafish despite only sharing 41% homology with
mice and 46% with human OPTN (Bosenko et al., 2004). The fact
that the antibacterial function of OPTN has been conserved between
fish and mammals suggests that this is a potentially major
evolutionary advantageous property. The loss of this immune
mechanism results in an increased bacterial susceptibility and the
development of chronic tissue inflammation. However, the
Salmonella susceptibility studies need to be interpreted with
caution because off-target events can occur using MO technology
(Bedell et al., 2011) and further, more refined, studies will be
needed to characterise the role of optn in zebrafish innate immunity.

In conclusion, we have identified a novel role for OPTN in
proinflammatory cytokine secretion, neutrophil recruitment and
bowel inflammation. The phenotype of diminished neutrophil
recruitment demonstrated in OPTN deficiency mirrors our
published findings in CD patients and suggests that low OPTN
expression might contribute to an attenuated antibacterial response
and the development of CD.

MATERIALS AND METHODS

Patients and healthy controls

This study was approved by the Joint University College London (UCL)/
UCL Hospitals Ethics Committee and the NHS London-Surrey Borders
Ethics Committee. CD patients were recruited from the UCLH IBD clinic
with matched healthy controls (HC) from UCL staff and students. Patients
had definitive diagnoses of CD made using standard diagnostic criteria and
the Montreal classification for CD. CD patients who were between 18 and
75 years of age, had a diagnosis made more than 1 year previously that was
histologically and clinically consistent, had quiescent disease on the
Harvey-Bradshaw index, were on stable treatment for the past 3 months, did
not have hepatitis B, C or HIV, and were not pregnant were recruited. Age-
matched HCs with no personal or family history of CD and were not on
immunosuppressants were also recruited. Written informed consent was
obtained from all participants.

OPTN sequencing and macrophage expression microarray
Genomic DNA was extracted from peripheral blood using the QIAamp
DNA blood Mini Kit (Qiagen, Crawley, UK) and total RNA was harvested
using the RNeasy®™ Mini Kit with RNase-free DNase treatment (Qiagen) and
analysed as previously published (Smith et al., 2015).
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Quantitative reverse transcription-PCR (qRT-PCR)

Total RNA from BMDMs in Buffer RLT (Qiagen) and TissueLyser LT
(Qiagen) homogenised large bowel in RNAlater (Qiagen) were harvested
using the RNeasy® Mini Kit (Qiagen). Total RNA was converted to
complementary DNA (cDNA) using the QuantiTect® Reverse Transcription
Kit (Qiagen). qRT-PCR of Tnf, 116, 1110 and Cxcll was performed using the
QuantiFast SYBR® Green PCR Kit (Qiagen), in duplicate on a
Mastercycler™ ep realplex (Eppendorf, Stevenage, UK) with primers
created using Primer3 (supplementary material Table S3). Normalised mean
gene expression values+s.d. were determined from duplicate cycle threshold
(Ct) values for each gene and the housekeeping gene peptidylprolyl
isomerase A (Ppia) and determined by the 2—AACt method (Livak and
Schmittgen, 2001).

Optn*™ and Optn~'~ mice

Animal studies were performed in accordance with the United Kingdom
Animals (Scientific Procedures) Act 1986 and European Directive 2010/63/
EU on the protection of animals used for scientific purposes. C57BL/
6NTac-Optn™12AEVCOMMWE hice were generated by the Wellcome Trust
Sanger Institute, Cambridge as previously described (supplementary
material Fig. S5) (Skarnes et al., 2011).

To exclude off-target effects of the Neo cassette, qQRT-PCR of Mcm 10 and
Cedc3, which flank Optn on chromosome 2, was performed in BMDMs,
which demonstrated no difference in expression between Opm™" and
Optn™~ cells (supplementary material Fig. S5B). Genotyping of Optn™*
and Optmn™ mice was performed using ear clip genomic DNA
(supplementary material Fig. S5C). The Optn Neo cassette resulted in a
115 base-pair splice acceptor (SA) insert that causes a frameshift and
multiple premature termination codons (supplementary material Fig. S5D),
confirmed by the lack of the OPTN protein in Optn™~ thioglycollate-
induced peritoneal macrophages (TiPM) by immunoblot (supplementary
material Fig. S5E).

TiPM were stimulated with muramyl dipeptide (MDP), Pam; and HkEc
for 24 hours (supplementary material Fig. SSE). As has previously been
shown with human MDM (Fig. 2B), HkEc was the most potent inducer of
OPTN compared to Pam; and MDP (supplementary material Fig. S5E).
Optn™ mice did not develop a spontaneous colitis and were no different
from Opm™* mice in terms of weight gain, litter size, gross organ histology
and peripheral blood CD3" T cell, CD19" B cell, Ly6C" monocytes or Grl*
neutrophils (data not shown).

Cell culture and stimulation

Peripheral blood monocytes were isolated using Lymphoprep™ (Axis-
Shield, Stockport, UK) and cultured for 5 days to obtain adherent monocyte-
derived macrophages (MDMs) as previously described (Rahman et al., 2010).
MDMs were plated overnight in X-VIVO™ 15 medium (Lonza, Tewkesbury,
UK) at 10° cells on 35 mm Nunclon™ A coated tissue culture plates (Nunc,
Loughborough, UK) for total RNA, at 2.5x10° cells/well in FALCON®
24-well tissue culture plates for immunoblotting or 10° cells/well in
FALCON® 96-well tissue culture plates for cytokine assays, then
stimulated with 1 pg/ml MDP (Sigma, Dorset, UK), 4 pg/ml Pam;CSK,
(Alexis Biochemicals, Exeter, UK), 200 ng/ml lipopolysaccharide (LPS)
(Alexis Biochemicals) or heat-killed E. coli (HkEc) NCTC 10418 at a
multiplicity of infection (MOI) of 20. Human THP-1 acute monocytic
leukaemia cells were cultured in RPMI-1640, GlutaMAX™ Supplement
(Gibco, Paisley, UK) containing 10% FBS (Sigma), 100 U/ml penicillin,
100 pg/ml streptomycin (Gibco), 20 mM HEPES (Sigma) and 20 uM
B-mercaptoethanol (Gibco), plated and stimulated as above. For bone-
marrow-derived macrophages (BMDMs), bone marrow cells were harvested
from Opm™" and Optn™" mice aged 9 to 12 weeks and treated with
red-blood-cell lysis buffer (Sigma). The remaining cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) (Gibco) containing 1 g/l
D-glucose, 4 mM L-glutamine, 25 mM HEPES, 1 mM pyruvate, 10% FBS
(Sigma), 100 U/ml penicillin, 100 pg/ml streptomycin (Gibco) and 20 ng/ml
M-CSF (Peprotech, London, UK) on 92 mm Nunclon™ A coated tissue
culture plates (Nunc) for 5 days. BMDMSs were plated overnight in DMEM
then stimulated as above. To obtain thioglycollate-induced peritoneal
macrophages, mice were injected with 1ml of sterile aged 3%
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thioglycollate broth (Merck, Nottingham, UK) intraperitoneally. After
5 days, cells were harvested in cell dissociation buffer (Gibco), plated in
RPMI-1640, GlutaMAX™ Supplement (Gibco) containing 10% FBS
(Sigma), 100 U/ml penicillin, 100 pg/ml streptomycin (Gibco), 20 mM
HEPES (Sigma) and stimulated as above. Cytokine levels in supernatants
were measured using the Mouse Proinflammatory Ultrasensitive plate (Meso
Scale Discovery, Rockville, MD, USA).

Subcellular fractionation

Sucrose gradients were prepared by layering eight 5% step dilutions of a
50% sucrose solution containing 1 mM EDTA pH 7.4 and 5 U/ml heparin,
which was left overnight to equilibrate at 4°C. 2x10® THP-1 cells were
stimulated with HkEc at a MOI of 20 for 24 h then dounced and sonicated
3x5 stwice in 10% sucrose containing | mM EDTA pH 7.4, 5 U/ml heparin
and protease inhibitors on ice. Cells were confirmed to be lysed on light
microscopy and centrifuged at 750 g for 10 min at 4°C. The post-nuclear
supernatant was layered onto the sucrose gradient and ultracentrifuged in a
TST 41.14 Kontron swing-bucket rotor at 220,000 g for 3 h at 4°C on a
Beckman Optima™ LE-80K Ultracentrifuge (Beckman, High Wycombe,
UK). The subcellular fractions were removed in 1 ml fractions and lysed in
Laemmli buffer as described above. % sucrose in each fraction was
measured with a Bellingham+Stanley Abbe 60 Refractometer (Bellingham
+Stanley, Tunbridge Wells, UK).

Immunoprecipitation

THP-1 cells (107) were lysed in 50 mM HEPES pH 7.5 (Sigma), 100 mM
NaCl (Sigma), 10% glycerol, 0.5% NP-40 (Sigma), 0.5% CHAPS (Sigma),
protease inhibitors (Roche, West Sussex, UK), phosphatase inhibitor
cocktail 1, 2 (Sigma) and 300 pg/ml PMSF (Sigma) then passed through a
21 G needle. Insoluble material was removed by centrifugation and the
supernatant pre-cleared with protein A-agarose (Sigma) for 2 h at 4°C. Pre-
cleared supernatant was then incubated with anti-OPTN antibody (Sigma)
for 30 min at 4°C. Protein A-agarose was added, incubated overnight at 4°C
and then washed five times with ice-cold PBS. THP-1 supernatant was
incubated with protein A-agarose overnight at 4°C and then washed five
times with ice-cold PBS and used as a negative control.

Immunoblot

Cells were lysed in Laemmli sample buffer containing B-mercaptoethanol
(Sigma), protease inhibitors (Roche) and phosphatase inhibitors (Sigma).
Samples were run on SDS-PAGE gels and transferred onto Hybond-P
PVDF membranes (Amersham, Buckinghamshire, UK). Membranes were
blocked in 5% non-fat milk then probed with OPTN (Sigma), actin (Sigma),
EEAT1 (Cell Signaling, Hitchin, UK), LAMP1 (Abcam, Cambridge, UK),
GM130 (BD, Oxford, UK), Golgin-245 (Santa Cruz, Heidelberg, Germany)
or GAPDH (Santa Cruz) for MDM/THP-1 cells or OPTN (Abcam) and TNF
(Abcam) for BMDMs overnight at 4°C and anti-rabbit [gG-HRP (Cell
Signaling) or anti-mouse IgG-HRP (GE Healthcare, Buckinghamshire, UK)
for 1 h at room temperature. Bound antibody was detected using ECL Plus
(Amersham), exposed to Hyperfilm ECL (Amersham), quantified and
normalised to actin using ImageJ (NIH).

Mass spectrometry

For liquid chromatography-tandem mass spectrometry (LC-MS/MS)
analysis, proteins were separated by 10% SDS-PAGE under reducing
conditions. Proteins were visualised by silver staining with ProteoSilver
Plus (Sigma), bands were excised from both the OPTN-IP and control-IP
gel lanes and processed for in-gel digestion and LC-MS/MS with
the LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific,
Loughborough, UK), as previously described (Mulvey et al., 2013). Raw
MS files were analysed by the Mascot search engine 2.3.02 (Matrix Science,
London, UK) and searched against a SwissProt human database 2013_10
(containing 39,696 entries including common contaminants). Mascot
search analysis parameters included: trypsin enzyme specificity,
allowance for 2 missed cleavages, peptide mass tolerance of 20 ppm for
precursor ions and fragment mass tolerance of 0.8 Da. Oxidation (M) was
selected as a variable modification and carbamidomethyl (C) was selected as
a fixed modification.
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Lysosomal inhibition and TNF production

BMDMs were stimulated for 4 h with HkEc at a MOI of 20 plus either
DMEM alone, or DMEM with 2.5 uM monensin (Sigma), 10 mM NH4CI
(Sigma), 100 uM chloroquine (Sigma), 2.5 uM brefeldin A (Merck) or
200 nM bafilomycin A (Sigma). Whole cell lysates were made and
immunoblotted for TNF as described above.

Intraperitoneal E. coli infection

E. coli NCTC 10418 was cultured in Luria-Bertani (LB) broth, washed and
counted using a spectrophotometer. Nine- to twelve-week-old mice were
injected intraperitoneally with serially diluted E. coli at 1x10%, 5x107,
2.5x107 and 1x107 bacteria. Mice were weighed daily. Tail bleeds were
collected for cytokine analysis at 48 h. Serum TNF levels were measured
using a murine TNFo. ELISA kit (Peprotech). Peritoneal washouts were
harvested in cell dissociation buffer (Gibco) and analysed using flow
cytometry.

Zebrafish Salmonella infection

Salmonella enterica serovar Typhimurium was grown in LB broth and
exposed to groups of 20 zebrafish larvae at 4 dpf at a final concentration of
5x10% CFU/ml at 28.5°C. 1 nl (~200 CFU) Salmonella was injected into the
yolk sac of anesthetised 2-dpf embryos (Prajsnar et al., 2008). cDNA was
synthesised with the High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Auckland, New Zealand). Morpholinos (GeneTools,
LLC, Philomath, OR, USA) were designed to target the splice donor site after
exon 1 of the optn gene (supplementary material Table S3). Morpholinos
were injected into one- to four-cell-stage embryos at 1.0 pmol per embryo as
previously described (Nasevicius and Ekker, 2000). Embryos were then
injected with Salmonella at 2 dpf as above and incubated for observations at
28°C. qRT-PCR and primers used (supplementary material Table S3) were as
previously described (Oehlers et al., 2011).

Citrobacter rodentium colitis

C. rodentium strain ICC169 (gift from Gad Frankel, Imperial College
London) was cultured in LB broth containing 50 pg/ml nalidixic acid. Nine-
to twelve-week-old mice were gavaged with 200 pl of Citrobacter in PBS
giving each mouse 2.5-4.5x10° CFU of Citrobacter. Mice were weighed
daily. After 2, 3 or 9 days, mice were culled, and blood from cardiac
punctures, large bowel and spleens were collected. Cytokine levels were
measured using the Mouse Proinflammatory Ultrasensitive plate (Meso
Scale Discovery).

Dextran sodium sulphate colitis

Nine- to twelve-week-old mice were given drinking water containing 2%
DSS (MW 36,000-50,000) (MP Biomedicals, Cambridge, UK) for 7 days as
previously described (Wirtz et al., 2007). The normal drinking water in the
animal unit was used to make up the 2% DSS to minimise the effect of
alteration in water taste on consumption of the DSS that results from
autoclaving water. The DSS was changed with fresh DSS after 2 days and
S days from the start of the experiment and was changed back to fresh
drinking water in a new water bottle after 7 days. Mice were weighed daily,
tested for faecal occult blood (Immunostics, Ocean, NJ, USA) and culled
after 7, 14 and 21 days for collection of blood for cytokine analysis and large
bowel for histology.

Large bowel lamina propria cell isolation

Large bowels were cut longitudinally and washed in ice-cold PBS
containing 100 U/ml penicillin, 100 pg/ml streptomycin (Gibco) to
remove faeces. Epithelial cells were removed by incubation of each large
bowel in 20 ml of predigestion solution [HBSS (Gibco) containing 10%
FBS, 100 U/ml penicillin, 100 pg/ml streptomycin and 2 mM EDTA] at
37°C, 250 rpm for 1 h. Epithelial cells were passed through a 70 pum filter.
The remaining lamina propria tissue was cut into 1 mm pieces and washed
with PBS to remove EDTA. Lamina propria tissue was incubated in 20 ml
digestion solution [HBSS containing 10% FBS, 100 U/ml penicillin,
100 pg/ml streptomycin, 30 mg collagenase (Sigma), 0.8 mg DNase I
(Sigma) and 15 mg Dispase II (Sigma)] at 37°C, 250 rpm for 30 min, and

vortexed for 20 s at the start, middle and end of incubation. Lamina propria
cells were passed through a 70 um filter, washed with PBS then stained for
flow cytometry.

Histology and immunohistochemistry

Large bowel tissue was fixed in 10% neutral buffered formalin (CellPath,
Powys, UK) overnight then paraffin-embedded using a Leica TP1050 tissue
processor. Sections were stained in VFM Harris” hematoxylin (CellPath),
differentiated in 0.2% acid alcohol and stained in Eosin Y (VWR) using a
Leica ST4040 linear stainer and mounted in Pertex (Leica, Milton Keynes,
UK). Colitis scoring of H&E-stained large bowel was performed blind with
the following six parameters. Epithelial hyperplasia: 1, mild; 2, moderate; 3,
severe. Crypt deformity/architectural distortion: 1, mild; 2, moderate,
affecting >50%; 3, severe, near 100% surface. Ulceration: 1, small focal
erosions; 2, small ulcers/multiple erosions; 3, large/deep transmural ulcers.
Variation: 1, patchy inflammation; 2,>50% inflammation; 3, severe, near 100%
inflammation. Inflammatory cell infiltrate: 1, few multifocal mononuclear
cells; 2, several multifocal areas; 3, multiple transmural infiltrates. Goblet
cell depletion: 1, mild/scattered depletion; 2, moderate/>50% depletion; 3,
severe depletion. The anti-OPTN antibody (Sigma) was used to performed
immunohistochemistry on available UCLH archival OPTN'™" CD patient
bowel biopsy samples and HC small bowel. After preliminary optimisation,
optimal conditions were chosen based upon the criterion of background-
free selective cellular labelling. Sections underwent automated dewaxing
and endogenous peroxidase was blocked using 3-4% (v/v) hydrogen
peroxide. The anti-OPTN antibody was used on the OPTN'" and HC small
bowel samples at a dilution of 1:200 with 30 min incubation at ambient
temperature following heat-induced epitope retrieval for 20 min using an
EDTA-based (pH 9.0) epitope retrieval solution. Signal visualisation using
the Bond Polymer Refine Detection Kit (DS9800) with DAB Enhancer
(AR9432) was performed on the Bond-III automated staining platform
(Leica). Cell nuclei were counterstained with haematoxylin. Slides were
imaged with a Hamamatsu NanoZoomer 2.0-HT C9600 (Hamamatsu,
Hertfordshire, UK).

Confocal immunofluorescence microscopy

Cells were plated onto methanol-cleaned glass coverslips, stimulated then
fixed in 4% formaldehyde, quenched, permeabilised and blocked in desalted
human IgG. MDMs were stained with OPTN (gift from Folma Buss,
University of Cambridge), GM130 (BD), EEA1 (BD), Alexa-Fluor® 488-
TNF/adalimumab (Abbvie, Berkshire, UK), Alexa-Fluor® 546 anti-rabbit
1gG (Invitrogen, Paisley, UK), Alexa-F luor® 488 anti-mouse 1gG (Invitrogen)
and DAPI (Invitrogen) in confocal buffer (PBS, 0.5% BSA, 0.1% saponin).
BMDMs were stained with Alexa-Fluor® 488-TNF (BD), EEA1 (Abcam)
and GM130 (BD). Cells were imaged on a Leica TCS SPE confocal
microscope. Colocalisation analysis was performed using ImageJ (NIH). The
image calculator was used with the AND operator to generate an image of
colocalised pixels for each z-stack, then the histogram function was used to
quantify the total number of TNF, EEA1, GM130 and colocalised pixels.

Flow cytometry

Cells were blocked in anti-CD16/CD32 (eBioscience) prior to staining
with anti-CD11b-V450, CD19-PE or Grl-PE, CD3-PE-Cy™7, CD45-
PerCP-Cy™S5.5 or CD19-PerCP-Cy™S5.5, Ly-6C-APC (all from BD) and
F4/80-FITC (eBioscience, Hatfield, UK). Lamina propria cells were
incubated with the LIVE/DEAD® stain (Invitrogen) prior to staining
above. Cells were run on a BD LSRFortessa or LSR 1I after optimisation
with compensation particles (BD) and analysed using FlowJo (Tree Star,
Ashland, OR, USA).

Autophagy assay

Whole cell lysates from BMDMs stimulated with bafilomycin A (Sigma)
and HkEc at time points up to 24 h were immunoblotted for LC3B (Sigma)
to investigate autophagy in BMDMs.

Endoplasmic reticulum stress assay
BMDMs stimulated with HkEc for 4 h were immunoblotted for CHOP
(Affinity BioReagents, Golden, CO, USA), GRP78/BiP (Santa Cruz) and
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GRP94 (Santa Cruz). Additionally, BMDMs were stimulated for 4 h with
thapsigargin (Sigma), tunicamycin (Sigma) and bafilomycin A (Sigma) for
mRNA. Total RNA was harvested and converted to cDNA as described
above. PCR was performed on cDNA samples and digested with Pstl
(Promega, Southampton, UK) restriction enzyme. Samples were run on a
2% high-performance MetaPhor™ Agarose (Lonza) gel, made as per the
manufacturer’s instructions and run at 4°C to separate the bands.

Phagocytosis assay

10° BMDMs were plated onto Corning 96-well special optics plates (Sigma)
and incubated overnight to allow cells to adhere to the bottom of the plate.
FITC-HkEc at an MOI of 20 was added to each well. 10 ul of 2.5 mg/ml
Trypan blue was added to each well to quench the FITC at different time
points. Fluorescence intensity was measured at an excitation wavelength of
485 nm and read at an emission wavelength of 520 nm using a FLUOstar
Omega microplate reader (BMG LABTECH, Buckinghamshire, UK).

Killing assay

2.5x10° BMDMs/well were incubated in a 24-well plate overnight to allow
cells to adhere. Adherent BMDMs were incubated overnight in media with
no antibiotics to allow washing out of the antibiotics. BMDMs were
incubated with E. coli in media containing no antibiotics at an MOI of 20 for
2 h to facilitate adequate phagocytosis of E. coli. BMDMs were incubated in
media containing 300 pg/ml gentamicin for 1 h to kill extracellular E. coli.
Cells were washed once in PBS to remove gentamicin and lysed with 1%
Triton X-100 (BDH, Nottingham, UK). Remaining BMDMs were
incubated in media containing 100 ug/ml gentamicin for further time
points. Serial dilutions of lysed cells were plated on LB agar plates.

Statistical analysis

Statistical significance was calculated using paired or unpaired two-tailed
Student’s #-test, one-way ANOVA with Bonferroni’s multiple comparisons
test, logrank or Fisher’s exact test. Mean differences were considered
significant when P<0.05.
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