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Abstract
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1. Introduction

The common practice in empirical economic models is to assume that the un-
observables are additively separable from the observables, particularly when the
latter are endogenous. This is done because it is recognized that serious iden-
tification problems arise when such interactions are allowed for. However, more
often than not such additivity is, to say the least, contrived and often inconsistent
with the overall stochastic specification of the model. Good examples are demand
functions, where either the price or the total expenditure impacts are likely to
be heterogeneous; wage equations, where the returns to education are likely to
vary with unobserved ability; labor supply, where wage effects may be heteroge-
neous; or production functions, where the technology may vary across firms, at
least in the short run. In all these examples the model one may want to estimate
includes a continuous endogenous variable whose impact varies over the popula-
tion even conditional on observable characteristics. In this paper we address the
non-parametric identification of the average effect of endogenous variables in such
models.

There has been a growing theoretical and empirical literature on models where
the impact of discrete (usually binary) treatments are heterogeneous in the population.
This leads to important identification questions and questions relating to the in-

terpretability of standard methods such as instrumental variables.? Within this

Isee, e.g., Roy, 1951; Heckman and Robb, 1985, 1986; Bjorklund and Moffitt, 1987; Imbens
and Angrist, 1994; Heckman, 1997; Heckman, Smith and Clements, 1997; Heckman and Honoré,
1990; Card, 1999, 2001; Heckman, 2001a,a b; Heckman and Vytlacil 2000, 2001, who discuss
heterogeneous response models.

2see, for example, Heckman and Robb (1986), Imbens and Angrist (1994), and Heckman
(1997).



context, the issue of choosing an appropriate parameter of interest has arisen,
since the heterogeneity in impacts implies a whole distribution of effects, rather
than one fixed parameter as in the traditional literature. Parameters that have re-
ceived a great deal of attention include the average treatment effect (AT E) which
is the expected impact of the treatment on a randomly chosen individual, and the
impact of treatment on the treated, which is the expected impact on a randomly
chosen individual among those who chose to have treatment. In this paper we
focus on continuous treatments, such as years of education, expenditure, income,
prices etc. In this context we discuss parameters of interest and we focus on the
identification and estimation of AT E, pointwise over the entire observed support
of the treatment. For example, we consider the impact of a marginal increase in
expenditure on budget shares at each value of expenditure.

It should be obvious that some structure has to be imposed on the nature of
heterogeneity and the way it interacts with the endogenous variables. We express
the model in counterfactual notation by specifying it as a stochastic process in-
dexed by d, the endogenous treatment variable. The outcome we observe is then
this stochastic process evaluated at an endogenous realization of d. We then put
some structure on how the unobservables evolve with d, considering a linear and
a quadratic random function in d as well as a more general structure.

We start investigating identification with instrumental variables (IV). We
show that I'V assumptions are not in general sufficient to identify AT'E (or treat-
ment on the treated). In fact, standard exclusion restrictions only identify para-
meters of interest in very simple stochastic setups. Even the LATE parameter of

Imbens and Angrist, which has attracted so much attention, is only interpretable



under conditions on the way individuals are assigned to treatment. We are thus
motivated to go beyond the standard IV framework and consider the usefulness
of the control function assumption (see Heckman, 1979 and Heckman and Robb,
1985) as well as a more recently developed Local IV approach (LIV | see Heckman
and Vytlacil, 2000). We derive conditions under which the various assumptions
are equivalent, which helps in their interpretation. We also derive a testable

restriction with which to identify the “degree of unobserved heterogeneity.”
1.0.1. Education and Wages: A Simple Illustration

To illustrate the type of problem we are concerned about in this paper we present
a very simple model of education choice.

Suppose that the agent receives wages Yy at the cost Cy if schooling choice d is
made. The cost can include foregone earnings and other direct costs; everything
is suitably scaled to reflect the fact that earnings flow over the entire working
life-cycle. We write wages for schooling level d as Y, as well as the cost function

for schooling as

}/;l:SOO(X)+(901(X)+51)d+%g02(X)d2+60 I

(1.1)
Ca=Co(X,2) + (C1(X, Z2) + v1)d + 3Co(X, Z)d* + vy I

where e, and vy (s = 1,2) reflect unobserved heterogeneity both in the wage
level and in the return to schooling. These unobserved heterogeneity terms are
the source of the identification problem. The variables X reflect human capital
characteristics that affect both wages and the costs of schooling, while Z are
factors affecting the cost of schooling only, such as the price of education.

Assume that agents chose education to maximize wages minus costs, and let
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D denote the resulting optimal choice of education. Then D solves the first order

condition
(p1(X) = Ci(X, Z)) + (p2(X) = Co(X, Z)) D + &1 — v; = 0.

Assuming that po(X) — C2(X,Z) < 0 for all X and Z the second order condi-
tion will be satisfied. This leads to an education choice equation (assignment to

treatment intensity rule) of the form

D=P(X,2)+V (1.2)
where
X - R
and
V= i (1.3)

p2(X) — Co(X, Z)
The object of the empirical analysis is to estimate the average return to education,
which here is given by ¢1(X) + ¢2(X)d but which could in principle be a more
complicated unknown nonlinear function of d. In this context the assignment rule
is complicated by the fact that the errors are heteroscedastic. Moreover, this is
not a single index model and the assignment rule does not satisfy monotonicity.
For example, depending on the sign of ¢ — vy it is possible that an increase in
Z (which can be thought of as a policy variable such as tuition) may increase or
decrease educational participation. This would not happen if the second derivative
of the cost function did not depend on Z, in which case we would be back to a

single index model conditional on X.



Our discussion of identification will implicitly look at a number of cases, includ-
ing simpler situations. We will start with a simple case of homogeneous returns

to d (education here) and then proceed to more complicated settings.

2. The Model, Some Parameters of Interest and the Ob-
servables.

We consider models in the class

where d defines the level of treatment intensity and where we define ¢(d, X) =
E(Y;]X) which implies by construction that E(Uy|X) = 0. The assumption that
E(U4)X) = 0 is just a normalization; in other words we do not assign any causal
interpretation related to changes in the value of X. Thus the derivatives of ¢(d, X)
with respect to X need not have any causal interpretation. This is very much in
the spirit of the treatment effects literature, where no causal interpretation is
attached to the impact of X. In this sense we are not identifying a complete
structural model here. It can be binary, which is the case that has been studied
extensively in the literature; it can be discrete ordered. However, in this paper
we focus on the case where d is continuous. An example would be a demand
function, where d is the price of a good and where unobservables are not additively
separable.

For the purposes of economic evaluation we are interested in certain aspects of
v as well as potentially in the joint distribution of the U,;. A parameter of interest

that follows naturally from the definition of the model is the Average Treatment



Effect,

AMTE(d 2) = 2E(Yd\x = 1)

24 (d,x) (2.1)

0
= 5
or higher order derivatives of the average.?

Some of the proofs will have the structure of first identifying E(Yy|X = z) =
¢(d,z), and then using identification of ¢(d,z) to identify ZE(Yy|X = z) =
Zo(d, ). Some of the proofs will have the same structure but with ¢(d, z) only
identified up to an unknown, additive function of x. We will thus need conditions
under which 2¢(d, z) is well defined to have identification of Z¢(d, z) a.s. follow
from identification of ¢(d, z) a.s. up to an additive, unknown function of x.

In general identification results require some structure to be imposed on the
stochastic process Uy. Typically we will require some continuity and possibly ad-
ditional smoothness conditions. In general we can think of approximating Uy by
a sum of known functions of d weighted by random coefficients, i.e.

K

Us=>_ a;(d)e;, (2.2)

where o(d) are the first elements of suitable basis of the space of functions and
the €; are the random components of the stochastic process. In this paper we
will consider the case of a power series in d. We will start by considering the

usual zero order case, including a summary of existing results. We will then

3An equivalent expression is

lim E(Yd+Ad—Yd|D=d,X=CC)
Ad—0 Ad ’




consider identification in the more general higher order cases. We subsequently
discuss diagnostic tests for higher order heterogeneity (i.e. higher order random
coefficients).

We now complete the model by introducing a description of the mechanism

assigning a particular treatment level to each individual, denoted by D. We define
D = P(X,2)+V

where we define F(D|X,Z) = P(X,Z). In the sequel we will use the variables
Z as instruments, which only determine the level of treatment (D), in ways that
will be defined precisely.

At this point it is useful to define the notion of an expected outcome at treat-
ment intensity d; given that the individual chose/was assigned to treatment ds.
This is denoted by E (Y, |D = d2, X = x). Given this and the model of treatment
assignment we can also define a commonly used parameter, which is the treatment

on the treated (T7)*

0
ATT(d7 33) = [8d E(}/;l1‘D = d27X = x)]d:d1:d2
1
= [_6 (d 33)—1——6 E(Uy|D =dy, X = )]
- (‘9d1('0 1, 8d1 dy — W2, - d=di=d>"

Clearly if we can observe all outcomes (actual and counterfactual) indepen-

dently of the choice of treatment d, there is obviously no identification issue.

4An equivalent expression is

lim E(Y'dJrAd—YV(AD:d,X:JJ)
Ad—0 Ad ’




Thus, to set the scene for the discussion of identification we assume we observe
realizations of the random variable Y = Yp and of D as well as the relevant X
and Z. Thus we can never observe the counterfactual outcome, i.e. the outcome
Yy for some value d' different from the actual chosen treatment level.

In order to better understand the issues of identification we need to define
g(dl,dg,.’lf,Z) :E(Ud1|D:d2,X:.’L’,Z:Z) (23)

In other words the function g(di,ds,x, z) is the conditional expectation of the
random error term corresponding to treatment level d; when the choice that is
made by the individual is to take the treatment level dy. Thinking of an educa-
tion choice example, g(d; = 9,ds = 10, z,x) would be the expected value of the
unobservable part of the outcome equation at nine years of education for someone
choosing ten years of education. In the case where d; = ds, we get the conditional

expectation of the outcome at d when the choice is in fact d. Thus
EY|D=d, X =2,Z=2z2)=¢(d,x)+ §(d,z,2) (2.4)

where we have defined g§(d, z, z) = g(d, d, z, x). Since the data itself only identifies
the conditional expectation in equation (2.4), ¢*(d,z) and ©?(d,z) are observa-
tionally equivalent if we can find two functions ¢'(dy, ds, z,x) and ¢*(dy, do, 2, x)
such that o' + ' £ % 4 §2. The average treatment effect, %(p(d, x) is identified,

if any two observationally equivalent functions ¢(d, ) and '(d, z) have the same

first derivative, i.e. Z(d,z) = %gpl(d, x). Moreover, the effect of treatment on

the treated [(%lgo(dl,:r) + %g(dl,dg,z,aiﬂd:dl:@ is identified, if, for any func-

as

tions ' (dy, ), g'(di,dz, z,2), 0 +§ = @' + g' implies [37-¢ + 3-9la—di=dr =

o 1., o 1
(3% + 359 la=di=ds-



We now discuss the identification of certain parameters of interest under dif-
ferent assumptions. The way we approach the problem is first to start by looking
at identification in the simpler homogeneous impact model. In that context we
first consider identification under the standard orthogonality conditions, then un-
der a control function assumption and lastly by assuming that the function we
wish to identify satisfies the Local Instrumental Variables equation. In general,
these conditions are not equivalent, though we proceed to derive conditions under
which these assumptions are equivalent. This leads to a set of assumptions under
which ATE is identified by any of these conditions.

We then proceed to look at a model with heterogeneous impacts. We show
that the usual orthogonality conditions no longer identify ATE (as is well under-
stood in the treatment effects literature); we then proceed to show that the model
is identified using an extension of the control function assumption we made ear-
lier in the homogeneous impact model. We allow for heterogeneity where the first
derivatives of the function of interest are additive in the unobservables; we then
generalize to more complex forms. Up to that point many of the identification
results rely on the assignment rule to treatment belonging to the single index fam-
ily. We then explore relaxing this assumption, which has important implications
for the type of economic models we can handle. In the next section we approach
the problem in a more general fashion and we derive conditions on the control

function which imply that LIV can be used to identify ATE.
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3. The Common Treatment Effects Model

We start discussing identification within the more conventional common treatment
effect model where U; = U. Of course in this context the Average Treatment Effect
and the Treatment on the Treated are identical. The main issue that arises in
this context is that of the non-parametric identification of an otherwise standard
simultaneous equations model. Below we consider instrumental variables, control
function, and Local instrumental Variables approaches. All these approaches are
based on alternative assumptions and we will show that they all identify the
average treatment effect given the validity of their assumptions. Nevertheless,
they are different and the assumptions invoked by no one approach implies the
assumptions invoked in another approach. However, we show below that suitable
independence assumptions unify the conditions imposed by all of these approaches.
The distinction between the approaches will become particularly interesting when
we deal with the heterogeneous treatment effects model.

Traditionally, researchers have focused on instrumental variables, which will
be our point of departure. Hence we assume that

A1. Regularity condition (D, X) is differentiable in D (a.s.), and the support
of D conditional on X does not contain any isolated points (a.s.).

This regularity condition (A1) will be assumed throughout.

A2. E(U|X,Z) = E(U|X) (Exclusion restriction)
Given the definition of p(d, X') = E(Yy|X), we have by construction that E(U|X) =
0 and thus by A2 that E(U|X,Z) = 0.

We also need a rank condition which ensures that our instrument has ex-

11



planatory power. In linear models this assumption takes a relatively simple form,
requiring that the instruments are correlated with D (conditional on X). How-
ever, in the context of nonparametric identification, we need to take into account
that we do not generally know the form of the function ¢(d,x); here we require
a more general dependence condition between D and the instruments Z that,

loosely speaking, ensures that any function of D is correlated with some function

of Z.

Definition 3.1. We say that D is strongly identified by Z given X if for any
function A\(D, X) we have that E(A\(D, X)|X,Z) ' 0 = \(D, X) < 0.

This assumption can be viewed as a non-parametric extension of the rank condi-
tion. An interpretation is that any conceivable function of D is correlated with
some function of Z. Thus we state the following assumption.

A3. D is strongly identified by Z given X.

We now state the first result in terms of a theorem:%

Theorem 3.2. Assume that the exclusion restriction (A2) holds, and that D can
be strongly identified by the instrument Z given explanatory variables X (A3).
Then E(Y|X = x) = ¢(d, z) is identified.

Proof. See Appendix. B

SEquivalently we can write that E(¥(D, X)|X,Z) 2 ¥y(X) = ¥(D, X) = Wy(X). This
assumption is related to the concept of completeness as used in the statistical literature on
minumum variance unbiased estimation. Newey and Powell (1989) and Darolles, Florens, and
Renault (2002) use a similar condition.

6 An analogous result is proved by Newey and Powell (1989) and Darolles, Florens and Renault
(2002).
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In order to contrast with the identification results in the heterogeneous treat-
ment effects section, we should emphasize that here identification does not require
independence of the unobservables from the instrument, but just mean indepen-
dence of U from Z. It imposes no structure on the model driving the treatment
choice D, other than the strong identifiability condition A3. The first stage equa-
tion, D = P(X, Z) + V, has played no role in this analysis. The only restriction
on the relationship between Z and D needed by the theorem is the strong identi-
fication assumption (A3).

Theorem 3.2 provides identification of the function ¢(d, z) (a.s.), while our pa-
rameter of interest is the derivatives of this function with respect to d. Combining

Lemma 3.4 below and Theorem 3.2, we immediately have the following result.

Corollary 3.3. Assume (A1), (A2), and (A3). Then % E(YyX = z) = &o(d, z)
is identified.

This corollary follows from the following lemma:

Lemma 3.4. Assume (A1). Then identification of ¢(d,x) (a.s.) up to an addi-

tive function of x implies identification of 2 ¢(d, ).

Proof. See Appendix. B
Heckman and Vytlacil (1999) propose a new approach to the identification of
causal effects, the Local Instrumental Variables (LIV') approach. The key LIV

assumption is

A4 (LIV).
5 OE(Y|X,Z)
0z; .
E(a—Dgo(D,X)|Z =2, X=1)= W Nz
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In the standard linear IV model this condition holds immediately. However, this
does not follow from the usual orthogonality conditions in non-linear models. It
states that the causal effect averaged over all values of the treatment and at a
given value of the instrument is a scaled version of the marginal effect of the
instrument on the expected outcome.

We wish to identify ATE pointwise, i.e., we wish to identify 2 ¢(d, z) for each
d and z in the appropriate support. In contrast, A4 immediately provides iden-
tification of an average of ATE, averaging over the distribution of D conditional
on X and Z. However, if D is strongly identified by Z given X than we can use
A4 to obtain identification of ATE pointwise as shown by the following theorem.

Theorem 3.5. If D is strongly identified by Z given X (A3), and if the expec-
tation of ATE conditional on Z and X satisfies the LIV condition (A4), then
ATE (AATE(d, z) = %gp(d, x)) is identified.

Proof. See Appendix. B

Note that LIV does not impose much structure on the assignment rule. It
should be stressed that assumption A4 is generally not implied and does not imply
assumptions (A2) and (A3), which characterize instrumental variables. Of course
the problem is that assumption (A4) is unusual and possibly difficult to relate
directly to economic theory. However, an additional assumption unifies the IV
and LIV approaches and makes them equivalent. This assumption now imposes
restrictions on the assignment rule. Thus, let p(D|X, Z) be the conditional density
of D given X and Z. Then we assume that

A5 Single Index: V is independent of Z given X.

14



(A5) implies that p(D|Z,X) = p(D — P(X, Z)|X). We will also consider the
following, stronger condition.
A5' (V,U) are jointly independent of Z given X.

To proceed we need to define measurable separability:

Definition 3.6. We say that ()1 and (o are measurably separated if whenever
a function of ()1 is almost surely equal to a function of () this is the constant

function.
Theorem 3.7. Assume that:
1. Z and X are measurably separated,

2. the support of the conditional distribution of D given X = x, Z = z is an in-
terval (D%, DY) (possibly infinite) and  satisfies: p(D% ,,z)p(Dk |z, z) =

x,2? T,z

(DY, z)p(DY |z, z) = 0 where p(d|z, z) is the conditional density w.r.t.

,2)

the Lebesgue measure of D given X = x, 7 = z,
3. all functions involved are smooth and square integrable,

4. V is independent of Z given X (A5).

Then the exclusion restriction (A2) and the LIV assumption (A4) are equiv-
alent. Conversely, if (A2) and (A4) are equivalent for any function ¢ then the
single index assumption (A5) holds

Proof. See Appendix. B
In other words if all the dependence of D on Z comes through a single func-

tion (conditional on X) then the LIV and Instrumental Variables can be used to
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identify AT E under the same conditions. Note that the single index assumption
Ab5, is imposing both that the treatment can be written as an additively sepa-
rable function of observables and unobservables and that the unobservables are
independent of Z. This assumption is not innocuous.

The literature on selection models and non-linear simultaneous equations mod-
els have also used the control function approach to identify ATE.” The control
function can be defined as follows: Let V be a real-valued (square integrable)
function of (D, X, Z) such that the o-field generated by (D, X, Z) is identical to
the o-field generated by (V, X, Z).® The function V is called a control function
(see Heckman and Robb, 1985). Generally the assumptions that allow identifica-
tion using a control function are not equivalent to those that justify the IV and
LIV approaches. Formally, we assume

A6. Control Function: There exists a real valued function h(V, X) such that
E(Y|D,Z,X) = (D, X)+h(V,X), where V is a real-valued (square integrable)
function of (D, X, Z) such that the o-field generated by (D, X, Z) is identical to
the o-field generated by (V, X, Z).

Essentially this imposes that the dependence of the distribution of the un-
observables in the outcome equation (U) on the unobservable in the assignment
equation (V') and on the instrument Z operate through the same channel, i.e.
through this function V. This usually will turn out to be the residual of the
assignment equation, i.e., V =V where V = D — P(X,Z). For identification

purposes we need to be able to distinguish the two functions ¢ and h. Thus we

"see Heckman (1979) and in the context of non-parametric simultaneous equations models
see Newey, Powell and Vella (1999).
8This property is obtained if V is a one to one measurable function of D given X and Z.
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will also need to impose that the control function has some independent variation
from D conditional on X. This notion is formalized in the following assumption.
AT. Rank condition: D and V are measurably separated given X, i.e., any
function of D and X almost surely equal to a function of V and X must be a
function of X only.
A necessary condition for assumption A.7 to hold is that the instruments Z

have an impact on D.?

Theorem 3.8. Assume that we can write E(Y|D,X,Z) = (D, X) + h(V, X)
(A6), and that D and V are measurably separated given X (A7). Then E(Yy|X =

x) = ¢(d, ) is identified up to an additive function of x.

Proof. See Appendix. B
Applying Lemma 3.4, we state the following result,

Corollary 3.9. Assume (A1), (A6), and (AT). Then ZE(Yy|X = z) = Zo(d, )
is identified.

Finally, independence unifies the assumptions invoked by these approaches

and makes them equivalent. Thus we present two equivalence results

Theorem 3.10. The single index assumption (A5) and the control function as-

sumption (A6) with V =V imply the exclusion restriction (A2) and the LIV

9Measurable separability, which we maintain in this paper is just one way of achieving this.
Alternatively, one could restrict the space of functions ¢(D, X) not to contain h(V, X) functions;
this in turn can be achieved for example by assuming that ¢(D, X) is linear in D and h is non-
linear as in the Heckman (1979) selection model.
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assumption (A4). Hence under independence (A5) and the control function as-
sumption (A6) with V =V, as well as under the rank condition (A7) the control

function approach provides a solution which satisfies the IV, LIV assumptions.
Proof. See Appendix. B

Theorem 3.11. Assume that (V,U) are jointly independent of Z given X (A5').
Then the exclusion restriction (A2), the control function restriction (A6) and
the single index assumption (A5) hold. Hence under independence (A5') (and
the rank conditions) the three approaches (control function, IV and LIV) are

equivalent and all identify ATE.

Proof. See Appendix. H

In conclusion, as has been known at least since the seminal paper of Newey
and Powell (2003) with additive separable errors instrumental variables can iden-
tify the function ¢(d|X) so long as strong identifiability holds, which is just a
generalization of the rank condition to a non-parametric framework. It also turns
out that the control function assumption and the LIV assumptions if true identify
this function. However all these assumptions are not equivalent and none imply
any of the others. The IV assumption has the appealing feature that it is of-
ten justifiable from economic theory and one can design randomized experiments
where an instrument such as tuition or a price is randomly assigned, which allows
identification of the structural effects. However under conditional independence
of the errors from the instrument Z given X, all approaches are equivalent. Thus

equivalence requires us to say something about the assignment rule. As we shall
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now see, with heterogeneous treatment effects identification will also in general

rely on extra assumptions on the assignment rule.

4. Models with Heterogeneous Treatment Effects

We now discuss the class of models that were the original motivation of this paper,
namely models where the impact of the treatment D is heterogeneous. We focus
on the case where the realization of the treatment is correlated with the impact of
the treatment. This can happen, for instance, when the allocation to treatment
depends on the individual’s potential benefit from the treatment intensity, such
as in our introductory example.

Identification results require some structure to be imposed on the stochastic
process Uy. Typically we will require some continuity and possibly additional
smoothness. We will study the case where Uy is given by a finite order polynomial

in d,
K
Ud = Zdjé‘j, (41)
§=0

where we have adopted the convention that 0° = 1.

Usually, models allow just the level of the outcome variable to be random.
However, here we also allow the higher order derivatives to be random. For the
binary treatment case a linear form (K = 1) is completely general. However, with
more than one outcome for D or in particular for D continuous this specification

is constraining.!® Therefore, we develop our analysis for K of any finite order.

107f ¢ takes K + 1 values, than a K + 1 order polynomial will be completely general. In
particular, if d takes K + 1 values, d € {dp,dy,...,dk}, then it is always possible to define
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The analysis may be seen as an approximation to a more general set of possible
stochastic functional forms.!!

We now discuss the assumptions we will be using. All our specifications require
the exclusion of a continuous instrument from the outcome equation. Thus we
impose

A2'. E(Uy4|X,Z) = E(Uy|X) V d (Exclusion restriction)

Imposing equation (4.1), restriction A2’ is equivalent to E(ex|X,Z) = E(ex|X)
for all k =0, ..., K. We normalize the errors such that E(ex|X) =0V k.
In equation (2.3), we defined the conditional expectation of the unobservable

for outcome d; when the choice made is ds. Under linear heterogeneity on the

unobservables (equation (4.1) with K = 1), this function takes the form
g(dy,do,x,2) = diri(da, z, 2) + 1ro(da, x, 2),

where each term is defined by
ri(de,z,2) = E(e1|D = dy, X = 2, Z = 2),

ro(de,z,2) = E(eo|D =dy, X = 2, Z = 2),

random variables g, ...cx such that Uy = Z]K:O d’ej for all d € {dy,dx,...,dx}. To see this,
define U = [Uq,, U4y, ..., Ugy]’. Define the K x K matrix A to have (i,7) element given by
A; ;= (i —1)7. Note that A is invertible. Define ¢ = A~!U, and let ¢, denote the k — 1 element
of €. The constructed {e; : k =0, ..., K} then satisfy the desired property, Uy = ZJK:() die; for
all d € {d(), diy .., dK}.

1Tf d takes values only on a compact interval, the Weierstrass theorem implies that Uy can be
approximated uniformly by a polynomial function for any realization such that Uy is a continuous
function of d. Assuming that Uy is a continuous function of d w.p.1, we have that w.p.1 we can
approximate Uy uniformly by a polynomial function where the coefficients of the polynomial
function depend on the realization and are thus random variables.
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and hence the conditional expectation of the outcome at level of intensity d when

d was actually chosen (see 2.4) becomes

EY|D=d, X =2,7Z =2)=¢(d,x)+dri(d,z,z) + ro(d, z, 2).
(4.2)

Hence identification relates to our ability to characterize (some aspects) of ¢(d, x),
r1(d, z, z) and ro(d, x, z). Note that the parameter, “Treatment on the Treated”

can now be expressed as

ATT(d, z) d,z) + E[ri(d,z,x)|D =d, X = x].

0
= %90(
This framework is fundamentally different from the one earlier on and generally
standard exclusion restrictions are not sufficient to identify all the parameters of
interest. We show by an example that AT E is not identified generally just with
exclusion restrictions.

Note that identification of ATE is equivalent to the implication that for any
functions ¢*(d, x), *(d, z,x) and h*(d, z, x) that satisfy

©*(d,z) +dr*(d, z,x) + h*(d,z,z) =0 (4.3)
it must be that'?
0p*
— = 0.
od

120 see this, take two values of o(d,x), r1(d, z,z) and ro(d, z,x), e.g. ©*, r*, and h® for s =
1,2. These are observationally equivalent if they generate the same E(Y|D =d, X =z, 7 = z).
Let us take the difference which gives ¢! — p? +d( r! —72) +h! —h? =0, or p* +d r* +h* = 0.
Identification condition of AT E requires that under the orthogonality conditions, this equation

1 2 *
implies that %f’i—— %% = %%— = 0. For the TT parameter, the corresponding condition is that

©* +d r* + h* = 0 implies %fi—* + E(r*|D,X) = 0. Note that neither condition is stronger or
weaker than the other.
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We have extended the definition of g to the case of linear heterogeneity specified
by equation (4.1) with K = 1. The definition further extends in the obvious way

to the case of higher order polynomial heterogeneity.
4.1. Instrumental Variables and Heterogeneous Treatment Effects

First consider instrumental variables in the case of linear heterogeneity, taking
equation (4.1) with K = 1. Imposing the exclusion restriction A2’ restricts
the set of admissible functions r; and ro defined above. Thus we have that
E(r(D,X,2)|X,Z)=E(r(D,X,Z)|X)and E(ro(D, X, Z)| X, Z) = E(ro(D, X, Z)| X).
The question is whether the functions that satisfy these conditions and solve equa-
tion (4.3) are such that %‘%* = 0. In this case IV would identify the model, subject
to the strong identification condition. In general this is not the case as the fol-
lowing counter example shows.

Let us consider for simplicity a case without X variables, Z is a positive
random variable and the distribution of D conditional on Z satisfies: E(D|Z) =
Var(D|Z) = E(D—Z2)3Z) = Z. The above implies that E(D?*Z) = Z?+ Z and
E(D3|Z) = Z + 322 + Z3. Now we suppose that r*(d, 2) = d*> — (z + 2z?) (hence
E(r*(D, Z)|Z) = 0) and that ¢*(d) = —2d* + d. Now suppose h* satisfies

W(d2) = —le(@+dr(d2)
= 2d*> —d—d(d® — (2 + 2?))
One can easily check that F(h*(D, Z)|Z) = 0. With these chosen functions the
orthogonality conditions are satisfied and equation (4.3) is satisfied, but clearly

%il—* # 0. Note that this example is not in contradiction with the assumption that

D is strongly identified by Z.
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With additional conditions, Instrumental Variables will identify AT E. Heck-
man and Vytlacil (1998) analyzed instrumental variables applied to a linear model
with a random coefficient. Their model is a special case of that considered here,
with a linear structure imposed on (D, X) and with K = 1 in equation (4.1).
They considered the following assumption restricting the relationship of the un-
observables in the outcome and assignment equation.

A2" E(eV|X,Z)= E(eV|X) (Covariance restriction)

Note that the example of nonidentification considered above violates A2".
Under A2", it is possible to obtain positive results for IV for the case of linear

heterogeneity as shown by the following theorem.

Theorem 4.1. Assume that equation (4.1) holds with K = 1. Assume that the
exclusion restriction (A2') holds, that the covariance restriction A2" holds, and
that D can be strongly identified by the instrument Z given explanatory variables
X (A3). Then E(Yy|X = x) = ¢(d, z) is identified up to an additive function of

x.

Proof. See Appendix. B
Combining Lemma 3.4 and Theorem 4.1, we immediately have the following

result.

Corollary 4.2. Assume (A1), (A2'), (A2") and (A3). Then ZE(Y4|X =z) =
2 o(d, z) is identified.

The assumption that F(e;V|X,Z) = E(e;V|X) is not innocuous. Consider,
for example, the model D = P(X,Z,V) with Z 1L (e;,V)|X. The independence
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property stated in terms of V in the “structural” model does not imply that
E(eV|X,Z) = E(e,V|X) where V is defined as a deviation from a conditional
expectation. For example, consider P(X, Z, f/) = P(X,Z)+ o(X, Z)f/, so that
V = 0(X,Z)V. In this case, E(¢V|X,Z) = 0(X, Z)E(e,V|X), so that A2” does
not hold.

In particular, if the unobservables in the equation determining the level of the
treatment are additively separable from the observables and the unobservables in
the outcome equation and the treatment equation are jointly independent from
the instruments Z then I'V identifies AT E. In the additive separability case this
means that the impact of the instrument Z on treatment intensity is the same
across people with different unobservables. Interestingly, a purely randomly as-
signed value of the instrument Z would not be sufficient to identify AT E using
IV, unless the separability condition held in the model. A key point is that with
heterogeneous treatment effects identification will require stronger than usual as-
sumptions on the model assigning individuals to different levels of treatment. In
what follows, identification will rely precisely on assumptions not only on the
equation of interest but also on the assignment rule and the way its stochastic

structure relates to the outcome equation.

4.2. Identification Based on the Control Function Approach

The covariance restriction required for IV is probably far too strong for most
problems. We now explore identification through the control function which may
be more appealing. We start with the case of linear heterogeneity, given by

equation (4.1) with K = 1. The definition of the control function is as above.
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However, we extend the analysis of the earlier section on homogeneous treatment
effects by replacing assumption (A4) with
A8. Control function II. There exist two real valued functions 7o(V, X) and

r1(V, X) such that
E(Y|D,X,Z) = (D, X)+ Dri(V,X) +ro(V, X). (4.4)

where V is a real valued (square integrable) function of (D, X, Z) such that the
o-field generated by (D, X, Z) is identical to the o-field generated by (V,X,Z). Al-
ternatively, this expression is obtained by assuming that F(eo|D, X, Z) = E (z—:o]f/, X) =
ro(V,X) and E(e,|D, X,Z) = E(1]V,X) = r(V,X). The assumption is dis-
tinct from the standard orthogonality condition unless we assume that (g9, V)
and (e1, V) are both conditionally independent of Z given X in which case (A8)
holds with V = V.

A9. Normalization: E(r(V, X)|X) = 0.3
In addition, we will need a smoothness/support condition similar to A1, but now
assumed to hold conditional on (V, X).

Al'. ¢(D,X) is differentiable in D (a.s.), and the support of D conditional

on (X, V) does not contain any isolated points (a.s.).

Theorem 4.3. Assume equation (4.1) holds with K = 1. Under assumptions

(A5) (rank condition), control function II (A8) the normalization restriction

13To see that A9 is only a normalisation, note that

o+Dr+h=
(¢ + DE(r|X)) + D(r — E(r| X)) + h =

&+ DF + h.

Note that A9 is the appropriate normalisation for %gp to denote the ATE.
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(A9), and the smoothness and support condition (A1), ATE and TT are identi-

fied in the heterogeneous treatment effects model presented above.

Proof. See Appendix. B

The analysis can be extended to higher order heterogeneity. Thus, consider
the more general where K > 1. Consider

AS8'. Control function III. There exist real valued functions 7 (V, X) for k =
0,..., K, such that

E(Y|D,Z,X)= (D, X)+ i DFr(V, X). (4.5)

where again V be a real valued (square integrable) function of (D, X, Z) such
that the o-field generated by (D, X, Z) is identical to the o-field generated by
(V, X, Z). We also impose

A9'. Normalization: E(r,(V,X)|X) =0 for k=0,..., K.

A1". (D, X) is K-times differentiable in D (a.s.), and the support of D

conditional on (X, V) does not contain any isolated points (a.s.).

Theorem 4.4. Assume equation (4.1) holds with finite K > 1. Under assump-
tions (A5) (rank condition), control function III (A8’) the normalization restric-
tion (A9’'), and the smoothness and support condition (A1”), ATE and TT are

identified in the heterogeneous treatment effects model presented above.

Proof. See Appendix. B
The case of the control function with V' = V can be directly related to the
Marginal Treatment Effect of Heckman and Vytlacil (2001). Consider the case
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where d is a continuous scalar variable. We have that

0 0 S
a—dE(Y|D—d,V—U,X—a:) = %go(d,x)—l—;kd ri(v, x)
0
= E(%gp(d,azﬂD—d,V—v,X—I)

Thus, given the control function assumptions, a change in d holding V' and X
constant identifies the average effect of a change in the treatment level among
those with the given values of (V, X). In this case, the derivative of E(Y|D =
d,V = v, X = x) with respect to d identifies the average effect of treatment for
a particular subgroup, in a manner similar to the marginal treatment effect of

Heckman and Vytlacil (2001).

5. Testing for the Degree of Heterogeneity

The approach we described above allows one to identify models with random
higher order derivatives. In this section we derive the basis for a diagnostic in-
forming us about the degree of heterogeneity. So, for example, if the null hy-
pothesis is that U; = €y (common treatment effects model) then we can test this
hypothesis by testing that ri(v,z) = 0 in equation (4.4). This can be repeated
for higher order heterogeneity. In fact, within the control function approach this
suggests a way of finding the degree of heterogeneity required.

More generally, within the control function framework we can test for the
degree of heterogeneity without explicitly estimating the model. Consider the
null hypothesis that the degree of heterogeneity is ¢ versus the alternative that it

is k£ > £. Then under the null hypothesis and within the framework of the control
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function assumptions we must have that, for all £ > £,

B FEY|D=dV=v,X =x)
od*

-

ak
= E{E {%E(Ym —d,V=0vX=ux)

d} 'v — v} C(5.1)

Letting £k = £ + 1 for example, provides a test of the hypothesis that the degree
of heterogeneity is ¢.

To see where this expression comes from suppose the degree of heterogeneity
is k — 1, i.e., following assumption (A-8) assume that E(Y|D = d,V = v, X =
x) = p(d,z)+ Zf;ll d’r;(v, z) +ro(v,x). Then the k™ order derivative of E(Y|d)

must satisfy
0%p(d)
adk -

Then taking expectations of the above with respect to d and then v we get that

ak
—FEY|D = . X =z)=
SFEY|D=dV=vX=2)

o 9*p(d)
E{WE(YW—d,V—v,X—x) D_d} = (5.2)
9% p(d)

ak

e e[l

O o(d)

By substituting for =

from equation (5.2) into equation (5.3) we obtain the

expression which is the basis of our test.

6. Identification with Two Index Assignment Rules.

In many ways the assumptions that we have made up to now can be very restric-

tive, particularly in relation to the assignment rule, which has been assumed to
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have a single index structure.!* However, many interesting economic models will
not satisfy this condition, so we now consider identification in cases with more

complex assignment rules as in the equations below:

Yo=¢(d,X)+dey +eo (1)
(6.1)
D=PX,2)+ f(X,Z)v (II)

To prove identification we will make the following assumptions:

A10 Independence and Normalizations: (v,e;) are jointly independent
of Z given X. We also assume as a normalization rule that E(e1|X,Z) = 0 and
E(v|X,Z) = 0. We further impose the normalization that Var(v | X, Z) = 1.

A11 Exclusion: E(g|X,Z) = 0.

Theorem 6.1. When outcomes Y, are given by equation (6.1.1) and the assign-
ment rule by equation (6.1.11), the average treatment effect is identified if the
following conditions hold: strong identification A3, independence A10 and exclu-

sion A11.

Proof: P(X,Z) and f(X,Z) are immediately identified from P(X,Z) =
E(D|X,Z) and f(X,Z) = \/Var(D|X, Z). Denote the density of D conditional
on X, Z as p(D|X,Z) and the density of V as p(V). Motivated by classical
instrumental variables consider the relationship

2 {%E(Y|X - z)} -

o {% Jolta, x)p(talX =2, Z = z)dtd} + I
% {% Jtari(ta, z, 2)p(tal X = 2, Z = z)dtd} I

Hyytlacil (2002) this is equivalent to the monotonicity assumption imposed in the LATE
model of Imbens and Angrist (1995) in the context of a binary treatment.
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For the purposes of identification it would be sufficient to show that under our
conditions part /I above is zero and then to show that the remaining expression

provides a unique solution to AT E. We define 6 = Wlth density

q(8lz, z) = p(6 —

We now define the function p to satisfy the following differential equation:

dq 8q

% +p (9(5 =0. (6.2)

Given the structure of the assignment rule we get that p = % <?> and this is a

function of Z and X only and not of d. We can now write the structure of I1 as
= Z[[6ri(f6, ,2)qdd]
= [ 6222 gds + [ §ry(f5, 2, 2) 5Ld6
= [§20Us2) gqs — p [ ri(f6, 2, 2)22d5 (6.3)

= [§20022) g5 1 p [ [ (f6, @, 2) + 620822 ] gds

_ f6{8r1 fb,x,%) _i_pa'f’l(gg,xvz)}qdé‘

where p [ r1(f6,z,2)qdé = fcfrl(td,a:, 2)p(tq|r, 2)dty = 0 by assumption A10. A
sufficient condition for I7 to be zero is then that the term in {} in equation (6.3)
is zero for every value of 6. This means that the conditional expectation of the
error term £1, given D, X and Z satisfies the differential equation (6.2). This will

be the case if we can write this conditional expectation as

d—P
f

r1(fé,z,z) = 7 ( ,T). (6.4)
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This in turn is true by assumption A10.
The nest step in the identification proof is to show that, given this condition,

the equation

2 {f(;z)E(nX 7= z)} _

(6.5)

2 {75 [ olta wp(talX = 2,2 = 2)dta |
has a unique solution for AT E. Lack of identification would imply that there are
two functions ¢; and ¢, which satisfy equation (6.5). For any such ¢; and s, we

have that

% {f(xl, 2) /(‘Pl(tdvl’) — oty ) p(ta| X = 2,2 = z)dtd} —0

which implies

{/ (p1(ta, x) — @ao(ta, x)) p(ta| X =2, Z = z)dtd} =c(z)f(x,z) 66)

If ¢(z) = 0, strong identification implies that p1(d,z) = @o(d,z). Otherwise
this equation implies that f(z,z) is in the range of the conditional expectations
operator. By the assumption of strong identification (A3), we can define uniquely

a function ¢o(d, x) such that

/ polta, 2)p(tal X = 2, Z = 2)dty = f(z, ) (6.7)

which can be calculated given knowledge of f(z,z). Substituting equation (6.7)
into equation (6.6) we get that

{/ (p1(ta, z) — @2(ta, x) — cpo(ta, x)) p(tal X = 2,2 = z)dtd} =0
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which by strong identification is true if and only if

Qol(tdv .73) - SOQ(td;fE) - c(x)goo(td,x) =0.
If po(ty,x) = 0, then ATE is identified. If ¢o(tq, z) # 0, then divide through by
wo(ta,z) # 0 to obtain

SOl(thI) @2(td7x) i C(l‘)
SOO(td7$) @0(tdvx)

which implies that % [i—;] is identified. However, since ¢, is a known function,
ATE is identified as well.ll

As the reasoning of the proof demonstrates, identification is implied by weaker
conditions since from equation (6.3) we can see that the term in {} brackets,
weighted by the normalized treatment intensity needs to be “on average” zero. In
addition, independence is just a sufficient condition for equation (6.4) to hold but
not necessary. However, the more general conditions are unfamiliar and hard to
interpret from an economic point of view. The simpler condition is quite familiar in
the context of the control function approach, such as Heckman’s selection model.
Thus, we have shown that under conventional assumptions it is possible to identify
ATFE non parametrically even when the assignment rule does not have the usual

single index structure.

7. Estimation and Implementation

In our companion paper, Florens, Heckman, Meghir and Vytlacil (2003), we de-
velop estimation strategies that correspond to the identification strategies consid-

ered in this paper. We now provide an overview of their analysis.
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7.1. Local Instrumental Variables

We start by considering LIV. We simplify the problem by ignoring all Xs. Es-
timation can be thought of as conditional on X. We suppose the existence of p
instruments Z. The problem is to solve for 8*2—5;0 from the set of integral equations.

OE(Y|Z=z)

0 0z; . .
E (@@(d)'Z = z) = @ = \i(2) Vi=1,..p. (7.1)

In the presence of more than one instrument z, the problem is overidentified. This
is manifested in two ways. One is the number of equations in (7.1). The other
is due to the fact that E(Z¢(d)|Z = 2) is a function of “too many” variables.
We solve the first problem by replacing \;(z) for a weighted sum, ie. A(z) =
¥ _17i(2)Aj(2). We discuss below the optimal choice of the weights 7;. Now we
proceed to discuss the second problem for which one solution was developed in
Darolles, Florens and Renault (2002).

The idea is to replace equation (7.1) by its conditional expectation, given d.

Hence we get

0

(d)|Z = =)

D:A:EP@

D:4 (7.2)

This is a Fredholm type [ integral equation and it is an ill posed problem. It
can be regularized using the Tikhonov regularization and then a solution for
2 o(d) can be found. In particular regularization takes place by adding a2 ¢(d)
on the left hand side. In the next step the expectations are replaced by their
estimates. In particular on the left hand side we use kernel functions to represent

the expectations, while the right hand side is estimated by kernel in a first step.
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One problem with the approach in Darolles, Florens and Renault (2002) is
that it involves the inversion on a matrix whose dimension is the sample size.
For large data sets, such as those found in administrative sources, this may be
impractical. We now suggest an alternative form of regularization.

Write the equation to be solved as

9 1 P OE(Y|Z)
0z;
E (%W(d)‘z = Z) = ;;%w

where p are the number of instruments and 7; are known weights. We use the

shorthand notation for this equation
A =\

where A : ) — E(¢|Z = z) is the linear operator mapping from the set of real
square integrable functions of d (L?(D)) to the set of square integrable functions
on z (L*(Z)), in both cases with respect to the true distribution of D and Z
respectively. We define the function ¢ by ¢ = %gp(d). Finally we have defined
A= l p 1 ﬁ which is a function we estimate directly from the data.

We deﬁne the dual operator of A to be A* which is the operator that equates

the scalar products'®

< Awnu >z=<1, A*H’ >D

where 4 is any square integrable function of z (with respect to the density of d).

Hence A* is an operator mapping from L2(Z ) to Lz(D).

15We need to recall the following definitions. < a(z ) >= [a( z)dz. Say a function
is square integrable if the variance of the function is ﬁmte Define the norm of a square integrable

function, ¢ € L%, to be |[¢|| = [[¢*(D)f(d)dd] '/2 The norm of an operator A is defined as
[|A|| = sup ||Av|| where 9 is any function such that ||¢]] <1
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i From the definition of the dual operator A* it follows that
A'u=F {M(Z)‘D]

We suppose that all expectations are replaced by kernel estimates. Clearly the
problem A\w =\ is ill-posed. Consequently, we consider a regularized solution
based on the Landweber-Fridman regularization (see Kress, 1999). According to

this the regularized solution has the form
—~ ON, Nk~
P = a3 (I . A*A) )
k=0

where my is the number of terms in the sum and depends on the sample size.
The speed of convergence of the estimator depends on the way that my increases
with the sample size.

This can be computed by using the following recursion
Jw) — (1 - o' R) 5771 + aAR
The parameter a is chosen so that the recursion converges and this requires that

O<a< 1.

1
||A]?
One possible choice for a is 1/2. Our companion paper considers the optimal

choice of the weights 7;(z) and of a.
7.1.1. Control Function Estimation

There are a number of ways of approaching the estimation problem in this case.

One way would be to extend the Newey, Powell and Vella (1999) approach and
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use series estimation. We approach the problem in a different way, much in the
spirit of the backfitting method we suggested for LIV in the previous section.
Under the control function assumptions the functions ¢, r and h solve the

following problem

p,r;h

S = min / B (yld, v) — (¢ + dr + )2 dP(d]) (7.3)
which has the following first order conditions
[SEWGD =d,V =v) - (p+dr+R)AP(d]z) =0 I
[FAE (YD = d,V =) — (¢ +dr + h)]dP(d]z) =0 II (7.4)
[AE(y|D=d,V =v)—(p+dr+h)dP(d|z) =0 III

where @, 7 and h are any functions of d and of v respectively. In a next step we
integrate over v in expression 7.4 I and over d in expressions I/ and I, which

directly imply that

E(y|d) = ¢ + dE(r|d) + E(h|d) I
E(dy|v) = E(dp|v) + rE(d*|v) + E(d|lv)h II (7.5)
E(ylv) = E(p|v) + rE(d|v) + h I

The equations in (7.5) can be solved for the unknown functions ¢, r and h. One
way of doing this is to follow a recursive iterative solution. First we can estimate
E(y|d), E(dy|lv) and E(y|v) using kernel from the data. Then, starting from an
initial value of ¢, we can use II and /1] in equations (7.5) to obtain solutions to
the control functions r and h. We can then use I to update ¢ and we can keep
iterating. However it is also possible to solve this in one shot and we demonstrate

this below.
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First we can use expressions I1 and [1] to eliminate h and r from [ in equa-

tions (7.5). Following this we obtain

o = dE { b (Bldglv) - B(d) B(plv))|d} -
E { k5 (B(@Jv) Blplv) — E(dJo) E(dglv))|d } =
E(yld) - dB { 5 (B(dylo) — B(dlv) E(ylv)) |d} -

B {75 (B(&0) E(ylv) — E(do) E(dylv))|d}

where 0%(v) = E(d?|v) — (E(d|v))* . This expression can be written compactly as
(I —T)p = E(y|d) — Ty, where T is compact. This is a Fredholm type II integral
equation, which can be solved directly by inverting I — T" on the set of functions
that satisfy a normalization rule.

The procedure described above is capable of estimating the function ¢(d).

However, if we are interested in estimating just the AT E parameter %) e can

ad
obtain a computationally simpler problem by noting that
O BYID = d. X = 2.7 = 2) = 2 o(d 2) + 11 (0, 2) (77)
— = =x,/=2)=— x)+ri(v,x :
8d ; ) adSO ) 1\Y,

The method we presented above can now be simplified to identify just the two
components on the right hand side of equation (7.7). In particular, the first order
conditions will have just two equations. These can either be used to derive an
iterative algorithm as before or to write down a one-shot solution, which would be
based on a simplified version of I and IT of equation (7.5). This is computationally
simpler since we do not need to estimate the function h. However we have not

established whether the two approaches differ in efficiency terms.
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8. Conclusions

In this paper we have considered the identification and estimation of models with
a continuous endogenous variable (or in any case discrete where the levels have
a cardinal interpretation, like years of education) and non-separable errors when
continuous instruments are available. We have presented three methods: Instru-
mental Variables, Local Instrumental Variables and Control Function. These
methods rely on different underlying assumptions, which we derive. We also de-
rive conditions under which all methods are equivalent. These conditions always
involve independence assumptions of the unobservables from the instruments. Our
estimation strategy for all our methods are based on Kernel smoothing and the
estimators are solutions of integral equations. Finally, we provide tests for the
degree of heterogeneity which allows us to assess the overall specification of the

model.

9. Appendix I: Proofs of theorems

Proof of Theorem 3.2
Let 5 and ¢; be two functions satisfying the assumptions. Then from A2 we

get that
E(po(D, X) — o1(D, X)|X, Z) = 0.
Assumption A3 then implies

QDQ(D,X) — QDl(D,X) a,:s, 0.
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Proof of Lemma 3.4

The proof is stated for the case where ¢(d,x) is identified a.s.. The proof
extends trivially to the more general case where ¢(d, =) is identified a.s. up to an
additive function of z.

¢(d, z) is identified a.s. by assertion. We thus need to show that if ¢, (D, X) =
wa(D, X) a.s., and both ¢ and @9 satisfy condition (A3), then a%gol(D,X) =
Zoy(D, X) as..

Let € denote the set of (d,z) points such that ¢;(d,z) — @2(d,z) = 0, such
that 2¢1(d,z) and 2ps(d, x) exist, and such that d is not an isolated point of
the support of D conditional on X = z. 2 is an intersection of sets that occur
with probability one, and thus Pr[(D, X) € Q] = 1.

Will use proof by contradiction. Let A = {(d,z) : Zp1(d,z) # Zpa(d,z)}.
Assume that Pr[(D, X) € A] > 0, which implies that Pr[(D,X) € AN Q] > 0.
For any (d,z) € AN Q, ¢1(d,x) = ¢a(d, x), and the partial derivatives of each
exists, so that %gpl(d,x) + %gpg(d, x) implies that there exists a radius r > 0
such that ¢y (d',z) # @a(d',x) Vd' € B(d,r) \ d. d is not an isolated point of the
support of D conditional on X = z, and thus Pr[D € B(d,r) \ d|X = z] > 0 so
that Pr[p1(D, X) # @o(D, X)|X = z] > 0. This holds for a set of x values with
positive probability, and thus Pr[o:(D, X) # (D, X)] > 0, contradicting the

assumption that the two functions are equal a.s.. B

Proof of theorem 3.5

Let 1 and ¢y be two functions satisfying assumption A4. Then

8@1 6Q02 o o a.s.
E(E)d — ad|Z—z,X—x> =0
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which implies % — % “2 0 under the strong identification assumption A3.

Proof of theorem 3.7

Note first that assumption A2 (IV) is equivalent to

8 a.s. .
—FEU|X=2,Z=2) =0V (9.1)
aZj

under smoothness conditions. Condition (9.1) implies that:

o o [P
5 YX=x2Z=2 = a/p O(ta, z)p(talx, z)dty
J 3 JDg.

DZ, o
_ / ot ) 5l 2t

D

L
T,z

where we used

p(Dy., 2)p(Dy. |z, 2) = ¢(Dg., 2)p(Dy |z, z) = 0. (9.2)

x,2) T,27

The LIV assumption (A4) says that:

DY,
aiE(wX —uZ=2) =2 pla ) / 9% (10 2)pltal, 2)dta.
Zj

aZJ D%,z atd (93)
Integrating by parts and using (9.2), we can write (9.3) as
P Dz
e BX =22 =) = =2 @2) [ 7 oltaa) g pltde. Sty
8Zj aZ] Da%,z atd (94)

Then IV and LIV are equivalent if and only if (9.2) and (9.4) are equivalent, i.e.:

DU
@z 0 OP(z,z) 0 B
/ ot 7) {a—sz(tdm, ) g gt z)} dti—0  (95)

DL

T,z
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The assumption A5 (V1LZ|X) implies that:

p(taz, 2) = p(ta — P(z, 2)|z, z) = p(ta — P(z, 2)|z) (9.6)

where p is the density of V given (X = z and Z = z). Under (9.6), equation (9.5)
is satisfied and the first part of the theorem is proved.
However if IV and LIV are equivalent for any ¢, (9.5) is satisfied for any ¢

and then the term between brackets vanishes. The partial differential equations

0 oP 0 .
a—sz(td\%z) = a—zj(ﬂfa z)%p(tdlx,z) N2 (9.7)

implies there exists p verifying (9.6) or equivalently V1. Z| X .H

Proof of theorem 3.8
Let (1, h1) and (¢, he) be two sets of functions satisfying assumption AG6.
Then
p1(D, X) — pa(D, X) = h2(VaX) - hl(vaX)'

By (A7), this implies that 1 (D, X) — ¢2(D, X) is a.s. a function of X alone.l

Proof of theorem 3.10
Assumption A6 with V =V means that E(U|D, Z, X) = E(U|V, X) as..
Then

E(U|Z,X) = E(EU|D,Z X)|Z X)

a.

w

E(EU|V,X)|Z,X) Control Function

a.

v

E(E(U|V,X)|X) Conditional Independence
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because V1LZ|X (which implies (V, X)1L.Z|X). Since E(U|Z, X) is a.s. a func-
tion of X only we have that E(U|Z, X) = E(U|X)

Proof of theorem 3.11 (V,U)1LZ|X implies a. V 1LZ|X (single index as-

sumption), b. UL Z|X (IV assumption) and c. ULLZ|X, V. Moreover E(U|Z, X, D) =

EU|X,Z, V)= E(U|X,V) (control function assumption).

Proof of Theorem 4.1

Let ¢ and ¢; be two functions satisfying the assumptions. Then

E(YD—QOJ(D,X>|X,Z) = ED61+50|X Z)

— P

(

= E((P(X,Z)+V)e1+ | X, 2)
(X, 2)E(a|X,Z) + E(Vei|X, Z) + E(s| X, 2)
(

= E(VealX),
with the last equality following from A2’ and A2”. Thus,
E(p2(D, X) — o1(D, X)|X, Z) = M(X).
with M(X) = E(e,V|X). Assumption A3 then implies

902(DaX) _901(D7X) = M(X)

Proof of Theorem 4.3

Suppose there are two sets of functions (¢!, r,7}) and (¢?, 7%, 73) such that

EY|D=d,V=v,X=1)=
o' (d,z) + dri(v,z) +ri(v,z), i=1,2
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Then
[gpl(d, r) — ©(d, x)} +d [T%(v,x) — r%(v,az)} + [Té(v, x) — Tg(v,az)] =0.

Given assumption A1’, this implies

0

ad o' (d, ) —

adSOQ(d, z) + [ri(v,2) — ri(v,2)] = 0.

Measurable separability implies that if any function of d and z is equal to a
function of v and z (a.s.) then this must be a function of x only. Hence r}(v, ) —

r?(v,z) is a function of x only. Hence,
riv,2) = ri(v,2) = B [rl(V, X) = r}(V, X)|X =z .
The above is equal to zero under A9. Hence,

9 4

and thus ATEis identified. Since r{(v, X) = r}(v, X), we have &1+ E[r{ (v, X)| X, d] =
2oy + E[r{(v, X)|X,d] and thus TT is identified as well. W

2(d, x).

Proof of Theorem 4.4

Suppose there are two sets of parameters (¢',rk,...,rd) and (P2 r%,...,13)

such that
E(Y|D=d,V=v,X =) “(d, x) +derkvx =1,2.
Then
K
[¢'(d, ) (d,z)] + Y d¥ [r(v,2) = ri(v,2)] =0 (9.8)
k=0



Given assumption A1”, this implies

aK K

1(d7 :L’) - Q(d’ l‘) + (K')(T}((U,l‘) - rf((v,x)) = 0.

9K 0dx "’

A5 implies that if any function of d and z is equal to a function of v and = (a.s.)

then this must be a function of z only. Hence, rk (v, z) — r% (v, z) is a function of

x only. Hence,
rie(v,2) =5 (v,2) = B [rk (V, X) =k (V, X)|X =a].

The above is equal to zero under A9’. Hence,

a.

5

0.

T}(('Ua l‘) - T?(('Ua l‘)

Considering the K — 1 derivative of equation (9.8), we have

8K_1 aK—l

W@l(da T) — adK,ﬁOz(d, T) +

(KVYd |3 (v, z) — r2(v, x)] + (K -1))) [r}(l(v, z) —r%_(v,z)| = 0.

We have already shown ri- (v, z) = r% (v, z), and thus

HE-1) . oE-1) 9

2T (d,z) — Waﬁz(d, z) + (K = D)N(rg_y(v,2) — (v, 2)) = 0.

Following a parallel analysis as that used above, we can now show that ri, | (v, z)—
r2_(v,z) ¥ 0. Tterating this procedure for k = K —2....,0, we have that 7} (v, z)—
ri(v,x) = 0 for all k = 0,..., K. Thus, again appealing to equation (9.8), we
have p!(d, z) — ¢*(d,z) = 0, and thus ATE is identified. Using that ¢'(d,z) —
©*(d,z) = 0 and 7}(v,2) — ri(v,z) © 0 for all k = 0,..., K, we also have that
250+ S KA Bl (0, X)X d] = £¢7 + K KB, X)X, d] = 0,
and thus T'T is identified.H
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Instrumental Variables, Local Instrumental
Variables and Control Functions®
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Abstract

We consider the identification and estimation of certain parameters of
interest in models with continuous endogenous variables whose impact is
heterogeneous. We provide a test that allows us to assess the degree of
unobserved heterogeneity. Our identification and estimation approaches use
assumptions relating to the Local Instrumental Variables (LIV) approach
and the control function approach.
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