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Abstract—Observation-based slicing is a recently-introduced,
language-independent slicing technique based on the dependen-
cies observable from program behaviour. Due to the well-known
limits of dynamic analysis, we may only compute an under-
approximation of the true observation-based slice. However, be-
cause the observation-based slice captures all possible dependence
that can be observed, even such approximations can yield insight
into the limitations of static slicing. For example, a static slice, S,
that is strictly smaller than the corresponding observation based
slice is potentially unsafe. We present the results of three sets
of experiments on 12 different programs, including benchmarks
and larger programs, which investigate the relationship between
static and observation-based slicing. We show that, in extreme
cases, observation-based slices can find the true minimal static
slice, where static techniques cannot. For more typical cases, our
results illustrate the potential for observation-based slicing to
highlight limitations in static slicers. Finally, we report on the
sensitivity of observation-based slicing to test quality.

I. INTRODUCTION

One of the foundational scientific principles of source code
analysis is the dichotomy between static and dynamic program
analysis. Underpinning much of the work on static analysis
is the concept of a ‘safe’ (conservative) over-approximation
to static truth; by over-approximating statically determinable
information, a (safe) static analysis aims to provide safe
technical conclusions to its end user (usually a software
engineer). In this paper we seek to question this foundational
assumption of static analysis, and to provide one technical
approach for investigating the limits of static analysis.

We believe it is important to question whether there can ever
exist a truly conservative and safe approximation to static truth
about computation; observation-based dynamic analysis is one
potential way in which this important foundational scientific
question can be investigated. Specifically, we study dependence
analysis as realised by program slicing.

It is known to be a challenge to construct a safe, conservative,
static slicing technique, since the slicer has to take account of
the full semantics of the programming language. Much work
has focused on the theoretical foundations of slicing, including
correctness proofs of safe slicing algorithms and the source
code analysis upon which they rest [1]–[4].

Unfortunately, program language semantics are necessary
but insufficient to capture all the possible dependencies that
can arise during computation, because dependencies may arise
through various interactions only partially under the control
of the program itself. For example, a program p may output

to some device, the state of which subsequently affects some
later computation in some entirely different program, which,
transitively, affects p.

It seems unlikely that any static analysis, no matter how
powerful, could capture all such dependencies. However, an
observation-based analysis can, in principle and by definition,
capture any and all observable dependencies, no matter how
subtle, no matter how platform or context dependent, and no
matter how convoluted their transitive chain of causes may
be. As such, an observation-based analysis makes a natural
complementary counterpart to static analysis.

We focus on program slicing because it has many appli-
cations including re-engineering [5], maintenance [6], [7],
debugging [8], [9], testing [10], [11], refactoring [12], re-
use [13], [14], and comprehension [15]–[17]. Static slicing
also illustrates many issues that affect attempts to construct
a ‘safe’ static analysis. However, the possibility of using
observation-based analysis as a complement to static analysis
could be extended and applied to other static analyses, not
merely program slicing.

We also chose program slicing because it has mature,
safe, over-approximation algorithms, that are widely-used and
implemented in both commercial and prototype research tools.
The investigation uses the recently-produced implementation,
ORBS [18], of observation-based slicing. ORBS speculatively
deletes lines of code as part of its computation algorithm,
attempting to remove one or more statements (lexically),
compiling the result (if possible), and then executing using
a suite of inputs (taken from test cases). If the execution
is successful (the slice produces the same output as the
original program), then the reduced (sliced) program is a
valid observation-based slice with respect to the criteria and
input suite. Further reduction is then attempted until it is not
possible to remove any further statements (details are provided
in section II-E).

Observation-based slices are related to dynamic slices, but
there is a critical difference: Observation based slices are
based on observed dependencies, rather than the statically
determined but dynamically occurring dependencies used by
dynamic slicing. That is, a dynamic slice contains a statement
if a (statically determined) dependence occurs during some
execution. By contrast, an observation-based slice contains a
statement, s, if a dependence is observed in which statement
s affects the slicing criterion.
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Although dynamic slicing only considers a dependence
important if it occurs during some execution, because that
dependence is, itself, computed statically, it may be one that
simply cannot be observed. Furthermore, a dependence that
can be observed in some execution may not correspond to
any statically determined dependence. Such ‘observation only’
dependencies will be (wrongly) ignored by both dynamic and
static slicing, potentially leading to incorrect slices. In the case
of dynamic slicing this under-approximation is not a problem,
because dynamic slices are inherently under-approximations in
any case. However, one of the primary virtues of static slicing is
that the slices it produces are supposed to be safe, conservative
(over) approximations to the true slice: if a statement is deleted
by a static slicer then it is claimed that no possible execution
could cause that statement to affect the slicing criterion. This
is what it means to be ‘safe’ in the context of static slicing.

As we shall see, this belief in safe, conservative, static slicing
rests on extremely shaky foundations; we give examples where
observation-based slicing highlights unsafe static slices. This is
one of the three primary contributions of the paper. It illustrates,
succinctly, the way in which observation-based analysis has
the potential to highlight issues in existing static analysis. The
other two contributions are an investigation of the potential
for observation-based techniques to produce minimal slices (in
special circumstances), and the impact of test suite size on the
quality of observation-based dependence analysis.

The remainder of the paper is structured as follows. Section II
presents basic definitions, including the ORBS algorithm [18],
section III presents the research questions followed by the
results in section IV. Related work is discussed in section V
and section VI concludes.

II. SLICING DEFINITIONS

Traditional program slicing can be classified as either static
or dynamic. This section describes how observation-based
slicing differs from these traditional forms of slicing.

A. Static Slicing

Static slicing [19] seeks to find an executable subset of a
program’s statements that will exhibit the same behaviour for a
specified variable at a specified location (i.e., a slicing criterion)
as the original program for all possible inputs. Weiser’s formal
definition [19] is as follows:

Static Slice: A static slice S of a program P on a slicing
criterion C is any executable program with the following two
properties:

1) S can be obtained from P by deleting zero or more
statements from P .

2) Whenever P halts on input I with state trajectory T ,
then S also halts on input I with state trajectory T ′,
such that PROJC(T ) = PROJC(T ′), where PROJC is
the projection function associated with criterion C.

It is interesting to note that while Weiser’s original definition
of program slicing is based on statement deletion, most work
on static slicing uses dependency analysis to determine which
statements cannot be deleted.

B. Dynamic Slicing

Dynamic slicing [20] preserves the behaviour of the slicing
criterion only with respect to a specific input. Most work on
dynamic slicing (e.g., that of Agrawal and Horgan [21]) tends
to describe an approach towards implementing dynamic slicing
instead of giving a formal definition of what dynamic slicing
is. Here, we present a generalized definition of dynamic slicing
that extends Weiser’s definition of static slicing to specific
inputs. This definition is similar to Korel and Laski’s [20]:

Dynamic Slice: A dynamic slice S of a program P on a slicing
criterion C and for inputs I is any executable program with
the following two properties:

1) S can be obtained from P by deleting zero or more
statements from P .

2) Whenever P halts on input I from I with state trajectory
T , then S also halts on input I with state trajectory T ′,
and PROJC(T ) = PROJC(T ′).

The criterion for a dynamic slice can concern either the value
of variable v at location l only for the ith occurrence in the
trajectory, denoted (vi, l, I), or all occurrences of v in the
trajectory, denoted (v, l, I).

While dynamic slicing introduces a specific program input to
slicing, dynamic slicing tools still rely on statically computed
dependency between statements.

C. Observation-Based Slicing

Observation-Based Slicing is a recently introduced alterna-
tive to dependence-based program slicing [18]: rather than
relying on dependency analysis to identify allowed deletions,
observation-based slicing deletes a statement of interest, ex-
ecutes the program with a given input suite, and observes
whether the projected trajectory of the slicing criterion changes.
If the trajectory changes, the statement cannot be deleted; if it
does not change, the statement can be deleted. Consequently,
it preserves the relevant part of the state trajectory from the
execution of the original program. The formal definition of
observation-based slicing is as follows:

Observation-Based Slice: An observation-based slice S of
a program P on a slicing criterion C = (v, l, I) composed
of variable v, line l, and set of inputs I, is any executable
program with the following properties:

1) The execution of P for every input I in I halts and
produces a sequence of values V (P, I, v, l) for variable
v at line l.

2) S can be obtained from P by deleting zero or more
statements from P .

3) The execution of S for every input I in I halts and
produces a sequence of values V (S, I, v, l) for variable
v at line l.

4) ∀I∈IV (P, I, v, l) = V (S, I, v, l).
The sequences can be produced by injecting a statement

that records the value of v to a file, just before line l. These
values should be comparable across attempts to delete different
statements, somewhat limiting the scope of what is observable
(e.g., objects should be serialisable). On the other hand, the



concept of ‘statement’ can be entirely language independent
and by deleting ‘lines’ from source files rather than program
statements, it is possible to slice multi-language systems [18].

D. Minimal Slices

According to the definitions, a program is a static, dynamic,
and observation-based slice of itself. The aim for any imple-
mentation is to produce slices that are as small as possible but
still a valid slice. A slice is considered to be minimal if the
removal of any statements yields an invalid slice. If the input set
I is the set of all possible inputs, then the minimal static slice,
the minimal dynamic slice and the minimal observation-based
slice are all the same. An implementation for observation-based
slicing will therefore compute static-equivalent slices for an
input set consisting of all possible inputs.

Almost all implementations for static and dynamic slicing
do not conform to the above definitions. The reason is that
they usually identify statements that should be in the slice but
they don’t actually produce executable programs.

E. ORBS

The current implementation of observation-based slicing,
ORBS, continuously attempts to delete increasingly longer
sequences of lines, starting from each line in the source file [18].
It increases the number of lines to be deleted together, up to
the size of the so called ‘deletion window’. This is because
certain lines can only be deleted simultaneously (e.g., opening
and closing brackets on successive lines). If the attempt results
in an observation-based slice, the lines are deleted, and kept
otherwise, after which ORBS moves the starting position of
the deletion window by one line and repeats until it reaches the
end of the source file. This forms a single iteration of ORBS.
As long as the previous iteration deleted some lines, ORBS
starts a new iteration. This is because certain lines become
deletable only after other lines have been deleted. When no
lines are deleted from the last iteration, ORBS terminates.
The result is a 1-minimal slice and thus it is not possible to
delete any single line from the slice. It may still be possible
to delete a combination of n lines; consequently the result is
not necessarily n-minimal.

To validate deletion of a set of lines, ORBS attempts to
compile and execute the slice candidate with the deletion in
question applied. If the deletion results in compilation errors,
it cannot produce a correct executable slice. Similarly, if the
deletion produces an executable slice that produces a different
trajectory from the original program, it cannot be a correct
observation-based slice.

III. RESEARCH QUESTIONS

In prior work [18], we demonstrated that the ORBS approach
to computing multi-language slices was feasible. We also
compared the resulting slices with various forms of dynamic
slicing, all of which are ‘algorithmic cousins’ of observation-
based slicing, because all share roots in dynamic analysis. In
this paper, we study the relationship between observation-based
slicing and static slicing.

Our experiments1 concern 12 programs, split into three sets,
each of which is specifically chosen to help address each of the
three research questions. The first research question concerns
the performance of observation based slicing on benchmarks
that have previously been used to exemplify static slicing
challenges in the literature. For this research question we use
three widely-studied (tiny) benchmark programs.

Our second research question focuses on the way observation-
based slicing can highlight unsafe static slices. For this research
question, we use seven programs from the Siemens Suite of
(relatively small) C programs, which have been widely-studied
in program analysis and testing research. These programs are
large enough to be non-trivial, yet small enough to allow us to
establish the ground truth for dependence, thereby facilitating
the comparison between observation-based and static slicing.

Finally, our third research question concerns the inherent
sensitivity of observation based slicing to the inputs used. For
this research question we used two larger programs, since we
do not need to establish the ground truth dependence, but
merely the effect of test adequacy on dependence observations.

More specifically, we address the following three research
questions:

RQ1: Subtleties and surprises: Can ORBS find minimal static
slices for known challenging benchmarks?
Although considering all possible inputs is often infeasible, the
resulting ORBS slice would be a static slice because it would
have the same behaviour as the original program on the slicing
criterion for all possible inputs – the semantic requirement of a
static slice. Because ORBS uses observation and deletion, such
an observation-based slice should be a minimal static slice. Of
course exhaustive testing is infeasible for all but the smallest
programs. The motivation behind RQ1 is not the construction
of tests that are sufficiently representative of all inputs, but
rather to see if, using such a set of inputs, ORBS can correctly
produce the minimal static slice.

Given the key role the inputs play, the relationship between
inputs and slices raises interesting questions. First, for small
programs that can be tested by test suites that capture exhaustive
testing, can ORBS yield minimal static slices? Of course, we
can only ask such a question where we know the ground truth –
the identities of all minimal slices. Furthermore, even if ORBS
can yield such minimal slices, this will only be interesting if the
slicing problems are, themselves, interesting and challenging
in some way. Therefore, we select three programs widely used
for understanding and explaining the limits of static slicing: wc,
(scam) mug, and mbe. For all three tiny benchmark programs,
it is possible to construct an input suite that captures exhaustive
testing (though, we cannot, of course, test exhaustively, even
in these cases). That is, there is a (small and finite) input set
I such that for all supersets I ′ ⊇ I, the slice, ORBS(v, l, I)
is the same as ORBS(v, l, I ′). In such cases, by the definition
of observation-based slicing, ORBS(v, l, I) must also be a
minimal static slice. In general finding such an input set is

1Experiment data can be found at http://crest.cs.ucl.ac.uk/resources/orbs



1 word_count()
2 {
3 while (scanf("%c", &c) == 1)
4 {
5 characters = characters + 1;
6

7 if (c == ’\n’)
8 {
9 lines = lines + 1;

10 }
11

12 if (isletter(c))
13 {
14 if (inword == 0)
15 {
16 words = words + 1;
17 inword = 1;
18 }
19 }
20 else
21 {
22 inword = 0;
23 }
24 }
25 }
26

27 int isletter(char c)
28 {
29 printf("%c ", c); // slice here
30 if (((c >= ’A’ ) && (c <= ’Z’))
31 || ((c >= ’a’ ) && (c <= ’z’)))
32 {
33 return 1;
34 }
35 else
36 {
37 return 0;
38 }
39 }

Fig. 1. The word count program with a printf added to slice on variable c.

intractable; however, for the tiny programs, it is possible, even
(relatively) straightforward.

The word count program, wc, (shown in Figure 1), computes
the number of lines, words, and characters in an input text file.
This makes it a good starting point, because its slices are used
in so many papers on slicing [6], [22], as trivial examples of
static slices. It is implicit in all treatments of this example,
that the slices are trivial, and present a few interesting issues,
hence its widespread use as an illustrative example. As we
shall see, observation-based slicing reveals that there are, in
fact, subtleties, even in this simplest of examples.

The SCAM mug example, mug, in Figure 2, appeared on the
souvenir mug given to delegates of the first incarnation of the
SCAM conference in Florence, 2001. It has subsequently been
used as a ‘challenge’ example for slicing algorithms [23], due
to its subtle semantics and the difficulty in obtaining a minimal
slice, even with very sophisticated algorithmic techniques.

The Montréal Boat Example, mbe, shown in Figure 3, was
formulated by Sebastian Danicic and John Howroyd during a
boat excursion at the 2nd incarnation of the SCAM conference
in Montréal, 2002. It was discussed at length at the conference
as an example of the subtleties of minimal static slicing [24].

We use these three simple examples to illustrate both the
subtleties of minimal slicing, and also the power of observation-
based techniques for finding slices in those special extreme
cases where testing can be particularly extensive.

1 int mug(int i, int c, int x)
2 {
3 while (p(i))
4 {
5 if (q(c))
6 {
7 x = f();
8 c = g();
9 }

10 i = h(i);
11 }
12 printf("@%d\n", x); // slice here
13 }

Fig. 2. The SCAM’01 Mug Example. Predicates p and q, and function h
depend only on their single parameter while functions f and g return (unknown)
constant values. The key point in this code is that in any terminating execution
the final value of x is independent of Line 8: if q(c) is initially false, it remains
false and thus x retains its initial value. On the other hand, if q(c) is true one
or more times then x will have the value assigned at Line 7. In the latter case,
it does not matter how often q(c) is true and thus the assignment at Line 8
does not impact the value of x at Line 12.

1 int mbe(int j, int k)
2 {
3 while (p(j))
4 {
5 if (q(k))
6 {
7 k = f1(k);
8 }
9 else

10 {
11 k = f2(k);
12 j = f3(j);
13 }
14 }
15 printf("%d\n", j); // slice here
16 }

Fig. 3. The Montréal Boat Example. Predicates p and q, and functions f1,
f2, and f3 are unshown. They depend only on their formal parameter. The
relevant observation is that in any terminating execution, the computation of k
is irrelevant to the computation of j.

RQ2: Highlighting Unsafe Static Slices. RQ2 uses the small
programs shown in Table I and known as the Siemens Suite
which have been widely-studied in previous work on analysis
and manipulation [25]. Each of the seven programs comes with
its own pre-defined test suite. We can use these to investigate
how observation-based slicing differs from traditional static
slicing for a set of non-trivial programs using test suites
designed by other researchers. For each program the set of
slices considered includes all primitive-variable assignments
and predicate uses.

Where the (claimed) static slice fails to contain a statement
that is included in the observation-based slice, it suggests
that the static slice may be unsafe. This occurs when a
statement is in the observation-based slice because there exists
an observation of behaviour that the slicing criterion depends
upon. Interestingly, this claim does not depend on test suite
adequacy. It only requires the existence of a test case that
forms a counter example to the safety claim made by the static
slice.

The stronger statement “the static slice must be unsafe”
would require a finer granularity; with ORBS’ current line-
based implementation, if a line of code includes multiple
behaviors (e.g., a call with two parameters where only one



TABLE I
SIEMENS SUITE: THE SET OF SMALL PROGRAMS USED TO ANSWER RQ2

Program LoC Slices
printtokens 733 81
printtokens2 579 75
replace 658 309
schedule 465 58
schedule2 392 78
tcas 185 43
totinfo 415 54

impacts the slicing criteria) then ORBS must (undesirably)
include both behaviors.

We wish to experiment with the potential for observation-
based slicing to expose unsafe static slices. However, it would
not be reasonable of us to use specially-constructed test suites
(as we have done for RQ1), since the effort required to construct
such test suites may not justify the potential for exposing unsafe
slices. This motivates our choice of the Siemens Suite. Since its
test suites are designed without any knowledge of observation-
based slicing, they are free from any bias in the selection of
test cases. Therefore, they allow us to investigate the kinds
of observation that can be made from ‘standard’ test suites,
widely used in other research.

The Siemens Suite programs are sufficiently small for a
human to understand and investigate the underlying semantic
cause for any differences in the slices constructed by traditional
slicing and those constructed by observation. However, they are
also sufficiently large that they denote nontrivial computation,
making these differences interesting and worthy of study.

RQ3: Observational Sensitivity to Inadequate Testing. RQ3
studies the impact of the sets of inputs used as test cases to
compute an ORBS slice. One interest here is the question of
how varying the set of inputs can provide a lower-bound for
the corresponding static slice, in much the way that union
slicing can [26]. For example, if I1 ⊆ I2 then ORBS(v, l, I1)
is likely2 a subset of ORBS(v, l, I2). However, for larger sets,
the difference is expected to be smaller because it becomes
increasingly more difficult to execute previously unexecuted
code. Thus the expected impact of an additional input case
diminishes as the input set grows in size. In this case the slices
produced using an ever increasing input suite should approach
an asymptotic limit. Furthermore, this asymptote provides a
prediction for the lower bound of the corresponding minimal
static slice. Observing how slice size monotonically approaches
this asymptotic limit allows us to investigate the impact of
inadequate testing on observation-based slicing.

For RQ3 we performed a set of experiments on the two
larger programs, which each come with their own test suite.
The first, ed, is a line-oriented text editor with 8 files and 2 836
lines of code. The second program, byacc is Berkeley Yacc,
which has 13 files and 7 320 lines of code.

2ORBS produces 1-minimal slices, but there may be multiple 1-
minimal slices for the same criterion. Therefore, it may be the case that
ORBS(v, l, I1) 6⊆ ORBS(v, l, I2).

1 word_count()
2 {
3 while (scanf("%c", &c) == 1)
4 {
5 printf("%c\n", c); // slice here
6 }
7 }

Fig. 4. A slice of the word count program.

1 while (scanf("%c", &c) == 1)
2 {
3 if (isletter(c))
4 {
5 inword = 1;
6 }
7 else
8 {
9 inword = 0;

10 }
11

12 printf("%d\n", inword); // slice here
13 }

Fig. 5. Excerpt of a second slice of the word count program

IV. RESULTS

In this section we present results, based on slices of each
of the three sets of programs, to answer the three research
questions. We constructed all static slices using the widely
available tool CodeSurfer, which implements the standard SDG
algorithm for (safe) static slice computation [27]. The standard
CodeSurfer options were used except for pointer analysis where
the most precise “pa af” option was used. We constructed
observation based slices with our tool ORBS [18].

A. RQ1: Subtleties and Surprises

Several ORBS slices show interesting aspects of observation
based slicing on the wc benchmark program. In the first, ORBS
discovers that it is possible to merge code from two functions.
This slice was taken with respect to the value of c at the top
of the function isletter. In this case it just so happens that
the same variable name is used in the calling function. The
resulting slice, shown in Figure 4, includes first three lines
from the function word count and then four from isletter.

As a second example, consider the slice taken with respect
to the value of inword just after Line 23 of Figure 1. This use
of the variable inword is reached by the definitions at Lines 17
and 22. The first of these definitions is control dependent on
the predicate inword == 0 and thus this predicate is included
in the CodeSurfer static slice. However, one can observe that
this predicate does not influence the value of inword, which is
either already 1 at Line 14 or set to 1 by Line 17. Thus, as
ORBS correctly determines, the slice on inword at Line 23 can
omit the predicate inword == 0 as shown in Figure 5.

For mug (Figure 2), the slice of interest is the slice taken
with respect to x at Line 12. For this slice, the key observation
is that because “x = f()” assigns x a constant value there are
really only two interesting executions: One in which q(c) is
always false and one in which it is true at least once. These two
are sufficient because x=f() assigns x an (unknown) constant
value and thus execution of the assignment is idempotent.

To compute ORBS slices of this code requires values for
the unspecified functions and constants. For the experiment,



1 int mug(int i, int c, int x)
2 {
3 while (p(i))
4 {
5 if (q(c))
6 {
7 x = f();
8 }
9 i = h(i);

10 }
11 printf("@%d\n", x); // slice here
12 }

Fig. 6. The key slice of the SCAM’01 Mug Example.

p(i) returns i % 5 != 0 and h(i) the value i+1; thus the while loop
will execute up to five times depending on the initial value of i.
This is sufficient to cover the possible cases.

The test suite includes two input cases. The first executes
the while loop zero times. This vacuously covers the q(c) is
always false case. The second input executes the loop twice
where q(c) is true the first iteration and false the second. This
covers the q(c) is true at least once case. To do so c’s initial
value is set to 50, the function q(c) returns c > 42, and the
function g() returns 10. For completeness, x is initialized to 10
and the function f() returns the value 20.

The reason that two iterations are used to achieve the second
case is to illustrate differences with dynamic slicing, which
includes the dependence of q(c) on c=g() and that of x=f() on
q(c) and thus includes c=g() in the slice. In contrast the ORBS
slice correctly omits c=g().

Using these two input cases produces the slice shown in
Figure 6. The static slice for this example as computed by
CodeSurfer, is the entire original program; the SDG for mug
includes a (loop-carried) flow dependence from c=g() to q(c)
as well as a control dependence from predicate q(c) to x=f();
thus while traversing these dependences (backwards) the slicer
includes Line 7, then Line 5, and finally Line 8. In contrast
the ORBS slice correctly omits Line 8 (c=g()).

It is illustrative to consider the slices that ORBS produces
when using each of the two input cases independently. In
the first case, when p(j) is always false, the empty program
is returned. On the other hand, the second input case alone
generates the single line program x = f(), which correctly omits
the unnecessary control structures.

Finally, consider program mbe. Similar to mug, the code
includes a path of dependence edges that causes the slice to be
larger than strictly necessary. Here, the control dependence of
j=f3(j) on q(k) causes CodeSurfer to include the computation of
k in the slice taken with respect to j at Line 15. However, careful
inspection of the program’s semantics reveals that the value
of k has no impact on the final value of j in any terminating
execution of the program. To see this, consider the iterations
of the program’s single loop. During a given iteration, if q(k)
is true then j remains unchanged. Only when q(k) is false is
progress made towards a value of j that makes p(j) false. In any
terminating execution the following pattern is repeated: there
are zero of more executions of Line 7 followed by execution
of Lines 11 and 12. Only the execution of Line 12 impacts
the eventual termination and thus the final value of j.

1 int mbe(int j, int k)
2 {
3 while (p(j))
4 {
5 j = f3(j);
6 }
7 printf("%d\n", j); // slice here
8 }

Fig. 7. The key slice of the Montréal Boat Example.

For this example, there is no finite set of inputs that covers
all possible executions because arriving at the final value of j
may take an unbounded number of loop iterations. However,
a single input case is sufficient to exercise all the possible
dependence patterns. (The reason a single input is insufficient
for the mug example is that two inputs are needed to cause x
to take on both of its two possible values.) This single input
exercises both assignment to k and also the assignment to j
multiple times. Here multiple executions force the retention of
the while loop.

Using any instantiation for the unbound functions, the ORBS
slice of mbe is shown in Figure 7. This slice correctly separates
and then omits the computation of k. As with mug the static
slice for mbe computed by standard static slicing algorithms
includes the entire program.

In summary, for RQ1, for all three programs, ORBS extracts
a precise (minimal) static slice, illustrating the potential power
of an observation-based approach to slicing. Although small,
mug and mbe show just how subtle the dependence analysis that
underlies slicing can be and how ORBS offers a complementary
alternative to traditional slicing when attacking this subtlety.
B. RQ2: Highlighting Unsafe Static Slices

Research question RQ2 considers how ORBS slices compare
to static slices on a set of small programs (the Siemens
Suite) where the ground truth can be (manually) determined
by examining slice differences. We constructed 741 slices in
total. 696 of these are taken from the Siemens Suite programs
shown in Table I. For ‘backwards compatibility’ with RQ1 and
completeness, we also include the tiny benchmark programs,
from which we constructed 45 slices.Slice Size Comparison
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Fig. 8. Slice Size Differences

The overall size difference for these 741 slices are graphed
in Figure 8. Each point is the percent reduction using ORBS
minus the reduction using CodeSurfer. These differences are
interesting because they illustrate the way in which ORBS
can be used as a sanity check on the static slicer. It suggests



instances where the static slice can be refined further. For
example, where static conservatism leads to an unnecessarily
large slice.

In Figure 8 the left-most 46 slices show a greater reduction
using CodeSurfer than ORBS. Each of these slices was
compared by hand to determine the cause. Granularity causes
29 of the 46. For example, CodeSurfer replaces the function
call change(pat, sub) with change(pat) effectively deleting the
computation of sub, while ORBS must either retain or delete the
entire line. A similar granularity issue occurs when the slicers
encounter line *prio = *command = -1. While CodeSurfer sees
this as two separate assignments, ORBS does not and must also
retain the computation of a valid address for both pointers to
avoid the premature termination of the program. The remaining
17 cases are caused by ORBS being inherently termination
sensitive while CodeSurfer, by default, is configured to compute
smaller, non-termination sensitive, slices.

In a similar example, the program tcas includes
need upward RA = Non Crossing Biased Climb() &&
Own Below Threat() on a single line, which forces ORBS
to include the function definition bool Own Below Threat()
with an empty body because otherwise the program does not
compile. Operating at a finer level of granularity, CodeSurfer
is able to omit the call to Own Below Threat(). In this case
the cost of the inclusion is only the three lines of the empty
function definition. However in the case of the call change(pat,
sub) the unwanted retention of sub forces its computation to
be retained, which involves more then three lines.

The granularity issues might be addressed by reimplementing
ORBS to consider tokens rather than lines of text. However,
of particular interest, and perhaps concern, are cases in which
ORBS includes a statement omitted from the static slice because
of an observed dependence. In the situation, observation based
slicing may have highlighted an unsafe static slice. Thus ORBS
can be used to investigate the soundness of a static slice. For
example, ORBS highlights the non-termination sensitivity in
the default configuration of CodeSurfer.

Another example of an unsafe static slice is shown in
Figure 9. A static slice that includes the variable command
should include the while loop. The lack of safety, in this
case, comes from the model used to capture IO related
dependences. CodeSurfer has two such models one that ignores
implicit dependence through IO streams and one that does not.
The ORBS slice inclusion of the while loop illustrates that
CodeSurfer’s default model that ignores such dependences can
produce unsafe slices. Using the alternate model the while loop
is included. However, this model can greatly increase the size
of a slice. Computing an accurate slice is more challenging
than simply refining the dependence model for fgets. Correctly
slicing IO streams is subtle and challenging [28], and ORBS
has merely highlighted one such instance.

As discussed in the introduction, it is questionable whether
any purely static analysis technique could ever account for all
dependencies between input and output streams, since these
may involve arbitrary ‘real’ communications as a source of
dependence. However, this example from our experiments

1 get_command(int *command, int *prio, float* ratio)

2 {
3 char buf[CMDSIZE];
4

5 if(fgets(buf, CMDSIZE, stdin))
6 {
7 *prio = *command = -1;
8 sscanf(buf, "%d", command);
9

10 while(buf[strlen(buf)-1] != ’\n’
11 && fgets(buf, CMDSIZE, stdin))
12 {
13 }
14 }
15 }

Fig. 9. When slicing this code, the static slice incorrectly omits the while loop
because it does not account for the implicit dependences caused by the input
stream. This is one example of an unsafe static slice highlighted by ORBS.

highlights the realisation that these issues arise even where the
input–output dependence does not involve complex interactions,
beyond the reach of any conceivable tool.

C. RQ3: Observational Sensitivity to Inadequate Testing

For both systems chosen for RQ3 (ed and byacc), we
experimented with four slicing criteria. For ed, they are

(A): The value of *addr_cnt in line 186 of file
main_loop.c

(B): The value of s in line 263 of file io.c
(C): The value of s in line 28 of file signal.c
(D): The value of *s in line 71 of file re.c
For byacc, the criteria are

(A): The value of k in line 25 of file symtab.c
(B): The value of c in line 25 of file output.c
(C): The value of state in line 252 in file lalr.c
(D): The value of symbol in line 252 in file lalr.c
All eight criteria have been chosen in a way that they are points
a maintainer may be interested in.

The test suite of byacc consists of 10 different grammar files.
The test suite of ed consists of 80 different command sequences
as input to ed. From the 80 inputs, we have selected 52 and
added three more (smaller) inputs: (1) an empty command
sequence, (2) a single command to enable error explanations,
and (3) a command to read a file.

For the experiments, we sorted the inputs by size so that
the sequence of inputs T = 〈I1, ..., In〉 is increasing in size.
For each k = 1...n and for each criteria (A)...(D) we have
computed an observation-based slice for the k smallest inputs:
Ik = {I1, ..., Ik} (n is 10 for byacc and 55 for ed).

Table II shows the resulting sizes for byacc for the 10
different inputs and the number of nodes in the System
Dependence Graph generated by CodeSurfer for the complete
program, for the static slice computed by CodeSurfer, and the
number of nodes in the System Dependence Graph as generated
by CodeSurfer from the ORBS slice using all ten inputs.

It is no surprise that for the first three smallest input sets the
number of deleted lines does not change: two of the inputs are
identical and the third input is only slightly changed. Running
ORBS with just one of the inputs or with all three inputs will
therefore not change the exercised dependencies.



TABLE II
NUMBER OF DELETED LINES FOR BYACC AND SIZE OF THE STATIC AND

FINAL ORBS SLICE IN SDG NODES

Input Ik Size (A) (B) (C) (D)
error 211 7124 7177 7303 7303
code_error 211 7124 7177 7303 7303
pure_error 233 7124 7177 7303 7303
code_calc 1824 6923 6846 5944 6311
calc 1824 6923 6846 6233 6350
pure_calc 1834 6923 6846 6233 6350
calc2 1950 6881 6828 6192 6304
calc3 1964 6881 6828 6192 6306
ftp 23819 6857 6804 6161 6294
grammar 27120 6828 6644 6033 6088
SDG Nodes 9556 9556 9556 9556
Static Slice 1429 3927 2817 2817
ORBS Slice 729 1120 1953 1874

The addition of the next three inputs causes a drop in the
number of deleted lines as the inputs are different and larger
than the first three. The next two inputs are again only slightly
different to the previous ones and only a small drop in deletions
can be observed.

The last two inputs are much larger than all the previous
ones, however, the drop of deletions is very small. Despite the
much larger size, the added inputs only exercise a few more
dependencies and it can be assumed that the minimal static
slice has been effectively approximated.

For the next part of the experiment, the original program has
been sliced by CodeSurfer for the four criteria. In addition, the
observation-based slices as computed by ORBS over all inputs
have been analyzed (but not sliced by CodeSurfer). Table II
shows the resulting number of nodes in the SDGs. For example,
byacc has an SDG consisting of 9556 nodes and the CodeSurfer
slice for criterion (A) has 1429 nodes (15%) while the SDG
for the ORBS slice has only 729 nodes (8%). It can be seen
that the ORBS slices are much smaller than the CodeSurfer
slices for all four criteria, a confirmation that static slices as
computed by typical tools are rather conservative.

The same experiment was undertaken using the set of 55
inputs for ed. Figure 10 shows the number of deleted lines with
increasing number of inputs. It can be seen that for the four
criteria, the increasing number of inputs allows progressively
fewer lines to be deleted. As the first input is empty, the ORBS
Slice deletes almost all of the 2836 lines of the program. Most
inputs do not cause an execution of the criterion (D) and
therefore the ORBS Slice stays empty. Input 24 (g2.ed) is the
first that causes an execution of (D) and produces a small slice.
As the next nine inputs do not cause an execution of criterion
(D), the slice does not change. ORBS produces very similar
slices for criteria (A) and (C) where the increasing number
of inputs cause a steady decrease in the number of deleted
lines. The slices for criterion (B) are initially empty (for the
first six inputs), but most of the following inputs cause large
ORBS slices, resulting in a large reduction in deleted lines for
input 7 (r2.ed). From there on, the increasing number of inputs
causes a steady decrease in the number of deleted lines. Overall,
adding more inputs at the end only causes a slight decrease
in deleted lines and it can be assumed that the input space

A B C D

Test 1 2 3 4

Name Size (bytes) indiv. incr. indiv. incr. indiv. incr. indiv. incr.

original 2836 2836 2836 2836 2836 2836 2836 2836

1 aaa0.ed 0 2792 2792 2792 2792 2792 2792 2792 2792

2 aaa1.ed 2 2748 2748 2792 2792 2697 2697 2792 2792

3 aaa2.ed 25 2697 2736 2792 2792 2676 2688 2792 2792

4 p.ed 27 2697 2709 2792 2792 2673 2685 2792 2792

5 n.ed 27 2697 2709 2792 2792 2673 2685 2792 2792

6 l.ed 27 2697 2709 2792 2792 2673 2685 2792 2792

7 r2.ed 31 2697 2709 1084 1084 2672 2684 2792 2792

8 e4.ed 31 2697 2709 1102 1084 2673 2684 2792 2792

9 e3.ed 31 2697 2709 1102 1084 2673 2684 2792 2792

10 ascii.ed 35 2697 2709 1287 1084 2673 2684 2792 2792

11 t2.ed 36 2659 2671 1039 1039 2647 2658 2792 2792

12 j.ed 37 2582 2564 1081 1039 2670 2663 2792 2792

13 d.ed 39 2581 2563 1083 1039 2653 2648 2792 2792

14 t1.ed 43 2552 2554 1081 1039 2643 2636 2792 2792

15 g5.ed 43 2377 2363 1017 1008 2368 2361 2792 2792

16 r3.ed 45 2630 2367 1039 1008 2625 2353 2792 2792

17 q.ed 45 2637 2319 2792 1002 2619 2306 2792 2792

18 e1.ed 45 2626 2319 1039 1002 2619 2303 2792 2792

19 w.ed 47 2697 2319 1084 1002 2673 2303 2792 2792

20 x.ed 50 2529 2319 1070 991 2655 2303 2792 2792

21 e2.ed 50 2697 2319 2527 991 2667 2303 2792 2792

22 nl2.ed 53 2635 2319 1039 991 2592 2303 2792 2792

23 nl1.ed 54 2653 2315 1081 991 2633 2297 2792 2792

24 g2.ed 57 2309 2241 1033 988 2372 2251 2639 2644

25 s2.ed 60 2702 2241 2484 898 2663 2251 2792 2644

26 g3.ed 62 2289 2166 2484 897 2295 2151 2792 2644

27 m.ed 65 2566 2166 1081 897 2650 2151 2792 2644

28 bang1.ed 67 2612 2145 2588 897 2595 2129 2792 2644

29 addr.ed 70 2541 2144 1081 897 2653 2127 2792 2644

30 k.ed 71 2711 2056 1081 897 2611 2039 2792 2644

31 r1.ed 73 2629 2046 1081 897 2668 2057 2792 2644

32 i.ed 81 2654 2040 1081 897 2634 2052 2792 2644

33 a.ed 81 2643 2058 1081 897 2623 2037 2792 2644

34 s3.ed 83 2651 2040 2439 890 2633 2038 2681 2665

35 g1.ed 86 2214 2043 954 886 2213 2037 2792 2665

36 v.ed 88 2319 2039 962 885 1928 1980 2638 2654

37 g4.ed 89 2503 2036 963 880 1951 1970 2792 2654

38 s1.ed 90 2690 2038 960 876 2628 1970 2671 2654

39 c.ed 107 2628 2039 1081 876 2622 1961 2792 2654

40 comment.ed 166 2359 2043 964 876 2356 1967 2792 2654

41 u.ed 167 2566 2042 2792 876 2625 1962 2792 2654

42 u.red 2677 1997 2792 866 2659 1972 2792 2654

43 h.red 2703 1973 2792 866 2647 1975 2792 2654

44 d.red 2674 1974 2792 866 2663 1970 2792 2654

45 z.red 2688 1995 2792 864 2668 1969 2792 2654

46 s6.red 2685 1970 2792 864 2665 1969 2792 2654

47 g3.red 2688 1980 2792 864 2676 1966 2792 2654

48 t1.red 2710 1970 2792 864 2652 1970 2792 2654

49 q1.red 2673 1959 2792 864 2661 1969 2792 2654

50 nl.red 2704 1977 2792 864 2684 1967 2792 2654

51 k2.red 2687 1966 2792 864 2673 1958 2792 2654

52 k3.red 2708 1957 2792 864 2669 1955 2792 2654

53 w2.red 2688 1955 2792 864 2668 1954 2792 2654

54 t2.red 2657 1955 2792 864 2634 1954 2792 2654

55 s1.red 2685 1954 2792 864 2665 1943 2792 2654

56 e3.red 2677 1930 2792 864 2671 1955 2792 2654

57 w3.red 2688 1932 2792 864 2668 1953 2792 2654

58 s5.red 2685 1950 2792 864 2665 1953 2792 2654

59 f2.red 2682 1949 2792 864 2673 1942 2792 2654

60 bang2.red 2686 1944 2792 2668 1946 2792 2553

61 s3.red 2685 1943 2792 2665 1946 2681 2654

62 g2.red 2688 1944 2792 2675 1946 2792 2654

63 f1.red 2677 1943 2792 2670 1946 2792 2654

64 e2.red 2672 1943 2792 2662 1940 2792 2654
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Fig. 10. Effects of Reduced Test Suites on Slices. The x-axis shows the
number of tests and the y-axis shows the the number of deleted lines.

TABLE III
NUMBER OF DELETED LINES FOR ED (FROM 2836 LINES) AND SIZES OF ED

AND OF THE STATIC AND FINAL ORBS SLICE IN SDG NODES

(A) (B) (C) (D)
Deleted Lines 1954 69% 864 30% 1943 69% 2654 94%
SDG Nodes 6605 6606 6628 6628
Static Slice 5025 76% 5025 76% 5025 76% 5025 76%
ORBS Slice 2594 39% 5722 87% 2644 40% 505 8%

is covered sufficiently. Note that the graph shows instances
where adding an input increases the number of deleted lines
instead of decreasing them, due to ORBS finding a different
1-minimal slice, slightly larger than the one before.

Again, a comparison with static slices as produced by
CodeSurfer has been made. Table III shows the results. Due to
the instrumentation for the criteria, the number of SDG nodes
for the original, unsliced, program are slightly different for
the four criteria (6605 – 6628). The static slices as produced
by CodeSurfer are the same for all four criteria, they contain
around 76% of the nodes of the original program. The final
ORBS slices over all 53 inputs, however, are quite different.
Criteria (A) and (C) produce slices of a typical size (39%/40%
of the nodes of the original program), criterion (D) produces
a very small slice of only 8% of the nodes. For criterion (B)
something interesting happened: The ORBS slice is actually
larger than the CodeSurfer slice, which, according to our
argument, should not happen. However, CodeSurfer has a
limited model of input/output and therefore does not identify
dependences via input/output (e.g., via files). As ed is mainly
about input/output, a large number of dependences are not
identified by CodeSurfer and the resulting slice will not only be
imprecise, but incorrect! ORBS does not suffer such problems:
As the inputs exercise dependencies via input/output, ORBS
will not delete the corresponding lines and therefore produces
correct slices, which, as in this case, can be larger than static
slices which are produced by tools. This is a typical problem
of static analysis which can only be correct within the assumed
model which is typically limited. Dynamic analyses have a
similar problem, they are also only correct within the assumed
model. However, the assumed model is not as limited as the
model for static analyses.

Overall, the above experiments have clearly shown that static
slices produced by tools are not only far from the precision
of minimal static analyses, but they can also be incorrect.



ORBS can produce slices much nearer to minimal static slices
provided the input domain is sufficiently covered.

V. RELATED WORK

Static slicing was introduced by Weiser [29]. Ottenstein and
Ottenstein [30] proposed that program slicing can be viewed
as a graph reachability problem and noted that the program
dependence graph (PDG) was the ideal structure for program
slicing. Horwitz et al. [31] introduced an algorithm which
extended the idea to slice entire programs (represented as
System Dependence Graphs) and later [27] introduced a two-
pass static slicing algorithm. This approach remains the most
pre-dominantly used and variants are widely researched.

There are many other flavours of static slicing that attempt
the reduce the size of the slice. Incremental Slicing [32] allows
selection of the type of data dependencies that are to be
included in a slice, by considering that all data dependencies
are not of the same importance. Stop-list slicing [33] allows
the programmer to define variables that are not of interest. The
stop-list variable set is used to purge the dependence graph
before computing slices with the standard graph reachability
algorithm, causing the slice to be smaller. Barrier Slicing [34]
allows the programmer to specify which parts of the program
can be traversed when constructing the slice and which parts
cannot. A barrier is specified with a set of nodes (or edges) of
the PDG that cannot be passed during the graph traversal, also
resulting in focused and smaller slices. Results presented here
concerning the safety (or otherwise) of supposedly ‘safe’ static
slices apply to all these (and other) forms of static slicing.

Amorphous Slicing [35] is another approach that aims to
preserve the semantics of the program but not the syntax.
Amorphous slices use transformation to simplify programs,
preserving the semantics of the program with respect to the
slicing criterion. Although ORBS only deletes lines of code,
this may cause merging and this could be regarded as a form
of (very slightly) amorphous slicing (depending on the precise
interpretation of the phrase ‘syntax preserving’).

Use of path-sensitivity analysis [36] with static slicing is
another approach to reduce slice sizes by removing infeasible
paths. However, such techniques suffer from their combinatorial
nature and can only work precisely in the absence of certain
constructs, such as loops.

To the best of our knowledge no other slicing approach
follows the observation-based statement-deletion approach used
by our ORBS algorithm. The ORBS algorithm [18], is a
dynamic form of slicing, but it constructs slices based on
dynamically observed dependencies, rather than dynamically
occurring (but statically determined) dependence (used in all
previous dynamic slicing approaches).

Dynamic slicing is a concept introduced by Korel and
Laski [20], [37]. They considered several algorithms to compute
dynamic slices based on their definition. In contrast, most later
work on dynamic slicing ‘defines’ dynamic slicing based on
the algorithms used to compute it (e.g., Agrawal et al. [21]
and Demillo et al. [38]). Although many research prototypes
and approaches exist [39]–[45], all approaches are for a single

specific programming language whereas the observation based
nature of ORBS allows it to slice programs constructed from
multiple programming languages [18]. Of all previous dynamic
slicing formulations, the closest to our observation-based slicing
is Critical Slicing [38]. However, we have found that critical
slices are significantly larger than observation-based slices and
are often incorrect [18].

The idea to delete parts of a program or test input is also
prominent in applications of delta debugging [46]–[48]. As
delta debugging can be very expensive, some approaches
have modified the original delta debugging formulation, so
that it exploits programming language syntax and semantics.
For example, Hierarchical Delta Debugging [49] exploits tree
structures for a tree-based delta debugging approach. Delta [50]
uses a separate tool to flatten tree structures found in programs
before applying delta debugging. Regehr et al. [51] exploit
the syntax and semantics of C for four delta-debugging based
algorithms to minimize C programs that trigger compiler bugs.

Jiang et al. [52] presented a forward dynamic slicing
approach similar in spirit with ORBS. They mutate the value of
the variable at the location as given by the slicing criterion. They
then observe the computed values in the state trajectory and the
dynamic slice consist of all statements for which the computed
values have changed compared to the trajectory of the original
program. Jiang et al. compare their approach to traditional
dynamic and static slicing to establish the accuracy of their
approach. Their results show that forward dynamic slicing
suffers from low recall of what they call dynamic semantic
dependencies which can have serious effects on impact analysis.

Union slicing [26] is also related to observation based slicing.
Like ORBS, the union slicing algorithm aims to approximate
the static slice by dynamic slices for a set of test inputs. It
does so by producing the union of the independently-computed
dynamic slices for each test case. However, since the union
slice is the union of all dynamic slices, it shares the critical
difference between dynamic and observation-based slicing:
The dependencies considered by union slicing are dynamically
occurring (but statically determined) dependencies, rather than
dynamically observed dependencies.

VI. CONCLUSION

Observation-based slicing is a new form of slicing in
which dependencies observed during execution are used to
construct slices. Previous work has compared observation-
based slicing to traditional dynamic slicing. This paper has
extended that analysis to compare observation-based slicing
with static slicing. We have shown that observation based
techniques, when guided by extremely high quality test cases,
can find static slices inaccessible to traditional static techniques.
These include minimal slices of benchmark programs that have
previously been used in the slicing literature to highlight static
slicing challenges. We have also experimentally demonstrated
the potential of observation-based slicing to highlight unsafe
static slices. Finally, since the quality of an observation-based
slice depends critically on the quality of the test suite used
in its construction, we investigated the connection between



observation-based slice size and test suite size. Overall, we
believe that our results illustrate the way in which observation-
based slicing provides a natural complement to traditional static
slicing.
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