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Abstract

As exemplified by power grids and large-scale brain networks, some functions of networks consisting

of phase oscillators rely on not only frequency synchronization, but also phase synchronization among

the oscillators. Nevertheless, even after the oscillators reach frequency-synchronized status, the phase

synchronization is not always accomplished because the phase difference among the oscillators is often

trapped at non-zero constant values. Such phase difference potentially results in inefficient transfer

of power or information among the oscillators, and avoids proper and efficient functioning of the

networks. In the present study, we newly define synchronization cost by using the phase difference

among the frequency-synchronized oscillators, and investigate the optimal network structure with the

minimum synchronization cost through rewiring-based optimization. By using the Kuramoto model,

we demonstrate that the cost is minimized in a network with a rich-club topology, which comprises the

densely-connected center nodes and low-degree peripheral nodes connecting with the center module.

We also show that the network topology is characterized by its bimodal degree distribution, which is

quantified by Wolfson’s polarization index.
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I. INTRODUCTION

As seen in power grids [1, 2] and networks of bursting neurons [3, 4], some functions of

complex networks consisting of phase oscillators are based on not only synchronization of fre-

quencies among the oscillators, but also synchronization of their phases. However, in general,

the frequency synchronization is more achievable than the phase synchronization because the

phase difference among the frequency-synchronized oscillators often falls into a non-zero con-

stant. Such non-zero phase difference avoids proper and efficient functioning of the complex

networks [1–6].

In power grids, alternating voltage of the power plants in the grids should be synchronized

around a certain specific frequency (e.g., 50 Hz in the most parts of Europe and 60 Hz in the

north America) [1], and disruption of the frequency synchronization causes a blackout in a

large area [1, 7]. In addition, the phases of the voltages of the power plants are also required

to be synchronized. As discussed in Appendix A, the difference in the voltage phases among

the power plants inevitably causes power loss that is consumed as heat in the power lines

among the plants [1, 2]. In this sense, the phase difference in power grids can be regarded as

synchronization cost. Considering recent growing environmental awareness and soaring global

demand of natural resources [8, 9], it is necessary to reduce the synchronization cost due to the

phase difference among the frequency-synchronized power plants.

In a large-scale brain network, some of its important functions are also based on not only

frequency- but also phase- synchronization [3, 4, 10, 11]. A previous electrophysiological study

has shown that spike activity recorded from monkeys’ cortices exhibited phase synchronization

in various frequency bands while the monkeys were conducting tasks that required integration

of visual processing and motor responses [10]. In another careful electrophysiology study,

Roelfsema and his colleagues recorded local field potentials (LFP) from the cerebral cortices of

cats and revealed that phase synchronization between LFPs recorded in the visual and parietal

cortices increased only when the cats focused their attention on the visual stimuli [12]. Other

studies used electro-encephalogram to record human brain activity and found that the increase

of phase synchronization in various frequency bands was associated with learning and perception

of visual images of the humans [13, 14]. Furthermore, even in large-scale brain networks,

such phase synchronization is thought to occur with zero time-lag [4, 12, 15]. As a whole,

these researches have suggested that the phase synchronization in large-scale brain networks
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has crucial functions such as integration of multiple information [3], neural communication

[16], and spike-timing-dependent plasticity [4]. Actually, some types of the disruption of the

synchronization are known to cause dysfunctions of memory learning [5] or psychiatric disorders

[6]. Hence, it is to some extent reasonable to hypothesize that large-scale brain networks have

a specific organization that minimizes phase differences among brain activity and makes it easy

for the entire networks to reach phase synchronization.

These previous literatures indicate the importance of investigation of the optimal network

topology that minimizes the phase difference among frequency-synchronized oscillators, which

can be regarded as synchronization cost. However, to our knowledge, little is examined about

this issue. Indeed, a series of previous literatures have investigated optimal network structures

by introducing a different type of synchronization cost, which is needed to build or maintain the

optimal network infrastructure [17, 18]. One of the studies regarded parameters related to cou-

pling strength among oscillators as synchronization cost and demonstrated that homogeneous

and uniform distribution of the coupling strength enhances the tendency of synchronization

[17]. Another study employing the same definition of synchronization cost suggests that more

heterogeneous network structures are necessary for simultaneous achievement of both the maxi-

mum synchronizability and minimum synchronization cost [18]. Another study also investigated

the optimal distribution of coupling strength that increases synchronizability among Kuramoto

oscillators [19]. However, these prior researches have not focused on synchronization cost due

to phase difference. Consequently, despite a large amount of prior literatures on optimal condi-

tions for synchrony in networks [20], it remains unclear about the optimal network structures

that minimize synchronization cost due to phase difference among oscillators.

In the present study, therefore, we examine the optimal network topology to minimize the

phase-difference-based synchronization cost. We take the following four steps:

(i) First, we define the synchronization cost, Sij, due to the phase difference between the

frequency-synchronized phase oscillators i and j in the Kuramoto model. We adopt the

Kuramoto model because the model has been used as approximation of various systems

including power grids [2, 21, 22] (Appendix B) and large-scale brain networks [23, 24].

(ii) Second, by using the definition, we numerically calculate the mean of synchronization

cost, 〈S〉, in the entire network.

(iii) Third, by using a rewiring strategy [25], we show that ”rich-club” network topology
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[24, 26–28], which consists of densely inter-connected modules and peripheral low-degree

nodes, has the minimum synchronization cost.

(iv) Finally, we characterize the rich-club network topology by quantifying the bimodality of

the degree distribution of the network.

II. METHOD

A. Definition of synchronization cost

We first define synchronization cost due to phase difference in an unweighted and undirected

network which is described by an adjacency matrix A and consists of N phase oscillators. Aij

is 1 when oscillators i and j are connected, and Aij is 0 when they are not. According to the

Kuramoto model, the phase of the oscillator i, θi, is described as

θ̇i = ωi − ε
∑
j

Aij sin(θi − θj), (1)

where ωi is the natural frequency of the oscillator i and ε is a coupling strength. To reduce

computational cost for the following rewiring-based optimization, we assume that ε is a constant

for any combination of oscillators. In this Kuramoto model, the synchronization cost between

oscillators i and j, Sij, is defined in the basis of the phase difference between them as follows:

Sij = (θi − θj)2 . (2)

Note that the synchronization cost is only defined after the network of the oscillators reaches a

state of frequency synchronization. In power grids, the network consisting of power plants can

be approximated by the Kuramoto model (Appendix B) and Sij can be regarded as an index

that is proportional to power loss due to difference in voltage phase between power plants i and

j (Appendix A).

B. Estimation of the mean synchronization cost

In the basis of the definition of Sij, we numerically estimate Sij for each edge in the following

four steps for a given network:
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(i) We set normally-distributed {ωi} for each node. It is because that previous studies on

real networks such as power grids and brain networks have assumed that the natural fre-

quencies of their belonging oscillators are symmetrically fluctuating around the averaged

frequency [4, 22, 29].

(ii) In the basis of the Kuramoto model described in Eq. (1), we numerically estimate phases of

the oscillators in a frequency-synchronized status, in which θ̇i becomes a common constant

value, Ω, for any i.

(iii) In the frequency-synchronized status, each oscillator has a different specific phase, θi.

Using the set of {θi}, we then evaluate Sij for each edge.

(iv) As described in (i), the set of the natural frequency, {ωi}, is fluctuating over time and,

consequently, the Sij is also fluctuating over time. Therefore, we repeat the procedure

(i)-(iii) 200 times with different sets of {ωi} and obtain 200 different sets of {Sij} for each

edge. Then, we average the {Sij} over time, obtaining 〈Sij〉 for each edge. Finally, we

average the 〈Sij〉 across edges, and obtain 〈S〉 for the entire network.

C. Rewiring-based optimization

To search for the optimal network topology with the least 〈S〉, we adopt the rewiring-

based method that previous studies used to explore the network topology with the largest

synchronizability [25]. We apply the following rewiring-based optimization procedure to a

given connected network with N nodes and mean degree of 〈k〉: At each step, the number of

rewired edges is randomly determined based on an exponential distribution. The set of edges to

be rewired is also randomly chosen in a given network. After the rewiring, we estimate phases

of the oscillators in a frequency-synchronized status and obtain 〈S〉updated. The attempted

rewiring is rejected if the updated network is disconnected. Otherwise, the rewiring is accepted

if ∆ 〈S〉 = 〈S〉updated− 〈S〉initial < 0, or with probability p = min(1, [1− (1− q)∆ 〈S〉 /T ]1/(1−q))

where T is a temperature-like parameter and q = −3 [25]. The initial rewiring is conducted at

T = ∞, and, after the first N rewiring, T is set as (1 − q)(∆ 〈S〉)max where (∆ 〈S〉)max is the

largest ∆ 〈S〉 in the first N rewiring trials. After that, T decreased 10% in every 10 rewiring

trials. This estimation process iterated until there is no change in more than 50 successive

rewiring steps. We apply this rewiring-based optimization to three different initial networks:
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an Erdős-Rényi (ER) random model, Watts-Strogatz (WS) model [30], and a Barabási-Albert

(BA) model [31] with N = 50 and 〈k〉 = 4 [25]. In all the cases, the coupling strength, ε, is

set to be 0.3. Each set of the natural frequencies of Kuramoto oscillators, {ωi}, is randomly

chosen from the normal distribution with an average of 100π and a standard deviation of 1.

During the optimization, we trace the standard order parameter, r, and local synchoroniz-

ability, rlocal [32], defined as follows:

reiψ =
1

N

∑
j

eiθj , (3)

rlocal =
1

2Nl

∑
i

∑
j∈Γi

∣∣∣∣∣ lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei[θi(t)−θj(t)]dt

∣∣∣∣∣, (4)

where Nl is the total number of edges, Γi is the set of neighbors of node i, and ψ is a global phase.

Furthermore, after the optimization is completed, we compare the optimized networks derived

from the different initial networks by estimating the following basic topological properties: mean

of shortest path length [33], mean of clustering coefficient [30], mean of betweenness centrality

[34], and degree correlation [34]. We conducted ten optimizations of ten different networks for

each type of the initial networks, and averaged these basic properties.

• The shortest path length, `ij, is defined as the shortest distance between two nodes i and

j [33]. The averaged shortest path length, 〈`〉, is defined as an average value of `ij over

all the possible pairs of the nodes in the network.

• The clustering coefficient for node i, Ci, measures the local group cohesiveness [30], which

is defined as the ratio of the number of links between the neighbors of node i and the

maximum number of such links. We define the mean clustering coefficient, 〈C〉, as an

average value over all the nodes.

• The betweenness centrality for node i, bi, is defined as a number of shortest paths between

pairs of nodes that pass through a given node [34]. We define the mean betweenness

centrality, 〈b〉, as an average value over all the nodes.

• The degree correlation for a network is defined as the Pearson assortativity coefficient

of the degrees, rassortative [34]. The coefficient enables us to quantify the preference for

high-degree nodes to attach to other high-degree nodes. Networks with this preference

show large rassortative.

6



D. Estimation of rich-club coefficient

We estimate rich-club coefficient, Φ(k), for both the initial networks and optimized networks.

According to the previous studies [24, 26–28], the rich-club coefficient for each degree k is

calculated as follows:

Φ(k) =
2E>k

N>k(N>k − 1)
, (5)

where E>k represents the number of edges among N>k nodes that have more than k degrees. As

in previous studies [24, 27, 28], we calculate normalized rich-club coefficients, Φnorm(k): First,

for each of the networks, we compute 100 random networks with the same degree distribution

by using the method used in previous studies [28, 35]. We then calculate the rich-club coefficient

for each of the random networks. Next, for each level of k, Φrandom(k) is estimated as an average

rich-club coefficient over the 100 random networks. Using the averaged rich-club coefficient, we

finally calculate the normalized rich-club coefficient as follows:

Φnorm(k) =
Φ(k)

Φrandom(k)
. (6)

III. RESULTS

A. Rewiring-based optimization

Fig. 1 shows representative results of the rewiring-based optimizations. 〈S〉 decreased from

approximately 6.5 × 10−2 to 4.5 × 10−2 even when the initial network structure was different.

In all the initial networks, 〈S〉 reached a stable status after approximate 400 steps of rewiring.

Strikingly speaking, we cannot guarantee that the optimal network was found, but this result

suggests that a reasonably robust approximation of the optimal topology was obtained in this

method.

During the optimization, the standard order parameter, r, was fluctuating just below 1 (a

small panel in Fig. 1 A). The local synchronizability, rlocal, showed the similar fluctuation below

1. Considering the previous studies on these parameters [32], these behaviors of r and rlocal are

thought to be related to the amount of the coupling strength, ε. The previous studies [32] have

demonstrated that, when the coupling strength is more than 0.2, both of r and rlocal reach a

plateau that is near to 1 regardless of the network topology. In the present study, the coupling

strength, ε, was set at 0.3 to achieve global synchronization and calculate 〈S〉. This relatively
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large coupling strength could result in the saturation of the global and local order parameters

during the optimization process.

Fig. 1 B shows that the optimized networks for the three different initial networks commonly

exhibit a characteristic topology: the networks have a densely interconnected core nodes and

low-degree peripheral nodes dangling the core module. The heterogeneous network features

were also observed in the basic network properties in the optimized networks (Tab. I). Com-

pared with the initial networks, the optimized networks tended to show larger averaged values

of the shortest path length, 〈`〉, betweenness centrality, 〈b〉, and degree correlation, rassortative.

The averaged values of the clustering coefficients, 〈C〉, were smaller in the optimized networks.

These results suggest that, through the optimization process, the network seems to enlarge its

heterogeneity.

B. Rich-club organization

This heterogeneous network topology has been reported as ”rich-club” organization in a

series of previous theoretical and experimental studies [24, 26–28]. The prior literatures have

characterized the organization by estimating normalized rich-club coefficients, Φnorm(k), that

are described in Eq. 6. If the network has rich-club organization, Φnorm(k) should be more than

1, and increase monotonically as k increases.

Fig. 2 shows the comparison in Φnorm(k) between the initial networks and optimized net-

works. To clarify the difference in the rich-club coefficients, we adopted as the initial networks

larger networks than shown in Fig. 1 B (i.e., N = 100, 〈k〉 = 10). Before the optimization,

Φnorm(k) was not always larger than 1 and did not show monotonic increase along k, which

is consistent with a previous study [27]. In contrast, in the optimized networks, the rich-club

coefficients were larger than 1 in large k, and almost monotonically increased as k increased.

These phenomena were observed commonly among the three different optimized networks. In

addition to the appearance of the networks in Fig. 1 B, this estimation of Φnorm(k) supports

the notion that networks with the minimum or a very small amount of synchronization cost

have a rich-club topology.
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C. Bimodal Degree Distribution

As shown in Fig. 1 B, the rich-club network topology consists of high-degree central nodes and

low-degree peripheral nodes. Therefore, we hypothesized that the topology can be characterized

by a bimodal degree distribution. To test the hypothesis, we estimated Wolfson’s polarization

index, P̂ [36]. The Wolfson’s index for degree distribution is defined as:

P̂ =
2 〈k〉
m

(2 (〈k〉2 − 〈k〉1)−G) , (7)

where 〈k〉 is the mean of the degree, ki, and m denotes the median of the degree. 〈k〉1 and

〈k〉2 are the mean values of {ki
∣∣ ki < m} and of {ki

∣∣ ki ≥ m}, respectively. G represents Gini

inequality index, which is defined as G = 1
2〈k〉
∑N

i=1

∑N
j=1

∣∣ ki−kj ∣∣. This Wolfson’s polarization

index shows the extent of the bimodality of the distribution. If the distribution is completely

the same as a uniform distribution, the P̂ is 0. If the half of population has nothing and the

other half shares everything, the P̂ reaches a maximum, 0.25. In the present case, larger P̂

indicates that the network has a more bimodal and bipolarized degree distribution.

We estimated P̂ during the rewiring-based optimization. Because P̂ can be calculated more

accurately for networks with more nodes, we used the BA model with N = 100 and 〈k〉 = 4

as an initial network for the optimization. As a result, in the course of the above-mentioned

optimization, 〈S〉 decreased during the rewiring-based optimization (Fig. 3A). Meanwhile, as

〈S〉 decreased, P̂ increased (Fig. 3B). Actually, the degree distribution changed from a power-

law distribution (Fig. 3C) to a bimodal distribution (Fig. 3D). This relation was also observed

for different initial networks (e.g., ER model). This correlation supports the hypothesis that

rich-club network with small 〈S〉 can be characterized by its bimodal degree distribution.

IV. DISCUSSION

The present study introduced synchronization cost based on phase difference among

frequency-synchronized oscillators. Using the rewiring-based optimization [25, 37], we showed

that the synchronization cost is minimized in a rich-club network topology. Furthermore, we

demonstrated that the network topology can be characterized by the bimodality of its degree

distribution.

The concept of synchronization cost is not a novel idea of the present study. As described

in Sec. I, a line of previous studies have investigated a different type of synchronization cost,
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which is based on coupling strength [17–19]. Whereas the present synchronization cost due to

phase difference can be regarded as dynamic cost per unit time, the cost based on coupling

strength can be considered as static cost that is related to building and maintaining of net-

work infrastructures. Interestingly, the optimal network topology with the least cost depends

on which of the two types of synchronization cost we adopt. The optimal networks for the

synchronization cost based on coupling strength often show more homogeneous properties [17]

than those for the other synchronization cost. The homogeneity of networks is desired to en-

hance synchronizability [25, 38]. Therefore, it may be necessary to investigate what network

structures balance these two types of synchronization cost.

The present synchronization cost in the present study can be another concept of load as-

signed to edge in a complex network. Previous studies used edge-betweenness as edge load

[39, 40], which is useful in various situations from human interaction [40] to data transmission

in computer networks [39]. However, because the edge betweenness does not consider syn-

chrony in networks, its properties have evident difference from those of the synchronization

cost. For example, as shown in the following approximation in Eq. (9), the synchronization

cost is lower between high degree nodes, and higher between low degree nodes. In contrast,

the edge betweenness tends to be higher in edges bridging high degree nodes and be lower

in edges bridging low degree nodes. These distinct properties suggest the possibility that the

synchronization cost can be another concept of edge load.

The synchronization cost in the present study, Sij, has a mathematical expression similar to

that for local synchronizability, rlocal [32]. However, the two parameters focus on different phases

of synchronization in complex networks. The local synchronizability enables us to quantify

the local construction of the synchronization pattern. Therefore, it is useful to investigate

properties of networks that are not yet fully synchronized. In contrast, the synchronization

cost in the present study can be only estimated in fully-synchronized networks. Therefore, in

the present study, we used a relatively large coupling strength, and achieved full synchronization

throughout the optimizations. As a result, in the present study, the local synchronizability was

always saturated.

Although the present study did not adopt models specific to any real networks, the findings

may help understanding large-scale brain networks. Recently, a few studies have reported the

existence of the rich-club organization in the large-scale brain networks. A previous empirical

study has demonstrated the existence of the rich-club organization in the human brain [28].
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Another study has investigated the anatomical connectivity in the cerebral cortex of cats and

has showed that rich-club organization controls the dynamic transition of synchronization in the

brain [24]. A recent review has suggested that the organization is a cost-effective network topol-

ogy for the brain networks, which are required to be adapted to various cognitive functions [41].

In addition to the context of cost-effectiveness, the rich-club network topology is thought to be

robust to random attacks [42]. This previous study has analytically and numerically demon-

strated that networks are robust to random attacks when they have highly-interconnected hub

modules and peripheral nodes (leaf nodes) with a single edge. This network topology has bi-

modal degree distribution and shows rich-club organization. Considering these prior literatures,

it is suggested that the rich-club organization is beneficial for the large-scale brain networks to

efficiently and robustly maintain its wide range of functions based on synchronization.

Through a relatively simple calculation, we can discuss the analytical interpretation on

the reasons why the rich-club topology appears after the rewiring-based optimization. Using

mean-field approximation, the Eq. (1) in the frequency-synchronized status can be described

as Ω = ωi − εki sin(θi − ψ), where ψ is defined in the Eq. (3). Therefore, if |θi − ψ| is small

enough, θi − ψ = 1
εki

(ωi − Ω), and (θi − θj)2 is described as

(θi − θj)2 =
(ωi − Ω)2

ε2ki
2 +

(ωj − Ω)2

ε2kj
2 − 2(ωi − Ω)(ωj − Ω)

ε2kikj
, (8)

for a set of {ωi}. 〈Sij〉 is obtained as averaged (θi − θj)2 across a large number of sets of {ωi}.

As in the above-described numerical estimation, we assume that {ωi} is distributed according

to the normal distribution with a mean of ω0 and a standard deviation of σ, and that the

synchronized frequency is always Ω in every set of {ωi}. Because we can also assume that ω0

is nearly equal to Ω, 〈(ωi − Ω)2〉 is considered to be equal to σ2, and 〈(ωi − Ω)(ωj − Ω)〉 is

considered to be equal to zero. Consequently, we obtain the approximation of 〈Sij〉 as follows:

˜〈Sij〉 =
σ2

ε2
(

1

ki
2 +

1

kj
2 ). (9)

This approximation was validated through comparison of ˜〈Sij〉 with the real 〈Sij〉, as shown

in Fig. 4 A (σ = 1, ε = 0.3). The two parameters had a large negative value of Pearson’s

correlation coefficient (−0.88).

This expression of ˜〈Sij〉 implies the reason why the rewiring-based optimization transforms

the initial networks to the networks with a rich-club topology: To achieve a small amount of

〈S〉, ˜〈Sij〉 should be small. When the node i already has a high degree in the initial network,
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it makes more contribution to a smaller ˜〈Sij〉 for the high-degree node to connect with another

high-degree node. It is also the case when the node i already has a small degree in the initial

network. As a result, during the rewiring, the low-degree nodes are likely to lose their edges,

while the high-degree nodes are not. Consequently, high-degree nodes tend to be gathered and

create a densely-connected core module, and the remaining low-degree nodes tend to connect

with high degree nodes in the core module.

Note that it is difficult to further extend this approximation. If this approximation of 〈Sij〉 is

accurate enough, a simple calculation of Eq. 9 leads us to the proportional relationship between

〈S〉 and 1
〈k〉

〈
1
k

〉
. Given 〈k〉 is a constant value as in the present study, 〈S〉 should be proportional

to
〈

1
k

〉
. However, as shown in Fig. 4 B, we could not observe a linear relationship between them.

This inaccurate approximation of 〈S〉 may be caused by accumulation of the small difference

between 〈Sij〉 and ˜〈Sij〉. This result suggests that we cannot extend this approximation to

representation of 〈S〉 only by
〈

1
k

〉
. In addition, we have to stress that this approximation only

hints a possible interpretation on the relationship between the rewiring-based optimization

and the rich-club topology, but does not directly explain why networks with the minimum

synchronization cost have the rich-club topology.
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FIG. 1: (Color online) A. Main panel: Change of the synchronization cost, 〈S〉, during rewiring-based

optimization. Despite different initial networks (ER, BA, and WS models) with N = 50, 〈k〉 = 4, the

synchronization cost converge to a similar amount of 〈S〉. Sub panel: Change of the standard order

parameter, r, during the optimization. In contrast to 〈S〉, the standard order parameter does not show

notable change, just fluctuating below 1. The line shows the change of r when the initial network is

the BA model. In cases of the other two initial networks, the similar fluctuations were observed. B.

Network topology optimized from different initial networks. Optimized networks are similar to each

other. They have rich-club network topology, which consists of a densely-connected core module and

peripheral low degree nodes connecting with the core. The color in the nodes represent the degree of

the nodes: darker nodes have more edges.
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FIG. 2: Difference in rich-club coefficients between the initial networks (circles and dashed lines)

and optimized networks (multiple marks and solid lines). While the normalized rich-club coefficients

Φnorm(k) do not show monotonic increase in the initial networks, those in the optimized networks

almost monotonically increase. These results suggest that the rewiring-based optimization transforms

the initial networks to the networks with a rich-club topology. To clarify the difference between before

and after optimization, we adopted larger networks (N = 100, 〈k〉 = 10) than in Fig. 1 (N = 50, 〈k〉 =

4).
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FIG. 3: As the synchronization cost, 〈S〉, decreases in the rewiring-based optimization (panel A), the

Wolfson’s polarization index, P̂ , increases (panel B). This relation suggests that the rich-club network

with a small amount of the synchronization cost can be characterized by bimodal degree distribution,

which is quantified by Wolfson’s polarization index. Indeed, the degree distribution changed from

a power-law distribution (panel C) to a bimodal distribution (panel D). To clarify the difference

between before and after optimization, we adopted larger networks (N = 100, 〈k〉 = 4) than in Fig. 1

(N = 50, 〈k〉 = 4).
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〉
. However, there is not a strong correlation

between them, which suggests a limitation of the approximation.



TABLE I: Basic topological properties of the optimized networks. Despite different initial networks,

the optimized networks had similar network topological properties. The values for the initial networks

represent averaged values across ten estimations, whereas the values for the optimized networks show

the mean ± s.d. across the ten estimations.

〈`〉 〈C〉 〈b〉 rassortative

initial optimized initial optimized initial optimized initial optimized

From ER models 1.9 3.5 ± 0.025 0.21 0.13 ± 0.010 44 122.2 ± 3.7 0.034 0.25 ± 0.12

From BA models 1.8 3.3 ± 0.021 0.33 0.15 ± 0.012 48 113 ± 2.8 -0.15 0.28 ± 0.021

From WS models 2.3 3.1 ± 0.017 0.62 0.16 ± 0.010 63 105 ± 2.4 0.047 0.25 ± 0.011



Appendix A: Definition of Synchronization Cost

In this section, we explain why power loss consumed in the electric line between power plants

can be represented by square of difference in phase of voltage between the two power plants.

In the following model, as in previous studies [2, 22], we do not consider the effect of the

length of the power line on the power loss. To estimate the power loss in a typical power line

shown in Fig. 5, we estimate active power flow (Pij and Pji), reactive power flow (Qij and Qji),

and delayed reactive power flow (Qci and Qcj) as follows [1]:

Pij =
ViVj sin(θi − θj)
Zij

2/f0Lij
+
Vi

2 − ViVj cos(θi − θj)
Zij

2/Rij

, (A1)

Qij = −ViVj sin(θi − θj)
Zij

2/Rij

+
Vi

2 − ViVj cos(θi − θj)
Zij

2/f0Lij
, (A2)

Qci =
f0Cij

2
Vi

2, (A3)

where f0 represents synchronized angular frequency of alternating voltage, and Zij
2 = Rij

2 +

(f0Lij)
2. Pji, Qji, and Qcj are obtained by exchanging i and j. Using these power flows, the

active power loss due to resistance, P ij
loss, is calculated as Pij + Pji, whereas the reactive power

loss due to inductance, Qij
loss, is estimated as Qij +Qji +Qci +Qcj as follows:

P ij
loss =

Rij

Zij
2

(
−2ViVj cos(θi − θj) + Vi

2 + Vj
2
)
, (A4)

Qij
loss =

Zij
2

f0Lij

(
−2ViVj cos(θi − θj) + Vi

2 + Vj
2
)

+
f0Cij

2
(Vi

2 + Vj
2). (A5)

The total power loss is estimated as a combination of the active power loss and the reactive

power loss [1]. By using a second-order Taylor expansion, we regard the total power loss,

P ij
loss +Qij

loss, as a0 + a1 (θi − θj)2, where a0 and a1 are constants (a1 > 0). Therefore, we define

the synchronization cost, Sij, for a power line between power plants i and j as

Sij = (θi − θj)2 . (A6)

Appendix B: Power Grid as Kuramoto Model

In this section, we explain that, under several assumptions, we can approximate power grids

by the first-order Kuramoto model of nonuniform oscillators.

As previous studies [2, 21, 22], we model a power grid as follows: The structure of the power

grid with N power plants is represented as an unweighted and undirected adjacency matrix A,



where a node represents a power plant and an edge a power line. Aij is 1 when power plants

i and j have a power line between them, and Aij is 0 when they do not. According to the

previous studies [2, 21, 22], the phase of the output voltage of the power plant i, θi, is described

as

θ̇i =
fi
Di

−
∑
j

Wij

Di

Aij sin(θi − θj), (B1)

where Di denotes a damping constant, Wij is an amount of power transfer between power plants

i and j, and fi represents the natural frequency of the output voltage from the power plant

i. To reduce computational cost for the following rewiring-based optimization, we assume that

Wij/Di = ε for any power line. Because fi/Di is specific to power plant i, we replace the value

with ωi. Consequently, the voltage phase of the power plants can be expressed in the Kuramoto

model as

θ̇i = ωi − ε
∑
j

Aij sin(θi − θj). (B2)
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FIG. 5: Panel A shows a typical power line between power plants i and j. Vi cos θi and Vj cos θj indicate

the voltage of the output from the power plants. Rij , Lij , and Cij indicate resistance, inductance, and

conductance between the power plants. As show in panel B, S is defined in every power line based on

the phase difference of the voltages between the connecting power plants.


