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ABSTRACT.  Conditions are derived under which there is local nonpara-
metric identification of values of structural functions and of their derivatives
in potentially nonlinear nonseparable models. The attack on this problem is
via conditional quantile functions and exploits local quantile independence con-
ditions. The identification conditions include local analogues of the order and
rank conditions familiar in the analysis of linear simultaneous equations models.
The derivatives whose identification is sought are derivatives of structural equa-
tions at a point defined by values of covariates and quantiles of the distributions
of the stochastic drivers of the system. These objects convey information about
the distribution of the exogenous impact of changes in variables potentially en-
dogenous in the data generating process. The identification conditions point
directly to analogue estimators of derivatives of structural functions which are
functionals of quantile regression function estimators.

1. IDENTIFICATION IN NONSEPARABLE MODELS

1.1. Introduction. Econometric models in which the unobservable terms that
induce stochastic variation are potentially nonseparable are of fundamental interest.
First because they constitute a very general form of econometric model, a construc-
tion sympathetic to the qualitative nature of the information on economic processes
that economic theory provides. Second, because in nonseparable models, sensitivi-
ties to changes in conditioning and other variables exhibit stochastic variation. In a
microeconometric context this admits the possibility that a policy intervention may
have effects which vary across individuals that, measured by covariates, are identical.

A simple example of the type of model considered in this paper is the following
stylised model for data which are realisations of a jointly determined labour market
outcome, W, for this example the log wage, and a measure of schooling (S), given

*T am grateful to three referees and an editor, to Christian Dustmann, Art Goldberger, Hidehiko
Ichimura, Tony Lancaster, Charles Manski, Whitney Newey, Peter Phillips, Richard Smith, Richard
Spady, Tieman Woutersen and participants at the Malinvaud Seminar at CREST and at seminars
at Nuffield College Oxford, the European University Institute and University College London for
comments on earlier versions of this and related papers.
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values of observable covariates, Z. Stochastic variation is caused by two unobservable
variables, F' and A, which are here thought of as capturing respectively fortune in
the labour market and ability.

W = w(S,Z,F,A)

(1)
S = s(Z,A)

This paper addresses the problem of identifying first partial derivatives of equations in
potentially nonseparable systems like this one, at chosen quantiles of the distributions
of unobservable stochastic drivers, F' and A, and at chosen values of the covariates,
Z.

Of particular interest in this example is the “returns to schooling”, the first partial
derivative of the function w with respect to S. The specification (1) permits the
returns to schooling to vary with Z (a consequence of allowing nonlinearity in S and
Z) and with F' and A (a consequence of allowing F' and A to appear in nonseparable
form). David Card’s 1998 Fisher-Schultz lecture (Card (2001)) develops a model in
which returns to schooling vary with unobserved ability.

This paper develops weak conditions under which this derivative is locally identi-
fiable at a chosen value of Z and at chosen quantiles of the distributions of F' and A.
It is shown that the local identifiability of such a derivative can be achieved under
weak local restrictions on the model. For example independence of {F, A} and Z is
not required. The identification conditions are developed in the context of a non-
parametric specification but in a way which allows the impact of semiparametric and
parametric restrictions to be assessed. The identification conditions are constructive
in the sense that they point directly to analogue estimators of the values of derivatives
of structural equations at particular quantiles.

Knowledge of conditions sufficient to ensure nonparametric identification of a
model feature is useful even if, in estimation, a less flexible, semiparametric or para-
metric specification is employed. With nonparametric identifiability assured one can
regard less flexible specifications employed during estimation as approximations to
the data generating process, content that details of the approximation (for example
linearity, a single index condition) are not the driving force achieving identification.
This is a point stressed by Roehrig (1988). Nonparametric identification is of par-
ticular interest in nonseparable models because in such models, in which there are
potentially heterogeneous responses to changes in conditioning and other variables, it
may be difficult to specify a sufficiently rich parametric form of the data generating
process.

This paper develops local conditions under which there is local identifiability of
model features. In the example above identification can be achieved if the degree of
dependence between {F, A} and Z is limited at the values of Z, F' and A of interest
though there may be strong dependence at other values. A “local instrument” is
required to have no first order impact on the wage equation at the values of Z, F
and A of interest though it may have strong impact at other values.
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In a policy context this is an issue of practical importance. For example, when
seeking to understand the impact on a labour market outcome of a change in the
amount of schooling an individual receives, one may be mainly interested in the
impact on people who, pre-intervention, would have had low levels of schooling, and
perhaps on people at the lower end of the distribution of “ability”. Similarly, when
seeking to understand the impact of policies that raise, prices, say of foods, one may be
particularly interested in the impacts of the policy on the poor and on households with
relatively high demands for food due to unobserved variations in tastes. In both these
cases a focused, local analysis of the impact of a policy change is appropriate. This
paper provides local conditions under which local features of models are identifiable.

Happily the emphasis on local identifiability brings with it very substantial ana-
lytic benefits. In sufficiently “smooth” problems of the sort studied here, nonlinear
equation systems have locally linear representations. This allows the armoury of
linear algebra to be deployed and leads to identification conditions which are essen-
tially local versions of the rank and order conditions developed by Frisch (1938) and
Koopmans, Rubin and Leipnik (1950), familiar territory in introductory econometric
courses.

The approach of this paper to the problem of developing conditions under which
model features are identifiable is unconventional. Before outlining the approach it is
helpful to define the concept of identification of a feature of a model. An example
of a model feature is the value of a derivative of a structural equation evaluated at
chosen quantiles of the distributions of unobservable stochastic drivers and at chosen
values of covariates.

Following Hurwicz (1950), let a model, m € 91, consist of (a) equations determin-
ing outcomes as functions of covariates and unobserved stochastic drivers, and (b) a
probability distribution for the stochastic drivers conditional on covariate values such
that (a) and (b) together imply a probability distribution of outcomes conditional
on values of covariates. Let 94 C 9 be a set of admissable models, that is models
whose components (a) and (b) satisfy a priori restrictions. The a priori restrictions
that limit the class of admissable models to 9t* are sufficient to identify a model fea-
ture F(m) when that feature takes the value F*, if every admissable model, m € 94
with F(m) = F* generates a distribution function of outcomes given covariates such
that a well defined functional applied to that conditional distribution function yields
one and only one value, namely F*.

Identification conditions are naturally of two types: restrictions on model equa-
tions, for example order and rank type conditions, and restrictions on the conditional
distribution of the stochastic drivers given covariates. In the analysis of separable
models it is common to find the latter restrictions couched in terms of conditional
moment restrictions, for example requiring stochastic drivers to be mean independent
of covariates. In nonseparable models such restrictions are unhelpful without severe
restrictions on the model equations (see for example Card (2001)) and the solution
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commonly adopted! when model equations are relatively unrestricted is to restrict
stochastic drivers to be distributed independently of covariates. This is a very strong
restriction which might be thought too demanding in many problems that arise in
practice.

Aiming, as in this paper, at local identification of model features allows progress
to be made under far weaker conditions than full independence. The key to achieving
this is to refocus attention from direct to inverse conditional distribution functions
of the stochastic drivers (F' and A above) given covariates (Z), that is to conditional
quantile functions.

This paper considers local restrictions on conditional 7-quantile functions? of &
given Z, local in the sense that they may apply at some values of 7 and Z but not at
others. Weak conditions on the model equations are developed, sufficient to ensure
that conditional quantile functions of outcomes (V') given covariates (Z), carry enough
information about the model equations to enable a functional of conditional quantile
functions of Y given Z to identify the features of the model that are of interest.
The conditions on the model equations include smoothness restrictions, restrictions
to classes of functions which exhibit a degree of monotonic variation with respect
to certain of the stochastic drivers, and local order and rank conditions. The latter
restrict certain covariates to have no local influence in some equations and to have
local influence in other equations.

An attack via conditional quantile functions is particularly well suited to mod-
els with potentially nonseparable disturbances because of the equivariance property
of quantiles, namely that the 7-quantile of a strictly increasing function of a ran-
dom variable is the result of applying that function to the 7-quantile of the random
variable. Under suitable conditions this allows a direct link to be forged between
conditional quantiles of disturbances and conditional quantiles of outcomes.

A result of the analysis of this paper is a set of rather weak conditions sufficient to
ensure that well defined functionals of conditional quantile functions associated with
the distribution of outcomes given covariates identify derivatives of model equations
evaluated at chosen values of covariates and quantile probabilities. The result points
directly to analogue estimators of the model derivatives obtained by applying the
identifying functionals to estimated conditional quantile functions of outcomes given
covariates. The properties of estimators of conditional quantile functions are well

!See for example Roehrig (1988) and Imbens and Newey (2001).
2Let A be a scalar, continuously distributed random variable with strictly increasing conditional
distribution function given a vector of covariates B = {B;}X,

P[A < a|B = b] = Fap(alb).

The conditional 7-quantile function for A given B is the inverse function associated with F4 z(-|-)
relative to its first argument, the solution to

T = Fp(Qa(7,0)[b).
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understood and the analogue estimator is an elementary manipulation of derivatives
of the estimated conditional quantile functions. As a result there is no new estimation
technology required to apply the results of this paper and widely available freeware?
can be used to calculate estimates.

The nature of the results of this paper and their implications are easiest under-
stood in the context of the simple returns to schooling example introduced earlier. A
brief review of related literature follows the example and the Section concludes with
a plan of the remainder of the paper.

1.2. Example: Identification of returns to schooling. Consider again the
model for a jointly determined labour market outcome, W, and a measure of schooling
(S), uniquely determined given a value of observable covariates, Z, and unobservable
continuously distributed disturbances, F' and A as follows.

W = w(S,Z,F,A)
S = s(Z,A)

Let z*, be a value of Z and let g3 and ¢’ be the 7%- and 75-quantiles of the distri-
butions of A and F'. These are respectively quantiles of the conditional distribution
of A given Z = z* and of F' given A = ¢¥ and Z = z*. A point at which to identify a
structural derivative is specified in terms of probabilities defining quantiles because,
without further restrictions on the equations of the system, the joint distribution of
F and A is identifiable at best up to strictly monotonic transformations of F' given
A and Z and of A given Z.

Let s* = s(z*, ¢%) which is the amount of schooling received by a person at the
T%-quantile of A given Z = z* implied by the model. Denote the derivative of interest,
the “returns to schooling”, evaluated at this point by:

8s(2*, 7o, ) = Vew(s*™, 2%, ¢ q1).

This is the returns to schooling for a person with Z = 2*, at the 7%-quantile of the
distribution of ability given Z = z*, and at the 7}-quantile of the distribution of
fortune given Z = z* and given ability is equal to the 7%-quantile of ability given
Z = z".

Consider a restricted class of models in which at the point of interest, w is differ-
entiable with respect to its arguments and a strictly monotonic function of F', and s
is differentiable with respect to its arguments and is a strictly monotonic function of
Al

Suppose the class of models is further restricted so that, at the point of interest
(defined by z*, 75 and 7%),

3See the excellent R, (Hornik (2002)), available from http://cran.r-project.org.
4Many of these conditions need apply only locally to achieve local identification. Strict mono-

tonicity is a stronger condition than is required. A precise statement of the conditions is in Section
2.
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1. the first partial derivative of w with respect to some element, Z;, of Z is zero
and the first partial derivative of s with respect to that element Z; is nonzero®,

2. the conditional quantiles, ¢} and ¢}, have zero derivatives with respect to the
element Z;.

Consider the following functional of the joint distribution function of W and S
given Z.

VZ{,QWLS'Z(T*F? 8*7 Z*)
Vz,Qsz(T%, 2%)

The results of this paper imply that all models in the restricted class for which
the returns to schooling, 65(z*, 7%, 7%), is equal to some value d, generate conditional
quantile functions such that gz, (2%, 75, 7%) = d.

This secures the identification of ég(z*, 75, 7%) in the following sense. If one is
able to restrict the class of admissable models as indicated then one can be assured
that the functional mgz, (2%, 75, 7% ) applied to the joint distribution of W and S given
Z will yield the value of d whichever model among the class of admissable models
with that value of 8g(2*, 7%, 7% ) generates data.

The following remarks will be amplified later in the paper.

(2)

Uys (Z*u T*F; T:k4) - VSQWLSZ(T;?J 8*7 Z*) +

1. Overidentification. If there is more than one element Z; satisfying the local
rank and order conditions then the derivative 6g(z*, 7r, 74) is locally overiden-
tified.

2. Localness. The result allows the possibility of identification of a structural
derivative evaluated at some quantile probabilities (e.g. corresponding to me-
dians) but not at others. Local identification does not require full statistical
independence of A and F' relative to Z. It can be secured at some values of a
“local instrument”, that is Z;, but not at others®.

3. Identification of other structural derivatives. Identification of other struc-
tural derivatives can be achieved in a similar fashion. For example, let

6z,(2", T, ) = Vgw(s™, 2%, ¢4, qr)
and consider the functional

72,22 TE, Th) = Vz,Qwsz(Tk, s, 27) (3)
Vz,Qs12(T%, %)
Vz,Qs1z(T%, 2*)

—Vz2,Qwisz(TE, 8, 2%) X

®These conditions are termed local order and rank conditions.

6For example one might consider using father’s income as an instrument but admit the possibility
that, for high enough values of father’s income, the labour market outcome might be sensitive to
father’s income. In that case one could secure identification of the returns to schooling for people
with lower income fathers.
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All models in the restricted class for which 6z, (2*, 7%, 7%) = d generate joint
distributions for W and S for which 7z, z,(2*, 7%, 7%) = d.

4. Average derivatives. If the identification conditions hold for Z = z* over a
set of quantile probabilities, T, then the expected value of (a function of) the
structural derivative given Z = z* conditional on A and F' lying in the implied
set of values is identifiable as the integral of (the function of ) 65(z*, 7, T4) over
Tr,Ta € T divided by the probability that A and F' lie in the set of values.
This is developed in Section 4.

5. Estimation. The constructive identification of, for example, 8g(z*, 7%, 7%)
points directly to estimation using the analogue principle (see Manski (1988)),
applying the functional wgz, (2*, 75, 7% ) to estimates of the conditional quantile
functions of W and S given Z.

(a) Estimation could be based on a parametric, a semi- or nonparametric
specification of the conditional quantile functions.

(b) If there is overidentification the resulting multiplicity of estimates can be
efficiently combined using a minimum distance procedure.

(c) With a parametric linear specification of w and s this leads to an “indirect
least squares” type alternative to the Two Stage Least Absolute Deviations
(2SLAD) estimators proposed by Amemiya (1982).

Properties of estimators follow directly from well known results on quantile re-
gression function estimators, so there is only a brief consideration of estimation in
Section 3.

In Section 2 formulae like (2) are developed for the general M equation case. That
development is now sketched for this simple two equation example.

The monotonicity of the schooling equation with respect to ability, together with
the smoothness and continuous distribution restrictions, implies that the 7%-quantile
of S given Z = z* is determined by

Qs1z(T,27) = s(2", ¢4) = & (4)

where, recall, ¢ = Qaz(7%, %) is the conditional 7%-quantile of A given Z = z*.
This identifies the value of s at z* and, if ¢ does not vary with Z at z*, the derivatives
of Qsz(7%, Z) with respect to Z at z* identify the derivatives of s with respect to Z
at 2*.
With the wage equation rewritten using the inverse schooling function, s~1(Z, S),
as follows,
W =w(Z,F,s(Z,09))

strict monotonicity with respect to variations in /' implies that the conditional 77-
quantile of W given S = s* and Z = z* is determined by

QW|SZ(T*F> 8*7 Z*) = ’lU(S*, Z*a Q;a qul)
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where ¢4 = s71(2*, s*) and ¢} = Qpjaz (T, Qajz(T%, 2*), 2*). This identifies the value
ofwat Z=2"5S=s"F=q, A=qj.

The derivative of Qwsz(75, S, 2*) with respect to S at S = s* in general has
contributions directly from S (it is this contribution whose identification is sought)
and indirectly from ¢} and ¢%.

The conditional quantiles g5 and ¢% are restricted to have zero derivatives with
respect to Z. So, differentiating Qw/sz(7F, s*, Z) with respect to Z;, which recall is
restricted to have no direct effect on w at the point of interest, results on evaluation
at Z = z*, in an expression equal to the indirect contributions to the derivative of
Qw|sz (T, S, 2*) with respect to S at S = s* scaled by the relative sensitivity at
Z =z*and S = s* of s71(Z, 9) with respect to Z; and S.

This scaling factor is minus the derivative of s with respect to Z; at Z = z* and
S = s* which is identified from (4) as minus the derivative of Qg2 (7%, Z) with respect
to Z; at z* and is required to be nonzero. Adjusting accordingly and isolating the
term of interest produces equation (2) above.

1.3. Related literature. The study of parametric identification has a long his-
tory in econometrics starting with Working (1925, 1927) and Frisch (1934, 1938)
and with notable contributions by, among others, Haavelmo (1944), Hurwicz (1950),
Koopmans, Rubin and Leipnik (1950), Wald (1950), Fisher (1959, 1961, 1966), Wegge
(1965) and Rothenberg (1971). One product of this research was the order and rank
conditions in linear models, local versions of which feature in the results of this paper.

There has been considerable attention paid to the problem of determining condi-
tions under which there is nonparametric identification of structural models. Roehrig
(1988), extending the work of Brown (1983), considered global nonparametric identi-
fication of structural equations under the restriction that the stochastic drivers of the
system (disturbances) are distributed independently of covariates. Much of Roehrig’s
development is for the case in which the disturbances appear additively in the equa-
tions of the model. Newey and Powell (1988), Newey, Powell and Vella (1999), Pinkse
(2000), Darolles, Florens and Renault (2000) study models with additive disturbances
which satisfy mean independence conditions of various types. Blundell and Powell
(2000) provide a survey of mean independence based work in this area.

There is a large recent literature concerning identification and estimation in mod-
els involving outcomes, treatments and instrumental variables, some or all of which
are discrete’. The methods of this paper are not applicable in these problems be-
cause they require variables to exhibit continuous variation at the points at which
identification is sought.

Recently there has been interest in determining when global identification can be
achieved in models with nonseparable disturbances. Brown and Matzkin (1996) study
the identification of nonparametric primitive functions (e.g., production or utility
functions) associated with simultaneous equations systems under the assumption that

See for example Heckman (1990), Imbens and Angrist (1994), Das (2000) and Vytlacil (2002).
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disturbances and covariates are independently distributed. Altonji and Matzkin,
(2001) study panel data models with endogeneity under conditional exchangeability
assumptions.

In this paper the focus is on local identification, rather than global identification
of structural equations or “global functionals” of them, for example the average struc-
tural functions treated in some of the literature. Local identification conditions are
rather easy to develop as will be seen in Section 2. When conditions under which it
is achievable have been obtained, and one is dealing with a problem in which there is
sufficient smoothness, one can address global identification by asking whether the lo-
cal conditions hold globally. In parametric models the object that is identified locally
may be a “global” parameter in which case one automatically has global identification
of that parameter but under rather weak local identification conditions.

Imbens and Newey (2001) study a triangular, two equation, nonseparable struc-
tural model of the sort addressed in this paper. Global identification is demonstrated
in restricted models in which there is full independence of disturbances and covari-
ates. Imbens and Newey attack the identification problem from the standpoint of
the distribution functions of the observable variates whereas here inverse distribution
functions, that is quantile functions, are the starting point. The Imbens and Newey
estimation procedure entails rather demanding nonparametric distribution and mean
regression function estimation in contrast to the estimation procedure suggested by
the results of this paper, which entails conventional conditional quantile function es-
timation. Chernozhukov and Hansen (2001) take a quantile based approach to global
identification of treatment effects under full independence conditions.

The objects whose identification are considered in this paper, derivatives of struc-
tural functions evaluated at quantiles of the distributions of stochastic drivers of
the system, can give interesting information about the distribution of policy impacts
across a population. There is a recent literature aimed at developing estimators of
such distributions. For example Heckman, Smith and Clements (1997) explore non-
quantile based approaches in a programme evaluation setting. Abadie, Angrist and
Imbens (2002) propose a Quantile Treatment Effect estimator in a study of the impact
of subsidised training on the distribution of earnings. These papers address problems
in which there is discrete variation in critical variates which is a different problem
than that addressed here.

Identification is considered from a conditional quantile perspective in Matzkin
(1999). Matzkin studies a model Y = m(X, €) in which ¢ is distributed independently
of X and m(-, ) is strictly monotonic in €. Conditions under which the function m(-, -)
and the distribution function of ¢ are identifiable are obtained. The value of m(-,-)
at a point (x,e) is shown, under suitable conditions, to be identifiable as the value of
the conditional 7-quantile of Y given X = x where 7 is such that e is the T7-quantile
of the marginal distribution of . The results of this paper produce a local version of
Matzkin’s results for equations in reduced form without requiring full independence
of € and Z.

The quantile based approach of this paper produces results relevant to the lit-



LOCAL IDENTIFICATION IN NONSEPARABLE MODELS 10

erature on quantile regression function estimation in the presence of endogeneity.
Amemiya (1982) develops® Two Stage Least Absolute Deviations (2SLAD) estima-
tors for parametric models in which a conditional median is linear in endogenous
and exogenous variables and independent of instrumental variables. The estimation
procedure suggested in this paper can be applied to the parametric problem studied
by Amemiya, producing a simple alternative to the family of 2SLAD estimators.

The identification conditions of this paper include local quantile independence
conditions. There are recent uses of quantile independence conditions as the basis for
developing estimators in Newey and Powell (1990), Chaudurhi, Doksum and Samarov
(1997) and Kahn (2001).

Some of the results presented here were given in Chesher (2001a-c). This paper
synthesises those results and presents a full development of conditions under which
there is local identification of values of structural functions and of their derivatives
in multiple equation nonseparable models.

1.4. Plan of the paper. Section 2 defines the class of models addressed in this
paper and provides conditions under which values and derivatives of model equa-
tions are locally identified at a point of interest. Conditions for identification of all
structural derivatives in an M equation model are developed and then conditions for
identification of the derivatives of a single equation are deduced. The conditions and
analysis that leads to them are elaborated for the returns to schooling example of
Section 1.2. Section 3 addresses the identification of averages of functions of struc-
tural derivatives, for example, their expected values and variances. Section 4 briefly
examines estimation issues and Section 5 concludes.

2. MODEL AND IDENTIFICATION CONDITIONS

This Section starts with a specification of the structure of the models considered in
this paper followed by a definition of a point at which local identification of features
of the model is sought. Then the features of interest, the structural derivatives, are
defined. Next, a set of identification conditions are developed. The Section concludes
by revisiting the returns to schooling example of Section 1.2, examining how the
conditions are manifested in that problem.

2.1. Type of structural model. The structural models considered in this paper
have the following, triangular, form.

Yi - hl(}/QaYE)n"'aYMaza‘C:l?g?a'"agM)
Y, = h2(Y:37"'7YM727€27"'>5M>

Yu = hu(Zen)

8See also Powell (1983).
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These models recursively determine values of M scalar variables, Y = {Y;}, given
values of covariates, Z = {Z;}K,, and values of continuously distributed stochastic
unobservable variables, ¢ = {&;} ;.

There are various special cases of this model which may be of interest in particular
applications. First there is the model form

Yi - hl(}/Q,Y:‘g,..-,YM,Z,El)
Y, = hg(}/g, e Yy, 4, 62) (6)

Yy = hM(Z, 5M)

in which each equation i contains just one stochastic driver, ;. Second there is the
model form
Yi - hl(}/Qa}/E’n'"aYM7Za€17€27"'a€M)
}/2 = hQ(Z,Eg,...,EM)
. . (7)

Yy = hM(Za EM)
in which all equations after the first are in reduced form, and in this form there
could be just one stochastic driver in each equation as in (6). These are all restricted

versions of the model considered here. Identification in these models can be addressed
by considering the impact of the conditions which cause (5) to specialise to (6) or (7).

2.2. Point at which identification is sought. This paper is concerned with
identification of first partial derivatives of the functions h = {h;}M, at a point denoted
by X. At the point of interest a particular value of Z and ¢ is specified, and this
determines, via the structural equations, a value of Y.

The point X is defined by a value of Z, denoted z*, and by M probabilities,
7 = {77 }M, which determine a value of ¢ as values of a set of conditional quantiles
of € given Z = z* at the probabilities 7%, as follows.

<€i:€?:Q8i|gi+z(7';<,€:+,z*), ZE{l,,M} (8)

Here QaB,..Bx (7,b1,...,bk) denotes the conditional 7-quantile of random variable
A given Bl = bl,...,BK :bK.

For any list, {X;}}7,, the notation X, indicates the list {X;}}%, | for i < M
and an empty list for ¢+ = M. This shorthand notation is used when indicating
conditioning and when indicating arguments of functions. Thus (8) should be read
as

= &pmq = Q€M|Z(T>‘J<\/[>Z*)
*

gi = € = Qeilessrenz(Ti i1y e 27), 1€{l,...,M—1}

EM

A set of conditional quantile functions like this, in which each variate ¢; is conditioned
one;, j > i (and perhaps on other variates) is described as a set of iterated conditional
quantile functions.
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Note that, at the point X" the structural model implies that the value of Y is given
(subject to Condition I below) by the following equations.

Vi=yi =hi(yr, 2% ef,er), i€{l,...,M}

It is natural to specify the point X in terms of quantile probabilities because, in this
nonparametric analysis, without further restriction on the functions h, the distribu-
tion of € is at best identifiable up to a monotonic transformation, that is, the metric
in which ¢ is measured is not identifiable. However, under the conditions to be im-
posed, features of functions at values of € associated with given probabilities defining
quantiles can be identified?.

The identification conditions given below relate to behaviour of features of the
model at X.

2.3. Objects whose identification is sought. The features of the model whose
identification is sought are some or all of the structural derivatives

0
V?thi(X) = a—hi(yi+7276i7€i+)
? * ... )
, 1e€41,...,

0
VZkhi(X) = a_zkhi(yi+7zaeiaei+)

X

forje{i+1,...,M}, ke{l,...,K). Here |, indicates evaluation of arguments at
the values defined by the point X.

2.4. Identification conditions. This Section provides a set of conditions under
which these structural derivatives are identified. As each condition is introduced its
implications are developed.

Conditions I and IT place restrictions on the functions h = {h;}M, sufficient to
ensure that they have a locally linear representation at the point X.

Conditions IIT - IV place restrictions on the functions hA and the conditional dis-
tribution of € given Z sufficient to ensure that iterated conditional quantile functions
for Y; given Y;, and Z are well defined at X and have a local linear representation
there in which the coefficients, that is the first partial derivatives of the iterated con-
ditional quantile functions, are directly related to the coefficients of the locally linear
representation of the structural equations. Condition V places limits on the degree
of dependence of € on Z.

90ne way to think about this is to note that, under the conditions to be stated, the variates
u = {u;}M, where u; = F,,.,, z(¢|€i+, 2) are independently uniformly distributed on [0, 1] and
substituting for € using u; = Qc,|e,, z(ui|uiy, z) is merely a normalisation of the functions h. With
that normalisation in place, quantile probabilities for the independent variates u are identical to the
associated quantile values of u (recall, each element is U|0, 1]) and correspond to quantile probabilties
for the iterated conditional quantiles of the variates .
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The final conditions, grouped under the heading VI, impose restrictions on the
derivatives of the structural model at the point X'. Full system and single equation
conditions are considered below. With Conditions I-V imposed the problem is reduced
to the determination of conditions under which coefficients of a linear equation sys-
tem are identified and so these final conditions are essentially rank and order type
conditions familiar in the classical linear simultaneous model. However in this local
nonparametric analysis the order conditions are local, restricting linear functions of
derivatives of structural equations to take a priori known values at the point of in-
terest, X', and the rank conditions are local, requiring certain matrices of derivatives
at the point X to have full rank.

A slightly non-standard feature is that, instead of considering the unique de-
ducibility of structural coefficients (derivatives of h at X') from classical reduced form
coefficients, their deducibility from reduced triangular form coefficients (derivatives
of iterated conditional quantile functions) is considered.

Condition I. Completeness. At X the equations (5) determine a unique value
of Y.

This requires that at X the functions h are single valued and that for each 1,

{yr., 2, ef,e;, } is in the domain of h;.

Condition II. Differentiability. At X each function h; is a continuous and
once differentiable function of its arguments'’.

Conditions I and II imply that at X there exists a linear system of equations in
differentials:

dY = AdY + BdZ + Gde (10)

where dY = {dY;}M,, dZ = {dZ;}K,, de = {de;}}, and A, B and G are matrices
of first partial derivatives of the structural functions evaluated at the point X, as
follows.

[0 Vy,h Vhi ... Vb ] (1 V,hi Vahy ... V.,
0 0 Vyhy ... Vy, ho 0 1 Vahy ... Ve,ho
A= | : : G=|: ; ;
0 0 0 Vo har-1 0 0 0 Ve haioa
(0 0 0 0 | (0 0 0 1
Voahi Vahi ... Vi..h
B— vzl h2 vzg h2 sz h2
Vahy Vahy o0 Vichy

10T here could be discrete covariates but these are not given explicit consideration here. Nonpara-
metric identification in the presence of discrete covariates requires consideration of the conditions
stated here at each distinct combination of values of discrete covariates at which identification is of
interest.
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The restricted triangular structure has been imposed on A and GG. The leading diago-
nal elements of G, V., h;, have been set equal to 1. This is an innocuous normalisation
given the assumption that each function h; is, at the point X', a differentiable func-
tion of €; and given the next condition which implies that each function h; can be
normalised to be strictly increasing at X with respect to variation in ¢; .

Condition III. Single crossing. For each i, & = €} is the only solution to the
equation
hi(y:+> 2*7 57;+> 5:+) = y;k
and V., h; is nonzero at X.

This is assured if, holding all coordinates other than ¢; at their values at X,
and considering variations in just ¢;, each function h; is strictly monotonic in g;.
However global strict monotonicity is not required by Condition III. Each function h;
is normalised to have unit derivative with respect to ; at X which leads to the unit
leading diagonal terms in G' above.

Condition IV. Continuous distribution. In a neighbourhood of ¢* = {:}},
the vector € is continuously distributed given Z = z* with positive density and at X
the conditional distribution function of € given Z s differentiable with respect to Z.

The conditions imposed so far ensure that the iterated conditional quantiles of Y
given Z are uniquely determined at X'. The conditional quantile of Y; given Y;. and
Z is obtained as follows. At X, Y; is determined by

Y; = hi(Y;+7zv giahil) (11)

it
evaluated at X, where h;' = {h;l M .41 are recursively defined inverse functions'',
each function hj’1 depending on Y}, Y;; and Z, whose existence is assured by the

single crossing condition, with each hj_1 depending on Y}, Y;, and Z, such that
* -1 * * * *
5]’ = hj (yj+7 < ayjagj—l—)
and satisfying
hj(y;(+a 2*7 h]‘_l(y;+a 2*7 y;7 6;-5-)’ 6;-{-) = y;
The single crossing condition for equation ¢ and the normalisation V. h;

=1
ensures that at X the conditional 7;-quantile of Y; given Y;, and Z is given by (11)
with €; replaced by the conditional 7;-quantile of €; given ¢;, and Z, thus

QY;-DQ-_,_Z(T;(; y;k+7 Z*) = hl(y;k+> 2*7 QEi\Ez‘—o—Z(T:? €:+7 Z*)’ h’;-l-l)

U Thus, at X, h;} satisfies
Yar = hat(Z, byt (Z,Yar))

hfwlfl satisfies
Yaro1 = b1 (Yar, Z, kit (Yar, Z, Yar—1, Rt (Z, Yar)), hiyt (Z, Yar)

and so forth.
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with the arguments of h; ' evaluated at X

It follows immediately that, without any further restriction the conditional quan-
tile, Qv vi, z(75, Y5, 2*), identifies the value of the function h; at X', Of course this
does not imply that the function h; is identified by Qy,yv,, z(7}, v}, , 2*) because there
are many functions which take the same value at X', and perhaps take common values
over an interval around X.

The separate contributions to variation in such functions of Y;, and Z can-
not be identified under the conditions given so far. For example variation in h;
arising from variation in a particular Z; could come directly through the Z argu-
ment of h; or through the inverse functions h;, +1 or through the conditional quantile
Qelers 2(T7, €5, 2%) or via some combination of these. The remaining identification
conditions impose restrictions sufficient to identify the sensitivity of the functions h
to variations in Y;; and Z that arise through their direct appearance in (5).

The argument that follows relies on the following equation which, at X', relates
differentials of iterated conditional quantiles of Y given Z, dQyz, to differentials of
Y, and Z.

dQyiz = (In — (I — H)G™' (I — A)) dY + ((Iy — H)G'B+J)dZ  (12)

The vectors of differentials of iterated conditional quantiles here are

dQYl\YHZ(Tla )/1—0-7 Z) dQ81\81+Z(7—17 €14, Z)

d To, Yoo, 4 dQ).. - To,E9., 4
dQY|Z _ :QYQYQ+Z( 2, L2+ ) an\z — :Q 2] 2+z( 2,&24 )

dQYM\Z(TMyz) dQ5M|Z(TM7Z)

evaluated at the point X and the matrices H (M x M) and J (M x K') also evaluated
at X', contain derivatives of the iterated conditional quantiles of € given Z, @), |z, with
respect to respectively € and Z.

[ 0 vsg Q51|21+Z vngal\aH_Z .. stQa1|51+Z
0 O v83Q€2‘52+Z cee VEMQ€2|52+Z
H=|: s s :
0 0 0 VEMQEM,HEMZ
| 0 0 0 . 0 |
vzl Q81|81+Z v22Q81|81+Z C VZK QE1|81+Z
J— vzl Q€2|52+Z V22Q€2|52+Z s szQ€2|52+Z
Vz1 QsM\Z vngsM\Z cee VZKQsM\Z

2Matzkin (1999) gives a global version of this result under full independence of € and Z for the
final “reduced form” equation i = M.
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Equation (12) arises as follows. The iterated conditional quantile functions are
determined by a transformed structural system in which, in each equation ¢, the single
unobservable, ¢;, appears, the remaining €,’s (j > i) having been substituted away,
using the inverse functions, hj_l, associated with the equations for Y;, j > 4. and
defined above, after equation (11). A typical equation is

Y; = hi(Y;-H Z7 €i, hz_Jrl)

where each function hj_l, j >, in the list ;' depends'® upon Y;, Yj; and Z.
The equations for the differentials associated with these transformed structural
equations are obtained as follows. First rewrite (10) as follows.

dY = AdY + BdZ + de + (G — Iyy) de (13)

The first appearance of de in (13) isolates ¢; in the ith structural equation.
The matrix G is upper triangular with unit leading diagonal elements and is
therefore nonsingular. Therefore, from (10),

de = G (dY — AdY — BdZ) (14)
and on substituting (14) in (13) there is, after collecting terms, the following.
dY = (I — G (Iny — A)) dY + G™'BdZ + de (15)

As explained earlier, under the conditions imposed so far, the iterated conditional
quantiles of Y given Z are determined at X by the transformed structural equations
with Y replaced by ()y|z and with € replaced by the iterated conditional quantiles of &
given Z, that is Q)¢ z. Therefore the differentials of the iterated conditional quantiles
of Y given Z satisfy (15) with dY" and de replaced by respectively dQy |z and dQ.z
which gives the following equation.

dQy\z = (In — G (Iyy — A)) dY + G'BdZ + dQ. 7 (16)

Variation in Y and Z consistent with the model (5) causes variation in the values
of the iterated conditional quantile functions, ).z, through variation in the condi-
tioning arguments (for the ith conditional quantile function these are ¢;, and Z) thus:
dQ.z = Hde + JdZ, with H and J defined as above, and using (14)

dQqz = HG™'(dY — AdY — BdZ) + JdZ
and substituting for dQ. 7 in (16) gives, after collecting terms, the following.

dQyiz = (In — (I — H)G™' (Ing — A)) dY + (I — H)G'B+ J)dZ  (17)

13See footnote 11 on page 14.



LOCAL IDENTIFICATION IN NONSEPARABLE MODELS 17

The conditions imposed so far ensure that the matrices of first partial derivatives
of the conditional iterated quantile functions of Y given Z at X with respect to
Y, Vy@Q, and with respect to Z, V@), are related to the matrices of first partial
derivatives of the model as follows

VyQ = Iny—(In—H)G ' (I — A) (18)
VzQ = (Iy—H)G'B+J (19)
where
[ O vaQY1|Y]_+Z vy3 QYl‘Y1+Z e vyMle‘Y1+Z
0 0 Vyz QY2\Y2+Z s VyMQY2\Y2+Z
VyQ = | : : : :
0 0 0 VyMQYM_l\YMZ
i 0 0 0 .. 0 |
vZ]_QY1|Y1+Z vzzle‘Y1+Z e vZ}(QY1‘Y1+Z
Vaulvvarz Vulvipyaiz - Vi Qwyyayz
V,0 = : [Y2+ | Y2+ : [Y2+
vz1 QYM|Z vZQQYM|Z o szQYM\Z

evaluated at X.

Under the stated conditions the conditional distribution of Y given Z uniquely
determines Vy @ and V(@ at X', so the identifiability of elements of A, B, G, H and
J depends, under the stated conditions, on whether the elements can be uniquely
determined from equations (18) and (19) given values for Vy @ and VzQ).

This is now addressed for the case in which there are no restrictions on H and
the identifiability of elements of A, B and C is considered'* where

C=G(Iy—-H)™"

If at A the elements of € were mutually quantile independent given Z then H
would be a zero matrix, C' = G, and conditions sufficient to identify C' would identify
(. Proceeding without restrictions on GG and H is therefore equivalent to normalising
the elements of € to be mutually independently distributed given Z.1°

If the equations of the model (9) were restricted so that G = I, which would
arise if each equation 7 contained no ¢;, j # ¢, then C' = (Ipy — H )_1 and conditions
sufficient to identify C' would identify H.

Restrictions on G and H may arise in parametric models and in other situations
but such restrictions are not considered here, and G and H are henceforth regarded
as being not separately identifiable.

4 The restriction J = 0 will shortly be imposed.
15See footnote 9 on page 5, but note that the restriction H = 0 is a condition on local variation
in quantiles of €; at X given €;4 equal to their quantiles at X and given Z = Z*.
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The final identification conditions will be developed under the following Condition
V which limits the dependence at X’ of € on Z and restricts the matrix J to be zero;
recall J contains derivatives of iterated conditional quantiles of € given Z with respect
to elements of Z.

Condition V. Quantile insensitivity. At X the iterated conditional quantile

functions, Q.. z(T7, €54, 2*), have zero first partial derivatives with respect to Z at
X.

This is not an essential condition since sufficient conditions elsewhere could com-
pensate for a lack of restrictions on J, a point taken up when the returns to schooling
example of Section 1.2 is revisited in Section 2.5.'6

Adopting Condition V, and focussing attention on the identifiability of A, B and
C, the equations (20) and (21) are rewritten in terms of these matrices, as follows.

vV,Q = C'B (21)

Identification of elements of A, B and C' clearly requires further restrictions be-
cause (20) and (21) contain only'” M (M — 1)/2 + MK informative equations in the
M(M — 1) + MK unknown elements of A, B and C. This leads immediately to a
necessary condition for identification of all elements of A, B and C.

Condition VI(i). Full system order condition. Identifiability of all elements
of A, B and C at X requires that there exist at least M (M —1)/2 conditions on their
free elements.

It is now clear that the development of the final conditions to achieve identification
will be similar to that encountered in the linear simultaneous equations model first
studied in Frisch (1938) and Koopmans, Rubin and Leipnik (1950). A slight difference
is that the attack employed here, via iterated conditional quantile functions, resolves
to the problem of determining conditions under which structural “parameters” can
be uniquely determined from knowledge of coefficients of a reduced triangular form
rather than a conventional reduced form!S.

To make progress it is convenient to extract from (20) the equations with content,
that is those that derive from the super-diagonal triangle of Vy () and to express the
resulting equations in terms of the, at this point, free elements of A, B and C. The

16 Clearly, if B were a zero matrix a priori then J is immediately identified from (19) as VzQ
but this has no identifying power with respect to C' and so none for A. Restrictions on B allow
slackening of the restriction J = 0 (or any a priori known matrix of constants) now imposed, while
leaving open the possibility of identifying elements of C' and A.

1"The main diagonal and lower triangle of VQy contains zeros because it contains derivatives of
iterated conditional quantile functions. The structure of A and C ensures that Iy — C~1 (Ip; — A)
contains zeros in these positions. So there are only M (M — 1)/2 informative equations in (20).

18 A conventional reduced form derives from the conditional distribution of Y given Z. A reduced
triangular form derives from the conditional distributions of Y; given Y;; and Z.
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matrix B is so far unrestricted, but A and C are upper triangular and their leading
diagonal elements are restricted to be zeros in A and ones in C. Some new notation
is required.

Let!® b = vec(B), let a = v(A) and ¢ = v(C) where the operator v() column
stacks the super-diagonal elements of the square matrix to which it is applied?’.

Let Ry be the M? x M(M — 1)/2 matrix containing ones and zeros such that

vec(A) = Ry v(A). (22)

In each column R); contains zeros except for a single unit element in a different
position in each column, therefore,

By = Ini—1))2- (23)
and the Moore-Penrose inverse of R, is
Ry = (RyBag) ™ Ry = Ry,
It follows that, premultiplying in (22) by Rj;,
v(A) = R}, vec(A).
Since C' — I; has the same structure as A it follows that
vec(C' — Inr) = Ry v(C — Iny) = Ry v(CO). (24)
With this notation and the results concerning Ry, in hand, there is, from?!' (21)
(V2Q' ® In;) Ryre — b= —vec (Dy) (25)
and from*? (20)

(Ini—1y2 — Ry (Vy Q' @ Ing) Ryr) ¢+ a = v(Vy Q).

9 Here vec is the conventional column stacking operator described e.g., in Magnus and Neudecker
(1988).

*"For example if X = {x;;}},_), v(X) = [z12, 213, 223]". The column vectors a, b and ¢ contain
respectively M (M —1)/2, MK and M(M — 1)/2 elements.

HFrom (21), (C — Inf) Dz + Dz = B, and on column stacking,

(D @ Ing) vec(C — Ipg) + vec(Dyz) = vec(B)

which leads, on using (24), directly to equation (25).
2From (20), C — Iy — (C — Iny) Dy + A = Dy, and, on column stacking

vec(C) —vec(Ip) — (Dy @ Ing)vee(C — Iny) + vec(A) = vec(Dy).

Equation (26) results on using vec(C — Ipy) = Rpsc and on premultiplying by R, which extracts
the relevant super-diagonal elements. Note that R}, vec(Ip) = 0.
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and, by virtue of (23)
R/]M ((]M - VYQ,) & IM) RMC +a= V(VyQ) (26)

Now consider N restrictions on the elements of A, B and C, which hold a priori
at X, expressed as
WAa + WBb + WCc =w

where W4, Wi, and W are matrices, and w is a vector, of known constants®®. There
is then the following equation

Inivi—ty2 00 Ry (I — Vy Q') @ Ing) Ry a v(VyQ)
0 _IMK (VZQ, ®IM) RM b = —vec (VzQ)
Wy Wg We c w
which is written as
o=~ (28)

where I' is the (N + M(M —1)/2+ MK) x (M(M — 1) + M K) matrix on the left
hand side of (27) and 6" = [a’,¥/,/]. There is the following necessary and sufficient

condition for identification of all first partial derivatives of the structural equations
at X.

Condition VI(ii). Full system rank condition. All elements of A, B and C
are identified at X if and only if

rank(I') = M(M — 1)+ MK
for which a necessary condition is VI(i): N > M(M —1)/2.

Two special types of restriction trivially ensure that Condition VI(ii) is satisfied.

If the only restriction is that W is diagonal with rank M then I' is square and
upper triangular with nonzero main diagonal elements and therefore has full rank,
as required by Condition VI(ii). This rather unlikely case would arise if, at X', each
structural equation 7 is insensitive to variations in €;, j > ¢, that is G = Iy and
the elements of € are mutually independently distributed, that is, H = 0, for then C
would be a diagonal matrix implying that ¢ = 0.

Now suppose that the only restriction is W4 = I,;. In this case at X each
structural equation, ¢, is insensitive to Y}, j > ¢, and the structural equations are
locally (at least) in classical “reduced form”. Then I' is again square and has the
rank required by Condition V(ii) if

rank (R}, ((Iny — Vy Q') @ Iny) Ry) = M(M —1)/2.

This always holds?* and so the restriction W4 = I,; is sufficient to ensure identifica-
tion of B and C.

28W 4 and We are N x MM —1)/2, Wgis N X MK, and wis N x 1.
24Because

rank (R, ((Iny — Vy Q') ® Iny) Ryy) =  min (rank(Ryy ), rank (I — Vy Q') @ Iny))
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Single equation identification conditions. Now consider identification of the
partial derivatives of a single equation, 7, employing restrictions on the derivatives of
that equation alone.

Some notational refinements are required. Let V ;)" denote the ith row of VzQ
and let V ;. Q' contain the last M — i rows of VzQ. Let Vy; Q' be the lower right
(M — i) x (M — 1) block of Vy@ and let Vy;Q' be the last (M — i) elements in the
1th row of VyQ).

Let b} be the ith row of B and let ¢; and a; be the last M — i elements of the ith
rows of respectively C' and A - these are the elements of C' and A associated with
equation 7 not restricted by virtue of the triangular structure.

Finally suppose that there are N; restrictions at X which apply to the derivatives
of the ith structural equations, as follows.

Waia; + Wpibi + Weici = w;

This equation and equations (20) and (21) imply the following

I 0 Iy — VyirQ a; Vyi@Q
0 —Ig in+Q b; = _sz‘Q (29)
Wai Wi Wei ¢ w;

which is written as
Lif; =1,

where I'; is a (M —i+ K + N;) X (2(M — i) + K) matrix.
This leads to the following condition for identification of the partial derivatives of
the 7th structural equation based on restrictions on its derivatives alone.

Condition VI(iii). Rank and order conditions for identification of deriva-
tives of equation i. The derivatives of the ith structural equation are identi-
fied at the point X wunder restrictions on its derivatives at X alone if and only if
rank(T;) = 2(M — i) + K. A necessary condition is that N; > M — i.

A leading case of interest is that in which there are only local covariate “exclusion”
restrictions. This arises when Wp; consists of rows of I and Wy; =0, We; = 0.

Some further notational refinement is required. Order and partition b; so that the
N; a priori zero derivatives appear at the end of the vector, denote the remaining
K — N; unrestricted derivatives by b;, reorder rows of VziQ and V z;, () and partition

accordingly, thus :
V,.Q V. Q
\V/ Q= A \V4 . — Zi+
7 {vz@] 2+ {VZHQ}
= min(M(M —1)/2, M?)
M(M —1)/2

the second line here following because Iy — Vy Q' is lower triangular with nonzero leading diagonal
elements and therefore has rank M.
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where V. Q is (K — N;) X (M — i) with rows corresponding to the elements in b,
Vi, Q is N; x (M — i) with rows corresponding to the a priori zero elements in b;
and V,.Q and V ;@ are respectively (K — N;) x 1 and N; x 1.

Then (29) can be rewritten with a priori zero derivatives excluded as follows.

In—i 0 Ing—i — Vyir Q z VyiQ
0 —Irx N Vi Q bi | = | —VzQ (30)
0 0 VZ¢+Q C; _inQ

Condition V(ii) provides a necessary condition for identification, namely that there
be at least M — i a priori zero derivatives of h; with respect to Z at X'. The rank
condition in this case is evidently: rank(V ;. Q) = M —i.

When there is overidentification, solutions of (29) for the structural derivatives
can be obtained by eliminating rows from the matrix on the left hand side of (29)
and corresponding rows from the vector on the right hand side of (29). This leads di-
rectly, via the analogue principle, to (generally inefficient) estimators of the structural
derivatives, after the style of Indirect Least Squares.

Let V. Q be a rank M — i selection of rows from V@ and let V;,Q be
the corresponding elements of V;,Q. Then (30) with V;,Q and V;,Q replaced by
respectively V. Q) and V 3,Q solves explicitly to give the following.

a; VyviQ + (Inr—i — Vyir Q) (VZHlQ)il V@
bi | = V5Q =V, Q (Vle'+Q)_ V2 Q (31)
G - (VZHQY V@

As shown in the next Section this produces the results stated in the returns to school-
ing example of Section 1.2.

2.5. Example: Identification of returns to schooling, continued. It is in-
structive to work through the returns to schooling model of Section 1.2 using the
matrices of structural and quantile derivatives employed in the previous Section. For
this purpose, suppose that there are just two covariates, Z; and Zs.

Omitting arguments there are the following expressions for the matrices of deriva-
tives at a point X.

10 Vsw | Vzw Vguw |1 Vaw 10 VAQF|AZ
A_{O 0 ] B_[VZIS VZQS} G_{O 1 ] H_[O 0

In the matrix H the nonzero term is the derivative with respect to A of the conditional
quantile of F' given A and Z = {Z;}?_,, evaluated at X. Separate restrictions on this

derivative and on V 4w are not considered here and so the analysis proceeds in terms
of C = G(I, — H)™!, which is

o= I Vaw+VaQraz | |1 c2
10 1 0 1 )
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The matrices on the right hand side of equations (20) and (21), are then as follows.

T — o1 (IM _ A) _ 8 (VSwO+ 012) 1 (32)
C'B= [ (Vzw _V(ZSZ18) c12) (Vzw —V(ZZZQS) C12) } (33)

The matrices of derivatives of the iterated conditional quantile functions in equations
(20) and (21) evaluated at X" are as follows.

_ | 0 VsQwisz | V2 Qwisz VzQwisz
VYQ‘[O 0 } VZQ‘{ VQsiz VZQQSZ] (34

The structural derivatives of the schooling equation, already in full “reduced
form” are immediately identifiable?® as the corresponding derivatives of the condi-
tional quantile function Qg z. But the derivatives of the wage equation (i = 1) are
not, and at least Ny > M — 1 = 1 a priori restrictions are necessary to achieve
identification (Condition V(iii)).

Suppose V zw is restricted to be zero at X. Then (33) simplifies as follows

(vzlw - (vzl S) 612) - (VZZS) C192

—1 o
C7B= Vzls VZQS

the vectors aq, b, and ¢ (all 1 x 1) are
alz[sz} Elz[vzlw] 61:[612}

and the equivalent of equation (30) is the following.

1 0 1 Vsw VsQw|sz
0 -1 VzQgyz Vzw | = | =VzQwisz
0 0 VzQsz Cia —VzQw|sz

The matrix on the left side of this expression has rank 3 if Vz,Qgz # 0 at X.
Under that rank condition (Condition V(iii)) we have

_ 1 B
10 —<—)
Vz,
Vsw VzleCiSZ'Z VsQwisz
Vaw | =10 -1 YV, 05y —V2,Qwsz
C12 221 S1z —V2,Qw|sz
0 0 = —
V2,Qsz

25 Compare the second rows of V7@ in equation (34) with the second row of the matrix in equation
(33).
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and so, the equivalent of (31),

o VsQwisz + <—VVZ;2QQW;IZZ)
V;jfu = | V2,Qwisz — V2,Qwsz (gzl—QSIZ) (35)
€12 (VZQQWSZ stz
| V2,052 |

which confirms the results (2) and (3) of Section 1.2 on setting ¢ = 2 in that example.

Over identification. Now suppose there is over identification with both V 2 w
and Vz,w a priori zero at X. In this returns to schooling example Z; and Z; might
be the incomes of the mother and father of the person at the time that the schooling
investment was made.

Equation (33) now simplifies as follows

— (VZ18) Cl2 — (VZQS) C12

¢'B = Vs V2,8 ’ (36)
the vectors aq, 131 and c; are
alz[sz} by =0 61:[012]
and the equivalent of equation (30) is the following.
(1) V211QSZ { Vcsw} - —VVZ?CV)V;EZ (37)
0 VzQsz 2 ~V2,Qwisz

There are now three equations in just two unknown quantities. Let R be the matrix

R:[1 0 0}
0 pr po

restricted to have rank 2, and premultiply (37) to give

1 1 1 [ sz] _ [ VsQw|sz 1
0 (1V2Qsiz +pV2Qs7) C12 — (1 V2.Qwisz + psV2,Qwsz)

from which

{ Visw ] _ { VsQwisz + E ]
C12 —F

where

E + A

_ V2 Qwisz +ppVzQwisz 1 ()\ V2,Qw|sz

_ vZ2QW|SZ)
p1V 2. Qs1z + paV2,Qs2 A+ Vg, Qs|z

? Vz2,Qsz
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and \; = p;VzQsz, i € {1,2}. In this case there are infinitely many ways of
identifying the two unrestricted structural derivatives in the wage equation, empclgoying
PR
i € {1,2}. At the point of estimation one will wish to consider optimal choices of the
p;’s, an issue deferred to Section 3.

The analysis of this returns to schooling example has so far proceeded under
the quantile insensitivity condition V, but in this overidentified case it is possible
to weaken this condition. For example, suppose that the condition only applied for

variation in Zs. Then (36) would become

linear combinations of the ratios of iterated conditional quantile derivatives

C 1B = { —(Vzs)cz+ju —(Vzs) }

VZIS+j21 VZQS

where ji1 = V2, Qrjaz, jo1r = Vz,Q a4z, both evaluated at X'. Now Vs is no longer
identifiable and the zero restriction on V z w has no force, but there remains

1 1 Vsw | _ | VsQwsz
0 Vz,Qsz C12 —V2,Qwisz
which identifies the returns to schooling, Vsw, exactly as set out in equation (35).

3. ESTIMATION

Estimation of A and B, the derivatives of the structural equations at the point X,
can proceed using the analogue principle set out in Manski (1988). There are the
following steps.

1. Probability levels, 7, are selected and the required iterated conditional quan-
tile functions of Y; given Y;. and Z, i € {1,..., M} are estimated using a
parametric, semi- or nonparametric method, as desired?®.

2. A value of Z, z*, is selected and the values of Yi,...,Y)s at the point X are
estimated using the estimated iterated conditional quantile functions, producing
an estimate X of the location of X.

3. The estimated iterated conditional quantile functions are used to produce es-
timates of derivatives of the iterated conditional quantile functions which are

evaluated at X , yielding estimates, V/Y\Q and @,Of values of the matrices
VyQ and VZQ at X.

20For parametric estimation, see Koenker and Bassett (1978), Koenker and d’Orey (1987); for
semiparametric estimation see Chaudhuri, Doksum and Samarov (1997), Kahn (2001) and Lee
(2002); for nonparametric estimation, see Chaudhuri (1991).
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4. The restrictions on A, B and C are assembled as in (27), or, in a single equation
analysis as in equation (29), with V/Y\Q and @ replacing Vy@Q and Vz(Q and
subject to satisfaction of the order condition, and subject to satisfaction of the
rank condition at the estimated values of V@) and V (@), the equation is solved
for estimates of the desired elements of A and B.

At step 4, if there are abundant restrictions, for example when N > M (M —1)/2,
then there is overidentification and there is unlikely to be a solution. Solutions can
be obtained by eliminating restrictions so that the order condition is exactly satisfied,
but there will be many ways of doing this, each leading in general to an inefficient
estimator.

A solution is to retain all the restrictions and employ a minimum distance esti-
mation procedure in place of step 4. For example an estimator of all derivatives at
X could be obtained as

~

0 :argemin (f’@ — ’y), Q (f’@ — ’Ay)

for a suitable choice of weight matrix Q where I' and 4 are T" and + of equation (28)
with parametric, semi- or nonparametric estimates V/Y\Q and @ replacing Vy @
and Vz(@Q). Of course the sampling properties of 0 will depend upon the estimation
procedure chosen. One could consider imposing the identifying restrictions at step 1.

3.1. Linear location shift models. The estimation of coefficients of a single
median regression function derived from a linear location shift model in the presence
of endogenous variables has been considered by Amemiya (1982) who proposed a
family of Two Stage Least Absolute Deviations (2SLAD) estimators. Consider the
linear location shift model

Yi = Yo+ ...+yyYu+ 26, +e&

which is a highly restricted version of the model (5) considered here.

At the first stage of 2SLAD predicted values of the endogenous covariates, {YJ}JMLQ,
conditional on all covariates (Z) are produced. Amemiya suggests OLS estimation
and LAD estimation as possibilities. In a leading special case of 2SLAD, at the second
stage an LAD estimation of the equation for Y] is conducted using predicted values
of endogenous covariates in place of their actual values.

The procedure outlined above is an alternative to 2SLAD and clearly extends to
quantile regressions other than the median regression and to parametric nonlinear
quantile regressions.

In the linear case one first estimates iterated linear quantile regressions of Y; given
Y;, j >4, and Z, using LAD if median regressions are of interest. The resulting esti-
mated coefficients, which are of course estimated (global) derivatives of the structural
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functions, are then processed as indicated above. In a just identified problem this
procedure is, to 2SLAD as Indirect Least Squares (based on a reduced triangular
form) is to 2SLS. First order asymptotic properties of the resulting estimators are
straightforwardly derived via the delta method.

4. AVERAGE STRUCTURAL DERIVATIVES

The results so far have concerned local nonparametric identification of structural
derivatives evaluated at points defined by a value, z*, of a vector of covariates Z
and by M probabilities, 7*, defining iterated conditional quantiles of unobservable
continuously distributed stochastic drivers, ¢.

If such identification can be achieved at z* at all combinations of the M probability
levels each varying in [0,1] then it is a simple matter to identify conditional (on
Z = z*) expected values of structural derivatives and of functions of them, should
such objects be of interest.

To see how this is achieved consider a function g(e, Z) of continuously distributed
e and its conditional expectation (assumed to exist) given Z = z

Eslgle. 2)|2 = 2] = /_Oo /_OO gle, 2)dE.(e]).

Here F. z(-|-) is the conditional distribution function of ¢ given Z.
Let g(1,2) = g(e(7), Z) where 7 = {7;}}1,, and &(7) = {&;(7)}}%, whose elements
are defined recursively in terms of conditional quantile functions as follows.

€i(T) = Qeleir2(Tile(T)is, 2), i€ {l,..., M}
The elements of 7 satisfy
Ti:Fsi|ei+Z(5i|5i+72)7 1€ {1,...,M},

where F;, ., 7 is the conditional distribution function of €; given £;, and Z, and they
are mutually independently uniformly distributed, each on [0, 1], so

Es‘Z[g(E,Z)‘Z:Z] = E‘r[g(g(T)?Z)]
_ /0/0 g(e(t), 2)dt, . .. dtay. (39)

The structural derivatives evaluated at the point X considered in Section 2 are
expressed, not as functions of the unobservable stochastic drivers (¢), but as func-
tions of probabilities (7*) defining iterated conditional quantiles of the conditional
distribution of ¢ given Z = 2*.

The result (38) implies that expected values of functions of structural derivatives
(and so, for example, average derivatives, variances of derivatives, and so forth) can
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be identified, if the local identification conditions hold at Z = z* for all combinations
of quantile probability levels. The conditional expected value of a function r(-) of a
structural derivative 7(7, 2*) is simply fo : fo ))dty ... dty.

Identification of complete expected values of functlons of structural derivatives
requires essentially full independence of € and Z because Condition V (quantile in-
sensitivity) has to hold at all quantile probabilities. Less demanding restrictions are
required to identify the conditional expected value of a function of structural deriva-
tives, conditional on ¢ lying in some set of values, T, say.

Define T’ as the following set of conditional quantile probabilities

T, ={r:e(r)eT}.

If there is conditional quantile (of & given Z) insensitivity at z* and at the quantile
probabilities in T, then

Eezlg(e, 2)|Z = 2% e € T] = Erg(e(n), 2 )|T€T]
f fg dtl dM

teT:

[ [dt...dt
teTr

which follows by straightforward extension of the argument earlier in this Section.

5. CONCLUDING REMARKS

This paper has shown that in nonseparable models, weak conditions under which
there is nonparametric identification of certain interesting features of structures can
be obtained if the question of identifiability is couched in terms of the feasibility of
uniquely deducing features of structural models from knowledge of an exhaustive set of
iterated conditional quantile functions. An analysis via conditional quantile functions
is well suited to potentially nonseparable models because of the equivariance property
of quantiles.

A critical restriction introduced at the start of this analysis is that there are no
more unobservable stochastic drivers of the model than observable outcomes. This
condition will not be met in many models of processes in which measurement error
distorts recorded outcomes or covariates, or in models with high dimensional hetero-
geneity such as the mixture models employed widely in the analysis of durations, and
in panel data and other multilevel models in which there is a nested error structure.
Identification in such models obviously requires very strong restrictions because one
is trying to secure identification of features of high dimensional distributions from
relatively low dimensional reductions of them. In practice one finds at least strong
additivity assumptions imposed in every such case.

For example all measurement error models employed in practice require mea-
surement error to be additive in some metric and with very few exceptions impose
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parametric restrictions on model equations. Similarly, panel data models typically
require the disturbances that drive a model to be linear combinations of individual
specific disturbances and disturbances that vary across and within individuals, and
the widely employed mixed proportionate hazard models restrict individual specific
disturbances to be additive with the log hazard function.

One of the conclusions to be drawn from the results of this paper is that non-
parametrically distinguishing sources of stochastic variation essentially requires that
there be no more sources of stochastic variation than there are observed outcomes.
This suggests that if features of processes that exhibit stochastic variation are to be
robustly estimated one should have data on as many outcomes as there are sources
of stochastic variation.

A further critical restriction is the triangular structure of the model equations. All
complete M equation models at a point X of interest (that is models which deliver
a unique value of outcomes at X’) can be written in a local triangular form in any of
M! ways, each corresponding to a distinct ordering of the M outcomes. Of course a
set of iterated conditional quantile functions can be defined corresponding to each of
these representations. The crucial feature of the models addressed in this paper is
that the disturbances feature in the model equations following the same triangular
structure (or a restricted version of it) as the outcome variables. It does not seem
possible to take a model in which outcomes are not in a triangular form and achieve a
similar local triangular representation for outcomes and disturbances without strong
restrictions on the manner in which the disturbances appear in the original model.

Identification in semiparametric and parametric nonseparable (and separable)
models can be assessed using the results of this paper even though a nonparametric
attack has been taken. Because this was felt to be important some normalisations
which would often be taken in a study of purely nonparametric identification have not
been made in this paper. Semiparametric and parametric special cases produce re-
strictions on the matrices of derivatives introduced in Section 2 which may be helpful
in achieving identification. For example index restrictions that lead model equations
of the form:

Y; = hi(Y/.0:, Z'B;,€i,€i4)

require the matrices A and B of Section 2 to be equal to a diagonal matrices®” times
matrices of constants (containing elements of 6; and ;). Conditions sufficient to
ensure local identification of these restricted matrices ensure global identification of
ratios of 6 parameters and ratios of 3 parameters taken within equations.

Focusing on local identification of the derivatives of structural functions at a
point of interest allows progress without restricting disturbances and covariates to
be distributed independently. Identification conditions can be expressed in terms of
local features of models and when considering restrictions on model equations the
problem reduces to a search for identification conditions in a linear approximation
to the nonlinear structure, as long as there is sufficient smoothness to allow linear

*TFor A and B respectively equal to diag{Vy;, ¢,h;}}L; and diag{V zzh;} ;.
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approximation at the point of interest. As a result the familiar order and rank
conditions for identification in the linear simultaneous equations system are echoed
in the results.

A quantile based analysis naturally leads to identification of structural features
which convey information about the distribution of exogenous impacts of variables
perhaps endogenous in the data generating process. This is of value in the analysis of
policy interventions. An advantage of quantile independence restrictions is that they
have meaning in problems where models have stochastic drivers which are naturally
modelled as having no moments such as arise in financial econometrics.

The estimation procedures that flow from the identification conditions involve
various sorts of quantile regression function estimation, whose properties are well
understood.

Quantile regression methods have frequently been advocated because they may
be less sensitive to data contamination and because they can provide a wealth of
distributional information. The results of this paper suggest a further, and very im-
portant, virtue of quantile regression methods, namely that, because of their equiv-
ariance property, exploited here, they are the natural tool to employ in identification,
estimation and inference in nonlinear, potentially nonseparable, structural models.
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