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ABSTRACT 

 

Small leucine-rich repeat proteoglycan (SLRP) family proteins play important roles in a number of 

biological events. Here we demonstrate that the SLRP family member, asporin (ASPN), plays a critical 

role in the early stages of eye development in Xenopus embryos.  

During embryogenesis, ASPN is broadly expressed in the neuroectoderm of the embryo. The 

overexpression of ASPN causes the induction of ectopic eyes. In contrast, blocking ASPN function 

with a morpholino-oligonucleotide (ASPN-MO) inhibits eye formation, indicating that ASPN is an 

essential factor for eye development. Detailed molecular analyses revealed that ASPN interacts with 

insulin growth factor receptor (IGFR) and is essential for activating the IGF-receptor mediated 

intracellular signalling pathway. Moreover, ASPN perturbed the Wnt, BMP, and Activin signalling 

pathways, suggesting that ASPN thereby creates a favourable environment in which the IGF signal 

can dominate. ASPN is thus a novel secreted molecule critical for eye induction through the 

coordination of multiple signalling pathways. 

 

 

Key Words: ASPN, Xenopus, eye induction, anterior-posterior polarity, IGF 
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INTRODUCTION 

 

The visual system is conserved among a broad range of species from invertebrates to vertebrates, 

and is an important afferent component of the central nervous system transducing external stimuli 

from the periphery to the central part of the body (Kumar, 2001). The sensory organ of the visual 

system, the eye, comprises a number of different cell types including neurons and glial cells whose 

development is orchestrated in a complicated yet precise manner (Kohwi and Doe, 2013; Reese, 

2011). How these cells differentiate and organize themselves has been a longstanding research 

interest, not least from a clinical point of view, since disorganization of the eye structure and loss of 

vision can have a severe impact on quality of life.  Unsurprisingly, a lot of research effort has been 

invested to generate retinal tissues in test tubes, mainly for transplantation purposes (Gonzalez-

Cordero et al., 2013). In this sense, the development of retinal cells has been a highly interesting and 

popular subject from both scientific and clinical points of view. 

 

Like other tissues derived from the neuroectoderm, the development of the eye consists of a number 

of regulatory steps. At least in amphibians, the development is triggered at the gastrula stages when 

the naïve ectodermal cells are exposed to the neural inducers chordin, noggin and follistatin (Harland, 

2000; Munoz-Sanjuan and Brivanlou, 2002; Ozair et al., 2013). These secreted factors are BMP 

antagonists, and induce a set of transcription factors including ET, Pax6 and Rx in the broad area of 

the presumptive forebrain region (Zuber et al., 2003). These transcription factors are required for the 

development of the whole forebrain (Klimova and Kozmik, 2014; Lagutin et al., 2003; Mathers et al., 

1997). They subsequently drive the downstream transcription network formed by Six3, Lhx2 and 

Optx2/Six6, and the expression starts to be confined to a specific area in the diencephalon during the 

neurulation process, which is later termed eye-field (Zuber, 2010; Zuber et al., 2003). As such, the 

expression of these eye-field specific transcription factors is dynamic and the expression patterns 

change over time. While a number of secreted factors, including FGF and Wnt, are involved during 

this specification (Ikeda et al., 2005), more secreted factors must be involved in the fine-tuning of the 

eye-field specific transcription factors’ expression patterns. 

 

In addition to the neural inducers, the signals mediated by RTKs (receptor-tyrosine kinases), mainly 

induced by IGFs (insulin growth factors) and FGFs (fibroblast growth factors), have also been shown 

to take important roles in the eye development as well as the head formation. The RTK signals 

activate ERK (extracellular regulated kinases), and prime the degradation of Smad1 in concert with 

GSK3 (Fuentealba et al., 2007; Kuroda et al., 2005; Pera et al., 2003). Therefore, the two signalling 

systems of anti-BMP and RTK signals cooperate with each other and enable the embryos to acquire 

competence and differentiate into the eyes. 

 

In vitro generation of retinal precursor cells is now technically feasible. In frogs, combining dorsal 

mesoderm and animal cap explants induces a fairly organized eye structure (Sedohara et al., 2003). 
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In addition, animal cap cells which overexpress a cocktail of eye-field transcription factors acquire a 

competence for retinal cell fate and differentiate into a functional eye when transplanted back into an 

embryo (Viczian et al., 2009). In mouse embryonic stem (ES) cells, timed treatment with different 

cytokines results in the induction of eye-field specific transcription factors (Ikeda et al., 2005). 

Furthermore, three-dimensional formation of the retinal cell precursors is also achievable under a 

specific differentiation condition (Eiraku et al., 2011; Gonzalez-Cordero et al., 2013). In contrast to 

these outstanding accomplishments in manipulating eye development, the molecular basis of gene 

regulation has not fully been elucidated. 

 

The family of small leucine-rich repeat proteoglycan (SLRP) proteins comprises a number of 

extracellular matrix proteoglycans that have been shown to be involved in a number of biological 

events including development, growth and cancer in recent years (Dellett et al., 2012; Edwards, 2012; 

Schaefer and Schaefer, 2010). SLRPs feature leucine-rich repeat domains in the middle of their 

protein core, and can be categorised into five subclasses depending on their amino-acid sequences 

(Dellett et al., 2012). While most proteoglycans form large heterologous complexes of 300-400 kDa, 

SLRPs are thought to mostly act as monomers or possibly dimers of approximately 40kDa (Goldoni et 

al., 2004; McEwan et al., 2006; Scott et al., 2004). 

 

Once thought to be solely involved in collagen fibril organization, SLRPs are now well known for their 

ability to modulate a number of intracellular signalling pathways (Chen and Birk, 2013; Wilda et al., 

2000). This activity is exerted through interactions with specific extracellular signalling molecules 

and/or their receptor proteins. In Xenopus embryogenesis, SLRPs have been shown to play important 

roles in a number of developmental processes, such as germ layer specification, pattern formation and 

morphogenesis (Dellett et al., 2012; Kuriyama et al., 2006; Moreno et al., 2005; Munoz et al., 2006). 

For instance, biglycan binds to BMP4 and changes the interaction between BMP4 and chordin 

(Moreno et al., 2005). Another SLRP, Tsukushi (TSK), also binds to BMP, Wnt, Notch and inhibits 

their respective signalling pathways (Kuriyama et al., 2006; Morris et al., 2007; Ohta et al., 2004). 

These findings exemplify the diverse functions of SLRPs and their ability to coordinate multiple signals 

in a context-dependent manner. 

 

During a systematic screening of the functions of SLRPs by means of mRNA injection in Xenopus 

embryos, we found that ASPN (ASPN; also known as PLAP-1; periodontal ligament-associated 

protein-1) had a strong activity to induce ectopic eyes. ASPN was originally isolated from mice (Henry 

et al., 2001; Lorenzo et al., 2001), where it is expressed in cartilage and bone at the mid-gestation 

periods. ASPN inhibits the TGF- signalling pathway, and an aspartic acid repeat polymorphism of the 

ASPN protein has been linked to osteoarthritis in humans (Kizawa et al., 2005). However, the activity 

of ASPN in the early stages of embryogenesis is still elusive, and the striking eye phenotype in 

Xenopus prompted us to analyse the function of ASPN in detail. We found that ASPN is an essential 

gene for eye induction that works by potentiating the IGF signalling pathway. Moreover, we found that 

ASPN interacts with a number of major signalling molecules and modulates their activities. Our results 
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suggest that ASPN acts as a modulator for a number of signal molecules, and thereby contributes to 

specify the eye-forming region. 
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RESULTS 

 

Structure and expression of Xenopus asporin 

 

During the systematic investigation of SLRP functions (Supplementary Table S1), we found one of the 

clones demonstrating strong ectopic eye formation activity upon forced expression (as described 

below), and became interested in its detailed molecular function. This clone encoded a polypeptide 

sequence similar to human ASPN belonging to the class 1 SLRP (Dellett et al., 2012), and drawing a 

phylogenic tree evidenced the clone contained a Xenopus orthologue of ASPN (Fig. 1A) (Henry et al., 

2001; Lorenzo et al., 2001). 

 

Sequence alignment of ASPN in different species further revealed that Xenopus ASPN has some 

typically conserved characteristics. Xenopus ASPN has a signal peptide and a 13 amino acid stretch 

comprising aspartic acid and asparagine (Fig. 1B, red) in its amino-terminal region, which is how 

ASPN was named (Henry et al., 2001; Lorenzo et al., 2001). This stretch is followed by a cysteine 

cluster with the C-X3-C-X-C-X6-C pattern, which is conserved among the class 1 SLRPs ASPN, 

biglycan and decorin, where the second cysteine is replaced by arginine in Xenopus (Fig. 1B) (Dellett 

et al., 2012). The characteristic stretch of 8 leucine-rich repeats was also found to be conserved 

among vertebrate species.  

 

To address the expression profile of ASPN during embryogenesis, we performed RT-PCR from 

different stages of embryos. The expression was already apparent in unfertilized eggs and the whole 

expression level gradually increased during embryogenesis (Fig. 1C). 

 

We next performed whole-mount in situ hybridization to map its expression pattern throughout 

development. During neurula stages, ASPN was rather ubiquitously expressed, with a little more 

abundance at the neural plate (Fig. 1D), including the presumptive eye field, as shown by Pax6 (Fig. 

1E). The expression became more evident around the presumptive eye field at the tailbud stage (Fig. 

1F). At stage 35, strong expression can be observed in the whole head region (Fig. 1G). 

 

In order to supplement our in situ data, we quantified the expression of ASPN in different areas of the 

embryos. We prepared explants of animal cap, dorsal marginal zone (DMZ) and ventral marginal zone 

(VMZ) and assayed for ASPN by qRT-PCR. Animal cap explants for embryos pre-injected with chordin 

(Chd) to mimic the forebrain (Fig. 1H(ii)) (Sasai et al., 1995) or Chd plus Wnt8 to mimic more posterior 

neural domains (Fig. 1H(iii)) (Takai et al., 2010), showed enhanced ASPN expression compared to 

animal caps from uninjected control embryos (Fig. 1H(i)). ASPN expression in explants from DMZ 

(Fig. 1H(iv)) and VMZ (Fig. 1H(v)), mimicking dorsal and ventral mesoderm respectively, showed low 

ASPN expression similar to that seen in the control animal cap. Otx2 (Chow et al., 1999) and Krox20 

expression (Nieto et al., 1991) (Supplementary Fig. S1) confirmed the character of the explants. 
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Together, these observations revealed that ASPN is expressed during early embryogenesis, and 

prompted us to investigate its embryonic functions, especially in neural development. 

 

Overexpression of ASPN induces ectopic eyes 

 

During the initial screen of the SLRPs’ activities by overexpression, we found a striking ectopic eye-

like structure upon microinjection of mRNA encoding ASPN (Fig. 2A,B), and we decided to analyse 

this structure in detail. 

 

We microinjected ASPN mRNA into dorsal animal blastomeres, and examined the phenotype at stage 

42 (tadpole stage; Fig. 2C,C’,C’’,F for control injection). 1 ng of mRNA induced enlarged eyes (Fig. 

2D,D’,D’’,G, I), while higher doses induced ectopic pigmented eye-like structures (Fig. 2E,E’,E’’,H ,I). 

In order to characterise the induced pigmented structure, we performed Hematoxylin and Eosin 

staining on the sectioned tadpoles. The pigmented epithelium was thicker in the enlarged eyes on the 

injected side, and a separate retinal layer structure was occasionally found (Fig. 2G). Additionally, in 

the case of the embryos that had the ectopic pigmented structure, the pigment was never found inside 

the ectopic structure and the induced structure had an epithelial character (Fig. 2H). Notably, we did 

not find any expansion of the cement gland, or the anterior-most structure, suggesting that ASPN 

function is not entirely the same as IGF signalling (Pera et al., 2001), and it also differs from the 

effects of cerberus (Fig. 2C’’,D’’,E’’) (Bouwmeester et al., 1996). Based on these observations, we 

supposed that this condensed pigment structure formed ectopically was a pigmented epithelium of the 

retina, and the retinal structure was induced by the forced expression of ASPN. 

 

In order to verify this hypothesis, we performed immunohistochemistry with antibodies specific to the 

eye cell types. As a result, -Crystallin (lens, Fig. 2J,K) Glutamine Synthetase (Müller glia, Fig. 2L,M) 

and Hu-C/Hu-D (Retinal ganglion and amacrine cells, Fig. 2N,O) expression was found in the 

ectopically-induced tissue. 

 

SLRP family members often exhibit overlapping functions, as is for example the case with Tsukushi 

and biglycan for the induction of the organiser (Moreno et al., 2005; Ohta et al., 2004). To examine 

whether other SLRP members induce a similar eye phenotype to ASPN, we overexpressed lumican, 

decorin, epiphycan and chondroadherin in the Xenopus embryos and analysed the resulting eye 

phenotype (Fig. 2P, Supplementary Fig. S2A-C for representative images). Both lumican and 

epiphycan induced a weak expansion of the normal eye, while the other SLRPs had no effect on the 

embryos’ eyes. 

 

Together these data suggest that ASPN specifically induces an eye structure containing retina, retinal 

pigmented epithelium (RPE) and lens. 
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ASPN induces Eye-field Specific Transcription factors (EFTFs) both in vivo and in vitro. 

 

In order to address the earlier effects of ASPN overexpression, we analysed gene expression patterns 

by whole-mount in situ hybridisation.  

 

ASPN mRNA was injected into a single dorsal animal blastomere at the 4-cell stage and the embryos 

were cultured until the early tailbud stage. The expression of the EFTFs Rx1 (Mathers et al., 1997) 

(Fig. 3A,B; 90%, n=11) and Pax6 (Chow et al., 1999) (Fig. 3C,D; 100%, n=11) was clearly expanded 

or appeared ectopically in the ASPN overexpressing side of the embryo, while the Otx2 (Chow et al., 

1999) expression pattern remained unchanged (Fig. 3E,F; 100%, n=11) (Blitz and Cho, 1995). In 

contrast, the telenchephalon marker FoxG1 (XBF1; telencephalon; (Bourguignon et al., 1998)) (Fig. 

3G,H; 50%; n=20), En-2 (the midbrain-hindbrain junction; (Hemmati-Brivanlou et al., 1990)) (Fig. 3I,J; 

81.5%, n=27) and Krox20 (hindbrain/rhombomere3 and 5; (Nieto et al., 1991)) (Fig. 3K,L; 100%, 

n=12) were down regulated. These observations suggest that ASPN specifically encourages retinal 

development in vivo. 

 

We next investigated the function of ASPN in vitro. For this purpose, we prepared animal cap explants 

from embryos injected with the ASPN mRNA, and analysed their gene expression when the sibling 

whole embryos reached stage 22. We found ASPN increased Sox2 and NCAM (general neural), 

XAG1 (cement gland), FoxG1 (telencephalon), Pax6 and Rx1 (forebrain and eye regions), Otx2 

(forebrain and midbrain), while En-2 (midbrain and hindbrain junction), Krox-20 (hindbrain) Slug 

(neural crest) and cardiac Actin (mesoderm) was not induced by ASPN (Fig. 3M), suggesting that 

ASPN can induce eye development on its own. 

 

Taken together, these data show that ASPN has an ability to induce eye formation both in vivo and in 

vitro. 

 

ASPN is essential for the eye development 

 

To better understand ASPN’s role in early embryogenesis and eye development, we performed loss-

of-function analysis by using morpholino oligonucleotides (MO) of ASPN (Supplementary Fig. S3A). 

 

The ASPN morpholino (ASPN-MO1) was injected into the dorsal animal blastomere of the embryos 

and the phenotype was analysed. At the tadpole stage, the injected side exhibited defective eye 

phenotypes such as small or abnormal eyes (Fig. 4B,D), while the embryo injected with the control-

MO remained intact (Fig. 4A,D). In addition, the eye defects induced by ASPN-MO1 could be rescued 

by coinjection of ASPN mRNA containing only the coding region (ASPNCDR), further verifying the 

specificity of ASPN-MO1 (Fig. 4C,D). We also injected another set of ASPN morpholinos, termed 

ASPN-MO2, and found a similar phenotype (Supplementary Fig. S3B-E), which further confirmed the 

validity of the morpholinos. 
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We next attempted to describe the phenotype induced by ASPN-MO on the molecular level, and 

performed in situ hybridisation with probes for the eye and other regional genes. ASPN-MO 

significantly affected the expression of the early eye-field transcription factors Rx (80%, n=10; Fig. 4F) 

and Pax6 (89%, n=11; Fig. 4J), while Otx2, En2 and Krox20 were unaffected at neurula stages (n=20 

each; Fig. 4N,R,V). This tendency was maintained at early tailbud stages (stage 22) on the injected 

side of the embryos, as shown by the reduced expression of the second-stage eye-field transcription 

factors Six3 (67%, n=12; Fig. 4H) and Optx2/Six6 (56%, n=16; Fig. 4L) (Zuber et al., 2003), while 

other regional markers remained unaffected (n=10 each; Fig. 4P,T,X). In all cases, the control-MO 

injected embryos were completely unaffected and showed normal expression patterns (n=10 each; 

Fig. 4E,G,I,K,M,O,Q,S,U,W). These results suggest that ASPN is required for eye-field specification 

and eye development. 

 

Finally, we attempted to unveil the relationship between the neural inducer chordin and ASPN. For this 

purpose we prepared animal caps injected with chordin (Sasai et al., 1994) and found an elevation in 

forebrain gene expression (Fig. 4Y). In contrast, when ASPN-MO was combined with chordin mRNA, 

the expression was severely down-regulated (Fig. 4Y), suggesting that ASPN acts downstream of the 

neural inducer chordin. 

 

In summary, ASPN is required for eye development, especially during the initial stages of the whole 

developmental process. 

 

ASPN induces eye development mainly via IGF receptor mediated signalling pathway 

 

The ability of ASPN to produce an ectopic eye was reminiscent of that of IGF (Pera et al., 2001; 

Richard-Parpaillon et al., 2002). In addition, a previous study has shown that some SLRPs bind to the 

IGF receptor (Schaefer and Iozzo, 2008). These facts prompted us to investigate how ASPN is 

associated with the IGF signalling pathway. 

 

We first asked whether ASPN activates the same signalling pathway as IGF. Since IGF has been 

shown to induce phosphorylation of ERK and AKT both in cultured cells and in the animal cap (Rorick 

et al., 2007; Wu et al., 2006), we examined whether ASPN activates the same intracellular signalling 

molecules. For this purpose, we prepared conditioned media of secreted ASPN and IGF2 from 

HEK293 cells, and applied these media onto another set of HEK293 cells that had been cultured 

separately. The cells treated either with ASPN or IGF2 activated the phosphorylation of AKT and ERK 

within 20 minutes of the treatment (Fig. 5A, lanes 2,3), suggesting that ASPN and IGF share the same 

downstream intracellular signalling pathways. 

 

Next we asked if ASPN forms a complex with the IGF1 receptor, and performed an immuno-

precipitation assay. We co-transfected HEK293 cells with plasmids encoding ASPN and IGF1-receptor 
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(IGF1R) and analysed cell lysates 24 hours post-transfection. We found that ASPN does indeed 

establish a complex with IGF1R (Fig. 5B).  

 

To confirm that the ASPN signal is transduced via IGF1R, we injected the dominant-negative version 

of the IGF1 receptor (dnIGFR) (Pera et al., 2001) together with ASPN mRNA and observed the 

phenotype of the eyes at the tadpole stage (Fig. 5C for control, n=20). In contrast to the ectopic eye 

formation following the single injection of ASPN mRNA (Fig. 5D, 12%, n=112), the combined injection 

of ASPN and dnIGFR significantly decreased the size of the eyes (Fig. 5E, 22.6%, n=62). 

 

To further establish the relationship between ASPN and IGF, we conversely perturbed the function of 

ASPN with ASPN-MO. As reported by the previous study, IGF2 injection caused enlarged eyes (Fig. 

5F, 90%, n=22) (Pera et al., 2001). This enlargement was however blocked by co-injection of ASPN-

MO (Fig. 5G, 91%, n=23). Thus, eye development requires both ASPN and IGF signals. 

 

We further attempted to confirm the necessity of both ASPN and IGF at the molecular level, and 

conducted an animal cap assay. For this purpose, we co-injected ASPN and dnIGFR or IGF2 and 

ASPN-MO and assayed the expression of Pax6 and Rx2a. We found that the expression of both 

genes was down-regulated by the inhibiting constructs (Fig. 5H,I), suggesting that both ASPN and IGF 

are required for the early steps of eye development. 

 

We also attempted to identify the interacting point of ASPN and IGF signals. We prepared animal caps 

injected with dnIGFR or ASPN-MO and treated them with conditioned media containing secreted 

ASPN or IGF2 respectively. The phosphorylation of ERK, which was activated in the control explants, 

was inhibited by the injection of dnIGFR or ASPN-MO (Supplementary Fig. S4). These data further 

suggest that both signals of ASPN and IGF interact with each other at the initial steps of their 

signalling pathways, but not with a secondary effect interfering with the transcription of other genes. 

 

Together, these data demonstrate that ASPN induces eye development by regulating the IGF 

signalling pathway through a physical association with the IGF1-receptor. 

 

ASPN interacts and antagonises Nodal, BMP and Wnt molecules 

 

Eye induction is regulated by a number of signalling molecules (Ikeda et al., 2005). Since it has been 

shown that SLRP family members interact with and inhibit the function of a number of signalling 

compounds in a context-dependent manner (Dellett et al., 2012), we investigated how ASPN affects 

some of the important signalling pathways, such as the Nodal/Activin, BMP and Wnt pathways. 

 

First, we asked how ASPN influences these other signalling pathways. For this purpose, we injected 

reporter constructs of either the Activin-Response Element (ARE; for Nodal/Activin), BMP-Response 

Element (BRE; for BMP signals) or TOPFLASH (for Wnt), together with mRNAs of Activin (for ARE), 
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BMP4 (for BRE) or Wnt8 (for TOPFLASH) in the embryos, and confirmed all reporter activities were 

elevated at early gastrula stage. By contrast, when ASPN was co-injected with either of these 

signalling molecules, their activity was reduced significantly (Fig. 6A). 

 

In order to further confirm that ASPN has indeed the ability to inhibit these signals, we performed 

expression analyses, using either whole embryos or animal cap extracts. The animal caps were 

injected with ASPN mRNA and then treated with Nodal for 2 hours. The expression of the Nodal target 

gene Mix.2 (which is up-regulated following treatment with Nodal) was found to be down-regulated in 

the ASPN injected animal caps (Fig. 6B). Consistently, the injection of ASPN mRNA at the equator 

region at the 4-cell stage resulted in a reduction of Xbra expression (Fig. 6C,D) at the gastrula stage, 

suggesting that mesoderm determination was severely influenced by ASPN. Actually, a shortened 

body axis phenotype was exhibited at the tadpole stage (Supplementary Fig. S6). 

 

Next, we investigated ASPN’s inhibition of the BMP signal more closely. We injected either chordin, 

which is a well-known BMP inhibitor (Sasai et al., 1995), or ASPN mRNA and analysed the expression 

of general neural markers at the early neurula stage. We found Sox2 and NCAM to be expressed at 

stage 14 in both conditions, which is consistent with the idea that ASPN inhibits the BMP signalling 

pathway (Fig. 6E). 

 

We further investigated the involvement of ASPN in the Wnt signalling pathway. Again, we injected 

Wnt8 mRNA either on its own or together with ASPN mRNA and used qRT-PCR to analyse the 

expression of Xnr3, which is one of the target genes of the Wnt signalling pathway (Yang-Snyder et 

al., 1996). We found the expression of Xnr3 was induced when only Wnt8 was injected, however Xnr3 

levels were reduced by co-injection with ASPN (Fig. 6F). 

 

In summary, these analyses revealed that ASPN is a multiple inhibitor for Nodal, BMP and Wnt 

signals. 

 

We further attempted to find out how ASPN exerts its inhibitory effect on the aforementioned signalling 

molecules. As ASPN is a secreted factor, we hypothesised that ASPN forms complexes with the other 

signalling molecules. To verify this, we performed a binding assay: tagged versions of expression 

constructs encoding Xnr-1, BMP4 or Wnt8 were transfected into HEK293 culture cells together with a 

tagged version of ASPN, and a co-immunoprecipitation analysis was performed. Our results show that 

ASPN does indeed form complexes with all three tested molecules BMP4 (Fig. 6G), Xnr-1 (Fig. 6H) 

and Wnt8 (Fig. 6I), suggesting that ASPN interacts with these molecules in the extracellular space and 

thereby impedes their activities. 

 

Together these data suggest that ASPN interacts with major signalling molecules that antagonise the 

eye formation in the extracellular space and blocks those activities (Fig. 6J). 
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DISCUSSION 

 

ASPN is a unique small Leucine-rich repeat proteoglycan involved in eye development 

 

SLRPs have been shown to play significant roles in a number of biological events including 

development, growth and the prevention of tumours (Brezillon et al., 2009; Dellett et al., 2012; Dupuis 

and Kern, 2014; Iozzo and Schaefer, 2010; Nikitovic et al., 2008; Shimizu-Hirota et al., 2004). Based 

on the amino acid sequence, ASPN is categorised with decorin and biglycan as a class I SLRP (Fig. 

1A). Although all three members share Leucine-rich repeats (LRRs), ASPN differs from decorin and 

biglycan in the number and spacing of cysteine residues at its N- and C-terminals (Henry et al., 2001; 

Lorenzo et al., 2001). ASPN can bind type 1 collagen and competes with decorin (but not biglycan) for 

the collagen-binding site (Kalamajski et al., 2009). Furthermore, ASPN has been shown to bind 

directly to TGF-β and BMP-2 and prevents them from binding to their respective receptors (Nakajima 

et al., 2007; Tomoeda et al., 2008; Yamada et al., 2007), which is in good agreement with our findings 

(Fig. 6). On the other hand, decorin interacts with the TGF1 and EGF receptors, and either enhances 

or diminishes their signal intensities (Iozzo and Schaefer, 2010). Likewise, biglycan binds to BMP4 

and regulates early embryogenesis or osteoblast differentiation (Chen et al., 2004; Moreno et al., 

2005). So whilst ASPN, decorin and biglycan share similarities in terms of structure and amino acid 

sequences (Fig. 1A), the biochemical characteristics of these three proteins differ from each other. 

This functional diversity is probably caused by differences in binding partners and/or the affinities of 

the interactions. 

 

This diversity is reflected in the embryonic activities of each protein. ASPN induces a strong eye 

phenotype, which could not be found when injecting the other class I SLRPs in Xenopus embryos (Fig. 

1A, 2I,P, Supplementary Fig. S2A-C) (Kalamajski et al., 2009; Kizawa et al., 2005). In addition, SLRP 

members of other classes did not elicit an eye phenotype when they were overexpressed – the 

exceptions being the type 2 SLRP lumican and type 3 SLRP epiphycan, which occasionally induced a 

subtle eye phenotype (Fig. 2P, Supplementary Fig. S2B) (Kuriyama et al., 2006). This is consistent 

with the fact that the levels of ERK and AKT activation by lumican and decorin are different from each 

other (Supplementary Fig. S2D). Therefore, each SLRP seems to have its own unique functions and is 

not redundant with each other. 

 

ASPN was first identified as a TGF- modulating molecule and was recognized as a causal gene for 

osteoarthritis (Henry et al., 2001; Kizawa et al., 2005; Lorenzo et al., 2001). In the mouse, ASPN is 

strongly expressed in the developing cartilage and its related tissues from the mid gestation period. In 

the eye, ASPN expression was found in the sclera from stage 15.5, while significant expression has 

not been reported at earlier stages (Henry et al., 2001). As mouse models with disrupted ASPN gene 

expression have not yet been reported, it is currently uncertain if ASPN is involved in the early stages 

of eye development in mice. Therefore, the functions of ASPN in different organisms are of interest for 

future studies. 
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ASPN antagonises BMP, Nodal and Wnt molecules and makes the IGF-mediated signal 

prominent. 

 

Our experiments have demonstrated that ASPN interacts with IGF and IGF1R, and activates the 

downstream signalling pathways (Fig. 5A,B, Supplementary Fig. S4, S5A). In addition, both IGF and 

ASPN are required for the activation of these pathways (Supplementary Fig. S4). Furthermore, it is 

interesting to note that ASPN expression is induced by the neural inducer chordin, but not by IGF 

(Supplementary Fig. S1), suggesting that there are two independent regulatory pathways of 

chordin/ASPN and IGF for the induction of eye development. Taken together, one possible model is 

that the specification of the presumptive eye region relies on time and space; when and where the two 

molecules’ signals intersect with each other. 

 

However, according to the previous and present in situ hybridisation analyses, IGFs and ASPN are 

expressed rather ubiquitously (Fig. 1D) (Pera et al., 2001). Detection of the IGFs, ASPN and activated 

forms of ERK and AKT proteins at in vivo levels will therefore enable us to demonstrate the relevance 

between signalling molecule distribution and eye formation in a more precise manner.  

 

Other IGF-related proteins may also be involved in the specification of the eye region. For instance, 

IGF-binding proteins (IGFBPs) have been shown to modulate IGF signals (Pera et al., 2001; Pollak, 

2009). In addition, the two mediator proteins IRS-1 and Kermit-2 bind to the IGF1R and play essential 

roles in eye development (Bugner et al., 2011; Wu et al., 2006). IRS-1 and Kermit-2 are localised 

intracellularly and may determine the mode of responsiveness to the extracellular signals of ASPN 

and IGF. Therefore, both the inducing activities and cellular responses seem to contribute to the 

spatio-temporal specification of the eye region.  

 

Our experiments have further suggested that ASPN interacts with many other regulatory molecules 

including BMP, Wnt and Nodal (Fig. 6G-I) in addition to IGF and IGF1R (Fig. 5A,B, Supplementary 

Fig. S5A), but has no, or very little if any, affinity to bind other receptor proteins (Supplementary Fig. 

S5B-D). This means that ASPN is not just an extracellular matrix protein that randomly binds to 

proteins, but rather an active modulator for other signal molecules. Furthermore, ASPN can apparently 

regulate bound proteins in different ways. BMP, Nodal and Wnt are opposed by ASPN while in 

contrast the IGF signal is encouraged. This finding may account for the differences in the phenotypes 

by the overexpression of IGF and ASPN; ASPN exhibits a strong phenotype specifically in the eye 

(Fig. 2), while IGF induces the whole head structure including cement grand (Pera et al., 2001). 

 

It is also possible that ASPN binds additional, currently unidentified molecules. Actually, the 

expression of FoxG1 was decreased upon ASPN overexpression in the whole embryos (Fig. 3H), 

while the same overexpression instead up-regulated FoxG1 expression in the simpler system of the 

animal caps (Fig. 3M), and this takes place probably due to the differences of the proteins ASPN may 
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bind to. The question of how ASPN interacts with many proteins is an intriguing research subject and 

deserves detailed quantitative (e.g. measuring dissociation constants) and systematic (e.g. high-

throughput searching for interacting proteins) analyses. 

 

There have been a number of intracellular molecules isolated as the “eye-maker” factors (Rorick et al., 

2007; Xu et al., 2012; Yang et al., 2003). Nevertheless, one advantage in identifying ASPN is that it is 

an extracellular protein and is easily applied to differentiating cells. We envisage that ASPN will be 

useful in improving the efficiency of eye production from embryonic stem cells. The increase in 

efficiency will be useful not only for clinical applications but also for the development of drug screening 

systems, and will consequently reduce the number of animals used to explore new therapeutic 

methods for retinal diseases. In conclusion, the discovery of ASPN raises possibilities of novel 

scientific and clinical applications. 
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MATERIALS AND METHODS 

 

Isolation of ASPN 

IMAGE (Integrated Molecular Analysis of Genomes and their Expression; 

http://www.imageconsortium.org) clones were purchased from Source Biosciences and the 

synthesised mRNA of each clone was injected into Xenopus embryos. The clone #6931202, encoding 

Xenopus asporin (NCBI Gene ID 495030), demonstrated a strong activity and we started further 

analyses. The very similar gene asporin-b, which exists probably because of the pseudotetraploidity of 

Xenopus laevis, was isolated in this study and has been registered in GenBank (accession number 

LC056842). Unless mentioned, all injection experiments were carried out with the mRNA of asporin-a 

(ASPN-a). The other genes tried during this screening were presented in Supplementary Table S1. 

 

Embryonic manipulation, in situ hybridisation and immunohistochemistry 

All animals in this study were subject to local and national ethical approval and guidance (University 

College London Ethical Committee, Cambridge University Ethical Committee and the Animals 

(Scientific Procedures) Act 1986 (UK Home Office)). Frogs were purchased from Nasco (Salida, 

California) and primed one week before use with 50 IU of PMSG (Chorulon, Intervet) and then injected 

with hCG (Chorulon, Intervet) on the previous evening (300-400 U) and in vitro fertilization was 

performed. Injection of mRNAs was performed with a fine glass capillary with a pressure injector 

(Harvard Apparatus). Staging of the embryos was done according to the normal table by Nieuwkoop 

and Faber (Nieuwkoop and Faber, 1967). 

 

Embryos were harvested at indicated stages, fixed with MEMFA (0.1 M MOPS (3-(N-morpholino) 

propanesulfonic acid) (pH 7.4), 2 mM EGTA (ethylene glycol tetraacetic acid), 1 mM MgSO4, 3.7% 

formaldehyde) for 1 hour and stained with X-gal (5-bromo-4-chloro-3-indolyl--D-galactopyranoside) if 

necessary. Antisense DIG (Digoxigenin) RNA probes were synthesized with RNA polymerase 

(Roche). In situ hybridisation was performed as described elsewhere (Harland, 1991). Hybridisation 

buffer contained 1.3xSSC (saline-sodium citrate) pH 5.0, 1 mg/ml Torula RNA (SIGMA), 0.2% Tween 

20 detergent (SIGMA), 0.5% CHAPS detergent (SIGMA), 100 g/ml Heparine sodium salt, and 50% 

formamide, and the hybridisation was performed at 60°C. Signals were developed by BM-Purple 

(Roche). 

 

Three morpholino antisense oligonucleotides against ASPN were designed around the translation 

initiation site of the ASPN gene with the sequences of ATTCCTTCATGGTGTTGTTTCAGAG for 

ASPN-MO1, TATAATTCTGCGGATCATAGATAAA for ASPNa-MO2 and 

TCTTCTTAACTGTAAATCCACCTGA for ASPNb-MO2 (the underlined sequence is complementary to 

the translation initiation site; Gene Tools). ASPNa-MO2 and ASPNb-MO2 were injected together 

(termed ASPN-MO2) to ensure both alleles of ASPN genes were knocked down. The control 

oligonucleotide (control-MO; CCTCTTACCTCAGTTACAATTTATA) was used as a specificity control. 
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For the rescue experiment, the mRNA of ASPNCDR was used, which only contains the coding region of 

ASPN and is therefore unlikely to bind to either morpholino oligonucleotides. 

 

For immunohistochemistry of sectioned eyes (Fig. 2), embryos fixed with 4% paraformaldehyde were 

incubated in 30% sucrose buffered with PBS (phosphate-buffered saline) overnight. Embryos were 

then embedded in OCT (Optimal Cutting Temperature) compound (Tissue-Tek) and sectioned with 10 

m increments (Leica). The antibodies used in this study were: Glutamine Synthetase (Millipore; 

#MAB302), Calbindin D-28K (SIGMA; #C-2724), HuC/HuD (LifeTechnologies; #A21271), -Crystallin 

(Abcam; #ab90379). Goat anti-mouse or anti-rabbit Alexa Fluor 488® (Abcam) were used as 

secondary antibodies. 

 

Animal cap, semi-quantitative and quantitative RT-PCR 

20 animal caps in each condition were prepared at stage 10 and were cultured in Steinberg’s solution 

(58 mM NaCl, 0.67 mM KCl, 0.34 mM Ca(NO3)2, 0.83 mM MgSO4, 4.6 mM Tris-Cl (pH 7.4)) (Sive et 

al., 2000) (doi:10.1101/pdb.rec11904 Cold Spring Harb Protoc 2009) until indicated time points and 

RNA was extracted with an RNeasy RNA extraction kit (QIAGEN). Complementary DNAs (cDNAs) 

were synthesized with the reverse transcription by Superscript II with random hexamers 

(LifeTechnologies). Semi-quantitative RT-PCR was performed with the Platinum Taq DNA polymerase 

(LifeTechnologies). Primers sequences were referred to previous reports (Mizuseki et al., 1998; 

Shimizu et al., 2013) and the De Robertis laboratory webpage 

(http://www.hhmi.ucla.edu/derobertis/protocol_page/Pdfs/Frog%20protocols/Primers%20for%20RT-

PCR.pdf). Quantitative RT-PCR (qRT-PCR) was performed with the 7900 HT Fast Real-Time PCR 

machine (Applied Biosystems) with the SYBR Green detection system (Applied Biosystems). Each 

gene expression level was normalized with that of ODC (ornithine decarboxylase). Primer sequences 

for qRT-PCR are available in Supplementary Table S2.  

 

Transfection, Immunoprecipitation and Western Blotting 

Human embryonic kidney HEK293 cells (ATCC number CRL-1753) were maintained with DMEM 

(Dulbecco's Modified Eagle's medium) (Gibco) supplemented with 10% Fetal Bovine Serum (Gibco) 

and antibiotics (Penicillin and Streptomycin) (LifeTechnologies). For preparing the conditioned media, 

HEK293 cells were transfected with the expression vectors that carry the indicated genes and were 

incubated for three days in Opti-MEM (Life Technologies). The cells that had separately been 

acclimatised to the serum-free condition were treated with the conditioned media.  

 

Cell extracts were prepared in TN Buffer (150 mM NaCl, 5 mM KCl, 0.5% NP-40 detergent, 10 mM 

Tris-Cl (pH7.8)) with protease inhibitor cocktail (Roche). For the analysis of phosphorylated proteins, 5 

mM NaF and 1 mM Na3VO4 were supplemented to inhibit dephosphorylation. Immunoprecipitation 

was performed by using Protein G sepharose (GE healthcare) with the indicated antibodies. After 

overnight incubation, beads were washed 3 times with the TN Buffer and analysed by western blotting 

as described previously (Wang et al., 2013). The antibodies to phosphorylated ERK (#9101), ERK 
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(#9102), phosphorylated AKT (Ser473; #4060), AKT (#4691), myc (#2276), IGF1 Receptor (#9750) 

were from Cell Signaling Technology; FLAG (#F3165) and HA (#6908) from Sigma. HRP (Horseradish 

peroxisome)-conjugated mouse or rabbit IgG (GE healthcare) were used as the secondary antibodies 

and signals were detected with ECL Western Blotting Detection Reagents (GE healthcare). 

 

Reporter assay 

The reporter constructs of ARE-luc (Activin-Responsive Element; (Chen et al., 1997)), TOPFLASH 

(the TCF/LEF Optimal Promoter monitoring the WNT activity; Upstate) and BRE-luc (BMP responsive 

element; (Tozer et al., 2013)) were used. pRL-CMV (Promega) was used as a normalization control, 

and luciferase assays were performed by a dual-luciferase assay system (Promega). 
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FIGURE LEGENDS 

Figure 1 Structure and expression of ASPN. (A) A phylogenic tree of SLRPs. (B) Comparison of the 

amino acid sequences of ASPN in different species. The amino-terminal aspartic-acid rich domain and 

leucine-rich domain are circled with red and light-blue rectangles, respectively. Asterisks; Isoleucine, 

leucine and Valine, Black disc; cysteine (in the cysteine rich domain), I-VIII; leucine rich repeat, as 

predicted by a database search via LRR finder (http://www.lrrfinder.com). (C) Semi-quantitative RT-

PCR of ASPN and Histone4. Whole embryos from various stages were analysed by RT-PCR. (D-G) 

Spatial expression of ASPN in Xenopus embryos at neurula (stage 18; anterior view; D), compared to 

Pax6 expression at neurula (stage 18; anterior view; E) and ASPN expression in early tail-bud (stage 

22; lateral view; F), tadpole (stage 36; G) was analysed by in situ hybridisation. The neural plate 

border (D) and the presumptive eye region (F) are indicated by yellow arrowheads. (H) Expression 

levels of ASPN in various types of explants, as assayed by qRT-PCR. Animal caps (control (i) or 

injected with mRNAs of Chd (ii) and Chd + Wnt8 (iii)) and dorsal marginal zone (DMZ; iv) and ventral 

marginal zone (VMZ; v) were prepared at stage 10.5 and assayed at stage 18. 

 

Figure 2 ASPN induces eye-like structure. (A,B) Ectopic eye-like structure that appeared following 

overexpression of ASPN mRNA (B). (C-H) Injection of ASPN mRNA induces an eye-like structure. In 

contrast to the embryos injected with 3 ng of control (-Galactosidase) mRNA (C,C’,C’’,F), either 1 ng 

(D,D’,D’’,G) or 3 ng (E,E’,E’’,H) of ASPN mRNA at 4-cell stage induced ectopic pigmented structures 

(arrows) at stage 42. The whole structure was imaged (C-E, C’-E’ and C’’-E’’), or Hematoxylin and 

Eosin staining was performed with sectioned samples (F-H). (I) Quantification of the phenotypes. The 

phenotypes were divided into four categories; embryos with normal eyes (black), with enlarged eyes 

(green; like (D,D’, D’’)), with ectopic eyes (red; like (E,E’, E’’)) and short axis (white). (J-O) The 

pigmented structure found in the ASPN-injected embryos contains eye specific components. 

Immunohistochemistry performed on sections of the eye-like structure induced by ASPN. Embryonic 

eyes (J,L,N) and pigmented structure induced by injection of ASPN (K,M,O) were analysed at stage 

42 with -Crystallin (J,K), Glutamine Synthetase (L,M) and HuD/Hu-C antibodies (N,O). (P) The 

phenotypes found following the injection of SLRP family members. SLRP family members were 

injected at 3 ng into a dorsal animal blastomere at 4 cell stage and the phenotype categorised at stage 

42. 

 

Figure 3 ASPN induces forebrain marker genes both in vivo and in vitro. (A-L) Forebrain marker 

genes were increased at the expense of posterior markers in vivo. The tracer -Galactosidase (A-L; 

light blue product) was injected without (A,C,E,G,I,K) or with ASPN mRNA (B,D,F,H,J,L) and embryos 

were analysed by in situ hybridisation with either Rx (A,B), Pax6 (C,D), Otx2 (E,F), FoxG1 (G,H), En2 

(I,J) or Krox20 (K,L) probes at stage 18. Affected areas are pointed by arrowheads. (M) Control (lane 

2) or ASPN-injected (lane 3) animal cap explants were analysed with semi-quantitative RT-PCR. 

Whole embryos (lane 1) were used as a positive control for the PCR. 
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Figure 4 ASPN is required for eye development. (A-C) Representative images from the injection of 

control-MO (A), ASPN-MO1 (B) and ASPN-MO1 together with the coding region of ASPN (ASPNCDR) 

mRNA (C). (D) Quantification of the phenotypes. For the rescue experiment, embryos were injected 

with either 20 ng ASPN-MO1 and 1 ng ASPNCDR, or 20 ng ASPN-MO1 and 3 ng ASPNCDR and the 

phenotypes analysed at stage 41. (E-X) The expression of marker genes caused by ASPN-MO1. 

Either control-MO (E,G,I,K,M,O,Q,S,U) or ASPN-MO (F,H,J,L,N,P,R,T,V,X) was injected together with 

-Galactosidase mRNA as a tracer (light blue product) and embryos were analysed at stage 17 

(E,F,I,J,M,N,Q,R,U,V) or at 22 (G,H,K,L,O,P,S,T,W,X) by in situ hybridisation with the probes of Rx 

(E,F), Six3 (G,H), Pax6 (I,J), Optx2/Six6 (K,L), Otx2 (N-Q), En2 (R-U) and Krox20 (V-Y). (Y) ASPN is 

essential for the induction of EFTFs by chordin (Chd). Animal caps of control (i; black bars), Chd-

injected (ii; blue bars) and Chd + ASPN-MO (iii; red bars) -injected embryos were prepared and the 

animal caps were analysed at stage 22 by qRT-PCR (*p<0.01; Student’s t-test). 

 

Figure 5 Cooperation of ASPN and IGF is essential for the eye development. (A) ASPN activates 

ERK and AKT. Conditioned media expressing (lane 1), ASPN (lane 2) or IGF2 (lane 3) were prepared 

and applied to HEK 293 cells for 20 min. Western blotting analysis was performed with antibodies for 

phosphorylated ERK, ERK, phosphorylated AKT and AKT. (B) ASPN physically interacts with IGF1R. 

HEK 293 cells were transfected with expression vectors carrying IGF1R (lanes 1,2) and ASPN (lane 2) 

and coimmunoprecipitation analysis was performed with the IGF1R antibody and detected with the 

Myc antibody. IB; immunoblotting, IP; immunoprecipitation. (C-I) The embryonic eye formation 

requires both signals of ASPN and IGF. (C-G) Embryos were injected with 3 ng -Galactosidase 

mRNA (control: C), 1 ng ASPN mRNA (D), 1 ng ASPN + 3ng dnIGFR mRNAs (E), 1 ng IGF2 mRNA + 

20 ng control-MO (F) or 1 ng IGF2 mRNA + 10 ng ASPN-MO (G) at the dorsal blastomere at 4-cell 

stage and phenotypes were evaluated at stage 42. Affected areas are indicated with yellow 

arrowheads. (H,I) The same combination of mRNAs and morpholinos were injected. Animal caps were 

prepared and analysed at stage 22 for Pax6 and Rx2a expression with qRT-PCR. (*p<0.01; Student’s 

t-test). 

 

Figure 6 ASPN inhibits multiple signal molecules. (A) ASPN blocks endogenous Activin, BMP and 

Wnt signals, as examined by Luciferase assays. Either ARE-luc, BRE-luc or TOPFLASH reporter 

constructs were injected with 1ng -Galactosidase (lane 1), 100 pg Xnr1 mRNA (for ARE), 100 pg 

BMP4 mRNA (for BRE) or 100 pg Wnt8 mRNA (lane 2), 100 pg Xnr1 + 1ng ASPN mRNAs (for ARE), 

100 pg BMP4 + 1ng ASPN mRNAs (for BRE) or 100 pg Wnt8 + 1ng ASPN mRNAs (lane 3) and were 

assayed at stage 12. (B) ASPN inhibits the Nodal signalling pathway. Animal caps injected with control 

(lane 1,2) or ASPN mRNA (lane 3) were prepared at stage 9 and cultured with control medium (lane 1) 

or medium containing human Nodal protein (lane 3) until stage 10.5. Mix.2 expression was analysed 

by qRT-PCR. (C,D) Xbra expression was inhibited by ASPN, as analysed by in situ hybridisation. The 

-Galactosidase mRNA (light blue product) was injected without (C) or with ASPN (D) mRNAs into 

one blastomere at the equator region of 4-cell stage embryos and embryos were cultured until stage 

10.5. Affected areas are pointed with arrowheads. (E) ASPN has neural inducing activity. Animal caps 
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injected with 500 pg Chd (lane 3) or 1ng ASPN (lane 4) mRNAs were analysed at stage 14 by semi-

quantitative PCR. (F) ASPN inhibits the Wnt signaling pathway. The animal caps injected with Wnt8 

and ASPN mRNAs were prepared and the expression of Xnr3 was analysed at stage 10.5. (G-I) 

ASPN forms complexes with Xnr1 (G), BMP (H) and Wnt (I) proteins. In order to avoid the artificial 

interactions in the same cells, each expression construct was separately transfected into HEK293 

cells and cells were combined on the following day as indicated. The cell lysates were collected after 

two additional days and immunoprecipitation (IP) was performed with the HA antibody and western 

blotting (IB) was performed with the FLAG (G) or myc (H,I) antibodies. (*p<0.01; **p<0.05; Student’s t-

test). 

 

SUPPLENTARY MATERIAL 

Figure S1 Expression of ASPN and other related genes in various explants. Expression levels of 

ASPN (A), Otx2 (B) and Krox20 (C) in various types of explants, as assayed by qRT-PCR. Animal 

caps (control (i) or injected with mRNAs of 500 pg IGF2 (ii), 500 pg Chd (iii) or 500pg Chd + 100 pg 

Wnt8 (iv)) and dorsal marginal zone (DMZ; v) and ventral marginal zone (VMZ; vi) were prepared at 

stage 10.5 and assayed at stage 18. Note that the data indicated with (†) are identical to those in 

Fig.1H. 

 

Figure S2 Characterisation of Lumican and Decorin. (A-C) Representative images of the embryos 

injected with 3 ng ASPN (A), 3 ng Lumican (B) and 3 ng Decorin (C) mRNAs. (D) Differential activation 

of ERK and AKT by SLRP proteins. Control (i), ASPN-myc (ii), Lumican-myc (iii) or Decorin-myc (iv) 

expression media were prepared and applied onto HEK293 cells as in Fig. 5A.  

 

Figure S3 Designation of morpholino oligonucleotides against ASPN and the phenotypes 

caused by the ASPN-MO2. (A) In addition to ASPNa, which this study is based on, we found another 

genome sequence probably due to the pseudotetraploidity, and termed it ASPNb. The nucleotide 

sequences (black characters) around the start codon (circled) of Xenopus ASPN and the sequences 

of ASPN-MO1 (red) ASPNa-MO2 (blue) and ASPNb-MO2 (purple) are shown. (B-D) Representative 

images from the injection of 20 ng control-MO (B), 20 ng ASPN-MO2 (C) and 20ng ASPN-MO2 

together with 1 ng of the coding region of ASPN (ASPNCDR) mRNA (D). (E) Quantification of the 

phenotypes. For the rescue experiment embryos were injected with either 20 ng ASPN-MO2 and 1 ng 

ASPNCDR, or 20 ng ASPN-MO2 and 3 ng ASPNCDR and the phenotypes analysed at stage 41. 

 

Figure S4 Both IGF and ASPN are required for the full activation of ERK. Animal cap explants 

were prepared from 3 ng control -Galactosidase (i,ii,iv), 3ng dnIGFR mRNA (iii), 20 ng control-MO (v) 

or 20 ng ASPN-MO (vi) injected embryos and were incubated with the conditioned media expressing 

control (i,iv), ASPN (ii,iii) or IGF2 (v,vi) for 20 minutes. The explants were analysed by western blotting 

using phosphor-ERK or ERK antibodies. 
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Figure S5 Interactions between ASPN and other molecules. The expression plasmids encoding 

ASPN-HA, IGF2-myc (A), Activin receptor (ActR)-FLAG (B), BMP receptor (BMPR)-FLAG (C) and 

Fzd4-CRD (the cysteine-rich domain in the extracellular part of Frz4)-myc-FLAG (D) were transfected 

as in Fig. 6G-I. The cell extracts were analysed by coimmunoprecipitation assays. 

 

Figure S6 The phenotypes caused by the ventral injection of ASPN mRNA. 3 ng of ASPN mRNA 

was injected at the equator regions of one of the blastomeres at 4-cell stage and the phenotype 

observed at stage 42. In contrast to the control embryos (A), the injected embryos exhibited shortened 

bodies (B). 

 

 

Supplementary Table S1 The SLRPs used for the screening 

Supplementary Table S2 The primer sequences for semi-quantitative PCR and qRT-PCR 
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