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Abstract 

One of the regions that have consistently been included in the neurological models 

of reading is the left inferior parietal lobule (IPL), however, the precise functional and 

temporal contributions of this region to reading have not yet been fully established. 

There are three hypotheses concerning IPL contributions to visual word recognition. 

The first one claims that the IPL is the site of stored visual word forms although it 

remains unclear whether these are stored in supramarginal (SMG) or angular (ANG) 

fields of the IPL. The second hypothesis argues that the procedures for converting 

spelling-to-sound are a function of the IPL, but it is unclear whether these are 

specifically located in SMG or ANG, or both. Finally, a third hypothesis suggests that 

SMG and ANG preferentially contribute to phonological and semantic processing of 

written words, respectively. In this thesis, I empirically evaluated these hypotheses 

using repetitive transcranial magnetic stimulation (rTMS) to temporarily and 

selectively disrupt processing in left SMG and ANG during visual word recognition 

and measure the effect on reading behaviour. I also investigated the time course of 

SMG and ANG involvement to visual word recognition using double-pulse TMS. My 

research demonstrates that SMG contributes preferentially to phonological aspects 

of word processing and the processing begins early and over a sustained period of 

time (between 80 to 200 msec post-stimulus onset). ANG contributes preferentially 

to semantic aspects of word processing but the temporal dynamics of this 

contribution were not successfully revealed in this thesis and require further 

investigation.  

In addition, I empirically evaluated the efficiency of using functional magnetic 

resonance (fMRI) and TMS to functionally localize a target site for TMS 

experiments. I demonstrated that both methods are similarly accurate in identifying 

stimulation site but neither of them is 100% accurate.    
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1.1 Origins of Reading  

Reading is the ability to translate a visual symbol into its corresponding sound and 

meaning and it is a relatively new addition to the human communication repertoire 

that developed together with writing. The first known writing systems date back to 

approximately 3200 B.C. (Daniels, 1996), although historians distinguish at least 

three independent origins of writing systems in the ancient world. The earliest was 

cuneiform writing developed by the Sumerians in Mesopotamia. Chinese characters 

appear to have developed independently around 1200 B.C. and a third writing 

system was developed by the Olmecs or Zapotecs around 600 B.C. in Mexico 

(Boltz, 1996; Daniels, 1996). The original purpose of the writing systems was to 

create basic administrative, religious, and cultural records. Those included, for 

example, quantities of livestock, notes to gods, or calendar information written 

initially on clay (in Sumer), papyrus (in Egypt), bamboo or silk (in China). The 

majority of symbols in the early writing systems were pictographs where individual 

symbols represented whole words. For example, a drawing of a stalk of barley or 

wheat represented grain in Summer script (Michalowski, 1996). Consequently, those 

systems consisted of a very large number of symbols (Lyons, 2010).  

The cultural diffusion, mainly due to trading, allowed a transmission of the first 

writing systems to other cultures which very often adopted the general concepts of 

writing and developed their own system. One such example is Egyptian script which 

is believed to develop from the Sumerian cuneiforms because of the conceptual 

similarities that exist between the two scripts (Daniels, 1996). In contrast to 

Sumerians, however, Egyptians created a system in which the hieroglyphs 

corresponded to phonetic symbols, rather than pictorial drawings. In fact, this was 

an exceptionally important transition in the history of writing since it gave a 

beginning to the first phonetic writing system. Even more importantly, the great 
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cultural influences of Egypt on the rest of the world shaped the majority of writing 

systems in a way that phonetic writing systems came to dominate across the world 

and are currently the most common among the world’s writing systems. These 

include, for example, syllabic (e.g., Japanese Kana) or alphabetic (e.g., Greek, 

English, or Spanish) systems. It is also worth mentioning that the cultural diffusion of 

phonetic scripts did not affect the Chinese writing system which is still based on 

logographs where a symbol corresponds to a whole meaningful unit.  

Reading and writing skills developed from the exclusive attribute of a privileged few 

into a necessity of life for all in many societies (Lyons, 2010). In the ancient 

societies, the complexity of the two processes confined reading and writing to 

political and clerical elites who had exclusive rights to them. It was only towards the 

end of the eighteenth century that those skills became widely popularized in many 

societies (Lyons, 2010). At present, from texts to twitter, e-mails to blogs, we live in 

a world that is dominated by written communication and reading is one of the crucial 

skills we need to learn in order to fully function in modern society. In the modern 

world, reading is fundamental since it is a gateway to information and knowledge. As 

a result it constitutes one of the most important skills taught in schools (Kucer, 

2014). The ability to read has life-shaping consequences. Skilled reading provides 

individuals with the opportunity to be successful in their education and consequently 

in their employment and life prospects. According to the National Literacy Trust (for 

reviews see Dugdale & Clark, 2008; Morrisroe, 2014), individuals with low or very 

low literacy skills are more likely to be unemployed or in low-paid jobs with fewer 

chances for promotion or career choices. This lack of choices appears to negatively 

influence their self-development, family life, physical health, mental wellbeing, 

civic/cultural engagement, and general life satisfaction. Low literacy has also been 

strongly associated with increased levels of crime. Therefore it is very important to 
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understand skilled reading and critical for this aspect is learning how reading is 

achieved in the brain.  

An understanding of how human brains produce reading is important for several 

reasons. First, reading is a language function and therefore one part of our cognitive 

inheritance that appears to be unique to the human species. A better understanding 

of reading in adults will also facilitate our understanding of reading disturbances 

(Bishop & Adams, 1990; Dyer, MacSweeney, Szczerbinski, Green, & Campbell, 

2003). In addition, knowledge of the neural basis of reading will allow us to better 

assess cognitive models of reading  (Coltheart, Curtis, Atkins, & Haller, 1993; 

McClelland & Rumelhart, 1981; Patterson & Shewell, 1987; Plaut, McClelland, 

Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989).  

In the ninetieth and twentieth centuries, understanding of reading in the brain rested 

mainly on investigations of patients with brain damage. Those studies localized 

reading functions in the brain by correlating areas of brain damage with impaired 

reading skills. Since the 1980s, the availability of neuroimaging techniques such as 

functional magnetic resonance imaging (fMRI) and positron emission tomography 

(PET) advanced our knowledge of functional anatomy of reading while the spatio-

temporal dynamics of reading have been investigated with electromagnetic 

techniques such as magnetoencephalography (MEG) and electroencephalography 

(EEG). Although our understanding of the functional anatomy and temporal 

dynamics of reading have come a long way since the first neurological 

investigations, there are still important questions to be answered. 
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1.2 Classical Neurological Model of Reading 

Joseph Jules Dejerine pioneered the neurology of reading. His primary 

investigations into the neural basis of reading date back to early 1890’s and involved 

examination of patients with brain damage. Dejerine was the first to show that the 

syndrome of word blindness, known as alexia (i.e., inability to recognize written 

words), was the result of damage to the inferior parietal lobule, indicating the 

importance of this region in reading. Dejerine (1891) described the case of a 63 year 

old sailor who became unable to read or write (alexia with agraphia) due to damage 

to the left inferior parietal lobule. A dissection of the patient’s brain after his death 

revealed an extensive lesion involving in particular the inferior three quarters of the 

left angular gyrus, an area located in the posterior part of the inferior parietal lobule. 

Dejerine reasoned that the patient’s inability to recognize written words coupled with 

his writing difficulty indicated a central loss of visual word images (i.e., orthographic 

forms of entire words), which he argued were stored in the angular gyrus. In other 

words, because of damage to angular gyrus the patient had no access to the visual 

word forms to associate with incoming written words and therefore could not read.  

Similarly, he could not link his inner speech to these damaged visual word forms 

and therefore could not write. Additional support for the storage of visual word forms 

in the angular gyrus came from a second patient one year later. According to 

Dejerine’s (1892) report, a 68 year old textile merchant initially lost the ability to read 

but his writing was intact (i.e., pure alexia or alexia without agraphia) until shortly 

before his death when he also experienced a sudden loss of writing skills. At post-

mortem, two lesions were identified in his brain. The older infarct was found in the 

left occipital lobe and the splenium of the corpus callosum while the fresh infarct was 

found in the left angular gyrus. Dejerine concluded that the patient’s inability to read 

was caused by the occipital lesion that disconnected the primary vision regions from 

the angular gyrus preventing the transfer of visual information from the occipital lobe 
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to the angular gyrus. In other words, he believed that in this case the visual centres 

of the occipital lobes were disconnected from the visual word forms in angular gyrus 

preventing reading. Because the visual word representations stored in the angular 

gyrus were initially intact in this patient, they could still be fed forward to the later 

stages of the language system enabling writing. The presence of a more recent 

lesion to angular gyrus explained the patient’s later inability to write, confirming 

Dejerine’s hypothesis that the angular gyrus was the visual word centre and the 

damage to this area resulted in alexia with agraphia.  

In 1891, Dejerine adapted Lichtheim’s (1885) neurological model of language to 

incorporate reading at the basic word level. Lichtheim’s model was based on the 

seminal findings of Broca (1861) and Wernicke (1874). Broca described a patient 

with motor aphasia in which damage to the left posterior third frontal convolution 

(i.e., inferior frontal gyrus, now known as Broca’s area) impaired speech production 

leaving speech comprehension intact. Broca argued that the faculty for speech 

articulation could be localized in the left ventro-lateral frontal lobe. In contrast, 

Wernicke described patients with a form of sensory aphasia in which lesions to the 

left posterior first temporal convolution (i.e., superior temporal gyrus, now known as 

Wernicke’s area) caused speech comprehension impairments but left speech 

production intact. Based on these findings, Wernicke localized the faculty for speech 

recognition in the left superior temporal cortex. Wernicke also created a 

neurocognitive model of language (Figure 1-1) in which visual information was 

suggested to reach the speech production area (b) first and then was transferred to 

speech comprehension area (a1) via the white matter tract known as the arcuate 

fasciculus. His additional, but purely theoretical prediction, was that damage to this 

specific pathway leads to conduction (or commissural) aphasia in which patients fail 

to transfer information from the comprehension to production areas due to their 

disconnection. According to Wernicke, this disconnection would result in fluent 
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although paraphasic speech and good speech comprehension since areas 

responsible for those functions remain intact but would result in impaired speech 

repetition because of disabled transfer of information between the speech 

production and comprehension areas.  

 

 

Lichtheim formalized Wernicke’s (1874) preliminary language model in order to 

further explain brain functions required for normal language processing (Figure 1-2). 

He suggested that when we listen to speech, auditory information about words is 

passed to the auditory centre in Wernicke’s area (A) where the auditory images of 

words (i.e., the phonological forms of words) are activated. These are then 

transmitted to the motor centre in Broca’s area (B) where the motor images of words 

(i.e., articulatory forms of words) are accessed either directly via the arcuate 

Figure 1-1: The Wernicke's (1874) classical neurocognitive model of language. 

The speech comprehension (Wernicke’s) area is represented by a1 and speech 

production (Broca’s) area is represented by b. Both areas are connected via 

the a1 – b pathway. Figure was taken form Wernicke (1874). 
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fasciculus or indirectly via the ideational centre (I) where the concepts of the words 

are elaborated prior to the motor forms of the words. The ideational centre did not 

have any specific location in the brain but it rather referred to the interconnected 

associational network suggested by Wernicke. When we speak, however, we 

activate the ideational centre for semantic information which in turn directly access 

articulatory forms of words in Broca’s area. The direct route connecting the auditory 

and motor centres was supposed to be particularly important for speech repetition 

since this process relies on successful information transfer between the two centres. 

Lichtheim argued that any type of aphasia and its symptoms should be easily 

predicted by the model. In fact, his model managed to account not only for 

Wernicke’s or Broca’s aphasias followed by damage to the centre A or B, 

respectively, but also for a number of other types of aphasia which could result from 

either damage to the actual language centres or to the interconnecting pathways. 

For instance, Lichtheim’s model successfully predicted transcortical motor aphasia 

characterized by good comprehension but non-fluent speech which Lichtheim 

associated with damage to the route connecting centres I and A as well as  

transcortical sensory aphasia characterized by the opposite pattern of symptoms 

which he associated with damage to the pathway connecting centres I and B. In 

addition, Lichtheim presented a patient who clearly showed the symptoms of 

conduction aphasia, predicted originally by Wernicke. Lichtheim’s patient, a 46 year 

old labourer, exhibited speech repetition problems while his speech comprehension 

and fluent speech were preserved. His autopsy revealed specific damage to the 

arcuate fasciculus which supported Wernicke and Lichtheim’s predictions regarding 

localization of this language impairment and the existence of two different routes 

connecting the auditory centre with the motor centre.  
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Figure 1-2: The Wernicke--Lichtheim’s (1885) neurocognitive model of 

language. Auditory information is passed to the auditory centre (A) in 

Wernicke’s area where the phonological forms of words are activated. These 

are then transmitted to the motor centre (B) in Broca’s area where the 

articulatory forms of words are accessed either directly via the arcuate 

fasciculus or indirectly via the ideational centre (I) where the concepts of 

words are elaborated prior to the articulatory forms.  

 

Dejerine elaborated on the Wernicke-Lichtheim’s model by proposing a separate 

centre for visual word images located in the angular gyrus required for reading 

(Figure 1-3). He assumed that in order to read, a written word must be sent from the 

basic visual areas in occipital cortex to the centre for visual word images (V) in the 

left angular gyrus where the word activates its orthographical form. From there, the 

orthographic representation of the word gains simultaneous access to the 

corresponding auditory word image in Wernicke’s area (A) and to the corresponding 

motor word images in Broca’s area (B). Dejerine argued that auditory and motor 

images are closely related and that it is their union which constitutes the idea of the 
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word. Dejerine’s argument was of a critical theoretical value since he was the first to 

acknowledge brain interactivity as an important dynamic necessary for word 

recognition. Dejerine also stressed the importance of phonology in reading and 

rejected the possibility of separate phonological and semantic routes because he 

believed that reading could not happen without accessing phonology. This is shown 

in the diagram where the visual centre (V) is not in direct communication with the 

ideational centre (I) but it is linked to it through the auditory (A) and motor (B) 

centres. Dejerine’s argument in support of this claim was that even during silent 

reading we hear the words in our mind and we are aware of their articulation. It was 

also implicated in this model that there are brain regions dedicated only to reading 

which could be inferred from the assumption that damage to the centre for the visual 

images of words (i.e., the angular gyrus) leads to selective deficits for reading and 

writing.  
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The seminal work of Broca, Wernicke, Lichtheim and Dejerine resulted in the so-

called classical neurological model of reading proposed by Geschwind (1965) 

(Figure 1-4). Similarly to the two theoretical models presented earlier, it included the 

motor centre located in Broca’s area, the auditory centre located in Wernicke’s area 

and the centre for visual images in the angular gyrus suggested by Dejerine. In 

contrast to the Dejerine’s model of reading, however, visual information was 

transferred down a single route in a feed-forward manner. Dejerine’s concept of 

interactivity between brain regions necessary for successful word recognition seems 

to be omitted by Geschwind for no obvious reason. Consequently, in the classical 

Figure 1-3: A) Dejerine’s (1891) neurocognitive model of reading and B) its 

anatomical illustration: visual information reaches basic visual cortex (black), 

and then proceeds to angular gyrus (green) where abstract visual word 

representations are stored. These visual word forms are then simultaneously 

transferred to Wernicke’s area (red) where they are linked to corresponding 

auditory word forms and to Broca’s area (dark blue) where they are linked to 

appropriate motor word forms. Wernicke’s and Broca’s areas closely interact to 

allow recognition of the word. 
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model, reading proceeds in a purely serial, feedforward fashion with visual 

information about a written word first reaching visual cortex, then being sent to the 

left angular gyrus where its association with abstract visual word forms occurs. 

These abstract forms travel then to Wernicke’s area where they are linked to 

appropriate auditory word forms and finally to their motor word forms in Broca’s 

area.  

 

The classical neurological model of reading emerged from the neurocognitive 

models proposed by Wernicke, Lichtheim, and Dejerine in the nineteenth century. At 

that time, all three aphasiologists were recognized as connectionists, also called 

diagram makers, whose goal was to create cognitive models of language 

corresponding to the actual brain anatomy (Finger, 1994; Levelt, 2013). Localization 

of cognitive functions to specific structures in the brain was the main feature that 

Figure 1-4: Geschwind’s (1965) classical neurological model of reading: areas 

involved in reading and their function are the same as in Dejerine’s model but 

information transfer is purely sequential with no interactions between regions. 
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distinguished their models from purely cognitive models of language. Models 

proposed by diagram makers were based on a one-to-one correspondence between 

the centres and pathways in the abstract diagrams to brain areas and fibre paths. 

The key example was localization of the motor or auditory centre in the left inferior 

frontal or superior temporal gyrus, respectively, and their interconnection through 

the arcuate fasciculus. The neurocognitive models were made from inferences 

based on observations of patients with brain lesions and were supposed to 

represent a theory of normal brain functions and predict pathological syndromes. 

Although the intentions were great, these models were strongly criticised. 

 

1.3 Classical Criticism of the Diagram Makers  

The classical neurological model of reading was developed based solely on 

neurological case studies in order to identify the functional centres (or faculties) 

required for normal reading and language processing together with their localization 

in the brain. By the end of the nineteenth century, however, there was considerable 

debate about the value of such models and even the fundamental methods that 

were used to create them (Finger, 1994; Levelt, 2013). Henry Head (1926) 

dismissed all the models and claimed that aphasiologists such as Wernicke or 

Lichtheim distorted their data in order to support their own diagrams. The main 

cause of this criticism was lack of mapping between what was predicted by the 

models and what was actually seen in patients. For instance, Finkelnburg (1870 

translated in Duffy & Liles, 1979) pointed out that many scientists were unable to 

support Broca’s precise location of articulatory language because there were 

patients who showed impaired articulation although their lesion did not affect the left 

posterior third frontal convolution. Similarly, Marie (1906 translated in Cole & Cole, 

1971) noticed that in his stroke patients with lesions to the left posterior third frontal 
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convolution, only about half showed symptoms of Broca’s aphasia. Marie argued 

that the diagram makers proposed strong claims from a very small number of clinical 

cases and as an example he referred to the most important work of Wernicke (1874) 

which was based on just 10 cases including only 4 backed by autopsy materials. 

More theoretical concerns were raised by people like Freud (1891) who argued that 

equating a lost function in a brain damaged patient with a cortical faculty in an intact 

brain was a logical fallacy. Freud argued that one cannot assume that abnormal 

behaviour due to a lesion can simply reflect workings of a healthy brain. The same 

argument was made by many researchers in the subsequent years, including 

Gregory (1963) and Farah (1992). In his famous example, Gregory argued that one 

would never correctly understand the functional organization of a radio by observing 

that piercing whistles or deep growls were emitted after removing one of its 

components. Clearly the component’s function is not a growl suppressor but rather it 

plays a complex role in the function of the entire system. Similarly, one cannot infer 

that a region functions as a speech area just because damage to the region results 

in a loss of speech. Instead it is necessary to understand the entire system in order 

to know how damage changes the functional abilities of the whole. Farah (1992) 

referred to this as the transparency assumption and claimed it led to incorrect 

conclusions about the functioning of the healthy brain.    

As a result of these criticisms, the connectionist models fell out of favour and were 

largely ignored for decades. Investigations of the neural basis of language based on 

patient data were considered uninteresting. Instead, more attention was paid to 

characterizing language deficits following brain damage that included, for instance, 

the identification of different types of acquired dyslexia (e.g., Marshall & Newcombe, 

1973). Only a few pioneering scientists continued to investigate the neural side of 

language. Most notable among these was Wilder Penfield, a neurosurgeon, who 
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developed awake neurosurgical methods for mapping language functions onto the 

surface of the exposed brain and in the process continued the tradition of early 

neurologists (Penfield & Boldrey, 1937; Penfield & Rasmussen, 1950; Penfield & 

Roberts, 1959).  

 

1.4 Evaluating the Classical Neurological Model of Reading 

Interest in the work of the diagram makers was revived by Geschwind (1965) in his 

seminal paper that re-introduced the neurological model of language and reading to 

a modern audience (Figure 1-4). Fifty years on, however, it is clear that Geschwind’s 

formulation of the classic neurological model of reading suffered from four main 

problems. First, a single route of processing could not explain different types of 

acquired dyslexia (i.e., loss of previous ability to read) identified by behavioural 

psychologists. Second, it was missing key brain regions involved in reading. Third, 

functions assigned to the brain regions in the model were inaccurate, and lastly, the 

model did not provide any information about neural dynamics of reading. Each of 

these will be considered in the following sections.   

1.4.1 Multiple Routes of Processing 

The first criticism of the Geschwind’s model is that information transfer along a 

single processing route cannot account for different types of acquired dyslexia. In 

fact, patient studies on surface, phonological, and deep dyslexia provided invaluable 

evidence for multiple processing routes necessary for successful visual word 

recognition. Surface dyslexia was first defined by Marshall and Newcombe (1973) in 

their seminal paper on different types of reading disorders caused by brain damage. 

Two patients presented with missile wounds to the left temporo-parietal region both 

displayed letter-to-sound (i.e., grapheme-to-phoneme) conversion errors during 
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reading (e.g., reading pint to rhyme with hint). It was hypothesized that these 

surface dyslexics read via grapheme-to-phoneme mappings that were occasionally 

unsuccessful. A few years later, Beauvois and Derouesne (1979) described the first 

case of phonological dyslexia. Their patient had part of his left occipito-parietal 

cortex removed due to a tumor. After surgery, the patient showed the opposite 

symptoms to surface dyslexics. He was able to read all familiar words, but showed 

difficulties reading unfamiliar words or pronounceable nonwords (also called 

pseudowords: combinations of letters which do not have meaning but follow 

phonotactic rules of a language, e.g., nurm). It was hypothesized that phonological 

dyslexics read words as a whole but were unable to read by translating letters onto 

sounds (i.e., using grapheme-to-phoneme conversion rules).  

In the two types of dyslexia described above, patients clearly show two opposite 

ways of reading. Surface dyslexics can only read using the rules of grapheme-to-

phoneme conversion but they cannot recognize words in their entirety. In contrast, 

phonological dyslexics are able to read using the whole word method but are unable 

to read following rules of phonological translation. This double dissociation of 

symptoms indicates a need for two separate routes subserving reading, namely a 

lexical route linking the written form of whole words to their known pronunciation 

which was disabled in surface dyslexics and a sublexical route based on grapheme-

to-phoneme conversion which was damaged in phonological dyslexics. Attempts to 

explain both of these acquired deficits were problematic for the classical model of 

reading because it proposed only a single route from visual to phonological 

information. That is, there was no place that a lesion could selectively affect either 

irregular words (surface dyslexia) or novel words (phonological dyslexia) without 

affecting the others as well. Despite the fact that Dejerine’s model of reading 

included two separate paths linking the visual form center (the angular gyrus) to the 

articulation center (Broca’s area), it was still unable to explain the two different types 
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of acquired dyslexia because neither path distinguished between whole word 

reading or reading via grapheme-to-phoneme conversion. 

A third type of dyslexia, deep dyslexia, was also described by Marshal and 

Newcombe (1973). They observed two patients who experienced either a missile 

injury to the left temporo-parietal region or a gunshot to the left occipito-parietal 

region. The lesions led to lexico-semantic errors during reading aloud in those 

patients. In particular, their errors included semantic paralexias involving production 

of one word when another one is meant (e.g., view → scene; large → big; defend → 

defence). Marshall and Newcombe hypothesised that deep dyslexics have access to 

the semantic information about a written word but they cannot access its 

phonological association during reading. These cases suggest that there is a direct 

route to semantic information from print before reaching phonological information, in 

contrast to Geschwind’s and Dejerine’s models of reading; Geschwind’s model 

simply did not include any centre for semantic information while Dejerine explicitly 

stated that phonology must be accessed prior to semantics during reading.  

Evidence from surface, phonological, and deep dyslexia demonstrated that the 

visual information of a word gets associated with its phonological information via 

multiple, independent paths. One path allows for phonology to be accessed directly 

from the print while another path enables indirect access to phonology via 

semantics. Consequently, the classical neurological model of reading which 

suggests a single route from letters to sounds is unable to explain different cases of 

acquired dyslexia. The only type of acquired dyslexia that the model can account for 

is pure alexia, which is not surprising given that it was created based on the cases 

of pure alexics.  
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1.4.2 Brain Regions Involved in Reading 

The second criticism of the classic neurological model is that it missed brain regions 

that are important to reading and indeed, recent patient and neuroimaging studies 

demonstrated that reading clearly involves areas outside the nineteenth century 

model. In fact, reading engages a widely distributed network of subcortical and 

cortical structures located in both hemispheres (Cattinelli, Borghese, Gallucci, & 

Paulesu, 2013; Fiez & Petersen, 1998; Joubert et al., 2004; Price, 2012; Turkeltaub, 

Eden, Jones, & Zeffiro, 2002). For instance, it has become clear that in addition to 

cortical territories, subcortical areas including the thalamus (Binder, Medler, Desai, 

Conant, & Liebenthal, 2005; Bohland & Guenther, 2006; Fiebach, Friederici, Müller, 

& Cramon, 2002; Price, Moore, Humphreys, & Wise, 1997; Rumsey, Horwitz, et al., 

1997), basal ganglia (Booth, Wood, Lu, Houk, & Bitan, 2007; S. H. Chen & 

Desmond, 2005), and cerebellar regions (Bookheimer, Zeffiro, Blaxton, Gaillard, & 

Theodore, 1995; Booth et al., 2007; S. H. Chen & Desmond, 2005; Fulbright et al., 

1999; Herbster, Mintun, Nebes, & Becker, 1997; Price et al., 1994) also contribute to 

reading. Within the neocortex, the major regions involved in reading include occipito-

temporal, parieto-temporal, and inferior frontal regions (Fiez & Petersen, 1998; 

Herbster et al., 1997; Pugh et al., 1996; S. E. Shaywitz et al., 1998). The classical 

model included Broca’s area in the inferior frontal gyrus together with angular gyrus 

and Wernicke’s area in the parieto-temporal area but it missed the entire occipito-

temporal cortex as well as the supramarginal gyrus located in the anterior part of the 

inferior parietal cortex, two regions which have been shown to be crucial for reading. 

In addition, more recent studies have clearly demonstrated that within each of the 

three large brain areas there are distinct subdivisions that contribute differentially to 

reading and this information was also missing from the classical model.  

Although all areas within occipito-temporal, parieto-temporal, and inferior frontal 

regions play important roles in reading, this section focuses specifically on two 
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areas, namely the left ventral occipito-temporal cortex and the left supramarginal 

gyrus. I present converging evidence for involvement of these two regions in reading 

from a wide range of studies including neurological and virtual patients as well as 

functional neuroimaging studies on healthy subjects. Of particular importance are 

data from transcranial magnetic stimulation (TMS) and neuroimaging studies that 

help to overcome the classical criticisms of diagram makers by investigating brain 

functions in healthy readers.  

A large number of lesion-deficit studies demonstrated that ventral occipito-temporal 

lesions can cause severe reading impairments such as pure alexia (L. Cohen et al., 

2004; Damasio, 1983; Leff et al., 2001; Leff, Spitsyna, Plant, & Wise, 2006; 

Pflugshaupt et al., 2009; Starrfelt, Habekost, & Leff, 2009). In addition, the 

importance of the area in reading has been demonstrated in patients who have 

undergone direct intracranial recordings prior to their neurosurgeries (Nobre, Allison, 

& McCarthy, 1994) or in patients with virtual lesion to the ventral occipito-temporal 

region created by means of TMS (Duncan, Pattamadilok, & Devlin, 2010; 

Pattamadilok et al., 2015). The involvement of the ventral occipito-temporal cortex in 

reading was also demonstrated in the very first neuroimaging study of a higher 

cognitive function (Petersen, Fox, Posner, Mintun, & Raichle, 1988). Petersen and 

colleagues used PET to identify brain areas involved in passive reading of single 

words by normal subjects. They found that silent reading of single words activated 

the left extrastriate cortex together with ventral occipito-temporal region. In their next 

PET study, Petersen and colleagues (Petersen, Fox, Posner, Mintun, & Raichle, 

1989) confirmed the association of these areas with visual processing of single 

words. Since then, activation in the region has been consistently replicated in 

different reading experiments using PET (Herbster et al., 1997; Price, Wise, & 

Frackowiak, 1996; Price et al., 1994; Rumsey, Horwitz, et al., 1997), fMRI (L. Cohen 

et al., 2000; L. Cohen et al., 2002; Devlin, Jamison, Gonnerman, & Matthews, 2006; 
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Kronbichler et al., 2004), and MEG (Salmelin, Kiesilä, Uutela, Service, & Salonen, 

1996; Tarkiainen, Helenius, Hansen, Cornelissen, & Salmelin, 1999). Indeed this 

activation is not limited to alphabetic scripts but is also present in logographic 

orthographies such as Chinese (Kuo et al., 2003) and Japanese Kanji (Sakurai et 

al., 2000). Interestingly, it has been also demonstrated that even poor readers such 

as developmental dyslexics (Brunswick, McCrory, Price, Frith, & Frith, 1999; Richlan 

et al., 2010; B. A. Shaywitz et al., 2002; Van der Mark et al., 2009) or profoundly 

deaf readers (Aparicio, Gounot, Demont, & Metz-Lutz, 2007; Emmorey, Weisberg, 

McCullough, & Petrich, 2013; Waters et al., 2007) engage the ventral occipito-

temporal cortex during reading, although often to a different extent than typically 

developing readers. In fact, an area within ventral occipito-temporal cortex has 

replaced the angular gyrus as the putative visual word form area (L. Cohen et al., 

2000; L. Cohen et al., 2002) mainly because this region has been shown to be 

consistently activated in reading tasks across different orthographies (e.g., L. Cohen 

et al., 2002; Duncan et al., 2010; Fiebach et al., 2002; Herbster et al., 1997; 

Kronbichler et al., 2004; C. Liu et al., 2008; Nobre et al., 1994; Petersen et al., 1988; 

Price et al., 1994; Rumsey, Nace, et al., 1997; Salmelin et al., 1996); activation in 

the region is reduced in individuals with developmental reading disorders (S. E. 

Shaywitz & Shaywitz, 2008); and the spatial location of the ventral occipito-temporal 

cortex corresponds to a lesion site implicated in pure alexia (Binder & Mohr, 1992; 

Dejerine, 1892; Leff et al., 2001). Together this evidence led to a proposal that the 

ventral occipito-temporal cortex, rather than the angular gyrus, plays an important 

role in orthographic processing of words with some researchers even suggesting 

that the region should be regarded as the new visual word form area (L. Cohen et 

al., 2000; L. Cohen et al., 2002), although this is certainly contentious (Price & 

Devlin, 2003).  



35 
 

Another brain area that is important for reading but is missing from the classical 

neurological model is the supramarginal gyrus, one of the major subregions of the 

inferior parietal lobule. Like the angular gyrus, damage to this area can lead to 

reading impairments including pure alexia or alexia with agraphia (D. F. Benson & 

Ardila, 1996; Friedman, Ween, & Albert, 1993; Marin, 1980; Metter et al., 1990; 

Philipose et al., 2007; Sakurai, Asami, & Mannen, 2010; Warrington & Shallice, 

1980). For instance, Warrington and Shallice (1980) described cases of two patients 

who become pure alexics due to a lesion selectively affecting different subregions of 

the left inferior parietal lobule. One of the two patients became a pure alexic 

following damage to the angular gyrus, similarly to Dejerine’s (1891) original case. 

The second patient, however, was presented with pure alexia due to damage in the 

supramarginal gyrus that spared the angular gyrus, demonstrating that the entire 

inferior parietal lobule (i.e., not just the angular gyrus) is important for reading. 

Virtual lesions induced by both cortical electrostimulation in neurological patients 

during neurosurgery (Roux et al., 2012) and by TMS in healthy subjects 

(Hartwigsen, Baumgaertner, et al., 2010; L. Romero, Walsh, & Papagno, 2006) also 

indicate supramarginal gyrus involvement in reading tasks. In addition, 

neuroimaging studies on healthy readers tell a similar story. Petersen et al. (1989) 

demonstrated supramarginal gyrus activation in response to rhyme judgements 

performed on two visually presented words that placed explicit demands on 

phonological processing. Since the region showed no activation for listening to 

simple auditory stimuli such as clicks, tones, or noise bursts, the researchers 

associated it with phonological, as distinct from auditory, processing. Since then, 

numerous PET, fMRI, and MEG studies have shown increased activation in 

supramarginal gyrus for reading tasks (Bookheimer et al., 1995; Booth et al., 2004; 

Devlin, Matthews, & Rushworth, 2003; Law et al., 1991; Menard, Kosslyn, 

Thompson, Alpert, & Rauch, 1996; Mummery, Patterson, Hodges, & Price, 1998; 

Paulesu, Frith, & Frackowiak, 1993; Price et al., 1997; Roux, Lubrano, Lauwers-
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Cances, Giussani, & Démonet, 2008; Salmelin et al., 1996; Seghier et al., 2004; 

Tarkiainen et al., 1999).  

Altogether, there is strong evidence for the important roles of the ventral occipito-

temporal region and supramarginal gyrus in reading even though these regions 

were not included in the classical model. The omission of the ventral occipito-

temporal cortex, in particular, had an important impact on the interpretation of the 

functional roles of the remaining regions in the brain system underlying reading. In 

addition, the fact that not only the angular gyrus but also the supramarginal gyrus is 

involved in reading demonstrates that the entire inferior parietal lobule is important 

for reading and the region may be actually composed of different subregions which 

contribute to reading in distinct ways. The next section addressed both of these 

points in greater detail.  

1.4.3 Functional Contribution of Regions Involved in Reading 

The third criticism of the classical neurological model was that functions assigned to 

individual cortical regions were not accurate. For example, although Broca’s area 

seems to be involved in some aspects of articulatory planning and execution (Price, 

2010), it is also important for a range of other linguistic functions including 

phonological awareness (Demonet et al., 1992), syntax (Caplan, Alpert, & Waters, 

1998), lexical decision making or semantic processing (Fiez, 1997; Kapur et al., 

1994; Petersen et al., 1989) as well as non-linguistics functions including 

behavioural inhibition (Forstmann, Van den Wildenberg, & Ridderinkhof, 2008) or 

different executive processes that mediate working memory such as selective 

attention and task management (Baddeley, 2003; E. E. Smith & Jonides, 1999). 

Within linguistic functions, Broca’s area is not a single unitary region; different 

functions seem to be associated with its different subregions. For instance, a 

posterior and dorsal part of the region has been suggested to contribute primarily to 
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syntactic and phonological processing while the anterior and ventral part is 

preferentially involved in semantic processing (Hartwigsen, Price, et al., 2010; S. D. 

Newman, Just, Keller, Roth, & Carpenter, 2003; Nixon, Lazarova, Hodinott-Hill, 

Gough, & Passingham, 2004; Poldrack et al., 1999). Similarly, Wernicke’s area has 

been hypothesized to have an important role in both linguistic and non-linguistic 

processes. Linguistic processes include phonological processing at a phoneme level 

(Hickok et al., 2000; Simos et al., 2000) in contrast to whole-word processes 

postulated by the classical model, conceptual matching of different types of stimuli 

(Hocking & Price, 2008), or integration of semantic and syntactic information 

(Friederici, Makuuchi, & Bahlmann, 2009). Apart from linguistic functions, 

Wernicke’s area also participates in perception of action (Saxe, Xiao, Kovacs, 

Perrett, & Kanwisher, 2004) or processing of nonverbal auditory information (Binder 

et al., 2000; Saygın, Dick, Wilson, Dronkers, & Bates, 2003; S. K. Scott, Blank, 

Rosen, & Wise, 2000).  

Another important region in the neurological model of reading was the angular 

gyrus, which was hypothesized to be the site of the visual word form area. Dejerine 

(1891) found that lesion to this region resulted in alexia with agraphia and a number 

of later lesion studies also identified the angular gyrus as an area most important for 

accessing visual forms of words (D. F. Benson, 1979; Black & Behrmann, 1994; 

Hillis et al., 2005; Nielsen & Raney, 1938; Vanier & Caplan, 1985). Indeed, 

Geschwind (1965) imputed this function to the angular gyrus in his classical 

neurological model of reading. The involvement of this region in orthographic 

processing was, however, questioned due to inconsistent activation of this region 

across neuroimaging studies which used various reading tasks (Beauregard et al., 

1997; Brunswick et al., 1999; Herbster et al., 1997; Kronbichler et al., 2004; Moore & 

Price, 1999; Petersen et al., 1988; Price, Wise, Warburton, et al., 1996; Rumsey, 

Horwitz, et al., 1997) as well as a number of more selective lesions to this region 
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which did not impair reading comprehension (Price & Friston, 2002). More recently, 

the ventral occipito-temporal region has become associated with stored visual word 

forms (Cohen, 2000; Cohen, 2002; but for a contrasting arguments see Price & 

Devlin, 2003; Price & Devlin 2011), taking over the putative functional role from the 

angular gyrus. As a consequence, other hypotheses have been proposed to explain 

inferior parietal involvement in reading. 

One such hypothesis suggests that the left inferior parietal lobule, including the 

angular gyrus, contributes to sublexical processes involving conversion of 

graphemes into phonemes (Booth et al., 2003; Horwitz, Rumsey, & Donohue, 1998; 

Vigneau, Jobard, Mazoyer, & Tzourio-Mazoyer, 2005). The evidence supporting this 

hypothesis primarily comes from neuroimaging studies on healthy readers who 

showed increased activation in the inferior parietal lobule during tasks that required 

explicit grapheme-to-phoneme conversion such as reading pseudowords relative to 

familiar words (Vigneau et al., 2005) or low-frequency words (Horwitz et al., 1998). 

Additional evidence has been provided by neuroimaging studies of individuals with 

developmental reading disorders who revealed abnormal activation of the region in 

the tasks emphasizing grapheme-to-phoneme conversion (Booth et al., 2003).  

A different hypothesis suggests a functional double dissociation within the left 

inferior parietal lobule with different subregions contributing to reading in distinct 

ways. More specifically, the supramarginal gyrus and angular gyrus are selectively 

involved in processing phonological or semantic aspects of written words, 

respectively (Price & Mechelli, 2005). This hypothesis derives from the 

neuroimaging studies which showed that phonologically demanding tasks increase 

activation in the supramarginal gyrus while semantically demanding tasks increase 

activation in the angular gyrus (Demonet, Price, Wise, & Frackowiak, 1994; 

McDermott, Petersen, Watson, & Ojemann, 2003; Paulesu et al., 1993; Price, Wise, 
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& Frackowiak, 1996). In fact, the primary theme of the current thesis is to test the 

three existing functional hypotheses of the left inferior parietal lobule contribution to 

reading and for this reason more detailed discussion of these two alternative 

hypotheses will be presented in Chapter 3.       

In summary, there is a large amount of evidence suggesting that functions assigned 

to the brain regions in the classical neurological model of reading were not accurate. 

Broca’s and Wernicke’s areas are no longer associated with the store of articulatory 

or phonological forms of written words, respectively, but have been hypothesised to 

play important roles in a wide range of linguistic and non-linguistic tasks. Similarly, 

the role of the angular gyrus as a store of orthographic word forms has been 

dismissed and new hypotheses explaining the inferior parietal lobule function have 

been proposed.     

1.4.4 Dynamics of Information Processing during Reading 

The final criticism of the classical neurological model of reading is its lack of any 

information about temporal dynamics of reading. This is perhaps unfair given that 

the classical model was based solely on lesion-deficit data from which evidence 

about dynamics of information flow was not available. The data that were available 

to the researchers in the nineteenth century included only descriptions of 

behavioural deficits linked to post-mortem examinations. For this reason, the 

information flow in the classical models actually represents intuition and 

interpretation of the investigator rather than evidence and it is clear that different 

investigators had different intuitions. For example, the initial Wernicke-Lichtheim’s 

model assumed a feedforward flow of information where a stimulus reached the 

periphery, was recognized, and then was processed. Dejerine’s intuition was slightly 

more sophisticated and presaged more modern thinking. He assumed interactive 

processing dynamics, at least between Broca’s and Wernicke’s areas, and noted 
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that this interaction was critical for word recognition. For unknown reasons, this 

interactivity was lost in Geshwind’s (1965) version of the model and thus the 

classical neurological model of reading became a purely serial and feedforward 

account. In this model, visual input arrives at the occipital pole before projecting to 

the angular gyrus where visual word forms are stored. These are then linked to the 

corresponding auditory word forms in Wernicke’s area and from there to Broca’s 

area to access articulatory motor patterns of words. This linear progression allowed 

a written word to be recognized, converted into sound and read aloud. It is perhaps 

unfair to criticize the classical model for its unsophisticated dynamics but there is no 

doubt that processing dynamics is an important aspect of any successful model and 

this information is now more readily available with techniques that were unavailable 

to the nineteenth-century neurologists.  

Neuroimaging studies have begun to address this issue using MEG, EEG, and TMS. 

In contrast to PET and fMRI, these techniques are characterised by high-temporal 

resolution necessary for chronometric investigation of brain activity and decent 

spatial resolution (particularly MEG and TMS) required for associating temporal 

information with specific brain areas. The initial MEG/EEG studies focused on 

investigating spatio-temporal evolution of cortical activity for visual word recognition 

in the whole brain. For instance, Salmelin et al. (1996) demonstrated that posterior 

parts of the brain were predominantly active during the first 200 msec after stimulus 

presentation while later activation typically occurred in more anterior areas. More 

specifically, they recorded the earliest signals in occipital areas within the first 150 

msec followed by activation in occipito-temporal areas around 200 msec, in 

temporo-parietal regions between 200-400 msec, and in frontal areas after 400 

msec post-stimulus onset. Subsequent experiments tried to determine at what point 

in time the brain differentiated between word-like stimuli and non-linguistic stimuli. 

Tarkianen et al. (1999) found that around 100 msec the extrastriate cortex was 
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insensitive to the stimulus content suggesting its involvement in early visual 

analysis. In contrast, the area around inferior occipito-temporal region showed a 

preference for letter stimuli relative to non-linguistic symbols at approximately 150 

msec. Similarly, Rossion et al. (2003) demonstrated that the occipito-temporal 

regions distinguished between words, faces and objects as early as 130 to 170 

msec after stimulus presentation. In addition, Cohen et al. (2000) showed that initial 

processing of written stimuli is confined to early visual areas contralateral to the 

stimulated hemifield in the first 160 msec post-stimulus onset and then between 

180-200 msec left-lateralized processing specific to real words is accessed within 

the ventral occipito-temporal cortex. Overall, these chronometric studies 

demonstrated that the earliest visual processing did not distinguish between words 

and nonword stimuli but soon afterwards (around 180-200 msec post-stimulus 

onset) information reached the ventral occipito-temporal cortex where the earliest 

signs of visual word recognition occurred. In other words, this appears to show a 

feedforward processing of information from primary visual areas into ventral 

occipito-temporal cortex, rather than into the angular gyrus as postulated in the 

classic neurological model.  

Further evidence for serial processing came from studies investigating the time 

course of different linguistic processes using neuroimaging techniques. Bentin and 

colleagues (1999) showed that visual/orthographic processing elicited by a size 

detection task on orthographic and non-orthographic stimuli peaked around 170 

msec within occipito-temporal areas with activation much stronger for orthographic 

stimuli than non-orthographic stimuli. Bentin at al. also demonstrated that 

phonological/phonetic processing elicited by rhyme judgements on words and 

pseudowords showed strongest activation around 320 msec within a region of 

middle temporal cortex near Wernicke’s area. A lexical decision task which required 

phonological/lexical processing peaked at approximately 350 msec in the temporo-
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parietal regions and overlapped with some areas that were present in the rhyme 

judgement task. Semantic processing was registered at around 450 msec within 

areas that overlapped with the lexical task in addition to frontal areas. Altogether, 

the results suggested an evolution of the linguistic processes involved in visual word 

recognition from early orthographic processes (around 170 msec) in the area of 

ventral occipito-temporal cortex to phonological processing (around 320 msec) in 

posterior middle temporal gyrus, to lexical (around 350 msec) and then semantic 

processing (around 450 msec) in temporo-parietal and frontal areas. To a large 

extent, these results are consistent with the feedforward flow of information 

proposed in the classic neurological model.  

This conventional wisdom, however, has been challenged by a number of recent 

MEG studies that revealed very early co-activation of frontal and posterior brain 

regions (Cornelissen et al., 2009; Pammer et al., 2004; Salmelin, Schnitzler, 

Schmitz, & Freund, 2000). For example, Cornelissen et al. (2009) found strongly 

left-lateralized word-specific responses in the inferior frontal gyrus peaking as early 

as 130 msec post-stimulus onset, similar to the response at 140 msec in the left 

ventral occipito-temporal cortex. Even earlier responses in the left inferior frontal 

gyrus and precentral gyrus were recorded by Wheat et al. (2010) who found that 

their priming paradigm elicited activation in these two frontal regions within 100 

msec of the presentation of a target word. Cornelissen and colleagues (Cornelissen 

et al., 2009; Pammer et al., 2004) have suggested that the first MEG studies of 

reading may have failed to identify this early frontal brain involvement due to a lack 

of sensitivity in both their experimental paradigms and their data analysis methods. 

If correct, these findings suggest very early interactions between anterior and 

posterior regions that would challenge the assumed dynamics within the classic 

neurological model of reading. 
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Additional evidence for interactions comes from a combination of TMS and fMRI 

studies of reading. For instance, Duncan et al. (2010) tested the temporal dynamics 

of the ventral occipito-temporal cortex during visual word recognition with 

chronometric TMS. Unlike many previous chronometric studies that showed a 

disruptive effect of TMS within a specific time window (e.g., Juan & Walsh, 2003; 

Pitcher, Walsh, Yovel, & Duchaine, 2007; Schluter, Rushworth, Passingham, & 

Mills, 1998), Duncan and colleagues found that stimulation delivered the ventral 

occipito-temporal cortex between 80 and 200 msec post-stimulus onset interfered 

with word recognition, potentially indicative of ongoing interactions between this 

area and other brain regions. An fMRI study by Twomey et al. (2011) found that 

during visual word recognition, top-down modulation of the ventral occipito-temporal 

cortex were driven by Broca’s area, consistent with both the TMS (Duncan et al., 

2010) and MEG (Pammer et al., 2004; Cornelissen et al., 2009) data. Woodhead et 

al. (2014) also found that Broca’s area constrained early activity in the ventral 

occipito-temporal cortex. In their study, subjects viewed written words and false font 

stimuli during MEG scanning. The data were analysed with dynamic casual 

modelling and during the first 200 msec, Broca’s area modulated activity in the 

ventral occipito-temporal cortex during the early stages of word processing, 

indicating functional interactions between the two regions during the first 200 msec. 

Overall, these findings demonstrate that both posterior regions such as the ventral 

occipito-temporal cortex and more anterior regions such as Broca’s area are 

engaged in visual word processing from a very early stage (about 80-130 msec 

post-stimulus onset). In addition, they suggest that this processing is both sustained 

and interactive that is in direct contrast to the classical view of a serial processing 

sequence in reading. Evidence for neuronal interactivity is certainly consistent with 

behavioural studies that have also focused attention on its importance during 

reading. 
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In the behavioural literature, it is well-established that reading requires interactions 

between different levels of representations. A classic example is the word superiority 

effect where subjects are better able to recognise a letter presented in a real word 

than the same letter in a string of letters that has little resemblance to a real word 

(Cattell, 1886; Reicher, 1969; Wheeler, 1970). The word superiority effect was 

explained by McClelland and Rumelhart (1981) in their interactive activation model 

of visual word recognition (Figure 1-5). In their model, feedback projections from the 

word level support activation of letter nodes that form part of the word. For example, 

the word node cart supports the letter node A in the second position, increasing 

activation of the letter node more quickly than it would based solely on bottom-up 

visual features. In contrast, if A had appeared in the letter string cakh there would be 

no top-down support from the word level (because cakh is not a word). As a result, 

activation of A would be slower in cakh than in cart because it would be based solely 

on bottom-up information. In other words, the word superiority effect arises from 

interactivity between different levels of information processing and cannot be 

explained by a purely feedforward account.  
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Figure 1-5: The interactive activation model of visual word recognition 

(McClelland & Rumelhart, 1981). The flow of information starts at the feature 

level where the basic visual feature of each letter in the word is detected. 

Excitatory activation (represented with an arrow at the end of connection) or 

inhibitory activation (represented with a circle at the end of connection) 

spreads then upwards to nodes representing a letter that contain or does not 

contain the feature, respectively. From the letter level, excitatory activation 

spreads upwards to nodes representing a word that contain the relevant letter 

in the right position while selection of other words is inhibited. 

Simultaneously, excitatory activation spreads downwards to the node 

containing the letter while inhibitory activation spreads downwards to other 

letters.      
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The pseudohomophone effect provides another example from the behavioural 

literature that illustrates the existence and importance of interactions between 

different levels of word recognition. A pseudohomophone constitutes a nonword 

which sounds like a real word (e.g., bild). The pseudohomophone effect is that 

subjects are slower to read and reject nonwords that are pseudohomophones in 

comparison to nonwords that do not sound like real words (e.g., jate) in a lexical 

decision task (e.g., McCann, Besner, & Davelaar, 1988). This effect can only be 

clearly explained by influences of higher-level phonological information that the letter 

strings in pseudohomophones become associated with.      

In summary, the classical neurological model of reading assumes a serial 

feedforward flow of information which is perhaps surprising, given the importance 

that Dejerine (1891) placed on interactions. Even so, many modern neurological 

models of reading also assume a serial processing dynamic (e.g., L. Cohen et al., 

2002; Dehaene, Cohen, Sigman, & Vinckier, 2005; Kronbichler et al., 2004) 

although such a way of information processing has been increasingly challenged by 

evidence of interactivity at both the neuronal and behavioural levels. The 

assumption of a serial processing dynamics in modern neurological models of 

reading is very surprising considering the fact that interactivity constitutes a 

fundamental feature of cognitive and computational models of reading (Coltheart, 

Rastle, Perry, Langdon, & Ziegler, 2001; Harm & Seidenberg, 2004; Jacobs, Graf, & 

Kinder, 2003; McClelland & Rumelhart, 1981; Perry, Ziegler, & Zorzi, 2007; Plaut et 

al., 1996).  

Despite its criticisms, the classic neurological model of reading has played a vital 

role in developing a basic understanding of the neural underpinnings of reading. Its 

four main criticisms have highlighted important shortcomings of the model and led to 

revised neurological models that provide principled explanations for different types 
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of acquired dyslexia via additional functional-anatomical detail and a more thorough 

consideration of processing dynamics. 

 

1.5 Modern Models of Reading 

Pugh and Shaywitz (2000) proposed an updated neurological model of reading 

(Figure 1-6) based on neuroimaging studies testing healthy readers and 

developmental dyslexics. Their new model suggested that identification of words 

during fluent reading was related to the functional integrity of three regional systems 

located in the left hemisphere: an occipito-temporal (posterior ventral) system, a 

temporo-parietal (posterior dorsal) system, and an inferior frontal (anterior) system. 

The posterior ventral system included lateral and inferior occipito-temporal areas 

where functional imaging studies showed robust activation in many reading tasks 

(Fiez & Petersen, 1998; Henderson, 1986) and abnormally low activation in reading 

disability (Pugh et al., 2000; Salmelin et al., 1996; S. E. Shaywitz et al., 1998). This 

system was hypothesised to be involved in rapid and automatic memory-based word 

recognition. In other words, it served as a new ventral visual word form system. One 

of the main arguments supporting this claim was that the region showed increased 

activation to familiar words relative to unfamiliar words and nonwords (e.g., 

pseudowords) (Fiebach et al., 2002; Frackowiak, Friston, Frith, Dolan, & Mazziotta, 

1997) indicating its response to well-learned orthographic word forms. The occipito-

temporal area was suggested to be engaged in orthographic processing of words 

between 150-200 msec post-stimulus onset as this was a time window of its highest 

response to words relative to nonwords revealed by MEG recordings (Salmelin et 

al., 1996; Tarkiainen et al., 1999). The posterior dorsal system encompassed the 

angular gyrus, supramarginal gyrus and a posterior section of the superior temporal 

gyrus. These regions were associated with rule-based analysis of written words 
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required for integration of the orthographic, phonological and lexico-semantic 

information of words. This conclusion was based on findings that showed increased 

response of those regions in healthy readers and decreased response of those 

regions in developmental dyslexics to unfamiliar words (e.g., pseudowords and low 

frequency words) in contrast to familiar words indicating effortful decoding and rule-

based phonological analysis (Horwitz et al., 1998; Pugh et al., 2000; Rumsey, Nace, 

et al., 1997; S. E. Shaywitz et al., 1998). This claim was further supported by studies 

which showed greater response of the posterior dorsal system to the tasks which 

place increased demands on phonological or semantic processes (e.g., rhyming) 

rather than to simple word identification tasks (Petersen et al., 1989). The posterior 

dorsal system was thought to contribute to its function later in time, at approximately 

200-250 msec after word presentation (Salmelin et al., 1996; Tarkiainen et al., 

1999). Finally, the anterior system was located in the inferior frontal cortex. This 

region was associated with articulation (i.e., output phonology) for its significantly 

higher levels of activation during word and pseudoword naming in relation to silent 

reading of the same stimuli (Hino & Lupker, 2000). Maximum involvement of this 

system was believed to be after 400 msec from stimulus onset (Salmelin et al., 

1996; Tarkiainen et al., 1999).  
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Figure 1-6: Pugh and Shaywitz’s (2000) neurological model of reading: the 

posterior ventral region (shown in blue) is located in the occipito-temporal 

cortex and is involved in word identification. The posterior dorsal region 

(shown in orange) is located in the parieto-temporal cortex and is involved in 

word analysis. The anterior region (shown in pink) is located in the inferior 

frontal cortex and is involved in articulation. Pugh and Shaywitz did not 

describe the anatomical pathways for transferring information between these 

regions.   

 

The Pugh and Shaywitz’s model overlapped with the classical model but also 

showed substantial changes. The three key regions of the classical model, namely 

the angular gyrus, Wernicke’s area, and Broca’s area, were all present in Pugh and 

Shaywitz’s model, although the first two were grouped into a single posterior dorsal 

system. The new model also included additional brain regions such as ventral 

occipito-temporal cortex and supramarginal gyrus. The three systems of the new 

model were assigned (mostly) new functional labels. The posterior ventral system 

was associated with orthographic processing; the posterior dorsal system was 

associated with rule-based word analysis which included grapheme-to-phoneme 

conversion processes; and the anterior system was still assumed to be involved in 
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articulatory processes. Like its predecessor, the new model assumed a linear 

information processing timeline, although it provided specific time windows for each 

function. Somewhat surprisingly, the new model lacked defined pathways linking the 

three systems and thus was difficult to relate to the different types of acquired 

dyslexia. 

Over time, together with constantly increasing amount of data, models of reading 

have become more informative and fine-grained (Price, 2000; Price & Mechelli, 

2005). The established language areas did not change but were subdivided into 

functionally distinct subregions. In the model created by Price and colleagues (2000; 

2005), the left occipito-temporal region was subdivided into three distinct areas 

serving different functions. Its posterior part and ventral occipito-temporal cortex 

were involved in the processing of higher order visual input with the latter one 

integrating visual stimulus with its higher order properties. The anterior (fusiform) 

and middle (temporal) parts of the region were associated with semantic processing. 

In the parietal region, supramarginal and angular gyri were suggested to be 

preferentially involved in phonological or semantic processing, respectively. 

Similarly, a dissociation of activation for phonological and semantic tasks was 

suggested within the left inferior frontal region. The pars opercularis and premotor 

cortex (the posterior and dorsal part of the inferior frontal region) had their role 

assigned to the phonological processing while pars orbitalis and triangularis (the 

anterior and ventral part of the inferior frontal region) to semantic processing. This 

model accounted for multiple routes of processing visual words which at minimum 

included a dorsal route via the superior longitudinal fasciculus leading to Broca’s 

area through angular and supramarginal gyri as well as ventral route via the inferior 

longitudinal fasciculus leading to Broca’s area via the ventral occipito-temporal 

cortex. The model also postulated that all the routes are bi-directional enabling 

feedforward and feedback information flow between connected regions and highly 
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interactive fashion of information processing. The model was, however, still missing 

temporal information of regional involvement in reading processes.  

In conclusion, the model proposed by Price and colleagues presents considerably 

more fine-grained description of neural basis of reading than Pugh and Shaywitz’s 

model and responds to all four criticisms addressed to the classical neurological 

model of reading. It includes additional regions important to reading and updates 

their functional labelling. In addition, it distinguishes multiple routes that enable 

reading and introduces interactivity between brain regions as an important aspect of 

neural dynamics during reading. One of the striking differences between the two 

modern models of reading is how they define a functional contribution of the inferior 

parietal lobule to visual word recognition. Pugh and Shaywitz’s model associates 

inferior parietal lobule with rule-based processes including grapheme-to-phoneme 

conversion which are restricted to reading while Price’s model postulates anterior-

posterior division of general phonological and semantic processing. 

To summarize, a comparison of neurological models of reading created over 

decades of research illustrates gradual evolution of our understanding of neural 

basis of reading. The development of neurological models of reading would not be 

possible without novel techniques of investigation and novel findings since those 

made us realize that language functions are incredibly complex and are not 

localized in dedicated only to them brain regions. Overall, there has been 

convergent evidence that reading engages a bilaterally distributed set of brain 

regions contributing to visual word recognition in their own individual way. Those 

brain regions are part of more complicated circuits interacting between each other 

on multiple levels of reading processing.  
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1.6 Testing Hypotheses 

The importance of the left inferior parietal lobule in reading was already recognized 

by the neurologists in the nineteenth century when Dejerine (1891) located a centre 

of visual word images in the angular gyrus. At the beginning of the second half of 

the twentieth century, Geschwind (1965) incorporated this finding into a model of 

reading that is known in the modern literature as the classical neurological model of 

reading. Together with the development of new methods for investigating brain 

functions, however, it became apparent that not only is the angular gyrus involved in 

reading but also another subregion of the inferior parietal lobule, namely the 

supramarginal gyrus. In addition, the functional role assigned by Dejerine to the 

inferior parietal lobule was questioned and new hypotheses suggested. One claims 

that the inferior parietal lobule performs the procedures necessary for grapheme-to-

phoneme conversion although it remains unclear whether these are specifically 

located in the angular gyrus or supramarginal gyrus, or both. Another suggests that 

the angular and supramarginal fields of the inferior parietal lobule preferentially 

contribute to semantic and phonological processing of written words, respectively. In 

fact, each of the three hypotheses may be possible and each of them makes 

testable predictions. However, many techniques that can theoretically be used to 

investigate these hypotheses come with a number of serious limitations that make 

interpretation of data difficult. For example, although data from lesion studies can 

provide information regarding causal relationship between brain region and 

behaviour, lesions rarely are restricted to a particular brain region but tend to affect 

multiple anatomical areas together with adjacent white matter passages. This is 

particularly problematic for interpretation of functional contributions of distinct brain 

regions that are anatomically adjacent such as the supramarginal and angular gyri. 

In addition, the interpretation of data in lesion studies can be confounded by 

functional reorganization and compensation. Finally, lesion studies cannot provide 
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information about the dynamics of cognitive processes. Similarly, although fMRI or 

PET can be used to investigate brain functioning in healthy subjects with better 

spatial precision than lesion studies, they are unable to demonstrate causal 

inferences between brain activity and behaviour and these offer limited temporal 

resolution. As a result, TMS was used in this thesis as the primarily investigative 

tool.  

TMS offers a non-invasive method of brain stimulation that can be used for drawing 

causal brain-behaviour inferences and for investigating the temporal dynamics of 

on-line neural information processing in both healthy adults and neurological 

patients (Paus, 2005; Sack, 2006). Unlike neuroimaging techniques that measure 

neural activity and correlate it with behaviour, TMS offers the opportunity to perturb 

neural information processing and measure its effects on behaviour. In this sense, it 

is more like traditional lesion-deficit analyses in patients with brain damage except 

that TMS is non-invasive and the effects are temporary and reversible. TMS also 

has several advantages over lesion studies. For instance, the effects of stimulation 

are generally more spatially precise than naturally occurring lesions. In addition, 

participants can be used as their own controls, thereby avoiding the issue of 

potential differences in pre-morbid abilities between patients and controls. Finally, 

there is insufficient time for functional reorganization to take place during TMS, 

meaning that recovery processes are unlikely to confound the results (Walsh & 

Cowey, 1998). In this thesis, TMS was used to characterize the contributions of the 

inferior parietal lobule to reading as well as the time course of their involvement in 

reading. 

Chapter 2 introduces the TMS methodology I used in this thesis, reviewing the basic 

technique as well as the range of design decisions that are necessary in order to 

conduct the experiments reported here.  
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Chapter 3 tested the three main hypotheses concerning functional roles of the left 

inferior parietal lobule in visual word recognition. I used repetitive TMS to temporally 

disrupt neural information processing in the left supramarginal and angular gyri and 

observed the effects of stimulation on reading tasks that focused attention on either 

the sound or meaning of written words. Relative to no-TMS, stimulation of the 

supramarginal gyrus selectively slowed responses in the sound, but not meaning, 

task whereas stimulation of the angular gyrus affected responses in meaning, but 

not sound, task. These results demonstrated that supramarginal and angular gyri 

doubly dissociate in their contributions to visual word recognition and helps to refine 

the neurological model of reading.  

Chapter 4 investigated the timing of supramarginal gyrus involvement in 

phonological processing of visually presented words with chronometric TMS. A 

different group of participants performed the tasks designed to focus on either the 

phonological, semantic, or visual aspects of written words while double pulses of 

TMS (delivered 40 msec apart) were used to temporarily interfere with neural 

information processing in the left supramarginal gyrus at five different time windows. 

Stimulation at 80/120, 120/160, and 160/200 msec post-stimulus onset significantly 

slowed subjects’ reaction times in the phonological task, but not semantic or visual 

tasks. The fact that the effect began within 80-120 msec of the onset of the stimulus 

and continued for approximately 100 msec, indicates that phonological processing 

initiates early and is sustained over time. In addition, the fact that the inhibitory effect 

was specific to the phonological condition allows for replication of findings from the 

previous experiment which showed preferential contributions of supramarginal gyrus 

to sound processing over processing of meaning.  

Chapter 5 investigated the timing of angular gyrus involvement in semantic 

processing of visually presented words using exactly the same experimental 
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procedures as were used in the previous experiment but during angular gyrus 

stimulation. Unlike the previous chapter, the results were less robust and indeed 

subsequent control experiments suggested the findings were most likely to be false 

positives. As a result, the findings did not reveal any information about the temporal 

dynamics of angular gyrus contribution to semantic processing. Possible 

explanations are discussed.      

Chapter 6 draws general conclusions regarding functional contributions of the left 

inferior parietal lobule to reading and discusses all the findings in relation to the 

theories of its function as well as neurological models of reading.    
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2.  Transcranial Magnetic Stimulation 
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2.1 Transcranial Magnetic Stimulation  

Transcranial magnetic stimulation (TMS) is a method for non-invasive brain 

stimulation that allows one to draw causal brain-behaviour inferences and 

investigate the temporal dynamics of on-line neural information processing. 

Although it was originally developed for investigating the physiology of the motor 

system (Barker, Jalinous, & Freeston, 1985), it was quickly adopted as a valuable 

tool for cognitive neuroscience. One of its earliest uses was a virtual lesion 

technique to induce speech arrest by stimulating the left inferior frontal cortex 

(Epstein et al., 1999; Pascual-Leone, Gates, & Dhuna, 1991; Stewart, Walsh, Frith, 

& Rothwell, 2001). The results confirmed the importance of Broca’s area for speech 

production and suggested a potential alternative to Wada testing used to determine 

language dominance subsequent to neurosurgical interventions (Pascual-Leone et 

al., 1991; Picht et al., 2013). TMS can also be used to investigate the time course of 

neural information processing by using very short bursts and varying the onset of 

stimulation during task performance (Walsh & Pascual-Leone, 2003). Typically this 

involves either a single- or double-pulse TMS delivered at different points of time 

within a trial. Some studies use TMS in both its virtual lesion mode and as a 

chronometric tool. For example, Pitcher and colleagues (2007) showed that 

repetitive TMS (rTMS) delivered to the occipital face area disrupted accurate facial 

discrimination and then used chronometric TMS to determine that this effect was 

only present when TMS was delivered at 60 and 100 msec post-stimulus onset, 

demonstrating that this particular brain region processes face-part information at an 

early stage of face recognition. In this example, chronometric TMS caused a virtual 

lesion at a specific point in time during the processing of face stimuli. 
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TMS relies on Faraday’s principle of electromagnetic induction by using a rapidly 

changing electric current within a conducting coil to generate a strong, but relatively 

focal, magnetic field. When placed adjacent to the scalp, the magnetic field induces 

electrical activity in the underlying brain tissue, temporarily disrupting local cortical 

information processing. Such transient interference effectively creates a short-

lasting virtual lesion (Pascual-Leone, 1999; Walsh & Rushworth, 1999). By 

selectively interfering with regionally-specific cortical processing, TMS can be used 

to draw causal links between brain regions and specific behaviours. That is, if 

stimulating a cortical area significantly affects task performance relative to 

appropriate control conditions, this indicates that the stimulated area is necessary to 

perform the task normally. Typically TMS induces either increased error rates or 

slower reaction times, both of which are taken as indicators of causal relations 

between brain and behaviour (Paus, 2005; Sack et al., 2009). This ability of TMS to 

induce a transient interruption of normal activity is used to test specific hypotheses 

about causal links between a brain region and a particular behaviour. It differs TMS 

from functional neuroimaging techniques such as fMRI, PET, EEG, or MEG that 

record brain activity and correlate it with behavioural events. Although these 

correlations provide valuable information about whole brain responses, unlike TMS 

they cannot indicate causal brain-behaviour relationships. It is important to note that 

under certain circumstances such as when a stimulated area is not required for the 

task or when a TMS pulse is administrated at an inappropriate time, TMS can have 

no effect on performance or even facilitate performance due to inter-sensory 

facilitation (Walsh & Rushworth, 1999). As a result, careful experiment design is 

crucial for producing robust, replicable and meaningful results. This chapter first 

describes the spatio-temporal properties of TMS before discussing a number of free 

parameters that must be chosen when creating a TMS protocol. These include the 

type of TMS (on-line vs. off-line), the shape of the stimulating pulse, coil shape, the 

frequency and duration of stimulation, and finally the intensity. The motivation for 
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selection of TMS parameters used in this thesis is provided in subsection. The 

second half of the chapter presents different functional localization methods and my 

motivation for the choice of localization used in this thesis. 

Spatio-temporal Resolution  

TMS offers a relatively high degree of both spatial and temporal resolution.  

Empirically, it has been demonstrated that the effective spatial resolution of TMS 

can be as precise as 5-10 mm (Brasil-Neto et al., 1992; Ravazzani, Ruohonen, 

Grandori, & Tognola, 1996; Thielscher & Kammer, 2002; Toschi, Welt, Guerrisi, & 

Keck, 2008). For instance, the first TMS studies showed that different upper limb 

muscles could be selectively stimulated by TMS applied to the areas in motor cortex 

that are only 5-10 mm away from each other (Brasil-Neto et al., 1992; Singh, 

Hamdy, Aziz, & Thompson, 1997; Wassermann, McShane, Hallett, & Cohen, 1992). 

Moreover, a number of TMS studies have successfully demonstrated a functional 

double dissociation in closely located brain regions (10-30 mm apart). Those include 

double dissociation of visual attention from saccades in the right superior parietal 

cortex (Ashbridge, Walsh, & Cowey, 1997), semantic processing from phonological 

processing in the left inferior frontal gyrus (Gough, Nobre, & Devlin, 2005) and triple 

dissociation of faces, bodies, and objects processing in three adjacent regions in the 

right extrastriate cortex (Pitcher, Charles, Devlin, Walsh, & Duchaine, 2009).  

One potentially important limitation with respect to the spatial resolution is the extent 

to which the effects of TMS spread from the targeted region. A number of studies 

showed that the current induced by TMS spreads transsynaptically to affect distal, 

but anatomically connected, regions (Bestmann, 2008; Bohning et al., 1999; Esser, 

Hill, & Tononi, 2005; Fox et al., 1997; Ilmoniemi et al., 1997; Pascual-Leone et al., 

1998; Paus et al., 1997). The amount of spreading depends on the intensity of the 

magnetic field but it can be easily observed in the brain areas located even several 
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centimetres away from the targeted site (Maccabee, Eberle, Amassian, Cracco, & 

Rudell, 1990). For instance, Paus et al. (1997) used PET to analyse the effects of 

TMS applied over the left frontal eye field. Stimulation resulted in increased regional 

cerebral blood flow at the targeted site as well as at several distant sites including 

the left and right superior parietal lobule, left medial occipito-parietal cortex, and 

right supplementary eye field located in the frontal lobe. This raises the question 

whether observed behavioural effects are the consequence of stimulating the target 

region or could arise from transsynaptic stimulation of distal sites. Although the full 

relationship between the extent of induced current and the anatomical specificity of 

effects is still not fully understood (Walsh & Rushworth, 1999), certain aspects are 

clear from biophysical modelling and empirical studies. Biophysical and animal 

models suggested that the external magnetic field is actually fairly focal and affects 

a cortical area of approximately 100-200 mm2 (Toschi et al., 2008; Wagner et al., 

2004), in line with spatial resolution described earlier (Ashbridge et al., 1997; Brasil-

Neto et al., 1992; Duncan et al., 2010; Gough et al., 2005; Pitcher et al., 2009). 

Empirical studies clearly demonstrated that TMS can have remote behavioural 

effects as evidenced by stimulation of the primary motor cortex where stimulation 

affects neocortical pyramidal cells that synapse on α-motor neurons in the dorsal 

root of the spinal cord and causes a contraction of the first dorsal interosseous hand 

muscle. However, it was also suggested that the cortical connectivity between the 

two regions does not result in equivalent effects of their stimulation. For instance, 

stimulation to the dorsal premotor cortex does not have the same effect on the hand 

muscle as equivalent stimulation to the primary motor cortex although these regions 

are synaptically connected (Koch et al., 2007). This is further supported by studies 

which showed functional double dissociation between two interconnected cortical 

regions. For instance, stimulation to the pars opercularis (i.e., the posterior part of 

the left inferior frontal gyrus) selectively affected phonological but not semantic 

processing while stimulation to the pars triangularis (i.e., the anterior part of the left 
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inferior frontal gyrus) selectively affected semantic but not phonological processing 

(Gough et al., 2005). Considering these data, it can be concluded that the spread of 

stimulation should not have any behavioural consequences in the targeted area and 

it does not seem to be the case that the spread of stimulation limits spatial resolution 

of TMS.  

A second spatial limitation of TMS is that of accessibility, specifically only certain 

brain regions are accessible to TMS. For instance, TMS has limited depth of 

stimulation because the strength of the magnetic field decreases rapidly with 

distance from the coil (Walsh & Cowey, 2000). Consequently, TMS is most effective 

at stimulating brain regions near scalp (approximately 2-3 cm from the coil) and is 

ineffective at stimulating deep brain structures (Roth, Saypol, Hallett, & Cohen, 

1991; Zangen, Roth, Voller, & Hallett, 2005). As a result, the only regions directly 

accessible to TMS are limited to the cortical mantle, although differently shaped 

coils are being developed in an attempt to reach deeper regions such as the basal 

ganglia (Roth et al., 1991; Zangen et al., 2005).   

TMS also has sufficient temporal resolution to investigate the time course of neural 

information processing. Various studies have demonstrated that single or double 

pulses of TMS can produce different behavioural effects at different time points 

separated as little as 10 to 40 msec (Amassian et al., 1989; Corthout, Uttl, Walsh, 

Hallett, & Cowey, 1999; Duncan et al., 2010; Juan & Walsh, 2003; Pitcher, 

Goldhaber, Duchaine, Walsh, & Kanwisher, 2012). For example, in their classic 

TMS study, Amassian et al. (1989) induced visual suppression of letters between 

80-100 msec post-stimulus onset using single pulses of TMS applied in 20 msec 

increments over the occipital pole. Stimulation applied between 0-60 msec or 

between 120-200 msec had no effect on visual letter perception indicating a specific 

temporal window where occipital processing contributed to letter recognition. More 
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recently, Pitcher and colleagues (2012) applied double-pulse TMS with pulses 

separated by 10 msec to the right occipital face or extrastriate body areas during a 

face or body recognition task, respectively. TMS disrupted performance of these 

tasks at two distinct time periods, namely 40-50 msec and 100-110 msec post-

stimulus onset, leaving processing at the remaining time windows unaffected. 

Because the effect of an individual TMS pulse occurs immediately and lasts 

somewhere between 10 and 40 msec (Amassian et al., 1989; Corthout et al., 1999; 

Esser et al., 2005; Ilmoniemi et al., 1997), this enables the researcher to map the 

temporal dynamics of regional neuronal activity including its onset, duration, and 

offset (Amassian et al., 1993; Pitcher et al., 2007).  

The spatial and temporal resolution of TMS can be compared with other 

neuroscientific techniques (Figure 2-1). This figure from Walsh and Cowey (2000) 

shows spatial resolution on the x-axis, temporal resolution on the y-axis and 

correlation vs. causation on the z-axis. Note that the x- and y-axes use a logarithmic 

scale going from very fine grained (molecules, milliseconds) to large scale (brains, 

days). The z-axis is binary with correlative techniques coming out of the plane and 

causal methods going into the plane. It is clear from the diagram that neither TMS 

nor any other non-invasive technique has the spatial (cell level) and temporal 

(milliseconds) resolution of single cell recording and microstimulation, but these 

techniques are highly invasive and only used in humans in very restricted clinical 

settings (i.e., during awake neurosurgery). TMS offers comparable spatial resolution 

to fMRI and PET as well as only slightly poorer temporal resolution than EEG and 

MEG. The timings observed in chronometric TMS studies, however, tend to match 

those from invasive neurophysiological recordings better than those from EEG and 

MEG (Corthout et al., 1999; Duncan et al., 2010). Presumably this is because these 

electromagnetic imaging techniques measure large scale neuronal synchrony that 

lags behind the earliest onset of activity (Walsh & Cowey, 2000). In summary, TMS 
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provides reasonably good spatio-temporal resolution relative to other non-invasive 

techniques with the added benefit of being able to perturb regional information 

processing and measure its effect on behaviour, allowing the researcher to draw 

causal brain-behavioural inferences. 

 

 

Figure 2-1: Spatial and temporal resolution of TMS in relation to other 

methods. Figure was taken from Walsh and Cowey (2000). 

 

 

2.2 Creating TMS Protocol  

TMS experiments have a large number of free parameters – that is, choices that are 

largely up to the experimenter and are not intrinsically right or wrong. These options 

include: i) whether stimulation will be applied during task performance (i.e., on-line) 
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or before performing the task (i.e., off-line); ii) the type of TMS pulse (monophasic or 

biphasic); iii) the shape of the stimulating coil; iv) a set of stimulation parameters 

such as frequency, duration and intensity of TMS; and v) a procedure for accurately 

targeting the stimulation site. Choosing the stimulation parameters from a large 

space of possibilities is critical to the success of the experiment. In most cases, 

there are clear constraints on the choices that help to limit the options and these 

include internationally agreed safety guidelines (Rossi, Hallett, Rossini, & Pascual-

Leone, 2009; Wassermann, 1998). Even so, finding an optimal set of parameters for 

a particular paradigm is typically done empirically through extensive pilot testing to 

determine which options work best for a given experiment. The following section 

reviews the major parameter options and the constraints on these choices.   

2.2.1 On-line vs. Off-line Stimulation 

There are two ways of administering TMS. On-line TMS occurs during task 

performance so that the effects of TMS are immediate and short lived. That is, the 

effects last as long as the duration of stimulation (Duncan et al., 2010; Hartwigsen, 

Baumgaertner, et al., 2010; Pitcher et al., 2012; Sakai, Noguchi, Takeuchi, & 

Watanabe, 2002). As a result, TMS can be used on some trials but not others 

allowing a direct trial-by-trial comparison. This contrasts with off-line TMS which 

involves either long runs of low frequency stimulation (Pobric, Jefferies, & Lambon 

Ralph, 2010) or short bursts of patterned stimulation (Huang, Edwards, Rounis, 

Bhatia, & Rothwell, 2005) that occur before starting a task. The effects last well 

beyond the duration of the TMS application itself such that subsequent behavioural 

tests can be run immediately afterwards without the distraction of TMS during 

individual trials. Consequently, the behavioural experiment is typically run once 

before TMS (control condition) and once after TMS (test condition) to compare the 

effects of stimulation on the task.  Both on- and off-line TMS have their strengths 

and limitations.  
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The main strength of on-line TMS is that it can be used to induce robust virtual 

lesions with rTMS and it can also be used to investigate the timing of neural 

processing using temporally specific chronometric TMS. In fact, it is possible to use 

both types of on-line stimulation within a single study. For example, one can use 

rTMS to show that a particular area is necessary for normal task performance and 

then test when in time the same area is activated in the task using single- or double-

pulse stimulation without worrying that the preceding rTMS has long-lasting effects 

on behaviour. Even so, on-line TMS has important limitations primarily due to 

concurrent sensory side effects that can influence task performance and lead to 

non-specific effects associated with stimulation. Most notably, each magnetic pulse 

is accompanied by an auditory click and a tapping sensation. These sensory cues 

can sometimes affect behaviour even without neuronal stimulation, particularly in 

experiments using auditory or somatosensory stimuli where the side effects interfere 

with task performance. It is worth noting that on-line TMS that included active control 

conditions to rule out non-specific confounds has been used successfully in some 

auditory experiments (Bestelmeyer, Belin, & Grosbras, 2011; Pattamadilok, Knierim, 

Kawabata Duncan, & Devlin, 2010). Another consideration is that the intensity of the 

sensory effects differs across head locations. For example, stimulation that is 

administered to a location close to the ear will sound louder than locations further 

away. Similarly, more ventral locations on the head produce greater muscle 

contraction than dorsal areas that may be more difficult to ignore (Deng, Lisanby, & 

Peterchev, 2013; Mennemeier et al., 2009). Apart from the sensory side effects 

produced by on-line TMS, anxiety that participants can feel towards stimulation may 

also have undesirable effect on their performance. In some cases, however, 

experimental limitations caused by on-line TMS can be overcome by using 

stimulation off-line.  
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One of the main advantages of off-line TMS is the absence of stimulation during 

task performance which eliminates non-specific behavioural and attentional 

confounds. This is particularly valuable for auditory experiments where the 

concurrent sound of the coil discharge can mask with auditory stimuli. The costs of 

off-line TMS include, however, an unknown time course for the effects of stimulation. 

The heuristic guideline is that 10-15 min of 1 Hz TMS produces effects that become 

maximal roughly 5 min after stimulation ends and last for 15-30 min (R. Chen et al., 

1997; Muellbacher, Ziemann, Boroojerdi, & Hallett, 2000; J. R. Romero, Anschel, 

Sparing, Gangitano, & Pascual-Leone, 2002). It is currently unknown, however, 

whether these results measured with motor evoke potentials (MEPs) following the 

motor cortex stimulation generalize to other dependent measures and other cortical 

stimulation sites. So a disadvantage of off-line rTMS is the uncertainty associated 

with the time course of the effects. 

2.2.2 Pulse Type and Coil Shape 

Two properties of the TMS device, namely the pulse type and coil shape, need to be 

chosen before other aspects of the experiment can be determined. Pulse type refers 

to the nature of the current flow when brief electric pulses are discharged into the 

stimulating coil in order to enable neural stimulation. TMS stimulators are designed 

to produce one of two different types of pulses: monophasic or biphasic. Figure 2-2 

illustrates the difference between them. At the beginning of any pulse all the current 

is stored in the charged capacitor and there is no voltage in the coil (light curve). As 

the capacitor discharges, the whole current is transferred into the coil. Neurons are 

most likely to be stimulated (i.e., depolarized) during induction of the highest voltage 

in the coil (shaded areas within the dark curve). In a monophasic pulse (Figure 2-

2A), once the coil current reaches its maximum it decreases rapidly and most 

energy stored in the coil is dissipated in the form of heat, rather than returning into 

the capacitor. Only the initial phase of the current flow is high enough to depolarize 
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cell membranes and the capacitor must be completely recharged in order to send 

the next pulse. As a consequence, a monophasic stimulator is relatively slow and 

allows only a single pulse of TMS to be delivered. Monophasic pulses are most 

frequently used in neurophysiological studies to elicit MEPs where the inter-trial 

interval is less critical (Patuzzo, Fiaschi, & Manganotti, 2003; Watkins & Paus, 

2004). In biphasic mode (Figure 2-2B), a larger portion of the coil’s energy is 

returned to the capacitor, reducing its time required to recharge for the next pulse. 

Consequently, biphasic stimulators are faster, offering rapid trains of pulses (i.e., 

rTMS) necessary for creating robust virtual lesions. The main advantage of rapid 

stimulation is the possibility to cover a large time window of processing, especially 

important if temporal dynamics of regional activation is unknown.  

 

A)                                                        B) 
                                                                  

 
 
 

Figure 2-2: Current wave forms for A) monophasic TMS pulse and B) biphasic 

TMS pulse. The light curve corresponds to the current passing through the 

stimulating coil while dark curve represents the induced voltage in the brain.  

Shaded areas illustrate the highest induced voltage which is needed to cause 

neuronal depolarization. Figure was adapted from Epstein (2008). 
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The second property of the stimulator that needs to be chosen is the coil shape.  

Although there is a range of different coil morphologies to choose from, the two most 

commonly used coils are circular and figure-of-eight (also known as double or 

butterfly) coils. Circular coils are the simplest and were the first to be used because 

they are particularly effective in the stimulation of human hand motor cortex (Barker 

et al., 1985). The single circular coil does not, however, offer good spatial precision 

because the induced electric field is strongest under the wing of the coil. More 

specifically, the field is maximal under the mean diameter (dark red; Figure 2-3A) 

and minimal in the centre of the coil (dark blue). As a result, the stimulation is not 

very focal and instead affects a large cortical area, usually encompassing several 

distinct brain structures. In order to improve the spatial precision of stimulation, the 

figure-of-eight coil was designed (D. Cohen & Cuffin, 1991; Evans, 1991; Jalinous, 

1991; Maccabee et al., 1990; Ueno, Tashiro, & Harada, 1988). A figure-of-eight coil 

is made up of two circular coils placed side-by-side. The coils carry current in 

opposite directions that leads to the flow of the current in the same direction at the 

intersection of the two coils. This results in the strongest induced electric field in the 

centre of the whole coil and much weaker current on its periphery (Figure 2-3B). A 

figure-of-eight coil therefore has the ability to predominantly stimulate neurons under 

the area where the two coils meet providing more focal stimulation than a circular 

coil (Jalinous, 1991). In addition, the outer parts of the coil are usually away from the 

scalp during stimulation and unlikely to induce effective currents in brain tissue 

(Walsh & Pascual-Leone, 2003). In many cases, the spatially limited area of 

stimulation also makes stimulation more comfortable for the subject. 
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A)                                                                            B) 

                                 
min                           Strength of induced electric field                            max 

 

Figure 2-3: Distribution of the induced electric fields by A) circular coil and B) 

figure-of-eight coil. The shape of the coil is shown in the top left corner. The 

black arrows indicate direction of the current in the stimulating coil. The 

colours indicate the strength of induced electric field with dark red 

representing the strongest and dark blue the weakest electric field. Figure was 

adapted from Walsh and Pascual-Leone (2003).  

 

 

2.2.3 Frequency, Duration and Intensity 

When designing a stimulation protocol, the three parameters that are most important 

to the success of the experiment are the frequency, duration and intensity of 

stimulation. Frequency refers to the rate of stimulation in rTMS and is measured in 

pulses per second (i.e., Hz). Typically, frequencies at or below 1 Hz are considered 

to be low frequencies while those above 1 Hz are considered to be high frequencies. 
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Conventional wisdom suggests that low-frequency stimulation decreases cortical 

excitability while high-frequency stimulation increases cortical excitability. This 

classification of TMS frequencies can be clearly illustrated in the motor system 

where low-frequency rTMS delivered to primary motor cortex reduces the amplitude 

of MEP while high-frequency rTMS enhances MEP amplitude (Berardelli et al., 

1999; R. Chen et al., 1997; Jennum, Winkel, & Fuglsang-Frederiksen, 1995; Maeda, 

Keenan, Tormos, Topka, & Pascual-Leone, 2000; Pascual-Leone, Valls-Solé, 

Wassermann, & Hallett, 1994; Rossi et al., 2000). For example, after Chen and 

colleagues (1997) used rTMS at 0.9 Hz for 15 min over hand motor cortex, MEPs 

decreased for another 15 min following stimulation. It is less clear, however, that 

these findings generalize to areas outside the motor cortex. For instance, to induce 

speech arrest, rTMS at high frequencies between 4-32 Hz has been used over the 

left prefrontal cortex (Epstein et al., 1996; Jennum, Friberg, Fuglsang-Frederiksen, & 

Dam, 1994; Pascual-Leone et al., 1991). Similarly, the majority of studies using 

either high- or low-frequency rTMS to areas involved in cognitive processes showed 

disruptive, rather than facilitatory, effects on behavioural measures such as reaction 

times or accuracy (Gough et al., 2005; Hartwigsen, Baumgaertner, et al., 2010; 

Pitcher et al., 2007; Pobric et al., 2010; L. Romero et al., 2006; Whitney, Kirk, 

O'Sullivan, Lambon Ralph, & Jefferies, 2010). Consequently, these results 

demonstrate that it may be somewhat simplistic to classify a stimulation protocol as 

inhibitory or facilitatory based solely on the frequency of stimulation. Moreover, 

choosing the right frequency for a TMS experiment is not a trivial task.          

Choosing a specific frequency of stimulation is challenging because different values 

are likely to work equally well. There are, however, some heuristic guidelines that 

help to constrain the choice. Low-frequency rTMS is used in off-line TMS 

experiments where long-lasting stimulation is believed to have an inhibitory after-

effect lasting from 30-60 min, depending on the duration and intensity of the 
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stimulation (Ridding & Rothwell, 2007). For example, Pobric and colleagues (2007) 

used rTMS of 1 Hz for 10 min over the anterior temporal lobe and found this 

increased decision times in picture naming and word comprehension tasks for 

approximately 20 min. On-line experiments, on the other hand, tend to use high-

frequency rTMS. Many studies use 10 Hz stimulation during task performance to 

slow reaction times (Göbel, Walsh, & Rushworth, 2001) and/or induce errors 

(Hartwigsen, Baumgaertner, et al., 2010). In fact, a specific paradigm using on-line 

rTMS  at frequency of 10 Hz for 500 msec has proven to be very effective and 

robust for producing virtual lesions across different cortical areas (Bjoertomt, Cowey, 

& Walsh, 2002; Duncan et al., 2010; Göbel et al., 2001; Hartwigsen, Price, et al., 

2010; Lavidor & Walsh, 2003; Pitcher et al., 2007; Rushworth, Ellison, & Walsh, 

2001). Because 10 Hz has been so commonly used in the literature, it has virtually 

become the de facto standard in cognitive neuroscience studies.  

The choice of frequency has important implications for the participant’s safety.  

Although the risk is small, there is always a possibility that TMS may induce a 

seizure in an otherwise healthy participant. Low-frequency stimulation is believed to 

decrease the risk of a seizure by reducing cortical excitability and thus minimizing 

the likelihood of kindling. In contrast, high-frequency stimulation is believed to 

increase cortical excitability, theoretically increasing the risk of inducing a seizure 

(but see above). The commonly chosen 10 Hz protocol has proven remarkably safe 

to date (Rossi et al., 2009). To minimize risks, there are internationally agreed upon 

safety guidelines that suggest safe stimulation frequencies, durations, intensities 

and inter-trial intervals that non-clinical studies are expected to adhere to. These 

guidelines also reduce the risk of less serious, but more common, side effects of 

TMS including transient headache, local pain and discomfort.   
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Another free parameter when designing a stimulation protocol is the duration of the 

rTMS. Duration refers to a time period during which a train of pulses is continuously 

delivered to the stimulation site. The choice of the right duration is equally important 

for both on- and off-line rTMS in inducing an effective virtual lesion although its 

implementation differs between the two. In on-line rTMS, the duration of a pulse 

train must be long enough to cover a critical time window of the neuronal activity 

related to the process of interest in order to cause its disruption. It is also important 

that a train of pulses is delivered during the critical time window since pulses 

delivered either too early or too late will not affect the process of interest. Protocols 

using 10 Hz pulse trains typically use durations of 400-500 msec, although longer 

train durations have also been used successfully (Rossi et al., 2009). In off-line 

rTMS, the duration of a train pulse is much longer than in on-line rTMS, usually in a 

range of 10 to 20 min. Usually, longer durations use lower stimulation intensities to 

meet safety requirements.  

The final stimulation parameter when designing a stimulation protocol is intensity of 

stimulation. Intensity refers to the strength of the induced magnetic field and is 

determined by the amount of current released into the coil during stimulation; the 

larger the current, the larger the magnitude of the magnetic field. The right 

stimulation intensity is one that ensures the magnetic field affects neural processing 

in the target brain region. This is nearly impossible to determine a priori without 

knowing the current density needed to affect a particular cortical region, the position, 

orientation, and depth of this region as well as the inter-subject variability in 

functional-anatomy. It is clear that measurable effects of stimulation will not be 

achieved if intensities are too low because the proportion of affected neurons will not 

be large enough. It is not clear, though, how the effects change with increasing 

intensity. In other words, the curve of intensity dosage has not been determined. It 

seems likely that there is a minimal intensity required to produce an effect followed 
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by a range of intensity values that suffice. These may continue indefinitely but there 

is some evidence that effectiveness decreases as the magnitude of intensity 

increases beyond a certain point (Julkunen, Ruohonen, Saaskilahti, Saisanen, & 

Karhu, 2011). In other words there is probably a range in the intensity dosage curve 

where amounts of intensity are functionally equivalent. Intensity is typically 

expressed as a percentage of maximum stimulator output (e.g., 55% maximum 

intensity) but this figure crucially depends on the specific hardware being used. As a 

result, intensity values are often not comparable across studies, even when 

equipment from the same vendor is used. 

It is possible to estimate current density induced in neural tissue by a given 

stimulation intensity and this provides a meaningful measure for reporting intensity 

(Hämäläinen & Ilmoniemi, 1994; Ilmoniemi, 1991). Unfortunately, the software to do 

this is only implemented in a few neuronavigation packages (Ruohonen & Karhu, 

2010), limiting its accessibility. The estimation of the current density is primarily 

affected by the distance between the stimulating coil and the target area (Stokes et 

al., 2007; Stokes et al., 2005), but it is also affected by the location and orientation 

of the target tissue within the stimulating field. Therefore, if the target site has clear 

anatomical landmarks, then by using a high resolution structural scan of the 

participant’s brain, one could in theory customize the stimulation intensity based on 

the estimated current density. Our knowledge of the functional representations for 

brain regions is however very limited. Even for well-defined anatomical landmark 

such as the omega knob in the precentral gyrus that identifies hand motor cortex 

(Boling, Olivier, Bittar, & Reutens, 1999; White et al., 1997; Yousry et al., 1997), 

there is considerable variability across individuals with respect to the specific cortical 

site where stimulation has its greatest effect. As a result, it is rarely feasible to 

determine the right intensity for stimulation a priori, making choosing intensity for a 

TMS experiment another difficult task. 
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At present there is no consensus on the optimum way to identify stimulation intensity 

for all TMS experiments. Many studies identify the intensity of stimulation necessary 

to produce a motor response when stimulating the hand area of primary motor 

cortex and use this to normalize intensity across participants (Duncan et al., 2010; 

Göbel et al., 2001; Meister, Wilson, Deblieck, Wu, & Iacoboni, 2007; Watkins & 

Paus, 2004; Whitney, Kirk, O'Sullivan, Lambon Ralph, & Jefferies, 2012). This 

measure, however, is not a reliable index of the optimal intensity for non-motor 

areas (Deblieck, Thompson, Iacoboni, & Wu, 2008; Stewart, Walsh, & Rothwell, 

2001; Stokes et al., 2013). For example, Stewart and colleagues (2001b) found that 

the stimulation intensity necessary to induce an MEP when stimulating primary 

motor cortex were different from the intensity needed to induce phosphenes when 

stimulating visual cortex within the same individuals. Moreover, there was not even 

a consistent relationship between the intensities. Presumably, a major factor 

influencing this is the coil-to-cortex distance that may vary between brain areas 

(Stokes et al., 2013). Different distances from the coil to cortex increase variability in 

conductivity and permittivity of the tissue that the stimulation needs to go through 

before reaching the targeted area, leading to different effects across brain areas 

stimulated at the same intensity.   

Another option for setting intensity is to use the same intensity for all participants 

(Bjoertomt et al., 2002; Gough et al., 2005; Pitcher et al., 2007; Stewart, Walsh, & 

Rothwell, 2001; Walsh, Ellison, Battelli, & Cowey, 1998). This approach, however, 

does not account for possible inter-subject variability of the minimum stimulation 

threshold that may lead to under- or over-stimulation in the region of interest for 

some subjects. On the other hand, if the range of equivalent intensity values is 

sufficiently broad, it may be feasible to choose intensity within that range that works 

across participants. At the moment, it is not clear which of these methods is optimal 

as both methods seem to produce reliable effects across published experiments.  
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All experiments in this thesis used on-line TMS. The main motivation for this choice 

was the intention to test both functional and temporal contributions of the inferior 

parietal lobule to visual word recognition. In addition, all experiments used biphasic 

pulses because they offer rapid trains of pulses which allow testing both functional 

and temporal contributions of the region with rTMS and chronometric TMS, 

respectively. A figure-of-eight shape coil was also used in all experiments because it 

allowed for precise and selective stimulation of supramarginal and angular gyri that 

was particularly important for distinguishing functional contributions of precise 

subregions within these regions. For all rTMS testing, high-frequency stimulation 

was chosen. To produce virtual lesions, I chose the most common protocol of 10 Hz 

in combination with a train of 5 pulses for 500 msec from onset of the stimulus which 

produced robust behavioural effects in pilot testing. For all chronometric TMS 

testing, double-pulse TMS with pulses separated 40 msec from each other at five 

different time windows was used. Finally, all the experiments used a set intensity of 

55% of the maximum stimulator output for each participant. The fixed intensity of 

55% of the maximum stimulator output was selected since it proved to be effective 

across a number pilot tests in producing robust TMS effects on language tasks in 

the inferior parietal lobule. This stimulation protocol was well within safety and 

comfort limits for all the participants and permitted easy comparisons with results of 

related studies in the literature. 

 

2.3  Localization Methods for TMS 

Successful TMS experiments require an effective and robust method of targeting the 

stimulation site. The spatial precision of TMS means that stimulation affects an area 

with a 5-10 mm radius, implying that small deviations in coil placement or orientation 

can dramatically influence the effects of stimulation. In addition, significant 
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differences in individual functional anatomy mean that the optimal stimulation site 

needs to be customized for each individual participant. Choosing a robust, accurate 

targeting procedure that accounts for individual differences in functional anatomy is 

therefore essential. Some brain regions can be functionally identified in an objective 

way using only single pulses of TMS. For instance, the primary motor and visual 

cortices can be localized by searching for optimal coil position that induces visible 

twitches of the contralateral hand muscle (Rossini et al., 1994) or visual phosphenes 

(Boyer, Harrison, & Ro, 2005), respectively. Similarly, the frontal eye fields can be 

localized by delays in saccadic eye movements produced by TMS applied 

approximately 1.5 cm anterior to the motor hand area (Müri, Hess, & Meienberg, 

1991; Priori, Bertolasi, Rothwell, Day, & Marsden, 1993). The effect of TMS on the 

majority of brain areas, however, is not obvious. For these so-called silent regions, 

localization requires a different approach. There are a number of different methods 

that can be used for identifying a silent TMS target site including localization based 

on i) the International 10-20 EEG system; ii) standardized function guidelines; iii) 

individual anatomical brain landmarks; iv) standard space coordinates from group 

imaging studies; and v) functional localization in individual participants based on 

either fMRI or TMS.   

The International 10-20 EEG electrode scalp positioning system (Jasper, 1958) 

constitutes a very basic approach for TMS localization. In this system, external 

locations on the skull represent underlying cortical areas. Before testing, the 

electrodes are placed at fixed distances from the head registration points in steps of 

10 or 20% which takes into consideration individual differences in head sizes. This 

method has been used by a number of TMS studies where TMS coil was positioned, 

for example, over Wernicke’s area, operationally defined as the tissue underlying 

the CP5 electrode (Knecht et al., 2002) or over left posterior parietal cortex, 
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operationally defined as the tissue beneath the P3 electrode (Kessels, d'Alfonso, 

Postma, & de Haan, 2000).  

The second approach uses previously identified spatial relationships between a 

brain region and an easily localized function. For example, Pascaul-Leone and 

colleagues (1996) targeted dorsolateral prefrontal cortex by first finding a 

participant’s hand area of primary motor cortex (identified by a visible hand twitch) 

and then moving the coil 5 cm anterior on a line parallel to the midsagittal line 

following the Talairach atlas. 

A third localization option is to mark a target site based on anatomical landmarks 

visible in the participant’s MRI scan. Broca’s area, for instance, was marked as the 

crest of the left pars opercularis approximately 1 cm below the inferior frontal sulcus  

(Carreiras, Pattamadilok, Meseguer, Barber, & Devlin, 2012); an anterior temporal 

lobe site was defined as the region 10 mm posterior to the tip of the temporal pole 

along the middle temporal gyrus (Pobric, Jefferies, & Lambon Ralph, 2007); while 

the primary visual area V1 was identified as the most posterior part of the calcarine 

sulcus in the occipital pole (Camprodon, Zohary, Brodbeck, & Pascual-Leone, 

2010).  

A fourth approach is to choose standardized space (e.g., MNI152) coordinates 

associated with a particular function and mark that location on each participant’s 

structural scan for stimulation. For the most part, researchers tend to use 

coordinates from functional neuroimaging studies that show specific brain regions 

activated during performance of a relevant task. For example, Pitcher and 

colleagues (2007) chose coordinates for the occipital face area from an fMRI study 

of face processing (Rossion, Caldara, et al., 2003) and used these to stimulate the 

region in their participants. In another example, coordinates for a region of left 

inferior parietal lobule involved in processing semantic categories (Kellenbach, Brett, 
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& Patterson, 2003; Noppeney, Price, Penny, & Friston, 2006) were used to stimulate 

that region in order to determine its role in semantic cognition (Pobric et al., 2010).  

Finally, it is possible to functionally localize a stimulation site in each participant 

using either functional neuroimaging or TMS. In the former approach, it is typical to 

collect fMRI or PET data from each of the prospective TMS participants and use 

their peak activation within a region as the target stimulation site. This has been 

done, for example, using fMRI to identify two regions within left occipito-temporal 

cortex sensitive to either written words or visual objects (Duncan et al., 2010) or 

using PET to identify a region within left inferior frontal gyrus involved in verb 

generation (Thiel et al., 2005). Similarly, functional localization can also be done 

using TMS. This technique was initially employed in localizing the hand area within 

primary motor cortex (Barker et al., 1985) by placing a grid of targets covering the 

area and testing each until a motor hot spot (i.e., area showing the strongest and 

most reliable muscle contraction) is identified. Although localization of motor hand 

area relies on obvious behavioural TMS effects, it has been also used successfully 

on silent brain regions. In such regions, TMS-based localization can be done by 

marking several potential stimulation sites within the brain region and then testing 

each with a short localizer task that taps into the cognitive function of interest and 

has measurable behaviour (e.g., reaction times, accuracy, eye-movements). TMS-

based functional localization has been used, for example, to identify the frontal eye 

fields involved in overt eye movements (Taylor, Nobre, & Rushworth, 2007). In a 

TMS study which investigated temporal contribution of anterior inferior prefrontal 

cortex to semantic processing, Devlin and colleagues (2003) used rTMS of 10 Hz for 

300 msec during a short semantic task to determine a site involved in semantic 

processing. If TMS did not produce slower reaction times than no stimulation at the 

first site, then a new site located approximately 1 cm away was tested. The 

procedure was repeated until a stimulation site was successfully established.   
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Clearly, there are numerous ways to identify a stimulation site and all of them can be 

effective. The question then becomes: what are strengths and weaknesses of these 

different approaches? The main advantages of using the International 10-20 system 

or scalp-based measurements are their ease and low costs but neither methods 

offers good anatomical precision nor any consideration for anatomical and functional 

variation across participant. In fact, Herwig and colleagues (2003) found 

considerable variability in the anatomical regions underlying electrodes across 

participants. In contrast, localization based on MRI-guided anatomical landmarks or 

group functional coordinates accounts for inter-individual differences in anatomical 

brain structure since the target sites are marked in respect to brain structure of each 

individual. The need for structural brain scans for all participants, however, 

introduces significant expenses in both time and cost. In addition, these methods 

still do not account for individual differences in functional anatomy. The primary 

advantage to fMRI- and TMS-based functional localization is the ability to account 

for inter-subject differences in functional anatomy. fMRI-based functional localization 

is the most resource intensive method of identifying stimulation sites and may not be 

feasible in many cases. TMS-based localization is much less expensive but involves 

additional runs of TMS used to identify a hot spot which may lead to additional 

discomfort (depending on the stimulated region) or introduce safety concerns given 

the extra stimulation required (Rossi et al., 2009). There are numerous examples of 

each of these methods being used successfully so choosing one primarily involves 

weighing their relative pros and cons.  

Sack and colleagues (2009) conducted an empirical, systematic comparison of 

different localization approaches commonly used in TMS experiments. Their 

investigation involved an evaluation of TMS effect strength and sample size for one 

TMS study on parietal cortex which was performed using four different localization 

methods: i) 10-20 EEG position P4; ii) individual MRI-guided TMS; iii) group 
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functional Talairach coordinates; or iv) individual functional coordinates. The results 

suggested that the methods did not differ qualitatively in their TMS-induced effects 

but rather in the magnitude of their respective effect sizes and the sample size 

required to observe statistically significant behavioural effects. The strongest TMS 

effect was revealed (Cohen’s d = 1.13) when using individual fMRI-based 

localization, followed by the MRI-guided approach (Cohen’s d = 0.82), group 

Talairach coordinates (Cohen’s d = 0.67), and finally 10-20 EEG approach (Cohen’s 

d = 0.34). A power analysis revealed that the number of participants sufficient to find 

a significant effect was the smallest for the experiment with fMRI-based localization 

(n = 5), followed by MRI-guided neuronavigation (n = 9), group Talairach 

coordinates (n = 13), and finally 10-20 EEG system (n = 47). In other words, 

although all four methods sufficed to identify a stimulation target, fMRI-based 

functional localization was the most sensitive method inducing the largest effects 

and requiring the fewest participants to be successful. Localization based on 10-20 

EEG system was least effective, producing the smallest effects and thus requiring 

the largest sample for success. These results are in line with those obtained by 

Sparing et al. (2008) who also found the largest behavioural effects using fMRI-

based localization and the smallest effects using 10-20 EEG system in a TMS study 

of primary motor cortex. Even stronger findings have been reported by Feredoes et 

al. (2007) who demonstrated that significant TMS effects in their experiment were 

only obtained using fMRI-based localization in individuals but not using group 

coordinates. It can be concluded that methods that customize stimulation sites 

based on functional localization in individuals lead to more effective TMS results.     

So is fMRI-based functional localization the best way to identify target stimulation 

sites? There are two reasons why it may not be. First, the method targets a peak 

coordinate within the region-of-interest despite the fact that these have been shown 

to be highly variable within an individual (Berman et al., 2010; Duncan, 
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Pattamadilok, Knierim, & Devlin, 2009; Kung, Peissig, & Tarr, 2007). For instance, 

Duncan and colleagues (2009) used two runs of fMRI to functionally localize written 

word- and object-sensitive regions within extrastriate visual cortex in a set of 45 

subjects. They found that on average, the peak voxels across the two runs within an 

individual were 8 mm apart, which is right at the limit of the spatial resolution of 

TMS. Twenty-seven % of the participants had peaks 12 mm or more apart, which 

would clearly be outside the resolution of TMS. In other words, the inconsistency in 

fMRI-based functional localization of peak coordinates can lead to different target 

locations for stimulation. A second concern is that fMRI and TMS are subject to 

different spatial biases. Specifically, the changes in blood oxygenation arising from 

local brain activity measured in fMRI propagate downstream in veins and can give 

rise to spurious activation at sites remote from neuronal activity (Turner, 2002). In 

contrast, the effects of TMS are mediated by the specific gyral and sulcal 

morphology with stimulation preferentially affecting axons that curve within the 

magnetic field (Rotem et al., 2014). These spatial biases are illustrated in Figure 2-

4. Differences in spatial biases are problematic since they may lead to different 

localization of the same neural generator across the two techniques.  TMS-based 

functional localisation avoids the twin problems of variability in peak voxel location 

as well as the differential spatial bias between fMRI and TMS, thus offering a more 

accurate targeting method than fMRI.  
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Figure 2-4: A) All veins within the red circled area drain towards the main vein 

(blue arrow) producing the strongest signal in the centre (Turner, 2002). B) A 

coronal slice through a single hemisphere together with a typical orientation 

of the intracranial electric current (black arrow) induced by TMS. As 

schematically shown in (C) the largest TMS effects are produced in axons 

bent closer to the stimulation site (Maccabee, Amassian, Eberle, & Cracco, 

1993; Walsh & Pascual-Leone, 2003).   

 

 

To empirically evaluate the efficacy of using fMRI to functionally localize stimulation 

sites within individuals, I examined four experiments previously run in my lab (refs). I 

calculated the percentage of participants who showed a TMS-induced effect on 

measured behaviour following fMRI-based localization (Duncan et al., 2010; 

Kawabata Duncan, 2010; Pattamadilok et al., 2010). Each of those experiments 

used fMRI to identify an area within ventral occipito-temporal cortex sensitive to 

visual words in individual participants in order to test its involvement in visual word 

recognition with TMS. There were a number of notable outcomes from this 

examination.  First,  fMRI-based functional localization was successful in identifying 
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stimulation targets which produced highly significant group results in the main TMS 

experiments despite relatively small sample sizes (range: 13-18). This is consistent 

with the idea that functional localization performed for each subject individually leads 

to high success rates in producing robust effects in TMS experiments (Sack et al., 

2009; Sparing et al., 2008). In other words, by taking into account inter-subject 

variability in functional anatomy, one maximizes the experimental sensitivity. 

Interestingly however, although the method produced significant effects on a group 

level, there were always participants who did not show a TMS effect despite 

successful functional localization. Only 46 (out of 60) participants (77%) showed a 

TMS-induced slowdown despite the fact that fMRI identified a clear stimulation site 

in each participant. This pattern was seen in each of the four experiments with 

success rates ranging from 61-88%. Failure to produce stimulation effects in some 

individuals could result from difference in spatial biases between TMS and fMRI 

(Maccabee et al., 1990; Turner, 2002). 

All experiments in this thesis used individual TMS-based functional localization (see 

Chapter 3) in order to account for variability in functional anatomy across individuals 

and to maintain identical spatial biases across localization and  the main experiment 

in order to optimize the likelihood of stimulating the correct target site. In addition, 

TMS-based localization is cheaper in time and resources than fMRI-based 

localization and can be typically done with the main testing within a single session, 

minimizing the risk of functional variability of time (Penfield & Boldrey, 1937). Finally, 

TMS to angular or supramarginal gyrus are easily accessible for stimulation and 

stimulation of those regions usually does not cause any discomfort or pain to the 

participant.
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3.  Experiment 1: Functional Contributions 
of the Left Inferior Parietal Lobule to 

Reading 
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3.1 Introduction  

In this chapter, I present a TMS study designed to evaluate three competing 

hypotheses concerning the functional contributions of the left inferior parietal lobule 

(IPL) to visual word recognition. The first hypothesis suggests that IPL stores visual 

forms of written words. The second hypothesis argues that IPL is involved in 

processes required for grapheme-to-phoneme conversion which are characteristic to 

the sublexical visual word processing. In contrast, the third hypothesis associates 

the two major subregions of IPL, namely supramarginal gyrus (SMG) and angular 

gyrus (ANG), with specific language functions used during reading. According to the 

third hypothesis is involved in processing phonology while ANG processes 

semantics. The third hypothesis also leads to the question whether IPL can fulfil 

multiple, distinct functions during reading as a result of its anatomically subdivided 

structure. Clearly, there are substantial differences between the three hypotheses in 

respect to the functions they propose. As it stands all of the suggested functions are 

plausible and the question to be asked is which of them is correct. Validation of 

these three hypotheses is especially important for assigning correct functional labels 

to IPL and further improvement of the neurological model of reading. 

The first hypothesis claims that IPL is the site of stored visual word forms. This 

derives from the seminal work of Joseph Jules Dejerine (1891) who described the 

cases of two patients unable to read or write due to lesions of the left posterior IPL, 

more specifically the left ANG. Dejerine reasoned that the patients’ inability to 

recognize visual words coupled with their writing difficulty indicated a central loss of 

visual word forms, which he argued must be stored in ANG. Subsequent studies of 

patients with acquired reading deficits have confirmed the importance of IPL for 

reading, but have introduced uncertainty regarding the specific anatomical fields. 

For instance, Warrington and Shallice (1980) reported two patients with profound 
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reading impairments subsequent to lesions predominantly affecting either the 

anterior (SMG) or posterior (ANG) fields of IPL. Similarly, Philipose and colleagues 

(2007) found that reading deficits were more commonly due to SMG, rather than 

ANG, lesions. The evidence shows, therefore, that IPL is important for storing visual 

word forms but there is uncertainty regarding localization of this function to the 

specific anatomical field within the region. 

The second hypothesis claims that IPL is required for grapheme-to-phoneme (i.e., 

letter-to-sound) conversion during reading. The foundations of this hypothesis need 

a few words of explanation. Reading involves a series of cognitive processes that 

include, among other things, conversion of spelling (orthography) into sound 

(phonology). However, the way that orthography is mapped into phonology is still a 

matter of debate. The dual-route model proposed that there are two procedures for 

conversion of orthography into phonology: an assembled procedure based on 

grapheme-to-phoneme conversion rules and an addressed procedure based on a 

whole-word orthographic form (Coltheart et al., 1993; Paap & Noel, 1991). 

Phonological assembly relies on accessing phonology of the written word by 

mapping its individual graphemes onto corresponding phonemes thanks to 

grapheme-to-phoneme correspondence rules that are specific to the sublexical route 

of word processing. In contrast, the addressed procedure for accessing phonology 

of the written word relies on direct retrieval of the phonological word form from the 

orthography of the whole word via a lexical route. The sublexical route is particularly 

important for reading new words that can be sounded out from their spelling (i.e., 

regular words) such as bench or ten as well as pronounceable pseudowords such 

as nawk since whole-word pronunciation patterns of such words have not been 

memorised and need to be generated using grapheme-to-phoneme conversion 

rules. Words that do not obey traditional grapheme-to-phoneme correspondence 

rules (i.e., irregular words) such as pint or yacht, however, require a different 
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mechanism to be read successfully. According to dual-route theories, such words 

use a lexical route where their pronunciation patterns have been memorised and 

can be accessed directly from memory. Evidence for separate sublexical and lexical 

routes originated from observations of patients with acquired surface and 

phonological dyslexia, respectively. Phonological dyslexics (Beauvois & Derouesne, 

1979) show more difficulty reading nonwords in relation to real words while surface 

dyslexics (Marshall & Newcombe, 1973; Patterson, Marshall, & Coltheart, 1985) 

experience problems reading irregular words in relation to regular words. Unlike the 

classic neurological model of reading, the dual-route model was purely cognitive and 

described mechanisms for grapheme-to-phoneme conversion without any reference 

to neuroanatomy. More recently, however, researchers have tried to establish neural 

correlates of the lexical and sublexical processes underlying grapheme-to-phoneme 

conversion using neuroimaging methods and a number have suggested that IPL 

constitutes a crucial region involved in this process (Booth et al., 2004; Y. Chen, Fu, 

Iversen, Smith, & Matthews, 2002; Das, Padakannaya, Pugh, & Singh, 2011; 

Horwitz et al., 1998; Kronbichler et al., 2006; Law et al., 1991; Pugh et al., 2000; 

Roux et al., 2012; S. E. Shaywitz et al., 1998; Simos et al., 2002).     

By manipulating tasks and stimuli that putatively require grapheme-to-phoneme 

conversion, investigators sought to identify brain activity directly related to 

phonological assembly. In the first instance, functional imaging studies compared 

activation for reading pseudowords relative to familiar words with the expectation 

that reading pseudowords would increase activation in areas involved in sublexical 

grapheme-to-phoneme conversion. This contrast revealed increased SMG activation 

for pseudoword reading in a number of studies (Abutalebi et al., 2007; Henson, 

Price, Rugg, Turner, & Friston, 2002; Price, Wise, & Frackowiak, 1996; Thompson 

et al., 2007; Vigneau et al., 2005; Xu et al., 2001). The results are in line with those 

obtained by Roux et al. (2012) who performed cortical electrostimulation mapping on 
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neurosurgical patients to investigate brain regions required for conversion of 

graphemes into phonemes using a pseudoword reading task. Roux and colleagues 

demonstrated that interference specific to pseudoword reading was concentrated in 

a restricted inferior and anterior subpart of SMG. A similar manipulation by Horwitz 

et al. (1998), however, associated grapheme-to-phoneme conversion with ANG 

rather than SMG. The researchers investigated brain regions involved in grapheme-

to-phoneme conversion by comparing regional cerebral blood flow specific to 

pseudoword relative to low-frequency word reading. Like to familiar words, low-

frequency words were believed to involve areas required for lexical reading without 

involvement of sublexical processes necessary for grapheme-to-phoneme 

conversions. Horwitz and colleagues found a strong positive correlation between the 

left ANG and other brain areas during pseudoword reading which they claimed 

made the region a perfect candidate for a main role in grapheme-phoneme 

transformations.   

Another approach used to investigate neural correlates of grapheme-to-phoneme 

conversion was to compare reading in orthographies that require grapheme-to-

phoneme conversion to those which do not. For instance, Law et al. (1991) used 

PET to compare reading in two different Japanese writing systems, namely Kanji 

and Kana. Kanji script was derived from the ancient Chinese and has maintained a 

logographic orthography where each symbol corresponds to a whole word. In 

contrast, Kana characters represent syllables and as a result, reading Kana strongly 

relies on phonological assembly. This study showed significant SMG and ANG 

activation for Kana relative to Kanji reading. Similarly, Chen et al. (2002) contrasted 

neuronal activation elicited by reading alphabetic to non-alphabetic Chinese scripts 

in their fMRI study. As the alphabetic Chinese script, the researchers used Pinyin 

developed from English letters as sound symbols for Chinese characters. Pinyin 

was contrasted with the logographic Chinese script as reading Pinyin requires 
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grapheme-to-phoneme mapping. Reading Pinyin relative to Chinese logographs led 

to greater activation in both SMG and ANG. In addition, Das et al. (2011) compared 

brain activation for reading words in two languages with considerably different 

degrees of the orthographic transparency. Their task involved reading Hindi versus 

English words. Das et al. assumed that Hindi words, which are characterised by 

transparent orthography, would rely on grapheme-to-phoneme conversion more 

than English words where there is a less consistent orthography. Das and 

colleagues showed that in contrast to monolingual English readers, monolingual 

readers of Hindi primarily elicited activation in SMG and they argued that the results 

reflect its involvement in sound assembly.  

In developmental studies, Booth and colleagues (2003, 2004) also argued that the 

left IPL is involved in the process of grapheme-to-phoneme conversion. In one of 

their studies, Booth et al. (2003) used fMRI to determine whether performance on 

tasks that required explicit translation of graphemes to phonemes (e.g., rhyme 

judgements to visually presented words) was correlated with cerebral activation 

patterns. They found that in this task, better performance was associated with 

greater SMG and ANG activation in adults. This led them to a prediction that 

children are likely to show less activation in these regions performing the same task 

since they are less skilled in phonological assembly than adults. Therefore, in their 

following study, Booth et al. (2004), examined developmental differences in the 

neurocognitive networks in children and adults. As predicted, adults showed greater 

activation for rhymes in ANG than children. On the basis of the results from both 

studies, the researchers argued that the left IPL must be involved in grapheme-to-

phoneme conversion.  

Additional evidence for the left IPL involvement in conversion of letters to sounds 

comes from neuroimaging studies of readers with developmental dyslexia. Dyslexics 



  

90 
 

have a persistent difficulty in acquiring reading skills, often associated with a lack of 

phonemic awareness leading to problems with phonological assembly (Bruck, 1992; 

Fletcher et al., 1994; Rieben & Perfetti, 2013; Shankweiler et al., 1995; Stanovich & 

Siegel, 1994). This indicates that dyslexic readers struggle reading words and 

nonwords which require efficient grapheme-to-phoneme conversions. Neuroimaging 

techniques have been used to assess brain activation patterns characteristic for 

developmental dyslexics in attempt to identify brain structures involved in grapheme-

to-phoneme conversion by comparing brain activation in dyslexics to normal readers 

during reading tasks which explicitly engage phonological decoding (e.g., 

pseudoword reading). A number of studies have shown severe activation 

abnormalities in IPL for developmental dyslexics (Habib, 2000; McCandliss & Noble, 

2003; Pugh et al., 2000; Sandak, Mencl, Frost, & Pugh, 2004; S. E. Shaywitz & 

Shaywitz, 2005). Activation in SMG and ANG was negatively correlated with reading 

skill in developmental dyslexics during tasks involving, for example, single word 

reading (Rumsey, Nace, et al., 1997), rhyme judgements (Hoeft et al., 2006; 

Rumsey et al., 1992; B. A. Shaywitz et al., 2002; S. E. Shaywitz et al., 1998) or 

sentence reading in a language with consistent grapheme-to-phoneme conversions 

(Kronbichler et al., 2006). In addition, Simos et al. (2002) demonstrated that dyslexic 

children showed a significant increase in reading skills along with increased 

activation in both IPL subregions after an intervention that was designed to improve 

child’s awareness of phonological structure and its relation to the alphabetic 

principle. Altogether, studies on developmental dyslexics provide additional 

evidence for involvement of the left IPL in grapheme-to-phoneme conversion.  

Additional claims of SMG association with grapheme-to-phoneme conversion can be 

found in studies on readers with phonological agraphia which is characterized by an 

impairment of spelling pronounceable pseudowords and unfamiliar words relative to 

spelling familiar words (Roeltgen & Heilman, 1985; Shallice, 1981). Many 
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researchers share the assumption that reading and spelling share common 

cognitive processes (A. S. Brown, 1990; Rapcsak et al., 2009). Like reading 

therefore, spelling unfamiliar words and pseudowords is achieved through a 

sublexical route based on grapheme-to-phoneme conversion (Ellis, 1982). 

Phonological agraphia is most strongly associated with damage to the anterior SMG 

(Bub & Kertesz, 1982; Penniello et al., 1995; Rapcsak, Arthur, & Rubens, 1988; 

Roeltgen & Heilman, 1985; Roeltgen, Sevush, & Heilman, 1983; Tanaka, Yamadori, 

& Murata, 1987). Consequently, the inability to create phoneme-grapheme 

relationships in phonological agraphia is argued to indicate that SMG plays a vital 

role in phonological assembly.  

Taken together these studies argue for an important role of the left IPL in grapheme-

to-phoneme conversion. The evidence supporting this claim comes from various 

neuroimaging studies on healthy readers who showed increased activation in this 

part of the brain for tasks that require explicit conversion of graphemes into 

phonemes as well as readers with disturbed reading conditions who showed 

abnormal involvement of the region during this process. However, there are 

problems with this hypothesis. First, the increased activation for pseudowords 

relative to regular words in IPL has not been consistent. A considerable number of 

studies demonstrating no difference in activation for pseudowords relative to words 

(Fiez, Balota, Raichle, & Petersen, 1999; Herbster et al., 1997; Mechelli, Gorno-

Tempini, & Price, 2003; Osipowicz et al., 2011; Paulesu et al., 2000; Woollams, 

Silani, Okada, Patterson, & Price, 2011) or greater activation for regular words than 

pseudowords (Mechelli et al., 2003; Vigneau et al., 2005). Second, clearly the 

strongest contrast for dissociating sublexical and lexical processes would be a 

comparison of reading pseudowords (sublexical route) relative to irregular (lexical 

route) words, however, there are no reports of greater activation for pseudowords 

relative to irregular words in IPL. By definition, pseudowords have no lexical 
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representations and the only way to pronounce them is via grapheme-to-phoneme 

rules represented in the sublexical route. This is in contrast to reading irregular 

words that cannot be read successfully following grapheme-to-phoneme rules but 

require mapping of the whole-word orthographic representation onto a whole word 

phonological pattern via the lexical route. Rumsey et al. (1997) directly compared 

pseudowords to irregular words and showed essentially identical patterns of 

activation for the two types of stimuli with no regions showing differences between 

sublexical and lexical routes. Instead, both types of stimuli activated SMG and ANG 

to the same extent. Finally, even if IPL plays some role in grapheme-to-phoneme 

conversion, there is no consensus regarding the specific anatomical locus of this 

function with some studies focusing on SMG (Das et al., 2011; Henson et al., 2002; 

Hoeft et al., 2006; B. A. Shaywitz et al., 2002; Thompson et al., 2007; Vigneau et al., 

2005; Xu et al., 2001), others on ANG (Booth et al., 2004; Horwitz et al., 1998; Pugh 

et al., 2000; Rumsey et al., 1992; S. E. Shaywitz et al., 1998) and still others arguing 

that both fields are important for this process (Booth et al., 2003; Y. Chen et al., 

2002; Law et al., 1991; Simos et al., 2002). 

The third hypothesis about IPL involvement in visual word recognition suggests that 

the supramarginal and angular fields of IPL have different functions during word 

reading. By this account, SMG contributes to sound processing while ANG is 

involved in processing meaning (Demonet et al., 1994; Graves, Desai, Humphries, 

Seidenberg, & Binder, 2010; Paulesu et al., 1993; Price & Mechelli, 2005; Price et 

al., 1997). This hypothesis derives from functional imaging studies which 

consistently showed increased activation in SMG or ANG for reading tasks that 

place demands on phonological or semantic processing, respectively. For instance, 

greater activation in SMG was revealed during rhyme judgements in relation to 

perceptual categorization of meaningless Greek letter strings (Seghier et al., 2004); 

rhyme judgements in relation to semantic relatedness judgements (McDermott et al., 
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2003); passive word viewing in relation to passive picture viewing (Menard et al., 

1996); viewing words in relation to viewing objects and false fonts (Moore & Price, 

1999); reading unfamiliar pseudowords in relation to familiar words (Price, Wise, & 

Frackowiak, 1996); or reading Japanese Kana in relation to Kanji (Law et al., 1991). 

In contrast, ANG was demonstrated to have greater activation during semantic 

category decisions in relation to perceptual categorization of meaningless Greek 

letter strings (Seghier et al., 2004); reading words in relation to nonwords (Binder et 

al., 2003); semantic category judgements in relation to nonword rhyming and letter 

case judgements (Pugh et al., 1996); and contrasting semantically related words 

with semantically unrelated words (Mechelli et al., 2007). Several neuroimaging 

studies have also confirmed a double dissociation within IPL in directly contrasting 

phonological and semantic tasks (Devlin et al., 2003; Mummery et al., 1998; Price et 

al., 1997; Vigneau et al., 2006). For instance, Devlin and colleagues (2003) 

demonstrated enhanced activation in the dorsal SMG for a phonological task in 

which participants decided whether the word consisted of two syllables relative to a 

semantic task in which the participants were asked to judge whether the word 

presented to them was a man-made (e.g., radio) or natural item (e.g., cloud). In 

contrast, the opposite comparison (semantic vs. phonological task) revealed 

activation in the posterior inferior ANG. In their PET study, Mummery et al., (1998) 

found similar results. SMG was activated when subjects decided which of two 

response words had the same number of syllables (i.e., phonological similarity 

judgments) relative to decisions on which of two response words was more similar in 

color to the target word or which of two response words was typically found in the 

same location as the target word (i.e., semantic similarity judgments). In contrast, 

judgments on semantic similarity increased activity in ANG when compared to 

judgments on phonological similarity. The same functional double dissociation of 

semantic and phonological processing was revealed by the comparison of decisions 

on living/non-living objects vs. number of syllables (Price at al., 1997) or specific 
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phoneme detection vs. specific noun detection (Demonet et al., 1994). This third 

hypothesis builds on the findings that the SMG is important for phonological 

processes associated with verbal working memory (Buchsbaum & D'Esposito, 2008) 

while ANG is considered a key node in the cortical semantic system (Binder, Desai, 

Graves, & Conant, 2009).  

It is worth noting that according to this account, the SMG and ANG contribution to 

processing of sound and meaning, respectively, is not limited to written words but 

true for all types of stimuli. For instance, SMG is also involved in processing speech 

and non-speech sounds during auditory tasks (R. R. Benson et al., 2001; Burton, 

Small, & Blumstein, 2000; Callan, Jones, Callan, & Akahane-Yamada, 2004; Celsis 

et al., 1999; Demonet et al., 1992; Heim, Opitz, Müller, & Friederici, 2003; 

Jacquemot, Pallier, LeBihan, Dehaene, & Dupoux, 2003; Jäncke, Wüstenberg, 

Scheich, & Heinze, 2002; Pattamadilok et al., 2010; Prabhakaran, Blumstein, Myers, 

Hutchison, & Britton, 2006; Raizada & Poldrack, 2007; Zatorre, Evans, Meyer, & 

Gjedde, 1992; Zevin & McCandliss, 2005). As suggested by a number of 

researchers (Awh, Smith, & Jonides, 1995; Buchsbaum & D'Esposito, 2008; Burton 

et al., 2000; Jonides et al., 1998; Koelsch et al., 2009; Paulesu et al., 1993; L. 

Romero et al., 2006), this could reflect SMG role in phonological working memory 

where the region is used for temporal store of phonological patterns. The idea is 

especially plausible considering the fact that SMG shows activation in more 

demanding phonological tasks which involve maintaining sound patterns in memory, 

but not in simple speech comprehension tasks (Hickok & Poeppel, 2007; 

Rauschecker & Scott, 2009). Similarly, ANG shows involvement in semantic 

processing that does not only involve visual word reading. It is also implicated in 

semantic processing during tactile reading of Braille words in blind subjects (Büchel, 

Price, Frackowiak, & Friston, 1998) or during semantic decisions on pictures 

(Seghier, Fagan, & Price, 2010; Vandenberghe, Price, Wise, Josephs, & 
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Frackowiak, 1996) and spoken words (Awad, Warren, Scott, Turkheimer, & Wise, 

2007; Brownsett & Wise, 2010; Mashal, Faust, Hendler, & Jung-Beeman, 2007; 

Obleser & Kotz, 2009; Warburton et al., 1996). These findings provide strong 

evidence associating ANG with the distributed semantic system that is shared by 

various types of stimuli. Overall, the third hypothesis not only proposes specific 

functional roles for the supramarginal and angular gyri but also argues that their 

roles are more general language processing roles that contribute to reading but are 

not specific to reading. This is in contrast to the first two hypotheses which assign 

IPL to functions that are specific to reading.  

The functional double dissociation of phonological and semantic processing within 

IPL is also supported by the anatomy of this region. SMG and ANG differ in both 

their cytoarchitectonic structure and connectivity profiles, consistent with separate 

functional properties. The two areas essentially correspond to Brodman’s (1909) 

areas 40 and 39 (Figure 3-1A), or Von Economo and Koskinas’ (1925) areas PF and 

PG (Figure 3-1B), respectively (Caspers et al., 2008; Caspers et al., 2006). 

Critically, the two regions have distinct patterns of connectivity and thus participate 

in separable functional circuits (Caspers et al., 2011; Göbel, Rushworth, & Walsh, 

2006). Specifically, SMG has strong reciprocal connections with pars opercularis 

and ventral premotor cortex via the third branch of the superior longitudinal 

fasciculus (Makris et al., 2005; Martino et al., 2013). This fronto-parietal circuit plays 

a key role in verbal working memory (Buchsbaum & D'Esposito, 2008; L. Romero et 

al., 2006) and in phonological processing more generally (Demonet et al., 1994; 

Devlin et al., 2003; Mummery et al., 1998; Price et al., 1997). In contrast, ANG sits 

at the posterior end of the middle longitudinal fasciculus, linking it with middle and 

anterior temporal lobe regions involved in semantic memory (Binder et al., 2009; 

Makris et al., 2009; Price, 2010). These cortico-cortico connectivity patterns 
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presumably explain the observed double dissociation between phonological 

processing in SMG and semantic processing in ANG.  

 

A)                                                                   B) 

            

Figure 3-1: Schematic representation of the brain maps created by A) 

Brodmann (1909) where SMG and ANG correspond to areas BA40 and BA39, 

respectively and B) Von Economo and Koskinas (1925) where SMG and ANG 

correspond to area PF and PG, respectively. The SMG and ANG areas are 

highlighted in white. Figure was taken from Caspers et al. (2006).   

 

In summary, there are three hypotheses concerning IPL contributions to visual word 

recognition. The first claim is that IPL is the site of stored visual forms of written 

words although it remains unclear precisely where within the IPL these are stored. 

The second hypothesis argues that the procedures for converting letters-to-sounds 

are a function of the IPL but it is also unclear whether these are specifically located 

in ANG or SMG, or both. Finally, the third hypothesis suggests that the angular and 

supramarginal fields of the IPL preferentially contribute to semantic and 

phonological processing of written words, respectively. It is unclear, however, 

whether the differential contribution of ANG and SMG to semantic and phonological 

processing is necessary because of the nature of the neuroimaging techniques 
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which can only indicate correlations between brain and behaviour, but do not allow 

causal relations to be drawn. Moreover, in patients with IPL lesions this double 

dissociation is not readily apparent, in part because focal lesions selectively 

affecting either ANG or SMG are rare. The aim of the current study was to evaluate 

these three hypotheses using repetitive transcranial magnetic stimulation (rTMS) to 

temporarily and selectively disrupt processing in left ANG and SMG during visual 

word recognition and measure its effect on reading behaviour.  

 

3.2 Methods 

Participants 

Seventeen people volunteered for this study and 12 (7F, 5M; aged 18-42, mean = 

26) participated in the main experiment. One of the five excluded participants 

experienced right hand twitching during SMG stimulation that interfered with making 

a button press response and therefore could not participate in the experiment. In the 

other four, functional localization failed to identify an appropriate ANG (2) or SMG 

(2) testing site. All of the remaining participants were right-handed, monolingual 

native English speakers with normal or corrected to normal vision. They reported 

having no neurological conditions and no form of dyslexia. Each person provided 

informed consent after the experimental procedures were explained and was paid 

for their participation. The experiment was approved by the University College 

London Research Ethics Committee.  
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Experimental Procedures 

The experiment consisted of three separate testing sessions for each participant. 

The first lasted approximately 30 minutes and involved acquisition of a T1-weighted 

magnetic resonance imaging (MRI) scan [FLASH sequence, repetition time (TR) = 

12 ms, echotime (TE) = 5.6 ms, flip angle = 19°, resolution = 1 mm × 1 mm × 1 mm] 

at the Birkbeck-UCL Centre for Neuroimaging (BUCNI). The structural images were 

used for anatomical identification of left ANG and SMG in each participant. Scanning 

was followed by two TMS sessions in which either ANG or SMG were tested, with 

the order counterbalanced over participants. The TMS sessions were separated by 

at least two days and lasted approximately one hour each. Each testing session 

consisted of a TMS-guided functional localization and then the main experiment. 

The aim of the localization procedure was to identify specific testing sites within 

ANG and SMG. In other words, the testing sites used in the main experiment were 

determined using a TMS-based functional localization procedure (Ellison, Lane, & 

Schenk, 2007; Pattamadilok et al., 2010; Taylor et al., 2007), similar to “functional 

localizer” scans commonly used in fMRI experiments (Kanwisher, McDermott, & 

Chun, 1997; Kraft et al., 2005). The aim of this functional localization procedure was 

to customize the stimulation site in each individual taking into account inter-subject 

functional-anatomical variability.  

In order to identify appropriate testing sites we chose localization tasks that 

optimized the constraints placed by the three hypotheses under investigation. 

According to the first hypothesis, left IPL stores visual word forms and therefore the 

only constraint was that the task used real words (i.e., as opposed to pseudowords). 

The second hypothesis suggests that IPL is involved in grapheme-to-phoneme 

conversion. In this case localization required a task that involved mapping of letters 

onto sounds, a procedure that is thought to occur automatically in virtually all 

reading tasks (Coltheart et al., 2001; R. Frost, 1998; Plaut et al., 1996). Finally, the 

third hypothesis claims that SMG and ANG are required in phonological and 
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semantic processing of written words, respectively, and thus localization required 

separate tasks that were either phonologically or semantically demanding. As a 

result, a visual rhyme judgement task was used to localize stimulation site within 

SMG while a semantic category judgement task was used for ANG. Rhyme 

judgments focused the participant’s attention on the sounds of words by forcing 

them to decide whether two visually presented words rhymed (e.g., queen – green) 

or not (e.g., slug – muck). Semantic category judgments focused the participant’s 

attention on the meaning of the words by forcing them to decide whether the two 

visually presented words came from the same semantic category (e.g., inch – mile) 

or not (e.g., skirt – hero). The stimuli were designed such that half of the words in 

rhyme trials had different spellings (e.g., razor – laser) while half of the non-rhyming 

pairs had similar spellings (e.g., farm – warm). This prevented participants adopting 

a purely orthographic strategy.  

Note that I purposely did not localize both phonological and semantic processing 

within a single region because none of the three possible outcomes were relevant 

here. The neuroimaging evidence suggests that the most likely outcome would be 

an inability to localize phonological processing within ANG and an inability to 

localize semantic processing within SMG. That finding, however, would be a null 

result and therefore not informative due to the potential that I inaccurately delivered 

stimulation, incorrectly selected stimulation sites, inappropriately chose localization 

tasks, or any number of other experimental failures. In other words, it would 

needlessly expose participants to an extra 160 trials with rTMS to no purpose 

because a lack of evidence could not logically be used as evidence for a lack of 

phonological or semantic processing in ANG or SMG, respectively. A more 

interesting possibility would be if both types of processing were localized at different 

locations within an anatomical region (e.g., within SMG). Although informative, it 

would answer a different question than the one I investigated here. The final 
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possibility would be that both the phonological and semantic localizer tasks would 

identify the same location within each anatomical region – a possibility I explicitly 

test in the main experiment (see below). As a result, it was only necessary to 

localize phonological processing in SMG and semantic processing in ANG. 

Critically, though, both localization tasks required recognizing visual word forms and 

converting graphemes-to-phonemes so were equally appropriate for localizing 

stimulation sites relevant for all three hypotheses, thereby avoiding the potential for 

circularity in the results.  

Prior to the TMS session, three potential stimulation targets were anatomically 

marked within each region on an individual’s MRI scan using the Brainsight 

frameless stereotaxy system (Rogue Research, Montreal, Canada). For ANG, three 

potential stimulation sites were marked using standard space coordinates based on 

a study by Seghier et al. (2010) who identified three functionally distinct subregions 

within ANG. These were located within dorsal ANG at [–30 –66 42], middle ANG at 

[–48 –68 28], and ventral ANG at [–48 –68 20] (see Figure 3-2). For SMG, a 

different method of marking potential stimulation sites was applied. Instead of using 

standard space coordinates, sites were marked anatomically within the anterior part 

of the left SMG since this area has been shown to be most consistently involved in 

visual word recognition across a number of neuroimaging studies (Devlin et al., 

2003; Petersen et al., 1988; Price, 2000; Price et al., 1997; Roux et al., 2012; 

Seghier et al., 2004). The three sites were located: i) just superior to the termination 

of the posterior ascending ramus of the Sylvian fissure; ii) at the ventral end of the 

anterior SMG, superior to the Sylvian fissure, posterior to the postcentral sulcus, and 

anterior to the posterior ascending ramus of the Sylvian fissure; and iii) 

approximately halfway between these sites and approximately 10-15 mm from the 

other two (see Figure 3-2). This resulted in different standard space coordinates for 

each potential stimulation site across individuals. Each site within ANG and SMG 



  

101 
 

was then tested to functionally localize the specific target site where stimulation 

interfered with a semantic or a phonological task, respectively. 

 

 

Figure 3-2: Stimulation sites in ANG and SMG. Three possible stimulation 

targets marked within each participant’s left ANG (left panel) and left SMG 

(right panel) are indicated with yellow crosses. 

 

 

TMS-based Functional Localization 

A TMS session began with functional localization. For localization in ANG, 

participants performed a visual semantic categorization task that focused their 

attention on the meaning of the words. They were asked, “Do these two words 

belong to the same semantic category?” For localization in SMG, participants 

performed a visual rhyme judgement task designed to focus their attention on the 

sounds of the words. Subjects were asked, “Do these two words rhyme?” 

Participants were seated approximately 60 cm in front of computer display and 

responded using the keyboard. At the beginning of each trial, a white fixation cross 
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was centrally presented on the black screen for 1000 msec immediately followed by 

two words presented in 32pt white Helvetica font that appeared simultaneously 

above and below the cross and remained there for 500 msec. Participants had to 

make their response during a 2500 msec inter-trial interval by pressing the 

appropriate button using their left and right index fingers. The pairing of yes/no 

responses with fingers was counter-balanced across participants. All stimuli 

presentation and response recording was performed using MATLAB 2010 

(Mathworks Inc.) and COGENT 2000 toolbox 

(www.vislab.ucl.ac.uk/cogent/index.html).  

 

Each run consisted of 34 trials and lasted 1 min 35 sec. There were five different 

stimuli lists for each localization task. In both tasks, word stimuli (n = 160 plus 10 

dummy trials in each task) ranged in length from three to eight letters and were 

divided into five separate lists, matched for concreteness, familiarity, written word 

frequency, number of letters, and number of syllables [one-way ANOVA, all F(1, 

158) < 1.7, p > 0.14 for both tasks]. Concreteness and familiarity ratings were taken 

from the MRC Psycholinguistic database (Coltheart, 1981) while British English 

word frequencies came from the Celex database (Baayen & Pipenbrook, 1995). In 

addition, within each list trials were divided into TMS and no-TMS items equally 

distributed between yes and no trials and also matched across these five factors [all 

t(30) < 1.8, p > 0.1 for both tasks]. rTMS (10 Hz, 500 msec) was delivered on half of 

the trials with trial order pseudorandomized within each run. Stimulation involved 

five pulses starting from the onset of the stimulus and separated by 100 msec. The 

data from the first two trials in each run were discarded to allow participants to get 

past anticipating the first stimulation trials.  

At the beginning of the localization procedure, the participant performed a practice 

run without stimulation to become familiarized with the task and to ensure that it was 

understood correctly. The next step was to introduce the participant to the sensation 

http://www.vislab.ucl.ac.uk/cogent/index.html
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of rTMS at the first testing site by placing the coil on the scalp such that the line of 

maximum magnetic flux intersected the target site. Once familiarized with the 

sensation, each subject went through one more practice run with concurrent rTMS. 

Localization then began at the first testing site using one of the five matched 

stimulus sets. When rTMS facilitated (i.e., shortened) RTs relative to non-TMS trials, 

the next site was tested. When rTMS increased RTs, the site was re-tested in order 

to determine whether stimulation produced consistent slowdowns at this site. All 

three sites were tested but only a site that produced two or more RT slowdowns 

during the localizer task was used as a stimulation site in the main experiment. Any 

numeric increase in RTs, including a few milliseconds, was qualitatively distinct from 

the facilitation effects typically observed at incorrect sites and therefore considered a 

slowdown. The important criterion here was reproducibility of the direction of the 

effect, rather than its magnitude. The order of testing the target sites was counter-

balanced across participants. If after 10 runs, no site resulted in consistent TMS-

induced slowdowns, then the experiment terminated and the participant was not 

tested in the main experiment.  

In order to identify testing sites in terms of standard space coordinates, each 

participant’s structural scan was registered to the Montreal Neurological Institute-

152 template using an affine registration (Jenkinson & Smith, 2001). Note that all 

stimulation was done in native anatomical space – the standard space coordinates 

were computed solely for reporting purposes. In addition, for illustrative purposes a 

group mean structural scan was created in standard space and used as a 

background image when presenting the stimulation sites in order to accurately 

reflect the anatomical variability across subjects (Devlin & Poldrack, 2007). 

 

Main Experiment 

The main experiment included three different visual tasks: i) a synonym judgement 

task where participants were asked, “Do the two words mean the same thing?” (e.g., 
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student – pupil or soap – cream); ii) a homophone judgement task where 

participants were asked “Do the two words sound the same?” (e.g., brake – break or 

circle – circus); and iii) a control task where participants were asked, “Are the two 

letter strings identical?” (e.g., wrdmb – wrdmb or bxgwf – bnpvf). The first two tasks 

were conceptually similar to the localisation tasks and shared all aspects of visual 

word recognition in order to provide an unbiased test of the three hypotheses. 

Critically, these tasks were not identical to those used in the localization procedure 

to avoid circularity. Rhyme and homophone judgements both focused attention on 

phonological aspects of written words but in different ways. The former required 

matching the final syllables while the latter involved matching the phonological forms 

of the whole words. In addition, both tasks required processing of visual word forms 

(hypothesis I) and grapheme-to-phoneme conversion (hypothesis II), therefore the 

task tested all three hypotheses. Similarly, category and synonym judgements draw 

participants’ attention to semantic aspects of written words but required searching 

for either semantically related or identical pairs of words, respectively. Once again, 

these tasks required visual word form processing and by many accounts, also 

involve grapheme-to-phoneme conversion (Coltheart et al., 2001; R. Frost, 1998; 

Plaut et al., 1996; Van Orden, Johnston, & Hale, 1988), thereby testing all three 

hypotheses. In other words, both the localization and main experimental tasks were 

designed to be unbiased with respect to the three hypotheses. The third task served 

as a control condition that included orthographic processing but none of the 

hypothesized processes expected to engage IPL. Consonant letter strings are often 

used as a low level control in reading studies because they convey orthographic 

information but are immediately recognized as non-lexical items (Howard et al., 

1992; Joubert et al., 2004; Mayall, Humphreys, Mechelli, Olson, & Price, 2001; 

Petersen, Fox, Snyder, & Raichle, 1990; Price et al., 1994; Pugh et al., 1996). I 

chose a visual matching task because it was intuitively similar to phonological 

matching (homophone decisions) and semantic matching (synonym decisions) and 
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it controlled for processes unrelated to reading including sustained attention, 

decision making and response selection. Across tasks, the number of yes and no 

responses was equal in all cases.   

There were four versions of the experiment. The stimuli from each task were first 

divided in half creating two sets of different items to avoid repetition across the two 

testing sessions. Then within each set, items were divided in half again and TMS 

was assigned to one half of the items for one version and other half in the other 

version, ensuring that any effects of TMS were not simply due to item differences. 

The word stimuli used in the main task (96 trials plus 6 dummy trials in each task) 

ranged in length from 3 to 10 letters and were fully matched between TMS and no-

TMS items for concreteness [F(3, 178) = 0.71, p = 0.55], familiarity [F(3,180) = 1, p 

= 0.37], imageability [F(3,179) = 1.4, p = 0.24], written word frequency [F(3,186) = 

0.54, p = 0.66], number of letters [F(3,188) = 0.29, p = 0.83], and number of 

syllables [F(3,188) = 1.6, p = 0.18]. In other words, items in the phonological and 

semantic tasks were matched across the four versions as well as within the two 

versions of each task. In addition, consonant strings were matched in length to the 

lexical stimuli. These consisted of five letter strings that were either identical (e.g., 

msxqr – msxqr) or differed only in the middle letters (e.g., bztgj – bwrcj) so that 

matching could not rely solely on the initial or final letter. The order of the tasks 

within each version was counter-balanced across subjects. The order of the testing 

sites was counter-balanced across participants.   

The experiment was presented in 12 blocks (6 per session) of 24 trials each to 

minimize task-switching costs. Each session was divided into two runs of three 

blocks with each run lasting approximately 3 min 40 sec. In between runs, subjects 

took a self-paced break. Each block started with a short instruction screen to remind 

the participant of the task. An extra dummy item was used for the first trial in each 



  

106 
 

block and discarded from the analysis to avoid the RT cost of switching tasks. The 

remaining 24 items in the block constituted the data used for further analysis. A trial 

began with a fixation cross displayed for 500 msec and then stimuli presentation for 

another 500 msec. A blank screen was then presented for a random interval 

between 1300 and 2300 msec, giving an average duration of 2500 msec per trial. 

The stimulus presentation characteristics and button press responses were identical 

to those used during localization. Testing started with a practise run without TMS to 

familiarize participants with the task requirements. It included all three tasks and 

provided practice in switching between them. Each word was only used once in the 

experiment. RTs were recorded from the onset of the stimuli and only correct 

responses were analysed. In all statistical analysis, median RTs were used to 

minimize the effects of outliers (Ulrich & Miller, 1994).  

Predictions 

The three hypotheses associated with IPL contributions to visual word recognition 

make different predictions regarding the effects of TMS. If one or both fields of the 

IPL store orthographic word forms then TMS to that region should affect both lexical 

tasks equally because both use highly familiar words. Similarly, if stimulation affects 

both tasks but the effect is exaggerated in the phonological task, it would indicate 

that the IPL plays an important role in converting orthographic into phonological 

information. In contrast, if ANG and SMG contribute to semantic and phonological 

processing, respectively, I would expect to observe a three-way interaction where 

rTMS to ANG affects semantic but not phonological judgements and rTMS to SMG 

affects phonological but not semantic judgements.  

TMS 

Stimulation was performed using a Magstim Rapid2 stimulator (Magstim, 

Carmarthenshire, UK) and 70-mm diameter figure-of-eight coil. The stimulation 
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intensity was set to 55% of the maximum stimulator output and held constant for all 

subjects. During the localizer and main tasks, trains of five pulses (i.e., 10 Hz for 

500 msec) were delivered with the first pulse administrated at the onset of the 

stimulus presentation and the additional pulses occurring at 100, 200, 300, and 400 

msec post-stimulus onset in half of all trials. TMS and non-TMS trials were 

pseudorandomly ordered.  The TMS frequency, intensity, and duration were well 

within established international safety limits (Rossi et al., 2009; Wassermann, 1998). 

During testing, a Polaris Vicra infrared camera (Northern Digital, Waterloo, ON, 

Canada) was used in conjunction with the Brainsight frameless stereotaxy system 

(Rogue Research, Montreal, Canada) to register the participant’s head to their own 

MRI scan in order to accurately target stimulation throughout the experiment. All 

participants used an earplug in their left ear to attenuate the sound of the coil 

discharge and avoid damage to their hearing (Counter, Borg, & Lofqvist, 1991). 

 

 

3.3 Results 

Functional Localization 

For each localizer task, median RTs to TMS and no-TMS conditions were compared 

between the main testing site and non-localized sites. In 12 out of 16 participants, 

TMS led to successful identification of the main testing site within both ANG and 

SMG. There was no single ANG or SMG site where stimulation consistently 

interfered with semantic or phonological processing, respectively. Instead, it varied 

across individuals as illustrated in Figure 3-3. Within ANG, the most common 

stimulation site was Seghier et al.’s (2010) dorsal ANG [7 participants], followed by 

ventral ANG [3 participants], and then medial ANG [2 participants]. These three 

locations are marked with white circles and labelled with the number of subjects 
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slowed by TMS at each site. The right panel shows the spread of SMG stimulation 

sites – individual testing sites are shown as white filled circles. The mean coordinate 

in standard space was [–52 –34  30] and is shown as a black filled circle. 

 

 

Figure 3-3: The three ANG testing sites (left panel) on the same averaged 

brain. 7 participants had stimulation to dorsal, 3 to ventral, and 2 to medial 

ANG. The final SMG testing sites for all 12 participants (right panel) in white 

filled circles and the mean group location in black filled circle on the averaged 

brain of all participants shown on a parasagittal plane. Note that three ANG 

testing sites had exactly the same coordinates in each participant so they are 

represented only by three circles.  

 

Stimulation at each individual’s ANG testing site produced a significant mean 

inhibitory effect of 47 msec relative to no-TMS trials [paired t-test; t(11) = 6.4, p < 

0.001]. This represented a 7% slowdown after normalizing for between-subject 

variance in RTs (Loftus & Masson, 1994). In contrast, stimulation of the other ANG 

sites resulted in a non-significant 7 msec facilitation effect [paired t-test; t(11) = 0.65, 

p = 0.53]. To test whether this apparent difference was statistically reliable, I 
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conducted a 2 × 2 repeated-measures ANOVA with TMS (TMS vs. no-TMS) and 

Site (main testing site vs. the non-testing sites) as within-subject factors. A 

significant TMS × Site interaction (F(1,11) = 21.6, p < 0.001) indicated that the effect 

of TMS on the non-localized sites was reliably different from the main testing site. A 

similar pattern of localization was observed in SMG, where stimulation led to a 

significant 35 msec increase of RTs in the localized site [paired t-test; t(11) = 6.5, p 

< 0.001] and represented a 5% slowdown in RTs. In the remaining sites, stimulation 

produced a non-significant 4 msec decrease of RTs [paired t-test; t(11) = 0.37, p = 

0.72], that was reliably different from the main testing site [TMS × Site interaction, 

F(1,11) = 8.9, p = 0.01]. In other words, in these 12 participants, the inhibitory 

effects of rTMS were highly localized with clearly different effects on the final testing 

site than on adjacent stimulated regions located as little as 1 cm away. Figure 3-4 

illustrates this in each participant. Sites where TMS consistently slowed 

performance relative to no-TMS trials are marked with red crosses (i.e., the final 

stimulation sites) and sites that showed either faster responses or no effect of TMS 

are marked with yellow crosses. The standard space coordinates for all SMG testing 

sites are presented in Table 3-1 but because there were only three ANG coordinates 

and these were provided in the main text, they are not repeated here. 

In the remaining 4 participants, functional localization only succeeded in one of the 

two regions (2 in ANG, 2 in SMG). Without a testing site in both regions, however, I 

was unable to continue testing these participants in the main experiment. 
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Figure 3-4: Pattern of TMS effects in A) SMG and B) ANG. A red cross 

corresponds to the final testing site and the two yellow crosses correspond to 

unsuccessfully localized sites presented on the individual brain images for 

each participant. 
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Table 3-1: The coordinates for the final testing sites and non-testing sites in 

the anterior SMG for each participant. The location coordinates correspond to 

the standard MNI 152 space. 
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Main Experiment 

The mean accuracy across the tasks was relatively high (89%) suggesting that 

participants did not encounter any difficulties performing the tasks. Accuracy data 

were analyzed with a 2 × 3 × 2 repeated measures ANOVA with Site (ANG and 

SMG), Task (Semantic, Phonological, and Visual), and Stimulation (TMS and no-

TMS) as independent factors. There was a significant main effect of Task [F(2, 22) = 

13.02; p < 0.01], indicating that the semantic task (85%) was significantly more 

difficult than either phonological (92%; paired t-test, t(47) = 4.7, p < 0.001) or visual 

(89%; paired t-test, t(47) = 2.7, p < 0.01) tasks. However, there was no evidence 

that accuracy in any of the three tasks was affected by TMS since neither the main 

effect of TMS [F(1,11) = 0.04, p = 0.85] nor its interaction with Task [F(2,22) = 0.2, p 

= 0.82] was significant. No other main effects or interactions were significant (all F < 

1).  

To investigate the effects of TMS on RTs, the median RTs of each participant were 

also analysed with a 2 × 3 × 2 repeated measures ANOVA and the results are 

presented in Figure 3-5. The analysis revealed a main effect of Task [F(2,22) = 29.3, 

p < 0.001], indicating that responses on the semantic task (777 msec) were 

significantly slower than on the phonological task (723 msec; t(47) = 5.3, p < 0.001) 

and the visual task (636 msec; t(47) = 10.7, p < 0.001). The main effect of TMS also 

reached significance [F(1,11) = 5.6, p = 0.04] indicating that RTs in TMS condition 

(745 msec) were significantly slower than response times in no-TMS condition (734 

msec). This was, however, qualified by a highly significant three way interaction 

[F(2,22) = 15.8, p < 0.001], indicating that TMS affected the semantic, phonological, 

and visual tasks differently depending on the stimulation site. 
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Figure 3-5: Group mean RTs for each of the three tasks in the main 

experiment. Error bars indicate SEM adjusted to reflect the within-subject 

design (Loftus & Masson, 1994). * p<0.05.  
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To characterize the interaction further, a 2 × 2 repeated measures ANOVA was 

conducted for each task with Site (ANG and SMG) and Stimulation (TMS and no-

TMS) as independent factors. For the semantic task, the main effects of Site and 

TMS were not significant (both F(1,11) < 1). There was, however, a reliable 

interaction (F(1,11) = 18, p < 0.001) indicating that TMS had differential effects 

depending on the stimulation site (Figure 3-5). Specifically, stimulation to ANG 

slowed responses by 48 msec (paired t-test, t(11) = 3.1, p = 0.01) whereas SMG 

stimulation speeded responses by 24 msec (paired t-test, t(11) = 1.8, p = 0.096). 

The opposite pattern was observed in the phonological task where stimulation of 

SMG selectively slowed responses by 47 msec (t(11) = 2.7, p = 0.02) while ANG 

stimulation speeded responses by an average of 5 msec (t(11) = 0.5, p = 0.64). This 

difference was confirmed statistically by a significant Site × TMS interaction (F(1,11) 

= 7.8, p = 0.017) in the absence of a significant main effect for either Site (F(1,11) = 

0.8, p = 0.35) or TMS (F(1,11) = 3.9, p = 0.073). Finally, TMS had no significant 

effects on the visual task; neither the main effects nor interaction (all F(1,11) < 1.8, p 

> 0.2) were significant. 

 

3.4 Discussion 

The current findings show that stimulation to the left ANG slowed semantic, but not 

phonological, judgements whereas stimulation to the left SMG showed the opposite 

pattern, selectively affecting responses in the phonological, but not semantic task. 

Moreover, the visual task was not significantly affected by stimulation, confirming 

that the effects of TMS were specific to these semantic and phonological processes. 

These results demonstrate a functional double dissociation within the left IPL and 

additionally provide evidence for a causal link between ANG and semantic 

processing, on the one hand, and between SMG and phonological processing, on 
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the other. These findings are consistent with previous studies that found TMS of 

SMG increased response times across a range of phonological tasks including initial 

sound similarity, stress assignment in multi-syllable words, and digit span (L. 

Romero et al., 2006), syllable counting with visually and auditorily presented words 

(Hartwigsen, Baumgaertner, et al., 2010), and auditory lexical decisions 

(Pattamadilok et al., 2010). In contrast, evidence that TMS to ANG influences 

semantic processing is less common. For instance, Hartwigsten et al. (2010) asked 

participant to judge the animacy of auditory and written words (e.g., zebra) and did 

not observe any significant effects of ANG stimulation. Other studies have used 

TMS to map eloquent cortex in preparation for neurosurgical intervention and 

reported small effects of ANG stimulation on picture naming abilities (Krieg et al., 

2014; Lioumis et al., 2012; Picht et al., 2013) that may be due to semantic 

disruption. Thus the current findings are the first to demonstrate a clear effect of 

ANG stimulation on semantic processing. More generally, this double dissociation 

between different cortical fields of the IPL is largely inconsistent with claims that the 

region stores the visual forms of words or that the region is responsible for 

converting orthographic information into phonological codes, but was predicted by 

the third hypothesis.   

According to the original Dejerine (1891) hypothesis, stimulation of ANG should 

interfere with both the semantic and phonological tasks by temporarily disrupting the 

ability to match visual input with the stored images of words. Instead, ANG 

stimulation selectively affected the semantic task without significantly affecting the 

phonological task. Clearly, these results are not compatible with this hypothesis 

even if SMG, rather than ANG, was the site of stored visual word forms. 

The relation between the data and the second hypothesis is less clear, in part 

because the interpretation is theory-dependent. Many theories of visual word 
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recognition assume that access to a word’s meaning is only possible by first 

accessing its phonology (R. Frost, 1998; Van Orden et al., 1988). If correct, then the 

current results are incompatible with this hypothesis because both tasks required 

grapheme-to-phoneme conversion. Alternately, some theories suggest that 

semantic information is available directly from the written word without accessing 

phonology (Seidenberg & McClelland, 1989; Ziegler, Benraïss, & Besson, 1999), 

although they acknowledge that in normal, healthy adults semantic and phonological 

information would be accessed in parallel and moreover, that these processes 

interact. According to these accounts, the phonological task would require 

grapheme-to-phoneme conversion but even the semantic task would involve 

converting spelling-to-sound and consequently disruption of this process should still 

have an impact on reaction times. If these procedures were associated with the 

SMG (Jobard, Crivello, & Tzourio-Mazoyer, 2003; Law et al., 1991; Roux et al., 

2012), this would be consistent with the fact that TMS to SMG significantly slowed 

responses in the phonological task but inconsistent with the finding that TMS 

actually facilitated responses in the semantic task, albeit non-significantly. It is also 

worth noting that this hypothesis would only explain one half of the double 

dissociation seen here.   

A wide range of neuroimaging studies implicate SMG in phonological processing 

(Booth et al., 2004; Petersen et al., 1988; Raizada & Poldrack, 2007; Seghier et al., 

2004; Yoncheva, Zevin, Maurer, & McCandliss, 2010; Zevin & McCandliss, 2005), 

consistent with the current TMS findings. By this account, reading tasks that engage 

SMG do so because they require some form of phonological processing, not 

because grapheme-to-phoneme conversion procedures are stored here. Precisely 

what aspects of phonological processing are being computed in SMG are, however, 

open to debate. Studies of speech comprehension, for instance, typically do not 

show SMG activation (Hickok & Poeppel, 2007; Rauschecker & Scott, 2009), even 
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though phonology plays a central role in speech perception. Instead, the region 

seems to be engaged by more demanding phonological tasks such as rhyme 

(Petersen et al., 1988; Yoncheva et al., 2010), syllable (Devlin et al., 2003; Price et 

al., 1997), or phoneme judgments (Raizada & Poldrack, 2007; Zevin & McCandliss, 

2005). More specifically the SMG may be important for covertly articulating and 

monitoring inner speech (Pattamadilok et al., 2010; Price, 2012). This ability is a 

core component of verbal working memory (Baddeley, 2003) and strongly 

associated with SMG (Buchsbaum & D'Esposito, 2008; Paulesu et al., 1993). The 

SMG is anatomically well situated for this role. Given its proximity to the caudal 

parabelt fields of the auditory cortex (Hackett, Preuss, & Kaas, 2001; Sweet, Dorph-

Petersen, & Lewis, 2005), SMG is likely to encode some form of higher order 

auditory information. In addition, there are reciprocal connections that link SMG to 

ventral premotor cortex and pars opercularis (Catani, Howard, Pajevic, & Jones, 

2002; Catani & Jones, 2005; Makris et al., 2009; Martino et al., 2013; Petrides & 

Pandya, 2009; Rushworth, Behrens, & Johansen-Berg, 2006), two regions involved 

in articulatory motor planning (Price, 2010). In particular, neurons in ventral 

premotor cortex control oro-facial movements of the lips, tongue and larynx, playing 

an important role in articulation (Petrides, Cadoret, & Mackey, 2005; M. I. Sereno & 

Dick, 2008). These reciprocal connections between ventral premotor cortex/pars 

opercularis and SMG may form a processing loop for acting on reproducible sound 

patterns that would provide a simple resonance circuit for temporarily storing these 

patterns (Botvinick & Plaut, 2006; McClelland & Elman, 1986). Indeed, studies of 

verbal working memory commonly implicate these regions (Buchsbaum & 

D'Esposito, 2008; Koelsch et al., 2009; Paulesu et al., 1993) and TMS to either 

region has a disruptive effect on phonological judgements that require some form of 

monitoring internal speech (Gough et al., 2005; Hartwigsen, Baumgaertner, et al., 

2010; Nixon et al., 2004; Pattamadilok et al., 2010). This hypothesis is also 

consistent with a very recent TMS experiment in which Deschamps et al. (2014) 
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demonstrated that contributions of the anterior SMG to phonological processing are 

more specific to verbal working memory than phonological encoding. In their 

experiments, rTMS had no effect on the phonological task that minimized working 

memory demands (i.e., same/different sonority judgements) but it significantly 

affected performance on the phonological task that required verbal working memory 

(i.e., sonority n-back task), although in both tasks phonological complexity was 

manipulated. The authors argued that their findings were consistent with the claim 

that SMG is involved in storing phonological representations rather than processing 

phonological features of words. Consequently, I suggest the most likely explanation 

for the current SMG findings is that stimulation interfered with participants’ ability to 

covertly articulate and monitor their inner speech, which was critical for the 

phonological tasks and irrelevant to the semantic tasks.  

A different explanation is necessary to account for the fact that ANG stimulation 

selectively affected synonym judgements presumably by interfering with some 

aspect of semantic processing. Functional neuroimaging studies consistently 

demonstrate ANG involvement in semantic processing (Binder et al., 2009; Bonner, 

Peelle, Cook, & Grossman, 2013; S. J. Frost et al., 2005; Mummery et al., 1998; 

Noonan, Jefferies, Visser, & Lambon Ralph, 2013; Seghier et al., 2010; 

Vandenberghe et al., 1996), although there is a debate regarding its specific 

contribution. One account suggests that ANG’s role in the anatomically distributed 

semantic system is to guide the selection of relevant semantic information (Jefferies 

& Lambon Ralph, 2006). Jefferies and Lambon Ralph argue that this function 

constitutes a component of semantic cognition that requires a combination of 

semantic representations and executive control processes to direct activation in a 

task- and time-appropriate fashion. Their investigation of patients with semantic 

dementia caused by gradual tissue degradation and post-stroke semantic aphasia 

led them to associate semantic representations with the bilateral anterior temporal 
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lobe and executive control processes with a number of distributed brain regions 

within the left hemisphere which encompass ANG but exclude the anterior temporal 

lobe. This regional dissociation of semantic processes became apparent after a 

direct comparison of semantic and stroke dementia patients on a battery of semantic 

tasks (Jefferies & Lambon Ralph, 2006; Jefferies, Patterson, & Lambon Ralph, 

2008; Jefferies, Sage, & Lambon Ralph, 2007). The results reflected degraded 

knowledge in case of semantic dementia and deregulated semantic control in case 

of patients with stroke-induced aphasia. Although, the two groups of patients 

showed a similar degree of impairment on the same range of verbal and nonverbal 

semantic tasks, their impairments were qualitatively different for a number of 

reasons. First, in contrast to semantic dementia patients, patients with semantic 

aphasia showed significant consistency in their performance within different versions 

of the same task (e.g., semantic association judgements for words and pictures) 

while their performance was considerably inconsistent between tasks posing 

different semantic control demands (e.g., semantic association judgements vs. 

word-picture matching). In other words, aphasic patients were unable to consistently 

retrieve information about a particular concept. The lack of consistent performance 

across tasks was interpreted as a result of impaired executive processes rather than 

a loss of amodal semantic knowledge. Second, patients with semantic dementia 

showed familiarity/frequency effects on their performance supporting the idea that 

these effects are characteristic to semantic dementia in a way that highly 

familiar/frequent words are less sensitive to degradation than the low 

familiarity/frequency words (Rogers, Lambon Ralph, Hodges, & Patterson, 2004). 

Such effects were not present in patients with semantic aphasia supporting the fact 

that their deficit is of a different nature than degradation of semantic information. 

Instead, the ability of patients with semantic aphasia to make semantic associations 

was based on how readily the relevant associative dimension could be discerned 

and competitors rejected. For instance, only patients with semantic aphasia made 
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associative errors during picture naming (e.g., providing the word nut for a picture of 

a squirrel). The occurrences of such errors suggested that the semantic information 

is preserved in those individuals but cannot be appropriately selected in the context. 

Finally, picture naming was improved by phonemic cues in semantic aphasics which 

indicated that they retained semantic knowledge but could not retrieve it easily 

because of their difficulties in selection of the relevant information. The positive 

effects of cueing seemed to enhance self-generated semantic control. Overall, data 

from the direct comparison of semantic abilities in semantic dementia and semantic 

aphasia led to the conclusion that regions such as ANG are involved in the cognitive 

control of semantic knowledge, rather than a store of this knowledge per se. This 

has been further supported by studies which experimentally manipulated the nature 

and the degree of the semantic control demands of various verbal and nonverbal 

conceptual tasks (Corbett, Jefferies, & Lambon Ralph, 2011; Noonan, Garrard, 

Jefferies, Eshan, & Lambon Ralph, 2013; Noonan, Jefferies, Corbett, & Lambon 

Ralph, 2010).    

In contrast, another account claims that ANG is specifically involved in 

representational aspects of semantic memory (Binder & Desai, 2011), rather than 

aspects of semantic control. This account is based on theories which propose that 

semantic memory requires two different types of brain regions. The first type 

includes different sensory and motor areas of the brain where modality-specific 

feature representations of semantic concepts are grounded. The second type 

includes heteromodal association regions where the semantic information from 

modality-specific areas converges during conceptual tasks (Barsalou, 2008; 

Damasio, 1989; Martin, 2007). Binder and Desai proposed that ANG constitutes one 

of the higher-level heteromodal association regions where semantic information is 

integrated. The main argument supporting this hypothesis is that ANG has been 

consistently shown to be involved in semantic processing regardless of task type 
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and in fact, it has been identified as the most commonly reported region in semantic 

memory studies in recent meta-analysis reviews (Binder et al., 2009; Vigneau et al., 

2006). In addition, Binder and Desai argued that the level of activation in ANG 

seems to reflect the amount of semantic information that is successfully retrieved 

from the stimuli. This indicates that semantically richer stimuli evoke larger 

activations in ANG than stimuli with a smaller amount of semantic information. For 

example, functional neuroimaging studies have shown stronger ANG responses to 

words than to matched pseudowords (Binder et al., 2009), to high-frequency relative 

to low-frequency words (Graves et al., 2010), to concrete relative to abstract words 

(Binder, Westbury, McKiernan, Possing, & Medler, 2005) and to meaningful relative 

to meaningless sentences (Humphries, Binder, Medler, & Liebenthal, 2007). In line 

with the claim that ANG is involved in heteromodal conceptual processing is a 

recent fMRI study done by Bonner and colleagues (2013) who examined the 

processing of concepts in four semantic categories that varied on their sensory-

motor feature associations (sight, sound, manipulation, and abstract). They found 

that ANG, as a locus of integrated concept representations, was activated across all 

categories regardless of their modality-specific features. Overall, these findings 

support the claim that semantic memory relies on a distributed system that involves 

a heteromodal component located in ANG and modality-specific feature 

representations in sensory and motor areas. To be even more specific, Binder and 

Desai hypothesized that ANG is most likely involved in representation of event 

concepts (e.g., birthday party) which refer to temporal and spatial interaction of 

concrete semantic representations (e.g., cake, presents, lighting candles, eating), 

rather than their individual entities per se. This hypothesis was formulated 

considering the cortical neighbourhood of ANG which makes the region a plausible 

candidate for such role. For instance, ANG has been shown to be bounded by 

dorsal attention networks that are important for spatial cognition, anterior parietal 

regions associated with representation of action and posterior temporal regions 
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contributing to movement perception (Kravitz, Saleem, Baker, & Mishkin, 2011). In 

addition, this hypothesis is consistent with the recent evidence showing involvement 

of ANG in retrieval of episodic memories and in understanding theory-of-mind 

stories which leads to the hypothesis that the region has a function in retrieving 

event memories through the mental construction of the scenes (Van Overwalle, 

2009).  

It is important to note that phonological or semantic processing is only one of 

several functions that SMG or ANG contributes to, respectively. For instance, SMG 

is also involved in making visually guided hand actions (Binkofski, Buccino, Zilles, & 

Fink, 2004; Price, 2010; Rushworth, Krams, & Passingham, 2001) and in spatially 

localizing auditory stimuli (Lewald & Ehrenstein, 2001; Renier et al., 2009) while 

ANG is also involved in number processing (Göbel et al., 2001; Grabner et al., 2009) 

and in visuospatial navigation (Spreng, Mar, & Kim, 2009). In other words, the 

apparent functional specificity of the SMG for phonological processing and ANG for 

semantic processing is limited to a very restricted context – namely when 

processing linguistic information. 

It is also worth introducing a word of caution here regarding the anatomical 

specificity of the current findings. Although I have discussed them in terms of the 

two major subdivisions of the IPL, namely SMG and ANG, the results are actually 

more focal than that. A great advantage of using TMS as an investigative tool is its 

spatial precision, which is approximately 5-10 mm (Brasil-Neto et al., 1992; 

Ravazzani et al., 1996; Thielscher & Kammer, 2002; Toschi et al., 2008). In other 

words, although the basic pattern of SMG stimulation slowing phonological, but not 

semantic, processing while ANG stimulation slowed semantic, but not phonological, 

processing the specific stimulation sites varied between participants. Moreover, 

within a participant, different sites within a region responded differently during 
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localization (see Figure 3-4). As a result, I cannot rule out the prospect that within a 

region it may be possible to find two different sites that show this same pattern. 

Instead, all I can conclude is that the current findings are consistent with functional 

and structural neuroimaging studies that suggest these two regions broadly serve 

different functions (Göbel et al., 2001; Nelson et al., 2010; Rushworth, Johansen-

Berg, Göbel, & Devlin, 2003) by virtue of participating in separable neuronal circuits 

(Caspers et al., 2011; Rushworth et al., 2006). 

Finally, the results show considerable variability in the exact localization of testing 

sites within ANG and SMG across participants. Although Seghier et al. (2010) 

identified three separable regions within ANG involved in distinguishable semantic 

processes (i.e., semantic associations, search for semantics, and conceptual 

identification), these appear to be trends present in groups of participants rather 

than predictive of individuals. I observed considerable inter-subject variability in the 

precise location within ANG where TMS disrupted semantic processing and also 

within SMG where it affected phonological processing, similar to variability in the 

localization of language functions described by Ojemann et al. (1989) in 

neurosurgical patients. In both the neurosurgical work and the current study, the 

disruptive effects of stimulation were very focal (≤ 1 cm) and certainly did not extend 

to cover a significant portion of a macro-anatomical region (e.g., SMG), suggesting 

that large activations in functional neuroimaging studies can be somewhat 

misleading. Clearly they demonstrate a reliable overall pattern of activation at a fairly 

large scale (centimetres) but these hide considerable inter-subject variability in 

terms of the precise anatomical fields. In other words, it is important to recognize 

that the results of group imaging studies represent a spatial averaging that may not 

be predictive in individuals. This, presumably, is why using published peak 

coordinates to guide TMS studies can be problematic and require larger numbers of 

participants than using an individualized functional localization method (Sack et al., 
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2009). More generally, it means that descriptions linking function to macro-

anatomical labels may be broadly correct on aggregate, but not in detail. 

To conclude, this chapter showed that the two main subdivisions of the left IPL 

make distinct functional contributions to visual word recognition. On average, ANG 

plays crucial role in semantic processing while SMG is necessary for phonological 

processing during reading. It is worth stressing, however, that my results apply to 

only specific parts of these large anatomical regions and moreover, that the precise 

location varies somewhat from person to person. Nevertheless, the findings are 

consistent with the pattern seen in functional neuroimaging studies and help to 

demonstrate that these activations appear to be causally linked to semantic and 

phonological processing in ANG and SMG, respectively. 

In addition, the current experiment demonstrated that TMS-based functional 

localization was successful in identifying an appropriate stimulation sites as 

demonstrated by a significant group slowdown of 47 msec in SMG and 48 msec in 

ANG for the main task. However, these slowdowns were only present in 9 out of 12 

(75%) participants in SMG and 11 out of 12 (92%) participants in ANG (mean: 83%). 

In comparison to the number of participants showing TMS effect in the main 

experiment following fMRI-based functional localization presented in Chapter 2, it is 

apparent that neither fMRI- (77%) or TMS- (83%) based localization methods were 

100% successful in producing TMS effects. Moreover, a comparison of the success 

rates did not show any significant differences between the two methods (χ² = 0.053, 

df = 1, p = 0.82) indicating comparable degree of efficiency/effectiveness.  

It is a novel finding that highly effective individual customization of localization is not 

only possible with fMRI but also with TMS. Previous comparisons of localization 

methods (Sack et al., 2009; Sparing et al., 2008) did not test TMS-based functional 

localization even though this approach also accounts for variability in functional 
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anatomy across individuals. Interestingly, however, there were no significant 

differences in efficacy between fMRI- and TMS-based localizations. Success rates 

were relatively high for both methods although there were always participants who 

did not show a TMS effect despite successful functional localization. Failure in 

producing stimulation effects was expected to be more prevalent in experiments that 

used fMRI-based localization since TMS and fMRI have different spatial biases. 

Obviously, this should not be an issue when TMS is used for localization since the 

spatial bias is identical across localization and testing. While fMRI was slightly less 

successful than TMS (77 vs. 83%), the difference was not significant. This may 

indicate that the fMRI spatial biases are relatively modest and within the spatial 

resolution of TMS in the majority of participants. 

Perhaps surprisingly, though, neither fMRI nor TMS were 100% effective despite the 

fact that only successfully localized sites were tested. There are a number of 

possible explanations for this. For fMRI, differences in spatial biases between fMRI 

and TMS may be partially to blame (Maccabee et al., 1990; Turner, 2002). These, 

however, cannot explain why TMS-based functional localization occasionally failed 

to produce robust effects of TMS in the main experiments. There are a number of 

potential methodological reasons for lack of TMS effect in the main experiment. One 

obvious possibility is inaccurate coil placement due to a change in registration 

between localization and testing. Once the registration is performed with 

neuronavigation system, it assumes that the registration stays unchanged 

throughout the duration of testing. Accidental bumps or adjustments, however, can 

occur without being noticed and have undesirable effects on the registration and 

thus the results. Similarly, small movements of the coil during testing that affect 

either its location or orientation can also adversely impact the results. For example, 

if the coil placement and/or orientation differed between the localization and main 

task in some participants, this could easily result in a failure to produce a TMS effect 
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in the main task. A final methodological issue is the use of two different stimulating 

coils in a testing session. To avoid coil overheating, it was necessary to occasionally 

replace one coil with a fresh (i.e., cool) coil in between localization and testing. 

Although they were always the same type (i.e., 70-mm figure-of-eight coils made by 

MagStim), it may not be correct to assume that they were completely identical. This 

is because the coils are handmade and thus subtle differences in their internal 

structure may lead to slight differences in the actual peak intensity or its spatial 

distribution despite an accurate registration. In addition to these methodological 

issues, there is also a potential theoretical explanation of the cases in which TMS 

did not show effects in the localized site. 

A critical assumption necessary for successful TMS-based functional localization is 

that the localizer task taps into the same processing demands as the main task. For 

instance, rhyme and homophone judgments both required some form of 

phonological processing which was assumed to consistently engage the anterior 

SMG. Indeed, in aggregate this assumption appears to be borne out by the results.  

It is possible, however, that individual participants may not have used precisely the 

same phonological strategies for both tasks. If so, then TMS may impact rhyme 

judgements during localization without affecting homophone judgements in the main 

task.  

Overall, these results showed that both fMRI and TMS localizations performed on 

individuals lead to a high success rates in producing robust TMS effects. The two 

methods offered comparable level of effectiveness, although neither reached 100% 

in any of the cases. Clearly, either method is preferable to localization procedures 

that follow a one-size-fits-all approach (e.g., the 10-20 system, scalp coordinates, or 

standard space coordinates). By taking into account between-subject variability in 

functional anatomy, both fMRI- and TMS-based functional localization optimize the 
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likelihood of stimulating the correct target site to find an effect of TMS. Given that 

neither method is fully accurate, the optimum choice of localization procedure 

depends on additional constraints posed by each TMS experiment. TMS-based 

localization is cheaper in time and resources than fMRI; it maintains the same 

spatial bias between localization and testing; and can be typically done in a single 

testing session, minimizing the risk of functional variability of time (Penfield & 

Boldrey, 1937). Even so, fMRI-based localization may be a better option in certain 

circumstances. For instance, when localization information is available as a result of 

an fMRI experiment run for a different reason, it makes sense to use that information 

and avoid exposing participants to unnecessary additional TMS. Similarly, fMRI can 

be a good solution when rTMS to a target area results in discomfort or pain due to 

unavoidable stimulation of peripheral nerves or muscles. In such a case, the 

additional stimulation necessary to localize the site may preclude participants from 

successfully finishing the entire experiment. Finally, if there is very little prior 

information available to constrain the anatomical search space during TMS-based 

localization, fMRI may be a more suitable option. If there was  no prior information 

about what part of ANG was involved in semantic processing, then searching the 

entire region with TMS during localization would exceed the safety guidelines for 

stimulation during a single session, even without running the main experiment 

(Rossi et al., 2009). It is clear, then, that practical considerations such as resources, 

comfort and safety help to determine which method is most appropriate for any 

given TMS experiment. 
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4.  Experiment 2: Temporal Dynamics of 
Supramarginal Gyrus Involvement in 

Phonological Processing during Reading 
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4.1 Introduction 

The previous chapter demonstrated that the supramarginal gyrus (SMG) makes a 

necessary contribution to phonological processing during normal reading. This 

finding complemented previous neuroimaging findings suggesting preferential SMG 

involvement in phonological processing based on observations of selectively 

increased activation in this region for phonologically demanding reading tasks. To 

further improve our understanding of SMG’s role in reading, we need to establish 

the timing of its involvement. EEG and MEG constitute the most commonly used 

methods to measure the time course of neural processing because of their 

outstanding temporal resolution. In fact, a vast number of EEG and MEG studies 

have been conducted to assess the time course of phonological processing in the 

brain during visual word recognition (Ashby & Martin, 2008; Ashby, Sanders, & 

Kingston, 2009; Barber, Vergara, & Carreiras, 2004; Barnea & Breznitz, 1998; 

Bentin et al., 1999; Braun, Hutzler, Ziegler, Dambacher, & Jacobs, 2009; Carreiras, 

Vergara, & Barber, 2005; Grainger, Kiyonaga, & Holcomb, 2006; Hutzler et al., 

2004; Kramer & Donchin, 1987; R. L. Newman & Connolly, 2004; Niznikiewicz & 

Squires, 1996; Polich, McCarthy, Wang, & Donchin, 1983; Proverbio, Vecchi, & 

Zani, 2004; Rugg, 1984b; Rugg & Barrett, 1987; Salmelin et al., 1996; Simon, 

Bernard, Largy, Lalonde, & Rebai, 2004; Wheat et al., 2010). EEG and MEG studies 

have not, however, led to a clear conclusion about the time window during which 

phonology is activated. Instead, a range of different time windows has been 

suggested with some suggesting early (e.g., Ashby et al., 2009; Braun et al., 2009; 

Wheat et al., 2010) while others suggest late onset of phonological activation (e.g., 

Bentin et al., 1999; R. L. Newman & Connolly, 2004; Polich et al., 1983; Rugg & 

Barrett, 1987). In addition, the temporal activation of phonological processing has 

been rather poorly localized by the EEG and MEG studies. The majority associated 

timing information to extensive parts of the brain (e.g., Braun et al., 2009; Grainger 
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et al., 2006; Rugg, 1984b), rather than localizing it to particular brain regions. This 

leaves the question about the dynamics of SMG’s contribution to phonology 

unanswered and awaiting investigation using techniques such as chronometric TMS 

that provide a combination of a good spatial and temporal resolution.  

Studies that mapped the spatio-temporal evolution of cortical activity during passive 

word reading suggest that SMG activity begins around 200 msec after the onset of 

the word and lasts for approximately another 200 msec. For instance, a study by 

Pammer and colleagues (2004) using MEG found activation in SMG from 200 to 400 

msec post-stimulus onset that was accompanied by co-activation of other brain 

regions such as ANG or posterior middle temporal gyrus. Similarly, Salmelin and 

colleagues (1996) demonstrated that activation during passive word viewing 

spreads throughout the temporo-parietal cortex after 200 to 400 msec post-stimulus 

onset. This activation, however, was only observed in healthy readers but not in 

dyslexics, leading the authors to associate temporo-parietal activation with 

phonological processing. Although this is one plausible interpretation of activity in 

SMG, it certainly does not provide a strong evidence of phonological processing.  

The first event-related potential (ERP) analyses of EEG data designed to investigate 

the timing of phonological processing demonstrated relatively late onsets during 

reading (e.g., Bentin et al., 1999; R. L. Newman & Connolly, 2004; Polich et al., 

1983; Rugg, 1984b; Rugg & Barrett, 1987). Those studies were most commonly 

performed on the recordings of the electric brain signals during the rhyme judgments 

performed on two visually presented words or nonwords (e.g., Polich et al., 1983; 

Rugg & Barrett, 1987) with the majority reporting phonological effects between 300 

and 500 msec after the appearance of the visual stimuli. More recent studies using 

different task manipulations designed to distinguish phonological processing from 

other language processes have also shown phonological effects between 300 and 
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500 msec (e.g., Bentin et al., 1999; R. L. Newman & Connolly, 2004). For example, 

Newman and Connolly (2004) measured the timing of phonological processing 

during a silent reading task in which participants read sentences with highly 

predictable endings (e.g., The gambler had a streak of bad luck). By manipulating 

the phonological and semantic appropriateness of final item, phonological effects 

were isolated from semantic and orthographic effects and were identified as 

occurring approximately 400 msec after presentation of the target word. The 

anatomical location of the effect, however, was not provided. In another example, 

Bentin and colleagues (1999) designed a study in which they measured the neural 

electrical activity while participants read lists of words and pseudowords. 

Phonological processing induced two distinct ERP peaks. One was recorded at 

latency around 320 msec post-target onset and was bilaterally distributed over the 

temporo-parietal electrodes while the second occurred around 350 msec over left 

fronto-temporal electrodes. In this study, localization of the phonological effect was 

provided but included very extensive areas across different lobes. Overall, these 

studies demonstrated that phonological processing occurs between 300-400 msec 

after the onset of the visual word but anatomical location of the temporal effect 

remained unclear. 

Other ERP and MEG studies have suggested that phonological processing may in 

fact begin earlier than 300 msec post-target onset (Ashby & Martin, 2008; Ashby et 

al., 2009; Barber et al., 2004; Barnea & Breznitz, 1998; Braun et al., 2009; Carreiras 

et al., 2005; Grainger et al., 2006; Hutzler et al., 2004; Kramer & Donchin, 1987; 

Niznikiewicz & Squires, 1996; Proverbio et al., 2004; Salmelin et al., 1996; Simon et 

al., 2004; Wheat et al., 2010). One of the first studies to suggest an early onset of 

phonological processing was Karmer and Donchin (1987) who reported an EEG 

study in which phonological differences between word pairs elicited an ERP 

component that peaked within 260 msec from the stimulus onset with the strongest 
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signal recorded over posterior-central electrodes. Similar results were obtained by a 

number of subsequent studies. For example, Grainger and colleagues (2006) 

measured ERPs to examine the time course of phonological priming in a masked 

priming paradigm and observed that phonological priming started to affect ERP 

components around 250 msec post-target onset with the effect lasting approximately 

another 200 msec. The phonological effect was initially significant only at frontal 

sites but gradually spread across the scalp to include frontal, middle and posterior 

sets of electrodes. Niznikiewicz and Squires (1996) demonstrated even earlier 

phonological effects, around 200 msec post-target onset, elicited by incorrect 

relative to correct homophones presented at the end of a sentence. A few studies 

have also found that processing of information about the initial syllable of a word 

during visual word recognition begins earlier than 300 msec. For instance, Barber et 

al. (2004) and Hutzler et al. (2004) observed syllable frequency effects starting 

around 190-200 msec post-target onset. Ashby and Martin (2008) observed syllable 

congruency effects that began around 250 msec post-target onset while Carreiras 

and colleagues (2005) reported syllable congruency effects beginning even earlier, 

around 180 msec post-target onset. These early syllable effects were mainly 

recorded over the frontal areas of the brain in all these studies.   

A final set of ERP and MEG studies have demonstrated phonological effects 

occurring as early as 100 msec after stimulus onset. Using a visual lexical decision 

task, Braun et al. (2009) showed that ERPs to pseudohomophones (e.g., roze) 

differed from well-matched spelling controls (e.g., rofe) as early as 150 msec after 

stimulus onset. The highest activity for pseudohomophones was recorded in the 

right fronto-temporal area and the left temporo-parietal area. Similarly, Wheat et al. 

(2010) used MEG to investigate the spatio-temporal pattern of brain responses 

induced by a masked pseudohomophone priming task. They found that phonological 

processing induced activation in left inferior frontal gyrus and precentral gyrus within 
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100 msec after the onset of the target word. In addition, Ashby et al. (2009) found 

that sub-phonemic features of visual words are activated within 80 msec post-

stimulus onset in their masked priming experiments (ERP/MEG). Sereno and 

colleagues (1998; 2003) have argued compellingly that lexical processing, which 

includes phonological and semantic processing, must happen rapidly within the first 

100-150 msec given that the average duration of an eye fixation on a single word 

during natural reading is around 250 msec. Consequently, studies which suggest 

the timing of phonological processing is around 300-500 msec may be inaccurate 

given that during reading the eyes have already moved onto the next word by 400 

msec.   

To conclude, the majority of ERP research has located phonological processing 

between 300-500 msec (Bentin et al., 1999; R. L. Newman & Connolly, 2004; Polich 

et al., 1983; Rugg, 1984b; Rugg & Barrett, 1987) although there is increasing 

evidence that it begins earlier than 300 msec (Ashby et al., 2009; Braun et al., 2009; 

Kramer & Donchin, 1987; Niznikiewicz & Squires, 1996). Still others argue that 

phonological processing must, in fact, be completed within 200 msec (S. C. Sereno 

& Rayner, 2003; S. C. Sereno et al., 1998). There is a possibility that the timing of 

phonological processing is related to the choice of task in those ERP experiments. It 

appears that ERP studies which showed that phonological processing happens 

between 300-500 msec used explicit tasks while those studies which showed 

phonological processing occurring earlier than 300 msec used implicit tasks. 

Considering however the evidence from the eye-tracking experiments which show 

that fixation on a single word lasts only about 250 msec during natural reading 

(Rayner, 1993; Rayner, Slowiaczek, Clifton, & Bertera, 1983), it seems plausible 

that phonological processing occurs much earlier than the majority of ERP and MEG 

studies indicate. In addition, neither the ERP nor MEG studies have provided any 

reliable evidence for the temporal contribution of SMG to phonological processing. 
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The majority of ERP and EEG studies have not specified the cortical generators of 

the phonological signals (e.g., Ashby et al., 2009; Niznikiewicz & Squires, 1996; 

Polich et al., 1983) or they have simply described very broad brain areas as a locus 

of the signal (e.g., Braun et al., 2009; Grainger et al., 2006; Rugg, 1984a). 

Consequently, the current experiment used chronometric TMS delivered to the SMG 

to investigate the time course of SMG involvement during phonological processing 

of written words.  

 

4.2 Methods 

Participants 

Forty right-handed, monolingual native English speakers volunteered to participate 

in this study, and of these thirty two (19F, 13M; aged 18-41, mean = 25) were 

included in the main experiment. For the other eight the functional location 

procedure failed to identify a region of SMG for testing in the main experiment. All 

participants were neurologically normal, with no personal or family history of 

epilepsy. In addition, none had any form of dyslexia according to self-reports. Each 

person provided informed consent after the experimental procedures were explained 

and subjects were paid for their participation. The experiment was approved by the 

University College London Research Ethics Committee.  

Experimental Procedures 

Like the previous experiment, there were two testing sessions. The first involved a 

30 minute visit to BUCNI in order to acquire a T1-weighted structural MRI scan used 

to anatomically identify the left SMG in each participant. The second session 

occurred two to ten days later and involved TMS-based functional localization and 

the main chronometric experiment which together lasted approximately one hour. 
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Functional localization used the same stimuli and procedures to identify stimulation 

sites in SMG as described previously (Chapter 3). The main chronometric 

experiment used the same tasks as those used in the rTMS experiment presented in 

Chapter 3 but there were important differences in both stimuli matching and in the 

delivery of TMS.  

The three tasks were homophone judgments (phonological), synonym judgments 

(semantic) and consonant letter string matching (visual). There were 105 trials per 

task. The tasks were presented in blocks of 22 trials to minimize task-switching 

costs. Following a short instruction screen to remind the participant of the task, the 

first two trials in each block were dummy items and discarded from the analyses to 

exclude the RT cost of switching tasks. The remaining 20 items in the block 

constituted the data used for further analysis. A trial commenced with a fixation 

cross displayed for 500 msec, followed by two letter strings presented above and 

below the fixation cross for another 250 msec. A blank screen was then presented 

for a random interval between 1300 and 2300 msec, giving an average duration of 

2500 msec per trial. The experiment was divided into three runs of five blocks, each 

lasting approximately 5 min. In between runs, subjects took a self-paced break. The 

order of tasks was counter-balanced across participants. The word stimuli (200 trials 

plus 10 dummy trials) ranged in length from three to ten letters and were matched 

across the homophone and synonym tasks for concreteness, familiarity, written 

word frequency, number of letters, and number of syllables (all t(198) < 1.66, p > 

0.11). In addition, the consonant strings in the non-lexical task were matched in 

length to the lexical stimuli. Within each task, the items were divided into five lists, 

again matched for all factors (all F(4,95) < 2.1, p > 0.1). Then, the lists were paired 

with each of the five time windows such that the lists occurred with equal frequency 

within each time window across participants.  
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A double pulse of TMS was delivered on every trial, at one of five different timing 

conditions. Pulses occurred at either 40 and 80 msec, 80 and 120 msec, 120 and 

160 msec, 160 and 200 msec, or 200 and 240 msec post-stimulus onset. All the 

time windows were chosen before 250 msec post-stimulus onset in order to 

successfully identify the onset of phonological processing, especially considering 

findings of Sereno and her colleagues (S. C. Sereno & Rayner, 2003; S. C. Sereno 

et al., 1998) who convincingly demonstrated that phonological processing must 

begin early and be completed within 250 msec after word presentation. The TMS 

timings were not randomly distributed; instead, they were ordered in either an 

ascending or descending staircase in sets of four trials (Figure 4-1). For instance, 

the first four trials might have pulses delivered at 40/80 msec, while the next four 

were at 80/120, etc. such that all 20 trials in the block had TMS delivered at one of 

the five timing conditions. For the following block (i.e., the next task), the timing went 

in the opposite direction (i.e., 4 × 200/240 followed by 4 × 160/200, etc). The aim of 

this procedure was to avoid any late stimulation trials (e.g., 160/200) randomly 

following early trials (40/80), because during pilot studies there was some concern 

that participants were implicitly waiting for the TMS pulse before responding, and 

thus artificially inflating RTs on those trials. With the current staircase method there 

was no evidence that participants waited for the TMS before responding. Indeed, 

subjects reported that they were not aware that stimulation onsets differed. In 

contrast, when chronometric timings are delivered randomly subjects are typically 

aware of the different timings. 
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Figure 4-1: A) Within a run, homophones (H), synonyms (S), and consonant 

strings (C) alternated in 50 sec blocks. B) Each block consisted of 20 trials 

plus a dummy trial at the beginning. The first block in each run began with two 

dummy trials. Pulses occurred at either 40/80, 80/120, 120/160, 160/240, or 

200/240 msec post-stimulus onset. TMS timings were ordered in either an 

ascending or descending staircase in sets of four trials. H0 and S0 indicate 

dummy trials. C) Each trial began with a fixation cross presented for 500 

msec. A stimulus was then presented for 250 msec, followed by a blank 

screen displayed for random interval between 1300-2300 msec. Stimulation 

occurred at one of five time windows.   
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Analyses 
  
For the main task the earliest timing window (i.e., pulses delivered at 40/80 msec) 

was considered the baseline condition as previous ERP, MEG, and TMS findings 

(e.g., Khateb et al., 1999; Pammer et al., 2004; Stoeckel, Gough, Watkins, & Devlin, 

2009) indicate that this is too early for TMS to have an effect on SMG during 

phonological processing. As a result, within each of the three tasks, each of the four 

later time windows was compared to the baseline, using two-tailed, planned paired t-

tests. 

In order to identify testing sites in terms of standard space coordinates, each 

participant’s structural scan was registered to the Montreal Neurological Institute-

152 template using an affine registration (Jenkinson & Smith, 2001). Note that all 

stimulation was done in native anatomical space – the standard space coordinates 

were computed solely for reporting purposes. In addition, for illustrative purposes a 

group mean structural scan was created in standard space and used as a 

background image when presenting the stimulation sites in order to accurately 

reflect the anatomical variability across subjects (Devlin & Poldrack, 2007). 

 

4.3 Results 

Functional Localization  

In eight out of 40 participants, the functional localization process failed and testing 

ceased after ten runs. In the remaining 32 participants, an average of five localizer 

runs per subject (range: 2-10, mean = 6) were required to successfully identify the 

main SMG testing site. In these participants, rTMS produced a significant inhibitory 

effect of 44 msec relative to the no-TMS trials (paired t-test; t(31) = 9.8, p < 0.001). 

When normalized to reflect between-subject variability in overall RT, this equated to 



  

139 
 

a 6% slowdown in individuals. In contrast, stimulation of the other SMG sites 

produced a significant facilitation effect of 32 msec (paired t-test; t(31) = 4.9, p < 

0.001). When normalized, this constituted a 4% speedup in RTs. In other words, 

there was a clear difference between the final test site and other locations, even 

though they were only 1-2 cms apart and still within anterior SMG. The precise 

location where stimulation interfered with phonological processing varied across 

individuals and is illustrated in Figure 4-2. Here, white filled circles show where 

stimulation led to a slowdown for rhyme judgments in each participant. The mean 

coordinate in standard space was [–52, –37, +32] and is shown with a black circle, a 

region previously implicated in phonological processing (Devlin et al., 2003; Price et 

al., 1997; Raizada & Poldrack, 2007; Seghier et al., 2004; Zevin & McCandliss, 

2005).  

 

Figure 4-2: The final testing sites for all 32 participants (white filled circles) 

and the mean group location (black filled circle) on the averaged brain of all 

participants normalized to the standard MNI152 space with an affine 

registration (Jenkinson & Smith, 2001) shown on a parasagittal plane. 
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Chronometric Experiment 
 
Overall accuracy levels were reasonably high (88%) indicating that participants did 

not have any difficulty performing the tasks. When accuracy was analyzed with an 

omnibus 3  5 ANOVA with Task (Phonological, Semantic, Visual) and TMS (40/80, 

80/120, 120/160, 160/200, 200/240) as independent factors, it revealed a significant 

main effect of Task (F(2,63) = 30.4, p < 0.001) indicating that the semantic task 

(83%) was significantly more difficult than either the phonological task (90%) or the 

visual task (91%). Neither the main effect of TMS nor its interaction with Task were 

significant (both F<1). In other words, there was no evidence that TMS affected 

accuracy in performing any of the three tasks. 

The RT results are shown in Figure 4-3. From the figure, it is apparent that there 

was a main effect of Task (F(2, 62) = 98, p < 0.001), with slowest responses on the 

semantic task (893 msec), followed by the phonological task (803 msec) and then 

the visual task (665 msec), each of which was significant different from the others 

(all p < 0.001, after Bonferonni correction for multiple comparisons). Neither the 

main effect of TMS (F(4, 124) = 1.2, p = 0.31) nor the Task  TMS interaction 

reached significance (F(8, 248) = 1.26, p = 0.27) in the omnibus ANOVA. Even so, a 

set of planned comparisons were performed to specifically evaluate whether TMS 

modified RTs in the phonological and/or semantic task. 
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Figure 4-3: RTs from the onset of the visual stimulus for each of the five 

stimulation timings for all three tasks in the main experiment. Note the scales 

of the y-axes are not identical due to different RTs across the three tasks with 

visual < phonological < semantic. The solid line represents the baseline RTs. 

Error bars reflect standard error of the mean adjusted to correctly reflect the 

variance in the within-subject design (Loftus & Masson, 1994). *p < 0.05. 
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For the phonological task, a comparison of each time condition to the baseline 

condition (40/80 msec) indicated inhibitory effects at all four time windows relative to 

the baseline (plotted in Figure 4-3). I observed RT increases of 30, 30, 25 and 21 

msec, although only the first three were significant (80/120: t(31) = 3.9, p = 0.001; 

120/160: t(31) = 2.4, p = 0.02; 160/200: t(31) = 2.3, p = 0.03; 200/240: t(31) = 1.6, p 

= 0.11). Despite a similar size inhibitory effect, the final time window did not reach 

statistical significance because of greater inter-subject variability. Specifically, only 

20 out of 32 participants were slowed by TMS during the 200/240 time window. In 

contrast, 26 subjects showed a slowdown in the 80/120 window, 22 subjects in 

120/160 window and 24 subjects in the 160/200 window. In summary, double pulses 

of TMS delivered to the same site that slowed performance in the rhyme judgment 

localizer task resulted in significantly longer RTs between 80-200 msec post-

stimulus onset.  

In contrast, SMG stimulation had no significant effect on either the semantic or 

visual judgment task. For the semantic task, there were net slowdowns in each of 

the time windows relative to the baseline condition (40/80 msec), but none of these 

were significant (all t(31) < 0.96, p > 0.34). This was due to considerable inter-

subject variability. Specifically, only 18, 15, 19, and 14 participants (out of 32) 

showed increased RTs in the four respective time windows. For the visual judgment 

control task, the effects of TMS were variable and none were significant (all t(31) < 

1.1, p > 0.3). 

To investigate the functional specificity of the slowdowns observed in the 

phonological test, I compared them to the TMS-effects in the semantic and visual 

tasks. Figure 4-4 illustrates the difference between RTs for each time window 

relative to its baseline condition (i.e., 40/80) across all three tasks. Dark grey, light 

grey and white bars show TMS-effects for phonological, semantic and visual tasks, 
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respectively. It is clear from the figure that slowdown in the phonological task was 

significantly greater than both the semantic (paired t-test: t(31) = 2, p = 0.03) and 

visual task (t(31) = 3.1, p = 0.002) in the 80/120 time window. In the later time 

window, however, the phonological TMS-effect did not differ statistically from the 

semantic TMS-effect, despite the fact that there were significant slowdowns relative 

to baseline in the phonological, but not the semantic, task. Relative to the TMS-

effects in the visual task, TMS produced significantly larger slowdowns in the 

phonological task in the 120/160 (t(31) = 2.2, p = 0.02) and 160/200 (t(31) = 2.6, p = 

0.01) time windows. Finally, there were no significant differences between the TMS-

effects in the semantic and visual tasks in any time windows (all t(31) < 0.83, p > 

0.41).  

 

 

 

Figure 4-4: The difference between RTs for each time window relative to its 

baseline condition (i.e., the 40/80 time window) plotted for all three tasks. Dark 

grey bars represent the phonological task, light grey the semantic task and 

white the visual control task.  *p < 0.05. 
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4.4 Discussion  

In the present study TMS was used to investigate the timing of phonological 

processing within the left SMG during reading. The main finding was that the 

inhibitory effects of TMS were apparent as early as 80-120 msec following stimulus 

presentation and were sustained for approximately another 100 msec. In addition, 

like the previous experiment, the effects of SMG stimulation were present for 

phonological judgments but were not observed for either semantic or visual 

judgments, confirming preferential involvement of SMG in phonological processing. 

Moreover, the effect of TMS was significantly greater for phonological judgments 

than either semantic or visual judgments in the 80/120 time window. Both findings 

are discussed as they pertain to the neural information processing underlying visual 

word recognition.  

The main aim of this study was to investigate the temporal dynamics of SMG 

contributions to phonological task by disrupting processing at different time intervals 

during the first 250 msec of stimulus processing. In this task, a TMS-induced 

inhibitory effect was present from 80/120 msec post-stimulus onset. Although the 

detailed mechanisms of TMS action on the cerebral cortex remain unknown 

(Wagner, Rushmore, Eden, & Valero-Cabre, 2009), it is clear that TMS induces ionic 

currents in a percentage of neurons in all cortical layers within the stimulated area, 

leading to inhibitory and excitatory currents within local microcircuits (Esser et al., 

2005). These can cause spiking of pyramidal neurons that in turn send a volley of 

spikes to distal, but anatomically connected regions. Affected neurons then enter a 

brief refractory state, such that the local physiological effect of a single TMS pulse 

within the stimulated area lasts approximately 10 milliseconds (Esser et al., 2005), 

although the distal effects may last for tens of milliseconds. Indeed, chronometric 

TMS experiments have shown functionally distinct effects of TMS for pulses 
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separated by as little as 40 msec (Amassian et al., 1993; Corthout et al., 1999; Juan 

& Walsh, 2003; Pitcher et al., 2007). Consequently, it is reasonable to assume that 

the inhibitory effects of 80/120 stimulation did not last beyond 160 msec post-

stimulus onset. The effects of TMS on phonological processing were recorded 

earlier than could be expected based on many ERP findings which reported 

phonological effects in the 200-300 msec time range (Grainger et al., 2006; Kramer 

& Donchin, 1987; Niznikiewicz & Squires, 1996) or even later ranging from 300 to 

500 msec (Bentin et al., 1999; R. L. Newman & Connolly, 2004; Rugg, 1984a). In 

other words, many studies indicate that the time course of phonological processing 

in word recognition begins roughly 100 msec later than reported here.   

One possible explanation for this apparent discrepancy may have to do with the 

nature of the different methodologies. ERP and MEG signals reflect the aggregate 

electromagnetic activity of synchronous neuronal firing and as a result may be less 

sensitive to the earliest processing dynamics within a region before synchrony has 

time to develop (Schroeder, Mehta, & Givre, 1998). In contrast, the effect of TMS 

occurs immediately with the stimulation pulse and can interfere with neuronal activity 

that contributes to the build-up of the ERP/MEG signal (Walsh & Cowey, 2000). As a 

result, TMS effects tend to precede those seen in ERP/MEG and correspond more 

closely to the timings seen in intracellular recording studies (Corthout, Uttl, Walsh, 

Hallet, & Cowey, 2000; Duncan et al., 2010; Schuhmann, Schiller, Goebel, & Sack, 

2012). In other words, despite its poorer temporal resolution (tens of milliseconds as 

opposed to milliseconds), TMS may provide more precise information regarding the 

onset of regional neuronal activity. 

Another possible explanation for the relatively late ERP recordings is that the ERP 

components such as the N250 or N400 index processes based on recurrent 

feedback rather than the initial information passing through the system (S. C. 
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Sereno & Rayner, 2003). When reading text, the eyes fixate on a word for an 

average of 250-300 msec (Just & Carpenter, 1980; Rayner, Sereno, & Raney, 

1996), indicating that lexical processing must be underway well before the next 

saccade. Indeed, Sereno and colleagues (1998) found that during reading, early 

ERP components such as the P1 and N1 are influenced by factors such as lexicality 

and frequency, demonstrating that higher order properties of the word are accessed 

as early as 100-200 msec post-stimulus onset (see also Hauk & Pulvermüller, 

2004). In other words, there is growing evidence that nonvisual properties of a word 

become available as early as 100-200 msec from the onset of the visual word 

(Ashby et al., 2009; Braun et al., 2009; Hauk, Coutout, Holden, & Chen, 2012; 

Reichle, Tokowicz, Liu, & Perfetti, 2011; Wheat et al., 2010).  

In addition to this rapid onset, I observed that the effects of TMS were sustained 

through the 160/200 msec time windows. In contrast, most previous chronometric 

TMS studies of visual processing have demonstrated separate early and late effects 

of stimulation, suggesting temporally distinct feedforward and feedback phases of 

processing (e.g., Corthout et al., 1999). In my data, however, TMS to each of the 

time windows between 80/120 and 160/200 msec significantly slowed responses, 

suggesting ongoing phonological processing, presumably due to dynamic 

interactions with regions processing other aspects of the word including visual and 

semantic information (Cao, Bitan, & Booth, 2008; Carreiras, Perea, Vergara, & 

Pollatsek, 2009; Frye et al., 2011). Indeed, the same temporal pattern of disruption 

was observed in a chronometric TMS study of left ventral occpito-temporal cortex – 

a region critically involved in processing the visual forms of words (Duncan et al., 

2010). Taken together, the results suggest continuous and simultaneous 

communication between ventral occpito-temporal cortex and SMG occurring 

between approximately 100-200 msec after the presentation of a visual word. This 

type of interactive processing (as opposed to strictly feedforward processing) is a 
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fundamental principle of virtually all computationally explicit cognitive accounts of 

visual word recognition (Coltheart et al., 2001; Harm & Seidenberg, 2004; Jacobs et 

al., 2003; McClelland & Rumelhart, 1981; Perry et al., 2007; Plaut et al., 1996; 

Seidenberg & McClelland, 1989) and is increasingly important for neuro-anatomical 

models of reading as well (Price & Devlin, 2011; T Twomey et al., 2011; Wang, 

Yang, Shu, & Zevin, 2011; Woodhead, Brownsett, Dhanjal, Beckmann, & Wise, 

2011). In other words, these data are not only consistent with accounts of visual 

word recognition that suggest parallel processing of orthographic, phonological (and 

presumably semantic) information over time and their integration as a result of 

constant regional interaction in order to achieve stable word representations, but 

they also provide a tentative time frame for this processing (i.e., 80-200 msec), 

consistent with estimates of the time available based on both eye movement and 

ERP data (S. C. Sereno & Rayner, 2003).  

This study is consistent with the findings from Chapter 3 that SMG is necessary for 

phonological processing during visual word recognition and is in line with the 

previous functional imaging studies which suggested preferential engagement of 

SMG in phonological processing, rather than semantic processing (Demonet et al., 

1994; Devlin et al., 2003; McDermott et al., 2003; Mummery et al., 1998; Price et al., 

1997). SMG stimulation increased response latencies in the phonological task but 

not in the semantic or visual control tasks. Indeed, at the earliest time window 

(80/120) the effect of TMS on the phonological task (+30 msec) was significantly 

greater than in the semantic (–1 msec) or the visual (–8 msec) task, suggesting a 

degree of functional specificity for phonology early in the time course of processing 

visual words. Moreover, the results imply that the region is not necessary for other 

types of linguistic processing such as visual word recognition or semantic 

processing, nor for more domain-general processes such as sustained attention, 

decision making, action selection and initiation, etc. 
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5.  Experiment 3: Temporal Dynamics of 
Angular Gyrus Involvement in Semantic 

Processing during Reading 

 

 

 

 

 

 

 

 

 

 

 

 



  

149 
 

5.1 Introduction 

In Experiment 1, I demonstrated that ANG contributes to semantic processing during 

visual word recognition, in line with previous neuroimaging studies. The aim of this 

chapter is therefore to establish the time course of ANG involvement to semantic 

processing. To my knowledge, no previous studies have focused directly on 

investigating the timing of ANG to this process. Instead, EEG has primarily been 

used to establish a time line of semantic processing across the whole brain but 

without precise cortical localization because of insufficiently good spatial resolution.  

According to the traditional view, the timing of semantic processing is reflected in a 

negative-going ERP component, known as the N400, commonly associated with the 

processing of semantic information (for review, see Kutas, Van Petten, & Kluender, 

2006). A strong link between the N400 and semantic processing was originally 

established by Kutas and her colleagues (Kutas & Hillyard, 1980a, 1980b, 1980c) 

who investigated the role of the semantic context of a sentence on word recognition 

during reading. Kutas and colleagues were first to demonstrate that a semantic 

priming effect in sentential context can be detected by ERPs. In a series of studies, 

researchers asked their participants to read sentences presented one word at a 

time. They found that at the point of final word recognition, sentences with 

semantically anomalous endings (e.g., I take my coffee with cream and dog) led to 

larger negative ERP potential than sentences with semantically appropriate endings 

(e.g., I take my coffee with cream and sugar). This negative potential had a broad 

scalp distribution and lasted between 200-500 msec post-stimulus onset with a 

maximum negativity at about 400 msec over the centro-parietal electrode sites. It 

was also shown that deviation of the physical structure of terminal words (Kutas & 

Hillyard, 1980a) or grammatical structure of the sentence (Kutas & Hillyard, 1982, 

1983) that did not involve semantic violations did not have any effect on the N400 
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component, strengthening its relation to semantic processing. A number of more 

recent ERP studies have also shown that the N400 amplitude can be modulated by 

semantically incongruent terminal words not only during passive sentence reading 

but also during semantic decisions performed on sentences (e.g., Halgren, 1990; 

Halgren et al., 2002; Helenius, Salmelin, & Connolly, 1999; Holcomb & Kounios, 

1990). For example, Holcomb and Kounios (Holcomb & Kounios, 1990; Kounios & 

Holcomb, 1992) demonstrated that the N400 amplitude for sentence final words was 

inversely proportional to the semantic relationship between the subject of the 

sentence and the final word in the sentence verification task.   

Other studies have revealed that modulation of the N400 amplitude can be achieved 

not only by sentences but also when a single word provides the semantic context 

(Bentin, 1987; Bentin, McCarthy, & Wood, 1985; Bentin et al., 1999; C. M. Brown & 

Hagoort, 1993; Franklin, Dien, Neely, Huber, & Waterson, 2007; Holcomb & Neville, 

1990; Kutas & Hillyard, 1989; Rugg, 1985; Stuss, Picton, & Cerri, 1988). In these 

lexical priming studies, a prime word was presented prior to a target word and the 

degree and nature of the semantic overlap between the prime and the target word 

were manipulated. The maximal amplitude of the N400 component has been shown 

to be larger when a target word is preceded by semantically unrelated than related 

word (e.g., cat – pan vs. cat – dog). The difference in amplitude between unrelated 

and related pairs of words was usually largest at fronto-central electrode sites. The 

amplitude of N400 can be modulated by different types of semantic relations 

between the prime and target words including semantic category (Heinze, Muente, 

& Kutas, 1998; Kiefer, 2001), function (Bach, Gunter, Knoblich, Prinz, & Friederici, 

2009), synonymy (Kutas & Iragui, 1998; Y. Liu, Perfetti, & Hart, 2003), association 

(Franklin et al., 2007) or general knowledge (Hagoort, Hald, Bastiaansen, & 

Petersson, 2004). Similar findings were obtained in MEG study by Vartiainen and 

colleagues (2009) who recorded the strongest priming effects between 300-450 



  

151 
 

msec over the superior temporal regions in a semantic relatedness task which 

required participants to judge whether a target word was semantically related or 

unrelated to three preceding words.    

Apart from priming effects on the N400, a number of electrophysiological studies 

demonstrated effects of word concreteness (Kounios & Holcomb, 1994) or 

frequency (C. M. Brown, Hagoort, & Keurs, 1999; Polich & Donchin, 1988; 

Pulvermüller, Assadollahi, & Elbert, 2001; Rugg, 1990; Van Petten & Kutas, 1990) 

on this component and used them as markers for semantic processing. 

Investigations of the word frequency effects have been of particularly great 

importance since they are believed to affect recordings after semantic 

representations of words have been activated and therefore can be used to 

determine the upper limit for the latency of semantic processing (S. C. Sereno et al., 

1998). Studies mentioned above detected word frequency effects between 200-500 

msec which corresponded to the N400 component. According to the general pattern 

of results, less frequent words produced larger N400 amplitude than more frequent 

words. 

In addition, the N400 was demonstrated to reflect semantic processing of words not 

only during reading but also during listening. For example, listening to semantically 

anomalous words placed in the final sentence position modulated the N400 in the 

same way as reading anomalous words at the end of a sentence (McCallum, 

Farmer, & Pocock, 1984). The N400 context effect has been also reported for 

nonverbal but meaningful stimuli. For example, the meaningful line drawings (Ganis, 

Kutas, & Sereno, 1996; Holcomb & McPherson, 1994), photographs (Kutas et al., 

2006) or interpretable environmental sounds (e.g., horse hooves on pavement) 

(Plante, Van Petten, & Senkfor, 2000; Van Petten & Rheinfelder, 1995) also elicited 

central negativities similar to the linguistic N400 that was modulated by semantic 
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context. The meaningful nonverbal stimuli differed only slightly from the verbal 

stimuli in scalp distribution of the N400 potential which suggested engagement of 

similar neuronal populations in processing meaning. In contrast, stimuli that could 

not be mapped onto existing semantic information such as novel geometric shapes 

or unpronounceable nonwords did not produce the N400-like component (M. E. 

Smith & Halgren, 1986; Van Petten & Senkfor, 1996). Similarly, incongruent endings 

of well-known melodies did not elicit the N400 component (Besson & Macar, 1987).  

Overall, the evidence presented so far suggests that semantic processing of any 

meaningful stimuli is reflected by the N400 potential occurring approximately 

between 200-500 msec. However, the interpretation of the N400 potential in terms 

of semantic processing has been challenged by those who found potentials similar 

to N400 in tasks with no obvious semantic component. For example, Stuss and 

colleagues (1983) reported N400-like potential elicited by mental rotation of 

geometrical figures while Rugg (1984a, b) found that the N400 was not only 

sensitive only to semantic, but also phonological manipulations. In addition, the 

description of the N400 component lacks spatial precision in indicating temporal 

involvement of fine-grained cortical structures in semantic processing. The N400 

has been rather associated with an extended network of neural generators including 

broad regions of temporal, temporo-parietal, and frontal cortex. Moreover, the 

description of the N400 scalp distribution seems to vary depending on the task used 

for testing. For instance, the N400 elicited by semantic incongruities in sentences is 

largest over the centro-parietal regions (Kutas & Hillyard, 1982; Kutas, Hillyard, & 

Gazzaniga, 1988) while the N400 elicited by single words is largest over fronto-

central sites (Bentin, 1987; Bentin et al., 1985; McCarthy & Nobre, 1993) or even the 

anterior medial temporal lobe (McCarthy, Nobre, Bentin, & Spencer, 1995).   
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Another group of electrophysiological studies have demonstrated that semantic 

processing of a visual word occurs earlier than the N400 would suggest (Assadollahi 

& Pulvermüller, 2001a, 2001b, 2003; Dambacher, Kliegl, Hofmann, & Jacobs, 2006; 

Dien, Frishkoff, Cerbone, & Tucker, 2003; Hauk et al., 2012; Hauk, Davis, Ford, 

Pulvermüller, & Marslen-Wilson, 2006; Hauk, Patterson, et al., 2006; Hauk & 

Pulvermüller, 2004; Palazova, Mantwill, Sommer, & Schacht, 2011; Penolazzi, 

Hauk, & Pulvermüller, 2007; Pulvermüller et al., 2001; Rabovsky, Sommer, & 

Rahman, 2012; G. G. Scott, O’Donnell, Leuthold, & Sereno, 2008; S. C. Sereno & 

Rayner, 2003; S. C. Sereno et al., 1998; Skrandies, 1998). For example, Dien and 

colleagues (2003) analysed ERP responses to congruous and incongruous 

sentence endings with respect to meaningfulness and expectedness of the final 

word (i.e., how much sense the sentence makes including the target word vs. how 

strongly the participant expect this word given the preceding context). The earliest 

effects of both variables were recorded around 200 msec after final word onset 

suggesting that semantic information about the word and the context in which it 

occurred was already available at this latency. A number of other studies found word 

frequency effects occurring earlier than 200 msec post-stimulus onset (Assadollahi 

& Pulvermüller, 2001a, 2001b, 2003; Dambacher et al., 2006; Hauk, Davis, et al., 

2006; Hauk, Patterson, et al., 2006; Hauk & Pulvermüller, 2004; Palazova et al., 

2011; Penolazzi et al., 2007; S. C. Sereno & Rayner, 2003). Sereno and colleagues 

(1998; 2003) first demonstrated frequency effects on the N1 component as early as 

132 msec post-stimulus onset in a lexical decision experiment. Subsequent studies 

reported early frequency effects around 120 msec (Assadollahi & Pulvermüller, 

2001a, 2001b), 150 msec (Hauk & Pulvermüller, 2004), or 170 msec (Dambacher et 

al., 2006). Hauk and colleagues (2006) revealed even earlier effect of word 

frequency around 110 msec while Scott and colleagues (2008) found an interaction 

between word frequency effects and emotional quality of words around 100 msec. 

Interestingly, many of these studies (C. M. Brown et al., 1999; Hauk & Pulvermüller, 
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2004; S. C. Sereno et al., 1998) did not find any significant effects at later time 

windows or could not replicate them (Assadollahi & Pulvermüller, 2001a, 2001b).  

Researchers have suggested that semantic processing begins early based on 

evidence from other linguistic manipulations as well. One (perhaps surprising) 

variable that potentially can reveal the timing of semantic processing is orthographic 

neighbourhood size (Coltheart, Davelaar, Jonasson, & Besner, 1977). Although this 

variable indicates the orthographic relations of words stored in memory, its effects 

have been also interpreted in terms of semantic competition processes (Andrews, 

1997; Grainger & Jacobs, 1996; Holcomb, Grainger, & O'Rourke, 2002) or even 

post-lexical processing (Fiebach, Ricker, Friederici, & Jacobs, 2007) – both of which 

happen after semantic information about words is activated. Hauk and colleagues 

(2009) found neurophysiological effects of orthographic neighbourhood size around 

100 msec after word onset in a lexical decision task. The ERP amplitude of the P1 

component increased with orthographic neighbourhood size and was largest within 

left perisylvian regions. Another important way for investigating the time course of 

semantic processing during reading relies on the effects of semantic richness which 

indicates the number of semantic features (McRae, Cree, Seidenberg, & McNorgan, 

2005). Rabovsky and colleagues (2012) investigated the time course of semantic 

richness effects on ERPs during a visual lexical decision task and found that this 

variable modulated ERP amplitudes at central sites starting about 190 msec post-

stimulus onset indicating fast initial access to semantic representations. Other ERP 

and MEG studies have also reported early physiological differences between 

semantic word categories (e.g., animals vs. flowers) that began to appear around 

100 msec (Skrandies, 1998) or lexical categories (e.g., nouns vs. verbs) that started 

around 100 msec (Pulvermüller et al., 2001). In addition, Hauk and colleagues 

(2012) used a multimodal approach in which they combined ERPs as a source of 

fast behavioural measures with EEG/MEG measures of cortical signal localization in 
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order to investigate the latencies of earliest semantic information retrieval in a visual 

word recognition task. In their experiment, participants performed a semantic 

Go/NoGo task in which they responded by eye-blink, instead of traditional button 

press, since the eye-blink method was believed to provide a faster and less variable 

dependent measures of behaviour. Hauk et al. (2012) found that the earliest 

differences between Go and NoGo conditions occurred around 160 msec in the left 

anterior middle temporal lobe which provided evidence for an early onset of 

semantic processing in the brain.  

These studies provide evidence for the modulation of early electrophysiological 

brain responses revealing the time course of semantic processing. This is in line 

with the behavioural evidence presented by Sereno and her colleagues (1998; 

2003) who demonstrated that eyes of a skilled reader usually rest on a word for 

about 250 msec before they move on to the next word during passive text reading. 

Following this behavioural finding, Sereno and colleagues argued that single word 

recognition must be accomplished within 250 msec and therefore any higher order 

processes, including semantic processing, must take place between 100-200 msec. 

To conclude, a number of ERP and MEG studies demonstrated that semantic 

processing happens in the brain relatively late, around 400 msec (N400), while a 

number of other ERP and MEG studies demonstrated that semantic processing 

occurs between 100-200 msec and must be completed within 250 msec after word 

presentation. None of these studies, however, revealed timing of semantic 

processing specific to ANG, a brain region playing an important role in this process. 

Instead the majority of neurophysiological studies associated semantic information 

processing with broad areas of the brain, including frontal and temporo-parietal 

regions. It has been argued that the physiological effects on the early 

topographically specific, short-lived components are much more difficult to detect 
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than the widely distributed, long-lasting late effect such as those related to the N400 

(Pulvermüller, 1999). Considering the fact that my previous TMS experiment found 

very early latency for phonological processing in SMG, it seems plausible that 

semantic processing in ANG also occurs much earlier than indicated by the N400. In 

addition, it seems that chronometric TMS is a strong candidate to investigate these 

effects. In the current experiment, a double-pulse TMS (delivered 40 msec apart) 

was applied at five different time windows during semantic, phonological and visual 

control tasks in order to map the temporal window of ANG contributions to semantic 

processing during visual word recognition within the first 250 msec of a word 

presentation. All the time windows were chosen before 250 msec post-stimulus 

onset in order to successfully identify the onset of semantic processing, especially 

considering findings of Sereno and her colleagues (S. C. Sereno & Rayner, 2003; S. 

C. Sereno et al., 1998) who convincingly demonstrated that semantic processing 

must begin early and be completed within 250 msec after word presentation. 

 

5.2 Methods 

Participants 

Twenty three right-handed, monolingual native English speakers volunteered to 

participate in this study, and of these twenty (10F, 10M; aged 19-43, mean = 27) 

were included in the main experiment. For the other three the functional localization 

procedure failed to identify a region of ANG for testing in the main experiment. All 

participants were neurologically normal, with no personal or family history of 

epilepsy. In addition, none had any form of dyslexia according to self-reports. Each 

person provided informed consent after the experimental procedures were explained 

and subjects were paid for their participation. The experiment was approved by the 

University College London Research Ethics Committee.  
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Experimental Procedures 

Similar to the previous experiments, this experiment consisted of two testing 

sessions. The first involved a 30 minute visit to BUCNI in order to acquire a T1-

weighted structural MRI scan used to anatomically identify the left ANG in each 

participant. The second session occurred two to ten days later and involved the 

TMS-based functional localization and the main chronometric experiment which 

together lasted approximately one hour. The full details of the TMS-based functional 

localization for ANG were presented in Chapter 2. The main chronometric 

experiment used identical procedures and materials to the ones used in the main 

experiment described in the previous chapter.  

Analyses 

For the main task the earliest timing window (i.e., pulses delivered at 40/80 msec) 

was considered the baseline condition as previous ERP and MEG findings (e.g., 

Hauk, Davis, et al., 2006; Kutas & Hillyard, 1980c; Rabovsky et al., 2012; S. C. 

Sereno et al., 1998) indicate that this is too early for TMS to have an effect on ANG 

during semantic processing. As a result, within each of the three tasks, the four later 

time windows were compared to the baseline, using two-tailed, planned paired t-

tests. 

 

5.3 Results 

Functional Localization 

In three out of 23 participants, the functional localization procedure failed to find a 

consistent region within ANG where rTMS disrupted semantic processing. As a 

result, testing ceased after ten runs and these participants were not included in the 

main experiment. In the remaining 20 participants, an average of seven localizer 
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runs per subject (range: 6-10, mean = 8) were required to successfully identify the 

main ANG testing site. In these participants, rTMS produced a significant inhibitory 

effect of 38 msec relative to the no-TMS trials (paired t-test; t(19) = 4.9, p < 0.001). 

When normalized to reflect between-subject variability in overall RT, this equated to 

a 5% slowdown in individuals. In contrast, stimulation of the other ANG sites 

produced an insignificant inhibitory effect of 11 msec (paired t-test; t(19) = 0.8, p = 

0.45). When normalized, this constituted a 2% slowdown in RTs. In other words, 

there was a clear difference between the final testing site and other locations within 

ANG. There was no single site which consistently produced slowdowns across 

participants. Dorsal ANG was localized in 8 participants, medial ANG in 6 

participants and ventral ANG in another 6 participants.   

Chronometric Experiment 

Overall accuracy levels were reasonably high (88%) indicating that participants did 

not have any difficulty performing the tasks. When accuracy was analyzed with an 

omnibus 3  5 ANOVA with Task (Semantic, Phonological, Visual) and TMS (40/80, 

80/120, 120/160, 160/200, 200/240) as independent factors, it revealed a significant 

main effect of Task (F(2,38) = 20.5, p < 0.001) indicating that the semantic task 

(83%) was significantly more difficult than either the phonological task (91%) or the 

visual task (91%). Neither the main effect of TMS nor its interaction with Task were 

significant (both F < 1). In other words, there was no evidence that TMS affected 

accuracy in performing any of the three tasks. 

The RT results are shown in Figure 5-1. An omnibus 3  5 ANOVA revealed a main 

effect of Task (F(2, 38) = 50.1, p < 0.001). It is clear from the figure that the slowest 

responses were produced in the semantic task (855 msec), followed by the 

phonological task (771 msec) and then the visual task (674 msec), each of which 

was significant different from the others (all p < 0.001, after Bonferonni correction for 

multiple comparisons). There was also a main effect of TMS (F(4, 76) = 3.1, p = 
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0.02) but its correction for multiple comparisons revealed significant difference only 

between mean RTs in the baseline (753 msec) and 160/200 (769 msec) time 

windows (p = 0.048). No significant Task  TMS interaction (F(8, 152) = 0.85, p = 

0.56) was obtained. A set of planned comparisons were performed to specifically 

evaluate how TMS modified RTs in the three tasks. 
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Figure 5-1: RTs from the onset of the visual stimulus for each of the five 

stimulation timings for all three tasks in the main experiment. Note the scales 

of the y-axes are not identical due to different RTs across the three tasks with 

visual < phonological < semantic. The solid line represents the baseline RTs. 

Error bars reflect standard error of the mean adjusted to correctly reflect the 

variance in the within-subject design (Loftus & Masson, 1994). * p < 0.05. 
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Figure 5-1 presents the difference between RTs for each time window relative to its 

baseline condition (40/80 msec) for all three tasks. It is clear from the figure that the 

later time windows were numerically slower than the baselines within each task. For 

the semantic task, observed RT increases were of 12, 32, 18 and 11 msec, although 

none of them was significantly different from the baseline RT (80/120: t(19) = 0.79, p 

= 0.44; 120/160: t(19) = 1.8, p = 0.09; 160/200: t(19) = 1.4, p = 0.2; 200/240: t(19) = 

0.8, p = 0.44). In contrast, for the phonological task, stimulation produced RT 

slowdowns of 20, 16, 22 and 25 msec, which were significant in the first three time 

windows (80/120: t(19) = 2.43, p = 0.03; 120/160: t(19) = 2.12, p = 0.05; 160/200: 

t(19) = 3.01, p = 0.01). Here, 13 subjects showed a slowdown in the 80/120 window, 

14 subjects in 120/160 window, and 16 subjects in the 160/200 window. Despite the 

fact that the inhibitory effect in the final time window was the largest in the size, it did 

not reach statistical significance (200/240: t(19) = 2, p = 0.06). For the visual task, 

TMS slowdowns were of 9, 9, 10, and 28 msec and only the RT increase in the final 

time window was significant (200/240: t(19) = 3.49, p < 0.001). In this time window, 

13 subjects showed increased response times.  

To investigate whether any of the slowdowns observed in the phonological or visual 

tests were functionally specific, I compared them to the TMS-effects in other tasks. 

Figure 5-2 illustrates the difference between RTs for each time window relative to its 

baseline condition (i.e., 40/80) across all three tasks. Light grey, dark grey and white 

bars show TMS-effects for semantic, phonological and visual tasks, respectively. It 

is clear from the figure that the phonological TMS-effects in the 80/120, 120/140, 

and 140/160 time windows were not statistically different from TMS-effects in the 

semantic and visual tasks (all t(19) < 1.2, p > 0.25). There were also no significant 

differences between the visual TMS-effect in 200/240 time window when compared 

to the semantic and phonological TMS-effects in this time window (all t(19) < 1.2, p 

> 0.25).  
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Figure 5-2: The difference between RTs for each time window relative to its 

baseline condition (i.e., the 40/80 time window) is plotted for all three tasks. 

Light grey bars represent the semantic task, dark grey bars the phonological 

task, and white the visual control task. 

 

 

5.4 Interim Discussion 

The results from this experiment were highly surprising. Considering the results from 

my previous rTMS experiment (Experiment 1), I expected to see effects of double-

pulse TMS on the performance in the semantic task, but not the phonological or 

control visual tasks. In contrast, double-pulse TMS delivered to the same ANG site 

that slowed performance during the semantic localization task did not lead to 

significantly longer responses in any of the time windows in the main semantic task. 

Instead, the results showed significantly longer responses between 80 and 200 

msec post-stimulus onset in the phonological task and between 200 and 240 msec 

in the visual control task. This is contrary to my previous findings that showed no 

effects of rTMS to ANG in the same phonological and control visual tasks. In 
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raised concerns that either the stimuli or the stimulation may have produced 

artifactual slowdowns in these two experiments. To investigate whether the stimuli 

used in the main task induced any non-specific TMS effects, I tested a separate 

group of participants on the main chronometric task without concurrent TMS 

(Experiment 3a). To test whether stimulation affected the performance in the main 

phonological task in any undesirable way, I tested a third group of participants on 

the main chronometric task with stimulation delivered only to the Vertex (Experiment 

3b).  

 

5.5 Experiment 3a 

5.5.1 Methods 

Participants 

 

Twelve monolingual native English speakers (8F, 4M; aged 18-32, mean = 26) 

volunteered to participate in this study. Out of those, 9 participated in the 

chronometric experiment performed in ANG. The sample size was smaller than in 

the original experiment since this was an exploratory experiment to assess the 

effects of stimuli choice and its matching on RTs in the three main tasks. None of 

the participants had any form of reading disorder according to self-reports.  

Experimental procedures 

Participants performed the main chronometric experiment. Stimuli and procedures 

were identical to those described earlier, with the only difference being that there 

was no TMS applied during the task performance. Even so, the data were analyzed 

as if there were separate TMS time windows, exactly like the original experiment. 
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5.5.2 Results 

Overall accuracy levels were reasonably high (90%) indicating that participants did 

not have any difficulty performing the tasks. When accuracy was analyzed with an 

omnibus 3  5 ANOVA with Task (Semantic, Phonological, Visual) and time 

windows (40/80, 80/120, 120/160, 160/200, 200/240) as independent factors, it 

revealed a significant main effect of Task (F(2,22) = 13.8, p < 0.001) indicating that 

the semantic task (86%) was significantly more difficult than either the phonological 

task (94%) or the visual task (91%). Neither the main effect of TMS nor its 

interaction with Task were significant (both F < 1). The accuracy levels across the 

tasks were consistent with the accuracy levels in the TMS chronometric experiment 

performed in ANG. 

The RT results are shown in Figure 5-3. An omnibus 3  5 ANOVA revealed a main 

effect of Task (F(2, 22) = 23.3, p < 0.001). It is clear from the figure that the slowest 

responses were produced in the semantic task (812 msec), followed by the 

phonological task (738 msec) and then the visual task (648 msec), each of which 

was significant different from the others (all p < 0.001, after Bonferonni correction for 

multiple comparisons). There was no significant main effect of TMS (F(4, 44) = 0.45, 

p = 0.77) or significant Task  TMS interaction (F(8, 88) = 1.05, p = 0.41). A 

comparison of RTs in later time windows to the RTs in baseline condition (40/80 

msec) for each task indicated no inhibitory effects of TMS (all t(11) < 1.5, p > 0.15). 
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Figure 5-3: RTs from the onset of the visual stimulus for each of the five time 

windows for all three tasks in the main experiment performed without TMS. 

Note the scales of the y-axes are not identical due to different RTs across the 

three tasks with visual < phonological < semantic. The solid line represents 

the baseline RTs. Error bars reflect standard error of the mean adjusted to 

correctly reflect the variance in the within-subject design (Loftus & Masson, 

1994). 
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In addition, to investigate whether RTs obtained in this experiment (mean = 733 

msec) differed from the RTs obtained in the TMS chronometric experiment 

performed in ANG (mean = 767 msec), a repeated measures 3  5 ANOVA with 2 

groups as a between-subjects factor was conducted. The analysis revealed no 

significant difference in RTs between the two experiments (F(1, 30) = 0.74, p = 0.4). 

 

5.6 Experiment 3b 

5.6.1 Methods 

Participants 

Fifteen monolingual native English speakers (9F, 6M; aged 20-31, mean = 26) 

volunteered to participate in this study. None of those participants was tested in the 

two previous experiments. The sample size was smaller than in the original 

experiment since this was an exploratory experiment to assess the effects of 

double- pulse TMS on the three main tasks used in the original experiment. None of 

the participants had any form of reading disorder according to self-reports.  

Experimental Procedures 

 

Participants performed only the main chronometric experiment – no effort was made 

to functionally localize the vertex to keep procedures parallel. Instead, the vertex 

was localized on each participant as the highest midline point between the nasion 

and the inion. Stimuli and procedures were identical to those described in the 

original experiment, with the only difference being that the stimulation was delivered 

to the vertex. The vertex was chosen as a control stimulation site because it is far 

from the reading-related brain areas and its stimulation would not be expected to 

affect performance on any of the main tasks. In addition, the vertex is commonly 

used in the TMS literature as a control site for the non-specific effects of TMS 
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caused by clicking sounds and the tapping sensation on the scalp since TMS to this 

site induces auditory and sensory artifacts such in a similar way it does during 

stimulation to other sites (Bestmann, Thilo, Sauner, Siebner, & Rothwell, 2002; 

Duncan et al., 2010; Silvanto, Cattaneo, Battelli, & Pascual-Leone, 2008). 

5.6.2 Results 

Overall accuracy levels were reasonably high (90%) indicating that participants did 

not have any difficulty performing the tasks. When accuracy was analyzed with an 

omnibus 3  5 ANOVA with Task (Semantic, Phonological, Visual) and TMS (40/80, 

80/120, 120/160, 160/200, 200/240) as independent factors, it revealed a significant 

main effect of Task (F(2, 28) = 18.8, p < 0.001) indicating that the semantic task 

(86%) was significantly more difficult than either the phonological task (93%) or the 

visual task (92%). Neither the main effect of TMS nor its interaction with Task were 

significant (both F < 1). In other words, there was no evidence that TMS affected 

accuracy in performing any of the three tasks. 

The RT results are shown in Figure 5-4. An omnibus 3  5 ANOVA revealed a main 

effect of Task (F(2, 28) = 46.8, p < 0.001). It is clear from the figure that the slowest 

responses were produced in the semantic task (899 msec), followed by the 

phonological task (784 msec) and then the visual task (650 msec), each of which 

was significant different from the others (all p < 0.001, after Bonferonni correction for 

multiple comparisons). There was also a main effect of TMS (F(4, 56) = 3.2, p = 

0.02) but its correction for multiple comparisons revealed significant difference only 

between mean RTs in the baseline (759 msec) and 160/240 (790 msec) time 

windows (p = 0.004). No significant Task  TMS interaction (F(8, 112) = 1.2, p = 

0.32) was found. A set of planned comparisons were performed to specifically 

evaluate how TMS modified RTs in the three tasks. 
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Figure 5-4: RTs from the onset of the visual stimulus for each of the five time 

windows for all three tasks in the main experiment. Note the scales of the y-

axes are not identical due to different RTs across the three tasks with visual < 

phonological < semantic. The solid line represents the baseline RTs. Error 

bars reflect standard error of the mean adjusted to correctly reflect the 

variance in the within-subject design (Loftus & Masson, 1994). * p < 0.05. 
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Overall, the data showed that TMS did not lead to significantly different RTs relative 

to the baseline condition (i.e., 40/80) in any time window except for 200/240 in the 

semantic task (+68 msec; paired t-test; t(14) = 3.7, p = 0.003) and 160/200 in the 

phonological task (+31 msec; paired t-test; t(14) = 2.4, p = 0.03).  

To investigate whether the slowdowns observed in the semantic and phonological 

tasks were functionally specific, I compared them to the TMS-effects in the other 

tasks. Figure 5-5 illustrates the difference between RTs for each time window 

relative to its baseline condition (i.e., 40/80) across all three tasks. Light grey, dark 

grey and white bars show TMS-effects for semantic, phonological and visual tasks, 

respectively. The semantic TMS-effect in the 200/240 time window was significantly 

different from the phonological (t(14) = 2.7, p = 0.02) but not visual (t(14) = 2, p = 

0.07) TMS-effects. There was no significant difference between the phonological 

TMS-effect in the 160/200 time window when compared to TMS-effect in the 

semantic task (t(14) = 0.02, p = 0.99) or the visual task (t(14) = 0.62, p = 0.55).   
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Figure 5-5: The difference between reaction times for each time window 

relative to its baseline condition (i.e., the 40/80 time window) is plotted for all 

three tasks. Light grey bars represent the semantic task, dark grey bars the 

phonological task, and white the visual control task. 

 

 

5.7 Discussion 

The aim of this study was to investigate the temporal dynamics of ANG contributions 

to semantic processing using double-pulse TMS at different time intervals during the 

first 240 msec of visual word processing. There were two main, although very 

surprising, findings: i) a main effect of TMS across tasks and ii) TMS-induced 

slowdowns in the phonological and visual tasks. It is possible that these are genuine 

findings or findings that resulted from either experimental error or noise. I can rule 

out the first possibility since the results are inconsistent with Experiment 1 (Chapter 

3). Experiments 3a-b (Chapter 4) also rule out the second possibility. I will argue 

that lack of consistency in findings suggests they are false positives. 
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It was surprising to see a main effect of TMS across tasks when the experimental 

procedures were identical to the procedures that were used in the previous chapter 

where no such a main effect was observed and the area of stimulation (ANG vs 

SMG) was the only aspect of the design that differed between the studies. The post-

hoc analysis showed that the main effect of TMS was caused by significantly slower 

responses in the 160/200 time window relative to the baseline time window (i.e., 

40/80). Indeed, RTs from each of the three tasks were numerically slower in this 

time window but their increase reached statistical significance only in the 

phonological task. Nevertheless, this effect did not replicate in the two control 

experiments that I additionally performed. In the purely behavioural experiment 

(Experiment 3a), no main effect of TMS was found. In the vertex experiment 

(Experiment 3b) there was a main effect of TMS but it was not found in the 160/200 

but 200/240 time window. In theory, unspecified interaction between the behavioural 

experiment and non-specific stimulation effects could produce a main effect of TMS 

but lack of replicability of the 160/200 effect in the vertex rules out this possibility. 

Altogether, the results suggest that the main effect of TMS observed in Experiment 

3 constitutes a false positive.  

The second surprising result was the fact that the tests of simple effects showed 

slowdowns in the phonological task (80/120 - 160/200) and also in the visual control 

task (200/240). ANG stimulation was not expected to produce effects in the 

phonological and visual tasks based on the results from the previous rTMS 

experiment (Experiment 1) in which no effects of TMS were found in these tasks 

despite using a more robust stimulation paradigm. According to the chronometric 

results presented here, TMS delivered at 80/120, 120/160, and 160/200 msec post-

stimulus onset increased RTs of the phonological decisions which is similar to the 

results previously reported for SMG stimulation (Experiment 2). This raised the 

possibility that the chronometric findings are somehow artifactual which could be 
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due to inadequate stimulus matching across time windows and/or a non-specific 

interaction between the timings of the TMS delivery and the task. The control 

experiments reported in the current chapter, however, rule out both of these 

possibilities. The first re-run of the experiment without any stimulation aimed to 

check whether the results were endemic to the basic design of the experiment. As 

one would expect, there were no significant effects of time window nor interactions, 

indicating that without TMS participants responded equally quickly across stimuli 

sets. It is also worth noting that stimuli sets were counter-balanced across 

participants so that no set of stimuli occurred solely in one time window. The second 

control experiment used chronometric TMS but delivered to the vertex, a midline 

region of superior parietal cortex not involved in visual word recognition. This 

experiment was conducted to determine whether non-specific aspects of TMS 

interacted with the task to produce slowdowns in the phonological task. Again, as 

expected, this was not the case since no effects of TMS in the phonological task 

were found. In addition, the effect of TMS in the 200/240 time window that were 

observed in the visual task were also not replicated in the control vertex experiment. 

In other words, the two control experiments provided results consistent with the 

rTMS findings presented in Experiment 1 which suggest that the current findings 

from the main experiment were actually false positives. This is further supported by 

the fact that none of the current results survived correction for multiple comparisons.   

Neither Experiment 3a nor Experiment 3b revealed the same pattern of effects as 

seen in the actual chronometric experiments. This showed that the obtained pattern 

is not systematic for the experiment because otherwise it would have been 

replicated by the two additional experiments. I conclude that the pattern of the 

effects in the current experiment is simply a result of noise which by chance 

happened to produce a similar pattern of the results to the one observed in the 

previous chronometric experiment. The reason that I am confident in reliability of the 
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chronometric results in SMG is that these results are consistent with the rTMS 

results presented in Experiment 1. In contrast, the chronometric results in ANG are 

not in line with my previous results but match rather the idea of noise. To test this 

assumption further I ran Monte Carlo simulations to assess a likelihood of obtaining 

the pattern of TMS effects in which the first three time windows in the phonological 

tasks and the final time window in the visual control task are affected without TMS 

signal but by chance in a noisy set data. The simulations were based on assigning 

random mean RTs from a normal distribution for each of the five time windows 

within the three tasks for 20 participants. The simulation involved also a comparison 

of the random mean RTs in late time windows to the random mean RTs in the 

baseline time window using paired t-tests. The whole procedure was repeated 100 

000 times (see Appendix for the code performing the sampling and calculations). It 

was demonstrated that the pattern of interest showed up randomly 8 out of 100 000 

times. Overall, the simulation demonstrated that it is possible to obtain the pattern 

as a false positive by chance.  

Finally, the lack of an effect in the semantic task was very surprising given that I 

previously showed that rTMS to ANG affected semantic processing in the same 

semantic task. The lack of TMS effects in the semantic task between 40-240 msec 

came as a surprise considering a large body of behavioural and electrophysiological 

evidence suggesting that semantic processing happens within the first 200 msec 

after word presentation (e.g., Assadollahi & Pulvermüller, 2001a, 2001b; Dambacher 

et al., 2006; Dien et al., 2003; Hauk et al., 2012; Hauk, Patterson, et al., 2006; Hauk 

et al., 2009; Rabovsky et al., 2012; G. G. Scott et al., 2008; S. C. Sereno & Rayner, 

2003; S. C. Sereno et al., 1998; Skrandies, 1998). It is, however, possible that 

semantic processing was missed in this experiment because it starts later than 200-

240 msec. This explanation of the null results is possible given that a large number 

of electrophysiological studies have associated semantic processing with the late 
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N400 component (e.g., Bentin, 1987; Franklin et al., 2007; Helenius et al., 1999; 

Holcomb & Kounios, 1990; Kutas & Hillyard, 1980a, 1980b, 1980c; Polich & 

Donchin, 1988; Van Petten & Kutas, 1990; Vartiainen et al., 2009). In addition, the 

localization data indicated that ANG contributes to the semantic task within the first 

500 msec. In combination with the main results this may suggest that semantic 

processing occurs in the second half of stimulus presentation. To test this possibility, 

a chronometric TMS experiment that provides stimulation between 240-500 msec 

would be required. 

The null results of ANG stimulation on the semantic task within the first 240 msec 

could also result from ineffective stimulation rather than its mistiming. From a 

methodological point of view, chronometric TMS is less robust than rTMS. It is clear 

from the Experiment 1 that high-frequency rTMS proved to be a robust method for 

reliable disruption of the semantic processing in both semantic category and 

synonym judgements. rTMS, however, encompasses a larger temporal window and 

most likely affected a larger ANG area due to intra-cortical spreading of stimulation 

(Pascual-Leone, 1999) than double-pulse stimulation. It could be therefore the case 

that double-pulse TMS was not strong enough to disrupt performance of the 

semantic tasks in ANG. In fact, the TMS literature has demonstrated that disrupting 

semantic processing in ANG is challenging even using more robust TMS paradigms. 

For example, Hartwigsen and colleagues (2010) did not manage to reliably disturb 

semantic processing in ANG using high-frequency on-line rTMS directly. The only 

way they managed to impair semantic processing involved a combination of low-

frequency off-line rTMS to ANG combined with high-frequency on-line rTMS to the 

anterior inferior frontal gyrus (Hartwigsen et al., in revision). This is in contrast to 

disrupting phonological processing in SMG which seems to be achievable much 

easier and has been reported by a number of different research groups (Hartwigsen, 

Baumgaertner, et al., 2010; Pattamadilok et al., 2010; L. Romero et al., 2006). 
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Difficulties in achieving robust semantic effects with TMS may result from the 

complexity of semantic processing which, in contrast to other language processes, 

involves a widely distributed neural system consisting of a large number of regions 

supporting each other in order to solve semantic problems in an intact way (Binder 

et al., 2009). A focal disruption of processing in one of those regions can be a 

particularly challenging task unless stimulation robustly affects a larger part of the 

system (e.g., Hartwigsen et al., in review; Pobric et al., 2010).  

In summary, my investigation of semantic timing in ANG remains inconclusive. The 

current experiment did not show any TMS effects on the semantic processing in 

ANG. This could result from stimulating the region before its involvement in the 

process or ineffective stimulation that failed to affect the semantic decisions 

between 40-240 msec post-stimulus onset.  
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6.  General Discussion 
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6.1 Theoretical Contributions of the Thesis and their Implications  

The first major contribution of my thesis is the finding that both SMG and ANG, two 

main IPL subregions, play important but distinct roles during reading. SMG appears 

to be involved in processing phonological aspects of words while ANG is involved in 

semantic processing. Moreover, SMG involvement happens relatively early and 

continues for a sustained period of time after the onset of the word. These findings 

have important theoretical implications for neurological models of reading.   

SMG was missing from the classical neurological model of reading (Geschwind, 

1965) although modern versions of the model (Price, 2000; Price & Mechelli, 2005; 

Pugh et al., 2000) recognize it as an important component of the reading network. 

Experiment 1 demonstrated the importance SMG in reading tasks that emphasize 

phonological processing, providing additional support for including this region in the 

neural circuitry of reading. In terms of its function, my work shows that SMG 

contributes to phonological processing, in accordance with the claims by Price and 

colleagues (Price, 2000; Price et al., 2003; Price & Mechelli, 2005; Price et al., 

1997) who associated the region with the store of universal phonological 

information. More specifically, SMG stimulation could interfere with processes 

required by verbal working memory such as covert articulation and inner speech 

monitoring. I hypothesize that SMG, together with pars opercularis and ventral 

premotor cortex, participates in a phono-articulatory loop that is critical for verbal 

working memory and plays an important role in visual word recognition.  The current 

findings do not support the claim that SMG stores grapheme-to-phoneme 

conversion rules as suggested by Pugh and Shaywitz (Pugh et al., 2000). 

My findings also reveal additional information about the temporal dynamics of SMG 

processing that can be used to further refine neurological models of reading. In 

general, information about the time course of regional information processing is 

essential for our complete understanding of a neuro-computational account of 
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reading. Unfortunately, such information has been missing from the majority of 

neurological models of reading. In defence of the classical neurological model, 

temporal information was impossible to obtain from lesion-deficit studies. Modern 

models, however, have access to temporal information from a variety of non-

invasive sources but even so, they tend to stress anatomy over timing. 

Exceptionally, Pugh and colleagues (2000) used ERP and MEG findings to describe 

the timing of information flow in their model. They argued that the “posterior circuit,” 

which encompasses SMG together with ANG and Wernicke’s area, is active 

between 200-400 msec post-word presentation (Salmelin et al., 1996; Tarkiainen et 

al., 1999). The results from Experiment 2, however, appear inconsistent with this 

claim, at least for SMG. My chronometric TMS study showed that SMG contributions 

to phonological processing began within 80-120 msec following the word 

presentation and lasted for approximately 100 msec – much earlier than the timing 

proposed by Pugh and colleagues. This may be a result of systematic timing 

differences between ERP and chronometric TMS (Corthout et al., 1999; Duncan et 

al., 2010; Walsh & Pascual-Leone, 2003) and/or reflection of more precisely 

localized temporal investigation.  

The information about temporal involvement of SMG to reading in combination with 

available data on temporal dynamics of other brain regions involved in the reading 

network and their anatomical connections can help us to understand the functional 

relationships between SMG and those regions. For instance, activation of regions 

during the same time window can be indicative of their functional connection and 

inter-regional interactivity during task performance. Considering my findings which 

showed SMG involvement to reading between 80-200 msec and findings which 

showed that the ventral occipito-temporal (Duncan et al., 2010) or inferior frontal 

regions (Wheat et al., 2010) contribute to reading during approximately the same 

time window, it can be speculated that SMG is functionally linked to these regions. 
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In fact, a number of studies have revealed functional connections between SMG and 

ventral occipito-temporal cortex (Kawabata Duncan et al., 2013; Van der Mark et al., 

2011) as well as the inferior frontal cortex (Bokde, Tagamets, Friedman, & Horwitz, 

2001; Paulesu et al., 1993; Zatorre et al., 1992). These were further supported by 

the anatomical connections existing between these regions (Catani et al., 2002; 

Catani & Jones, 2005; Martino et al., 2013; Tae Twomey, 2013). Overall, there is an 

increasing amount of evidence suggesting that the key brain regions involved in 

reading show an early and sustained activation during visual word recognition. In 

addition, they are activated around the same time window that suggests interactive 

fashion of processing between different brain areas and different levels of 

processing.  

The information about temporal dynamics of reading that I have presented above 

challenges the conventional view of a serial feedforward processing sequence for 

visual word recognition (e.g., L. Cohen et al., 2002; Dehaene et al., 2005; 

Geschwind, 1965; Kronbichler et al., 2004; Pugh et al., 2000). Instead of a simple 

progression from decoding letter forms to linking them with their phonological 

representations and then accessing semantic representations, these findings 

suggest that visual word recognition is a dynamic and highly interactive process, 

consistent with cognitive and computational models of reading (Coltheart et al., 

2001; Harm & Seidenberg, 2004; Jacobs et al., 2003; McClelland & Rumelhart, 

1981; Perry et al., 2007; Plaut et al., 1996). 

Experiment 1 also demonstrated the importance of ANG in visual word recognition, 

although Experiment 3 failed to replicate this finding with chronometric TMS. Both 

the classical and modern versions of neurological reading models include ANG in 

the reading network. My results suggest that ANG function is related to semantic 

processing of written words rather than to visual word form storage or to grapheme-

to-phoneme conversion. I speculate that the exact nature of ANG involvement in 
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semantics may be explained by two recently proposed accounts. One of them 

suggests that ANG is involved in semantic control mechanisms where it guides 

selection of relevant semantic information (Jefferies & Lambon Ralph, 2006) while 

the other one suggests that ANG is a heteromodal association region which 

integrates various types of semantic information together (Binder & Desai, 2011). 

The results in this thesis, however, did not distinguish between these different 

accounts and therefore cannot provide particular support for any of them.  

 

A Revised Neurological Model of Reading 

My findings help to further develop a neurological model of reading. Figure 6-1 

presents an updated version of the neural reading circuit. The model includes not 

only the key brain regions which are involved in reading but also the anatomical 

connections between regions and timing of regional involvement during reading.  

Regions involved in processing phonological or semantic information are shown in 

yellow and red, respectively. The orange area is a visual extrastriate region involved 

in the processing of visual form. In the model, visual information proceeds from the 

middle occipital gyrus (MOG) dorsally to SMG and ANG via the superior longitudinal 

fasciculus (SLF) and ventrally to the ventral occipito-temporal cortex (vOT) via the 

inferior longitudinal fasciculus (ILF). MOG projects to SMG and vOT in parallel and 

serves as an indirect functional connection between the two regions. The third 

branch of the SLF also links SMG to pars opercularis (POp) and ventral premotor 

cortex (PMv) and provides the anatomical substrates for phonological processing of 

written words. ANG, on the other hand, is directly connected to vOT via the vertical 

occipital fasciculus (VOF) and indirectly to pars orbitalis (POr) through the anterior 

temporal lobe (ATL) via the middle longitudinal fasciculus (MLF) and the uncinate 

fasciculus (UF). These regions contribute to the semantic processing of written 

words. All of this cortico-cortical information flow is bi-directional enabling inter-
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regional interactivity of information processing and is illustrated by the large overlap 

of regional time-windows during their involvement in reading.  

 

 

 

 

Figure 6-1: Revised neurological model of reading. Anatomical pathways are 

shown in with solid black lines. Double arrowheads indicate bi-directional 

information flow. Abbreviations of the brain regions: MOG = middle occipital 

gyrus; ANG = angular gyrus; SMG = supramarginal gyrus; PMv = ventral 

premotor cortex; POp = pars opercularis; POr = pars orbitalis; vOT = ventral 

occipito-temporal region; ATC = anterior temporal cortex. Abbreviations of the 

anatomical pathways: SLF = superior longitudinal fasciculus; MLF = middle 

longitudinal fasciculus; VOF = vertical occipital fasciculus; ILF = inferior 

longitudinal fasciculus; UF = uncinate fasciculus. 
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6.2 Methodological Contributions of the Thesis and their Implications 

The second major contribution of this thesis is a better understanding of the efficacy 

of fMRI-based and TMS-based functional localization for TMS. My work 

demonstrates that fMRI is not the only viable method for functional localization; TMS 

can be equally successful in identifying stimulation targets that produce robust 

results. Indeed, both methods provide the same level of effectiveness – and neither 

is 100%. These findings have very important implications. Functional localization of 

TMS testing sites is an important component of successful TMS experiments 

because by accounting for individual differences in functional anatomy one gains 

improvements in statistical sensitivity, efficient designs, and increased safety. 

It is clear that one-size-fits-all approaches to TMS targeting may be successful at a 

group level, but only on average with a significant portion of individuals not showing 

the group effect (Sack et al., 2009). In other words, there is a considerable variability 

between subjects resulting in reduced statistical power for finding an effect of TMS. 

An fMRI- or TMS-based localization procedure reduces inter-subject variability by 

significantly increasing the number of participants who show an effect of TMS and 

dramatically increasing statistical sensitivity. A consequence of this increased 

sensitivity is that smaller sample sizes are needed to gain statistically significant 

results than experiments that localize based on the 10-20 electrode system, 

standard space stereotactic coordinates, or even individual MRI-based anatomy. By 

reducing inter-subject variability, it is possible to maintain statistical sensitivity with 

smaller number of participants resulting in more efficient designs. This has the 

added benefit of increasing safety since it automatically decreases the likelihood of 

an adverse reaction to TMS within the experiment.  

Contrary to the popular view that fMRI-based localization is the gold-standard for 

accurate functional localization, my results show that there is a choice of highly 

accurate methods; fMRI is just one option. fMRI is resource-intensive both in terms 
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of the financial costs of scanner time and the person-hours required to acquire and 

analyse the data. TMS-based functional localization provides a cheaper alternative 

with comparable effectiveness. This information is particularly important for 

researchers who plan cognitive tests with TMS but do not have access to an MRI 

scanner. The current findings demonstrate that an entire TMS experiment may be 

performed efficiently using just one TMS machine.  

Finally, using the same method (i.e., TMS) throughout the experiment reduces 

safety risks. For instance, using fMRI as a localization method provides an 

additional and different set of safety factors that must be account for. Participants 

who are safe to receive TMS do not have to be excluded because they do not meet 

MRI safety requirements. In summary, the demonstration that both fMRI- and TMS-

based functional localization produce comparable accuracy for targeting TMS offers 

a number of practical advantages when designing and implementing future TMS 

experiments.  

 

6.3 Future Directions 

This work has provided novel information that helps to refine and develop the 

neurological model of reading. Nevertheless, the criticisms of the classical model 

still apply. For instance, current models (including Figure 6-1) remain focused on the 

left hemisphere and largely ignore the fact that the right hemisphere also contributes 

to reading (Demonet et al., 1994; Hartwigsen, Baumgaertner, et al., 2010; 

Hartwigsen, Price, et al., 2010; Kinsbourne & Warrington, 1962; Mion et al., 2010; 

Ornstein, Herron, Johnstone, & Swencionis, 1979; Price et al., 1997). In addition, 

subcortical brain structures are missing from these models despite their undoubted 

contributions (Binder, Medler, et al., 2005; Bookheimer et al., 1995; Booth et al., 

2007; S. H. Chen & Desmond, 2005; Herbster et al., 1997; Price et al., 1997). Our 
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understanding of the functional contributions of individual regions lacks neuro-

computational sophistication and we still need more information about the temporal 

dynamics of individual regional contributions in order to understand the dynamic 

distribution of processing throughout the system. Continuing from my work, the 

following investigations could inform the model further.  

First of all, establishing the temporal dynamics of ANG contributions to reading 

would be of a great value. This information would complete our understanding of a 

temporal relationship between phonological and semantic processing within the left 

IPL and also would provide more insight into functional associations between ANG 

and other brain regions involved in semantic processing. To investigate the timing of 

ANG involvement in semantic processing, revised versions of my chronometric TMS 

experiment could be created. If it is the case that semantic processing is happening 

later than 200-240 msec post-word presentation, then application of double-pulse 

TMS in time windows between 240-500 msec should reveal the time of semantic 

activity in ANG. If, however, double-pulse TMS lacked in power to affect semantic 

processing in ANG between 40-240 msec then potentially re-running this experiment 

with increased stimulation intensity or sample size and/or using an easier semantic 

task could be a way to achieve meaningful results in the first 240 msec of word 

processing. In addition, since there is some evidence that the right SMG also 

contributes to reading (Hartwigsen, Baumgaertner, et al., 2010), it would be worth 

using my paradigms to test whether the right SMG and ANG contribute to reading in 

the same way as their homologues in the left hemisphere and if so, what is the 

temporal dynamics of this contribution? A systematic investigation of the right IPL 

would not only allow us to recognize some regions in the right hemisphere that 

should be included in the reading model but also it would improve our understanding 

of the functional dynamics between the two hemispheres during reading.   
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Another step could involve a systematic investigation of temporal involvement of 

Broca’s area to phonological and semantic processing during visual word 

recognition with chronometric TMS. Previously, Gough and colleagues (2005) 

demonstrated that TMS to anterior (i.e., POr) and posterior (i.e., POp) portions of 

this region selectively interfered with semantic and phonological processing, 

respectively. Devlin and colleagues (2003) used single-pulse TMS in pars 

triangularis to show that this region was involved in semantic processing at 250 

msec post-stimulus onset but this information needs to be replicated especially in 

light of more recent evidence that activation in Broca’s area during reading tasks 

starts much earlier than 250 msec (Cornelissen et al., 2009; Pammer et al., 2004; 

Wheat et al., 2010). A chronometric TMS experiment, similar to mine, could be used 

to selectively test the temporal dynamics of POr and POp contributions to reading. 

These tests with TMS could be also performed in the right hemisphere homologue 

to Broca’s area.  

In addition, the pattern of functional division within the left Broca’s area during visual 

word recognition appears to be similar to the division of labour that I found in the left 

IPL. It seems, therefore, very likely that Broca’s area and IPL are part of the same 

neural circuitry that would be essential for a fuller understanding of the reading 

process. First, establishing whether there are distinct anatomical pathways linking 

the anterior and posterior parts of Broca’s area to ANG and SMG, respectively, 

would be valuable. Existing DTI tractography studies (Binney, Parker, & Lambon 

Ralph, 2012; Catani & Jones, 2005; Frey, Campbell, Pike, & Petrides, 2008; Parker 

et al., 2005; Rilling et al., 2008; Saur et al., 2008) suggest this is probably the case 

but they are not entirely convincing because they lack evidence of functional 

relevance. A combination of rTMS and PET (e.g., Fox et al., 1997; Paus et al., 

1997), however, would help to establish this anatomical and functional connectivity 

more firmly.  
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Finally, it would be useful to investigate physiological connectivity between the 

regions using the paired-pulse TMS technique pioneered by (Civardi, Cantello, 

Asselman, & Rothwell, 2001). Although successfully applied in the motor system, 

this approach has not yet been used for cognitive tasks. There is, however, no 

obvious reason why this technique could not be used in cognitive neuroscience. In 

brief, paired-pulse TMS could provide a direct measure of physiological connectivity 

between regions by demonstrating that a conditioning pulse delivered to a distant, 

but connected region, changes the effects of the test pulse delivered to a putatively 

connected region. Such investigation would provide more insight into functional 

physiology of regions involved in reading. 

 

6.4 Summary 

In summary, my findings contribute to our understanding of neuroanatomy of 

reading in two different ways. First, they help to clarify the functional contributions of 

two major subregions of IPL, namely SMG and ANG, to reading. Second, they 

introduce novel temporal information about SMG processing dynamics. Both these 

findings can be used to refine the neurological model of reading.  In addition, my 

findings also provide a significant methodological contribution which will help to 

design the future TMS experiment and improve their safety.    
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Appendix 1 

1. Script performing Monte Carlo simulations. 
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Appendix 2 

Table 1: Word pairs used in the rhyme judgement task. 

 

YES Trials NO Trials 

  
theme - beam  
  
spade - aid  
 
guitar - cigar  
  
harp - carp  
  
take - snake  
  
queen - green 
 
door - shore  
  
flower - hour  
  
sphere - near  
  
pistol - crystal   
 
tie - cry  
   
blue - who  
  
table - stable  
  
hair - where  
  
flute - fruit  
  
walk - chalk  
  
late - weight  
  
broom - tomb  
  
put - soot  
   
right - night  
  
style - pile  
  
pot - yacht   
 
wheat - treat 
   

  
pocket - wrong   
 
warn - barn    
 
tree - bite   
  
relax - relapse   
 
snort - well    
 
core - seen   
 
cow - snow    
 
skull - full   
  
pest - peat 
 
phone - boar    
 
glass - born    
 
play - grape    
 
gown - own    
 
said - raid  
 
dancer - long    
 
have - grave 
 
slug - muck    
 
paper - water    
 
move - love    
 
height - eight    
 
farm - warm    
 
bee - hope   
 
sour - your 
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dial - tile 
    
turn - learn  
  
lace - case  
  
hear - year  
  
apple - chapel   
 
cope - soap  
  
write - might  
  
smear - pier  
  
grass - pass  
  
term - germ 
 
shed - bread  
 
grate - bait  
 
rope - pope  
 
clock - rock  
 
freight - plate  
  
made - blade  
  
place - race  
  
razor - laser  
  
shears - ears  
  
raw - saw  
   
sword - hoard   
 
toast - most  
  
doll - fall  
   
bleach - speech 
  
cake - break  
 
spoon - prune  
  
home - foam  
  
wall - call  

dusk - copper  
 
fountain - curtain  
 
hunter - jumper  
 
wash - flash    
 
work - pork   
 
angle - angel   
 
egg - pen   
  
folder - elder    
 
dart - quart  
 
mare - game    
 
tap - fuse   
  
vow - tow   
  
sue - whip    
 
one - bright    
 
heart - cover   
 
cold - colt    
 
pint - hint   
  
peach - leg  
 
chin - kit   
  
load - voice    
 
couch - touch  
 
citadel - citation  
  
rocket - lung    
 
wand - sand    
 
bear - rear  
 
ease - lease    
 
cost - post   
  
puddle - hood    
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sun - none  
   
slide - guide  
  
knee - sea   
 
reap - heap  
   
flannel - panel  
  
lone - stone  
  
glue - zoo  
   
kite - white  
   
board - lord  
   
hose - clothes  
  
pane - vein  
   
priest - beast  
  
note - moat  
 
loan - zone  
  
thief - brief  
   
wire - tyre  
   
tooth - booth  
  
smoke - joke  
  
fair - glare  
   
crawl - hall  
   
chain - plane  
  
noun - town  
   
lice - nice  
   
teeth - sheath  
  
coat - vote  
   
laugh - calf  
   
would - good  
  

 
tray - slat   
  
shoot - tape    
 
down - known    
 
bowl - silk   
  
crew - lane   
  
soil - foal   
  
futon - button  
 
earn - dip   
  
wool - tool   
  
before - beware  
  
dove - stove    
 
trim - show   
  
pail - fray   
   
border - organ    
 
veal - base   
  
vain - role   
  
cast - cart   
  
filter - fault    
 
south - youth    
 
rain - used   
  
worm - storm    
 
ink - mint   
  
shown - crown    
 
clamp - rant   
  
baton - matter    
 
wrap - sing   
  
jute - fluke   
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ladle - cradle  
  
lard - card 

salon - melon    
 
stack - ramp 
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Table 2: Word pairs used in the semantic category judgement task. 

 

YES Trials NO Trials 

  
hoe - rake  
       
tulip - daisy  
       
ankle - elbow  
  
square - triangle 
   
moon - planet  
  
steel - brass  
  
funeral - corpse 
   
referee - match 
   
dirt - dust  
   
team - coach  
  
dinner - lunch  
  
clam - oyster  
  
whisky - brandy 
   
lamb - chicken  
  
haddock - herring 
   
morning -  evening 
 
sight - taste  
       
beach - coast  
  
painter - portrait 
   
mist - fog  
   
cube - square 
 
milk - cheese  
  
went - go  
   
summer - winter 
 
 

 
blouse - needle 
   
fleet - pearl  
   
powder - branch 
   
steam - valley  
  
collar - wheel  
  
balloon - protest 
   
blanket - channel 
   
autumn - soccer 
   
history - canteen 
   
wife - book  
   
iron - horn  
   
seat - yard  
   
maple - spray  
  
spot - dark  
   
eagle - mayor  
  
brother - sneeze 
 
corridor - doughnut 
   
contract - umbrella 
   
cells - frame  
  
army - bird  
   
barrel - jelly  
   
lemon - sleeve  
  
store - clown  
  
drug - ring 
 
 



  

250 
 

skirt - shirt  
   
west - east  
   
five - nine  
   
boss - leader  
  
pot - pan  
   
teacher - school 
   
light - dark  
   
chop - slice 
 
foxtrot - waltz  
  
robin - pigeon  
  
drums - piano  
  
slow - quick  
   
magician - wizard 
   
boat - ferry  
   
bracelet - necklace 
    
tornado - typhoon 
   
pestle - mortar   
 
ash - flame  
   
tennis - hockey 
   
lace - sole  
   
verb - adverb  
  
hospital - patient 
   
lung - liver  
   
tale - story  
 
boy - man    
      
nail - bolt  
   
inch - mile  
   
paint - draw  

walnut - bullet  
  
soldier - pudding 
   
machine - mustard 
   
veil - deck  
   
ribbon - china   
 
medal - nurse  
  
rusty - shell  
   
wolf - coil  
 
fan - jar  
   
tailor - cheek  
  
trash - lunch  
  
cottage - weather 
   
magnet - carpet 
   
flood - floor  
   
sponge - closet 
   
banker - spider 
   
envelope - library 
   
shovel - shower 
   
factory - sparrow 
   
desk - straw  
  
napkin - ticket  
  
window - camera 
   
spear - spark  
  
drizzle - passage  
 
riddle - anchor  
  
train - duck  
   
grocer - monkey 
   
helmet - mirror  
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onion - carrot  
  
stool - chair  
   
dog - cat  
   
carbon - oxygen 
   
boots - sandals 
   
lime - lemon  
  
pillow - sheet  
  
elm - oak  
   
pencil - ruler  
  
beans - peas  
  
tiger - leopard  
  
lettuce - spinach 
 
birch - willow   
   
cent - penny  
  
hat - cap  
   
linen - velvet  
  
judge - court  
  
comedy - horror 
   
yellow - red  
   
mosque - church 
   
music - sound  
  
thief - robber  
  
vodka - beer  
  
minute - second 
   
pond - ocean  
  
cherry - apricot 
   
fuel - coal  
   

  
office - officer  
  
jam - bin  
   
purse - graph  
  
cancer - island  
  
hotel - driver  
  
vehicle - toaster 
   
test - frog  
    
tribe - waist  
   
money - aisle  
  
poetry - wallet   
  
juice - nerve  
  
parade - rubber  
 
empire - injury  
  
nest - band  
   
master - market 
   
economy - bacteria 
   
shepherd - platform 
  
earth - woman  
  
belt - face  
   
saint - blind  
   
wreck - glove  
  
drum - aunt  
   
string - resort  
  
engine - temple 
   
essay - metal  
  
stain - arrow  
   
tourist - slipper 
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wheat - maize   
 
 
 

atom - club  
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Table 3: Word pairs used in the homophone judgement task. 

 

YES Trials NO Trials 

  
bear - bare  
   
tyre - tire  
   
ode - owed  
   
road - rode  
   
rote - wrote  
   
berry - bury  
   
cue - queue  
   
bite - byte  
   
raise - rays  
   
rain - reign  
   
muscle - mussel 
   
wrap - rap  
   
hour  - our  
   
great - grate  
  
foul - fowl  
   
sweet - suite   
 
mode - mowed 
   
heel - heal  
  
fair - fare  
   
sew - sow  
   
hear - here  
   
jeans - genes  
  
allowed - aloud  
 
ware - wear 
 
 

 
seed - soot  
   
accordion - accordance
   
lad - lid   
  
petal - pebble  
  
butter - button  
  
blood - blush  
  
prince - print  
  
liar - lair  
   
mother - mutter 
   
please - pliers  
  
sausage - sauces 
   
cleaver - clover 
   
moose - mouse 
   
trombone - trumpet 
   
pillow - plough  
  
buckle - bubble 
   
poster - plaster 
   
sentiment - sensitive  
 
navel - novel  
  
mall - mole  
   
kitten - knitting  
  
building - bullring 
   
vision - villain  
  
map - mop 
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ate - eight  
   
way - weigh  
  
rye - wry  
   
would - wood  
  
doe - dough  
  
sail - sale  
   
beach - beech  
  
board - bored  
  
sole - soul  
   
pray - prey  
   
pain - pane  
   
him - hymn  
   
knows - nose  
  
ceiling - sealing 
   
nay - neigh  
   
key - quay  
   
baize - bays  
  
brake - break  
  
draft - draught  
  
beet - beat  
   
cereal - serial  
  
links - lynx  
   
throne - thrown 
   
ail - ale   
  
guise - guys  
  
toe - tow   
 

 
hammer - hamster 
   
pound - pounce 
   
pint - pine  
   
border - bother 
   
liquid - liquor  
  
miner - mile  
   
honey - hunter  
  
forest - frost  
  
console - council 
   
shot - shop  
   
goddess - goodness 
  
lather - leather  
  
garden - guarded 
   
banana - banner 
   
pole - polo  
   
soup - supper  
  
diary - dairy  
  
jury - duty  
   
coffee - coffin  
  
ask - axe  
   
projector - projectile 
  
circle - circus  
  
filter  - fillet  
   
weed - weir  
   
harbour - harvest 
   
bottle - battle   
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Table 4: Word pairs used in the synonym judgement task. 

 

YES Trials NO Trials 

 
king - monarch 
   
certain - sure  
  
menace - threat 
   
cargo - freight  
  
lobby - foyer  
  
visitor - guest   
 
holiday - vacation 
   
snake - serpent 
   
absent - missing 
   
physician - doctor 
   
champion - hero 
   
hint - clue  
   
child - kid  
   
bucket - pail  
  
choir - chorus  
  
belly - abdomen 
   
films - movies  
  
stairs - steps  
  
gift - present  
  
punishment - penalty 
  
dwelling - abode 
   
country - nation 
   
prison - jail  
   
wrath - anger 
 
 

 
coin - gold  
   
canal - stream  
  
sheep - wool  
  
garlic - sage  
  
file - nail  
   
key - door  
   
fence - gate  
   
comb - razor  
  
moth - fly  
   
socket - plug  
  
cigar - pipe  
   
college - vow  
  
beef  - pork  
   
spoon - fork  
   
satin - silk  
   
copper - lead  
  
bone - joint  
   
otter - seal  
   
sugar - salt  
   
mail - letter  
   
pen - ink  
   
gravel - sand  
  
text - journal  
  
candle - grave  
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staff - personnel 
   
identical - same 
   
cry - weep  
   
poison - venom 
   
brawl - quarrel  
  
enemy - foe  
   
criminal - felon  
  
task - job  
   
enigma - mystery 
   
baby - infant  
  
pony - mule  
   
car - automobile 
   
dress - frock  
  
couch - sofa  
  
student - pupil  
  
writer - author  
  
outcome - effect 
   
bomb - explosive 
   
biscuit - cookie 
   
imitate - copy  
  
fabric - cloth  
  
devil - demon  
  
trip - journey  
  
lift - elevator  
  
satchel - bag  
  
lawyer - attorney 
  

 
cloud - sky  
   
cake - pie  
   
bulb - lamp  
   
cliff - cave  
   
bank - note  
   
ice - drink  
   
tree - bush  
   
reply - answer  
  
river - bridge  
  
jug - bottle  
   
orange - apple  
  
wall - brick  
   
leg - foot  
   
stove - kettle  
  
soap - cream  
  
meadow - hay  
  
luck - hope  
   
wine - grape  
  
wax - candle  
  
cup - plate  
  
pride - boast  
  
stem - leaf  
   
mug - saucer  
  
vase - urn  
   
boxes - jars  
   
fairy - ghost   

 



  

257 
 

Table 5: Word pairs used in the consonant letter string matching task. 

 

YES Trials NO Trials 

 
zkjdf - zkjdf  
   
brdqf - brdqf  
  
ghjkl - ghjkl  
   
cmxdy - cmxdy 
   
spnkl - spnkl  
  
jbnhc - jbnhc  
  
pgvcz - pgvcz  
  
slmdf - slmdf  
  
tcbfr - tcbfr  
   
dwgly - dwgly  
  
plfsk - plfsk  
   
jqzfc - jqzfc  
   
qlgpk - qlgpk  
  
svwrb - svwrb  
  
xzymd - xzymd 
   
sjwzb - sjwzb  
  
dxstw - dxstw  
  
msxqr - msxqr  
  
lbmkp - lbmkp  
  
nctbv - nctbv  
  
brwhc - brwhc  
  
jpmzf - jpmzf  
  
jxmrg - jxmrg  
  
wrgxp - wrgxp   
 
 

 
zxhqt - zsdyt  
  
brzcw - bdfhw  
  
sdyxk - snmqk  
  
gvncl - grwhl  
  
vklcb - vwtsb  
  
lrpgy - lcbfy  
   
ydqvt - ycsjt  
   
gzchn - gxdvn  
  
fljyt - fwrpt  
   
tdfhv - tjrqv  
   
zdwqb - zvknb  
  
fdnsc - fmrlc  
  
zqlpm - zvswm 
   
scjyw - shlqw  
  
mzscv - mxwpv 
   
ncsjx - npkhx  
  
bnqft - bxhjt  
   
qxlmj - qdgbj  
  
pjrqg - pszcg  
  
lvkpj  - lznyj  
   
lmqwn - lbxpn  
  
ytcsd - yspmd  
  
xhjyh - xlfsh  
   
chrzd - cnlqd  
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mxjyt - mxjyt  
  
fglqn - fglqn  
   
tdkyt - tdkyt  
   
dvpxy - dvpxy  
  
khgjp - khgjp  
  
cpyxk - cpyxk  
  
nlhjd - nlhjd  
   
fxdvc - fxdvc  
  
ywqzv - ywqzv  
  
jlxjd - jlxjd  
   
vfzpl - vfzpl  
   
pdzct - pdzct  
  
ryqxp - ryqxp  
  
rszdw - rszdw  
  
bjklp - bjklp  
   
xtvkn - xtvkn  
  
shqwy - shqwy 
   
zqpty - zqpty  
  
vgbgx - vgbgx  
  
dsfwq - dsfwq  
  
fwtsp - fwtsp  
  
wrdmb - wrdmb 
   
nzbgl - nzbgl 
 
htrcv - htrcv 
 
fmbvc - fmbvc 
 
wcthz - wcthz 

 
tcgpk - thplk  
  
jydmb - jbrwb  
  
xwpdv - xlkgv  
  
kxtmq - kfwtq  
  
vsknc - vjdlc  
  
zhlqd - zcjyd  
  
cplhj - cyxkj  
   
bztgj - bwrcj  
  
nmbsh - nbylh  
  
kbylx - kmhbx  
  
zpjft - zpgtt  
   
rctgp - rhqkp  
  
nswpm - nbmkm 
   
zbxpm - zmqwm 
   
fmvrt - fhgjt  
   
rqvfw - rjxmw  
  
splqn - scgpn  
  
vswkb - vdngb  
  
ednhj - evpxj  
  
lkgmn - lrqvn  
  
dngtr - dzqlr  
  
wyznq - wrysq  
  
bxgwf - bnwvf  
  
dsvcz - dhplz  
  
mfrqp - mwcrd  
  
kgbch - kcrpt  
  
   

 


