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Abstract: A two-step estimation method of stochastic volatility models is proposed: In the

�rst step, we nonparametrically estimate the (unobserved) instantaneous volatility process. In the

second step, standard estimation methods for fully observed di¤usion processes are employed, but

with the �ltered/estimated volatility process replacing the latent process. Our estimation strategy is

applicable to both parametric and nonparametric stochastic volatility models, and can handle both

jumps and market microstructure noise. The resulting estimators of the stochastic volatility model

will carry additional biases and variances due to the �rst-step estimation, but under regularity

conditions we show that these vanish asymptotically and our estimators inherit the asymptotic

properties of the infeasible estimators based on observations of the volatility process. A simulation

study examines the �nite-sample properties of the proposed estimators.
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parametric.
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1 Introduction

We propose a general estimation strategy for SV jump-di¤usion models that combines a simple,

model-free realized volatility estimator with the additional structure imposed by the Markov di¤u-

sion model of the volatility process. The resulting estimators are simple to implement and require

little, if any, numerical optimization. The estimation strategy allows for both nonparametric and

fully parametric speci�cations of the SV model, and as such is very �exible. The estimation method

proceeds in two steps: First, a nonparametric estimator of the spot (or instantaneous) volatility is

computed. Second, the spot volatility estimator is plugged into a given existing estimation method

for fully observed di¤usion models.

The �rst step takes as input a given spot volatility estimator: A number of spot volatility es-

timators have been proposed in the literature such as Fan and Wang (2008), Kristensen (2010a),

Ho¤man, Munk and Schmidt-Hieber (2012), Malliavin and Mancino (2002, 2009), Mancini, Mat-

tiussi and Renò (2012), and Zu and Boswijk (2014), amongst others. We do not restrict ourselves

to a speci�c volatility estimator, and allow for a broad class of spot volatility estimators to be

employed in our two-step procedure. In the second step, the volatility model is estimated taking

as input the chosen spot volatility estimator. We here consider two leading volatility models with

associated estimators: First, we consider a nonparametric Markov model for the volatility with

associated kernel estimators as proposed by Bandi and Phillips (2003). As a second example, we

analyze (semi-) parametric Markov models with associated least-squares estimators akin to the

ones proposed in Prakasa Rao (1988) or Bandi and Phillips (2007). The asymptotic theory that

we develop assumes that the volatility process contains no jump component. However, we show

how the estimators can be modi�ed to handle jumps in volatility and discuss how our theory can

be extended to cover this case.

We show consistency and asymptotic normality for both the nonparametric and parametric

two-step estimators of the underlying volatility model. In the nonparametric case, our two-stage

estimation problem is similar to the one considered in Sperlich (2009) where kernel regression with

generated regressors is considered; see also Newey, Powell and Vella (1999), Xiao, Linton, Carroll

and Mammen (2003) and Mammen, Rothe and Schienle (2012). The parametric estimators can

be seen as a two-step semiparametric estimation procedure, where a parametric estimator relies

on a preliminary nonparametric estimator; see e.g. Kristensen (2010b) and Mammen, Rothe and

Schienle (2013).

The asymptotic properties of the two-step estimators are established under regularity conditions

with a key condition being that the �rst-step spot volatility estimator is uniformly consistent over

a growing time span with a known convergence rate. This is a high-level assumption that needs to

be veri�ed for the particular spot volatility estimator being employed. We verify this condition for

three particular spot volatility estimators that are consistent under di¤erent scenarios as described

below. In all three cases, the proof of uniform consistency is technically demanding due to two

properties of the object of interest, the realized sample path of the latent volatility process: First,

it is not smooth, and second it is potentially unbounded as time diverges. This is in contrast to
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standard nonparametric estimation problems (e.g. density and regression estimation), and we have

to use some novel theoretical techniques in order to establish uniform rate results over an expanding

time interval, including a new result on the global modulus of continuity of stochastic processes.

Four scenarios are considered in the �rst-step spot volatility estimation: First, the ideal situation

where log-prices are observed without market microstructure noise and do not contain jumps. In

this case, the kernel-based estimator proposed in Kristensen (2010a) is consistent, and we extend

Kristensen�s rate results to allow for an expanding time span. Second, noise is introduced and we

propose a novel spot volatility estimator based on pre-averaging, similar to Podolskij and Vetter

(2009a,b), to handle this case, and derive its uniform rate. Next, we consider the case where jumps,

but no noise, are present, and we derive the rate of a kernel-weighted version of the threshold

estimator of Mancini (2009). Finally, by combining the estimation strategies from the second and

third scenario, we develop a jump and noise-robust spot volatility estimator; the analysis of this

estimator proves to be quite complex, and so we do not provide a complete asymptotic theory for

this. The estimators in the second and fourth scenarios are both novel, and the uniform rate results

of all estimators are new contributions to the literature, and so should be of independent interest.

Our estimators rely on certain nuisance parameters that need to be chosen in the implemen-

tation. In particular, bandwidths have to be chosen in the estimation of the spot volatility. Our

theoretical results o¤er some guidance regarding how this and other parameters should be chosen.

Based on these, we discuss in some detail how the estimators can be implemented in practice. We

also investigate the �nite-sample performance of our estimators through a simulation study with

particular emphasis on their sensitivity towards the choice of nuisance parameters. We �nd that

the estimators are quite robust and fairly precise for reasonable sample sizes.

Within the class of parametric Markov SV models, a number of di¤erent estimation methods

exist. If only low-frequency data is available, the estimation problem is hard due to the volatility

process being latent. In a few speci�c examples, one can derive analytical expressions of certain

moment functions and use these in the estimation (Chacko and Viceira, 2003), but in general nu-

merical methods need to be used to deal with the latent variable problem (see e.g. Altissimo and

Mele, 2009, Andersen and Lund, 1997; Gallant et al.,1997). In the case where high-frequency data is

available, a number of studies have proposed to estimate parametric SV models by matching certain

conditional moments of the integrated volatility with their estimated ones using GMM-type meth-

ods. Examples of this approach are Barndor¤-Nielsen and Shephard (2001), Bollerslev and Zhou

(2002), Corradi and Distaso (2006), Creel and Kristensen (2014) and Todorov (2009). However, in

general, closed form expressions of the moments are not available, and as a result these estimation

strategies will in general require the use of simulation-based or other computationally burdensome

methods. We also note that the extension of these methods to nonparametric estimation of SV

models is not obvious.

In related studies, Comte, Genon-Catalot and Rozenholc (2009), Renò (2006, 2008) and Bandi

and Renò (2009) propose estimators similar to ours, but they only consider nonparametric volatil-

ity models and do not necessarily provide a complete asymptotic theory. In particular, uniform

consistency (and its rate) of the �rst-step spot volatility estimator over a growing time interval is
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not established. Comte et al. (2009) assume that the integrated volatility is observable (if their

setting is read in the context of the volatility estimation), while Renò (2006) only provides simula-

tion results. Renò (2008) only establishes consistency of his spot volatility estimator over a �xed

time interval, and so can only show results for the estimation of the di¤usion coe¢ cient of the

volatility model. Furthermore, this consistency result relies on some strong assumptions on the

model, including compact support of the volatility process, thereby ruling out all standard models

found in the literature. Bandi and Renò (2009) avoid some of these issues by imposing certain

high-level assumptions on the volatility process, but these seem di¢ cult to verify in practice. On

the other hand, their framework is more general than ours in that they allow for the presence of

jumps in the volatility process.

The rest of the paper is organized as follows: In the next section, we outline our proposed

estimation method for the nonparametric and fully parametric case. In Section 3, uniform rates of

three di¤erent spot volatility estimators are derived under regularity conditions. These rate results

are then employed in Sections 4 and 5 to establish the asymptotic properties of the estimators of

SV model in a nonparametric and parametric setting, respectively. The practical implementation of

the estimator is discussed in Section 7. The results of a simulation study investigating �nite-sample

properties of our estimators are presented in Section 8. Section 9 concludes. Proofs of theorems

and lemmas have been collected in Appendices A and B, respectively, while tables and �gures

can be found in Appendices C and D, respectively. Some details of proofs are provided online at

Cambridge Journals Online (journals.cambridge.org/ect) in supplementary material to this article.

We use the following notations throughout: The symbols P! and d! denote convergence in prob-

ability and distribution, respectively. The abbreviation a.s. is for "almost surely." The transpose

of a vector or matrix A is denoted AF. For a vector or matrix B = [bi;j ], kBk denotes
P

i;j jbi;j j.
For de�nitional equations, we use the notations: C := D and E =: F , where the former means that

C is de�ned by D, and the latter means that E is de�ned by F .

2 A General Estimation Method for SV Models

Let fXtg := fXt : t � 0g be a semimartingale that is a càdlàg solution to(
dXt = �tdt+ �tdWt + dJt

d�2t = �(�2t )dt+ �(�
2
t )dZt

; (2.1)

where fWtg and fZtg are two (possibly correlated) standard Brownian motions (BM�s), while f�tg
and f�tg are adapted, càdlàg stochastic processes. The process

�
�2t
	
is usually referred to as the

(spot) volatility process of fXtg, while f�tg is the drift process. The process fJtg is a pure-jump
càdlàg process with �nite jump activities (i.e., the number of jump occurrences in any �nite time

interval is �nite). Given the �nite-jump-activity assumption, we can write Jt =
PNt

j=1 �j , where Nt

is the jump arrival process and �j , j = 1; 2; :::, are the jump sizes. The second part of the model in

eq. (2.1), stating the dynamics of the volatility process, is referred to as a stochastic volatility (SV)
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model, and restricts the volatility process to be a Markov di¤usion process. We discuss in Section

6 how our results can be extended to the case where the volatility process is a jump-di¤usion.

We consider two di¤erent sampling scenarios: Either we have directly observed Xt at discrete

time points t1; :::; tn, or only noise-contaminated observations of the process are available due to,

for example, market microstructure. In the latter case, we only have observed Y1; :::; Yn where

Yi = Xti + "i (i = 1; ::::; n) and f"ig are the measurement errors. For notational simplicity, we will
throughout assume that equidistant observations are available so that the time distance between

observations is constant, � = ti � ti�1; all the subsequent results still hold with non-equidistant

observations with � now being the maximum time distance in the sample.

Given observations of Xt (or the noise-contaminated version of it) at discrete time points, we

wish to draw inference about the drift and di¤usion terms of the underlying SV model, � (�) and
�2 (�). Since we have not observed the process

�
�2t
	
, the estimation of these two terms involves

a latent stochastic process which we need to learn about from data. To motivate our estimators,

consider for the moment the counter-factual situation where
�
�2t
	
has been observed at discrete time

points. In this case, fully nonparametric kernel estimators of � (�) and �2 (�) have been developed in
Bandi and Phillips (2003), Florens-Zmirou (1993) and Jiang and Knight (1997) amongst others. If

parametric forms for drift and/or volatility are speci�ed, a number of estimators o¤er themselves;

see, for example, Florens-Zmirou (1989), Jacod (2006), Sørensen (2009) and Yoshida (1992).

Now, let us return to the actual situation where the volatility is unobserved, in which case all of

the above estimators of � (�) and �2 (�) are infeasible. Instead, we here suggest a two-step procedure,
where in the �rst step an estimator of the spot volatility is obtained from data which we denote ~�2� ,

� � 0. This could, for example, be any of the estimators proposed in the literature which we cited
in the Introduction. We can compute ~�2� at any given value of � ; in particular, we can evaluate it

at a given set of discrete time points � j , j = 1; :::; N , chosen by us. These time points are under

our control and may potentially di¤er from the actual time points at which Xt (or Yt) has been

observed. We therefore refer to f� j : j = 1; 2; :::; Ng and � := � j+1 � � j as pseudo-sampling times

and time distance, respectively. When deriving the asymptotics of our estimators, we will impose

certain restrictions on these.

In the second step, we simply replace the spot volatilities in any of the above estimation methods

with the estimates obtained in the �rst-step. We will here focus on two particular estimation

methods. For nonparametric estimation, we employ the kernel estimators of Bandi and Phillips

(2003) and obtain the following feasible estimates:

�̂ (x) =

PN�1
j=1 Kb(~�2�j � x)[~�

2
�j+1 � �̂

2
�j ]

�
PN

j=1Kb(~�2�j � x)
; (2.2)

�̂
2
(x) =

PN�1
j=1 Kb(�̂2�j � x)[~�

2
�j+1 � ~�

2
�j ]

2

�
PN

j=1Kb(~�2�j � x)
; (2.3)

where Kb(x) = K(x=b)=b for some kernel function K : R! R and some bandwidth b > 0. Similarly,
for parametric estimators, we simply replace �2�j by ~�

2
�j in the objective function de�ning the

estimators. We here follow Bandi and Phillips (2007) and consider least-square estimators of the
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parameters. Suppose that the drift and/or di¤usion functions belong to some known parametric

families, � (�) = �(�; ��1) and/or �2 (�) = �2(�; ��2) for two parameters ��1 2 �1 � Rd1 and ��2 2 �2 �
Rd2 . We then specify our estimators as slightly modi�ed versions of the ones in Bandi and Phillips
(2007):

�̂k = argmin
�k2�k

Q̂k(�k) for k = 1; 2; (2.4)

where

Q̂1 (�1) =
XN�1

j=1

h
(~�2�j+1 � ~�

2
�j )� �(~�

2
�j ; �1)�

i2
; (2.5)

Q̂2 (�2) =
XN�1

j=1

h
(~�2�j+1 � ~�

2
�j )

2 � �2(~�2�j ; �2)�
i2
: (2.6)

We here have proposed speci�c estimators in nonparametric and fully parametric settings. It

should be clear though that the �ltered spot volatility can be combined with any other existing

estimation methods for fully observed di¤usion models as cited above to obtain estimators for SV

models.

3 Spot Volatility Estimation

In the asymptotic analysis of the proposed two-step estimators that is presented in the next section,

we need to control the �rst-step estimation error in ~�2� . More speci�cally, we will impose the high-

level condition that the chosen spot volatility estimator satis�es max1�j�N j~�2�j��
2
�j j = OP (#N ) for

some rate parameter #N ! 0. In this section, we derive such rates for kernel-based spot volatility

estimators that takes as starting point the basic estimator proposed in Kristensen (2010a).

The arguments that we employ to establish such rate results are somewhat non-standard since,

in general, the target "function" in our case, � 7! �2� , will be unbounded as T ! 1. This is in
contrast to the existing literature on uniform rate results of nonparametric estimators where it is

routinely assumed that the function of interest is bounded. Our uniform convergence results may

be useful in other applications, and so we do not restrict the volatility process to be a Markov

di¤usion (as imposed in eq. (2.1)) in this section. Instead, we only require that the drift and

volatility processes, �t and �
2
t , satisfy certain moment conditions, and that the volatility process

is su¢ ciently smooth. It could, for example, be long memory type model (as found in Comte

and Renault, 1996) or general Brownian semimartingales and as such be used as an input in the

estimation of more general models. The smoothness condition rules out jumps in volatility; we

discuss in Section 6, how the spot volatility estimators can be modi�ed to handle this situation.

The speci�c estimator employed to learn about �2t in the �rst step depends on whether data is

noise-contaminated and/or contains jumps. We consider four di¤erent scenarios in the subsequent

four subsections: (i) Data contains no market microstructure noise and no jumps; (ii) data is

contaminated by noise, but not jumps; (iii) data is contaminated by jumps, but not noise; and

�nally (iv) data is contaminated by both noise and jumps. In each case, we develop an estimator

and analyze its properties.
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3.1 Noise and Jump-free Case (" = J = 0)

In the case of no noise and no jumps ("t = Jt = 0), Xt is directly observed and contains no jumps,

and so the kernel estimator of Kristensen (2010a) can be employed:

�̂2� =
Xn

i=1
Kh (ti�1 � �) [Xti �Xti�1 ]

2; (3.1)

where Kh (z) = K (z=h) =h, K is another kernel, and h > 0 is another bandwidth; see also Fan and

Wang (2008). That is, in the two-step estimation procedure outlined in the previous section, we

set ~�2� = �̂2� where �̂
2
� is given above. To analyze the asymptotic properties of �̂

2
� , we impose the

following conditions on K:

K.1 The kernel function K : R! R satis�es
R1
�1K (x) dx = 1 and

R1
�1jxj

mjK (x) jdx < 1 for

m(> 1); and there exist some constants �K;C < (0;1) such that supx2R jK (x) j � �K,

supx;y2R jK (x)�K (y)j � �K jx� yj, and jK (x) j is not decreasing on (�1;�C] and not
increasing on [C;1).

Many standard kernels satisfy these conditions, including the Gaussian one. The monotone

tail condition imposed in K.1 may be unfamiliar but is actually satis�ed by many kernels (e.g.,
the Gaussian kernel and any kernel with compact support). This is useful in order to obtain

sharp convergence rates. We allow for one-sided kernels as discussed in Kristensen (2010a). The

continuity and di¤erentiability conditions imposed on K simplify various parts of our subsequent

proofs (see, e.g., derivation of (B.7)), but excludes, for example, the uniform kernel.

Next, we impose conditions on the drift and volatility processes of fXtg:

A.1 There exist constants p > 0 and l1 � 0: supt�T E[j�tj2+p] = O
�
T l1
�
as T !1.

A.2 (i) There exist constants q > 0 and l2 � 0: supt�T E[j�tj2+q] = O
�
T l2
�
as T !1. (ii) There

exist constants � > 0, � > 0 and C > 0 such that E[
���2t � �2s���] � C jt� sj1+�.

The uniform moment conditions imposed in Assumptions A.1 and A.2(i) are used to extend

the uniform convergence results over the interval [0; T ] of Kristensen (2010a) from the case where

T = �T < 1 is �xed to the case where T ! 1. If we only wanted to show convergence for �xed
T < 1, these moment conditions could be disposed of. However, we need T ! 1 in order to

estimate the drift function � (�), since it is not identi�ed from data observed within a �xed interval,
c.f. Kristensen (2010a, Theorem 5).

If the drift is zero, �t = 0 for all t, we can set l1 = �1 in Assumption A.1. If f�tg is
stationary, we can choose l1 = 0 in Assumption A.1. The condition is however also satis�ed for

non-stationary processes; an instructive example of this is a standard BM, say fBtg: if �t = Bt,

we can choose (p; l1) = (2; 2) (or (p; l1) = (�p; 1 + �p=2) for any constant �p > 0). Similarly, A.2(i)

holds in great generality: If
�
�2t
	
is recurrent, Assumption A.2(i) can be easily satis�ed as long

as the relevant moments exist (e.g., l2 = 0 for stationary cases). The recurrent case includes

most parametric di¤usion models found in the literature, including Ornstein-Uhlenbeck (OU) and
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CIR/Feller�s square-root models, which have �nite moments of any order. Even null recurrent

processes are included; for example, if f�tg is a di¤usion process whose drift function has compact
support and di¤usion term is (uniformly) bounded (see e.g. Has�minski¼¬, 1980, Chapter IV), then

it is null recurrent and A.2(i) holds with l2 � 1 + q=2 for any q > 0.
Assumption A.2(ii) is a smoothness condition of

�
�2t
	
in the L�-norm. A useful implication of

A.2(ii) is that it delivers bounds on the modulus of continuity of the volatility process given by

![0;T ] (�) = maxs;t2[0;T ]; jt�sj�� j�2t � �2sj;

where we recall that � > 0 denotes the �xed time distance between observations. The properties

of ![0;T ] (�) when f�2t g is a di¤usion process are well-known for T = �T <1 �xed, c.f. Revuz and

Yor (1994, Theorems 1.8 and 2.1, pp. 18, 25). However, we have not been able to �nd any results

in the literature for the long span case where T !1. We therefore establish a new result showing
that the standard rate for the modulus of continuity can be extended to hold over an in�nite

time interval [0;1); see Lemma A.1. In particular, we show that ![0;1) (�) = Oa:s: (�

) for any


 2 [0; �=�) as �! 0. This result is often needed when one considers nonparametric estimators for

continuous-time processes under long span asymptotics, and should be of independent interest; see

Kanaya (2014) for related results. Assumption A.2(ii) is automatically satis�ed with � = �=2� 1 if�
�2t
	
is a stationary di¤usion process whose drift and di¤usion functions satisfy E[j�(�2t )j�] < 1

and E[j�(�2t )j�] < 1 for some � > 2. These conditions are in turn satis�ed for any � > 0 if, for

example, f�tg is an OU or CIR process.
We restrict the set of feasible bandwidth sequences that can be used to estimate the trajectory

of
�
�2t
	
:

B.1 The bandwidth h! 0 is chosen such that, as T=�(= n)!1 and �! 0:

�p=2[log (1=�)]T 2+l1=h = O (1) ; (3.2)

T (1+l1)(2+q)�(3+l2)(2+p)hp(2+q)=2
�
h�2 log(1=�)

�2+p
= O (1) ; (3.3)

hm�2
T 2+4l2=(2+q) = O(1); (3.4)

where (p; l1), (q; l2) and m were introduced in Assumption A.1, A.2 and K.1, respectively.

Eqs. (3.2) and (3.3) are used to control the bias of �̂2t due to the presence of the drift term

f�tg. They imply that the bias incurred from this term has negligible impact in the estimation

uniformly as T ! 1; and the existence of higher order moments of �t (i.e., a larger value of p)
allows for a more �exible choice of h or a less frequent sampling. They can be thought of as a

strengthening of the classical condition of "rapidly increasing experimental design" normally used

in the estimation of di¤usion models, �T
�
= �2n

�
! 0. This type of condition was originally

introduced in Prakasa Rao (1988) for the parametric estimation of di¤usion models, and is widely

used to establish properties of di¤usion estimators under in�ll asymptotics, � ! 0. In our case,

since we are using local estimators, we often need to require� to shrink faster than in the parametric

case. The condition in eq. (3.3) involves q and l2 which is due to interactions between the two
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components �t and �t (see the decomposition into �ve terms in the proof of Theorem 3.1). If �t has

su¢ ciently high moments (p � (1 + l1) (2 + q) = (3 + l2)), this condition is always satis�ed. Note

also that if the drift is not present then eqs. (3.2) and (3.3) are automatically satis�ed.

The last condition (3.4) in (B.1) is used to control smoothing biases near the boundaries t = 0

and T , wherem regulates the tail behavior of the kernel K. This is far from restrictive; for example,

Gaussian and compactly-supported kernels satisfy
R1
�1jxj

mjK (x) jdx <1 for any m � 0.
We are now able to establish a convergence rate of the spot volatility estimator �̂2� :

Theorem 3.1 Suppose that Assumptions A.1-A.2, B.1 and K.1 hold. Then, for any 
 2 (0; �=�):

sup�2[
p
h;T�

p
h] j�̂

2
� � �2� j = OP (�#T;�) (3.5)

as T=�(= n)!1 with �! 0, where

�#T;� := h
 +
p
h�1� log(1=�)� T 2l2=(2+q)

�
T 2=h� log(1=�)

�2=(2+q)
:

The �rst term of �#T;�, h
 , is the rate of the kernel smoothing bias which depends on the degree

of the continuity of
�
�2t
	
; it coincides with the bias rate in Kristensen (2010a, Theorem 3) for

�xed T = �T < 1. In the standard kernel estimation case, such biases may be remedied by using
higher-order kernels. However,

�
�2t
	
is modelled as a general stochastic process here, which in

general does not have di¤erentiable sample paths, and so higher order kernels would not reduce

this bias.

The second term of �#T;� is the rate of the variance component. The �rst part,
p
h�1� log(1=�),

is the usual term found in many other studies deriving uniform rates of kernel regression estimators

(see, e.g., Kristensen, 2010a, Theorem 3), while the second part, T 2l2=(2+q)
�
T 2=h� log(1=�)

�2=(2+q),
is non-standard. The second part owes to the fact that we here employ a Bernstein-type exponen-

tial inequality for bounded martingales. Since the martingale component of Xt,
R t
0 �sdWs, is un-

bounded, we truncate the process. Unfortunately, the martingale property is not readily preserved

under truncation and so the precise argument is quite involved and leads to the additional, non-

standard term. Exponential inequalities combined with truncation are a standard tool for deriving

uniform rates; see, e.g., Hansen (2008), Kristensen (2009), Gao, Kanaya, Li and Tjøstheim (2014)

and Kanaya (2014). However, these papers assume a mixing (or an i.i.d.) condition which makes the

arguments simpler since truncated mixing processes remain mixing. A more closely related paper

is Wang and Chan (2014) who derive uniform convergence results for kernel regression estimators

with martingale di¤erence errors. If additional mixing and moment conditions were imposed on�
�2t
	
or fXtg, the rate of the variance component can be shown to be

p
h�1� log(1=�). However,

in order to allow for nonstationary and strongly dependent volatility processes, we do not impose

these. When l2 is small and q is large (implying stronger moment conditions on �2t ), the rate is close

to
p
h�1� log(1=�). Similarly, if f�tg is uniformly bounded over [0; T ], which can be understood

as q =1, the second term again reduces to
p
h�1� log(1=�). We note that this rate can be also

obtained when supt2[0;T ] �
2
t is of stochastically bounded (i.e., Oa:s: (1)), which holds when the time

span is �xed.
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The result is uninformative about how to choose h in �nite samples for good performance of the

estimator since the uniform rate depends on l2 and q, which in general are unknown. However, this

is not special to our setting. For example, the rate derived in Hansen (2008, Theorem 5) depends

on the mixing rate and the number of moments, while the one of Wang and Chan (2014) involves

certain tail properties of the regressor.

3.2 Noise Contaminated Case (" 6= 0)

We here consider the case where data are contaminated by market microstructure noise and there-

fore the estimator �̂2� may no longer consistent. We slightly change notation and assume that we

have observed M � 1 observations given by

Yi = Xsi + "i; i = 1; ::::;M; (3.6)

where f"ig are measurement errors, si = iT=M are the sample time points, and �s := si � si�1 =

T=M is the time distance between observations. Note the di¤erences in notation relative to the

no-noise case where we had observed n observations at time points t0; t1; :::; tn. The reason for this

change in notation is that it allows for a simpler comparison of the asymptotic properties of the

noise-free and noise-robust estimators. As before, we assume observations are equidistant in time;

this is imposed only for notational simplicity and can be relaxed.

A number of di¤erent approaches have been developed in the estimation of integrated volatility

to handle noise contamination. We can in principle localize any of these methods to obtain a

noise-robust spot volatility estimator, and we here choose to focus on a localized version of the

pre-averaging procedures developed in, amongst others, Jacod, Li, Mykland, Podolskij and Vetter

(2009) and Podolskij and Vetter (2009a,b): First, pre-whiten (pre-average) data using a kernel

�lter:

X̂t =
T

M

XM

i=1
La (si � t)Yi; (3.7)

where La (z) = L (z=a) =a, L is a kernel function, and a > 0 is another bandwidth. Second, replace

the unobserved process Xt by X̂t in eq. (3.1) yielding the following noise-robust (NR) volatility

estimator:

�̂2NR;� =
Xn

i=1
Kh (ti�1 � �) [X̂ti � X̂ti�1 ]

2: (3.8)

Note that in this setting, s1; ::::; sM are the actual observation times, while now both t0; t1:::; tn
and �0; �1:::; �N are pseudo-sampling time points chosen by the econometrician. Through this

notation we can conveniently decompose the over-all estimation error of �̂2NR;� as �̂
2
NR;� � �2� =

[�̂2NR;� � �̂2� ] + [�̂
2
� � �2� ], where �̂

2
� is the infeasible estimator given in eq. (3.1) assuming that we

had directly observed Xt at the pseudo-sampling points t1; :::; tn.

As an alternative to the estimator in eq. (3.8), one could develop localized versions of the two-

scale realized variance estimator (Zhang, Mykland and Aït-Sahalia, 2005), or the realised-kernel

estimator (Barndor¤-Nielsen, Hansen, Lunde and Shephard, 2008). For example, Zu and Boswijk

(2014) analyze a localized version of the two-scale realized variance estimator. We note that up to

some approximation (of �rst order), the two-scale estimator can be re-written as the realised-kernel
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one with the Bartlett-type kernel, and the realised-kernel estimator can be seen as a member of

the class of pre-averaging estimators.1 Accordingly, localized versions of the two-scale and realized-

kernel estimators can be also re-written, up to some approximation, as our localized pre-averaging

estimator in eq. (3.8).

We impose the following conditions on L and the measurement errors:

K.2 L : R! R satis�es
R1
�1 L (x) dx = 1, has compact support, and is continuously di¤erentiable.

A.3 f"ig are mutually independent and independent of fXtg with E ["i] = 0 and supi�1E[j"ij1+ds ] <
1 for some constant ds > 0.

The compact-support condition on L in K.2 excludes some kernels, such as the Gaussian one,
but simpli�es some of the theoretical arguments (see, e.g., derivations of (B.1) and (B.2) in the proof

of Theorem 3.2). It should be possible to replace this assumption by some tail decay conditions

on L, but this will complicate the proofs, and we maintain this condition. The assumption of no

autocorrelation in the errors can be relaxed to allow for f"ig to be weakly dependent (such as
�-mixing). By controlling the degree of dependence appropriately, the following rate results should

carry over to the weakly dependent case. However, we rule out autocorrelation here to avoid too

lengthy proofs. The existence of the higher-order moments of "i are used when applying exponential

inequalities; see our previous discussion on the exponential inequality and truncation. Finally, we

impose the following conditions on �s and a:

B.2 The bandwidth a! 0 is chosen such that as �s ! 0:

a�1�4=dss [log(1=�s)]T
4=ds = O (1) ; (3.9)p

a�1�s log (1=�s)
h
T 1+l1=(2+p) + T (1=2)+l2=(2+q)

i
= O (1) ; (3.10)

apT 2(1+l1) = O (1) ; (3.11)

aqT 2(1+l2)[log (1=�s)]
�(2+q) = O (1) ; (3.12)

where (p; l1), (q; l2) and ds were de�ned in Assumptions A.2-A.3.

Eqs. (3.10)-(3.12) are slightly stronger than necessary but allow us to obtain a relatively simple

expression for the convergence rate of the noise-robust estimator. Eqs. (3.10) and (3.11) are used

to control the e¤ect of the drift term f�tg. Eq. (3.10) may be regarded as a strengthening of
the rapidly increasing experimental design as discussed earlier. If T = �T < 1, eqs. (3.11) and
(3.12) are trivially satis�ed. If f"ig, f�tg or f�tg is uniformly bounded, we can set corresponding
parameters (ds, p or q) as +1, in which case eqs. (3.11) and (3.12) are trivially satis�ed.

Given these conditions, we are able to derive the following rate result for the noise-robust

estimator:
1See Theorem 6 of Barndor¤-Nielsen, Hansen, Lunde and Shephard (2004), and discussions in page 2251 and

Remark 1 of Jacod et al. (2009).
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Theorem 3.2 Suppose that Assumptions A.1-A.3, B.1-B.2 and K.1-K.2 are satis�ed. Then,

sup�2[
p
h;T�

p
h] j�̂

2
NR;� � �̂2� j = ��1=2(T (1+l2)=a)1=(2+q)

hp
a(T 1+l2=a)1=(2+q) +

p
a�1�s log(1=�s)

i
:

as �;�s ! 0, and T=�; T=�s !1, where �̂2� is given in eq. (3.1). In particular,

sup�2[
p
h;T�

p
h] j�̂

2
NR;� � �2� j = OP (#

NR
T;�;�s); (3.13)

where

#NRT;�;�s :=
�#T;� +�

�1=2(T (1+l2)=a)1=(2+q)
hp

a(T 1+l2=a)1=(2+q) +
p
a�1�s log(1=�s)

i
:

The rate #NRT;�;�s consists of two parts: The �rst is the same as for the noise-free estimator,
�#T;�, when we observe Xt at sampling frequency �, while the second component is due to the

�rst-step �lter X̂t which generates additional errors. More speci�cally, we show in Lemma A.2

that sup�2[
p
h;T�

p
h] jX̂t �Xtj = OP

�p
a(T 1+l2=a)1=(2+q) +

p
a�1�s log(1=�s)

�
. Not surprisingly,

this rate result is similar to the one for �̂2� stated in Theorem 3.1 and the discussion following this

theorem carries over to X̂t and its stated rate. The expression of #NRT;�;�s suggests that, for a given

� (as chosen by the econometrician) and T , we should choose h = h (�; T ) to minimize �#T;� as

discussed previously, while a = a (�s; T ) and � = �(�s; T ) should be chosen to minimize the

second component of #NRT;�;�s ; precise guidelines for how to choose a and � seem di¢ cult to derive

though.

Remarks similar to those made for Theorem 3.1 apply here: For example, if
�
�2t
	
is uniformly

bounded over t 2 [0;1) or T = �T < 1, we may set q = 1 and convergence rates in the theorem

are simpli�ed, e.g., the second term of #NRT;�;�s simpli�es to �
�1=2[

p
a +

p
a�1�s log(1=�s)]. In

particular, when T = �T �xed and �t is a di¤usion process, sup�2[
p
h; �T�

p
h]

���̂2NR;� � �2� �� = OP (�
1=12
s )

by choosing a = O(
p
�s), h = O(

p
�) and � = O(�

1=3
s ). This is identical to the pointwise rate

derived in Zu and Boswijk (2014) for their alternative noise-robust spot volatility estimator.

3.3 Jump Case (J 6= 0)

We here consider the case where jumps on the form Jt =
PNt

j=1 �j are present, but Xt is not

contaminated by noise. Given the same sampling scheme and notation as in the no-noise case, we

propose the following jump-robust (JR) estimator of �2� :

�̂2JR;� :=
Xn

i=1
Kh (ti�1 � �) [Xti �Xti�1 ]

21f[Xti �Xti�1 ]
2 � r (�; T )g; (3.14)

where r (�; T ) is a thresholding parameter chosen by the econometrician. This is a kernel-smoothed

version of Mancini�s (2009) threshold estimator of the integrated volatility; see also Mancini, Mat-

tiussi, and Renò (2012). Through a suitable choice of the thresholding parameter, Mancini (2009)

shows that the e¤ect of jumps can be eliminated by the thresholding device so that the integrated

volatility (over a �nite interval) can be consistently estimated. The same idea applies here.

To derive the uniform convergence result of �̂2JR;� , we make the following assumptions regarding

the jump component, which closely follows Mancini (2009). We here let Nt� denote the left limit
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of the (realized) path of the counting process at t, so that Nt�Nt� = 1 means a jump occurred at

time t.

A.4 fNtg is a Poisson process with bounded intensity, �t � ��, which is independent of �t, �t and
Wt. Furthermore, (i) Pr [Nt �Nt� = 1 & �Nt = 0] = 0 for any t � 0; (ii) there exist random
variables C� and C�2 , and a deterministic function �T so that

lim sup
�!0

sup1�i�n j
R ti
ti�1

�sdsjp
� log (1=�)

� C��T ; and lim sup
�!0

sup1�i�n j
R ti
ti�1

�2sdsj
�

� C�2�
2
T ;

almost surely, as � ! 0 and T=� ! 1; (iii) the tresholding parameter r (T;�) satis�es
r (T;�)! 0 and [� log (1=�)]� �T =r (T;�)! 0, as �! 0 and T=�!1.

Assumption A.4 includes the case of a compound Poisson process with bounded jump intensity,

and the jump sizes f�jg being an i.i.d. sequence independent of fNtg, but more general jump
behavior is allowed for: f�jg may not necessarily be i.i.d., nor independent of fNtg. A.4 is very
similar to the assumptions used to establish Theorem 1 of Mancini (2009). What is distinct is

the introduction of the sequence f�T g, which enables us to control the behavior of f�tg and
�
�2t
	

when T tends to 1. Such a sequence is not required in Mancini�s (2009) setup, where only

the �xed span case is considered. If T is �xed, we can set �T = 1, C� = supt2[0;T ] j�tj and
C�2 = supt2[0;T ]

���2t ��, both of which are almost surely bounded by the càdlàg condition, in which
case we can set r (T;�) = ��� for any �� 2 (0; 1), as discussed in Mancini (2009, page 273).

For the case with T ! 1, knowledge of �T is needed in order to choose r (T;�) to satisfy
A.3(iii). This is similar to the issue of choosing the bandwidth(s) employed in the estimation. For

example, as discussed after Theorem 3.1, h should be chosen relative to the behavior of certain

higher-order moments of �t and �
2
t which are unknown. As pointed out there, this issue is not

special to our setting and is also found when kernel smoothers are employed in other settings where

data are dependent.

If j�tj and �2t are uniformly bounded by some C0, we can choose �T = 1, C� = C�2 = C0.

More generally, if we know the growth rates of the extremal/maximal processes supt2[0;T ] j�tj and
supt2[0;T ]

���2t �� (as T ! 1), the triplet is easily chosen. However, this seems to be a di¢ cult

task in general. The behavior of extremal processes of di¤usion processes has been investigated

in the literature (e.g., Borkovec and Klüpperlberg, 1998), but existing results provide OP rates

(not a.s. rates) of extremal processes, and so do not seem to be directly applicable. However,

it is often possible to verify the condition for particular models. As an instructive example, we

can show that supt2[0;T ] jBtj = oa:s:(
p
T log T ) as T ! 1, where fBtg is a BM; see the online

supplemental material for a proof of this. Therefore, if f�tg and
�
�2t
	
are transformation of BM�s,

for example, �t = Bt and �2t = c0 + ~B2t with c0 > 0 and f ~Btg being another BM, then the
condition holds with �T =

p
T log T and C� = C�2 = c0 + 1, and so we can choose r (T;�) =

f� log (1=�)
p
T (log T )gc1 for any c1 2 (0; 1).

Assumption A.4 allows us to identify occurences of jumps from data by thresholding:

14



Lemma 3.1 Suppose that Assumption A.4 holds. Then, for any ! (2 
�; 
� is an event with
Pr [
�] = 1), there exists some random variable �� (!) > 0 such that for any � � �� (!),

1f[Xti �Xti�1 ]
2 � r (�; T )g = 1fNti �Nti�1 = 0g:

This lemma tells us that we can identify jump occurrences through the threshold parameter

r (�; T ). If T is �xed, the above result is simply Theorem 1 of Mancini (2009), but we here allow

for T !1. This in turn is used to derive the following uniform rate result:

Theorem 3.3 Suppose that Assumptions A.1-A.2, A.4, B.1 and K.1 hold. Then,

sup�2[
p
h;T�

p
h] j�̂

2
JR;� � �2� j = OP

�
#JRT;�

�
;

as �! 0, and T=�!1, where

#JRT;� :=
�#T;� +OP (� (T=h)

n
�p=(2+p)T 2(1+l1)=(2+p) + [log (1=�)]T 2(1+l2)=q

o
):

If T is �xed, we can show that the second term of #JRT;� is reduced to OP (h
�1� log (1=�)) (we

omit the proof of this claim for brevity; see discussions that follows Theorem 3.1, and also the proof

of Theorem 1 of Mancini, 2009) and is oP
�
�#T;�

�
, which means the uniform rate of the noise-free

and non-jump-robust estimator �̂2� coincides with that of the jump-robust estimator �̂
2
JR;� . If f�tg

and
�
�2t
	
are uniformly bounded as T !1, �#T;� = h
 +

p
h�1� log(1=�) while the second term

of #JRT;� takes the form OP (Th
�1� log (1=�)). The presence of "T" in OP (Th�1� log (1=�)) comes

from the fact that the number of Poisson jump events over [0; T ] is OP (T ).

3.4 Jump and Noise Case (" 6= 0, J 6= 0)

In the case where both jumps and market microstructure noise are present in data, we may combine

the ideas of the noise- and jump-robust spot volatility estimators developed in the previous two

subsections. A naive approach would be to simply take the jump-robust estimator in eq. (3.14) and

then replace Xt by the noise-�ltered process X̂t given in eq. (3.7) using, as before, additional pseudo

sampling time points ti with � = ti � ti�1 being the time distance between these. This approach

still provides a pointwise consistent estimator of Xt if the kernel L used in the computation of

X̂t is a forward looking kernel; that is, L has support on (0;+1). This is due to the fact that,
even with jumps, Xt is càdlàg. However, even with a forward-looking kernel, X̂t will smooth out

jumps and so will not be uniformly consistent. More speci�cally, the estimator is not stochastically

equicontinuous which is required for it to be uniformly consistent (see Newey and McFadden, 1994,

Section 2.7). To see this, recall that for X̂t to be stochastically equicontinuous on (0; T ), then, for

any t0 2 (0; T ) and any sequence tM ! t0, it has to satisfy X̂tM
P! Xt0 . Now, suppose that a jump

occurred at time t0 (Nt+0
� Nt�0

6= 0): Choosing tM = t0 � caM where aM ! 0 is the bandwidth

sequence used in the computation of X̂tM and c > 0 is a constant, we then have, conditionally on

fXtg,

X̂tM =

Z c

0
Xt0+aM (u�c)L (u) du+

Z T

c
Xt0+aM (u�c)L (u) du+ oP (1) ;
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as MaM ! 1, where this expression can be derived in the same way as in Proof of Lemma A.2)
(recalling eq. (3.6) and the independence between fXtg and f"ig) Here, Xt0+aM (u�c) ! Xt�0

if

u 2 (0; c) while Xt0+aM (u�c) ! Xt+0
if u 2 [c; T ). Thus, X̂tM

P!
R c
0 L (u) du �Xt�0

+
R T
c L (u) du �

Xt+0
6= Xt0 , and so X̂t cannot be stochastically equicontinuous. Given that our asymptotic analysis

relies on uniform consistency of X̂t, the naive approach is not viable.2

Instead, to detect jumps uniformly over [0; T ], we import techniques developed for nonparamet-

ric detection of jumps in regression functions. More speci�cally, we adopt a similar strategy to the

one in Gijbels et al. (2007), amongst others, and introduce a backward and forward looking �lter,

X̂�
t = (T=M)

XM

i=1
L�a (si � t)Yi; X̂+

t = (T=M)
XM

i=1
L+a (si � t)Yi;

where L� is a backward-looking kernel with support on (�1; 0) and L+ is a forward-looking kernel
with support on (0;+1). These two estimators satisfy for any t 2 (0; T ) and any sequences t�n ! t�

and t+n ! t+, X̂�
t�n

P! Xt� and X̂
+

t+n

P! Xt+ . In particular, with t
�
1 < ::: < t�NT denoting the time

points where jumps occurred on (0; T ), and, with t�n;j = i�jT=n and t
+
n;j = (i

�
j +1)T=n being the two

nearest pseudo time points such that t�j 2 [t�n;j ; t
+
n;j ], (X̂

+

t+n;j
� X̂�

t�n;j
)2

P! �2j for j = 1; :::; NT , while

for all other i =2 fi�1; ::::; i�NT g, (X̂
+
ti+1

� X̂�
ti
)2

P! 0. We therefore expect the following generalization

of Lemma 3.1 to hold as
p
a(T 1+l2=a)1=(2+q) ! 0 and

p
a�1�s log(1=�s)! 0:

1f[X̂+
ti
� X̂�

ti�1 ]
2 � r (�; T )g = 1fNti �Nti�1 = 0g with probability approaching 1.

Note that this is a weaker result compared to Lemma 3.1, where the latter holds almost surely.

However, this should su¢ ce in order to show that

�̂2JNR;� :=
Xn

i=1
Kh (ti�1 � �) [X̂+

ti
� X̂�

ti�1 ]
21f[X̂+

ti
� X̂�

ti�1 ]
2 � r (�; T )g

is a uniformly consistent estimator. A formal proof of this claim is left for future research.

4 Nonparametric Estimation of the SV Model

We here derive the asymptotic properties of the two-step nonparametric estimators of the SV model

given in eqs. (2.2)-(2.3). As noted earlier, these estimators could in principle be implemented using

any nonparametric spot volatility estimator in the �rst step, such as the ones analyzed in the

previous section. To establish a general result that cover all these, and other, estimators, we here

abstract away from the particular features of the �rst-step estimators analyzed in the previous

section and only assume that the chosen estimator ~�2� satis�es

max1�j�N j~�2�j � �
2
�j j = OP (#N ); as N !1 (and � ! 0), (4.1)

2Note that what indeed matters in our subsequent analysis is the uniformity over any pseudo (discrete) sampling

time points the number of which is �nite but increasing as n!1 and �! 0, rather than the uniformity over any

t in a continuum set (0; T ) as discussed here; however, we can see the failure of uniform consistency even over such

discrete points by the same reason as here.
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for some error bound #N ! 0 which is speci�c to the estimator (note that #N may depend on T;�

and some other quantities such as � and �s). For the noise- and jump-free, noise-robust (NR), and

jump-robust (JR) estimators analyzed in the previous section, we can choose #N = �#T;�, #NRT;�;�s ,

and #JRT;�, respectively. Observe that for these three estimators, [�1; �N ] � [
p
h; T �

p
h] by letting

� j = j� and N � T � � since
p
h < � under the assumptions imposed on � below.

The estimation problem is similar to the one of kernel estimation with errors-in-variables. The

implications of this for kernel regression have been analyzed in Mammen, Rothe and Schienle (2012)

and Sperlich (2009) in a cross-sectional framework. We follow a similar strategy: We split up the

total estimation error into two components: One component due to the estimation of
�
�2t
	
in the

�rst step, and a second component due to the sampling error of the estimator based on the actual

process. For example, for the nonparametric drift estimator �̂ (x) proposed in eq. (2.2), we write

the total estimation error as

�̂ (x)� � (x) = [�̂ (x)� ~� (x)] + [~� (x)� � (x)] ; (4.2)

where ~� (x) is the infeasible drift estimator based on observations of
�
�2t
	
. The asymptotic prop-

erties of the second term follow from arguments as in Bandi and Phillips (2003) under regularity

conditions stated below. What remains to be shown is that the �rst term converges to zero in prob-

ability at a su¢ ciently fast rate when the number of grid points N ! 1 is chosen appropriately.

If the rate can be chosen so that the �rst term is asymptotically negligible, the feasible estimator

will be asymptotically equivalent to the infeasible one.

For a given error bound #N , we constrain the set of feasible bandwidths and pseudo-sampling

points used in the second step to control the error arising from the �rst step:

B-NDR Given #N in eq. (4.1), � and b are chosen such that: (i) #N=� ! 0, �
=b ! 0 and

Tb!1; (ii) #2NN
�
b�1 + b��1

�
! 0, b5T = O (1) and Tb�2
 ! 0.

B-NDI Given #N in eq. (4.1), � and b are chosen such that: (i) #N=�1�
 ! 0, �
=b ! 0 and

Nb!1; (ii) #NN
�
b�1 + b��2+2


�
! 0, b5N = O (1) and Nb�2
 ! 0.

Assumption B-NDR and B-NDI are used to derive the asymptotic properties of the drift and

di¤usion estimator, respectively. The parts of Assumptions B-NDR and B-NDI that do not involve

#N are similar to the ones imposed in Bandi and Phillips (2003) for the case of stationary di¤usion

processes. In particular, observations over a growing time span (T ! 1) is required for the
drift estimation, but not necessarily so for the di¤usion estimation. The additional assumptions

involving #N are introduced to ensure that the error due to the preliminary estimation of
�
�2t
	
does

not a¤ect the asymptotic properties. If we use �̂2� as a preliminary estimator, roughly speaking,

we need to set the �rst-step bandwidth h smaller than the second-step one b. Similar conditions

are employed in Newey et al. (1999) and Xiao et al. (2003) to establish theoretical results of their

two-step nonparametric estimators.

We impose the following additional assumptions on the volatility dynamics:
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A.2�The process
�
�2t
	
has range I = (0; ��), where �� � 1, and satis�es: (i) � (x) and �2 (x)

are twice continuously di¤erentiable; (ii) �2 (�) > 0 on I; (iii) the scale measure S (x) =R x
c s (y) dy, where s (y) := exp

�
�2
R y
c � (u)�

�2 (u) du
	
for some constant c 2 I, satis�es

S (x)! �1 (resp. +1) as x! 0 (resp. ��) and
R r
0 �

�2 (x) s (x) dx <1; (iv) E
�
�4t
�
<1,

E[
��� ��2t ����] <1 and E[

��� ��2t ����] <1 for some � > 2.

Assumption A.2� is a strengthening of Assumption A.2 with q � 2. It is a fairly standard

regularity condition that is often imposed when deriving asymptotics of di¤usion estimators. A.2�(i)

and A.2�(ii) are su¢ cient for the existence of a unique strong solution up to an explosion time

(Karatzas and Shreve, 1991, Theorem 5.5.15 and Corollary 5.3.23). In conjunction with A.2�(i)-

A.2�(ii), Assumption A.2�(iii) is su¢ cient for the process to be nonexplosive, positive recurrent and

for its invariant density to exist (see Proposition 5.5.22 of Karatzas and Shreve, 1991 and Chapter

15 of Karlin and Taylor, 1981). We will in the following let � (x) denote the invariant density of�
�2t
	
, and assume that the process has been initialized at this distribution and so is stationary. We

can then set l2 = 0 in Assumption A.2 and in the expressions for the uniform rates derived in the

previous section.

The positive recurrence condition is not strictly necessary to derive asymptotic results for our

estimators. We can extend our results to null recurrent volatility processes by using arguments

similar to those in Bandi and Phillips (2003). However, under null recurrence, the convergence

rates of bandwidths and time intervals become stochastic since they depend on the local time, and

the required conditions and proofs become much more complicated. We therefore maintain the

stationarity assumption for simplicity. Assumption A.2�(iv) imposes two moment conditions on the

volatility process. The condition is satis�ed by many models, including CIR and GARCH-di¤usion

models. If one is only interested in estimating the drift of the volatility, and not its di¤usion

coe¢ cient, A.2�(iv) can be weakened to E
���� ��2t ���� <1 and E

�
�
�
�2t
��
<1.

Finally, we impose the following conditions on the kernel K used in the second step:

K.3 K : R! R satis�es
R1
�1K (x) dx =

R1
�1 x2K (x) dx = 1,

R1
�1 xK (x) dx = 0 and

R1
�1K

2 (x) dx <

1; it is continuously di¤erentiable; and there exist some constants �K;C < (0;1) such that
supx2R jK (x) j � �K; supx2R jK0 (x)j � �K, and jK0 (x) j is not decreasing on (�1;�C] and
not increasing on [C;1).

The conditions imposed in K.3 are almost identical to the ones found in K.1, and the discussion
of the latter also applies here.

Theorem 4.1 Let ~�2� be an estimator of �
2
� satisfying eq. (4.1). Assume that Assumptions A.2�

and B-NDR(i) hold, and K satis�es K.3. Then, �̂ (x) P! � (x). If additionally B-NDR(ii) holds,

then
p
Tb[�̂ (x)� � (x)� b2 � bias� (x)]

d! N

�
0;
�2 (x)

� (x)

Z
K2 (z) dz

�
;

where

bias� (x) :=
@� (x)

@x

@ log � (x)

@x
+
1

2

@2� (x)

@x2
:
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Theorem 4.2 Let ~�2� be an estimator of �
2
� satisfying eq. (4.1). Assume that Assumptions A.2�

and B-NDI(i) hold, and K satis�es K.3. Then �̂ (x) P! � (x). If additionally B-NDI(ii) holds, thenp
T��1b[�̂

2
(x)� �2 (x)� b2 � bias�2 (x)]

d! N

�
0;
2�4 (x)

� (x)

Z
K2 (z) dz

�
where

bias�2 (x) :=
@�2 (x)

@x

@ log � (x)

@x
+
1

2

@2�2 (x)

@x2
:

If the condition b5T = O (1) in B-NDR(ii) is strengthened to b5T ! 0, the bias component in

Theorem 4.1 vanishes fast enough to have no impact on the asymptotic distribution. Similarly in

Theorem 4.2, if b5N ! 0 then the bias term can be ignored.

The above results show that the feasible estimators is �rst-order asymptotically equivalent to

the infeasible ones based on actual observations of
�
�2t
	
at the pseudo-sampling points under the

regularity conditions imposed. In particular, our asymptotic results do not include additional

bias and variance components due to the �rst step in our estimation procedure. This is due to

Assumptions B-NDR and B-NDI, respectively, that ensure that the �rst-step estimation errors are

asymptotically negligible. In �nite sample, the �rst step will obviously have e¤ects on the �nal

estimators and it would be desirable to be able to quantify these. However, we have not been able

to derive explicit expression of the uniform bias and variance of �̂2t , and its impact on the second

step. This is not special to this paper. For example, in the literature on semiparametric two-step

estimators involving kernel estimation in the �rst step, all theoretical results are usually stated

such that the �rst-step bias and variance vanishes asymptotically. Similarly, the theoretical results

for the two-step nonparametric estimators developed in Newey et al. (1999) and Xiao et al. (2003)

do not include �rst-step estimation errors.

Furthermore, note that the estimation errors from the �rst step will be smaller than those in

the second step if we set the pseudo sampling distance � of f�̂2t g (in estimating � (x) and �2 (x)) to
be larger than the actual time distance between observations, �. A realistic scenario would be that

intra-daily observations of fXtg are available. Then by choosing � corresponding to, for example,
sampling at a daily frequency, we expect the �rst-step estimation error to be negligible. This is

supported by Jiang and Knight (1999) and Phillips and Yu (2005) where it is demonstrated that

Nadaraya-Watson type estimators for (observable) di¤usion processes exhibit good performance

even for relatively large choices of �. In total, by choosing � larger than �, the above asymptotic

distribution should be a reasonable approximation even though it neglects the �rst step estimation

error. We will discuss the speci�c choice of � in further detail in Section 7.

5 Parametric Estimation of the SV Model

We here give results for the parametric estimators of the SV model given in eq. (2.4). The

proof strategy is the same as in the previous section: We split up the total estimation error into

two components, where the �rst part, due to pre-estimation of
�
�2t
	
, is shown to be negligible
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asymptotically under suitable conditions on the bandwidth and pseudo-sampling points. As for the

fully nonparametric estimators, we give results for any �rst-step spot volatility estimator satisfying

eq. (4.1).

We impose the following conditions for the analysis of our estimators of the drift parameters:

A-SDR (i) The true value ��1 is an interior point of some compact subset �1 of Rd1 ; andZ
I
[� (x; �1)� � (x)]2 � (x) dx = 0, �1 = ��1;

(ii) � (x; �1) is twice continuously di¤erentiable in �1; there existsAk (�) satisfying E
�
A2k
�
�2s
��
<

1, k = 1; 2, such that uniformly over �1 2 �1,

��� (x; �1)� � �x; �01��� � A1 (x)


�1 � �01

 ; 



@� (x; �1)@�1





+





@2� (x; �1)@�1@�

F
1






 � A2 (x) ;

(iii) � (x; �1), @�1� (x; �1) and @�1�F1
� (x; �1) are di¤erentiable w.r.t. x for all �1 2 �1; there

exists constants C > 0 and v1 > 0 such that and E[
���2t ��2v1 ] <1 and, uniformly over �1 2 �1:



@� (x; �1)@x





+ 



@2� (x; �1)@x@�1





+





@3� (x; �1)@x@�1@�

F
1






 � C [1 + jxjv1 ] :

Assumptions A-SDR(i)-(ii) are standard for parametric di¤usion estimation, and are similar to

those imposed in, for example, Jacod (2006) and Yoshida (1992). A-SDR(i) ensures identi�cation

of �1 while A-SDR(ii) implies that the objective function and its limit are twice di¤erentiable

functions of �1, which in turn enable us to use a standard Taylor expansion argument for deriving

the asymptotic distribution. The moment conditions are used to ensure that the variance of the

estimator is well-de�ned. A-SDR(iiii) is somewhat atypical; it is used to demonstrate that the

error from replacing �t by ~�t in the estimation is asymptotically negligible. All the conditions are

satis�ed by standard volatility models such as CIR and GARCH di¤usion models.

The above conditions imply both consistency and asymptotic normality of the estimator. If

only consistency is of interest, the conditions could be weakened considerably, but for simplicity we

maintain A-SDR throughout.

Finally, we restrict the pseudo-sampling points and the bandwidth:

B-SDR Given #N in eq. (4.1), � is chosen such that: (i) #N=� ! 0; (ii)
p
T [� + #N=�]! 0.

The conditions on the shrinking rates of the bandwidth h and the sampling time � in Assumption

B-SDR are simpler than the ones in B-NDR used for the nonparametric estimation, since no

smoothing parameter has to be chosen in the second step. Without the �rst-step estimation,

the condition would simplify to
p
T� ! 0, under which the discretization error of the infeasible

estimator is negligible. Given these conditions, we have the following theorem:
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Theorem 5.1 If Assumptions A-SDR and B-SDR(i) hold, then �̂1
P! ��1. If additionally B-SDR(ii)

holds, then p
T (�̂1 � ��1)

d! N
�
0;H��1

1 
�1H
��1
1

�
; where


�1 := 4E
h
@�1�

�
�2t ; �

�
1

�
@�1�

�
�2t ; �

�
1

�F
�2
�
�2t
�i
; and H�

1 := 2E
h
@�1�

�
�2t ; �

�
1

�
@�1�

�
�2t ; �

�
1

�Fi
:

Similarly to the nonparametric case, this theorem gives conditions under which �̂1 is �rst-

order equivalent to the infeasible estimator, ~�1. The shared asymptotic distribution is completely

standard for estimation of ergodic di¤usion models, see e.g. Sørensen (2009) or Yoshida (1992). The

asymptotic variance component of the estimator can easily be estimated by replacing population

moments and true values with sample versions and true values and estimated ones, respectively.

Next, we the derive properties of the estimator of the di¤usion parameters under the following

conditions:

A-SDI (i) The true value ��2 is an interior point of some compact subset �2 of Rd2 ; andZ
I

�
�2 (x; �2)� �2 (x)

�2
� (x) dx = 0, �2 = ��2;

(ii) �2 (x; �2) is twice continuously di¤erentiable in �2 and there exist functions Bk (�), k = 1; 2,
such that uniformly over �2 2 �2,

���2 (x; �2)� �2 �x; �02��� � B1 (x)


�2 � �02

 ; 



@�2 (x; �2)@�2





+





@2�2 (x; �2)@�2@�

F
2






 � B2 (y) ;

where E
�
B2k
�
�2t
��
<1, k = 1; 2; (iii) �2 (x; �2), @�2�2 (x; �2) and @�2�F2 �

2 (x; �2) are di¤eren-

tiable in x for each �2 2 �2 There exist constants C > 0 and v2 > 0 such that E[
���2t ��2v2 ] <1,

and, uniformly over �2 2 �2,



@�2 (x; �2)@x





+ 



@2�2 (x; �2)@x@�2





+





@3�2 (x; �2)@x@�2@�

F
2






 � C [1 + jxjv1 ] :

The conditions imposed here on the di¤usion function are analogous to the ones imposed on

the drift, and we refer to the discussion following Assumption A-SDR. We impose the following

conditions on the pseudo-sampling points and the bandwidth:

B-SDI Given #N in eq. (4.1), � is chosen such that: (i) #N=�1�
 ! 0; (ii)
p
N
�
� + #N=�

1�
�! 0.

Again, these are similar to those for the drift estimation, except that now the rates for the

estimator, bandwidth h, and the pseudo time distance are di¤erent due to the faster convergence of

the di¤usion estimator. We here impose the classical condition of "rapidly increasing experimental

design,"
p
N�(=

p
T�)! 0, while for the drift estimator we only required

p
T� ! 0.
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Theorem 5.2 If Assumptions A-SDI and B-SDI(i) hold, then �̂2
P! ��2. If additionally B-SDI(ii)

holds, then p
N(�̂2 � ��2)

d! N
�
0;H��1

2 
�2H
��1
2

�
; where


�2 := 8E
h
@�2�

2
�
�2t ; �

�
2

�
@�2�

2
�
�2t ; �

�
2

�F
�4
�
�2t
�i
; H�

2 := 2E
h
@�2�

2
�
�2t ; �

�
2

�
@�2�

2
�
�2t ; �

�
2

�Fi
:

Similarly to the parametric drift estimator, this theorem states that the two-step estimator is

�rst-order asymptotically equivalent to the infeasible estimator ~�2. We also note that, analogous

to the nonparametric estimators, the convergence rate of the di¤usion estimator is faster than that

of the drift estimator. Again, the two matrices 
�2 and H
�
2 can be estimated by standard moment

estimators.

Note, however, that the conditions imposed on T and � (N) for the drift and di¤usion cases are

di¤erent. As discussed previously, the drift estimation requires T !1. This is stronger than the
requirement N !1 for estimation of the di¤usion coe¢ cient. On the other hand, the requirement

T�2(= N�3) ! 0 for the drift may be seen as weaker than the requirement for the di¤usion,

T�(= N�2)! 0, where the latter is interpreted as a requirement of �ner sample observations.

The above theoretical results are similar to the ones obtained in Todorov (2009), where esti-

mators of integrated volatility are used in the estimation of SV models: He gives conditions under

which the �rst-step estimation error from using estimated integrated volatilities instead of the ac-

tual ones does not a¤ect the asymptotic distribution of his parametric GMM estimators, but refrain

from a higher-order analysis of the impact of the �rst-step estimation error.

6 Extension to SV Models with Volatility Jumps

We have so far focused on the situation where the volatility process contains no jumps. We here

outline how the estimation procedure can be extended to handle the case where the volatility

process is a jump-di¤usion; a formal theory for the resulting estimators is left for future research.

Suppose that the volatility process solves

d�2t = �
�
�2t
�
dt+ �

�
�2t
�
dZt + dJ

�
t ;

where fJ�t g is a �nite-activity jump process of the form J�t =
PN�

t
i=1 �

�
i , and therefore has the same

structure as the jump component Jt of Xt. To handle this situation, we �rst have to modify the

�rst-step estimators of �2t developed in Section 3 since these estimators will smooth out jumps

contained in �2t ; the reason for this is similar to the spot volatility estimation with noise and jumps

where we had to modify the �rst-step smoother X̂t in order to handle jumps in Xt (see discussions

in Section 3.4). More speci�cally, when K is chosen as a forward-looking kernel, the proposed

spot volatility estimators remain pointwise consistent but are not stochastically equicontinuous.

Consider, for example, the spot volatility estimator in eq. (3.1) when jumps and noise are not

present in Xt: By choosing �n = �0� chn for any time point �0 where a jump occurred and for any
constant c > 0, we �nd �̂2�n =

R c
0 K (u) du� �

2
��0
+
R T
c K (u) du� �2

�+0
+ oP (1) as hn ! 0. Thus, �̂2�
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cannot be uniformly consistent. Given that our asymptotic results for the two-step estimators rely

on uniform consistency of the �rst-step estimator, modi�ed spot volatility estimators are needed

in order to extend the arguments employed to establish the theory in Sections 4-5 to the case of

jumps in the volatility.

We use the same idea as in Section 3.4, and construct a backward and forward looking version

of either of the four spot volatility estimators developed in Section 3. Again, for simplicity, we

focus on the case without noise and jumps in Xt, and introduce

�̂2;+� =
Xn

i=1
K+
h (ti�1 � �) [Xti �Xti�1 ]

2; �̂2;�� =
Xn

i=1
K�
h (ti�1 � �) [Xti �Xti�1 ]

2;

where K+ and K� are forward and backward looking kernels. These will satisfy for any � 2 (0; T )
and any sequences ��n ! �� and �+n ! �+, �̂2;�

��n

P! �2�� and �̂2;+
�+n

P! �2�+ . Thus, by the same

arguments given in Section 3.4, we expect

�̂JR (x) =

PN�1
j=1 Kb(�̂2;+�j�1 � x)[�̂

2;�
�j � �̂2;+�j�1 ]1f[�̂

2;+
�j � �̂2;��j�1 ]

2 � r� (�; T )g
�
PN

j=1Kb(�̂2;+�j�1 � x)1f[�̂
2;+
�j � �̂2;��j�1 ]2 � r� (�; T )g

;

�̂
2

JR (x) =

PN�1
j=1 Kb(�̂2;+�j�1 � x)[�̂

2;�
�j � �̂2;+�j�1 ]

21f[�̂2;+�j � �̂2;��j�1 ]
2 � r� (�; T )g

�
PN

j=1Kb(�̂2;+�j�1 � x)1f[�̂
2;+
�j � �̂2;��j�1 ]2 � r� (�; T )g

;

to be consistent estimators of the drift and volatility functions, where 1f[�̂2;+�j ��̂
2;�
�j�1 ]

2 � r� (�; T )g
removes the parts of the volatility trajectory that contain jumps as r� (�; T ) shrinks to zero at a

suitable rate.

Note that the above estimators do not impose any Markov structure on the jump component. If

we do assume that the jump intensity of J�t is a function of �
2
t , this can be also estimated by using

the estimators developed in Bandi and Nguyen (2003) for the case where �2t is observed, except

that we here replace the unobserved component [�2�j � �
2
�j�1 ] by [�̂

2;�
�j � �̂2;+�j�1 ].

7 Bandwidth Selection and Sampling

All of the estimators analyzed in Sections 4 and 5 involve nuisance parameters in the form of

bandwidths and/or pseudo-sampling intervals. We here discuss how these should be selected in

practice. The purpose here is to propose practical working rules. As such, we only provide an

informal analysis since a full theoretical description would be quite involved and outside the scope of

this study. Some of the proposed selection rules may give shrinking rates of bandwidths or sampling

intervals which violate some of the conditions stated for Theorems 4.1-5.2 to hold. However, it

seems di¢ cult to obtain simple data-driven selection rules which are formally consistent with the

theoretical conditions. This is often the case in the literature on non- and semiparametric multi-step

estimators.3

To compute the �rst-step volatility estimator, a natural, data-driven bandwidth selection method

is cross-validation. For the basic estimator in eq. (3.1), there is only one bandwidth, h, to be
3For example, Xiao, Linton, Carroll and Mammen (2003) consider bandwidth selection rules in their simulation

study that work well in practice, but do not satisfy conditions imposed in deriving their asymptotic results.
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chosen in the �rst step. Kristensen (2010a) argues that the cross-validated bandwidth, hCV =

argminh>0CV ((�X)
2 =�; �̂2; h), should be asymptotically optimal where

CV ((�X)2 =�; �̂2; h) :=
nX
i=1

1fTl � ti � Tug[(�Xi)
2 � �̂2�i;ti ]

2;

for some 0 � Tl < Tu � T , with (�Xi)
2 :=

�
Xti+1 �Xti

�2 and �̂�i;ti being the leave-one-out version
of �̂2ti . This criterion is tailored to minimize the integrated squared error of the volatility estimator,R Tl
Tu
[�2t � �̂2t ]2dt. Since the end goal is to obtain precise estimates of the SV model, we should rather

choose h to optimize some criterion for the second step estimator (e.g., the mean squared error

of �̂ (x), �̂
2
(x), �̂1 or �̂2). In this respect, hCV is not ideal. According to the theoretical results,

undersmoothing appears to be required, so we recommend that one chooses an initial bandwidth

by cross-validation which in turn is scaled down by an appropriate factor.

In the case of noise-robust estimator, we �rst have to choose two bandwidths, a and h. One

simple way of doing so is to �rst choose a as aCV = argmina>0CV (Y; X̂; a) and then hCV =

argminh>0CV ((�X̂)
2=�; �̂2NR; h). For the jump-robust estimator, we have to choose the threshold

parameter r. There appears to be no theory for how to choose this, but Mancini, Mattiussi, and

Renò (2012) show that simple rule-of-thumb selection rules work well. Finally, for the noise- and

jump-robust estimator, we propose to combine the selection rules for the noise-robust and jump-

robust estimators, respectively, as described above.

Once
�
�̂2t
	
has been obtained, we have to choose an additional bandwidth b and a (pseudo)

sampling frequency N (or equivalently �) for the computation of the nonparametric drift and

di¤usion estimates. We here propose to choose � > 0 at a daily frequency such that we use daily

(estimated) volatilities in the second step of our estimation procedure. The primary reason for this

choice is that in practice the volatility is known to have intradaily seasonal patterns; by choosing

daily frequencies in the second step, we can ignore these in the estimation. Moreover, by choosing

� to correspond to daily observations, we hope that the additional time series dependence in
�
�̂2t
	

due to the �rst-step estimation is controlled so that the second-step estimation error dominates

(as is the case in our theoretical results). Given the choice of � > 0, we also propose to use

cross-validation in the second step; the precise procedure is described in Kanaya and Kristensen

(2015) who develop bandwidth selection procedures for di¤usion processes. Their results assume

uncontaminated observations of the di¤usion process, but we expect that with � chosen at a daily

frequency, the estimation error in f�̂2i� : i = 1; :::; Ng can be ignored.
The semiparametric estimators only require the choice of the �rst-step bandwidth, h, and the

second-step sampling frequency, �. Given that our estimation strategy corresponds to a two-step

semiparametric estimation procedure, we expect in general that undersmoothing should be used in

the �rst-step. Regarding the choice of �, we now brie�y analyze how this impacts on the MSE�s

of the parametric estimators. For this purpose, we also assume that the error in the �rst step

estimation can be ignored and consider the MSE of the infeasible estimators. First, the MSE for

the estimator of the drift parameter, ~�k, is given by MSE�k := E[jj~�k � ��kjj2] for k = 1; 2. By a

standard Taylor expansion, ~�k � ��k = �[H�
k + oP (1)]

�1Ŝk(�
�
k; �

2), for k = 1; 2, where Ŝk is the
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score function (see Appendix A.3 for its expression) and H�
k is the limit of the Hessian function

evaluated at the true value ��k as de�ned in Theorems 5.1 and 5.2. Since it is not easy to directly

analyze MSE�k , we introduce an approximate version,

MSE��k := tr
n
H��1
k E

h
Ŝk
�
��k; �

2
�
Ŝk
�
��k; �

2
�Fi

H��1
k

o
; (7.1)

for k = 1; 2, where tr fAg is the sum of diagonal elements of the matrix A. By the same arguments as
in the nonparametric case (see Kanaya and Kristensen, 2015), this should be a good approximation

to MSE�k . Our semi-parametric ~�k has no smoothing bias unlike the nonparametric estimators (see

Kanaya and Kristensen, 2015), and therefore we can decompose MSE��k into three terms:

MSE��k = trfB�kB
F
�k
g+ trfV�kg+ trfC�kg (7.2)

where B�k;ds is the discretization bias and V�k and C�k are the variance and covariance compo-
nents respectively. We then derive �rst-order asymptotic approximations of these terms under the

following assumptions:

C-SDR The functions k@�1� (x; ��1)k, k@x�1� (x; ��1)k, k@xx�1� (x; ��1)k, j� (x)j, j�0 (x)j, j�00 (x)j and
�2 (x) are all bounded by some function  (x) satisfying E[

�� ��2s���6] <1.
C-SDI The functions



@�2�2 (x; ��2)

, 

@x�2�2 (x; ��2)

, 

@xx�2�2 (x; ��2)

, �2 (x), ��@x�2 (x)��, ��@xx�2 (x)��
and j� (x)j are all bounded by some function  (x) satisfying E[

�� ��2s���6] <1.
Theorem 7.1 Suppose that Assumption A.2� holds. (i) If Assumptions A-SDR and C-SDR are

satis�ed, then B�1 = � �B�1 + o (�), C�1 = O
�
�2
�
, and V�1 = trfH��1

1 
�1H
��1
1 g=T + o (1=T ), where

�B�1 := E
�
@�1�

�
�2t ; �

�
1

� �
�0
�
�2t
�
�
�
�2t
�
+ �00

�
�2t
�
�2
�
�2t
�
=2
��
: (7.3)

(ii) If Assumptions A-SDI and C-SDI are satis�ed, then B�2 = � �B�2 + o (�), C�2 = O
�
�2
�
, and

V�2 = trfH��1
2 
�2H

��1
2 g=n+ o (1=n), where

�B�2 := E
�
@�2�

2
�
�2t ; �

�
2

� �
@x�

2
�
�2t
�
�
�
�2t
�
+ @xx�

2
�
�2t
�
�2
�
�2t
�
=2
��
:

An immediate consequence of the above theorem is thatMSE��1 = O
�
�2
�
+O (1=T ) andMSE��2 =

O
�
�2
�
+O (1=n) = O

�
�2
�
+O (�=T ). From the above expressions, we see that the optimal choice of

� (for any given T ) is always to let it shrink to zero at the fastest possible rate. Again, in practice

we will however use the daily frequency in the second step since it allows us to ignore intradaily

patterns in the volatility.

8 A Simulation Study

We here examine the �nite-sample performance of the implementation of our non- and semi-

parametric estimators proposed in the previous section; this is done in the ideal setting where
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jumps and noise are not present. We choose as data-generating process the following stochastic

volatility model: (
dXt = �tdWt

d�2t = �
�
�� �2t

�
dt+ ��2tdZt

; (8.1)

where fWtg and fZtg are independent standard Brownian motions. This is the continuous-time
limit version of the GARCH model (see Drost and Werker, 1996), and satis�es the conditions

imposed in Sections 3-5. We measure time in days and consider the following two sample frequencies:

��1 = 60� 24 and 12� 24 which correspond to sampling every 1 and 5 minutes respectively. We
choose the parameter values as � = 0:476, � = 0:510 and �2 = 0:0518, and the time span as

T = 3� 250 days which roughly corresponds to 3 year with 250 business days per year. In order to
simulate data from the model, we employ the Euler discretization scheme (see Kloeden and Platten,

1999), (
�Xid = �(i�1)d

p
d"1;i

��2id = �(�� �2(i�1)d)d+ ��
2
(i�1)d

p
d"2;i

;

where f"1;ig and f"2;ig are i.i.d. N (0; 1) with f"1;ig and f"2;ig independent. Here, d > 0 is the

length of the discretization step; it is chosen as d = �=100, where ��1 = 60 � 24 corresponds to
the highest sampling frequency used in the simulation study.

Throughout, we implement the �rst-step kernel estimator of �2
t
using a Gaussian kernel. The

bandwidth h is chosen as h = 0:10 for ��1 = 60� 24 and h = 0:14 for ��1 = 12� 24. These two
bandwidth choices were found by running the standard cross-validation procedure described in the

previous section for �ve trial Monte Carlo samples yielding h�i , i = 1; :::; 5. For all the subsequent

Monte Carlo samples that our simulation study is based on, we then �xed the bandwidth at the

average across these �ve cross-validated bandwidth choices divided by two, h = �h�=2, and are in

e¤ect undersmoothing in the �rst step. The reason for not running the cross-validation procedure

for each sample is that the procedure is rather time-consuming.

In the second step, we have to choose the pseudo-sampling frequency, �, for both the non- and

semiparametric estimator. We here experiment with three di¤erent choices: In the case where

��1 = 60� 24, we chose � = 1=8, � = 1=4 and � = 1=2, and for ��1 = 12� 24, we chose � = 1=2,
� = 1 and � = 2. Here, � = 1=2, for example, corresponds to two pseudo-observations per day. For

the nonparametric estimator, we also have to choose a second kernel, K, and bandwidth, b. The
kernel K was chosen as the Gaussian one. As with the bandwidth choice for b, we also here ran

cross-validation procedure for �ve trial samples and then �xed the bandwidth b at the average over

these cross-validated bandwidths. Again, this was done in order to speed up the simulation study.

As noted earlier, our two-step estimators su¤er from double sampling error: One component

is due to the sample variation in the unobserved process
�
�2t
	
, and a second one due to only

observing (�Xt)
2 =� which is a contaminated version of �2t . In order to evaluate how much of the

resulting sampling error is due to the contamination, we also computed the corresponding infeasible

estimators using the actual values of �2� ; �
2
2�; �

2
3�; ::::

To evaluate the performance of the nonparametric estimators, we computed approximate in-

tegrated bias, variance and MSE for x = [0:3; 0:8] (the volatility process spent 95% of the time
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within that interval in our samples). The integrated squared bias of the drift estimates was esti-

mated by BIAS2 =
R 0:8
0:3 [� (x)� �� (x)]

2 dx where �� (x) = 1
S

PS
s=1 �̂s (x) and �̂s (x) was the esti-

mated drift in the s-th sample over S(= 400) Monte Carlo replications we generated. Similarly,

the integrated variance and MSE were estimated by VAR = 1
S

PS
s=1

R 0:8
0:3 [�̂s (x)� �� (x)]

2 dx and

MSE = 1
S

PS
s=1

R 0:8
0:3 [�̂s (x)� � (x)]

2 dx = BIAS2 +VAR.

In Table 1, we report integrated squared bias, variance and MSE of the drift and di¤usion

estimators for the �rst sampling scheme, ��1 = 60 � 24. In columns 1 and 2, the performance of
the infeasible and feasible nonparametric drift estimator is reported. As predicted by theory, the

performance of the infeasible estimator deteriorates as the sampling frequency ��1 decreases. As

expected, this is not in general the case for the feasible two-step estimator however: Too small or

too large choices of ��1 yield poor estimates; here, � = 1=4 gives the best performance of the three

di¤erent choices. A similar pattern is found in columns 3 and 4 where the results of the di¤usion

estimators are reported: The MSE of the infeasible di¤usion estimator increases with �, while the

feasible one performs best at the intermediate choice of � = 1.

In Figures 1-4, we have plotted the pointwise means of the infeasible and feasible estimators for

� = 1=4 together with their 95% con�dence intervals. The plots mirror the results of Table 1 with

little di¤erence between the 1-step and 2-step estimators, which is rather encouraging.

In Table 2, we report the same results but now for the second sampling scheme, ��1 = 12�24.
In general the performance of the feasible estimator is worse due to less precise estimates of

�
�2t
	

in the �rst step. To control the added estimation error in the second step, we here have chosen

� = 1=2, � = 1 and � = 2 in the second step. The same picture appears as for the higher frequency.

Again, the intermediate choice of � = 1 yields the most precise estimates with too low or too high

choices of � reducing precision.

Two results of the simulation study that may seem surprising are: First, the 2-step estimators

outperform the 1-step ones in some cases (��1 = 60� 24 and � = 1=4; ��1 = 12� 24 and � = 1).
This seems to indicate that the pre-smoothing of data actually improves on the performance of

the Nadaraya-Watson estimators in some cases. Second, the MSE of the drift estimator with

��1 = 12�24 and � = 1 is lower than the one with ��1 = 60�24 and � = 1=4. This is most likely
due to the fact that the bandwidths h and b in our simulation study have been chosen in a rather

ad hoc manner. It further emphasizes the importance of developing good, data-driven bandwidth

selection procedures for our estimators.

We next analyze the �nite-sample performance of the parametric estimators. We maintain the

SV model in eq. (8.1) as the DGP with the same parameter values. For this model, the parametric

least-squares estimators can be written in the closed form: �̂ = �aOLS=bOLS, �̂ = �bOLS, and
�̂2 = cOLS, where, with X�j = (1; �̂

2
�j )

F, 
aOLS

bOLS

!
=
1

�

 
N�1P
j=1

X�jX
0
�j

!�1 
N�1P
j=1

Xj��̂
2
�j+1

!
; cOLS =

1

�

 
N�1P
j=1

�̂8�j

!�1 
N�1P
j=1

�̂4�j (��̂
2
�j+1)

2

!
:

Tables 3 and 4 report results for the cases ��1 = 60� 24 and ��1 = 12� 24 respectively. For
both sampling frequencies, we chose, after some experimentation, three pseudo-sampling frequen-
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cies, � = 1=12, 1=6 and 1=4. We here note that we use smaller pseudo frequencies compared to the

nonparametric case. It appears as if parametric estimators are less a¤ected by the �rst-step error,

such that we can choose a smaller �.

In contrast to the nonparametric estimators, the infeasible estimators outperform our 2-step

estimators in all cases. Otherwise, patterns similar to those for the nonparametric estimators

appear: First, more data available in the �rst step (� = 1= (24� 60) versus � = 1= (24� 12))
improves the quality of the spot volatility estimator which in turn leads to better performance

of the �nal estimators. Second, a small level of � is not necessarily optimal; for example, with

� = 1= (24� 12), the estimation results based on � = 1=6 generally outperform the ones using

� = 1=12. Otherwise, the performance of the parametric estimators are somewhat mixed across

the di¤erent parameters. The long-run level, �, is estimated consistently well across all sampling

schemes and is close to the infeasible estimator based on observing the volatility process. On the

other hand, relatively large biases are incurred when implementing our estimator for the mean-

reversion parameter, �: For example, in the case with � = 1= (24� 12) and � = 1=6, the smallest
squared bias of our estimator is 14:4633�10�4 compared to 2:3990�10�4 for the infeasible estimator.
Finally, the performance of our estimator of �2 falls somewhere in between these two cases.

Before concluding this section, we note that Zu (2014) presents some simulation results with

various parameter settings, comparing our method (for parametric models) with the one based on

the estimation of integrated volatility. His investigation suggests good performances of our method.

9 Conclusion and Extensions

We have proposed a method for the estimation of SV models in the presence of high-frequency

data. The asymptotic properties of the estimator were derived and their �nite-sample precision

examined in a simulation study. Our theoretical results ignore the �rst-step sampling error. It

would be useful to extend our asymptotic results to include both �rst- and second-step sampling

errors. A �rst step in this direction has been made by Mammen, Rothe and Schienle (2012) in a

cross-sectional setting.

It would also be of interest to provide a complete asymptotic analysis of the jump- and noise

robust spot volatility estimator proposed in Section 3.4 and the estimators proposed Section 6

allowing for jumps in the volatility.
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A Proofs of Theorems

A.1 Proofs for Section 3

We �rst state a result on almost sure Hölder continuity of the process t 7! �2t uniformly over the

in�nite time interval [0;1):

Lemma A.1 Suppose that Assumption A.3 holds. Then, for any 
 2 (0; �=�), there exists some
constant D (> 0) such that

Pr

24! 2 

������9 �� (!) s.t. sup

jt�sj2(0; ��(!)); s;t2[0;1)

���2t (!)� �2s (!)��
jt� sj
 � D

35 = 1: (A.1)

Proof of Theorem 3.1. We expand the spot volatility estimator and analyze each of the terms

in this expansion. In what follows, we extend the processes f�tg and
�
�2t
	
by setting �t = �2t = 0

for t < 0. By Ito�s lemma for continuous semimartingales,

(�Xti)
2 = 2

Z ti

ti�1

 Z s

ti�1

�udu+

Z s

ti�1

�udWu

!
�sds

+2

Z ti

ti�1

 Z s

ti�1

�udu+

Z s

ti�1

�udWu

!
�sdWs +

Z ti

ti�1

�2sds:

Thus, sup�2[
p
h;T�

p
h]

���̂2� � �2� �� � 2R1 + 2R2 + 2R3 + 2R4 +R5, where
R1 : = sup

�2[0;T ]

�����Xn

i=2
Kh (ti�1 � �)

Z ti

ti�1

 Z s

ti�1

�udu

!
�sds

����� ;
R2 : = sup

�2[0;T ]

�����Xn

i=2
Kh (ti�1 � �)

Z ti

ti�1

 Z s

ti�1

�udWu

!
�sds

����� ;
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R3 : = sup
�2[0;T ]

�����Xn

i=2
Kh (ti�1 � �)

Z ti

ti�1

 Z s

ti�1

�udu

!
�sdWs

����� ;
R4 : = sup
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�����Xn
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Z ti
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�2sds� �2�

����� :
We show below that

R1 = OP

�
�T (2+2l1)=(2+p)h�2=(2+p)

�
; (A.2)

R2 = OP

�
�1=2T �0 (T=h)f0

�
; (A.3)

R3 = OP

�p
h�1� log(1=�)�1=2T �0

�
T 2=h� log (1=�)

�f0� ; (A.4)

R4 = OP

�p
h�1� log(1=�)T 2l2=(2+q)

�
T 2=h� log(1=�)

�2=(2+q)�
; (A.5)

R5 = OP (h

) ; (A.6)

where �0 := l1= (2 + p)+ l2= (2 + q) and f0 := 1= (2 + p)+1= (2 + q). We note that R1 is of smaller

order than R2, R3 is of smaller order than R4 by eq. (3.2), and that R2 is of the same order as R4
since

R2 = OP (R4)�
n
T (1+l1)(2+q)�(3+l2)(2+p)hp(2+q)=2

�
h�2 log(1=�)

�(2+p)o1=(2+q)(2+p)
� [log(1=�)]�q=2(2+q) = oP (R4);

where the last equality is due to eq. (3.3). As a result, R4 and R5 are the dominant terms, yielding

the claimed result.

Proof of eq. (A.2). By Jensen�s inequality and max1�i�nmaxs2[ti�1;ti] js� ti�1j � �,�����
Z ti

ti�1
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�sds
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Thus, for a given sequence f�T g,

R1 � � sup
�2[0;T ]

Xn

i=2
jKh (ti�1 � �)j

Z ti

ti�1

j�sj2 1 fj�sj � �T g ds

+� sup
�2[0;T ]

Xn

i=2
jKh (ti�1 � �)j

Z ti

ti�1

j�sj2 1 fj�sj > �T g ds =: R11 +R12: (A.7)

Here, R11 is the truncated version of R1 and satis�es

R11 = � sup
�2[0;T ]

nX
i=2

1

h

Z ti

ti�1

����K �s� �h +
tj�1 � s

h

����� j�sj2 1 fj�sj � �T g ds

= � sup
�2[0;T ]

Z (T��)=h

��=h
jK (u+O (�=h))j

���uh+� ��2 1����uh+� �� � �T
	
du

� ��2T �
Z 1

�1
jK (u+O (�=h))j du = O

�
��2T

�
: (A.8)
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Note that
R1
�1 jK (u+O (�=h))j du !

R1
�1 jK (u)j du as �=h ! 0 by the bounded convergence

theorem. As for R12,

E [R12] � E

�
� �K

1

h

Z T

0
j�sj2 1 fj�sj > �T g ds

�
�

�K

h�pT
�T sup

s�T
E
h
j�sj2+p

i
= O

�
�T 1+l1

h�pT

�
; (A.9)

where the last equality follows from Assumption A.1. Now, choose �T = T (1+l1)=(p+2)h�1=(2+p).

Then, eqs. (A.7)-(A.9) establish that R1 = OP
�
�T (2+2l1)=(2+p)h�2=(2+p)

�
:

Proof of eq. (A.3). By an application of Hölder�s inequality, we have R2 �
p
R21 �R22, where

R21 : = sup
�2[0;T ]

Xn

i=2
jKh (ti�1 � �)j

 Z ti

ti�1

j�sj ds
!2
;

R22 : = sup
�2[0;T ]

Xn

i=2
jKh (ti�1 � �)j

 
max

s2[ti�1;ti]

�����
Z s

ti�1

�udWu

�����
!2

:

With f�T g being as before: R21 = O
�
��2T

�
+OP

�
�T (1+l1)=

�
h�pT

��
by the same arguments as for

R1. Let �2ti := maxs2[ti�1;ti]
���R sti�1�udWu

���2 � ~�2T +�2ti1n�ti > ~�T

o
for any positive sequence f~�T g.

Then, analogously to the analysis of R12,

E [R22] = ��1~�
2
T sup
�2[0;T ]

Xn

i=2
jKh (ti�1 � �)j�+

�K

h~�
q
T

Xn

i=2
E
h
�2+qti

i
= O

�
��1~�

2
T

�
+O

 
�q=2T 1+l2

h~�
q
T

!
;

where the last equality uses that

sup
�2[0;T ]

Xn

i=2
jKh (ti�1 � �)j� �

Z 1

�1
jK (u+O (�=h))j du = O (1) ; and

max
i2f2;:::;ng

E
h
�2+qti

i
� max

i2f2;:::;ng
CE

����R titi�1�2udu���(2+q)=2
�
� C�(q=2)+1 sup

s�T
E
�
�2+qs

�
= O(�(q=2)+1T l2):

The latter bound is due to the Burkholder-Davis-Gundy (BDG) and Jensen inequalities, and As-

sumption A.2. With �T = T (1+l1)=(2+p)h�1=(2+p) and ~�T = �
1=2T (1+l2)=(2+q)h�1=(2+q),

R2 =

(
O
�
��2T

�
+OP

 
�T (1+l1)

h�pT

!)1=2(
OP

�
��1~�

2
T

�
+OP

 
�q=2T 1+l2

h~�
q
T

!)1=2
= OP

�
�1=2T [(1+l1)=(2+p)+(1+l2)=(2+q)]h�[1=(2+p)+1=(2+q)]

�
= OP

�
�1=2T �0(T=h)f0

�
: (A.10)

Proof of eq. (A.4). First, let Tk := f� 2 [0; T ] : j� � �kj � T=�T g, k = 1; : : : ; �T , be a covering of

[0; T ], where �T is the number of intervals and �k is the center of each Tk. We also let � (s; ti�1) :=
(
R s
ti�1

�udu)�s and ��T (s; ti�1) = � (s; ti�1) 1fj� (s; ti�1)j � 'T g for a sequence of positive real
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numbers f'T gT�1 that are speci�ed below. Then, R3 is bounded by

R3 � max
k2f1;:::;�T g

sup
�2Tk

�����Xn

i=2
[Kh (ti�1 � �)�Kh (ti�1 � �k)]

Z ti

ti�1

��T (s; ti�1) dWs

�����
+ max
k2f1;:::;�T g

�����Xn

i=2
Kh (ti�1 � �k)

Z ti

ti�1

��T (s; ti�1) dWs

�����
+ sup
�2[0;T ]

�����Xn

i=2
Kh (ti�1 � �)

Z ti

ti�1

� (s; ti�1) 1 fj� (s; ti�1)j > 'T g dWs

�����
= : R31 +R32 +R33:

Using Hölder�s inequality, Lipschitz continuity of K and E[
Pn

i=2(
R ti
ti�1

��T (s; ti�1) dWs)
2] � T'2T ,

R31 � max
k2f1;:::;�T g

sup
�2Tk

nXn

i=2
[Kh (ti�1 � �)�Kh (ti�1 � �k)]2

o1=2
OP

�p
T'T

�
= OP

�
T 2'T

h2�1=2�T

�
: (A.11)

Next, de�ne % (s) := ti�1 if s 2 [ti�1; ti), and

Mk
T (r) :=

X[nr]

i=2
K

�
ti�1 � �k

h

�Z ti

ti�1

��T (s; ti�1) dWs =

Z rT

0
K

�
% (s)� �k

h

�
��T (s; % (s)) dWs:

Note that
�
Mk
T (r)

	
r2[0;1] is a continuous martingale for each (k; T ) which vanishes at zero and

has quadratic variation


Mk
T

�
r
=
R rT
0 K2

�
%(s)��k

h

�
��2T (s; % (s)) ds. Thus, for any c > 0 and any

sequence fVT g,

Pr
����Mk

T (1)
��� � c

�
� Pr

����Mk
T (1)

��� � c;
D
Mk
T

E
1
� VT

�
+ Pr

�D
Mk
T

E
1
> VT

�
; (A.12)

Applying the exponential inequality for continuous martingales (see, e.g., Dzhaparidze and van Zan-

ten, 2001 or Exercise 3.16 in Ch. IV of Revuz and Yor, 1999), Pr
���Mk

T (1)
�� � c;



Mk
T

�
1
� VT

�
�

2 exp
�
�c2= (2VT )

	
, while

D
Mk
T

E
1
�
Z T

0
K2

�
s� �k
h

+O (�=h)

�
ds� '2T � h

Z 1

�1
K (u+O (�=h)) du� '2T � CMh'

2
T ;

(A.13)

for some constant CM > 0. With VT = CMh'
2
T , this yields Pr

���Mk
T (1)

�� � c
�
� 2 exp

�
�c2= (2VT )

	
.

Thus, setting c = JbT , for some constant J > 0 and some sequence fbT g tending to zero,

Pr (R32 � JbT ) �
X�T

k=1
Pr
����Mk

T (1)
��� � JbTh

�
� 2�T exp

�
� J2b2Th

2CM'2T

�
:

With �T = T 2'T =h
2�1=2bT and 'T = bT

p
h= log (1=�), we obtainR31 = OP (bT ) and Pr (R32 � JbT ) �

2�T�
J2=2CM . Since �T = T 3=2=h

p
� log (1=�) � ���c, for some �c > 0, which can be checked by the
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rate condition in (B.1), we have Pr (jR32j > JbT )! 0 for J large enough, implying R32 = oP (bT ).

Finally, by using the BDG, Jensen and Hölder inequalities,

E [R33] � n �K�1=2

h'
r0=2
T

�
�
n
supu�T E[j�uj2+p]

o1=(2+p) n
sups�T E[j�sj2+q]

o1=(2+q)�(2+r0)=2
= O

�
�(1+r0)=2T 1+�0(2+r0)=2

.
h'

r0=2
T

�
; (A.14)

where we have set r0 = (1=f0) � 2 = [1= (2 + p) + 1= (2 + q)]�1 � 2, and f0 and �0 were de�ned
previously.Therefore, for the term R33 to have same rate, bT , as R31 and R32, we require

�(1+r0)=2T 1+�0(2+r0)=2

h'
r0=2
T

= bT , bT =
p
h�1� log(1=�)�1=2T �0

�
T 2=h� log (1=�)

�1=(2+r0) ;
where the equivalence is due to the above choice of 'T . This establishes the desired result.

Proof of eq. (A.5). The convergence rate of R4 can be derived analogously to that of R3. Con-

struct a covering of [0; T ], fUkgvTk=1, where each Uk has the radius T=vT from the center �k. Let

�(s; ti�1) := (
R s
ti�1

�udWu)�s and ��T (s; ti�1) := � (s; ti�1) 1 fj�(s; ti�1)j �  T g for some sequence
f T gT�1. Then,

R4 � max
k2f1;:::;vT g

sup
�2Uk

�����Xn

i=2
[Kh (ti�1 � �)�Kh (ti�1 � �k)]

Z ti

ti�1

��T (s; ti�1) dWs

�����
+ max
k2f1;:::;vT g

�����Xn

i=1
Kh (ti�1 � �k)

Z ti

ti�1

��T (s; ti�1) dWs

�����
+ sup
�2[0;T ]

�����Xn

i=1
Kh (ti�1 � �k)

Z ti

ti�1

�(s; ti�1) 1 fj�(s; ti�1)j >  T g dWs

�����
=: R41 +R42 +R43; (A.15)

By the same arguments as for R31, R41 = OP

�
T 2 T

h2�1=2vT

�
; with vT = T 2 T =h

2�1=2bT , R41 =

OP (bT ). De�ne a continuous martingaleNk
T (r) :=

R rT
0 K

�
%(s)��k

h

�
��T (s; % (s)) dWs whose quadratic

variation process


Nk
T

�
r
is computed analogously to



Mk
T

�
r
and satis�es



Nk
T

�
1
� CNh 

2
T for some

constant CN > 0. Therefore, by the same arguments as for R32 and with  T = bT
p
h= log (1=�),

Pr (jR42j > JbT ) � 2vT exp
�
� J2b2Th

2CN 
2
T

�
� 2vT�J2=2CN :

Since vT = T 2=h3=2
p
� log (1=�) and it is bounded by��~c for some ~c > 0, Pr (jR42j > JbT )! 0 for

J large enough (as �! 0) so that R42 = oP (bT ). Finally, similarly to the moment bound for R33 in

eq. (A.14), E [R43] = O
�
��0=4T 1+l2=2=

�
h 

�0=2
T

��
, with �0 := (2 + q) =2� 2. Therefore, given the

above choice of  T , for R43 = OP (bT ), we set bT =
p
h�1� log(1=�)

�
T (2+l2)=h� log(1=�)

�1=(2+�0).
This establishes the desired result.
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Proof of eq. (A.6). With � (s) := (% (s)� s) =h and % (s) = ti�1 for s 2 [ti�1; ti),

R5 � sup
�2[0;T ]

�����
Z (T��)=h

��=h
K (u+ � (uh+ �))

�
�2uh+� � �2�

�
du

�����
+ sup
�2[

p
h;T�

p
h]

�����
Z (T��)=h

��=h
K (u+ � (uh+ �)) du�

Z 1

�1
K (u+ � (uh+ �)) du

����� sup�2[0;T ]
�2�

= : R51 +R52: (A.16)

Assumption A.2 and Lemma A.1 imply that there exists �� > 0 such that for any � � �� and

jt� sj � �, j�t � �sj � D jt� sj
 a.s. Therefore, R51 � Dh

R1
�1 jK (u+O (�=h))j juj


 du =

Oa:s:(h

) since

R1
�1 jK (u+O (�=h))j juj


 du �
R1
�1K� (u) juj
 du <1, where

K� (u) :=

8><>:
�K if juj � C + �";

jK(C)j� �K
�" [u� C � �"] + �K if juj 2 (C + �"; C + 2"];
jK (u� 2�")j if juj > C + 2�";

(A.17)

for some constant �" > 0. To bound R52, we �rst bound sup�2[0;T ] �
2
� : Let fVkg

wT
k=1 be a �nite

covering of [0; T ], where Vk has center �k and radius T=wT . Then, with wT := T log (1=h),

sup
�2[0;T ]

�2� = max
k2f1;:::;wT g

sup
�2Vk

���2� � �2�k ��+ max
k2f1;:::;wT g

�2�k � Oa:s:(jT=wT j
) +
PwT

k=1 �
2
�k

= Oa:s:

�
j log (1=h) j�
) + T [log (1=h)]�OP (T l2

�
= OP

�
T 1+2l2=(2+q) log (1=h)

�
; (A.18)

where we have used sups�T E[�
2
t ] = O

�
T 2l2=(2+q)

�
(see Assumption A.2). Next, observe that

sup
�2[

p
h;T�

p
h]

�����
Z (T��)=h

��=h
K (u+ k (uh+ �)) du�

Z 1

�1
K (u+ k (uh+ �)) du

�����
�

Z 1

1=
p
h
jK (u+ k (uh+ �))j du+

Z 1=
p
h

�1
jK (u+ k (uh+ �))j du: (A.19)

The two terms on the RHS are both O
�
h(m+c)=2

�
for some c > 0. To see this, note that there

exists some c > 0 such that jK (x)j � jxj�m�1�c for jxj large enough since
R1
�1 xmK (x) dx <

1.and that � (r) = O (�=h) = o (1). Thus,
R1
1=
p
h jK (u+ � (uh+ �))j du = O(j1=

p
hj�m�c) =

O
�
h(m+c)=2

�
. The term

R 1=ph
�1 jK (u+ k (uh+ �))j du can be treated in the same way. In total,

R52 = OP
�
h(m+c)=2T 1+2l2=(2+q) log (1=h)

�
= oP (h


), where we have used log (1=h)hc=2 = o (1) and

hm�2
T 2+4l2=(2+q) = O(1) as imposed in Assumption B.1. This yields the desired result.

For the proof of Theorem 3.2, we �rst derive the uniform convergence rate of jX̂t �Xtj:

Lemma A.2 Suppose that Assumptions A.1-A.3 and B.1-B.2 and K.1-K.2 are satis�ed. Then, as
�;�s ! 0, and T=�; T=�s !1, X̂t de�ned in eq. (3.7) satis�es

sup�2[
p
h;T�

p
h] jX̂t �Xtj = OP

�p
a(T 1+l2=a)1=(2+q) +

p
a�1�s log(1=�s)

�
; (A.20)
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Proof of Theorem 3.2. Observe that

�̂2NR;� =
Xn

i=1
Kh (ti�1 � �)

h
(Xti �Xti�1) + (X̂ti � X̂ti�1)� (Xti �Xti�1)

i2
= �̂2� +

Xn

i=1
Kh (ti�1 � �)

h
(X̂ti � X̂ti�1)� (Xti �Xti�1)

i2
�2
Xn

i=1
Kh (ti�1 � �)

�
Xti �Xti�1

� h
(X̂ti � X̂ti�1)� (Xti �Xti�1)

i
= : �̂2� + U1 (�)� 2U2 (�) ;

where

sup�2[
p
a;T�

p
a] jU1 (�)j � sup�2[0;T ]

Pn
i=1 jKh (ti�1 � �)j�| {z }
=O(1)

� (4=�) supt2[pa;T�pa] jX̂t �Xtj2;

sup�2[
p
a;T�

p
a] jU2 (�)j � sup�2[0;T ]

Pn
i=1 jKh (ti�1 � �)j

hR ti
ti�1
j�sjds+ j

R ti
ti�1

�sdWsj
i

�2 supt2[pa;T�pa] jX̂t �Xtj:

By the same arguments as those for R1 and R2 in the proof of Theorem 3.1, and by eq. (3.12),

sup
�2[0;T ]

Pn
i=1 jKh (ti�1 � �)j

hR ti
ti�1
j�sjds+ j

R ti
ti�1

�sdWsj
i
= OP (�

�1=2(T (1+l2)=a)1=(2+q)):

Given this expression and Lemma A.2, sup�2[pa;T�pa] jU1 (�)j = oP

�
sup�2[

p
a;T�

p
a] jU2 (�)j

�
and

so (3.13) holds. Finally, to derive the rate of sup�2[
p
h;T�

p
h]

����2� � �2� ��, note that ��1a ! 0 and

h�1�! 0 since #NRT;�;�s ! 0. These in turn imply that a=h! 0 and [
p
h; T �

p
h] � [

p
a; T �

p
a].

Therefore, the result of Theorem 3.1 and the triangular inequality imply the desired result.

Proof of Theorem 3.3. We write the continuous component of Xt as X�
t =

R t
0 �sds+

R t
0 �sdWs.

Thus, we have Xt = X�
t +

PNt
j=1 �j . By Lemma 3.1, we have for � small enough,

�̂2JR;� � �2� =
Xn

i=1
Kh (ti�1 � �) [X�

ti �X
�
ti�1 ]

21
�
Nti �Nti�1 = 0

	
� �2�

=
�
�̂2� � �2�

	
�
Xn

i=1
Kh (ti�1 � �) [X�

ti �X
�
ti�1 ]

21
�
Nti �Nti�1 6= 0

	
;

where �̂2� is the no-jump and no-noise estimator based on observingX
�
t , and so sup�2[

p
h;T�

p
h]

���̂2� � �2� �� =
OP (#�;T ). The second term is bounded by

NT max
i2f2;:::;ng

Kh (ti�1 � �)
hR ti
ti�1

�sds+
R ti
ti�1

�sdWs

i2
� 2NT

�K

h

�
� max
i2f2;:::;ng

R ti
ti�1

j�sj2 ds+ max
i2f2;:::;ng

j
R ti
ti�1

�sdWsj2
�
; (A.21)

where we have used (A+B)2 � 2
�
A2 +B2

�
and Jensen�s inequality. We note that E [NT ] � ��T

and can show maxi2f2;:::;ng
R ti
ti�1

j�sj2 ds = OP (�
p=(2+p)T 2(1+l1)=(2+p)) in the same way as eq. (B.6)

was derived. To �nd a bound of maxi2f2;:::;ng j
R ti
ti�1

�sdWsj, we use the exponential inequality for
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continuous martingales (Exercise 3.16 in Ch. IV of Revuz and Yor, 1999),

Pr
�
maxi2f2;:::;ng j

R ti
ti�1

�sdWsj � J
�

�
nX
i=2

n
Pr
�
j
R ti
ti�1

�sdWsj � J;
R ti
ti�1

�2sds � �T

�
+ Pr

�R ti
ti�1

�2sds > �T

�o
� 2n exp

�
�J2=2�T

	
+ n�(2+q)=2 sup

s�T
E
h
j�sj2+q

i
�
�q=2
T| {z }

O(�q=2T 1+l1�
�q=2
T )

:

By letting �T = �J2�T 2(1+l1)=q and J = �J (1+q)
p
[� log (1=�)]T 2(l2+1)=q for any �J > 0, we have

Pr

�
maxi2f2;:::;ng j

R ti
ti�1

�sdWsj � �J (1+q)
q
[� log (1=�)]T 2(1+l2)=q

�
� 2n�(1=2) �J2q +O

�
�J�q
�
:

Having �J large enough, the majorant side can be made arbitrarily small as �! 0 and T=�!1
(by the rate condition in (B.1)), and thus

maxi2f2;:::;ng j
R ti
ti�1

�sdWsj = OP (
q
[� log (1=�)]T 2(1+l2)=q):

A.2 Proofs for Section 4

The following lemmas will be used in the proofs:

Lemma A.3 Assume ~�2� satis�es eq. (4.1) and Assumptions A.2�and K.3 are satis�ed. If there
exists some �q > 0 such that (#N=b)�q = O (b), then, as T !1, � ! 0 and b! 0,

�̂ (x)� ~� (x) = OP

�
#N=b�

1=2
�
+OP (#N=�) : (A.22)

Lemma A.4 Assume that Assumptions A.2� and K.3 hold. If �
=b ! 0 and Tb ! 1, then
~� (x)

P! � (x). If in addition Tb�2
 ! 0 and Tb5 = O (1), then

p
Tb[~� (x)� � (x)� b2 � bias� (x)]

d! N

�
0; �4 (x)

Z 1

�1
K2 (z) dz

�
;

where bias� (x) is given in Theorem 4.1.

Lemma A.5 Assume ~�2� satis�es eq. (4.1) and Assumptions A.2�and K.3 are satis�ed. If there
exists some �q (> 0) such that (#N=b)�q = O (b), then, as N !1 and b; � ! 0 with #N=�1�
 ! 0,

�̂
2
(x)� ~�2 (x) = OP (#N=b) +OP

�
#N=�

1�
� :
Lemma A.6 Assume that Assumptions A.2�and K.3 hold. If N !1; b! 0 with �
=b! 0 and

Nb!1, then ~�2 (x) P! �2 (x). If in addition Nb�2
 ! 0 and Nb5 = (1), then

p
Nb[~�

2
(x)� �2 (x)� b2 � bias�2 (x)]

d! N

�
0; 4�2 (x)

Z 1

�1
K2 (z) dz

�
;

where bias�2 (x) is given in Theorem 4.2.
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Proof of Theorem 4.1. As in eq. (4.2), we split up �̂ (x) � � (x) into two terms. The �rst

term of the RHS of eq. (4.2) converges to zero by Lemma A.3 under Assumption B-NDR(i). Note

that since 
 2 (0; 1=2) and �
=b ! 0, we have �1=2 < �
 < b (for � and h small enough), and

#N=� > #N=�

�1=2 > #N=b�

1=2. Therefore, #N=� ! 0 and �
=b ! 0 lead to #N=b�1=2 ! 0.

Noting also that #N=b�1=2 ! 0 and �
=b! 0 respectively imply #N=b < �1=2 and �1=2 < b1=2
 , the

condition of Lemma A.3 below is satis�ed with �q = 1=2
. The convergence of the second term is

investigated in Lemma A.4 below. Assumption B-NDR(ii) ensures that the �rst term �̂ (x)� ~� (x)
has no e¤ect such that the asymptotic distribution is completely determined by ~� (x)� � (x).

Proof of Theorem 4.2. We follow the same strategy as in the proof of Theorem 4.1: First, write

�̂
2
(x)��2 (x) = [�̂2 (x)�~�2 (x)]+[~�2 (x)��2 (x)], where the two terms on the RHS are analyzed in

Lemmas A.5 and A.6 (see below), respectively. Note that #N=�1�
 ! 0 and �
=b! 0 respectively

imply #N < �1�
 and �1�
 < b
1�


 , and thus #N=b < b

1�



�1
= b

1�2


 ! 0 since 
 2 (0; 1=2).

Therefore, the condition of Lemma A.5 is satis�ed with �q = (1� 2
) =
. Assumption B-NDI(ii)
ensures that �̂

2
(x)� ~�2 (x) = oP (1=

p
Nb), and thus the asymptotic distribution is determined byp

Nb
h
~�
2
(x)� �2 (x)

i
.

A.3 Proofs for Sections 5-7

To derive the asymptotic results for the proposed estimators, we re-de�ne the objective functions.

Instead of Q̂k (�k) (for k = 1; 2) in eq. (2.5), we consider the following objective functions:

R̂1
�
�1; �

2
�
: =

1

T

XN�1

j=1
�(�2�j+1 ; �1)

h
�(�2�j+1 ; �1)� � 2(�

2
�j+1 � �

2
�j )
i
;

R̂2
�
�2; �

2
�
: =

1

T

XN�1

j=1
�2(�2�j+1 ; �2)

h
�2(�2�j+1 ; �2)� � 2(�

2
�j+1 � �

2
�j )

2
i
:

The maximizer of Rk
�
�k; ~�

2
�
is equal to the original estimator �̂k de�ned in eq. (2.4) as the

maximizer of Q̂k (�k). Moreover, in contrast to Q̂k (�k), R̂k
�
�1; �

2
�
has a well-de�ned asymp-

totic limit, k = 1; 2, given by R1 (�1) :=
R
I � (y; �1) [� (y; �1)� 2� (y)]� (y) dy and R2 (�2) :=R

I �
2 (y; �2)

�
�2 (y; �2)� 2�2 (y)

�
� (y) dy. The �rst and second order derivatives of R̂k

�
�1; �

2
�
,

k = 1; 2, are

Ŝ1
�
�1; �

2
�
: =

2

T

XN�1

j=1
@�1�(�

2
�j ; �1)

h
�(�2�j ; �1)� � (�

2
�j+1 � �

2
�j )
i
;

Ĥ1
�
�1; �

2
�
: =

2

T

XN�1

j=1

n
@�1�(�

2
�j ; �1)@�1�(�

2
�j ; �1)

F�

+@
�1�

F
1
�(�2�j ; �1)

h
�(�2�j ; �

�
1)� � (�2�j+1 � �

2
�j )
io
;

H1 (�1) : = 2E
h
@�1�

�
�2t ; �1

�
@�1�

�
�2t ; �1

�Fi
;
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and

Ŝ2
�
�2; �

2
�
: =

2

T

XN�1

j=1
@�2�

2(�2�j ; �2)
h
�2(�2�j ; �2)� � (�

2
�j+1 � �

2
�j )

2
i
;

Ĥ2
�
�2; �

2
�
: =

2

T

XN�1

j=1

n
@�2�

2(�2�j ; �2)@�2�
2(�2�j ; �2)

F�

+@
�2�

F
2
�2(�2�j ; �2)

h
�2(�2�j ; �

�
2)� � (�2�j+1 � �

2
�j )

2
io
;

H2 (�2) : = 2E
h
@�2�

2
�
�2t ; �2

�
@�2�

2
�
�2t ; �2

�Fi
:

We �rst state the asymptotic distribution of the infeasible estimators:

Lemma A.7 Suppose that Assumption A.2�is satis�ed.

(i) If A-SDR holds, then

sup
�k2�k

���R̂k(�k; �2)�Rk(�k)��� = oP (1) ; and sup
�k2�k




Ĥk(�k; �
2)�Hk (�k)




 = oP (1) ; (A.23)

with k = 1 and thus ~�1
P! ��1. Moreover, if T�

2 ! 0, then
p
T Ŝ1

�
��1; �

2
� d! N(0;
�1); and

p
T [~�1 � ��1]

d! N(0;H��1
1 
�1H

��1
1 );

where 
�1 and H
�
1 are given in Theorem 5.1.

(ii) If A-SDI holds, then the results (A.23) hold with k = 2 and thus ~�2
P! ��2. Moreover, if

T� ! 0, then
p
NŜ2

�
��2; �

2
� d! N(0;
�2); and

p
N [~�2 � ��2]

d! N(0;H��1
2 
�2H

��1
2 );

where 
�2 and H
�
2 are given in Theorem 5.2.

Next, we derive the stochastic di¤erence between the feasible and infeasible objective function

and its derivatives:

Lemma A.8 Let ~�2� be an estimator of �
2
� satisfying eq. (4.1). Suppose that Assumptions A.1,

A.2�, B.1�and A-SDR(iii) are satis�ed. Then,

sup
�12�1

���R̂1 ��1; ~�2�� R̂1 ��1; �2���� = OP (#N=�); (A.24)

p
T



Ŝ1 ���1; ~�2�� Ŝ1 ���1; �2�


 = OP (T

1=2#N=�); (A.25)

sup
�12�1




Ĥ1 ��1; ~�2�� Ĥ1 ��1; �2�


 = OP (#N=�): (A.26)

Lemma A.9 Let ~�2� be an estimator of �
2
� satisfying eq. (4.1). Suppose that Assumptions A.1,

A.2�, B.1�and A-SDI(iii) are satis�ed. Then,

sup
�22�2

���R̂2 ��2; ~�2�� R̂2 ��2; �2���� = OP (#N=�
1�
); (A.27)

p
N



Ŝ2 ���2; ~�2�� Ŝ2 ���2; �2�


 = OP (

p
N#N=�

1�
); (A.28)

sup
�22�2




Ĥ2 ��2; ~�2�� Ĥ2 ��2; �2�


 = OP (#N=�
1�
): (A.29)
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We are now ready to prove Theorems 5.1-5.2:

Proof of Theorem 5.1. To prove consistency, we verify the conditions in Newey and McFad-

den (1994, Theorem 2.1): (i) compactness of the parameter space; (ii) continuity of the objective

function and its limit function; (iii) uniform convergence of the objective function; and (iv) identi-

�ability. Conditions (A-SDR.i) and (A-SDR.ii) imply (i), (ii) and (iv), and we only need to show

uniform convergence. Write

R̂1
�
�1; ~�

2
�
�R1 (�1) = [R̂1

�
�1; ~�

2
�
� R̂1

�
�1; �

2
�
] + [R̂1

�
�1; �

2
�
�R1 (�1)]; (A.30)

where the two terms on the RHS converge uniformly by Lemma A.8 and A.7 respectively. By a Tay-

lor expansion,
p
T [�̂1���1] = Ĥ�1

1

�
��1; ~�

2
�p

T Ŝ1
�
��1; �̂

2
�
, where ��1 is on the line segment connecting

�̂1 to ��1. By (A.25) in Lemma A.9 and Assumption B-SDR,
p
T [Ŝ1

�
��1; ~�

2
�
� Ŝ1

�
��1; �

2
�
] = oP (1)

while the Hessian satis�es Ĥ1
�
�1; ~�

2
�
� H1 (�1) = [Ĥ1

�
�1; ~�

2
�
� Ĥ1

�
�1; �

2
�
] + [Ĥ1

�
�1; �

2
�
�

H1 (�1)]
P! 0 uniformly �1 by Lemmas A.8 and A.7. Thus, �̂1 has the same asymptotic distri-

bution as the infeasible estimator ~�1, which is given in Lemma A.7.

Proof of Theorem 5.2. This follows along the same lines as the proof of Theorem 5.1, and so

is omitted.

Proof of Theorem 7.1. The details of the proof are provided at Cambridge Journals Online in

supplementary material to this article. Readers may refer to the supplementary material associated

with this article, available online.

B Proofs of Lemmas

Proof of Lemma A.1. From Assumption A.3 and Lemma D.1 (the details of Lemma D.1 are

provided online at Cambridge Journals Online in supplementary material to this article), there

exists a continuous modi�cation f��2t g of
�
�2t
	
which is a.s. Hölder globally over [0;1). Identifying�

�2t
	
with f��2t g, we have eq. (A.1).

Proof of Lemma A.2. Use that Xt =
R t
0 �udu+

R t
0 �udWu to write supt2[pa;T�pa] jX̂t �Xtj �

S1 + S2 + S3 + S4 + S5 + S6, where

S1 : = sup
t2[
p
a;T�

p
a]

����Z T

0
La (s� t)

�Z s

0
�udu

�
ds�

Z t

0
�udu

���� ;
S2 : = sup

t2[
p
a;T�

p
a]

����Z T

0
La (s� t)

�Z s

0
�udWu

�
ds�

Z t

0
�udWu

���� ;
S3 : = sup

t2[0;T ]

�����XM

i=1
La (si � t)

Z i�s

(i�i)�s

 Z s

(i�i)�s
�udu

!
ds

����� ;
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S4 : = sup
t2[0;T ]

�����XM

i=1
La (si � t)

Z i�s

(i�i)�s

 Z s

(i�i)�s
�udWu

!
ds

����� ;
S5 : = sup

t2[0;T ]

�����XM

i=1

Z i�s

(i�i)�s
[La (si � t)� La (s� t)]Xsds

����� ;
S6 : = sup

t2[0;T ]

����(T=M)XM

i=1
La (si � t) "i

���� :
By following the same steps as those for eqs. (A.2) and (A.3), S3 = OP (�sT

(1+l1)=(2+p)a�1=(2+p))

and S4 = OP (�
1=2
s T (1+l2)=(2+q)a�1=(2+q)), while we show below that:

S1 = OP (a
(1+p)=(2+p)T (1+l1)=(2+p)); (B.1)

S2 = OP (
p
a(T 1+l2=a)1=(2+q)); (B.2)

S5 = OP (�sa
�1
h
T 1+l1=(2+p) + T 1=2+l2=(2+q)

i
); (B.3)

S6 = OP (
p
a�1�s log(1=�s)): (B.4)

The �rst rate condition in eq. (3.10) of B.2(ii) yields S5 = OP (S6). It also implies that T 1+l1=(2+p) =

O(1=
p
�s=a (log T )), and so S3 = OP (S4) � T�(1+p)=(2+p)a1=(2+q)

T (1+l2)=(2+q)a1=(2+p)

p
a (log T ) = oP (S4). Given the

rates of S4 and S6, S4 = OP (S6) � faqT 2(1+l2)=[log (1=�s)]
2+qg1=2(2+q). This expression, together

with eq. (3.12) of B.2(ii), implies that S4 = OP (S6). Thus, S6 is dominant among the four

terms S3, S4, S5 and S6. Finally, by eq. (3.11) of B.2(ii), S1 = OP (S2) � (apT 2(1+l1))1=2(2+p) �
(a=T 1+l2)1=(2+q) = oP (S2). This yields the desired result of eq. (A.20).

Proof of eq. (B.1). Since L has compact support,
R (T�t)=a
�t=a L (v) dv � 1 = 0 for a small enough.

Thus,

S1 = sup
t2[
p
a;T�

p
a]

�����
Z (T�t)=a

�t=a
L (v)

�Z t+va

t
�udu

�
dv +

 Z (T�t)=a

�t=a
L (v) dv � 1

!Z t

0
�ududv

�����
�

Z 1

�1
jL (v)j dv sup

t2[0;T ]

Z t+c0a

t�c0a
j�uj du: (B.5)

With �T = (T
1+l1=a)1=(2+p),

sup
t2[0;T ]

Z t+c0a

t�c0a
j�uj du � sup

t2[0;T ]

Z t+c0a

t�c0a
j�uj 1 fj�uj � �T g du+

Z T

0
j�uj 1 fj�uj > �T g du

� 2c0a�T +OP (T � T l1=�
1+p
T ) = OP (a

(1+p)=(2+p)T (1+l1)=(2+p)): (B.6)

Proof of eq. (B.2). Let �s := supjrj�c0a

���R s+rs �udWu

���, where the integral R st �udWu should be
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interpreted as �
R t
s �udWu if s > t. Then,

E [S2] � E

�
supt2[0;T ]

����Z T

0
La (s� t) �sds

�����
� 'T supt2[0;T ]

Z T

0
jLa (s� t)j ds+ E

�
supt2[0;T ]

����Z T

0
La (s� t) �s1 f�s > 'T g ds

�����
� 'T

Z 1

�1
jL (v)j dv + ( �KT=a) sups2[0;T ]E[�2+qs ]='q+1T = O('T + a

q=2T 1+l2='q+1T );

where the �rst equality holds for a small enough, c.f. the analysis of eq. (B.5), the second inequality

holds since �s (a) � 'T + �s1 f�s (a) > 'T g, and the last equality uses the BDG and Jensen

inequalities. With 'T =
p
a(T 1+l2=a2)1=(2+q), S2 = OP (

p
a(T 1+l2=a)1=(2+q)).

Proof of eq. (B.3). By the di¤erentiability of L, Assumptions A.1-A.2 and the BDG inequality,

S5 � �sa
�2 sup

t2[0;T ]

Z T

0
L0
�
s� t
a

+O (�s=a)

�
ds

"Z T

0
j�uj du+ sup

s�T

����Z s

0
�udWu

����
#

� �sa
�1
Z 1

�1
L0 (u+O (�s=a)) du�OP

�
T 1+l1=(2+p) + T 1=2+l2=(2+q)

�
= OP (�sa

�1
h
T 1+l1=(2+p) + T 1=2+l2=(2+q)

i
): (B.7)

Proof of eq. (B.4). For grid points on the interval [0; T ]: u0 < u1 < � � � < uJT (with u0 = 0,

uJT = T , uj+1 � uj = T=JT , and (T=JT )! 0), and for �� > 0, de�ne

�Zi;T (uj) : = La (si � uj) "i1 fj"ij � �T g � E [La (si � uj) "i1 fj"ij � �T g] ;
~Zi;T (uj) : = La (si � uj) "i1 fj"ij > �T g � E [La (si � uj) "i1 fj"ij > �T g] ; and

�T : = ��[M2=
p
a�s log (1=�s)]

1=(ds+1): (B.8)

Since E ["i] = 0,

S6 � max
1�j�JT

sup
t2[uj�1;uj ]

(T=M)
XM

i=1
jLa (si � uj)� La (si � t)j j"ij

+(T=M) max
0�j�JT

����XM

i=1
�Zi;T (uj)

����+ max
0�j�JT

(T=M)
XM

i=1

��� ~Zi;T (uj)��� =: S61 + S62 + S63: (B.9)

Here, jLa (si � uj) � La (si � t) j �
�
T=JTa

2
�
L0(sj=a + O(T=JTa)) and max1�i�M j"ij = OP (M),

and thus

S61 � (1=JTa)

Z 1

�1
L0(v +O(T=Ma+ T=JTa))dv �max1�i�M j"ij

= OP (M=JTa) = OP (
p
a�1�s log(1=�s)); (B.10)
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where we have set JT =M=
p
a�s log(1=�s). We wish to apply Bernstein�s inequality on S62 (see

p. 102 of Van der Vaart and Wellner, 1996) and to this end, compute the variance bound

Var
hPM

i=1
�Zi;T (uj)

i
� (2=�s)

XM

i=1
L2a (si � uj)�sE

�
"2i
�

�
�
2=�sa

2
� Z T

0
L2 ((s� uj) =a+O (�s=a)) ds supi�1E

�
"2i
�

� O (1=�sa)

Z 1

�1
L2 (v +O (�s=a)) du � C=�sa;

for some constant C > 0. Given this and the fact that
�� �Zi;T (uj)�� � 2 �K�T =a, Bernstein�s inequality

implies that

Pr
�
S62 � ��

p
a�1�s log(1=�s)

�
�
XJT

j=1
Pr
h���PM

i=1
�Zi;T (uj)

��� � (M=T ) ��
p
a�1�s log(1=�s)

i
�

XJT

j=1
2 exp

(
� ��2 (M=T )2 [a�1�s log(1=�s)]=2PM

i=1Var
�
�Zi;T (uj)

�
+ (1=3)

�
2 �K�T =a

�
c (M=T )

p
a�1�s log(1=�s)

)

� 2JT exp

(
� ��2[log(1=�s)]=2

C +
�
2 �Kc=3

�
� �T

p
�s log(1=�s)=a

)
! 0: (B.11)

The convergence in the last line occurs for �� large enough (as T !1), since JT = T=
p
a�3s log(1=�s)

grows at most at polynomial order of 1=�s (note that a�1 � ��1=2T c1 and T � ��c2 for some

c1; c2 > 0, both of which follow from eq. (3.10)), and since �T
p
a�s log(1=�s) = �� � O(1) by eq.

(3.9). Next, consider S63: First,

E
h
(T=M)

PM
i=1 jLa (si � uj) "i1 fj"ij > �T gj

i
� (T=M)

XM

i=1
jLa (si � uj)j sup

i�1
E[j"ijds+1]=�dsT

�
Z (T�uj)=a

�uj=a
jL (v +O (1=aM + T=aM))j dv �O(��dsT ) = O(��dsT ) uniformly over j,

where ��dsT = ���ds � o(
p
a�1�s log(1=�s)) since �

�ds
T =

p
a�1�s log(1=�s) = o (1) by eq. (B.8).

Therefore, for any �� and for any T large enough,

Pr
�
S63 >

p
a�1�s log(1=�s)

�
�
XJT

j=1
Pr
h
(T=M)

PM
i=1 jLa (si � uj) "i1 fj"ij > �T gj > (1=2)

p
a�1�s log(1=�s)

i
�
XJT

j=1

XM

i=1
Pr
h
jLa (si � uj)j j"i1 fj"ij > �T gj > (1=2T )

p
a�1�s log(1=�s)

i
�
XJT

j=1

XM

i=1
Pr [j"ij > �T ] � JTM supi�1E[j"ij1+ds ]=�1+dsT = O(JTM=�1+dsT ) = O(1=��1+ds);

(B.12)

which can be made arbitrarily close to zero by choosing �� large enough. This completes the proof.

Proof of Lemma 3.1. The proof proceeds along the same lines as that of Theorem 1 of Mancini

(2009). The only di¤erence between ours and her setup is that we allow for T !1, and so we only
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point out the modi�cations. Her original proof relies on three preliminary results/assumptions:

(i) the modulus of continuity of the Brownian motion fWtg over [0; T ] with T < 1 �xed; (ii)

the Brownian time-change technique of continuous martingales, i.e., the Dambis-Dubins-Schwarz

theorem; and (iii) a certain uniform boundedness condition, which is stated as eq. (14) in Mancini

(2009), which is implied by her conditions (1)-(3) of Theorem 1. We extend (i)-(iii) to allow for

T ! 1. Re. (i): The Brownian modulus-of-continuity result can be extended in the following
manner:

Pr
h
lim sup�&0 supt;s2[0;1); jt�sj�� jWt �Wsj =

p
2� log (1=�) = 1

i
= 1;

as shown in Kanaya (2014). Re. (ii): The Brownian time-change arguments hold irrespectively of

whether T is �xed or diverges (see Theorems 1.6, 1.9 and 1.10 in Ch. V of Revuz and Yor, 1999).

Re. (iii): The sequence f�T g in A4(ii)-(iii) controls the behavior of f�tg and
�
�2t
	
as T ! 1,

and allows us to obtain a uniform boundedness condition analogous to her ineq. (14). The rest of

Mancini�s proof remains unchanged.

Proof of Lemma A.3. Write �̂ (x)� ~� (x) = A1 +A2 +A3, where

A1 :=
(1=T )

PN�1
j=1 Kb(�2�j � x)(�

2
�j+1 � �

2
�j )

(�=T )
PN

j=1Kb(�̂2�j � x)
�
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2
�j )

(�=T )
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j=1Kb(�2�j � x)
;

A2 :=
(1=T )

PN�1
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h
Kb(~�2�j � x)�Kb(�

2
�j � x)

i
(�2�j+1 � �

2
�j )

(�=T )
PN

j=1Kb(~�2�j � x)
;

A3 :=
(1=T )

PN�1
j=1 Kb(~�2�j�1 � x)

h
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2
�j )� (�

2
�j+1 � �

2
�j )
i

(�=T )
PN

j=1Kb(~�2�j � x)
:

We show below that A1 = OP (#N=b), A2 = OP

�
#N=b�

1=2
�
and A3 = OP (#N=�), which establish

the result stated in eq. (A.22). The proofs of these bounds will use the following result repeatedly:

�

T

XN

j=1

h
Kb(�2�j � x)�Kb(~�

2
�j � x)

i
= OP

�
#N
b

�
: (B.13)

Proof of eq. (B.13). Observe that

the LHS of eq. (B.13)

=
1

N

XN

j=1

1

b
K0
�
(�2�j � x)b

�1 � wj(�2�j � ~�
2
�j )b
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2
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wj
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�
(
1

N

NP
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1

b

���K0 �(�2�j � x)b�1 � wj(�2�j � ~�2�j )b�1����1fwj j�2�j � ~�2�j jb�1 � ��g
+
1

N

NP
j=1

1

b
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� OP (#N=b)

�
(
1

N

NP
j=1

1

b
K�
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(�2�j � x)b

�1
�
+
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N

NP
j=1
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�j jb
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!�q)
(B.14)

= OP (#N=b)�
�
OP (1) +

�K

b
�OP

�
b

���q

��
; (B.15)

where the �rst equality holds by the mean-value theorem for some random variables 0 � wj � 1,
j = 1; : : : ; N . The inequality (B.14) holds by eq. (4.1) and���K0 �(�2�j � x)b�1 + wj(�2�j � �̂2�j )b�1����1fwj j�2�j � �̂2�j jb�1 � ��g � K� �(�2�j � x)b�1� (B.16)

where K� is some function and �� > 0, such that supj�j��� jK0((�2�j � x)b
�1 + �)j � K�((�2�j � x)b

�1).

By the last condition in K.3, such K� and �� exist by the same arguments used in the proof of
Theorem 3.1 with K� (u) being constructed in the same way as K� (u) in eq. (A.17). The equality

in eq. (B.15) holds since N�1PN
j=1K�b(�2�j � x) = OP (1) and wj(�2�j � ~�2�j )b

�1 = OP (#N=b)

(uniformly over j), where the former follows from the positive recurrence of the process
�
�2t
	
and

standard arguments for kernel estimators given the properties of K�.

Convergence of A1. The term A1 can be re-written as

A1 =
(1=T )

PN�1
j=1 Kb(�2�j � x)(�

2
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2
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i
:

By eq. (B.13), and the two following equations, we have A1 = OP (#N=b):
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Kb(�2�j � x)(�

2
�j+1 � �

2
�j ) = � (x)� (x) + oP (1) ; (B.17)

�

T
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Kb(�2�j � x) = � (x) + oP (1) : (B.18)

Convergence of A2. Write
1
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PN�1
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h
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Similarly to eq. (B.15) and the proof of eq. (B.13),

Anu21 = OP (#N=b)�
�
OP (1) +
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b
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:

48



The denominator of A2 is � (x) + oP (1) which, combined with eqs. (B.13) and (B.18), yields

A2 =
Anu21 +A

nu
22

� (x) + oP (1)
=
OP (#N=b) +OP

�
#N=b�

1=2
�
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:

Convergence of A3. By analogous arguments, we have
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Proof of Lemma A.4. This follows from Aït-Sahalia and Park (2013, Theorem 2).

Proof of Lemma A.5. As in the proof of Lemma A.3, �̂
2
(x)� ~�2 (x) = B1 +B2 +B3, where
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By the same arguments as in the proof of Lemma A.3, B1 = OP (#N=b). The numerator of B2 is
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where we have used the mean-value theorem, the same arguments as those for eq. (B.14), 1T
PN�1
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shown to be � (x) + oP (1) by eqs. (B.13) and (B.18)). Thus, B2 = OP (#N=b). Finally,
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where we have used eq. (4.1) and Lemma A.1. Note that T�1
PN�1

j=1 Kb(~�2�j�1�x) = OP
�
��1
�
, and

#N=�
1�
 ! 0 implies #N=�
 ! 0. Thus, #2N�
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 � #N=�


 � #N=�
1�
 , which, together

with eq. (B.20), establishes B3 = OP
�
#N=�

1�
�.
Proof of Lemma A.6. This follows from Aït-Sahalia and Park (2013, Theorem 4).

Proof of Lemma A.7. This follows along the same lines as in Sørensen (2009) or Yoshida (1992).

Proof of Lemma A.8. We only prove eq. (A.24) since the proofs of eqs. (A.25)-(A.26) are
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We below derive the convergence rate of each term. By the mean-value theorem,
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Proof of Lemma A.9. We only prove eq. (A.27). Eqs. (A.28) and (A.29) can be shown
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Similar to the analysis of a (�1) in the proof of Lemma A.8, c (�2) = OP (#N ), while
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where we have employed eqs. (B.21) and (B.20).
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C Tables

Drift Di¤usion

Infeasible 1-step Feasible 2-step Infeasible 1-step Feasible 2-step

0.6036 5.0377 0.0110 0.2038

� = 1=8 1.6332 0.6911 0.0147 0.0073

2.2368 5.7288 0.0257 0.2111

0.8503 0.6218 0.0258 0.0145

� = 1=4 1.5776 1.3627 0.0220 0.0201

2.4279 1.9845 0.0478 0.0347

1.3417 0.7511 0.0607 0.0304

� = 1=2 1.3348 1.3689 0.0289 0.0353

2.6764 2.1200 0.0896 0.0657

Table 1: Performance of infeasible and feasible nonparametric drift and di¤usion estimators,

� = 1= (24� 60). In each cell, integrated squared bias (�10�4), variance (�10�4) and MSE
(�10�4) are reported.

Drift Di¤usion

Infeasible 1-step Feasible 2-step Infeasible 1-step Feasible 2-step

1.2184 3.3333 0.0536 0.6269

� = 1=2 1.7283 2.2352 0.0393 0.0841

2.9466 5.5685 0.0929 0.7110

2.6679 0.2113 0.1250 0.0709

� = 1 1.0454 1.1474 0.0500 0.0614

3.7132 1.3587 0.1749 0.1323

5.7818 4.1220 0.2703 0.1309

� = 2 0.6394 0.6235 0.0613 0.0628

6.4211 4.7455 0.3316 0.1937

Table 2: Performance of infeasible and feasible nonparametric drift and di¤usion estimators,

� = 1= (24� 12). In each cell, integrated squared bias (�10�4), variance (�10�4) and MSE
(�10�4) are reported.
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� � �2

Infeasible Feasible Infeasible Feasible Infeasible Feasible

0.0021 0.0023 0.3029 24.7633 0.0361 4.4861

� = 1=12 0.6568 0.6650 19.0296 4.4351 0.0830 0.0815

0.6588 0.6673 19.3325 29.1984 0.1191 4.5676

0.0022 0.0026 2.3990 15.5280 0.1579 3.6615

� = 1=6 0.6576 0.6627 18.4518 12.3283 0.1547 0.1514

0.6597 0.6652 20.8508 27.8563 0.3126 3.8129

0.0021 0.0026 6.2912 6.8481 0.3493 0.3609

� = 1=4 0.6560 0.6623 17.3818 17.1802 0.2377 0.2497

0.6581 0.6650 23.6731 24.0283 0.5870 0.6106

Table 3: Performance of infeasible and feasible parametric drift and di¤usion estimators,

� = 1= (24� 60). In each cell, squared bias (�10�4), variance (�10�4) and MSE (�10�4) are
reported.

� � �2

Infeasible Feasible Infeasible Feasible Infeasible Feasible

0.0021 0.0024 0.3029 23.9588 0.0361 4.5830

� = 1=12 0.6568 0.6625 19.0296 7.2365 0.0830 0.1885

0.6588 0.6650 19.3325 31.1953 0.1191 4.7716

0.0022 0.0025 2.3990 14.4633 0.1579 21.2663

� = 1=6 0.6576 0.6614 18.4518 22.1306 0.1547 0.3595

0.6597 0.6639 20.8508 36.6940 0.3126 21.6258

0.0021 0.0025 6.2912 24.5878 0.3493 58.6862

� = 1=4 0.6560 0.6613 17.3818 33.3411 0.2377 0.5172

0.6581 0.6638 23.6731 57.9289 0.5870 59.2034

Table 4: Performance of infeasible and feasible parametric drift and di¤usion estimators,

� = 1= (24� 12). In each cell, squared bias (�10�4), variance (�10�4) and MSE (�10�4) are
reported
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D Figures

Figure 1: Infeasible 1-step estimator of � (x), � = 1= (24� 60) and � = 1=4.

Figure 2: Feasible 2-step estimator of � (x), � = 1= (24� 60) and � = 1=4.
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Figure 3: Infeasible 1-step estimator of �2 (x), � = 1= (24� 60) and � = 1=4.

Figure 4: Feasible 2-step estimator of �2 (x), � = 1= (24� 60) and � = 1=4.
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