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1. INTRODUCTION

Most of the attention paid to statistical aspects of inequality and poverty measurement has
focussed on properties of the sampling distributions of inequality statistics (see Davidson
and Duclos (1997)), regarding the data employed to calculate the statistics as error free
observations'. Of course data are rarely, if ever, error free. The tension between the
desire for large samples and accurate measurement always results in measurement error
being present.

Measurement of income inequality and poverty is essentially measurement of variabil-
ity. When measurement error is not strongly negatively correlated with income, recorded
income is more variable than actual income causing calculated inequality measures to tend
to overstate true inequality. Improvements in the quality of survey instruments reduce
measurement error and can lead to apparent reductions in inequality when true inequality
may be unchanged or increased. Comparisons across groups of the population, for exam-
ple urban and rural dwellers, are affected by differences in the extent of measurement error
within groups. The result is that measurement error can cause targeted redistributional
policies to be aimed incorrectly and can lead to false conclusions concerning the impact of
poverty alleviating measures. Measurement error affects some inequality measures more
than others and the effect of measurement error depends upon the distribution of true
income. This paper investigates the differential effect of measurement error on a variety
of inequality measures. It studies the relationship between, on the one hand, the impact
of measurement error on inequality and poverty measures and on the other, the form of
the underlying structural income distribution.

To obtain the precise effects of measurement error on inequality measures requires
a complete specification of the joint distribution of income and measurement error and
exact results require a case by case approach from which it is difficult to draw general
conclusions. This paper addresses this problem by considering the approximate effects
of measurement error. These are shown to depend upon particular features of the true
income distribution, the features that are relevant being determined by the inequality
measure under consideration. The only feature of the measurement error distribution
appearing in the approximation is its variance, measured in an appropriate metric. The
approximate impact of measurement error can be estimated for any candidate value of
the measurement error variance using only error contaminated income data. This allows
investigation of the sensitivity of computed inequality and poverty measures to measure-
ment error.

Although this paper focuses on the effect of measurement error on welfare measure-
ment, its results can be applied to other problems with a similar structure. For example,
income reported over a fixed period and “permanent” income may be related to one an-
other in the same way as the error contaminated and error free income discussed in this
paper. For such cases the results of this paper shed light on the relationship between

!There are a few exceptions. Cowell and Victoria-Feser (1996) examine the statistical robustness to
outliers of a variety of inequality indices. Analysis of measurement error effects using fully parametric
approaches and specific income and measurement error distributions are set out in Israelsen, McDonald
and Newey (1984) and van Praag, Hagenaars and van Eck (1983). See also Ravallion (1994).
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welfare measures calculated using survey records of income over reporting periods of dif-
ferent lengths and welfare measures calculated using “permanent” income. Of course real
short run variation in income may have substantive welfare implications, unlike the spu-
rious measurement error which motivates this paper. Although the exposition is cast in
terms of household or personal income, the results given here apply when household ex-
penditures are the basis for calculating welfare measures, and they apply in other similar
situations, for example in the measurement of industrial concentration or of inequality in
the distribution of time spent unemployed.

We consider welfare measures, specifically income inequality measures and poverty
indices, which can be expressed as a functional, W(Fy ), of the distribution function, Fy,
of income, Y. With error free income denoted by X and error contaminated income
denoted by Z, we study the relationship between W(Fy) and W(Fx) and show that the
error contaminated measure, W(FY), is approximately equal to

WA(Fx,0?) = W(Fx) + o?W*(Fx)

where W* is a functional specific to each welfare measure and independent of the mea-
surement error distribution, and o? is the variance of measurement error expressed in an
appropriate metric. We derive the form of W* for a rich class of welfare measures.

In the approximation, W4 (Fx, 0?), the term W*(Fx) can be replaced by W*(Fy)
without disturbing the order of the approximation error. Survey data regarded as realisa-
tions of Z can be used to produce estimates, W(ﬁ’ z) and W*(FZ), leading to measurement
error corrected estimates of welfare measures, W(Fy) — 62W*(Fy) where 62 is either an
extraneous estimate of the measurement error variance, or, in a sensitivity analysis, a
candidate value from a plausible range of values.

Many welfare measures and all those considered here, can be expressed in terms of the
particular functional

W(Fy) = L{a, N(y,a); Fy) = / " N(y, a)dFy (y) 1)

for some function of income N(y, a) and limit of integration a. Table 1 shows the measures
examined in this paper, defined in terms of £. A comprehensive survey of the literature
on inequality and poverty measurement is given in respectively Cowell (2000) and Seidl
(1988).

The mean, E[Y], and p-quantile, Qy (p), which appear as components of some of these
measures are, in terms of the functional £, as follows

E(Y) = L(oo,y; Fy)
p = L(Qy(p)1; Fy)

the p-quantile being implicitly defined by the second of these equations.

Table 2 shows the approximation, W*(Fx.o0?), for each error contaminated welfare
measure, YW(F), that we consider. In each case functionals of Fx can be replaced by
the same functionals of F; without changing the order of the approximation error, and
these are readily estimated. For example, the difference between the error contaminated

and error free poverty gap index is %20 fx(c) ~ %20 fz(c) which can be estimated for any
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Table 1: Welfare Measures: notation and definition

Name Notation Definition
Generalised 1 L(oc0,y"; Fy)
entropy index GELy () o? — a | [L(co,y; Fy)]® —11,a¢{0,1}

Generalised Lorenz

Curve ordinates Oy (p) L(Qy(p),y; Fy)

Lorenz B
Curve ordinate Uy (p) [L(oc0, y; Fy)] 1ﬁ(Qy(p),y; Fy)

Gini B

coefficient GCy 1-2 fol [L(00,y; Fy)] 1£(QY(Z7)7 y; Fy)dp
FGT class of c—vy\’ .

poverty indices Py(0,c) | Le, < - > s Fy) ,0>0

potential value of 02 plugging in a nonparametric estimate, fz, of the density of error
contaminated income, evaluated at the chosen poverty line, c.

The remainder of the paper is organised as follows. Section 2 develops the approxima-
tion to the functional £ and Section 3 applies the approximations to the welfare measures
listed in Table 1. Section 4 examines the quality of the approximations comparing them
with exact calculations for some specific cases. We find that the approximations are re-
markably accurate for a wide range of true income distributions and measurement error
distributions even when there is moderate measurement error. Section 5 proposes meth-
ods for estimating the functionals appearing in the approximations. A small Monte Carlo
experiment suggests that accurate estimation is possible in samples of the size typically
found in practical welfare measurement. Section 6 demonstrates the use of the approx-
imations in an illustrative sensitivity analysis of regional inequality measurement using
Indonesian household survey data from 1993. Section 7 concludes.

2. THE APPROXIMATE EFFECT OF MEASUREMENT ERROR

2.1. Introduction. Calculated welfare measures are statistics which, under suitable
conditions (see for example Davidson and Duclos (1997)), are consistent estimators of
the same welfare measures computed as functionals of the distribution generating the
income survey data. When income data are contaminated by measurement error the
distribution from which data are generated differs from the distribution about which
we would like to make inferences. So, to understand the way in which measurement
error affects views of inequality and poverty gained from welfare measure statistics, the
first step is to understand the way in which welfare measure functionals of error free
income distributions differ from the same welfare measure functionals applied to error
contaminated distributions. For most welfare measures this difference depends upon
detailed features of the error free income distribution and the measurement error process
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Table 2: Approximate Error Contaminated Welfare Measures

Welfare measure | W(Fy) Approximation: WA(Fx, o?) WA(Fx,0?%) = W(F)
v | OP1@) | 681x@) (14 Fato 1) + F >
borens CUrve | g, ) | )~ G B(X) Q) (@) <
Soiélfiﬁcient GCz GCx + o’ E(X) 7 E (X2 fx(X)) >
Headcownt | p0,0) | Pul0,0) + Scfx(e) (nyy(0) +2) E
g;gerty Py(1,0) Py(1,¢) +2‘§c Fx(o) >
FGT Index 2 0(p—
with 6 > 2 Fal0.0 [Py (6, c)P ff}ai)g_zf(f n ;lz; —2,0)]

Note: 1y, (C) = vlogm log fX (‘/E) ‘I:C

and a case by case analysis is required if the impact of measurement error is to be fully
understood. Here we derive approximations to the effect of measurement error which
only depend on the measurement error variance (in an appropriate metric) and a welfare-
measure-specific functional of error contaminated income.

The methods we employ allow use of a quite general class of measurement error models
which includes additive and multiplicative models?. However in this paper we consider
the simplest form of measurement error that could reasonably be posited for contamina-
tion of income data, namely multiplicative measurement error distributed continuously
and independently of error free (“true”) income. Multiplicative measurement error is a
leading case of interest because income is non-negative (at least in the long run). Multi-
plicative measurement error can also arise when income data are measured relative to an
equivalence scale which is itself measured inaccurately®. An attractive consequence of the
assumption of independence of multiplicative measurement error and true income is the
dependence it implies between deviations of error contaminated from error free income
(Z — X) and true income (X), larger deviations tending to be associated with larger
true income, in the sense that E[Z — X|X] = AX for some A > 0, which is the sort of
dependence one would expect to arise in practice.

The relationship between error free income and multiplicative measurement error con-
taminated income is specified as follows.

Z = XV (2)

Vo= et (3)

2The GAME model has for, monotonic p(-), p(Z) = p(X) + op(U) and includes simple additive
(p(x) = z) and multiplicative (p(x) = logx) measurement error models as special cases. Chesher and

Schluter (1999) develop the approximations of this paper for the GAME model.
3We are grateful to Martin Browning for drawing this to our attention.
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Here 0 > 0 measures the extent of measurement error with Z = X when o = 0. The
variate U > 0 has distribution function denoted by Fp(u), normalised so that log U has
mean zero and variance one. The scale factor exp(—o?/2) ensures that error contaminated
income (Z) and error free income (X) have the same mean to order* O(o?) as will be shown
in Section 2.2. Throughout it is assumed that X and U are continuously distributed.

The distribution function, F, of error contaminated income is a functional of Fx
and Fy and depends on o. For some welfare measures, for example the variance of log
income, the error contaminated welfare measure W(Fy), and therefore W(Fz) — W(Fx)
is determined entirely by Fy and o. This is unusual, and in most cases the difference in
welfare measures for error free and error contaminated income depends upon all aspects
of the measurement error distribution Fj;.

To get insight into the impact of measurement error without being specific about the
exact distribution of measurement error we consider approximations to error contaminated
welfare measures, obtained as second order Taylor series expansions of W(F) in powers
of o around o = 0. The approximations take the form

W(Fz) = W(Fx) + c*W*(Fx) + o(c?) (4)

where lim,_,0(0?)/0® = 0 and W*(+) is a functional determined entirely by W(-) and
independent of the measurement error distribution. There are three points of interest
here.

1. The O(0?) term is determined entirely by o2, the error free income distribution and
form of the welfare measure. The normalised measurement error distribution Fy;
plays no role except through its variance. Comparison of this term across measures
and distributions will show which measures are potentially sensitive to measurement
error and for what types of income distribution this sensitivity is high and low.

2. Since Fx and F differ by O(c?) it follows that o?W*(Fx) and o?W*(Fy) differ by
o(c?) so that the latter can replace the former in (4) without disturbing the order
of the approximation error. This leads to the following, alternative, approximation
which has important practical implications.

W(Fz) = W(Fx) + c*W*(Fy) + o(c?) (5)

3. Error contaminated data, that is, realisations of Z, allow estimation of Fz, and so, of
W*(F7). This leads to new tools for improved welfare measurement and comparison
in real world policy analysis in which measurement error is a non-ignorable, ever-
present feature.

(a) With an estimate W*(Fy), the sensitivity of welfare measurements to alterna-
tive amounts (0?) of measurement error can be assessed. One may find that,
for the chosen welfare measure and error contaminated distribution, W*(Fy)
is small enough to be ignored for plausible amounts of measurement error.

In the sense that E[Z] — E[X] = o(0?) where lim,_ o(c?)/0? = 0.
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(b) It is possible to calculate an approximately corrected welfare measure using
W(Fx) = W(Fyz) — 62W*(Fy), where 62 is an extraneous estimate, 62, or for
6% passing through a range of plausible values.

—

(c) Estimates, W(F), under different amounts of measurement error can be com-
pared across groups over which there might be expected to be different amounts
of measurement error, for example rural and urban households. One would be
concerned for the appropriateness of policy targeting if rankings of groups were
sensitive to plausible variations across groups in the amount of measurement
error.

We now develop the tools required to obtain the approximations to the welfare measure
functionals, first considering the relationship between error free and error contaminated
income distributions.

2.2. Approximate density functions under multiplicative measurement error.
Chesher (1991) shows that in the additive measurement error model

R=S+40V (6)

where V' is continuously distributed independently of S with mean zero and variance one,
the density of R is

Falr) = F5(r) + 2 £4(0) 7

where “~” indicates a difference between left and right hand sides that is o(c?) where
lim, _.qo(c?)/c? = 0.

The result follows directly from a second order Taylor series expansion of the marginal
density of error contaminated R,

fr(r) = /00 fs(r —ov)fy(v)dv

in powers of o around ¢ = 0. The approximation holds with remainder term of the order
indicated if (a) fs(s) has bounded third derivative and (b) V has finite third absolute
moment around zero. The approximation error expressed here and later as o(c?) is in fact
of order O(c?) or smaller and is O(c?) if V is symmetrically distributed with bounded
fourth moment.
Let
W =XU*

and define R, S and V in (6) as logarithms of respectively W, X and U. Then using
fw(w) = w™ fr(logw) and (7) gives

fw) = fsttog) + G 1oz )
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and expressing the right hand side of this approximation in terms of the density of X,
and its derivatives yields

fir ) = () + 2 (w2 £ (0) + o) + fe(w)). ®

Finally, defining Z = exp(—o0?/2)W, which introduces the mean correction so that E[Z] ~
E[X], noting that

fz(z) = 6‘72/2fw (e"2/2z>

= fw(2) + G (o) + 2fin(2).

substituting in (8) and retaining terms of order O(c?) gives the approximate error con-
taminated density, as follows.

FAD) > 13(2) = P+ G () + 2 file) 1 24x(2) )

o d?

= fx()+ SR ()

Details are given in Chesher, Dumangane and Smith (2001).

2.3. Approximate welfare measure functionals. For all the welfare measures con-
sidered in this paper (see Table 1) the approximate effect of measurement error on welfare
measure functionals is determined by its effect on the functional £(a, N; F) given in equa-
tion (1). This effect is now derived. Applying the functional to the error contaminated
income distribution gives

Llag, N: Fy) — /0 Y Nz ag)dFy(2).

The limit of integration may be distribution dependent and to allow for this write the limit
of integration as az = A(Fy), let ax = A(Fx), and assume az admits a first order Taylor
series expansion in o2 as follows: az ~ ax + 02 A;(Fx). Substituting this approximation
for az and the density approximation, equation (9), gives the following.

Llazg. N Fy) ~ { / /W% FX} N (2, az) fo(2)dz

Expanding N(z,az) and neglecting terms of order o(c?) the following approximation is
obtained.

ﬁ(az,N; Fz) ~ E(ax,N' Fx)+02A1(Fx) (ax,ax)fx(ax)
+o Al FX / N01 X ax)fx( )

e / Nz, ax)5 (wfx( ))da (10)



Welfare Measurement and Measurement Error 9

Here and later NV;;(y,a) denotes the ¢ 4+ j order partial derivative VQVQN (y,a). These
derivatives must be bounded for all ¢ and j with ¢ + 7 = 2 for this approximation to hold.

The leading term in equation (10) is the functional applied to the error free distri-
bution. The remaining terms capture the first order effect of measurement error. Of
these, the first term arises because of the potential distribution dependence of the limit
of integration, the second term arises because of the potential appearance of this distri-
bution dependent limit in the function NV and the final term arises directly from error
contamination of the density of X.

Under suitable restrictions on the behaviour of N(z,ax) and fx(z) as  — 0, the last

term can be integrated by parts to give the following approximation®.

ﬁ(az,N;Fz) ~ E(ax,N;Fx)+O'2A1(Fx)N(ax,ax)fx(ax)
+o Ay (Fy) / No (2, ax) fx (x)dz
0

52
+5 {N(ax,ax)ax fx(ax) + 2N(ax, ax)ax — Nio(ax, ax)ax]fx(ax)}

2 ax
+%/0 Nui(z, ax)2? fx(z)dx. (11)

This approximation is employed in the remainder of the paper.

3. APPROXIMATIONS FOR PARTICULAR WELFARE MEASURES

3.1. Introduction. In this Section explicit forms of the approximations (10) and (11)
are provided for some commonly used welfare measures. Moments and quantiles, which
figure in a number of the welfare measures, are considered first, and then, in Sections 3.3
and 3.4, the approximate effects of measurement error on the Generalised Entropy Index,
the Lorenz curve and the Gini coefficient are examined. Section 3.5 considers poverty
indices, first with distribution independent poverty lines, and then with distribution de-
pendent poverty lines.

3.2. Moments and quantiles. Moments, functions of moments, and quantiles ap-
pear in a number of the welfare measures and it is useful to have approximations of these
to hand. Using equation (11) with a = oo , N(y) = y* and suitable assumptions on the
tail behaviour of fx yields

E[Z%] ~ E[X“] (1 + %Za(a - 1)) (12)

which implies, for the mean and its inverse,
E|Z]~E[X] E[Z]'~E[X]"!. (13)
5The required conditions are limy_oxN(z,ax)fx(z) = 0, limy_o22N(z,ax)fk(x) = 0,

lim, 0 22 Nio(z,ax) fx(x) = 0.
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The quantile function is defined implicitly by p = Fz(Qz(p)) = Fx(Qx(p)). Consider
equation (11) with N(y) =1, let az = Qz(p) which has Taylor series approximation

Qz(p) ~ Qx(p) + 0" Ai(Fx) (14)

where
Ai1(Fx) = V52Qz(p)|s2=0

which is now derived. Since L(Qz(p),1; Fz) = L(Qx(p), 1; Fx) = p, upon substituting in
(11) we have

p~p+0’fx(Qx(p)Ai(Fx) + {QX )% (Qx(p)) +2Qx(p) fx(Qx(p))}

giving
o 10%(p)fx(Qx(p) +2Qx(p) fx(Qx(p))
Al = 75 T (e )
= —2Qx(D) (1 (@x(p) +2)
where

Nfx (a> - vlog:z: 1Og fX(I) |J::a

is the elasticity of the income density at z = a. Substituting in (14) the following approx-
imation to the quantile function under measurement error contamination is obtained.

0_2

Qz(p) ~ Qx(p) [1— 5 (175 (@x(p)) +2) (15)

To the order of approximation considered, error contaminated quantiles exceed error free
quantiles over all intervals in which the elasticity of the density function of true income
is less than —2. Clearly these intervals must be in regions where the density function is
falling. At all p values for which the density is increasing error contaminated quantiles lie
below error free quantiles.

The distortion of the quantile function produced by measurement error has conse-
quences for the “first order” approach to comparisons of distributions. Consider the class
of social welfare functions [wu(y)dF(y) where the utility function u is increasing, and
two distribution functions Fjg and Fr. A well-known dominance result (Saposnik (1981,
1983)) states that Qs(p) > Qr(p) for all p if and only if social welfare associated with
distribution Fg exceeds that associated with F7 for all utility functions u in the admissible
class. Equation (15) shows that error free and error contaminated income distribution
functions typically cross. So, when income distributions subject to differing amounts of
measurement, error are compared without consideration of the impact of measurement
error, it is possible to conclude that there is no first order dominance when in fact there
is dominance for error free income. Estimation of components of a measurement error
correction, as illustrated in Section 5, allows the potential impact of measurement error
on first order comparisons to be assessed.
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3.3. The Generalised Entropy Index. The Generalised Entropy Index (GEI) is

of interest because any inequality index which satisfies the principle of transfer, scale

invariance and decomposability must be ordinally equivalent to the GEI (Cowell (1980))°.
The moment approximations given earlier imply

E[Z°]E[Z]® ~ E[X°]|E[X]® (1 + O;a(a - 1))

which implies
o? o?
GEIz(a) ~ GEIx(a) <1 + Ea(a — 1)) +5

To the order of approximation considered, the GEI is larger for error contaminated income
distributions than for error free distributions whenever a(a — 1) > —GEIx(a)™!, which
holds for all GEIx(a) when o < 0 and « > 1, and for all & when GEIx(«) < 4. Note
that 4 is an unusually large value for this index in practice for a € (0,1). The first order
effect of measurement error on the GE Index is invariant with respect to the form of the
error free income distribution.

3.4. The Lorenz curve and the Gini coefficient. The “second order” approach
to distributional comparison considers the class of social welfare functions [ u(y)dF(y)
where the utility function « is increasing and concave, and two distribution functions Fyg
and Fr. Atkinson (1970) shows that, when S and 7" have the same mean, all measures
satisfying symmetry, mean independence and the principle of transfers will register a
greater inequality for Fr than for Fg if and only if the Lorenz curve associated with
Fy lies everywhere above that associated with Fr. The theorem has been extended by
Shorrocks (1983) to distributions with different means: social welfare associated with
distribution Fyg is greater than that associated with Fr if and only if the Generalised
Lorenz curve for Fg lies everywhere above that of Fir . It is therefore of interest to study
the impact of measurement error on Lorenz curves.

To derive the effect of measurement error on the Lorenz curve ordinate, first consider
the Generalised Lorenz curve ordinate £(Qz(p), z; Fz). Exploiting the quantile approxi-
mation (15) which gives the form of the term A;(Fx) that appears in (11) we have the
following.

D2(p) = L(Qz(p), % Fz) = Ox(p) - Q%) fx (Qx(p)) (16)
Since E[Z]™! ~ E[X]7!, the simple Lorenz curve ordinate is
W(p) = Ux(p) ~ T EX) QX (0)fx(Qx(p)). (17)

50One such ordinally equivalent index is the Atkinson index (Atkinson (1970)) which is therefore not
considered specifically here.
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The first order effect of measurement error is to push the Lorenz curve outwards, so the
Gini coefficient must be increased.
The Gini coefficient for the distribution of error contaminated income is

1
GCz=1- 2/ U, (p)dp.
0

Using the approximation (17) and integrating with respect to Qx(p) in place of p leads
directly to

E[X?fx(X)]

~ 2
GC; ~GCx +o EX]

To the order of approximation considered, the Gini coefficient for the distribution of error
contaminated income is larger than the Gini coefficient for the distribution of error free
income. The increase caused by measurement error is smaller when the density of X
is high-valued close to zero and low-valued far from zero, for example when the income
distribution is heavily positively skewed.

3.5. Poverty indices. A large class of poverty indices (see Foster, Greer and Thor-
becke (1984)) have the form

C

Py (0,¢) = /0 (1 - g)ngy(y) = L(c, (1 - %)Q;Fy)

where # > 0 is a sensitivity parameter and c is the poverty line. In some applications
the poverty line is distribution dependent, for example specified as a fraction of median
income. First consider the case in which the poverty line is distribution independent.

Distribution independent poverty lines. Care is required in producing approx-
imations to these poverty indices because the integration by parts done to reach (11) is
not valid when 6 < 2. However the approximation (10) is valid for all # > 0, giving the
following approximation.

2

Pz(0,c) = Px(0,c)(1 +o°) + % /OC (1 — %)9 (% (z) + 4z [ (z)) dz.

When 6 = 0 we have the head count index L(c, 1, Fz) and direct application of (10)
with N(z,az) = 1, gives
2
o
P(0,¢) = Px(0,¢) + = (¢ fx(c) +2¢fx(c))
2
o
= Px(0,¢) + -cfx(c) (nyx () +2) (18)

where in the second line 7y, (c) is the elasticity of the income density at the poverty line.
This mirrors the quantile approximation given in Section 3.2. To the order considered
here the head count index for the error contaminated distribution exceeds that for the
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error free distribution whenever 7y, (c¢) > —2. So, if the poverty line is drawn where the
income density is rising, for example to the left of a mode of the income density, then
measurement error causes the head count index to rise. However for a poverty line drawn
where the income density is falling it may be possible for measurement error to cause the
head count index to fall. This could perhaps occur in cases in which the mode of the
income density is far to the left of the main mass of the distribution.

When 6 = 1, one round of integration by parts can be done and this is sufficient to
give the following simple approximation.

2

o
Pz(1,¢) ~ Px(1,¢) + 7cfx(c) (19)
In this case, to the order considered the error contaminated index is larger than the error
free index for all income distributions and choices of distribution free poverty line. This is
also the case for all § > 2 when (11) is valid, and since N(c,c) = Nyo(c, ¢) = 0, we obtain

o? ¢ rz\2 2\ 0-2
PA0.0) 2 Px(0.0) + 5001 [ (2) (1-2) pe0s20)
which, after some manipulation can be written as
2
Pz(0,¢c) ~ Px(0,c) + %9 (0 —1)[Px(0,c) —2Px(0 — 1,¢) + Px(0 — 2,¢)] . (21)

The integral in (20) is positive, so for § > 2 the error contaminated index is always larger
than the error free index”.

Distribution dependent poverty lines. Now let the poverty line be distribution
dependent. There are many possible specifications but one commonly encountered speci-
fies the poverty line as a function of a p-quantile (for example a fraction of the median),
cz = c(Qz(p)), with cx = c(Qx(p))-

In the case of the head count index, since N(z,ax) = 1, the term in (11) involving
Noi(z,ax) is absent and the following approximation is obtained.

Pz(0,cz) ~ Px(0,cx) + %QCXfX(CX) M7y (cx) +2 = 1(Qx(p)) (s (Qx(p)) + 2))

Here 7. is the elasticity of the poverty line ¢(Q x (p)) with respect to Qx (p). In all practical
applications ¢(+) will be increasing, in which case the additional term arising because the
poverty line is distribution dependent will tend to reduce the impact of measurement error

as long as cx = ¢(Qx(p)) and Qx(p) are close enough that n¢, (cx)+2 and 14, (Qx(p))+2
have the same sign®.

"For 6§ in [0,1) U (1,2) it appears that the sign of the approximation to Pz(6,c) — Px(6,c) depends
upon the location of the poverty line, ¢, and on the error free income density as is the case for § = 0 (see
equation (18)). It does not seem possible to sign Pz(0,c) — Px(6,c¢) for § < 2 except when 6 = 1.

80f course if cz = ¢(Qz(p)) and Qz(p) are coincident then the O(o?) disappears altogether because
in this trivial case Pz(0,cz) = Pz(0,Qz(p)) = p exactly.
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Now consider poverty indices with # > 0 and a distribution dependent poverty line.

Here
T T -1
NOI(CC,C)() = 007 (1 — —>

X Cx
and, for & > 1, after some manipulation we obtain the term, A, to be added to the
approximations to allow for distribution dependence in the poverty line.

0.2

AQx(p): () = 50 (nyx (Qx (p)) + 2) 1(Qx (P)) (Px (0, cx) — Px (0 — 1, ex))
Since Px(f,cx) is a decreasing function of § and in practice ¢(-) will be an increasing
function, A will be positive when the density elasticity at the poverty line, n¢, (Qx(p)),
exceeds —2. For 0 € (0, 1) the integral in (11) involving Ny (z, ax) does not converge and
the small variance approximation used here is in this case not available.

4. THE ACCURACY OF THE APPROXIMATIONS

We now examine the accuracy of the approximations. We do this by computing the exact
distributions of error contaminated income for a variety of combinations of error free
income and measurement error distributions and differing amounts of measurement error.
We then calculate welfare measures using these exact distributions and compare them
with the approximations®. Since we compare the error contaminated welfare measures
with what is obtained when there is no measurement error, this exercise also gives a feeling
for the potential magnitude of the distortions to welfare measures caused by measurement
error.

For this purpose we work in a flexible framework and consider a variety of cases in
which log error free income and log measurement error are independently distributed
with exponential power (EP) distributions (see Box and Tiao (1973)). A random variable
V € (—o00,00) with an EP distribution with mean pu, scale parameter 7 > 0 and shape
parameter 3 € (—1, 1] has density function proportional to exp{—7"!v — pu|>*?}. Nine
combinations of measurement error distribution and error free income distribution are
considered, namely combinations of:

e three EP distributions for zero mean log measurement error with gypr = —0.9 (close
to uniform), Byp = 0.0 (Gaussian) and Gy g = +1.0 (Laplace), and,

e three EP distributions for log error free income with Grne € {—0.5,0.0,+0.5}.

Poverty indexes are studied first, then Lorenz curve ordinates and the Gini coefficient.

9Exact error contaminated income distributions and the required functionals of them were computed
numerically using the Gauss-Kronrod quadrature method as implemented in the NIntegrate function of
Mathematica 4.0 (Wolfram (1999).
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4.1. Poverty Indexes. We consider poverty lines, ¢, drawn so that for each of the
three error free income distributions the headcount index is 0.20. Figure 1, 2 and 3
refer to respectively the head count index, Py (0,c), the poverty gap index, Py(1,¢) and
the poverty severity index, Py(2,c¢). In each figure there are nine panes showing the
ratio of the exact (dashed) and approximate!® (solid) error contaminated indexes to the
value of the error free index as measurement error varies so that the excess log variance
ratio, v = Var[log Z]/Var|log X], varies from 1 to 1.25. Each pane relates to a distinct
combination of error free income distribution and measurement error distribution.

Looking first at the dashed lines in these graphs, it can be seen that for all distribu-
tional combinations and choice of index the impact of measurement error on the index
is substantial, varying close to linearly with the excess log variance ratio. An excess log
variance ratio of 1.25 causes the headcount, poverty gap and poverty severity indexes to
be inflated by around 25%, 50% and 80% respectively relative to their values for error
free income. Looking at the solid lines on the graphs it can be seen that the approxima-
tions to these significant measurement error effects are very good indeed. In no case do
the approximations deviate by more than 4% from the exact values. In most cases the
deviations are far smaller than this.

Figure 4 compares bias corrected indexes with values of the indexes for error free
distributions, plotting (W(Fyz) — o?W*(Fz)) /W(Fx) as a function of the excess log vari-
ance ratio. In all cases this ratio lies close to 1 indicating that the approximations deliver
accurate measurement error corrections under a wide variety of conditions.

4.2. Lorenz curves and Gini coefficients. Figure 5 shows the difference between
error free Lorenz curve ordinates and ordinates of exact and approximate error contami-
nated Lorenz curves when the excess log variance ratio is 1.2. For proportions of income
away from 0 and 1 the difference is of course always positive, in the cases considered here
peaking at between 0.03 and 0.05 for income proportions around 0.8. Variations in the
shape parameter of the measurement error distribution (compare columns in Figure 5)
have little effect compared with variations in the shape parameter of the error free income
distribution (compare rows). In all cases the approximations deliver values that are very
close indeed to the exact Lorenz curve ordinates!!.

It comes as no surprise then to find that the approximations to the Gini coefficients are
also accurate. Figure 6 shows exact and approximate error contaminated Gini coefficients
expressed as ratios to values of the Gini Coefficient for error free data for excess lag
variance ratios varying from 1.0 to 1.2. Measurement error on this scale causes inflation
of the Gini coefficient by up to 8% (see the dashed lines in Figure 6), a magnitude very
accurately picked up by the approximations.

0The form of the approximation used here employs F rather than Fy in W*(-) since this is the form
more likely to be employed in applications, as is done in Section 6.

1 The approximations vary very slightly as the measurement error distribution shape parameter is
changed because they are calculated using W*(Fz) and Fy alters as the measurement error distribution
changes.
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Figure 1: Poverty index P(0, ¢) with poverty line, ¢, at the 20th percentile of the error free
income distribution. Approximate (solid) and exact (dashed) error contaminated index
relative to error free index. Shape parameters: error free income [;y¢, measurement error
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Figure 2: Poverty index P(1,c) with poverty line, ¢, at the 20th percentile of the error free
income distribution. Approximate (solid) and exact (dashed) error contaminated index
relative to error free index. Shape parameters: error free income [;y¢, measurement error
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Figure 3: Poverty index P(2,c) with poverty line, ¢, at the 20th percentile of the error free
income distribution. Approximate (solid) and exact (dashed) error contaminated index
relative to error free index. Shape parameters: error free income [;y¢, measurement error
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Figure 4: Ratios of corrected measurement error contaminated poverty indexes to exact
error free indexes for measurement error distributions with shape parameters: SByrp =
—0.9 (near uniform, solid), By g = 0.0 (Gaussian, dotted), Byp = +1.0 (Laplace, dashed).
Poverty line drawn at the 20th perecntile of error free income.
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Figure 5: Difference between Lorenz curve ordinates when the excess log variance ratio is
1.2, ordinates with no measurement error minus approximate (solid) and exact (dashed)
ordinates of error contaminated Lorenz curves. Shape parameters: error free income SBryc,
measurement error Gy/g.

Buc= 0.5 B, = 0.9 Buc= 0.5 B,c= 0.0 Buc= 0.5 B,c= +1.0

Difference in Lorenz curve ordinates
0.0 0.01 0.02 0.03 0.04 0.05
0.01 0.02 0.03 0.04 0.05
0.0 0.01 0.02 0.03 0.04 0.05

0.0

00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0

Buc= 0.0 B,e=-0.9 Buc=0.0 B,c=0.0 Buc= 0.0 B,e=+1.0

Difference in Lorenz curve ordinates
0.01 0.02 0.03 0.04 0.05
0.01 0.02 0.03 0.04 0.05
0.01 0.02 0.03 0.04 0.05

0.0
.

0.0

0.0

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Buc= +0.5 B,e = 0.9 Buc= +0.5 B,e= 0.0 Buc= +0.5 B = +1.0

Difference in Lorenz curve ordinates
0.0 0.01 0.02 0.03 0.04 0.05
0.01 0.02 0.03 0.04 0.05
0.0 0.01 0.02 0.03 0.04 0.05

0.0

T T T T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Proportion of income Proportion of income Proportion of income



Welfare Measurement and Measurement Error 21

Figure 6: Exact (dashed) and approximate (solid) error contaminated Gini coefficeints
expressed as ratios to error free values. Shape parameters: error free income [n¢, mea-
surement error By x.
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5. ESTIMATION OF THE APPROXIMATE MEASUREMENT ERROR DISTORTION

The approximations give insight into the relative sensitivity of different welfare measures
to measurement error and the way in which sensitivity varies with the form of the income
distribution. They also have more practical uses. To see this rewrite the generic form of
the approximations as follows

W(Fx) ~ W(Fz) — oc*W*(Fy)

or equivalently, to the order of approximation considered, in multiplicative form as follows.

W(Fx) ~W(Fz)exp (—02%> . (22)

Since the welfare measures considered are all by construction non-negative, we might
expect this multiplicative form to perform better, particularly when W(Fy) is small.

Applying a welfare measure to error contaminated data produces an estimate of W(Fy)
but it is W(Fx) that is of interest. With an estimate of W*(Fy) it is possible to estimate
the welfare measure for error free data, W(Fx), if an extraneous estimate of o2 is available.
Even without such an estimate one may have a view of a plausible range of values for o2
in which case one can obtain an approximate interval estimate of the error free welfare
measure.

In this Section we propose simple estimators of the “correction terms”, W*(Fy). The
accuracy of the approximations exact calculations of the previous Section suggest that
knowledge of W*(Fz) will be highly informative, but it is possible that errors introduced
by estimating the terms W*(F) will reduce the value of the procedure. To get an idea of
whether this is likely to be the case we report a small Monte Carlo experiment focussing
on the sampling distributions of estimates of the correction terms.

We propose to estimate each term W*(Fz) by applying the functional W* to a non-
parametric estimate of F;. In some cases it is possible to use the estimate W*(FEPF)
where FFPF is the empirical distribution function (EDF). In other cases (e.g. where W*
involves derivatives of F7) we propose using kernel estimators, in particular with Gaussian
kernels because with this choice rather simple expressions for the welfare measure correc-
tions arise. Since income data are usually heavily skewed we expect better performance
applying the kernel method to log income data. The density estimators for (log income)
data {y;}, take the generic form

ZKhy yz Z st yZ

where ¢ is the standard normal density function, and h is a bandwidth parameter.

5.1. Poverty indices with distribution independent poverty lines. First con-
sider kernel based estimation of the poverty indices using the error contaminated income
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data. Let R = log Z have density function fr(r). The poverty indices in terms of the
density of log income are

Py(0.c) — /Ogcu GV

oo c

and replacing the unknown log income density by an estimator based on n realised log
income values, {r;}",, gives the estimator

Pro,c) =3 / - Lq;(” ) Kn(r — rs)dr

n <

which for the three cases considered here take the following forms.

. 1 & loge —r;
PZ(O,C) :EZ® (gT)
i=1

A . 1 n h2 log ¢ — r —|—h2
Pa(1,¢) = P7(0,6) = — > exp (rﬁ?)% g 2 ))
i=1

R R . 1 &« log c — (r; + 2h?%)
Pz(2,¢c) =2P4(1,¢) — Pz(0,¢) + 3 ;exp (2(r; + h?)) @ ( ;

Now consider estimation of the measurement error correcting functionals YW* which
in this section we denote by Cz(0,c). First consider the head count index which, for a
poverty line drawn at ¢ has (see equation (18))

Cz(0,¢) = = (2fz(c) +2¢fz(c))

= 5 (falloge) + fr(log )

—=No| =

where fr is the density function of log income. This is replaced by a kernel density
estimate to produce the estimated functional. The resulting estimate is as follows.

~ 1 — loge —r;\ 1 logec —r;
Cr(0,0)=—S (12 —T) g (22—
2(0,¢) 2n;< 12 >h¢( I >
The poverty index with # = 1 has (see equation (19))

1

Cz(l,c) = 3 (cfz(c))

= %fR(lOg c)

which we estimate by

~ 1 <1 [loge—r;
cutr - L5 Lo (257)

i=1
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The poverty index with § = 2 has (see equation (21))
Cz(2, C) = Pz(2, C) — 2P2(1, C) + Pz(o, C)

and combining the estimates of the three poverty indices gives

R 1 n logc
Cz(2,¢c) = — Z/ exp(2r) Ky (r — r;)dr
i=1 /=00
_ %Zexp (2 (r; + h?)) @ <logc (}7;’ +2h )) .

The poverty indices and Cz(2,¢) can also be estimated directly by replacing the dis-
tribution function of Z by the empirical distribution function (EDF) in their defining
equations.

5.2. The Gini coefficient. The Gini coefficient is conveniently estimated using the
relative mean difference form

GOy = —— ;
Z 2zn211]Zl|Z

where Z is sample mean income. This is an empirical distribution function (EDF) based
method. The measurement error correction term prior to multiplication by o2 is as follows.

. BlZ(2)
g = ——2 27
E[Z]
Since E[Z2f7(Z)] = E [exp(R )fR( )] where R = log(Z), the correction term can be
estimated by the kernel method as'?
- 1 [ I =1, (=7 \1 [(r—ry
11 1 ri—7r;\° 1 2
thﬁan;;eXp< ( o7 ) + 2(rz+rj)+ 4>

12 Alternatively one could use a single kernel to produce an estimate fr (r) and then estimate Ay as
follows.

. 1 & .
Az = oy ;eXp(Ti)fR(ri)
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Table 3: Monte Carlo Estimates of means and standard deviations of estimators of welfare
indexes and measurement error corrections

Sample size 200 Sample size 500
Index or Kernel EDF Kernel EDF
Correction | True | Mean S.D. | Mean S.D. | Mean S.D. | Mean S.D.
Pz(0,¢) 159 | 170 022 | 159  .025 | .167 .016 | .160 .016
éz(o, c) 242 | 229 .044 - - 232 .034 - -
PZ(L c) 057 | .064 .011 | .057 .011 | .062 .007 | .057 .007
AZ(l, c) 121 ) 120 .014 - - 121 .010 - -
Pz(2,¢) 028 | .033 .007 | .028 .007 | .032 .005 | .029 .004
AZ(Q, c) 074 | .076 .009 | .074 .014 | .076 .007 | .074 .009
GCy 521 - - 515 .028 - - .19 .019
Ay 220 | .220 .020 | - - 218 .014 | - -

5.3. Estimator performance. Table 3 shows the results of a 1000 replication Monte
Carlo experiment using a standard log normal distribution for Z, conducted to assess the
performance of the proposed estimators of the poverty indices (Pz(6,¢), # € {0,1,2})
and measurement error correction terms (62(9, ¢)) and of the Gini coefficient estimator
EE’Z and the estimator of its correction term flz. The bandwidth was chosen at each
replication using Silverman’s “rule of thumb” (Silverman (1986)) which gave very similar
results to those obtained with more computationally demanding cross-validation'®. Means
and standard deviations (SD) are reported for each estimator. The experiments were run
with a sample size at each replication, n, equal to 200 and 500. The column headed
“True” gives exact values, calculated using the methods of the previous Section.

There is some slight upward bias in the kernel based estimates of the poverty indices
which is absent for the EDF based estimates. However there seems to be little bias in
the kernel based estimates of the correction terms for § > 1. The estimates of the Gini
coefficient and its correction display little sign of bias.

This small experiment suggests that in samples of the sort of size frequently encoun-
tered in inequality and poverty measurement quite accurate estimation of the proposed
measurement error corrections is possible. The accuracy of the corrections documented
in the previous Sections suggests that there is scope for useful application of estimated
approximate measurement error corrections in practical welfare measurement exercises.
The next Section illustrates such an application.

13Cross validation was used in the application in Section 6.
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6. AN APPLICATION TO REGIONAL POVERTY AND INEQUALITY COMPARISONS IN
INDONESIA

This Section illustrates the use of these procedures in a sensitivity analysis of the sort
that could be conducted when using regional welfare measures to inform the targeting of
poverty interventions. Targeting might be based on observed differences in welfare mea-
sures across regions. But these differences could arise because of differences in amounts
of measurement error. This could be an important issue when comparing measures across
urban and rural areas. Accurate measurement may be more difficult to achieve in the
country where there are likely more non-market transactions, consumption of own pro-
duction and associated imputation of prices.

In this illustrative example the data employed are monthly per capita household ex-
penditures (1993 Rupiah per person per month (Rppm)) reported in the 1993 Indonesian
household survey SUSENAS in urban and rural areas in four provinces of Indonesia with
poverty lines set here, for illustration only, at 20,000 rupiah per person per month in each
areal

We calculate three welfare measures for each area, estimate the measurement error
correction terms, and then apply these for a range of values of measurement error log
variance. We focus on the Gini coefficient, GCz and on the head count index, Pz(0,c)
and the poverty gap index, Pz(1,¢), both with poverty line ¢ = 20,000 Rppm. For
log measurement error variance o2 the approximately corrected welfare measures are as
follows.

Px(0,0) = Py(0, c)—— (fz(c) + 2¢f2(c))
Py(l,¢) = PZ(LC)—“—cfZ(c)

Go. - go, L2 2)
B(Z

Here f 7 is the density of (error contaminated) expenditure per head, Z, f7 is its derivative,
and f and fz are nonparametric estimates of the density and its derivative.

We ask: could plausibly different amounts of measurement error across the areas be
responsible for the differences in the welfare measures that we see when they are computed
using the raw, error contaminated, survey data?

Table 4 shows the results of the calculations'®. The rows labelled 02 = 0 show the
welfare measures before correction for measurement error. Poverty measures are higher,
and Gini coefficients lower, in rural areas than in urban areas. The Table suggests that

1SUSENAS is the “Survei Sosial Ekonomi Nasional” described in Surbaki (1995). An analysis of
poverty incidence using the survey can be found in Bidani and Ravallion (1993). Sample sizes (households:
urban then rural) are as follows: C. Java: 2366, 4337; Lampung: 701, 1319; W. Nusa Tenggara: 708,
1342; E. Nusa Tenggara: 492, 1191.

15The poverty indexes and the Gini coefficient have been calculated using an EDF estimator. The
corrections have been calculated using kernel methods with bandwidth chosen using the Fast Fourier
approximation to the cross validation method as proposed by Silverman (1986).
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Table 4: Estimated poverty indexes and Gini coefficients for error free income at alterna-
tive values of measurement error log variance

URBAN AREAS RURAL AREAS
Poverty indexes  Gini Poverty Indexes  Gini
Province | o2 | Px(0,¢) | Px(1,¢) | GCx | Px(0,¢) | Px(1,¢) | GCx
Central. .00 .055 .007 313 .236 .041 273
Java .02 .043 .005 304 216 .033 .262
.04 .035 .003 .295 197 027 252
.06 .028 .002 .286 180 .022 241
Lampung | .00 .054 .007 .303 .251 .044 .256
.02 .044 .005 294 236 037 .245
.04 .036 .004 .285 222 .031 234
.06 .030 .003 276 .209 .025 224
W. Nusa | .00 .075 011 .316 .247 .040 .254
Tenggara | .02 .065 .008 307 228 .032 .242
.04 .057 .006 .299 211 .026 231
.06 .049 .004 291 195 .021 221
E. Nusa .00 .063 .007 .344 .267 .052 .230
Tenggara | .02 .054 .005 .336 241 .044 217
.04 .047 .004 .328 218 .037 .204
.06 .040 .002 321 .198 .031 .193

within each province rural and urban sectors appear to be very different, but that the
same sectors across the provinces are rather similar.

The remaining rows show estimates of the poverty indexes and Gini coefficients after
correction!® for varying amounts of measurement error with o2 denoting the conjectured
variance of log measurement error. The variance of log expenditure per head is between
0.2 and 0.3 for the areas considered here, so measurement error with log variance in the
range 0 to 0.06 used in Table 4 corresponds to an excess log variance ratio in the range 1
to 1.4.

These results suggest that the differences in measured poverty and inequality across
rural and urban areas cannot plausibly be explained by differences in measurement error.
Even large amounts of measurement error in rural areas suggest error free poverty indices
far above, and Gini coefficients far below, the measured values for urban areas. However,
it is clear that differences in the incidence of measurement error of the sorts of magnitude
considered here could seriously disturb the view of regional differences in inequality when
comparisons are made within rural or urban areas.

16The multiplicative form (22) of the correction has been used here.
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7. CONCLUDING REMARKS

Measurement error is an ever-present, generally significant, but usually neglected, feature
of survey based income and expenditure data. Since it is usually variance-increasing,
measurement error can be expected to have a significant impact on inequality and poverty
measurement. This paper has provided approximations to the effect of measurement error
on a variety of welfare measures, both inequality measures and poverty indices. We have
shown how these can be used to investigate the sensitivity of analysis of regional poverty
and inequality measures to differential incidence of measurement error.

The approximations show how welfare measures for error free income distributions
deviate from welfare measures for error contaminated income distributions, the deviation
to a first approximation being independent of the shape of the measurement error distri-
bution and determined by the measurement error log variance and estimable functionals
of the error contaminated income distribution. The approximations are quite accurate
for a wide variety of true income and measurement error distributions even when there
are moderate amounts of measurement error. We have proposed methods for estimating
these functionals and investigated their performance. They can be estimated accurately
with samples of the size typically encountered in applied welfare measurement.

Our approximations are valid, and seem accurate, for a wide range of error free income
and independent measurement error distributions, but there may arise cases in which the
independence assumption is hard to justify. With a particular model for dependence
progress along similar lines could be made, but it may be difficult to formulate and
identify a suitable model. One would need validation data to make real headway but
with that one could develop exact inferential procedures and the methods of this paper
would not be needed. The tool developed here allows assessment of the potential impact of
measurement error under independence, the leading case of interest, when, as is normally
the case, all that one has to work with is the measurement error contaminated survey
data.
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