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Abstract 

Bayesian statistics has been at the heart of phylogenetic inference over the last decade, 

particularly after the development of powerful programs that implement efficient Markov 

chain Monte Carlo algorithms, allowing inference from multi-parametric problems in 

realistic time frames. In this thesis we develop and test Bayesian methods to analyse 

molecular sequence data to address important biological questions. First, we review some 

fundamental aspects of Bayesian inference and highlight current Bayesian applications in 

molecular evolution with particular focus in studying natural selection and estimating species 

divergence times. Then, we develop a new Bayesian method to estimate the 

nonsynonymous/synonymous rate ratio and evolutionary distance for pairwise sequence 

comparisons. The new method addresses weaknesses of previous counting and maximum-

likelihood methods. It is also computationally efficient and thus suitable for genome-scale 

screening. Then, we explore the performance of existing Bayesian algorithms in estimating 

species divergence times. In particular, we study the impact of ancestral population size and 

incomplete lineage sorting on Bayesian estimates of species divergence times under the 

molecular clock, when those factors of molecular evolution are ignored by the inference 

model. The estimates can be highly biased, especially in the case of shallow phylogenies 

with large ancestral population sizes. Then, using computer simulations and real data 

analyses we study the effect of five commonly used partitioning strategies for divergence 

times estimation and show that the choice of the partitioning scheme is important in case of 

serious clock-violation with incorrect prior assumptions. Finally, a Bayesian molecular clock 

dating study is performed to estimate the timeline of animal evolution. The results indicate 

that the time estimates are highly variable, precluding the inference of a precise timescale of 

animal evolution based on the current data and methods. 
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Introduction 

Bayesian statistics developed substantially during the late 20th century and is nowadays 

used to address important problems in various scientific fields. An advantage of the Bayesian 

framework over the classical statistics is that it integrates in a straightforward way prior 

information about model parameters with information from the data through the likelihood 

function. This property and the development of efficient Markov chain Monte Carlo 

algorithms, have allowed Bayesian inference to be applied to complex multi-parameter 

problems, thus finding applications in real life problems. Bayesian inference is used in 

molecular evolution and phylogenetics since the mid-90s with a number of applications such 

as estimation of phylogenetic trees, species divergence times, molecular evolutionary rates, 

demographic population histories and natural selection. 

The work presented in this thesis concerns the development of new and use of existing 

Bayesian methods to study two important aspects of molecular evolution: natural selection 

and species divergence times.  

In chapter 1 we give an overview of the Bayesian methodology with emphasis on some 

key points which are important for the better understanding of the applications described in 

the following chapters.  

In chapter 2 we present some current applications of Bayesian statistics in phylogenetic 

inference with particular focus on studying natural selection and estimating species 

diversification times. We describe codon models and Bayesian techniques to identify 

positive selection and we introduce the molecular clock notion and a Bayesian molecular 

clock dating method to estimate species divergence times.  

In chapter 3 we develop a new Bayesian method to measure selection for pairwise 

sequence comparisons. The new method addresses weaknesses of previous counting and 

maximum likelihood methods. It is computationally efficient, and can be used in genome-

scale analysis of protein-coding gene sequences. 

In chapter 4 we study the impact of ancestral population size and incomplete lineage 

sorting on Bayesian estimates of species divergence times and rate under the molecular 

clock, when the inference model ignores those aspects of molecular evolution. We use a 

combination of mathematical analysis, computer simulation, and real data analysis to study 

the problem. We show that the time and rate estimates can be strongly biased, particularly in 

case of shallow phylogenies with large population sizes. 

In chapter 5 we evaluate the performance of five commonly used data partitioning 

strategies for the Bayesian estimation of species divergence times. We use computer 

simulation and real data analysis of a plant data set and we show that differences in time 
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estimates among the strategies are small when the priors are correct but can be large when 

model assumptions are violated. Especially when the clock is seriously violated and an 

improper clock model is used, the differences can be quite dramatic. 

In chapter 6 we perform a molecular clock dating study to estimate the timeline of 

animal evolution. We analyze a large amino acid alignment of 54 metazoan species in 

combination with 34 fossil calibrations to obtain Bayesian estimates of metazoan divergence 

times. We explore several sources that cause uncertainties in the estimated times such as 

different interpretations of the fossil record, rate variation among lineages, limited molecular 

data, unresolved phylogenetic relationships and show that their cumulative impact precludes 

a precise estimation of the metazoan timescale with current data and methods.  

Chapter 7 is a summary of the work. 
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1 Bayesian Theory 

1.1 Bayesian inference 

There are two main approaches for statistical data analysis: the Frequentistic or 

classical approach and the Bayesian. Bayesian ideas were introduced by Thomas Bayes 

during the 18th century (Stigler 1986). However, it was the French mathematician Pierre-

Simon Laplace who developed further the ideas of Bayes to become what is known today as 

Bayesian statistics (Stigler 1986). In both approaches, there is a parameter θ which we want 

to estimate and a mechanism f(x|θ) which determines the probability to observe data x given 

a value of the parameter. The fundamental difference of the Bayesian framework from the 

classical approach is that the parameter θ is treated as a random variable and thus has a 

distribution, while in classical statistics it is considered to be an unknown constant. Although 

this difference might not seem that important, it leads to a markedly different statistical 

modelling and interpretation.  

Inference in classical statistics is based on the likelihood, that is the probability of 

observing the data x given the value for parameter θ, f(x|θ). The value that maximizes the 

likelihood function is an estimate of θ. In contrast, Bayesian inference is based on the 

posterior distribution of θ, that is, the probability distribution of the parameter given the data 

f(θ | x). To estimate the posterior distribution, we need to specify a prior distribution f(θ), 

which expresses one's knowledge on θ before observing any data. Then the posterior 

distribution is given by the Bayes' theorem 

 
( | ) ( )

( | )
( )

 
 

f x f
f x

f x
,  (1.1) 

where f(x) is the marginal likelihood, a constant which guarantees that the posterior 

distribution integrates to one and is given by ( ) ( | ) ( )df x f x f    . Here, θ is assumed to 

be continuous but, if θ is discrete the integral is substituted by a sum.  

In classical statistics, since the unknown parameter θ is assumed constant, we always 

get point estimates and we use confidence intervals to express uncertainty around the 

estimated values. In the Bayesian framework the inference is the posterior distribution. 

However, in most cases we need to summarize the information included in the posterior into 

a single "best" estimate. Such point estimates could be the mean, mode or median of the 

posterior distribution. The analogue of the confidence interval in the Bayesian framework is 

the credibility interval, (c, d), which is defined as ( | ) 1

d

c

f x d    and means that the true 
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parameter θ is in the interval (c, d) with probability 1−α. For example, one can build a 95% 

equal-tail credibility interval (CI) using the 2.5% and 97.5% quantiles of the posterior 

distribution. However, when the posterior density is multimodal or skewed this interval may 

include less plausible values of θ than values outside the interval. So, in the above definition 

we impose the constraint that the width of the interval should be as small as possible, 

forming the highest posterior density (HPD) interval. Clearly the HPD interval offers two 

advantages over the equal-tail CI: (i) any point within the HPD interval has higher density 

than any point outside the interval and (ii) given a probability level 1−α the HPD interval has 

the smallest width. When the posterior density is unimodal and symmetrical the HPD and 

equal-tail intervals are identical. 

Most statistical problems involve models with more than one unknown parameters. Our 

interest might be to one of them or to a subgroup of them, but usually the values of the other 

parameters (called nuisance parameters) might be unknown. Dealing with nuisance 

parameters in classical statistics is hard but the Bayesian framework provides a 

straightforward approach to the problem. In case of multi-parameter problems we have a 

vector θ = (θ1,…,θp) of parameters which we want to make inference about. We specify a 

multivariate prior f(θ) and along with the likelihood function f(x | θ) we estimate the 

posterior using the Bayes’ theorem  

 
( | ) ( )

( | )
( | ) ( )d

f x f
f x

f x f




θ θ
θ

θ θ θ
.  (1.2) 

The posterior f(θ | x) is a multivariate distribution and we can make inference about any 

subset of parameters by applying straightforward probability calculations. For example, the 

marginal posterior distribution for the parameter θ1 can be calculated by integrating out all 

other parameters, 

 1 2( | ) ( | )d ...d pf x f x    θ  (1.3)  

Although there is no need for a new theory in multi-parameter problems there are two 

major practical problems caused by the increase in dimensionality. First, there is an 

increased difficulty in specifying the prior distribution. The prior is multidimensional and 

except for expressing one’s beliefs for any parameter individually, should also contain 

information on the correlations among the parameters. This is substantially more 

complicated than specifying a univariate prior for a single parameter. The second problem is 

computational. In multivariate models the marginal likelihood involves the calculation of a 

multidimensional integral which might be impossible to calculate analytically or even with 

advanced numerical integration techniques. In this case, the Bayesian inference has been 

made possible by development of efficient Markov chain Monte Carlo algorithms which 

simulate from the posterior. 
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1.2 Some advantages of Bayesian statistics 

An advantage of Bayesian statistics over the frequentistic approach is that it offers a 

straightforward interpretation. The cornerstone of classical statistics that the unknown 

parameter θ is being treated as constant leads to problems in interpretation. In classical 

statistics we'd like a 95% confidence interval [c, d] to mean that the true θ is between c and d 

with probability 95%, however, this is not the case. Since θ is assumed constant either is or 

not within the interval, and cannot lie within it with some probability. The random element is 

the data, and so the correct interpretation is that if we take many samples from the population 

and construct a confidence interval from each sample, then 95% of them will contain the true 

parameter value θ. In contrast, the Bayesian framework offers a straightforward 

interpretation; given the data the 95% credibility interval contains the true value of the 

parameter θ with probability 95%.  

Another problem with the classical approach is the violation of the likelihood principle. 

The likelihood principle states that if two experiments have the same likelihood (up to 

proportionality) then the inference around the parameter θ should be the same. In other 

words the likelihood function contains all information in the data about the parameter θ and 

the inference should be the same from two experiments with the same likelihood. However, 

this might not always be the case (see example below). In contrast, in the Bayesian 

framework when the likelihoods from two different experiments are the same (up to 

proportionality) the posterior distributions will be the same, leading to the same inference. 

To clarify that we consider the following example proposed by Lindley and Phillips (1976). 

Let’s assume an experiment in which we count the number of successes x in n independent 

trials. We are interested to test whether the probability of success (θ) in one trial is ½ or 

lower. In other words we want to test the null hypothesis H0: θ = ½ against the alternative 

H1: θ < ½. The number of positive outcomes x follows a Binomial distribution  

 ( | ) (1 )x n x
n

f x
x

    
  
 

, x = 0, 1,…,n. (1.4) 

Let’s assume that we observe x = 3 successes in n = 12 trials. Then the p-value, the 

probability to observe at most as many successes under the H0 as in the observed data is p1 = 

P(x   3 | θ = 0.5) = 0.073, meaning that the H0 is not rejected at significance level α = 5%. 

Now let’s consider an alternative experimental design in which we count the number of trials 

y until we observe m successes. We assume that we observe the same data, m = 3 successes 

in y = 12 trials. The number of trials y follows a Negative Binomial distribution 

 
1

( | ) (1 )
1

m y m
y

f y
m

   
 

  
 

, y = m, m+1,…,∞. (1.5) 
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The p-value for the same hypothesis testing is p2 = P(y   12 | θ = 0.5) = 1 – [P(y = 11 | θ = 

0.5) + … + P(y = 3 | θ = 0.5)] = 0.0327, meaning that the H0 is rejected at significance level 

α = 5%. As the likelihoods in the two models are proportional (the likelihood in the first 

experiment is f(x | θ) = 
12

3

 
 
 

θ3(1−θ)9 while is f(y | θ) = 
11

2

 
 
 

 θ3(1−θ)9 in the second), the 

inference should be the same. However, the inference is different, violating the likelihood 

principle. In contrast, in the Bayesian framework the posterior distribution is the same in the 

two experiments, since the proportionality constant cancels in the calculation of the 

posterior.  

Another advantage of the Bayesian framework is that it deals in a natural way with 

nuisance parameters through marginalization (equation 1.3). If marginalisation is not 

possible, Markov chain Monte Carlo algorithms can be used to simulate from the posterior 

and keep only the samples from the parameters of interest. An alternative approach is to 

calculate the posterior distribution of the parameters of interest by replacing the other 

parameters with their maximum likelihood estimates. The technique is called empirical 

Bayes, and is not fully Bayesian. In contrast, in classical statistics one has either to estimate 

all parameters involved in the model or use variations of the classical likelihood approach 

(e.g. profile likelihood) which increase complexity, to estimate only the parameters of 

interest. 

 

1.3 The impact of the prior 

The use of the prior distribution is at the heart of the Bayesian inference and is either the 

primary advantage over the classical approach or the major disadvantage. Sometimes prior 

information for a parameter of interest might be available before collecting any data and this 

should be used for statistical inference. For example, if one is interested in estimating the 

divergence time of two species using molecular data, some prior information may be 

available from the fossil record; the age of the oldest fossil belonging to one of the two 

species could serve as a minimum bound for their divergence time. The Bayesian approach 

provides a straightforward way to incorporate any such information through the prior.  

In some cases researchers might have different prior beliefs about a parameter due to 

disparate past observations or due to incongruencies in the current knowledge. Moreover, the 

representation of the same information by a statistical distribution could not be unique as 

different priors might seem equally reasonable. As a result, researchers may use different 

priors which may result in differences in the posterior inference. The problem could be more 



2. Bayesian applications in molecular evolution 

 

20 

 

severe when there is no prior information around the parameter of interest. In such a case the 

prior should represent total ignorance. However, with no information about the parameter it 

is quite unclear which prior is more reasonable. An approach could be to use a uniform 

distribution over the range of the parameter where any value is equally likely, but this prior 

might lead to contradictions as it is non invariable to non-linear transforms. One could use 

priors invariable to reparameterizations, called "Jeffrey's priors", but these may sometimes 

be improper (do not integrate to 1). For example, the Jeffrey's prior for the mean of a normal 

distribution (μ) with known variance is f(μ)1, which does not integrate to 1. The use of 

improper priors may lead to improper posteriors but their use is broadly accepted as long as 

the posterior is proper. In general, it is very difficult to represent total ignorance and the 

subjectivity around the specification of the prior has raised major criticisms for the Bayesian 

approach.  

When we analyze large data sets which are typically informative about the parameter of 

interest and a diffuse prior is used, the prior impact is practically negligible. In fact, with 

vague priors the likelihood and the Bayesian estimates are both close to the true parameter 

value and the confidence and credibility intervals are very similar. For example, let's assume 

that we are interested in the parameter θ(−∞, +∞) and we specify the uniform prior f(θ) = 

1/ (b − a), a < θ < b. Then, the posterior distribution is
( | ) ( )

( | )
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. The constant terms a and b cancel in the calculation of the posterior.  If the 

likelihood lies within the prior interval (a, b) then the value of the integral in the 

denominator, and thus the posterior, will be the same irrespective of the values a and b. 

However, if the prior interval (a, b) is misspecified (does not include the true value) the 

likelihood might be outside the interval and then the posterior will depend on the precise 

values of a and b. In general, the less informative the prior is (the further apart a and b are) 

the more likely is to include the likelihood and thus the lower impact is going to exert in the 

posterior. The posterior, however, can be sensitive to the prior if the data are uninformative 

about the parameter of interest or if a model with highly correlated parameters is used (see 

§2.3.5 for such an example).  

Prior specification is an important issue in any Bayesian analysis and there is no easy 

way on how to best elicit prior information. In general, the prior should summarize one's 

prior beliefs into a statistical distribution and in case there is no prior information it is always 

prudent to use diffuse priors. In practice, it is always important to examine the impact of the 

prior through a Bayesian robustness analysis. Alternative priors can be used and any 
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significant changes in the Bayesian inference should be reported. In any case, if the 

likelihood dominates the posterior the choice of the prior becomes unimportant in Bayesian 

parameter estimation.   

1.4 Markov chain Monte Carlo techniques 

When modeling real-world problems it is usually necessary to build parameter-rich 

models. Bayesian inference, except for very simple and usually unrealistic models, requires 

the calculation of high-dimensional integrals, which is not always practical to compute. 

Powerful simulation algorithms known as Markov chain Monte Carlo (MCMC) have been 

developed to deal with the issue. Although they were firstly proposed around 1950s 

(Metropolis, et al. 1953), it was only after the early 90s that they met an extensive use, as the 

field was revolutionized by the advance of computational resources (Robert and Casella 

2011). These algorithms avoid the calculation of integrals and provide a sample from the 

posterior distribution via a simulation process. As typically large samples are generated from 

the posterior the algorithms are computationally expensive. However, those techniques are 

primarily responsible for the great upsurge in popularity of Bayesian statistics since they 

enable inference in complex real-world applications. 

MCMC methods simulate a Markov chain whose stationary distribution is the posterior 

distribution of the parameters of interest. Let's assume that we are interested in the posterior 

distribution f(θ1,…,θp | X). Then a sample from the posterior can be obtained by the 

Metropolis-Hastings (MH) algorithm (Metropolis, et al. 1953; Hastings 1970). A sketch of 

the algorithm is as follows: 

1. Set initial state
1( , ..., )j j j

p θ , j = 0. 

2. In the j+1 iteration propose a new state * * *

1( , ..., )p θ drawn from a proposal 

density q(θ⃰  | θj). 

3. Set the next value θj+1 in the chain 
*

1
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4. Increment j. Go back to step 2 until j = J, where J is a predetermined number of 

iterations. 

 

Note that the algorithm does not involve calculation of the marginal likelihood as it cancels 

out in the calculation of the acceptance probability α. Moreover, in steps 2 and 3 it is not 
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necessary to update all parameters at once. It is actually advisable to update each parameter 

separately or create groups of parameters (i.e. grouping correlated parameters) and update 

the groups one by one. Updating all parameters together is complicated and might lead to 

poor performance of the algorithm (i.e. very low acceptance rates and thus poor efficiency). 

The states 1 1

1( , ..., )p  , ...,
1( , ..., )J J

p   are a sample from the joint posterior f(θ1, …, θp | X). 

Note also that the ith (i = 1, ..., p) component of each state is a sample from the marginal 

posterior distribution f(θi | X). We can thus summarize the posterior information for any of 

the parameters. For example, for the parameter θi we can approximately estimate the 

posterior mean through E[θi | X] 
1

1 J
j

i

jJ




  , or the variance and the 95% HPD interval. 

There are some important remarks that should be mentioned and that one should bear in 

mind in every implementation of the MH algorithm. First, the algorithm does not sample 

from the posterior distribution from the first iteration and usually several iterations are 

required until the algorithm converges to the posterior distribution. If the proposal density 

specifies an irreducible and aperiodic chain, meaning that the chain is able to visit all the 

parameter space with no period, then the convergence is guaranteed. These conditions are 

easily met for the vast majority of chains that we can construct. Thus in every 

implementation of an MCMC algorithm some first iterations are considered as a burn-in 

period and are discarded from any subsequent analysis. In all MCMC applications it is 

extremely important to check for convergence. Several diagnostic tools and tests have been 

proposed (e.g. the estimated potential scale reduction by Gelman and Rubin 1992), but none 

of the approaches can guarantee convergence (however, all tests can reject convergence). A 

common approach is to run the MCMC several times from different starting values and 

check that the estimates (i.e. posterior means) are the same in all runs. If convergence is not 

achieved a longer burn-in might fix the problem. 

All MCMC algorithms create a dependent sample from the posterior. So, it is common 

to thin the chain by keeping states at specific number of iterations, as the thinned sample has 

a reduced autocorrelation. The major advantage is that we save computer disk space and 

avoid computationally intensive calculations when producing summary statistics.  

The performance of the MH algorithm highly depends on the proposal density. 

Generally, there are no guidelines for the choice of the proposal density and a lot of effort 

has been put by statisticians for the development of efficient proposals (see e.g. Yang and 

Rodriguez 2013; Yang 2014, chapter 7). For example, one may use as a proposal density the 

normal distribution with mean the current state θi and variance ν (called step length). Note 

that usually the proposed value of a parameter 
*

i depends on the current state θi, although 

this is not a requirement. The choice of the value of ν is also important. If ν is too small the 
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proposed values will be very close to the current values and the chain will move with tinny 

steps whereas if ν is too large the proposed values will be markedly different and most 

proposals will be rejected, resulting in slow convergence. Moreover, in both cases the 

sampled states are highly correlated and the algorithm does not explore the parameter space 

efficiently (poor mixing). Typically the step length is chosen by trial and error so that the 

acceptance probability is ~30%. This empirical rule is followed in all MCMC 

implementations presented in the following chapters.  

1.5 Statistical inference methods and simulations 

In this thesis we analyse molecular data from a broad range of animal species to study 

natural selection and species diversification times towards a better understanding of the 

underlying evolutionary mechanisms. We built new statistical methods, tested their 

performance over pre-existing methods and used them to analyse molecular data sets. 

Simulations played an important role as they helped us to compare statistical inference 

methods.  

Several statistical methods might be available to analyse empirical data sets and study 

particular problems such as the genetic relationships among different species. Deciding 

which of these methods to use might be confusing, but simulation studies could be used to 

provide some guidance (Huelsenbeck 1995a). Since a statistical model is always an 

approximation of the real world process, simulations may never be fully representative of 

reality. However, one is nearly entirely free to simulate data under particular assumptions. 

Then, it is possible to examine the performance of a statistical inference method when (i) all 

assumptions of the method are met or (ii) when one or more assumptions are violated in 

certain ways. In this way we can evaluate the reliability and robustness of the inference 

method. For example, we can test whether a method can recover the true divergence times on 

a phylogeny when a particular assumption (e.g. gene trees match the species tree) is violated 

to a certain extent (e.g. see §4). Via simulations we can also evaluate the statistical properties 

of an inference method such as the bias and variance of parameter estimate, and the type I & 

type II errors of a statistical test.  

Designing a simulation study so that the results are useful and of general applicability 

requires careful consideration (e.g. see Burton, et al. 2006; Sokolowski and Banks 2010, for 

some general guidelines). Many independent replicate data sets are simulated under the same 

model with the same parameters. The simulated data sets should represent data sets collected 

in real life. For example, one may use parameter estimates from real data sets (of different 

features) to conduct the simulation. The simulated data are then analysed with the statistical 
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inference methods of interest and the results are compared against the true parameter values. 

Also, it is important for the values of the parameters used to simulate data to cover a wide 

range (e.g. see §3.3.2). If a method performs well over a wide range of values for a 

parameter used in the simulation (such as branch lengths of 0.01, 0.1, 1 and 10) then it is 

sensible to expect it to perform well for parameter values not used in the simulation but 

within the range (such as branch length of 0.05). In case of Bayesian inference methods 

where the inference for a parameter is its posterior distribution, one may use the median or 

mean of the posterior as a point estimate to compare against the true parameter value.  

Measures of performance of a method could include accuracy, precision and coverage. 

To measure accuracy one may use the relative error which is defined as the bias over the true 

parameter value (i.e. relative error =
̂ 




, or 

ˆ
100%

 




 as a percentage). The relative 

error is used as an indicator of how good an estimate is relative to the value of the parameter 

being estimated, providing also the direction of the bias (i.e. underestimate or overestimate). 

To assess precision, a useful measure is the standard error or the confidence interval width, 

both showing the variability of an estimator. The mean square error (MSE) of an estimator is 

another useful measure which combines bias and variance; MSE( ̂ ) = 2ˆ[( ) ]   =Var(̂ ) 

+ [E( ̂ )−θ]2. Coverage is also important. By coverage we mean the percentage of times that 

the confidence interval (in a ML framework, or the credibility interval in a Bayesian setting) 

contains the true parameter value over the simulated replicate data sets. Note that for 95% 

confidence (or credibility) intervals the coverage is expected to be around the nominal level 

of 95%. Values much less than 95% are considered troublesome as they lead to higher than 

expected type I error rate. The power of a statistical method for a given significance level 

can also be estimated as the percentage of times that the null hypothesis is rejected, when the 

null hypothesis is indeed false. For example, one may simulate protein-coding genes from 

two species assuming a true nonsynonymous/synonymous rate ratio of ω = 2, and then 

analyse the data and calculate the power for rejecting the null hypothesis H0: ω = 1. The type 

II error is calculated as 1 − power. Since results across different measures may vary leading 

to different conclusions, it is advised to always use more than one criterion to evaluate a 

method. For example, using the relative error only, one may infer superiority of a method 

with respect to bias but confidence intervals may suggest high uncertainty. This information 

could be valuable and will be overlooked if someone concentrates only in assessing 

accuracy. Generally there is a trade-off between bias and variance as some methods might be 

more accurate but less precise than others. Statistical methods producing accurate but highly 

variable estimates (i.e. large confidence intervals) or highly precise but biased are of little 

practical importance.  
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An important property of a statistical inference method is robustness which is the ability 

of the method to estimate the true parameter values even in cases where some of its 

assumptions are violated. Violation of a method’s assumptions is quite common in the 

analysis of real data. There are several ways in which a method’s assumptions might be 

violated. Some of these violations are known and can be tested, but some may be unknown. 

It is often impossible to examine the effect of all possible ways and extents of violations in 

an exhaustive manner. Alternatively, robustness to selected model violations is examined at 

a time. First, the performance of a method should be evaluated when all of its assumptions 

are met. Then, the performance of the method is evaluated when one particular assumption is 

violated at a time, then when two assumptions are violated at the same time and so on. The 

extent of violation can either be informed from real data (e.g. from past real data analyses) or 

can be high enough to allow the assessment of the limits of a method’s robustness. When 

comparing the robustness of several methods extra care should be given not to violate 

assumptions of different methods in different ways because this may create conditions 

favourable to one of the methods, leading to wrong generalizations about the relative 

robustness of the methods (Huelsenbeck 1995b). For example, when comparing ML to 

Bayesian phylogenetic reconstruction the same evolutionary model, e.g. Jukes-Cantor  

(JC69; Jukes and Cantor 1969) should be used in both approaches. Otherwise, one cannot 

infer whether the superiority of a method is due to the method itself or due to the 

evolutionary model used. In general, robustness is an important property and is crucial in 

selecting among methods. 

When analysing real data it is always advised to formulate particular hypotheses before 

observing any data. To test the hypotheses one should not focus only on the point estimates 

but consider the uncertainty around them as well. For example, we may are interested in 

testing whether positive selection has been operating in a gene from species A and B. Let’s 

assume that we analyse a molecular alignment from these species and that for the 

nonsynonymous/synonymous rate ratio we obtain an estimate ̂  = 3. We can’t claim that 

positive selection (inferred when ω > 1) has been operating based solely on the point 

estimate, because the high ω value could be just a result of chance effects (i.e. random 

sampling). P-values or confidence intervals (or posterior probabilities and credibility 

intervals in a Bayesian setting) account for uncertainties in the parameter estimates. Thus, in 

the previous example positive selection is plausible only in case the confidence interval 

around ̂  = 3 does not include 1. Biological significance is important as well. For example, 

an estimate ̂  = 1.1 although statistically significant (e.g. due to large sample size) might be 

of little biological importance. P-values could only inform on the statistical significance and 

thus it is advised to report both p-values (or confidence intervals) and the point estimates 

(Nuzzo 2014). On the other hand, one should always bear in mind that a non-significant 
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result does not necessarily mean that the null hypothesis is true but that the method may lack 

power to reject it. 
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2 Bayesian applications in molecular evolution 

2.1 Programs for Bayesian phylogenetic inference 

Bayesian techniques were introduced in molecular phylogenetics in the 1990s mainly to 

estimate phylogenetic trees from sequence alignments (Rannala and Yang 1996; Mau and 

Newton 1997; Yang and Rannala 1997; Mau, et al. 1999). The early applications were 

simple as they assumed the strict clock (constant rate of evolution across the branches of a 

tree) and they used simple nucleotide substitution models. The following years the field met 

an explosive growth and many Bayesian computer programs are now available to address 

several important biological problems using more complex and realistic models (Table 2.1). 

For example, the program MrBayes performs phylogeny reconstruction using complex 

models of nucleotide, amino-acid and codon substitution and accounts for rate variation 

among sites (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003). It also 

allows the analysis of heterogeneous data sets consisting of different data types (e.g. 

nucleotide and protein) in a combined analysis. The most recent release of the program 

(MrBayes3.2) has several computational advances (e.g. new proposals, improved 

convergence, faster likelihood calculations) and provides more output options such as 

ancestral states and ages of internal nodes (Ronquist, Teslenko, et al. 2012). The program 

BEAST (Bayesian Evolutionary Analysis Sampling Trees) estimates rooted phylogenies and 

divergence times using relaxed clock and parametric coalescent models and allows analysis 

of heterochronous (time-stamped) sequence data (Drummond, et al. 2006; Drummond and 

Rambaut 2007). PhyloBayes accounts for heterogeneity in evolutionary processes among 

sites using mixture models of amino acid substitution and provides reliable phylogenetic 

reconstruction of old phylogenies (Lartillot and Philippe 2004; Lartillot, et al. 2007; Lartillot, 

et al. 2009).  

MCMCTREE may be the first Bayesian program for phylogenetic inference (Rannala 

and Yang 1996; Yang and Rannala 1997). It is part of the PAML package (Yang 2007) and 

is popular for Bayesian estimation of species divergence times. It estimates the node ages on 

a fixed species phylogeny using information from molecular data (nucleotide or amino acid 

alignments) and the fossil record (in the form of time prior). It allows inference using various 

nucleotide and amino acid substitution models and implements strict and relaxed clock 

models. It is computationally efficient as it implements an approximate calculation of the 

likelihood (dos Reis and Yang 2011) and allows the estimation of divergence times using 
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Table 2.1: A list of some popular Bayesian phylogenetic programs  

 

Program Description Link Reference 

BEAST Inference of rooted, time-measured 
phylogenies using the clock and 
relaxed-clock models. Suitable for 
analysis of nucleotide and amino 
acid alignments and morphological 
data. Strong for analysis of time-
stamped data.  

http://beast.bio.ed.ac.
uk/ 

(Drummond, et 
al. 2012) 

BPP Inference of ancestral population 
size, species divergence times and 
species delimitation under the multi-
species coalescent model. Species 
tree estimation can also be 
performed. 

http://abacus.gene.ucl.
ac.uk/software.html 

(Yang and 
Rannala 2010; 
Yang 2015) 

MCMCTREE Part of the PAML package for 
species divergence time and rate 
estimation using multiple fossil 
calibrations on a fixed rooted 
phylogeny. Similar to the 
MULTIDIVTIME program. 

http://abacus.gene.ucl.
ac.uk/software/paml.ht
ml 

(Yang 2007) 

MrBayes Phylogenetic analysis from 
heterogeneous data (nucleotide, 
amino acid, morphological data) in 
a combined analysis. Abundance of 
evolutionary models. High 
computational efficiency.  

http://mrbayes.sourcef
orge.net/ 

(Ronquist, 
Teslenko, et al. 
2012) 
 

MULTIDIVTIME The first Bayesian program for 
estimating rates of molecular 
evolution and species divergence 
times using a relaxed clock model 
and approximate likelihood 
calculation.  

http://statgen.ncsu.ed
u/thorne/multidivtime.h
tml 

(Thorne, et al. 
1998; Thorne and 
Kishino 2002) 

PhyloBayes Bayesian MCMC program for 
phylogenetic reconstruction. 
Implements the infinite mixture 
model (CAT) to account for 
heterogeneity in evolutionary 
processes among sites.    

www.phylobayes.org (Lartillot, et al. 
2009; Lartillot, et 
al. 2013) 

 

 

multilocus sequence data of many species. MULTIDIVTIME is another useful program to 

study divergence times and rates on a phylogeny (Thorne, et al. 1998; Kishino, et al. 2001). 

The program is very similar to the MCMCTREE and it mainly differs in the construction of 

time and rate priors (Inoue, et al. 2010). It requires an out-group species to root the in-group 

tree and allows for different substitution models to be used for multiple data partitions in a 

combined analysis.  

Recently, powerful Bayesian methods were developed to estimate species trees under 

the multispecies coalescent model, accommodating conflicts among gene trees (Liu, et al. 

2009). These methods estimate the species tree from a multilocus sequence alignment and 

account for errors in the estimation of gene trees. BEST (Bayesian Estimation of Species 

http://beast.bio.ed.ac.uk/
http://beast.bio.ed.ac.uk/
http://abacus.gene.ucl.ac.uk/software.html
http://abacus.gene.ucl.ac.uk/software.html
http://abacus.gene.ucl.ac.uk/software/paml.html
http://abacus.gene.ucl.ac.uk/software/paml.html
http://abacus.gene.ucl.ac.uk/software/paml.html
http://mrbayes.sourceforge.net/
http://mrbayes.sourceforge.net/
http://statgen.ncsu.edu/thorne/multidivtime.html
http://statgen.ncsu.edu/thorne/multidivtime.html
http://statgen.ncsu.edu/thorne/multidivtime.html
www.phylobayes.org
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Trees) estimates the species tree along with the species divergence times and ancestral 

population sizes using the posterior distribution of gene trees estimated by MrBayes (Liu and 

Pearl 2007; Liu 2008). *BEAST (read star-BEAST) estimates the species tree as well as the 

gene trees and has been found to outperform BEST in estimation of divergence times and 

ancestral population sizes (Heled and Drummond 2010). The BPP program, in its early 

release, was designed to estimate simultaneously ancestral population sizes and divergence 

times on a fixed species phylogeny under the multispecies coalescent (Rannala and Yang 

2003). Different numbers of sequences are allowed at different loci. The program was later 

extended allowing for species delimitation inference from a user-specified guide tree (Yang 

and Rannala 2010; Rannala and Yang 2013). The most recent version of the program 

(BPP3.1) performs simultaneously Bayesian estimation of species tree and species 

delimitation (without the need for a user-specified guide tree) under the multispecies 

coalescent model (Yang and Rannala 2014; Yang 2015).  

All these programs use powerful MCMC algorithms to search the parameter space, as 

calculation of the marginal likelihood is impossible even for data sets with only a few taxa. 

The programs are efficient and allow Bayesian MCMC inference from several taxa in 

realistic time frames. 

Bayesian methodology is currently applied in a broad range of biological problems such 

as the evolutionary relationships among species, population demographic histories, timings 

of speciation events and natural selection. In this thesis we will focus on Bayesian methods 

to study natural selection and species divergences times. So, in the following sections we 

describe existing Bayesian techniques to address those problems together with some theory 

necessary for the better understanding of the subsequent chapters. 

2.2 Estimating the mode and strength of natural selection 

on a protein  

2.2.1 Natural selection 

Natural selection has always been of particular interest to evolutionary biologists since 

its introduction by Charles Darwin in his book On the origin of species (Darwin 1859). 

Mutations on a gene may change the amino acid sequence of the encoded protein with 

potential changes in protein function, which can further affect the fitness of an individual 

compared to the rest of the population. If the mutation offers a survival or fertility advantage 
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to the individual (positive selection) it is likely to pass to the progeny and then further spread 

to the whole population until its fixation (all individuals will carry the mutation). In contrast, 

if the mutation is deleterious (purifying selection), an individual carrying the mutation would 

have a survival disadvantage and may not survive long enough to produce progeny. In this 

case the mutation will eventually get lost. If the mutation is neutral (neither advantageous 

nor deleterious) then its fate is determined by genetic drift. Genetic drift is the random 

fluctuation of allele frequencies due to the stochastic nature of the reproduction process. 

Genetic drift may affect fixation of advantageous or deleterious mutations as well, if those 

do not have a strong effect in fitness and its contribution is more important in small 

populations (Hedrick 2011). 

Natural selection occurs when individuals carrying a specific genotype (in other words 

specific mutations) are better adapted to the environment and have a survival and/or fertility 

advantage. There are different types of natural selection such as directional, stabilizing, 

diversifying and balancing selection.  

In directional selection the mutant allele provides survival and/or fertility advantage and 

is thus favored over all other alleles leading to an increase in the frequency of the mutant 

allele. Directional selection occurs usually under environmental changes or after species 

migrate to a new environment. In such a case, individuals carrying the advantageous allele 

are able to pass it to more offspring than those they lack it and so eventually the frequency of 

the advantageous allele in the population increases. A famous example of directional 

selection is the Industrial Melanism of the peppered moth population in England (Majerus 

2008). Before the Industrial Revolution the majority of peppered moths were white, while 

dark moths were less frequent. Due to industrialization the air became polluted and thus the 

barks of the trees blackened. The dark-colored moths obtained a fitness advantage over their 

white counterparts since they could camouflage themselves more efficiently in the dark 

barks, and thus their frequency increased.  

Diversifying selection occurs when extreme genotypes are favored over intermediate 

genotypes. An example of diversifying selection may concern the colour of lizards living in 

an environment with only black and white rocks. Let’s assume that lizards have black, white 

(extreme phenotypes) or grey (intermediate phenotype) skin. Then given that in the lizard’s 

habitat there are only black and white rocks, the black and white skin offers greater 

protection from predators and thus the population of grey lizards will decrease over time. 

The population of lizards experiences diversifying selection for the extreme phenotypes of 

the skin colour. Diversifying selection is rare but is an important force of evolution as not 

only maintains polymorphism, but because it favors divergent traits it may cause speciation 

(Smith 1962; Rice and Salt 1988).    
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Stabilizing selection is the opposite of diversifying selection and occurs when 

intermediate genotypes provide a selective advantage over extreme genotypes causing the 

population to gradually shift towards intermediate variants. Stabilizing selection was thought 

to be the most common type of natural selection (Charlesworth, et al. 1982), but recent 

studies have shown that this may not be the case (Kingsolver, et al. 2001). Moreover, it is 

believed that stabilizing selection reduces genetic variation. However, since it is hard to 

measure the strength of stabilizing selection, this is based more on intuition rather than on 

scientific evidence (Barton and Keightley 2002). Many traits such as the number of offspring 

in a population of a mammal species could be claimed to be under stabilizing selection. 

Although in these cases intermediate phenotypes have reproductive advantage, it is hard to 

know whether this is actually attributed to stabilizing selection (Kondrashov and Turelli 

1992).  

Balancing selection is another form of selection according to which multiple alleles are 

maintained in a population, usually due to forces favoring heterozygotes (heterozygote 

advantage; Hedrick 2011). Other forces such as frequency-dependent selection, where rare 

genotypes are advantageous, or due to varying selection in space and time, where different 

genotypes are advantageous in different environments or time periods may also lead to 

maintenance of multiple alleles in the gene pool of a population. Thus balancing selection 

helps to maintain genetic polymorphism. A fairly-known heterozygote advantage example 

concerns the sickle cell anemia in humans, a hereditary condition which damages the red 

blood cells (Pauling, et al. 1949). Homozygote individuals for the abnormal allele HgbS of 

the haemoglobin gene have damaged red blood cells (i.e. rigid and sickle-shaped) which 

can’t carry as much oxygen as the normal red blood cells (flexible and disc-shaped) causing 

tiredness and breathlessness. Heterozygote individuals carry the normal haemoglobin gene 

HgbA and the defective one and may suffer from similar problems from time to time. 

However, the heterozygote carriers are resistant to malaria parasites and thus the 

heterozygote genotype is advantageous in regions where malaria exists, as the normal 

homozygotes suffer from malaria and the abnormal heterozygotes suffer from sickle cell 

anemia (Allison 1954).  

To study natural selection, protein-coding regions of DNA offer a great advantage over 

non-coding regions because one can distinguish synonymous and nonsynonymous 

mutations. Synonymous mutations are those that do not change the amino acid in the protein 

encoded by the codon, whereas nonsynonymous mutations do change it. The most popular 

method to test for positive selection in protein-coding genes is based on the ratio (ω = dN/dS) 

of nonsynonymous (dN) to synonymous (dS) rates and assumes that selection is applied to the 

protein although mutations occur at the DNA level (Miyata, et al. 1979; Miyata and 

Yasunaga 1980). The dN is defined as the number of nonsynonymous mutations per 
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nonsynonymous site; similarly for dS. The fixation rate of the nonsynonymous mutations 

relative to that of synonymous reflects the type of selection. If nonsynonymous mutations are 

deleterious, because of purifying selection their fixation rate will be less than that of 

synonymous mutations and thus dN < dS and ω < 1. If nonsynonymous mutations are 

advantageous, their fixation rate will be higher than that of synonymous mutations because 

of positive selection and thus dN > dS and ω > 1. If the nonsynonymous mutations are neither 

advantageous nor deleterious (neutral evolution) selection does not have an effect on fitness 

and then those are expected to become fixed at the same rate as synonymous mutations, so 

that dN = dS and ω = 1. Values of ω significantly higher than 1 indicate positive selection 

with higher values indicating stronger selection.  

To better understand the relationship between ω and the underlying selection pressures 

one should have a look at the neutral theory of molecular evolution (Kimura 1968, 1969; 

King and Jukes 1969; Kimura and Ohta 1971). The strictly neutral theory suggests that the 

new mutations are either highly deleterious and removed by natural selection, or have no 

fitness effect (neutral) and their fixation is random, determined by genetic drift (Kimura 

1968). Thus, deleterious mutations have only a small contribution to the genetic variation 

within species and no contribution at all to that among species. Advantageous mutations are 

assumed to occur very rarely, hence leaving neutral mutations to be the main source of 

genetic divergence among species.   

Assume that a new mutation occurs in a haploid population, with relative fitness 1+s, 

while the common wild type allele has fitness 1. Then, the probability that the mutation will 

eventually become fixed in the population is 
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where N is the population size (Fisher 1930). If s > 0 the mutation is selectively favored and 

positive selection is operating. In contrast, if s < 0 the mutation is selectively disfavored and 

negative selection is operating. If s ≈ 0 (neutral mutation) the probability of fixation becomes 

P = 1/2N and its eventual fixation is random.  

Suppose that in a diploid population mutations occur at rate μ per locus per generation 

(mutation rate) where a fraction f0 of them are neutral and the rest 1-f0 are highly deleterious. 

Then the substitution rate per generation, r0, is the product of the expected number of neutral 

mutations per generation times the fixation probability of a neutral mutation. The expected 

number of neutral mutations per generation is the rate at which mutations occur per locus per 

generation (μ) times the number of alleles (2N in diploid populations) times the proportion of 

the mutations that are neutral (f0). Thus the substitution rate is  
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An important modification to the strict neutral theory was proposed later by Ohta 

(1973). According to her nearly-neutral model the newly arising non-lethal mutations are not 

necessarily strictly neutral but are allowed to be slightly deleterious, while positive selection 

is disallowed. Later a newer modification was proposed allowing for a proportion of new 

mutations to have positive selection coefficients (Ohta 1992). Let’s assume under this model 

that fs is the fraction of the mutations that are selected and rs is their substitution rate. Then 

the rate rs would be the product of the expected number of selected mutations per generation 

times the probability of a selected mutation to become fixed (given by 2.1). Thus 
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By comparing the relative rate of substitution of selected mutations (eq. 2.3) to that of 

neutral mutations (eq. 2.1) we obtain a measure (ω) to study the implications of natural 

selection:  
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Assuming that synonymous mutations are neutral (i.e. dS = r0) and nonsynonymous to be of 

any kind (dN = rs) the above ratio can be interpreted as the expected dN/dS ratio. The 

interpretation of ω can be clearer through some examples. (i) Let’s assume that positive 

selection is not operating. Then the number of synonymous mutations fixed per generation 

(fixation rate) according to eq. (2.2) is dS = μ (f0 = 1 since all synonymous mutations are 

considered to be neutral). Then for the nonsynonymous mutations we consider that a fraction 

fs of them are neutral and fix at rate μ, and the rest 1-fs are deleterious (since positive 

selection is not operating) and are not fixed. Thus the overall number of nonsynonymous 

mutations fixed per generation is dN = fsμ + (1-fs) 0 = fsμ, so that ω = dN/dS = fs. If all 

nonsynonymous mutations are neutral (fs = 1; neutral evolution) then ω = 1, and if a fraction 

of them are neutral (fs < 1; purifying selection) then ω < 1. Thus a value of ω < 1 is 

indicative of purifying selection. (ii) Now let’s assume that positive selection is operating. 

The number of synonymous mutations fixed per generation is again dS = μ. For the 

nonsynonymous mutations we consider that a fraction 1-fs are deleterious and are not fixed, 

and a fraction fs are non-deleterious. Of the non-deleterious mutations we assume that a 

fraction θ is advantageous and a fraction 1-θ are neutral. The neutral mutations fix at a rate μ 

while the advantageous mutations fix with probability
4
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,   (eq. 2.1). If Ns 1 

then P ≈ 2s. Thus overall the number of nonsynonymous mutations fixed per generation is dN 

= (1-fs) 0 + fs(1-θ)μ + fsθ2Nμ 2s, so that ω = dN/dS =
(1 ) 2 2s sf f N s   
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4Ns. Note that if θ is large enough (in particular θ >
1 1

4 1
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


) then ω > 1. For example, 

if fs = 0.4, θ = 0.25, s = 0.01 and N = 103, ω = 4.3 and thus positive selection is inferred. 

However, note that a value of ω < 1 does not mean that positive selection has not been 

operating, but simply that cannot be detected. For example, if the proportion of positively 

selected sites is very small, e.g. θ = 0.025 with fs, s, and N as previously, then ω = 0.79 and 

positive selection is not inferred.  

Although ω is a useful indicator of selective pressure at the sequence level there are a 

few assumptions in the above definition of ω as well as some limitations in detecting 

positive selection with this measure. An important point is that the selective coefficient s is a 

property of a particular mutation, while ω is a property of a particular site or group of sites in 

nucleotide sequences. Therefore, some assumptions are required in order to infer the kind of 

selection from the estimated ω value. In particular, it is assumed that all nonsynonymous 

mutations in a specific site have the same selective effect (the same selection coefficient s) 

and thus the same ω ratio is used at a site for all possible amino acid changes. This is a rather 

strong assumption which may not be met in many cases. For example, some amino acids are 

chemically similar to one another and a nonsynonymous mutation leading to a small 

chemical change is more likely to allow the protein to remain functional with the possibility 

of the mutation to be fixed, whereas a large chemical change is more likely to cause protein 

malfunction leading to loss of the mutation. However, incorporating different ω ratios for 

different amino acid changes at a site is not straightforward, as the relationship between 

amino acid changes and the effects of the modified chemical properties is poorly understood 

(Yang, et al. 1998; Zhang 2000). Moreover, defining positive selection on a model 

accounting for amino acid chemical properties is unclear (Yang and Bielawski 2000). 

Another assumption is that mutations at different sites evolve independently of one another 

(but see Goldstein, et al. 2015). This is the case for interspecific data given that not many 

strongly selected mutations are occurring at the same time. If this assumption is not met then 

the selection coefficient inferred from the estimated ω ratio will be an underestimate 

(Nielsen and Yang 2003). Indeed, dos Reis (2015) using the mutation-selection model of 

Halpern and Bruno (1998) showed that eq. (2.4) constitutes a reasonable lower bound on ω. 

A major limitation of the ω ratio is that it can be used to study natural selection only on the 

protein-coding regions of a genome although this may operate elsewhere (i.e. regulatory 

regions of a gene) and as long as the region under study does not overlap with another 

protein-coding region (Monit, et al. 2015). Such overlapping reading frames are found in 

viral and bacterial genomes. In addition, because the ω ratio detects positive selection only 

when the rate of nonsynonymous substitutions is higher than the rate of synonymous, natural 
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selection that does not lead to more nonsynonymous changes, as is the case of balancing 

selection may not be detected by ω (Yang and Bielawski 2000).  

2.2.2 Codon models 

Models of codon evolution offer a clear advantage in studying natural selection over the 

nucleotide and amino acid models as they use simultaneously the nucleotide information in 

the DNA and the structure of the genetic code, and thus distinguish between nonsynonymous 

and synonymous mutations. The unit of data is the codon and substitutions among codons at 

any particular codon site are described by a Markov chain running along a phylogenetic tree. 

Changes among codon sites are assumed to occur independently. The first codon models 

were proposed in the mid 90s by Goldman and Yang (1994) and Muse and Gaut (1994) and 

were found to produce reliable estimates of the nonsynonymous/synonymous rate ratio 

within the ML framework. They also account for other biologically important measures such 

as the transition/transversion rate ratio (κ) and the codon frequencies.  

Yang and Nielsen (1998) proposed a simplified version of the model of Goldman and 

Yang (1994), which incorporates explicitly the ω ratio. It is very flexible to search for 

adaptive evolution and thus has been widely used. According to this model the instantaneous 

substitution rate from codon i to codon j (i ≠ j) is given by the matrix Q = {qij}, where 
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 (2.5) 

with πj to be the equilibrium frequency of codon j. The different states of the Markov chain 

are the 61 sense codons (i, j = 1,...,61) as stop codons are not considered since they are 

assumed not to occur within protein-coding genes. The diagonal values qii are defined so that 

the sum of each row is zero, ii ij

i j

q q


  . Because time and rate are confounded the Q 

matrix is usually rescaled so that the average rate is 1i ii

i

q  . The transition probability 

matrix P(t) = {pij(t)}is then given by  

    expP t Qt , (2.6) 
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where pij(t) is the probability that codon i is replaced by codon j after time t. Since the 

average substitution rate is 1, the time t is measured by the expected number of nucleotide 

substitutions per codon (the time t is the distance d = −t i ii

i

q = t).  

The rate matrix Q specifies an irreducible (the chain can jump from state i to any state j) 

and aperiodic Markov chain with a unique stationary distribution π = (π1,...,π61). The codon 

substitution process along any phylogenetic tree is assumed to be stationary, meaning that 

the codon frequencies πj are the same throughout the evolutionary time. Moreover, the 

Markov process is time-reversible since πipij(t) = πjpji(t), for i j and for any t. This 

practically means that the pattern of evolution is the same whether time runs forward or 

backwards, and the likelihood calculated on a phylogenetic tree will be the same irrespective 

of the location of the root on the phylogeny. Moreover, the Q matrix is independent of time 

(homogeneous) so that the transition probability pij(t) is the same in any part of the tree for 

the same time interval t. The assumptions of time-reversibility, stationarity and homogeneity 

are the same as in any nucleotide model and although they might be biologically unrealistic 

they are mathematically convenient. Some of those assumptions can be easily relaxed (e.g. 

the homogeneity; Yang and Roberts 1995) and might allow inference on important 

biological questions which is trivial with the simplified models (e.g. identifying pathogens 

host shifts; dos Reis, et al. 2009; Tamuri, et al. 2009). However, relaxation of other 

assumptions (e.g. time reversibility to infer the root of a phylogeny; Barry and Hartigan 

1987) can lead to complex calculations with no significant gain in inference (Yang 1994a). 

The codon model described here will be used in chapter 3 to estimate ω through a Bayesian 

approach. 

2.2.3 Techniques to identify positive selection 

2.2.3.1 Likelihood techniques 

When the codon model specified by equation (2.5) is applied to a phylogeny it is 

assumed that the ω ratio is the same across all lineages and across all sites in the alignment. 

Thus positive selection will be detected only when the average ω across all lineages and sites 

is higher than 1. This is a stringent criterion and may result in low power because positive 

selection may act in an episodic manner (Messier and Stewart 1997) and affect only a few 

sites in the protein (Hughes and Nei 1988; Hughes, et al. 1990). Branch models have been 

developed to relax the assumption of the constant ω ratio across the lineages of a tree (Yang 

1998). Lineages on the tree are a-priori divided into foreground and background branches. 
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The foreground branches are those of interest and have a ω ratio (denoted ωf) different than 

the background branches (ωb). One can test whether the two ω ratios are the same with a 

likelihood ratio test (LRT) between this model and another having the same ω in all 

branches. Similarly, one can test whether ωf = 1 by performing a LRT between a model 

where ωb, ωf are free to vary and another where ωb is free and ωf = 1.  

Random-sites models relax the assumption of constant ω ratio across the sites of a 

protein by assuming that each codon belongs to a site class with a probability (Nielsen and 

Yang 1998; Yang, et al. 2000b). For example, the M2a model assumes three site classes: one 

with ω0 < 1, another with ω1 = 1 and a third with ω2 > 1, with a codon to belong to each site 

class with probabilities p0, p1, p2 = 1−p0−p1, respectively (Yang, et al. 2005). One can test for 

positive selection by comparing this model, which allows some sites to have ω > 1, with the 

M1a model which does not (it has two site classes with ω0 < 1 and ω1 = 1 with probabilities 

p0 and 1−p0, respectively) using a LRT.  

The branch-site models allow the ω ratio to vary across both the branches of the 

phylogeny and the sites of a protein and can detect positive selection operating in some sites 

along specific branches, which might be more realistic (Yang and Nielsen 2002). The 

branches on a phylogeny are a priori divided into foreground and background branches, as in 

branch models, while site classes for ω are also defined as in site models. The branch-site 

model of Yang et al. (2005) has four site classes: site class 0 includes codons with 0 < ω0 < 1 

along all lineages; site class 1 consists of neutrally evolving codons (ω1 = 1) along all 

lineages; site class 2a includes codons that are under purifying selection on the background 

branches but under positive selection (ω2 > 1) on the foreground branches; and site class 2b 

includes neutrally evolving codons on the background branches but under positive selection 

(ω2 > 1) on the foreground branches. A codon belongs to each site class with probability p0, 

p1, (1 − p0 − p1)p0/(p0 + p1) and (1 − p0 − p1)p1/(p0 + p1), respectively. The ω0, ω1, ω2 are 

estimated from the data. A test of positive selection along the foreground branches can be 

performed by comparing this model with the same but restricting ω2 = 1 through a LRT. 

Simulations have shown that this model has better power in detecting positive selection than 

the branch models. However, it could be conservative (Zhang, et al. 2005). 

In LRTs of positive selection based on branch-site and branch models the foreground 

branches have to be specified a priori. If there is no biological information to specify 

particular branches as foreground the LRT can be applied to several branches but a 

correction for multiple testing is necessary (Anisimova and Yang 2007). However, applying 

multiple such tests creates a logical inconsistency as a branch might be specified as a 

background branch in some tests, although it could have been found to be under positive 

selection in a previous test. To address the issue Pond et al. (2011) developed a random-

effects branch-site model where a site at every branch is assigned to a site class ω− ωΝ 1
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  ω+ with a probability, representing strong, weak purifying selection and positive 

selection, respectively (Pond, et al. 2010). Then to identify if a branch is under positive 

selection, the same model is applied by restricting ω+ = 1 to the branch of interest, and a 

LRT between the two models is performed. With multiple such tests and correction for 

multiple hits lineages under positive selection can be identified, without restricting 

background branches to be under purifying or neutral evolution. The model has been found 

to have similar performance to that of Yang et al. (2005) when the assumptions of the later 

hold and have better performance when the assumptions are violated (Pond, et al. 2011).  

2.2.3.2 Bayesian techniques 

In site and branch-site models when a LRT indicates positive selection there is an 

interest in identifying particular sites in which adaptive evolution has been operating. 

Bayesian techniques can help to address the issue. The posterior probability that a site h with 

data xh belongs to site category k (with ratio ωk) is given by 
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with pk to be the probability that the site h belongs to the k category. The category with the 

highest posterior probability is the most likely for the site h. One can then identify sites 

under positive selection as those which belong to the category with ω > 1with a high 

probability (let's say > 95%). For the branch-site model where there are two categories with 

ω > 1 in the foreground lineages (classes 2a and 2b) one has to sum the two posterior 

probabilities. Equation (2.7) requires the knowledge of the model parameters such as the ω 

ratio of each category, the proportions of sites belonging to each category, the 

transition/transversion rate ratio, the equilibrium codon frequencies, the branch lengths and 

the phylogenetic tree. Nielsen and Yang (1998) estimated the posterior probabilities using a 

naive empirical Bayes (NEB) approach where the model parameters where substituted by 

their maximum likelihood (ML) estimates. However, this approach does not account for 

uncertainties in the parameter estimates. This might not be a problem in large data sets where 

there is enough information for the parameters to be precisely estimated but might lead to 

unreliable posterior probabilities in case of small data sets with low sequence divergences 

(Anisimova, et al. 2002; Wong, et al. 2004). For example, consider that under the M2a 

model the maximum likelihood estimates (MLEs) are 0 1 0ˆ ˆp p  , 2 1p̂   and 2̂  = 1.5, 

then the naive empirical Bayes approach would infer that all sites in the sequence are under 

positive selection with posterior probability 1.  
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Yang et al. (2005) developed a method which accommodates uncertainties in the MLEs 

of the ω ratios for each category. They followed a Bayes empirical Bayes approach assigning 

a prior on the ω ratios and on the proportions and averaged over the priors to obtain the 

posterior probabilities. Numerical integration was used to calculate the integrals involved. 

The other model parameters remained fixed to their MLEs as they are considered to be less 

important for the calculation of posterior probabilities. For example, the tree topology has 

been found to have only minimal impact (Yang, et al. 2000b; Swanson, et al. 2001). The 

BEB method applies to both the site and branch-sites models and gives similar estimates to 

NEB in large data sets. In small data sets the BEB has lower false-positive rate than the NEB 

but appears to be conservative when a cut-off of 95% is used in the posterior probability 

(Yang, et al. 2005; Zhang, et al. 2005). In general, it is more difficult to identify sites under 

positive selection than to test whether such sites exist. The later can be tested with a LRT 

combining information from all sites in the alignment and thus if many such sites exist the 

test could be significant. In contrast, information at a single site may not be strong enough 

(e.g a few substitutions at a site in a few lineages at the tree) to give high posterior 

probability. 

Huelsenbeck and Dyer (2004) developed a fully Bayesian approach to accommodate for 

sampling errors in all parameter estimates including the tree topology. The high dimensional 

integrations are intractable analytically and thus they used MCMC to approximate the 

posterior probabilities. This approach might return more reliable estimates than the BEB in 

small uninformative data sets (Scheffler and Seoighe 2005), however, because of the 

iterative MCMC algorithm the method is computationally expensive and slow and is not 

practical for large data sets. Furthermore, the method implements only the M3 discrete site 

model (three categories of ω ratio: ω0, ω1, ω2 in proportions p0, p1, 1 − p0 − p1).  

The site and branch-site models mentioned so far assume that the number of categories 

is known and a priori defined. Huelsenbeck et al. (2006) implemented a more flexible way 

to account for variation in ω ratio among sites. In their model the number of categories and 

the ω value for each category are considered random variables and are estimated from the 

data using a Dirichlet process to assign priors on them. The number of categories is free to 

vary between 1 and L, where L is the number of codons in the alignment, meaning that each 

codon is allowed to have its own category. All the parameters of the model are estimated 

within a Bayesian MCMC framework and inferences of positive selection account for 

uncertainties in model parameter estimates, branch lengths and topology. The model 

involves too many parameters and posterior probabilities for inferring sites under positive 

selection might be affected by the prior on the number of site categories. In analyses of 

empirical data sets the method gave similar results to that of Yang et al. (2000b). 
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2.3 Bayesian estimation of species divergence times 

2.3.1 The molecular clock 

The hypothesis of the molecular clock states that DNA or protein sequences evolve at a 

constant rate over time which is the same in all species. This hypothesis was proposed by 

Zuckerkandl and Pauling (1965) based on previous empirical observations that the numbers 

of amino acid differences in proteins from different species were proportional to the species 

divergence times estimated from the fossil record (Zuckerkandl and Pauling 1962; 

Margoliash 1963; Doolittle and Blomback 1964). The amino acid changes that have been 

accumulated among species were considered to have no or little effect on the structure and 

function of the protein and thus on fitness. This notion was later formulated by the 

development of neutral theory (Kimura 1968; King and Jukes 1969). The theory predicts that 

the rate of fixation of neutral mutations (the substitution rate) equals the neutral mutation 

rate which is the total mutation rate per generation times the proportion of the mutations that 

are neutral. If the neutral mutation rate is similar among species then a constant substitution 

rate across the evolutionary tree of life is possible. Thus the constancy of the substitution rate 

can be explained by the neutral theory. 

The molecular clock was quickly recognised as a valuable tool in the study of molecular 

evolution. A direct implication of the clock is that the genetic divergence of any two species 

is proportional to their divergence time. Thus, if the divergence time of two species on a 

phylogeny is known, say from the fossil record or from a geological event (e.g. island or 

mountain formation which divides a population in two parts and initiates speciation), one can 

obtain an estimate of the evolutionary rate from their genetic divergence. Then based on the 

assumption of rate constancy one can infer the ages of all nodes in a phylogeny. This could 

be extremely useful in estimating the divergence times of species which have left limited or 

no marks in the fossil record.  

Nowadays it is generally accepted that the clock does not hold for very diverse species 

(Langley and Fitch 1974), but might be a good approximation for closely related species. 

Factors such as generation time, population size, metabolic rate, body size, DNA repair 

mechanisms which may vary dramatically in distantly related species, have been associated 

with differences in the molecular evolutionary rate (Bromham and Penny 2003; Bromham 

2011; Ho 2014). However, because the molecular clock is a valuable tool to study molecular 

evolution it has not been abandoned. Instead, alternative clock models have been developed 

which relax the rate constancy across the tree and are used to analyze data from diverse 
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species. The new relaxed clock models allow the rate to vary along the branches of a 

phylogeny according to a statistical model. Two widely used relaxed clock models are the 

independent-rates model (Drummond, et al. 2006; Rannala and Yang 2007) and the 

autocorrelated-rates model (Thorne, et al. 1998; Kishino, et al. 2001; Rannala and Yang 

2007). In the first, the rates vary among branches around a value according to a statistical 

distribution such as the log-normal, while in the second the logarithm of the rate drifts 

according to a Brownian motion process.  

With the advance of sequencing technologies and the abundance of molecular sequence 

data, the molecular clock has been widely used to estimate divergence times for a broad 

range of species. However, its use has raised serious controversies as typically molecular 

dating studies tend to produce older divergence times than those suggested by the fossil 

record. Most of those controversies concern important evolutionary events (Cooper and 

Fortey 1998). Such an example concerns the origin of early animal forms. The fossil record 

suggests a massive radiation of Bilateria phyla after the Ediacaran-Cambrian boundary 

(Budd 2008; Maloof, Porter, et al. 2010), 541 million years ago (Ma), but estimates from 

molecular dating studies are older, placing their origin during the Ediacaran (635 − 541 Ma) 

or Cryogenian (850 − 635 Ma) periods (Peterson, et al. 2008; Erwin, et al. 2011; dos Reis, et 

al. 2015) or even earlier (Wray, et al. 1996; Wang, et al. 1999; Nei, et al. 2001). Another 

example concerns the radiation of mammals followed the extinction of dinosaurs at the 

Cretaceous−Paleogene boundary (66 Ma). Molecular studies have produced older dates than 

those expected from fossils, setting up a debate between evolutionary biologists and 

palaentologists around the true diversification times of mammals (Meredith, et al. 2011; dos 

Reis, et al. 2012; O'Leary, et al. 2013; dos Reis, Donoghue, et al. 2014). Molecular estimates 

of angiosperms diversification times are also much older than those suggested by fossils 

(Bell, et al. 2010).  

Part of those incongruences can be attributed to the incomplete fossil record. 

Fossilization and preservation of fossils can be suspended by environmental factors such as 

erosion and humidity. Moreover, living organisms with only soft parts are highly unlikely to 

be preserved. Those factors can lead to systematic preservation biases and produce an 

imperfect fossil record with a diminishing quality as one goes back in time (Raup 1972). 

Moreover, there is an important limitation in estimating the age of a clade in a phylogenetic 

tree solely by the fossil record. The oldest fossil from that clade will always be younger than 

the origin of the clade either by a few thousand years (which is negligible when dating very 

ancient events) or by many millions (Benton, et al. 2009). The fossils constitute minimum 

bounds for the node ages of a phylogenetic tree and since the molecular clock studies attempt 

to estimate the clade ages any discrepancies become less acute.  
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 Another part of the discrepancies may come from the molecular studies themselves. 

The early dating studies suffered from methodological deficiencies and limited molecular 

data. The methods used were too simplistic and failed to account for important uncertainties 

in the analysis. For example, some used fossil calibrations with fixed ages failing to account 

for uncertainties in the fossil record, or used the strict clock even for distantly related species 

(Kumar and Hedges 1998; Peterson, et al. 2004; Peterson and Butterfield 2005). Taxa were 

also removed to diminish the among lineages rate variation making inefficient use of the data 

(Peterson, et al. 2004). Moreover, some of the data sets were comprised of just a few genes.  

Recently, sophisticated MCMC algorithms have been developed and are capable of 

analysing large multilocus sequence data to estimate species divergence times. The Bayesian 

framework provides a straightforward way to accommodate uncertainties in fossils while 

relaxed clock models and data partitioning are used to deal with rate heterogeneity across 

lineages and sites. Thorne et al. (1998) and Kishino et al. (2001) developed a Bayesian 

MCMC algorithm to estimate species divergence times and rates on a fixed phylogeny using 

the autocorrelated-rates model to describe rate variation across lineages. A similar algorithm 

was developed later by Yang and Rannala (2006) and Rannala and Yang (2007) which 

accounts more elegantly for uncertainties in fossil ages and allows inference from multilocus 

sequence data. In the next sections we pinpoint the most important features of the latter 

method as this will be used in chapters 4-6 to estimate divergence times from simulated data 

and animal species.  

2.3.2 General framework and calculation of the likelihood 

Assume that we have a fixed rooted phylogeny of s species. We denote with D the 

sequence data, t the s−1 node ages on the phylogeny and r either rates on the branches as in 

Rannala and Yang (2007) or on the nodes as in Kishino et al. (2001). We let θ denote the 

parameters in the substitution model. Write f(r|t,θ) and f(t|θ) the priors for rates and times, 

respectively, and f(θ) for the prior on θ. Then according to the Bayes theorem (equation1.2) 

the joint posterior distribution of t, r, and θ is given by 

 
( | , , ) ( | , ) ( | ) ( )

( , , | )
( )

   
 

t r r t t
t r

f D f f f
f D

f D
 (2.8) 

The marginal likelihood f(D) involves integration over t, r, θ and cannot be calculated. 

An MCMC algorithm is used instead to sample from the joint posterior. The marginal 

posterior of times ( | ) ( , , | )d df D f D   t t r r can be calculated from the MCMC sample; 

similarly the marginal posterior of rates and model parameters. The calculation of the 
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likelihood f(D|t,r,θ) is straightforward for any substitution model but is computationally 

expensive for large data sets. Dos Reis and Yang (2011) extended the work of Thorne et al. 

(1998) and Kishino et al. (2001) and calculated the likelihood approximately by applying the 

Taylor expansion to the log-likelihood. The method calculates the gradient and the Hessian 

matrix of the likelihood using the MLEs of the branch lengths and the model parameters 

before the MCMC run. Then a transformation (e.g. square root, arcsin) is applied to offer 

better approximation for values away from the MLEs. The approximation is efficient and 

allows the analysis of large datasets in realistic times (dos Reis, et al. 2012; Jarvis, et al. 

2014). 

2.3.3 Priors on node ages 

Calibrations are of particular importance for species divergence time estimation since it 

is not possible to obtain time estimates based solely on molecular data. In absence of reliable 

information about species evolutionary rates, the fossil record can provide an invaluable 

source of information concerning the node ages on a phylogeny. Fossils are typically used to 

constrain the node ages between minimum and maximum values. They usually provide good 

minimum bounds (see §2.3.1) but the specification of maximum bounds is much more 

complicated. One could use fossils which lack major characteristics of species belonging to 

the clade of interest from an older geological formation, to set up a maximum constraint 

(Benton, et al. 2009). Biogeographic events, such as island formations can also serve as 

plausible maximum bounds if treated with caution (Heads 2005; Goswami and Upchurch 

2010).  

Using fossil information to calibrate the molecular clock and date species divergences 

using molecular data is an arduous task. Fossil preservation biases, incorrect placement of 

fossils on a phylogeny or uncertainties in fossil age estimation may result in erroneous 

calibrations and thus in biased molecular time estimates (Magallon 2004; Ho and Phillips 

2009). However, even when those factors are known, fossils cannot provide point 

calibrations but instead involve uncertainty which is expressed in the form of a parametric 

statistical distribution. Yang and Rannala (2006) and Inoue et al. (2010) provided some 

useful advice for the construction of such calibration densities. For example, the information 

from the fossil record around the age (t) of a node can be represented with a uniform 

distribution, t ~ U(tL, tU), in case both minimum (tL) and maximum (tU) bounds are available 

for that node. When only minimum or maximum bounds are available the specification of 

such calibration densities is less trivial (Inoue, et al. 2010) and may involve the use of 

improper densities (Yang and Rannala 2006). The choice of the calibration densities is 
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important as those exert a significant effect on molecular time estimates (Inoue, et al. 2010; 

Warnock, et al. 2012; Magallon, et al. 2013a; dos Reis, et al. 2015). Some attempts have 

been made to evaluate the quality of fossil-based calibrations (Warnock, et al. 2015), 

however, a robustness analysis is always useful.   

The bounds mentioned in the example above are "hard" meaning that there is zero 

probability for the node age to be outside the interval (tL, tU). This is a strong assumption and 

might lead to biases if fossil evidence has been misinterpreted. Consequently, maximum 

bounds are chosen in a conservative manner with potential impact on time estimation. Yang 

and Rannala (2006) proposed the use of "soft" bounds which assign positive probabilities to 

all age values. They are constructed by adding a diminishing probability of power or 

exponential decay beyond a bound that the age of the node is outside the bound. For 

example, in the uniform calibration density example described above one may assign left and 

right tail probabilities of 2.5% that the age of the node is outside the bounds. The advantage 

of soft bounds is that they allow the signal from the molecular data to correct for errors in 

fossil calibrations or for conflicts among calibrations leading to a more reliable evaluation of 

the precision of time estimates (Yang and Rannala 2006). 

In the Bayesian estimation of species divergence times the calibration densities are used 

to construct the prior f(t|θ) (or f(t)) of the node ages on the phylogeny. Yang and Rannala 

(2006) developed an algorithm to construct the prior f(t) based on the calibration densities 

and the birth-death process (Kendall 1948). The birth-death process is a mathematical model 

which describes the dynamical process of speciation and extinction given the birth (λ) and 

death (μ) rates of a lineage and a species sampling probability (ρ). If tC are the ages of the 

calibrated nodes and t−C the ages of the non-calibrated nodes then the prior is given by 

 C C C( ) ( | ) ( )t t t tBDf f f , (2.9) 

where f(tC) is the joint density of the calibrated nodes and fBD(t−C| tC) is the joint distribution 

of the uncalibrated nodes, specified by the birth-death process conditioned on the ages tC. 

Because of the requirement that a descendant node must be younger than its ancestor, the 

user-specified densities are truncated by the program to satisfy this condition. This may 

result in marginal priors (called effective priors) that are different than the user-specified 

calibration densities (Inoue, et al. 2010; Duchene, et al. 2014). Thus one should always run 

the MCMC chain without data to generate the marginal priors and check that they are 

reasonable. This prior specification has been implemented in the MCMCTREE program 

(Yang 2007). 
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2.3.4 Rate drift models and prior on rates 

Bayesian estimation of species divergence times requires a model for the rate drift along 

lineages and a prior on the evolutionary rates. Currently there are two widely used relaxed 

clock models to deal with the among-branch rate variation. The relaxed clock model is 

incorporated in the prior f(r|t,θ). For a given locus, the rate (r) at a node given the rate at the 

ancestral node (rA) follows a log-normal distribution with density 
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where t is the time duration separating the two nodes. This is equivalent to say that the log 

rate (logr) follows a normal distribution with mean logrA−νt/2 and variance νt. Note the 

mean of the log-normal density is E(r) = rA and thus the rate at the node is a value around the 

rate of the ancestral node. The parameter v denotes the violation of the clock with high 

values meaning serious violation. The joint prior of all node rates r on the tree is the product 

of the log-normal distributions from all nodes. This model was proposed by Thorne et al. 

(1998) and Kishino et al. (2001) and is known as the autocorrelated-rates model. In the 

implementation of the same model by Rannala and Yang (2007) the log-normal distribution 

applies to the rates at the midpoint of the branches.  

An alternative model was proposed by Drummond et al. (2006) and Rannala and Yang 

(2007) known as the independent-rates model. For a given locus, the rate at any branch 

follows a log-normal distribution with density 
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where μ is the mean rate for the locus and σ2 is the variance in the log scale. σ2 measures the 

departure from the clock with high values (e.g. 0.2) indicating serious clock violation.  

For an alignment of L loci the parameters μi, i = 1,...,L, of the log-normal distribution 

for each locus can be assigned a gammaDirichlet prior (dos Reis, Zhu, et al. 2014). In the 

autocorrelated-rates model the μi is the rate at the root of the tree in the i locus which evolves 

according to equation (2.10). A gamma prior (with fixed hyperparameters) is assigned to the 

mean rate 
1

1 L

i

iL
 



  and the total rate L  from all loci is partitioned across the μi rates 

according to a Dirichlet distribution with parameter α. A higher α means less rate variation 

among loci. The way and extent of rate variation across lineages is considered independent 

among loci, although this might not always be realistic. A gammaDirichlet prior can also be 

assigned to the parameters 
2

i  or νi. The gammaDirichlet prior has been found to exert less 
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influence in the posterior than assuming independent priors among loci (dos Reis, Zhu, et al. 

2014).  

In the independent-rates model the variance of the rate does not depend on the time and 

thus the rate can undergo large shifts (depending on the value of σ2) even for adjacent 

branches. In contrast, in the autocorrelated-rates model the variance depends on the time and 

thus the model penalizes large rate variation over short time intervals but allows rate to vary 

significantly among distant clades. However, the variance increases linearly with the time 

and in analyses of deep phylogenies this might lead to unduly high rate shifts. Thus the 

autocorrelated-rates might be more suitable for the analysis of closely-related species while 

the independent-rates for divergent species. In any case it is always useful to test the 

robustness of time estimates to the clock model used.  

2.3.5 The limits of molecular clock dating 

Dating species divergences using molecular data is an unconventional statistical 

problem. Molecular sequences provide information only about the distances (the product of 

rates and times) on a phylogeny but not about the times and rates explicitly. Suppose, for 

example, that two genes sampled from two species are separated by a molecular distance d = 

1, meaning 1 nucleotide change per site, on average. We assume that the genes diverged at 

the same time as the species. Relying only on this information it is impossible to tell whether 

the species diverged from each other at a rate of 10-8 substitutions per site per year (s/s/y) 

over a period of 50 million years (My), or at a rate of 0.5×10-8 s/s/y over a period of 100 My. 

In fact there are many different combinations of rate and time which might be plausible for 

the species A and B. Thus to identify the correct combination external information about the 

time or rate is necessary. Below we extend the example for better understanding.  

Suppose that the nucleotide alignment of the two genes consists of n sites with x 

differences. We assume that the true divergence time is t = 0.5 and the true rate is r = 1. The 

same rate of evolution (strict clock) is assumed for the two lineages. The time unit is 100 My 

and thus the true divergence time is 50 million years ago (Ma) and the true rate is 10-8 s/s/y, 

so that their evolutionary distance is d = 2tr = 1. The likelihood of the alignment using the 

Jukes and Cantor (1969) nucleotide substitution model (JC69) is 
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where D is the sequence data and p is the expected proportion of different sites in the 

alignment (p = 0.552 since d = 1). The MLE of the distance is given by 
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with p̂ = x/n to be the observed nucleotide differences in the alignment. Assume now that 

the alignment is n = 100 sites long and x = 55 differences are observed. We are interested in 

estimating the divergence time and rate from the molecular data. The model thus contains 

two parameters (t, r) and the likelihood is 
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The likelihood is maximized along the line
ˆ

2

d
r

t
 , where d̂ = 0.991 from equation (2.13) 

(Figure 2.1A2). Although a MLE is available for d, neither t nor r has a unique MLE. If 

external information is available for any of the two parameters, an estimate can be obtained 

using Bayesian methodology. We assume that information from the fossil record suggests 

minimum and maximum bounds of 40 Ma and 60 Ma respectively, for the divergence time 

of the species. We represent this information with a gamma prior t ~ G(100, 200), with mean 

0.5, meaning 50 My and 95% interval (0.4, 0.6). For the rate we use a diffuse prior r ~ G(2, 

2), with mean 1, meaning 10-8 s/s/y. The joint prior f(r, t) is the product of the two priors and 

is shown in Figure 2.1A1. Then, the joint posterior distribution of r and t is

1
( , | ) ( | , ) ( , )f r t D L D r t f r t

C
 , where 

0 0

( | , ) ( , )d dC L D r t f r t r t

 

   is the normalizing 

constant. The joint posterior has a mode (Figure 2.1C1) and the means of the marginal 

posteriors can be used as point estimates for r and t. For example, the posterior mean of t is 

given by 
0 0

1
( | ) ( | , ) ( , )d dt E t D tL D r t f r t r t

C

 

     and is 0.50, meaning 50 Ma. Similarly, r = 

1.03.  

We now assume longer genes with n = 1000 sites and x = 552 differences. In that case 

the distance is more reliably estimated ( d̂ = 0.999) owing to the larger data set. Note that the 

likelihood is more concentrated around the line
ˆ

2

d
r

t
  in Figure 2.1B2. Using the same prior 

we get the same inference for the time and rate ( t  = 0.50, r  = 1.01).  The joint posterior is 

more concentrated than in the case of the shorter alignment (Figure 2.1B3) and thus the 

larger data set led to increased precision of posterior estimates. However, inclusion of more 

sites in the alignment leads to only a slight reduction in the uncertainty of posterior 

estimates. For example, the marginal posterior of the rate for n = 5,000 sites is very similar 

to that for n = 1,000 (Figure 2.2B).  
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In a typical Bayesian estimation problem as the data increase the prior becomes 

unimportant. However, this is not the case with the Bayesian estimation of species 

divergence times because of the confounding nature of time and rate. Increasing the amount 

of molecular data allows estimation of distances on the phylogeny virtually without error but 

there is no guarantee that the absolute times and rates will converge to their true values. In 

fact, even with infinite molecular data the limiting posterior will remain sensitive to the 

prior. For example, in the two species case described above, consider that we use an 

incorrect prior t ~ G(100, 100), with mean 1, meaning 100 My and the same prior for the rate 

to analyze the long alignment (Figure 2.1C1). The joint posterior is now different (Figure 

2.1C3) and the posterior estimates are t  = 0.99 and r = 0.51, very far from their true values 

t = 0.5 and r = 1 (Figure 2.2C, D). Here, the time prior is very informative and exerts a 

strong influence in the posterior. If the rate prior is also informative or if both priors are 

uninformative these will compete each other with an unpredicted effect in the posterior.  

Yang and Rannala (2006) and Rannala and Yang (2007) studied the case of an infinite 

amount of molecular data. According to their "infinite-sites" theory even with an infinite 

amount of molecular data the posterior time estimates do not converge on point values but to 

a limiting distribution and thus some uncertainty will always remain. When the amount of 

molecular data approaches infinity (infinite sites and loci) the 95% credibility interval widths 

and the posterior time means will fall on a straight line. Thus, in analysis of empirical data 

such "infinite-sites" plots can be used to evaluate whether inclusion of more molecular data 

can increase the precision of posterior time estimates (an example concerning the divergence 

times of 54 metazoan species is shown later in Figure 6.4B).  

In general, there are three sources of uncertainty affecting the estimation of species 

divergence times. The first is the phylogenetic uncertainty (inaccuracies in branch length 

estimation), caused by finite sequence data. This can be reduced by sampling more 

molecular data. Dos Reis and Yang (2013a) examined the case of analyzing large but finite 

sequence data under the clock while Zhu et al. (2015) used relaxed clock models and large 

multilocus sequence data. The authors developed the "finite-sites theory" according to which 

a part of the posterior variance of time estimates is due to limited number of sites at a locus 

and another is due to limited number of loci. To reduce uncertainties of posterior estimates 

increasing the number of loci seems to be more important than increasing the number of sites 

within each locus (Zhu, et al. 2015).  The second source is uncertainty due to among-

branches rate variation which can be improved by sampling more loci. If we assume that all 

genes in an alignment have the same divergence times (that of the species) but differ in the 

pattern of evolutionary rate drift, then a long branch in a locus is more likely to be due to an 

accelerated rate of evolution if the branch is short in all other loci. Thus the use of multiple 

gene loci seems to be advantageous. The third source is uncertainty in the fossil calibrations 
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Figure 2.1: The prior, likelihood and posterior densities of time and rate for two data sets of a 

pairwise sequence alignment. In both data sets the true divergence time of the sequences is 

t = 50 Ma and the true rate is r = 10-8 s/s/y meaning a true evolutionary distance d =1. In (A) 

the alignment consists of n = 100 sites with x = 55 differences while in (B) and (C) n = 1000 

and x = 552. In (A) and (B) the joint prior is the product of two correct gamma priors r ~ G(2, 

2) and t ~ G(100, 200), while in (C) the incorrect prior t ~ G(100, 100) is used. In both data 

sets the likelihood is maximized along the 
ˆ

2

d
r

t
  line (blue dashed line). The Gaussian 

quadrature method (see Appendix A) and R scripts were used for the calculations. 
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Figure 2.2: Marginal prior (dashed lines) and posterior (solid lines) distributions of time and 

rate for the data sets of Figure 2.1. A third data set with n = 5,000 sites is also considered 

here for the case of a correct prior. The marginal posterior of the rate for 5,000 sites is very 

similar to that for 1,000 sites indicating that inclusion of more molecular data is unlikely to 

reduce further the uncertainty in posterior estimates. The marginal posterior of the time is 

virtually the same for any alignment length and very similar to the prior because of the very 

informative time prior. Time and rate estimates are correct when a correct time prior is used 

(first line) but they are biased under an incorrect time prior (second line), indicating a strong 

prior influence. The vertical dotted lines indicate the true parameter values.  

 

 

 

which cannot be reduced by adding more molecular data. Many fossil calibrations of good 

quality are in general helpful. Fossil calibrations are crucial since they exert a significant 

influence in the posterior estimates due to the confounding nature of time and rate. Objective 

representation of fossil information is challenging and extreme care should always be taken 

in the specification of calibration densities and in their impact in the posterior inference 

(Warnock, et al. 2015).   
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3 Bayesian estimation of 

nonsynonymous/synonymous rate ratios for 

pairwise sequence comparisons 

In the previous chapter we described some existing implementations of the Bayesian 

inference to study two important biological questions: times of species divergences and 

mode and strength of natural selection operated in a protein level. In this chapter we will 

present a new Bayesian method to estimate the nonsynonymous/synonymous rate ratio and 

evolutionary distance for a pair of protein-coding sequences and address problems of 

previous counting and maximum likelihood methods.  

3.1 Counting and maximum likelihood methods 

Several intuitive methods have been proposed to estimate the nonsynonymous/ 

synonymous rate ratio for pairwise sequence comparisons. Those methods, referred as 

counting or approximate methods, make ad-hoc treatments and are not based on a rigorous 

theory. Although they might differ in detail they all consist of three major steps: (i) count the 

numbers of synonymous and nonsynonymous sites in the alignment (ii) count the numbers of 

synonymous and nonsynonymous differences between the sequences and (iii) calculate the 

proportions of differences at the synonymous and nonsynonymous sites and correct for 

multiple substitutions using a standard evolutionary model.  

Perler et al. (1980) and Miyata and Yasunaga (1980) developed the first counting 

methods to estimate the synonymous and nonsynonymous rates from a pair of sequences. 

Nei and Gojobori (1986) proposed a more efficient algorithm which produced similar 

estimates but it was simpler and thus soon became very popular. The method of Nei and 

Gojobori (NG) calculates the number of synonymous (S) and nonsynonymous (N) sites in the 

alignment by summing the respective counts over all codons and averaging between the two 

sequences. It then calculates the numbers of synonymous (Sd) and non synonymous (Nd) 

differences between the sequences by summing the respective counts across all codons. 

When a pair of codons has more than one nucleotide difference several evolutionary 

pathways exist and all of them are equally weighted. Then the proportions of synonymous 

(pS) and nonsynonymous (pN) differences are calculated by pS = Sd/S and pN = Nd/N. Finally, 

the JC69 model is used to correct for multiple substitutions at a site with the synonymous 
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and nonsynonymous rates to be given by 
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The method assumes equal codon frequencies, ignores the transition/transversion rate 

bias and does not correct properly for multiple substitutions at a site. The JC69 model 

assumes that a nucleotide at a site can change into any other nucleotide but in this method a 

nucleotide is allowed to only synonymous or nonsynonymous changes. This ad hoc 

treatment to correct for multiple substitutions does not introduce too much bias in small 

sequence divergences and failure to account for codon frequency bias and 

transition/transversion rate bias might be more important. However, in high sequence 

divergences the ad hoc correction can introduce significant positive bias, producing high ω 

values for large t (Yang and Nielsen 2000). Due to the structure of the genetic code a 

transition in the third codon position is more likely to be synonymous than a transversion is. 

Thus, ignoring the transition/transversion bias (the method actually assumes κ = 1) causes 

underestimation of S and overestimation of N which results in underestimation of the ω ratio. 

Li et al. (1985) developed a method to accommodate differences in the transition and 

transversion rates by classifying each codon position into 2-fold, 4-fold and nondegenerate 

classes. The degeneracy of a codon position is determined by the number of synonymous 

changes. However, Li's method is more complicated than the NG and gives similar 

estimates. The method was later improved by Li (1993) and Pamilo and Bianchi (1993), but 

the method of Ina (1995) was the first to fully account for κ in all steps of the estimation. The 

assumption of equal codon frequencies affects the calculation of synonymous and 

nonsynonymous sites leading to biased ω estimates. The direction and magnitude of the bias 

depends on the observed frequencies with higher departure from equality producing more 

bias. 

Ina's method constitutes an improvement but, as with many of the previous methods, 

uses equal weighting of pathways when counting the differences, introducing bias towards 1 

in the estimation of the ω ratio. The bias is more serious in high sequence divergences where 

codons are more likely to differ in two of three positions and thus multiple pathways are 

plausible. Pathways with more synonymous changes are more likely when ω < 1 and using 

equal weighting underestimates Sd and overestimates Nd. Yang and Nielsen (2000) developed 

an iterative algorithm incorporating features of codon models and likelihood estimation 

(Goldman and Yang 1994). The method accounts for transition/transversion bias, codon 

frequency bias and uses appropriate weights for the different pathways according to their 

relative probabilities of occurrence. The HKY85 model of nucleotide substitution is used to 
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correct for multiple hits (Hasegawa, et al. 1985). The algorithm performs better than the 

previous counting methods but worse than the ML method and tends to overestimate ω at 

small sequence divergences and overestimate it at large divergences. 

The heuristic counting methods make ad hoc treatments to deal with specific features of 

molecular evolution which are not rigorously justified and they seem to suffer mainly on the 

way they classify the sites into synonymous and nonsynonymous categories. Models of 

codon evolution (Goldman and Yang 1994; Muse and Gaut 1994) account for those factors 

and the ML method is used to estimate the parameters of the models. Factors like 

transition/transversion rate ratio, nonsynonymous/synonymous rate ratio and frequency 

codon bias can be taken into account by the codon model by incorporating them as 

parameters inside a substitution rate matrix. For example, the rate matrix of equation (2.5) 

incorporates explicitly those factors and their estimates can be obtained by applying standard 

maximum likelihood theory (Yang and Nielsen 1998). Correction for multiple hits is also 

performed automatically by the codon model. Moreover, the likelihood estimation is simpler 

than the complicated calculations required by the counting methods and more realistic 

assumptions can be modelled in a straightforward way based on a rigorous statistical theory. 

The ML method for pairwise sequence comparisons returns more reliable estimates of ω 

than the counting methods and only for very short sequences and high ω values some 

counting methods may be advantageous (Yang and Nielsen 2000). Furthermore, a great 

advance of the likelihood approach is that it can be used to estimate the ω ratio from multiple 

sequences accounting for their phylogenetic relationship (Goldman and Yang 1994). 

MLEs of ω for thousand of genes are routinely calculated as descriptive statistics in 

genome-scale comparisons (Nielsen, et al. 2005; Ge, et al. 2008; Walters and Harrison 2010; 

Buschiazzo, et al. 2012; Gladieux, et al. 2013; Wang and Chen 2013). Although the ML 

method for pairwise comparisons is quick and produces reasonable estimates of ω and t for 

most data sets, it suffers from a few problems when the data sets are extreme. For example, 

the MLE of ω ( ̂ ) is 0 when the two compared sequences have only synonymous 

differences and ∞ when they have only nonsynonymous differences. Similarly, when the 

sequences are identical, the MLE t̂  is 0 and ̂  is not unique. When the sequences are very 

divergent t̂  may be ∞. 

Because of these infinite or undefined estimates, neither ̂  nor t̂  have finite means or 

variances. Extreme values of ̂  and t̂  are commonly encountered in genome-level 

comparisons of thousands of genes, and those estimates cause difficulties with the 

calculation of summary statistics (such as mean ̂  and t̂  across all genes in the genome). 

Furthermore, statistical theory establishes that the MLEs are asymptotically unbiased, 

meaning that in large samples the expectation of an estimate equals the true value of the 
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parameter. However, in small samples MLEs may suffer from substantial biases. For short 

alignments the ML method for pairwise sequence comparisons has been observed to 

overestimate ω when the sequence divergence is small with the bias decreasing for higher 

sequence divergences or longer alignments (dos Reis and Yang 2013d).  

A statistical method which always produces finite and reasonable estimates for ω and t 

is thus desirable. In the next section we develop a Bayesian method to calculate the posterior 

means of ω and t for pairwise sequence comparisons. The advance of the Bayesian approach 

is that using appropriate priors on ω and t the estimates are shrinked away from the extreme 

values of 0 and ∞ and have well-defined means and variances. Moreover, a combination of 

computer simulation and real data analysis reveals better frequentistic properties for the 

Bayesian estimates than the MLEs. The new Bayesian method is computationally efficient 

and thus appropriate for genomic comparisons of protein-coding genes.   

3.2 The new Bayesian approach 

Assume that we have an alignment of two protein-coding sequences from two species 

and we are interested in estimating the ω ratio. We model the evolution of codon sequences 

as a continuous-time Markov process using the codon model of Yang and Nielsen (1998). 

The model incorporates explicitly the transition/transversion rate ratio, the nonsynonymous/ 

synonymous rate ratio and the codon frequencies and accounts for the structure of the 

genetic code. The instantaneous substitution rate from codon i to codon j (i ≠ j) is given by 

equation (2.5). The likelihood function, that is the probability of the pairwise sequence 

alignment x given ω, t, κ is 

 
1

( | , , ) ( )
cL

i ij

h

f x t P t  


 , (3.1) 

where i and j are the observed codons in the two sequences at site h, πi is the equilibrium 

frequency of codon i and Lc is the length of the alignment in codons. Pij(t) is the probability 

that the codon i is replaced by codon j after time t, where t is measured by the expected 

number of nucleotide substitutions per codon (see §2.2.2).  

The joint posterior distribution of ω and t is given by 

 
1

( , | ) ( | , ) ( , )f t x f x t f t
C

   , (3.2) 

where f(t,ω) is the joint prior on t and ω and 
0 0

( | , ) ( , )d dC f x t f t t  
 

    is the 

normalizing constant. To avoid calculations of high dimensional integrals we replace the 

parameter κ in (3.2) with its MLE ̂ . If the two sequences are identical so that ̂ is not 
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unique, we fix it at 2. The codon frequency parameters are estimated by the observed 

nucleotide or codon frequencies (Goldman and Yang 1994). The joint prior f(t,ω) is 

constructed as the product of two independent gamma distributions  

 ( , ) ( |1.1, 1.1) ( |1.1, 2.2)f t G t G   , (3.3) 

where G(θ|α, β) is the gamma density with mean α/β and variance α/β2. Here, the prior 

means of t and ω are 1 and 0.5, respectively. We use a shape parameter α = 1.1, meaning that 

the priors on t and ω are quite diffuse. Note that the joint prior has a mode away from (0, 0) 

and the prior density decays to 0 as either ω or t approaches infinity, thus penalizing extreme 

values. As point estimates of ω and t we use their posterior means 

 
0 0

1
ˆ( | ) ( | , , ) ( , )d dx f x t f t t

C
      

 

     , (3.4) 

 
0 0

1
ˆ( | ) ( | , , ) ( , )d dt t x t f x t f t t

C
   

 

     . (3.5) 

 The posterior variances and covariance of ω and t can be similarly defined and can be 

calculated by 

  
22( | ) ( | ) ( | )Var x E x E x    , (3.6) 

  
22( | ) ( | ) ( | )Var t x E t x E t x  , (3.7) 

 ( , | ) ( | ) ( | ) ( | )Cov t x E t x E x E t x    . (3.8) 

Thus, six double integrals need to be computed, one for the normalizing constant C, and five 

for the different expectations in equations (3.4) - (3.8).  

Consider the calculation of the normalizing constant C. All other integrals are calculated 

similarly. We write g(t, ω) = f(x|t, ω)f(t, ω). For numerical stability we set h(t, ω) = 

exp{logg(t, ω) − lmax}, where lmax is a constant chosen for scaling such as the maximum of 

logg(t, ω) or the maximum log-likelihood. The normalizing constant then becomes 

 max

0 0

exp( ) ( , )d dC l h t t 
 

   . (3.9) 

The Gaussian quadrature method is used to calculate all integrals numerically (Yang 

2014). Gaussian quadrature uses Legendre polynomials to approximate any continuous 

integrand function f(x, y) and calculates the integral as  

 

1 1

, 11 1

( , )d d ( , )
n

i j i j

i j

f x y x y w w f x y
 

  , (3.10) 

where the weights wi, wj and the points xi, xj are predetermined given the total number of 

points n (Appendix A). Here, the limits of the integrals are 0 and ∞ and thus a transformation 

to map the (0, ∞) limits to (−1, 1) is necessary. If the integrand function f(x, y) is highly 
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concentrated in a very small interval and a few points are used those will more likely miss 

the spike in the integrand and the approximation will be poor. The idea behind the 

transformation is to use a probability density function (PDF) that has a similar shape to the 

integrand g(t, ω) and use its cumulative distribution function (CDF) to transform the 

integrand. In that case the new transformed integrand will be nearly flat and a good 

approximation will be possible with just a few points. Note that if the chosen PDF matches 

exactly the g(t, ω), the new integrand after the transformation will be perfectly flat.  

We use the logistic distribution to perform the mapping (0, ∞) → (−1, 1). For any 

random variable x ~ Logistic(μ, σ) the CDF is  
( )/

1

1 e
L x

F x
  




. Let x1 = logt ~ 

Logistic(μ1, σ1) and x2 = logω ~ Logistic(μ2, σ2). Thus, for equation (3.9), we use the 

following change of variables: 

 1
1 1 1 1

1
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1
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 

     
 

, (3.11) 
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Thus, the integral C becomes 

  
1 1
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n
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where 
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where t and ω are given by (3.11) and (3.12), respectively. Figure 3.1 shows the integrand 

function r(z1, z2) after the logistic transformation for two sequences with only 

nonsynonymous differences. The same transformation is applied to all integrals in equations 

(3.4)-(3.8). Thus, we have 
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where A = Cexp(−lmax). The constant term exp(lmax) cancels and is not involved in the 

calculations of the expectations.  

 

 

Figure 3.1: Integrand function of t and ω after logistic transformation for the calculation of 

the normalizing constant (equation 3.9). The data is an alignment of two sequences of 100 

codons with only nonsynonymous differences (S = 73.2, N = 226.8, Sd = 0, Nd = 40). The 

values of t and ω are given from (3.11) and (3.12), respectively, while the transformed 

integrand function is according to (3.14). The new integrand is not spiky and thus the integral 

can be calculated reliably using a small number of points in the Gaussian quadrature 

method. The grid shows the points at which the new integrand function r(z1, z2) is evaluated. 

For each dimension n = 32 were used implying 32 × 32 = 1024 evaluations of the integrand.  

 

 

The Bayesian calculation is performed after the MLEs are obtained. Thus, if both ̂  and t̂

are finite, away from 0 and the observed pS and pN are < 0.74, we set μ1 = log t̂ , μ2 = log̂ , 
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. The variances  ˆ ˆV t  and  ˆ ˆV   are estimated using 

the Nei and Gojobori (1986) method (Appendix B). Because this method uses the JC69 

model to correct for multiple hits, the use of 0.74 as an upper limit for the pS and pN 

guarantees an adequate estimation of  ˆ ˆV t  and  ˆ ˆV  . 

In all other cases, we find numerically the point ( t ,  ) that maximizes log{g(t, ω)}. 

We calculate the Hessian matrix at this point using the second-order difference method and 
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we use the inverse of the Hessian to estimate the variances V( t ) and V( ). Then, we set μ1 

= log t , μ2 = log ,  1

1
V̂ t

t


 
  
 

and  2

1
V̂ 



 
  
 

. Note that because the joint prior 

has a mode, log(g) always has a mode and thus ( t , ) is always away from (0, 0). Although 

this approach can be used in all cases, no matter the values of pS, pN,̂  and t̂ , optimization 

of log(g) is computationally expensive.  

 

 

 

Figure 3.2: Estimated posterior mean and variance of t and ω according to the number of 

points used in the Gaussian quadrature method. The data are the same as in Figure 3.1 and 

the joint prior on t and ω is given by equation (3.3). The estimates are stable for n > 25. 

 

 

Except for the posterior means E(t|x), E(ω|x), variances Var(t|x) and Var(ω|x) and 

covariance Cov(t,ω|x), we also calculate the posterior probability for ω > 1 given by 
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This serves as a Bayesian alternative to the LRT of the null hypothesis H0: ω = 1 with 

alternative H1: ω > 1 to test for positive selection (indicated by ω > 1). To calculate the 

P(ω>1|x) we used similar techniques to those described above (Appendix C). 

The same number of points n for both parameters t and ω was used in the Gaussian 

quadrature method for simplicity. With n = 32, each sum in equation (3.15) requires 32 × 32 
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= 1024 evaluations of the r(z1, z2) function. The use of more points increases the 

computational time radically since evaluation of r(z1, z2) requires calculation of the 

likelihood which is computationally expensive. Tests suggested that using 32 points achieves 

high accuracy. Figure 3.2 shows the estimates of E(t|x), E(ω|x), Var(t|x) and Var(ω|x) for an 

alignment of two sequences with only nonsynonymous differences using different numbers 

of points in the Gaussian quadrature. The estimates become stable when more than 25 points 

are used.  

The Bayesian calculation of ω and t was implemented in the CODEML program (Yang 

2007). 

3.3 Simulations 

3.3.1 Performance of the Bayesian method in five different data sets 

To highlight differences among the ML and Bayesian methods we consider five 

different scenarios in which the numerical calculations of the integrals may differ. For each 

case we simulated an alignment of two sequences of 100 codons in length, with different 

numbers of synonymous and nonsynonymous differences. The log-likelihood and log-

posterior surfaces for the five cases are shown in Figure 3.3.  

Case 1: (Sd > 0, Nd > 0). This is the most common case with both synonymous and 

nonsynonymous differences observed. The data are quite informative about ω and t and the 

posterior distribution resembles the likelihood (Figure 3.3 A' and A). In this data set, we 

have S = 73.7, N = 226.3, Sd = 18.5, Nd = 6.5. The MLEs are t̂ = 0.30 and ̂  = 0.11 while 

the posterior means are t  = 0.31 and   = 0.13, very close to the MLEs.  

Case 2: (Sd = Nd = 0). In this case, the two sequences are identical with S = 73.3, N = 

226.7 and Sd = Nd = 0. The likelihood is maximized along the t = 0 line and when t = 0, ω 

has no effect on the likelihood; therefore ω has no unique MLE (Figure 3.3 B). However, the 

posterior has a single mode and the posterior means are t  = 0.011 and   = 0.496 (Figure 

3.3 B'). Note that since the data are uninformative about ω the posterior mean is almost equal 

to the prior mean. Moreover, the posterior mean is far from the posterior mode, because the 

joint posterior is highly skewed. Note also that the posterior means refer to the marginal 

posteriors and thus the point ( t , ) may differ from the mean of the joint posterior 

(depending on the correlation of t and ω).  
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Figure 3.3: Contour plots of log-likelihood (A-E) and log-posterior (A'-E') distributions of ω 

and t for five artificial alignments of two sequences with 100 codons. The black disc in A-E 

indicates the MLE while the black triangle in A'-E' indicates the mode of the joint posterior. 

The five cases are: (i) normal sequences with both synonymous and nonsynonymous 

differences (A, A'), (ii) identical sequences (B, B'), (iii) sequences with only synonymous 

differences (C, C'), (iv) sequences with only nonsynonymous differences (D, D') and (v) 

highly divergent sequences (E, E'). 
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Case 3: (Sd > 0, Nd = 0). The two sequences differ by only synonymous changes. In this 

data set S = 74.4, N = 225.6, Sd = 24 and Nd = 0. The MLEs are t̂  = 0.306 and ̂  = 0 (Figure 

3.3 C). However, the posterior has a mode away from ω = 0 and the posterior means are t  = 

0.316 and   = 0.014 (Figure 3.3 C').  

Case 4: (Sd = 0, Nd > 0). The two sequences differ by only nonsynonymous changes. In 

this data set S = 73.2, N = 226.8, Sd = 0, Nd = 40. We have t̂ = 0.48 and the likelihood surface 

increases asymptotically along the t = 0.48 line, so that   = ∞ (Figure 3.3 D). However, the 

posterior has a well-defined mode and thus t  = 0.47 and   = 3.1 (Figure 3.3 D'). 

Case 5: (Sd  0, Nd  0). The two sequences are so highly divergent that they 

practically look like random sequences (S = 75.9, N = 224.1, Sd = 75, Nd = 175). Here, the 

likelihood increases with the increase of both t and ω, with the MLEs at t̂ = ∞ and ̂  = ∞ 

(Figure 3.3 E). In the Bayesian analysis, the prior penalizes extreme values and thus the 

posterior means are t  = 10.31 and   = 0.72 (Figure 3.3 E'). Note that the posterior mean of 

ω is close to the prior mean. Because the sequences are very divergent there is too much 

noise and the sequences are practically uninformative about ω. For example, it is hard to tell 

whether a nonsynonymous difference is due to a high ω ratio or because the divergence 

between the two sequences is high.  

These five cases demonstrate how the prior influences the posterior depending on 

whether the data are informative or not. The posterior means of t and ω are finite for all five 

cases, whereas the MLEs are not. The mean square error (MSE) of an estimator ̂  for an 

unknown parameter θ is defined as MSE( ̂ ) = E[( ̂ −θ)2] = Var(̂ ) + [E(̂ )−θ]2 and is used 

to assess the quality of an estimator in terms of its variation and degree of bias. Because the 

MLEs of t and ω may be infinite, their MSEs are ∞ as well. In contrast, the MSEs of the 

posterior means are always defined. Thus, in this sense, the Bayesian estimates of t and ω 

have better Frequentistic properties compared to their MLEs counterparts.  

In the following section we perform a thorough simulation analysis to study the 

statistical properties of the new Bayesian estimators of ω and t and compare them with the 

traditional MLEs. 

3.3.2 Analysis of simulated data 

We used the program EVOLVER from the PAML package (Yang 2007) to simulate 

pairwise sequence alignments of length Lc = 500 codons. We used t = 0.1, 0.5, 1, 5 and ω = 

0.01, 0.1, 0.5, 2, (16 combinations) with transition/ transversion rate ratio κ = 2 and equal 

codon frequencies (1/61) to simulate the data sets. The number of replicates was 10,000. 
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Then we used the CODEML program (Yang 2007) to analyze the simulated data sets using 

both ML and the new Bayesian method assuming equal codon frequencies (Fequal model). 

In the Bayesian method the same prior (equation 3.3) was used for all data sets. 

Figures 3.4 and 3.5 show the histograms (smoothed densities) of posterior mean estimates 

and MLEs of ω and t. As we see in Figure 3.4 the ML and Bayesian estimates of ω are 

virtually identical for all combinations of ω = 0.1, 0.5 and t = 0.5, 1. However, for ω = 0.01, 

Bayesian estimates of ω are shifted to the right (too large) for all t values. This is because the 

prior for ω has a mean of 0.5 and affects the posterior estimates. For ω = 2, posterior means 

of ω are shifted to the left (too small) because of the prior. In general, both methods behave 

best (histograms are more concentrated around the true values) for intermediate distances (t 

= 0.5, 1), because sequences of moderate divergences are the most informative. Similar 

patterns are observed for the distance estimates (Figure 3.4). For t = 0.5, 1 the Bayesian 

estimates are almost identical to the MLEs, but for t = 0.1 they are slightly shifted to the 

right (too large) and for t = 5 they are shifted to the left (too small).  

Table 3.1 and 3.2 contain the means of the Bayesian and ML estimates, the square root 

of the MSE ( MSE ), and the 2.5% and 97.5% percentiles of estimates from the 10,000 

replicate data sets. The descriptive statistics for the ML method have been calculated after 

removing the infinite estimates. For very similar (t = 0.1) and very divergent (t = 5) 

sequences, the prior has a noticeable impact. For example, when t = 0.1 the mean of 

Bayesian estimates of ω is 0.02 when the true ω = 0.01 and is 1.591 when the true ω = 2.0. 

The means of the MLEs (0.011 and 2.365, respectively) are in comparison closer to the true 

values than the means of the Bayesian estimates. However, the means of the MLEs are 

calculated after data sets in which ̂  = ∞ are excluded, but the same data sets are included in 

the calculation of the Bayesian estimates. Estimates of distance show similar patterns (Table 

3.2). Furthermore, when t and ω are small or intermediate, ML and Bayesian methods have 

similar MSE, but for large ω and t the Bayesian estimates have smaller MSE indicating that 

in those cases Bayesian estimates are preferable to the MLEs. 

We also tested for positive selection, indicated by ω > 1. In the maximum likelihood 

analysis a LRT is used to compare H0: ω = 1 against H1: ω > 1, at the 5% significance level. 

In the Bayesian analysis positive selection is inferred when P(ω > 1 | x) > 0.95.  For the true 

ω = 0.01, 0.1, 0.5, no datasets were found to be under positive selection by either method. 

When the true ω = 2 and t = 0.5, 1, 5, both methods correctly detect positive selection in 

almost 100% of the replicate data sets, so that the power to detect positive selection is high 

in both methods but with the LRT to be slightly more powerful (Table 3.1). When ω = 2 and 

t = 0.1 the Bayesian and ML methods detect positive selection in 35% and 61% of data sets. 

In this case, given the short sequence distance, the prior has quite some impact on the ability  
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Figure 3.4: Kernel densities (smoothed histograms) of MLEs (dashed red) and Bayesian posterior means (solid green) for ω in simulated data sets. The true 

values of ω and t are shown on top and left of the plots, respectively. The sequence length is 500 codons. The number of replicates is 10,000. The vertical 

dashed lines correspond to the true values of ω. Independent gamma priors are used ω ~ G(1.1, 2.2) and t ~ G(1.1, 1.1). 

ML Bayesian

t = 0.1

t = 5

t = 1

t = 0.5

ω = 0.01

D
e

n
s
it
y

ω = 0.1 ω = 0.5 ω = 2

0.0 0.1 0.2 0.3 0.4

0

10

20

30

0.00 0.02 0.04 0.06

0

50

100

150

0.0

0.5

1.0

1.5

0

50

100

150

0

50

100

150

0

50

100

150

0

10

20

30

0

10

20

30

0

2

4

6

0

2

4

6

0

10

20

30

0

2

4

6

0.0 0.4 0.8 1.2 1.6

0

2

4

6

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0 1 2 3 4 5

0.0

0.5

1.0

1.5



 

 

6
4

 

 

Figure 3.5: Kernel densities (smoothed histograms) of MLEs (dashed red) and Bayesian posterior means (solid green) for t in simulated data sets. See legend 

of Figure 3.4 for details. 

t = 0.1

D
e

n
s
it
y

t = 0.5 t = 1 t = 5

ML Bayesian

ω = 0.01

ω = 2

ω = 0.5

ω = 0.1

0

10

20

30

0

10

20

30

0

10

20

30

0.04 0.08 0.12 0.16

0

10

20

30

0.0

0.4

0.8

1.2

0.0

0.4

0.8

1.2

0.0

0.4

0.8

1.2

0 5 10 15

0.0

0.4

0.8

1.2

0

4

8

12

0

4

8

12

0

4

8

12

0.3 0.4 0.5 0.6 0.7 0.8

0

4

8

12

0

2

4

6

0

2

4

6

0

2

4

6

0.6 0.8 1.0 1.2 1.4 1.6

0

2

4

6



 

 

6
5

 

Table 3.1: Summary statistics of Bayesian (top, bold) and ML (bottom) estimates of ω from 10,000 simulated data sets 

 

  ω = 0.01  ω = 0.1  ω = 0.5  ω = 2 

Mean MSE  2.5% 97.5% N0  Mean MSE  2.5% 97.5%  Mean MSE  2.5% 97.5% N∞  Mean MSE  2.5% 97.5% N∞ P+  

t = 0.1 
0.020 
0.011 

0.014 
0.009 

0.007 
0 

0.044 
0.033 

0 
2861 

 
0.118 
0.103 

0.045 
0.039 

0.052 
0.041 

0.214 
0.194 

 
0.543 
0.528 

0.160 
0.172 

0.301 
0.278 

0.904 
0.936 

0 
0 

 
1.591 
2.365 

0.546 
1.484 

0.966 
1.015 

2.359 
5.626 

0 
3 

35.1 
60.7 

t = 0.5 
0.012 
0.010 

0.005 
0.004 

0.005 
0.003 

0.021 
0.019 

0 
15 

 
0.104 
0.101 

0.018 
0.018 

0.072 
0.069 

0.141 
0.138 

 
0.511 
0.506 

0.076 
0.076 

0.379 
0.374 

0.677 
0.674 

0 
0 

 
1.878 
2.064 

0.329 
0.424 

1.360 
1.409 

2.543 
3.031 

0 
0 

98.3 
98.9 

t = 1 
0.011 
0.010 

0.003 
0.003 

0.006 
0.005 

0.018 
0.017 

0 
0 

 
0.102 
0.100 

0.014 
0.014 

0.076 
0.075 

0.132 
0.130 

 
0.506 
0.503 

0.062 
0.062 

0.397 
0.393 

0.637 
0.635 

0 
0 

 
1.922 
2.038 

0.278 
0.326 

1.466 
1.508 

2.497 
2.764 

0 
0 

99.9 
100 

t = 5 
0.014 
0.010 

0.005 
0.005 

0.009 
0 

0.022 
0.019 

0 
370 

 
0.129 
0.101 

0.038 
0.034 

0.089 
0.037 

0.183 
0.171 

 
0.526 
0.515 

0.109 
0.981 

0.348 
0.226 

0.755 
0.762 

0 
44 

 
1.876 
2.120 

0.374 
1.398 

1.331 
1.400 

2.642 
3.228 

0 
0 

97.4 
98.6 

Note.− Data were analyzed assuming equal codon frequencies (Fequal model). Results for ML have been calculated after removing infinite estimates. For ω = 

0.1, there were no data sets with 0 or infinite estimates. N0 is the number of replicates with ω̂  = 0, whereas N∞ is the number of replicates with ω̂  = ∞. P+ is 

the proportion of replicates with significant evidence for positive selection indicated by P(ω > 1 | x) > 0.95 in the Bayesian method or by a significant LRT at 

the 5% level (one-sided with critical value 2.71) in the likelihood method. 

 

 

Table 3.2: Summary statistics of Bayesian (top, bold) and ML (bottom) estimates of t from 10,000 simulated data sets 

 
 t = 0.1  t = 0.5  t = 1  t = 5 

Mean MSE  2.5% 97.5%  Mean MSE  2.5% 97.5%  Mean MSE  2.5% 97.5%  Mean MSE  2.5% 97.5% N∞ 

ω = 0.01 
0.102 
0.100 

0.015 
0.015 

0.074 
0.072 

0.134 
0.132 

 
0.504 
0.503 

0.045 
0.045 

0.421 
0.419 

0.596 
0.595 

 
1.013 
1.011 

0.100 
0.100 

0.837 
0.836 

1.223 
1.222 

 
3.910 
7.572 

1.322 
8.922 

2.600 
2.676 

5.506 
43.744 

0 
244 

ω = 0.1 
0.102 
0.100 

0.015 
0.015 

0.075 
0.073 

0.133 
0.131 

 
0.503 
0.502 

0.041 
0.041 

0.427 
0.425 

0.587 
0.585 

 
1.007 
1.006 

0.077 
0.077 

0.865 
0.864 

1.171 
1.170 

 
4.406 
5.629 

0.869 
2.700 

3.317 
3.373 

5.795 
11.506 

0 
24 

ω = 0.5 
0.102 
0.100 

0.015 
0.015 

0.075 
0.073 

0.132 
0.130 

 
0.503 
0.501 

0.036 
0.036 

0.436 
0.434 

0.574 
0.572 

 
1.004 
1.002 

0.057 
0.057 

0.895 
0.894 

1.118 
1.116 

 
5.158 
5.440 

1.469 
2.601 

4.249 
4.228 

6.368 
7.979 

0 
43 

ω = 2 
0.102 
0.100 

0.015 
0.014 

0.075 
0.073 

0.131 
0.129 

 
0.501 
0.500 

0.035 
0.035 

0.434 
0.433 

0.571 
0.571 

 
1.001 
1.002 

0.056 
0.056 

0.895 
0.895 

1.112 
1.114 

 
4.988 
5.119 

0.737 
0.726 

4.274 
4.323 

6.035 
6.401 

0 
3 

Note.− Data were analyzed assuming equal codon frequencies (Fequal model). Results for ML have been calculated after removing the infinite estimates. For 

t = 0.1, 0.5 and 1, there were no data sets with 0 or infinite estimate. N∞ is the number of replicates with ω̂  = ∞. 
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of the Bayesian method to detect selection. In particular, the prior mean (ω = 0.5) is smaller 

than the true value (ω = 2), and thus   is shrunk away from 1. 

3.4 Analysis of mammalian and bacterial data 

We applied both ML and Bayesian methods to estimate ω and t for pairwise alignments 

of protein-coding genes from four mammalian species (human, chimpanzee, mouse, and 

rat) and from three bacterial strains (Escherichia coli O157:H7, E. coli K-12 and Salmonella 

typhimurium LT2). The mammalian data set is a subset of the data analyzed by dos Reis et al.  

(2012). The data set consists of: 14,218 genes from the human and chimpanzee, with the 

sequence length ranging from 39 to 8,797 codons; 14,631 genes from the human and mouse 

with the sequence length from 13 to 8,787 codons; and 13,371 genes from the mouse and rat 

with the sequence length from 14 to 7,798 codons. The protein-coding sequences from the 

genomes of E. coli O157:H7, E. coli K-12 and S. typhimurium LT2 were downloaded from 

GenBank (accession numbers: U_00096, NC_002655 and NC_003197 respectively). 

Orthologous genes among the three genomes were identified by using the program BLAT 

(Kent 2002) to extract the best reciprocal hits. Only orthologs present in all three genomes 

are used. The bacterial data set consists of 2,631 genes from each strain, with the sequence 

length ranging from 20 to 1,485 codons. Codons involving alignment gaps and ambiguity 

nucleotides were removed prior to analyses. Moreover, genes with sequence length of 50 

codons or less were excluded from the analysis. The number of genes analyzed in each 

comparison is reported in Table 3.3 and Figure 3.6. In all analyses, the codon frequencies 

were estimated by using the observed codon frequencies in the genes (the F61 model). 

3.4.1 Analysis of the mammalian data set 

We conducted three sets of pairwise comparisons: human versus chimpanzee, human 

versus mouse, and mouse versus rat. Figure 3.6 shows the distributions (smoothed 

histograms) of posterior means and the MLEs of t and ω in those comparisons. In the 

human–chimpanzee comparison, the Bayesian ω estimates are slightly shifted to the right 

compared with the MLEs for low ω values and shifted to the left for high ω values. The 

mean, median, 25% and 75% percentiles of the Bayesian estimates are 0.369, 0.320, and 

(0.180, 0.500) whereas those of the MLEs are 0.307, 0.193, and (0.062, 0.411) (Table 3.3).  

The human and chimpanzee genes are very similar and the patterns are similar to those 

observed in computer simulation for low t values. Moreover, there are 377 and 2507 gene 
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alignments in which t̂ = 0 and ̂  = 0, respectively, as well as 2 and 423 alignments where t̂

= ∞ and ̂  = ∞, respectively. The Bayesian method does not produce any such extreme 

estimates. The number of genes in which the ω estimate is greater than 1 is 1121 for ML and 

299 for the Bayesian method (Table 3.4). The discrepancy is the result of two effects, a short 

evolutionary distance and a short sequence length, both indicating a lack of information and 

greater influence from the prior. Genes with ̂  > 1 tend to be small (median sequence length 

313 codons, compared with 454 codons for all genes). For example, one gene among those 

1121 with ̂  > 1 has ̂  = 1.22 (95% Confidence interval - CI 0.37 to 4.01) and posterior 

mean   = 0.93 (95% Credibility interval - CI 0.36 to 2.43). This gene has a length of 262 

codons and has a small evolutionary distance with t̂  = 0.043 (95% CI 0.024 to 0.077) and t  

= 0.047 (95% CI 0.027 to 0.082), and thus the prior has an impact. Another gene has ̂  = 

1.27 (95% CI 0.75 to 2.16) and   = 1.13 (95% CI 0.60 to 2.13). This gene is 257 codons in 

length and the ML and Bayesian distance estimates are 0.17 (95% CI 0.13 to 0.24) and 0.18 

(95% CI 0.13 to 0.24) respectively. The second gene has a similar length to the first but 

because the sequence distance is greater, the prior is much less important. In a third gene, of 

length 1019 codons, the MLEs are t̂  = 0.041 (95% CI 0.030 to 0.056) and ̂  = 1.27 (95% 

CI 0.77 to 2.07), compared with the Bayesian estimates t  = 0.042 (95% CI 0.031 to 0.057) 

and   = 1.13 (95% CI 0.59 to 2.14). In this case the effect of the prior is unimportant, 

because the gene is long. 

Among the 1121 genes with ̂  > 1 only 78 have statistically significant evidence of 

positive selection based on the LRT (α = 5% ) (Table 3.4). All the 78 genes have posterior 

mean ̂  > 1. Moreover, out of them, three showed strong evidence of positive selection in 

the Bayesian analysis, with P(ω > 1 | x) > 0.95 (Table 3.4). The difference (3 vs. 78 genes) in 

the number of genes found to be under positive selection between the ML and the Bayesian 

method is consistent with the general expectation that the likelihood ratio test tends to reject 

the null more readily than the Bayesian analysis. It is also consistent with the results 

observed in the computer simulations for t = 0.1 and ω = 2. Note that the 3 genes significant 

in the Bayesian analysis have fairly large sequence divergences, with t̂  ≈ 0.1, while the 

other 75 genes (for which the LRT is significant but the Bayesian evidence is not strong) 

have highly similar sequences, with t̂  < 0.07 (and median 0.021). 

In the human-mouse comparison, the ML and Bayesian estimates are very similar. The 

sequence divergence is intermediate, the data are informative, and thus the prior does not 

have a noticeable impact. There are very few cases where the MLEs are extreme (0 or ∞) 

(Table 3.3). Also, the number of genes with ω estimates > 1 is nearly the same between the 

two methods (6 vs. 7) and the same two genes show significant evidence for positive  
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Figure 3.6: Distributions (smoothed histograms) of Bayesian and ML estimates of t and ω 

from mammalian and bacterial pairwise gene comparisons. Numbers of genes analyzed in 

each comparison are reported in the right part of the figure. 
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Table 3.3: Descriptive statistics of Bayesian (top, bold) and ML (bottom) estimates of t and ω from pairwise comparisons of protein-coding genes from 

mammalian species and bacterial strains 

 

 

 ω  t 

 

Mean SD 

quartiles 

N0 N∞  Mean SD 

quartiles 

N0 N∞ # genes 25% 50% 75% 25% 50% 75% 

human - 
chimpanzee 

14215 
0.369 

0.307 

0.246 

0.418 

0.180 

0.062 

0.320 

0.193 

0.500 

0.411 

0 

2507 

0 

423 
 0.025 

0.022 

0.072 

0.042 

0.013 

0.010 

0.019 

0.016 

0.028 

0.025 

0 

377 

0 

2 

human -  
mouse 

14624 
0.130 

0.126 

0.125 

0.157 

0.044 

0.040 

0.093 

0.089 

0.176 

0.170 

0 

221 

0 

0 
 0.812 

0.849 

0.574 

1.252 

0.503 

0.499 

0.691 

0.686 

0.958 

0.952 

0 

0 

0 

30 

mouse -  
rat 

13359 
0.168 

0.159 

0.168 

0.180 

0.055 

0.046 

0.118 

0.108 

0.228 

0.215 

0 

509 

0 

0 
 0.242 

0.238 

0.179 

0.232 

0.163 

0.161 

0.215 

0.212 

0.281 

0.278 

0 

0 

0 

3 

E.coli K-12 -  
E.coli O157 

2619 
0.179 

0.099 

0.170 

0.174 

0.055 

0.001 

0.116 

0.034 

0.252 

0.110 

0 

912 

0 

31 
 0.080 

0.073 

0.354 

0.527 

0.026 

0.020 

0.043 

0.038 

0.068 

0.064 

0 

121 

0 

6 

E.coli K-12 -  
Salm. LT2 

2619 
0.037 

0.025 

0.042 

0.042 

0.016 

0.006 

0.025 

0.018 

0.042 

0.032 

0 

164 

0 

0 
 2.261 

5.052 

1.546 

8.481 

1.153 

1.087 

1.836 

1.748 

3.129 

4.066 

0 

0 

0 

217 

Note.─ Data were analyzed using the F61 model for codon frequencies. Results for ML have been calculated after removing the infinite estimates. N0 is the 

number of genes with ω̂  or t̂ = 0, while N∞ is the number of genes with ω̂  or t̂ = ∞. 
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Table 3.4: The numbers of genes with ω estimate greater or less than 1 from pairwise 

comparisons of protein-coding genes from mammalian species and bacterial strains using 

the Bayesian and ML methods 

Data 
 Bayesian  

 ω  < 1 ω  > 1 NL 

human - chimpanzee 

ML 

ω̂ < 1 

ω̂ > 1 

NB 

13094 
822 

 

0 
299 
3 

 
78 
 

human - mouse 

ω̂ < 1 

ω̂ > 1 

NB 

14617 
1 
 

0 
6 
2 

 
2 
 

mouse - rat 

ω̂ < 1 

ω̂ > 1 

NB 

13313 
10 

 

0 
36 
2 

 
5 
 

E.coli K-12 - E.coli O157 

ω̂ < 1 

ω̂ > 1 

NB 

2574 
43 

 

0 
2 
0 

 
0 
 

E.coli K-12 - Salm. LT2 

ω̂ < 1 

ω̂ > 1 

NB 

2617 
2 
 

0 
0 
0 

 
0 
 

Note.─ NL is the number of genes with statistically significant ω̂  > 1 based on the LRT at the 

5% level (one-sided with critical value 2.71) in the likelihood method, while NB is the number 

of genes with P(ω > 1 | x) > 0.95 in the Bayesian analysis. 

 

 

selection by both methods (Table 3.4). The mouse-rat comparison gives similar patterns to 

the human-mouse comparison: in both cases, the sequences are moderately divergent and the 

data are informative. 

We re-analyzed the human-chimpanzee and human-mouse alignments using two 

alternative priors in order to examine the effect of the prior in the posterior estimates of t and 

. The first alternative prior (AP1) is t ~ G(2, 2) and ω ~ G(2, 4). This has the same means 

as the default prior of equation (3.3) but the prior here is more informative because of the 

larger shape parameter (2 vs. 1.1). In the second alternative prior (AP2), we used 2 for the 

shape parameter, but chose the scale parameter such that the prior mean roughly matches the 

median of the MLEs for all genes (Table 3.3). Thus for the human-chimpanzee comparison, 

AP2 is t ~ G(2, 100), with the prior mean 0.02 (while the median of MLEs of t is 0.016), and 

ω ~ G(2, 10), with the prior mean 0.2 (while the median of MLEs of  is 0.193).  For the 

human-mouse comparison, AP2 is t ~ G(2, 3), with the prior mean 0.67 (while the median of 

the MLEs is 0.686) and ω ~ G(2, 20), with the prior mean 0.1 (the median of the MLEs is 

0.089). In general, it is not advisable to use the data to specify the prior, but in some cases 

some prior information may be available. For example, between the human and the 

chimpanzee, the distance t is very likely to be smaller than 0.1. 
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Posterior estimates of ω and t from the analysis using the default and alternative priors 

are illustrated in Figure 3.7 and 3.8. In the human-chimpanzee comparison, the impact of the 

prior is apparent. The Bayesian estimates of ω using the AP1 are higher than those using the 

default prior for low ω values (ω < 0.5) and lower for high ω values (ω > 0.5) (Figure 3.7Α). 

When the prior is more informative (shape parameter 2), the posterior means are closer to the 

prior mean 0.5. For the human-mouse comparison estimates under AP1 are close to those 

under the default prior (Figure 3.7B). The Bayesian estimates of t are less affected by the 

change in the prior in both comparisons and the estimates are approximately the same for the 

majority of the genes (Figure 3.8A, B). The effect of the prior AP2 is more significant. In 

both comparisons the Bayesian estimates of ω are smaller than those obtained using the 

default prior for almost all genes (Figure 3.7C, D). This is because the priors are more 

informative (with shape parameter α = 2) and have lower means (0.2 and 0.1 for the human-

chimpanzee and human-mouse comparisons, respectively, instead of 0.5) and thus affect 

posterior estimates more than the default prior. The effect is more apparent in the human-

chimpanzee comparison because the sequence distances are smaller. Posterior estimates of t 

are less affected by the change in the prior (Figure 3.8C, D). In summary, the prior affects 

posterior estimates of ω when the genes are not informative about ω and does not affect 

significantly the posterior estimates of t. 

3.4.2 Analysis of the bacterial data set 

We performed two pairwise comparisons: E. coli K-12 vs. E. coli O157:H7 and E. coli 

K-12 vs. Salmonella typhimurium LT2. The two strains of E. coli have the same evolutionary 

distance from the Salmonella and gave similar results. Thus, only the results from the E. coli 

K-12 − Salmonella typhimurium LT2 comparison are reported here.  

The sequences from the two E. coli strains are very similar, and the prior has an impact 

on Bayesian estimates, similar to that in the comparison of the human and chimpanzee 

genes. The mean, median and 25% and 75% percentiles of the Bayesian ω estimates are 

0.179, 0.116 and (0.055, 0.252) while the corresponding results for the MLEs are 0.099, 

0.034 and (0.001, 0.110) (Table 3.3). Thus, in the analysis of those genes the two methods 

give different results. Also, the MLE ̂  = 0 in 912 genes and ̂  = ∞ in 31 genes. None of 

the genes with ̂  > 1 is statistically significant at the α = 5% significance level according to 

the LRT and none has P(ω > 1 | x) > 0.95 (Table 3.4). The gene sequences from the E. coli 

K-12 and Salmonella are quite divergent. In most genes, the two methods produced similar 

estimates (Figure 3.6). However, some genes are very divergent with the MLE t̂  = ∞ in 217 

genes. 
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Figure 3.7: Bayesian estimates of ω for the human−chimpanzee (A and C) and 

human−mouse (B and D) comparisons using alternative priors plotted against estimates 

using the default prior (equation (3.3)). The alternative priors are: (A and B) ω ~ G(2, 4), t ~ 

G(2, 2); (C) ω ~ G(2, 10), t ~ G(2, 100); and (D) ω ~ G(2, 20), t ~ G(2, 3). 

 

 

 

 

 

 

 

 

 

 



3. Bayesian estimation of nonsynonymous/synonymous rate ratios 

 

73 

 

 

Figure 3.8: Bayesian estimates of t for the human−chimpanzee (A and C) and 

human−mouse (B and D) comparisons using different gamma priors. The alternative priors 

are as in Figure 3.7. 

 

  

3.5 Discussion 

When sequences from multiple species are available they should be used together in a 

joint analysis accounting for their phylogenetic relationship. Thus, performing pairwise 

comparisons to estimate ω is not an efficient use of the data. In particular, a number of 

likelihood ratio tests have been developed to detect positive selection that affects particular 

evolutionary lineages on a phylogeny or individual sites in the protein (see for reviews, e.g. 

Cannarozzi and Schneider 2012; Yang 2014). To apply such tests of positive selection, it is 

essential to use multiple sequences, as a pair of sequences hardly contains enough 
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information for the tests to have any power (e.g., Yang 2006). Some proteins may evolve in 

an episodic manner and thus adaptive episodes may not be detected in pairwise comparisons, 

especially when the sequences are distantly related (Messier and Stewart 1997). In a pairwise 

comparison, positive selection is detected only if the ω averaged over all sites in the protein 

and over the whole evolutionary history connecting the two sequences is higher than one. 

This seems to be an extremely stringent criterion. Analysis of multiple sequences on a 

phylogeny allows one to detect episodic positive selection that affects a particular branch 

(Yang 1998). 

Nevertheless, pairwise sequence comparisons are widely used, especially in 

comparative genomics, sometimes to provide summary statistics of the data and sometimes 

because of lack of a third genome.  The ML method has been widely used to estimate ω and t 

in pairwise comparisons of genes (e.g., Nielsen, et al. 2005; Ge, et al. 2008; Walters and 

Harrison 2010; Buschiazzo, et al. 2012; Gladieux, et al. 2013; Wang and Chen 2013). 

Counting methods are also used due to their simplicity (Garcia-Gil, et al. 2003; Schenekar, et 

al. 2011; Graves, et al. 2013), even though they were found not to perform as well as ML in 

computer simulations (Yang and Nielsen 2000). Both counting and ML methods sometimes 

return 0 or ∞ as estimates, so that neither the expectation nor the variance of the estimates is 

finite. The infinity estimates of ω appear to be particularly confusing to many users of the 

methods. For example, some authors added a small arbitrary number (pseudocounts) to the 

numbers of synonymous and nonsynonymous substitutions before calculating ω to avoid 

such extreme estimates (e.g. Novaes, et al. 2008; Bajgain, et al. 2011; Pellino, et al. 2013). 

Other authors excluded genes with dS = 0 from their analyses (e.g., Wang and Chen 2013).  

The Bayesian method presented here may provide a better procedure than such ad hoc 

treatments. It always returns finite estimates of ω and t as the prior penalizes extreme values. 

The computer simulation suggests that the Bayesian estimates of ω have nice statistical 

properties, with similar or smaller MSEs compared with the MLEs. The posterior means are 

close to the MLEs when the data are informative, that is, when the sequences are long and 

the sequence divergence is intermediate, but the differences can be large when the sequences 

are short and are either too similar or too divergent. Nearly identical sequences contain little 

information while extremely divergent sequences contain too much noise concerning ω. In 

both cases, the data are not informative and the prior has an impact on posterior estimates of 

ω. However, as sequence length increases the effect of the prior decreases irrespective of the 

true values of ω and t. The Bayesian method described here applies for the analysis of only 

two sequences. A Bayesian method for the analysis of multiple sequences in a phylogeny 

requires calculation of high-dimensional integrals and was not pursued. 

Note that MLEs ̂  = ∞ should not be taken as evidence for positive selection (ω > 1) 

because the extreme estimate may well be due to chance effects when the numbers of 
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changes are small. Instead, positive selection can be claimed only if the LRT is significant in 

the ML framework or when P(ω > 1 | x) > 0.95 in the Bayesian analysis. 

The Bayesian method presented here has been implemented in the CODEML program 

in the PAML package (Yang 2007). The program allows the user to specify the parameters 

of the gamma priors for t and . Although the Bayesian method is computationally more 

intensive than ML, it remains fast enough for large-scale screening. It takes 1-2 seconds to 

analyze a pair of sequences on a modern PC. 
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4 The impact of ancestral population size and 

incomplete lineage sorting on Bayesian 

estimation of species divergence times 

 

In the previous chapter we presented a new Bayesian method to estimate the 

nonsynonymous/synonymous rate ratio for pairwise sequence comparisons and we explored 

its performance in comparison to ML. In this chapter, we will explore the performance of 

existing Bayesian inference methods in estimating species divergence times from molecular 

data (see §2.3 for details) when ancestral polymorphism and incomplete lineage sorting are 

present in the data. Widely used Bayesian molecular clock dating methods ignore the issue, 

and it is not clear what impact those aspects of molecular evolution may have on time 

estimation.  

4.1 Introduction 

The molecular clock hypothesis states that the rate of evolution of molecular sequences 

is approximately constant with time (Zuckerkandl and Pauling 1965). This powerful idea 

means that in practice information from the fossil record can be combined with information 

from molecular alignments to obtain geological times of divergence for species in a 

phylogeny. Recently several Bayesian methods have been developed for such type of 

analysis (Thorne, et al. 1998; Yang 2007; Drummond, et al. 2012; Ronquist, Teslenko, et al. 

2012). These methods model important evolutionary processes such as rate variation across 

lineages (Thorne, et al. 1998; Rannala and Yang 2007) and loci (dos Reis, Zhu, et al. 2014), 

account for uncertainties in fossil information (Inoue, et al. 2010) and may provide precise 

time estimates (dos Reis, et al. 2012). Moreover, the development of efficient algorithms has 

allowed the analysis of large genomic datasets from several species in realistic time frames 

(Thorne, et al. 1998; dos Reis and Yang 2011). Due to those methodological advances 

studies of species diversification times using genomic data are nowadays very common 

(Erwin, et al. 2011; dos Reis, et al. 2012; Jarvis, et al. 2014). 

Despite the methodological and computational progress, most molecular-clock dating 

studies have ignored the effects of the coalescent process on sequence divergences and thus 

on divergence time estimates. Implicitly, they assume that gene coalescence coincides with 
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species diversification and gene trees match the species tree; however, this might not always 

be the case. For example, consider a sample of two nucleotide sequences (genes) belonging 

to different individuals from a diploid population of N individuals. The expected time to 

coalescence, that is, the time it takes for the two sequences to find their common ancestor is 

2N generations (Kingman 1982b, a; Tajima 1983). If the sequences are sampled from 

individuals belonging to two different, completely isolated species (with no gene flow after 

speciation) which diverged T generations ago, then the expected sequence coalescent time is 

T + 2N (Figure 4.1), where N is now the population size of the ancestral species (Gillespie 

and Langley 1979). In other words, the divergence time of the genes, T*, can be older than 

the divergence time of the species (i.e. T* > T), especially so if the size of the ancestral 

population is large compared to the species divergence time. Note here that the population 

size N is the effective population size Ne, which is the size of an idealised (Fisher-Wright) 

population with the same magnitude of genetic drift as the population under study. Such an 

idealised population is characterised by constant population size, non overlapping 

generations, random mating and neutral evolution. 

Furthermore, for sequences sampled from three or more species, the genealogy of the 

sequences and the species tree may be in conflict, resulting from the deep coalescent times of 

the gene sequences (green dashed lines in Figure 4.1), a process known as incomplete 

lineage sorting (Hudson 1983; Nichols 2001). Thus, studies that use the molecular clock to 

estimate the times of species divergences from molecular data should take into account the 

effect of ancestral population size and incomplete lineage sorting on gene ages, otherwise 

biased estimates of species divergence times may be obtained. 

Several Bayesian phylogenetic methods have been developed to perform inference 

under the multi-species coalescent (Rannala and Yang 2003; Liu and Pearl 2007; Liu 2008; 

Heled and Drummond 2010; Yang 2015). However, these methods are computationally 

expensive and are only practical for small datasets or when using simple nucleotide 

substitution models. Thus, although the coalescent process has long been recognised as an 

important aspect of sequence evolution (Takahata, et al. 1995; Edwards and Beerli 2000; 

Kubatko and Degnan 2007; Knowles and Kubatko 2010; Burbrink and Pyron 2011; Oliver 

2013; Yang 2014), a majority of molecular clock dating analyses are still carried out 

ignoring the effects of ancestral population size and incomplete lineage sorting (e.g., Erwin, 

et al. 2011; dos Reis, et al. 2012; Jarvis, et al. 2014; Misof, et al. 2014; Zeng, et al. 2014). 

Furthermore, the biases introduced in time estimates by ignoring the coalescent process do 

not seem to have been studied. 

Here, we explore the impact of ancestral polymorphism and incomplete lineage sorting 

on Bayesian divergence time estimates assuming that the clock holds, when polymorphism 

and incomplete lineage sorting are ignored by the model. We perform a combination of 
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mathematical analysis, computer simulations, and analysis of a real dataset (the hominoid 

phylogeny) and show that ignoring the coalescent process can have a large impact on 

estimates of divergence times, even when estimating ancient divergence events. Divergence 

times can be substantially under or overestimated, depending on the configuration and 

precision of the fossil calibrations on the tree, with the molecular evolutionary rate being 

usually overestimated. The problem is severe and the results highlight an urgent need for the 

development of efficient, fast computer software that can provide reliable estimates of 

divergence times under the multi-species coalescent for the large genome-scale datasets now 

routinely available. 

4.2 The case of three species 

Here, we study the case of estimating the two divergence times in a phylogeny of three 

species when the coalescent process is ignored. We first provide an approximate 

mathematical formula for the time and rate estimates and their errors when the amount of 

molecular data (the number of genes or loci) analyzed is very large, when we have perfect 

fossil information, and when there is little conflict between the species tree and the sampled 

gene trees. We then use computer simulations to study Bayesian time estimation when 

incomplete lineage sorting may be substantial and when we use uncertain fossil calibrations 

in the form of priors. 

4.2.1 A simple approximation to the time and rate estimates and 

their errors when the coalescent process is ignored 

Assume the three-species phylogeny of Figure 4.1. We are interested in estimating the 

two species divergence times on the tree: t1 = gT1 (the age of the root) and t2 = gT2 (the age of 

the internal node), where T is the time in generations, t the time in years, and g the 

generation time. The probability for a gene tree to be different from the species tree is 

 1 2( )/22

3

T T N
P e

 
  (4.1) 

(Hudson 1983). Here, we assume that T1−T2 is large enough so that the probability of gene 

tree-species tree mismatch is negligibly small and can be ignored (for example if T1−T2 > 

10N then P < 0.45%). In a typical molecular dating analysis, we sample a set of genes from 

each species, concatenate and align the sequences (i.e. create a supergene alignment) and 

then estimate the species phylogeny and the molecular distances using the concatenated 
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alignment. The molecular distances and information from the fossil record are then used to 

estimate the divergence times. Thus, to understand how time estimates may be affected by 

ignoring the coalescent process, we must first understand how the molecular distances are 

affected. 

 

 

Figure 4.1: A three-species phylogeny. The species tree is represented by thick black lines. 

The grey lines represent the genealogy for a sample of three genes (one from each species) 

that matches the species tree. The green dashed lines represent a gene genealogy that 

does not match the species tree (i.e. we say the species tree and the gene tree are in 

conflict). If the species have been completely isolated since divergence (i.e. no migration or 

introgression), then the gene divergence times (T*) will always be older than the species 

divergence times (T). The expected gene divergence time (in generations) is E(T*) = T + 2N, 

where N is the size of the ancestral population. 

 

 

The expected molecular distance (in expected number of substitutions per site) between 

either of the two genes sampled from A and B and their common ancestor is 

      2 2 2E = + 2 + 2d T N gr t Ng r , (4.2) 

where r is the substitution rate per site per year (so that μ = rg is the rate per generation), 

which we assume to be the same for all loci in all lineages. Similarly, for a sample of two 

genes from A (or B) and C, the expected distance is 

      1 1 1E 2 2d T N gr t Ng r    . (4.3) 

Note that equations (4.2) and (4.3) are the expected distances for a pairwise sequence 

alignment for a single locus. If our supergene alignment is very long (so that it contains a 

C B A
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*
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large number of loci) the molecular distances (the branch lengths) estimated on the species 

tree will be close to the expected values 

 2 2 2
ˆ E( ) ( 2 )d d t Ng r   , (4.4) 

and 

 
1 1 1

ˆ E( ) ( 2 )d d t Ng r   . (4.5) 

However, as we sample more and more loci, the distance estimates will not converge to the 

expectations in equations (4.2) and (4.3) because they are estimated on the species tree (and 

not on the pairwise alignments) and incomplete lineage sorting is ignored. Nevertheless, we 

show below that the approximations are quite good even when there is substantial 

incomplete lineage sorting. 

Now let's assume that the age of the root, t1, is known (say, from the fossil record). Then 

under the molecular clock, an estimator of t2 using t1 as a calibration is 

 2 1 2 1
ˆ ˆˆ / .t t d d  (4.6) 

The estimator is constructed under the molecular clock hypothesis that the ratio of the 

species divergence times (t2/t1) is the same as the ratio of the molecular distances (d2/d1). 

However, the later ratio is the ratio of gene divergences, and thus the estimator of the species 

A and B divergence time 2̂t will be biased. If we replace the distance estimates in equation 

(4.6) with their approximations from equations (4.4) and (4.5) we obtain an approximation 

for 2̂t  as a function of the true parameter values 

 2
2 1

1

( 2 )
ˆ

( 2 )

t Ng
t t

t Ng





. (4.7) 

Then, an approximation to the bias of that estimator is 

 2 1 2
2 2 1 2

1 1

( 2 ) ( )2
ˆ

( 2 ) 2

t Ng t t Ng
t t t t

t Ng t Ng

 
   

 
. (4.8) 

 Because t1 > t2 the bias is positive and thus t2 is overestimated. In contrast, if the age of the 

internal node, t2, is known (i.e. from the fossil record), we can instead estimate the age of the 

root as  

 1 1
1 2 2

22

ˆ ( 2 )
ˆ

ˆ ( 2 )

d t Ng
t t t

t Ngd


 


, (4.9) 

with approximate bias 

 2 1
1 1

2

( )2
ˆ

2

t t Ng
t t

t Ng


 


. (4.10) 

Here, the bias is always negative and t1 is underestimated. 

Similarly, we can estimate the molecular rate, r, using t1 as the calibration time 

 1 1
ˆˆ /r d t . (4.11) 
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If we replace the distance estimate with its approximation from equation (4.5) we get 

 1

1 1

( 2 ) 2
ˆ

t Ng r Ngr
r r

t t


   . (4.12) 

Thus, the approximate bias of the rate estimator is 

 1
ˆ 2 /r r Ngr t  . (4.13) 

Here, the bias is always positive and thus r is overestimated. We can also estimate the rate in 

a similar way when t2 is used as the calibration time 

 2 2 2
ˆˆ ' / 2 /r d t r Ngr t   , (4.14) 

with approximate bias 

 2
ˆ ' 2 /r r Ngr t  . (4.15) 

Here, the bias is also positive and thus the rate is overestimated no matter whether t1 or t2 is 

used as calibration. However, since t1 > t2 the overestimation is more severe when t2 is used 

as the calibration time. 

The relative error of an estimator ( ̂ ) is the bias of the estimator divided by the true 

parameter value (θ) 

    ˆ ˆ /      . (4.16) 

Thus, we can use the biases of equations (4.8), (4.10), (4.12) and (4.15)  to obtain 

approximations to the relative errors on the estimates of t1, t2 and r. Note that if the relative 

error is positive, then the parameter is overestimated, and if it is negative the parameter is 

underestimated. Figure 4.2 and 4.3 show the relative errors on estimates of t1, t2 and r for a 

few cases when the coalescent process is ignored. In some cases the errors can be substantial. 

For example, when t2 = 1 Ma, t1 = 10 Ma, g = 10 years (y) and N = 105 individuals, t2 is 

overestimated by 150% when using t1 as the calibration time (Figure 4.2A). On the other 

hand, for the same parameter values and when t2 is used as the calibration time, t1 is 

underestimated by 60% (Figure 4.2B) and r is overestimated by 200% (Figure 4.3). Note that 

for those parameter values the species tree-gene tree mismatch is very small (P = 0.74%). 
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Figure 4.2: Relative errors in estimates of divergence times on a three-species phylogeny 

(Figure 4.1) as a function of population size when the coalescent process is ignored. The 

errors are calculated approximately using equations (4.8), (4.10) and (4.16). (A) Relative 

errors of estimates of the internal node’s age, t2, when the age of the root, t1, is known and 

used as the calibration. (B) Relative errors of t1 estimates when t2 is the calibration. In (A) 

and (B) the true values are t1 = 10 Ma, t2 = 1 or = 5 Ma, and g = 10 y. 

 

 

Figure 4.3: Relative errors in estimates of the molecular substitution rate on a three-species 

phylogeny (Figure 4.1) as a function of population size when the coalescent process is 

ignored. The error is calculated approximately using equations (4.15) and (4.16), with t2 

known and used as the calibration. The true values are t2 = 1 or = 5 Ma, g = 10 y, and  r = 

10–9 s/s/y. 
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4.2.2 Simulation analysis: Bayesian estimates of times when the 

coalescent process is ignored 

We simulated 50 gene alignments (each alignment of 1,000 nucleotides) from a three-

species phylogeny (Figure 4.1) using the program MCCOAL (Rannala and Yang 2003; Yang 

and Rannala 2010). MCCOAL simulates gene trees under the multi-species coalescent with 

corresponding gene alignments using the JC69 substitution model. Thus the simulated gene 

trees may not match the species tree. The species divergence times are t1 = 10 Ma, and t2 = 1, 

5, 9 Ma. The generation time is g = 10 years, and the substitution rate is r = 10–9 s/s/y. The 

population size (assumed to be constant in all lineages) is N = 102, 103, 104, 105, 106 

individuals. This gives a total of 3×5 = 15 parameter combinations. The number of replicates 

(the number of times each parameter setup is simulated) is 100. 

We concatenated the simulated gene alignments into a supergene alignment, and we 

obtained Bayesian estimates of divergence times under the clock and the JC69 model using 

the program MCMCTREE (Yang 2007). Note that the MCMCTREE does not account for 

ancestral polymorphism and incomplete lineage sorting. The species tree (Figure 4.1) is used 

and assumed known. The time unit was set at 10 My. We used a diffuse gamma prior for the 

rate, r ~ G(1, 100), with mean 0.01 per time unit (i.e. meaning 10-9 s/s/y).We used two 

different strategies to construct the time prior. Strategy 1: The prior on the age of the root is 

t1 ~ G(100, 100). This is an informative prior, equivalent to a fossil calibration with mean 10 

Ma and 95% prior interval 8–12 Ma. For t2 we used a diffuse prior density conditioned on t1 

(a uniform distribution between 0 and t1). Strategy 2: We used informative calibrations on 

both times, t1 ~ B(0.7, 1.4) and t2 ~ B(0.4, 0.6), equivalent to 7–14 My and 4–6 Ma 

respectively. Here B(tL, tU)  means that the time is uniformly distributed between a minimum 

age tL and a maximum age tU, with 5%  probability that the time is outside the interval (2.5% 

on each side). Note the calibration on the root is more uncertain than that on t1 (with the 

uncertainty measured by the calibration width divided by the midpoint of the calibration, as 

in dos Reis and Yang 2013a). The first strategy reflects good fossil information for the root 

and absence of fossil information for the internal node while the second represents good 

fossil information for the internal node and uncertain for the root. The simulated data, D, 

were analysed under both calibration strategies, and the posterior mean of the times and rate, 

t  = E(t | D) and r  = E(r | D), their relative errors, and the 95% credibility intervals (CIs) 

were collected and averaged among the 100 replicates. For each replicate the MCMC 

algorithm was run with a burn-in of 5×106 iterations collecting 10,000 samples from the 

posterior every 2,000 iterations. 
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Table 4.1 shows a few summary statistics for the simulated data sets. The amount of 

incomplete lineage sorting (i.e. the probability of conflict between gene trees and the species 

tree) varied from 0% (for t2 = 1 Ma, t1 = 10 Ma and N = 102) up to 63.4% (for t2 = 9 Ma, t1 = 

10 Ma and N = 106). Table 4.1 also shows the MLEs of the molecular distances for the 

supergene alignment obtained on the species tree using the program BASEML (Yang 2007). 

The estimated distances are virtually identical to the expectations (equations 4.2 and 4.3) 

when incomplete lineage sorting is negligible; and they are still very close to the 

expectations even when incomplete lineage sorting is substantial (bold lines in Table 4.1). 

This shows that the long supergene alignment is very informative about the molecular 

distances (i.e. there is little error in the MLE of the distances) and that the approximations of 

the equations (4.4) and (4.5) are very good even with substantial incomplete lineage sorting.  

 

 

Table 4.1: Estimates of divergence times and their errors as a function of population size in 

a three-species phylogeny. 

t2  N P E(d2) 
2d̂  E(d1) 

1d̂   
2t̂  2

ˆ( )t
 1t̂  1

ˆ( )t
 

1 102 0.000 0.0010 0.0010 0.0100 0.0100  1.00 0% 9.98 –0.2% 

 103 0.000 0.0010 0.0010 0.0100 0.0100  1.02 2% 9.82 –1.8% 

 104 0.000 0.0012 0.0012 0.0102 0.0102  1.18 18% 8.50 –15.0% 

 105 0.007 0.0030 0.0030 0.0120 0.0120  2.50 150% 4.00 –60.0% 

 106 0.425 0.0210 0.0211 0.0300 0.0297  7.00 600% 1.43 –85.7% 

            

5 102 0.000 0.0050 0.0050 0.0100 0.0100  5.00 0% 10.00 0% 

 103 0.000 0.0050 0.0050 0.0100 0.0100  5.01 0.2% 9.98 –0.2% 

 104 0.000 0.0052 0.0052 0.0102 0.0102  5.10 2.0% 9.81 –1.9% 

 105 0.055 0.0070 0.0070 0.0120 0.0120  5.83 16.6% 8.57 –14.3% 

 106 0.519 0.0250 0.0243 0.0300 0.0294  8.33 66.6% 6.00 –40% 

            

9 102 0.000 0.0090 0.0090 0.0100 0.0100  9.00 0% 10.00 0% 

 103 0.000 0.0090 0.0090 0.0100 0.0100  9.00 0% 10.00 0% 

 104 0.005 0.0092 0.0092 0.0102 0.0102  9.02 0.2% 9.98 –0.2% 

 105 0.404 0.0110 0.0110 0.0120 0.0120  9.17 1.9% 9.82 –1.8% 

 106 0.634 0.0290 0.0280 0.0300 0.0295  9.67 7.4% 9.31 –6.9% 

Note.− Times are in My. The age of the root is t1 = 10 Ma, and the generation time is g = 10 

y. The time estimates are calculated using equations (4.7) and (4.9), and the relative errors 

with equations (4.8) and (4.10). P = 2/3 exp [–(T1 – T2)/(2N)] is the species tree-gene tree 

mismatch probability. E(d2) and E(d1) are the expected molecular distances from the tips of 

the phylogeny to the respective coalescent events (equations (4.2) and (4.3)). The molecular 

distance estimates, 2d̂ and 1d̂ , are obtained from data simulated with the program MCCOAL 

and estimated by maximum likelihood using the program BASEML, under the clock, on the 

species phylogeny, and averaged over the 100 replicates. 
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Figure 4.4 and Table 4.2 show Bayesian estimates of times and of the molecular rate as 

a function of the population size for the simulated data. Under calibration strategy 1, the age 

of the root is accurately estimated in all cases owing to the informative calibration on t1. On 

the other hand, t2 is overestimated, with the estimate’s error becoming increasingly worse 

with increasing population size (Figure 4.4A-C). For example, for N = 106 and t2 = 1 Ma, 2t  

is 7.28 Ma, i.e. a relative error of 628% (Figure 4.4A). The rate is also overestimated as N 

increases, irrespective of the true age of the internal node. For example, for N = 106, r  = 

2.91×10-9 s/s/y (relative error 191%) for t2 = 5 Ma (Figure 4.4B', Table 4.2). In calibration 

strategy 2, t2 has the most precise (or informative) calibration, and so this calibration 

dominates the analysis. The age of the root in this case is underestimated (as expected from 

equation 4.10), and the rate is overestimated, as N increases. Also, the rate is more 

significantly overestimated than in calibration strategy 1 (relative error 317% vs. 191% for N 

= 106, Table 4.2) as expected according to equation (4.15). 

The posterior time and rate estimates in Figure 4.4 are close to the approximations for 

the estimators (solid line) calculated with equations (4.7), (4.9), (4.12) and  (4.14). Note that 

the estimates of times and rate were derived without reference to any particular nucleotide 

substitution model. Thus the theory of equations (4.7), (4.9), (4.12) and  (4.14) is also 

expected to apply to simulations carried out under more complex substitution models such as 

HKY or GTR (Hasegawa, et al. 1985; Yang 1994a), that is, we expect to see the same biases 

and relative errors on the estimates. The use of JC69 in our simulations here is thus 

unimportant, and has no effect on the properties of sequence evolution under the multi-

species coalescent. 

4.2.3 Simulation analysis: Bayesian estimates of times under the 

multi-species coalescent 

We re-analyzed the simulated gene alignments on the three-species phylogeny with the 

program BPP (Yang 2015), which can be used to obtain estimates of relative divergence 

times among species, τ, under the multi-species coalescent. It thus accounts for ancestral 

polymorphism and incomplete lineage sorting. The relative times are given as expected 

number of substitutions per site (i.e. they are the molecular distances between the tips of the 

phylogeny and the species divergence events, so that τ = rt), and so we devised a method to 

translate these relative time estimates into geological times. In this section we aim to 

highlight how analysis under the correct model (the multi-species coalescent) can produce 

time estimates that are unbiased and have little error. 
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Figure 4.4: Bayesian estimates of divergence times (A-D) and the molecular rate (A'-D') for 

simulated data on a three-species phylogeny. The data were simulated under the multi-

species coalescent, but the coalescent process is ignored during Bayesian estimation of 

divergence times with the program MCMCTREE. In all cases the true rate is r = 0.001 s/s/My. 

In (A-C) and (A'-C') the root has the most precise calibration, t1 ~ G(100, 100) while the 

internal node has a diffuse prior density, t2|t1 ~ U(0, t1). In these cases the age of the root is 

correctly estimated, but the age of the internal node and the molecular rate are both 

progressively overestimated with larger N. In (D, D') the internal node has the most precise 

calibration, t2 ~ B(0.4, 0.6) vs. t1 ~ B(0.7, 1.4). In this case the age of the root is progressively 

underestimated, and the molecular rate is overestimated, with larger N. The solid lines 

indicate estimates for t2 (in A-C) or t1 (in D) and r (in A'-D') calculated using the estimators of 

equations (4.7), (4.9) and (4.12), (4.14), respectively. 

ra
te

 (
s
/s

/M
y)

ti
m

e
 (

M
a
)

Population size, N

Time estimates Rate estimates

0

5

10

15

103 104 105 106102

(A) t1 = 10 Ma

t2 = 1 Ma

r = 0.001 s/s/My

0

0.002

0.004

103 104 105 106102

(A')

103 104 105 106
0

5

10

15

102

(B) t1 = 10 Ma

t2 = 5 Ma

0

0.002

0.004

103 104 105 106102

r = 0.001 s/s/My

(B')

103 104 105 106
0

5

10

15

102

(D) t1 = 10 Ma

t2 = 5 Ma

0

0.002

0.004

103 104 105 106102

(D')

r = 0.001 s/s/My

103 104 105 106
0

5

10

15

102

(C) t1 = 10 Ma

t2 = 9 Ma

0

0.002

0.004

103 104 105 106102

r = 0.001 s/s/My

(C')



 

 

8
7

 

Table 4.2: Posterior means, 95% CIs, and relative errors of divergence times estimates (in My) and molecular rate for a three-species phylogeny. 

Software/Calibrations N 
1t  (95% CI) 

1( )t  2t  (95% CI) 
2( )t  r  (× 10–3) (95% CI) ( )r  

MCMCTREE 

t1 ~ G(100, 100) 

t2|t1 ~ U(0, t1) 

103 

104 

105 

106 

10.00 

10.00 

10.02 

10.19 

(8.10, 11.97) 

(8.09, 11.97) 

(8.11, 11.99) 

(8.28, 12.16) 

0.0% 

0.0% 

0.2% 

1.9% 

4.99 

5.11 

5.90 

8.43 

(3.96, 6.06) 

(4.05, 6.21) 

(4.71, 7.14) 

(6.82, 10.09) 

–0.2% 

2.2% 

18.0% 

68.6% 

1.01 

1.03 

1.21 

2.91 

(0.81, 1.23) 

(0.83, 1.24) 

(0.97, 1.45) 

(2.36, 3.49) 

1% 

3% 

21% 

191% 

 

MCMCTREE 

t1 ~ B(0.7, 1.4) 

t2 ~ B(0.4, 0.6) 

 

103 

104 

105 

106 

10.25 

10.01 

8.84 

7.10 

(7.89, 12.47) 

(7.72, 12.16) 

(7.02, 10.51) 

(6.51, 7.64) 

2.5% 

0.1% 

–11.6% 

–29.0% 

5.08 

5.08 

5.16 

5.78 

(4.03, 6.02) 

(4.03, 6.02) 

(4.17, 6.04) 

(5.34, 6.15) 

1.6% 

1.6% 

3.2% 

15.6% 

1.00 

1.04 

1.38 

4.17 

(0.79, 1.25) 

(0.82, 1.30) 

(1.12, 1.69) 

(3.85, 4.53) 

0% 

4% 

38% 

317% 

 

BPP 

t1 ~ G(100, 100) 

 

103 

104 

105 

106 

10.00 

10.00 

10.00 

10.00 

(8.08, 11.98) 

(8.09, 11.98) 

(8.07, 11.97) 

(8.09, 11.98) 

0.0% 

0.0% 

0.0% 

0.0% 

4.98 

5.02 

5.10 

5.23 

(3.94, 6.06) 

(3.93, 6.15) 

(3.67, 6.61) 

(2.43, 8.12) 

–0.4% 

0.4% 

2.0% 

4.6% 

1.01 

1.01 

1.02 

1.00 

(0.81, 1.22) 

(0.81, 1.22) 

(0.80, 1.25) 

(0.75, 1.27) 

1% 

1% 

2% 

0% 

Note.− The true values are t1 = 10 Ma, t2 = 5 Ma and r = 10–3 s/s/My. Posterior means and 95% CIs are averaged across 100 replicate analyses. The τ 

(distance) estimates from BPP were translated into absolute geological times by sampling from t1 ~ G(100, 100). 
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4.2.4 Simulation analysis: Bayesian estimates of times under the 

multi-species coalescent 

We re-analyzed the simulated gene alignments on the three-species phylogeny with the 

program BPP (Yang 2015), which can be used to obtain estimates of relative divergence 

times among species, τ, under the multi-species coalescent. It thus accounts for ancestral 

polymorphism and incomplete lineage sorting. The relative times are given as expected 

number of substitutions per site (i.e. they are the molecular distances between the tips of the 

phylogeny and the species divergence events, so that τ = rt), and so we devised a method to 

translate these relative time estimates into geological times. In this section we aim to 

highlight how analysis under the correct model (the multi-species coalescent) can produce 

time estimates that are unbiased and have little error. 

Note that in BPP, the gene alignments are not concatenated in a single alignment. 

Sequences are analysed under the JC69 model and under the clock. We assigned a gamma 

prior on the relative age of the root, τ1 ~ G(2, 200), with mean 0.01 (the true value of τ1). For 

τ2 we used a diffuse prior conditioned on τ1 (uniform between 0 and τ1, see Yang and 

Rannala 2010, equation 2). For the population size parameters, θ = 4Nμ, we used a gamma 

prior, θ ~ G(2, β), with β set so that the mean of the distribution matches the true population 

size in the simulations. BPP estimates one θ per ancestral lineage (i.e. two values for the 

phylogeny of Figure 4.1, one for the AB ancestral lineage, and another for the ABC lineage 

beyond the root). The same mutation rate was assumed across all loci. For each replicate the 

MCMC algorithm was run with burn-in 200,000 iterations collecting 10,000 samples from 

the posterior sampling every 100 iterations. 

The relative divergence times estimated with BPP are not directly comparable to the 

times estimated with MCMCTREE and thus we translated them into absolute geological 

times by using either a fossil calibration or a prior on the per year mutation rate, r. We used 

the following procedure. Consider an MCMC sample from the posterior distribution of 

relative ages (i.e., the i-th sample of the relative root age is 
1
i ) obtained with BPP. First, we 

sampled values, 1

it , from a prior density on the root age t1 ~ G(100, 100). Then samples for 

the age of the internal node and the per year mutation rate are given by 2 1 2 1/i i i it t    and  

, respectively. We simply sampled as many values of 1

it  as the number of samples 

in the MCMC. In this way we obtain a posterior sample of t1, t2 and r under the multi-species 

coalescent (the posterior of t1 is simply the prior sampling density). The resulting sample can 

1 1

i i

i
r t
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be summarised in the usual way to obtain the posterior mean of times, rate and 95% CIs. 

Averages of posterior means and 95% CIs across the 100 replicates are reported on Table 

4.2.  

Divergence times estimated with BPP for the case t2 = 5 Ma are shown on Table 4.2. 

The posterior means for t2 and r are very accurate (close to the true values) with little relative 

error. Furthermore, the 95% CIs always contain the true values, even when the mismatch 

probability between gene trees and the species tree is high. However, for large population 

sizes the uncertainty around 2t  can be quite large because of substantial variation in the 

coalescent times across genes. For example, for N = 106 the CI is 2.43−8.12 Ma. Estimates 

for the cases t2 = 1 and t2 = 9 Ma show similar patterns (high accuracy and low error) and are 

not reported here. 

4.3 The case of nine-species 

In the case of a three-species phylogeny we saw that the molecular rate is overestimated 

when the coalescent process is ignored and that time estimates may be under or over 

estimated depending on which node has the most precise fossil calibration. For larger 

phylogenies with multiple fossil calibrations the situation is more complicated. Here, we use 

computer simulation and Bayesian analysis to explore the effect of ancestral polymorphism 

and incomplete lineage sorting on estimation of divergence times on a phylogeny of nine 

species with multiple fossil calibrations.  

We simulated gene samples for 50 loci (each 1,000 nucleotides long) on the nine-

species phylogeny of Figure 4.5 using the MCCOAL program. We considered two cases: (1) a 

young phylogeny where the root is 10 Ma; and (2) an old phylogeny where the root is 100 

Ma. The true ages of the internal nodes are shown in Figure 4.5. In both cases the true 

substitution rate is r = 10-9 s/s/y, and the generation time is g = 10 y. We used two scenarios 

for the population size. In the first, we simulated gene alignments on the two phylogenies 

assuming a constant population size in all lineages, with N = 103, 104, 105, 106 individuals. In 

the second, we simulated a more realistic case where N varied among lineages (between 103 

and 106 individuals, Figure 4.5). In total we simulated 10 cases (2 phylogenies × 5 

population size cases). The true times and rate were used to calculate the relative ages, τ, 

needed by the program MCCOAL in the simulation. For example, in the young phylogeny the 

relative age of the root is τ10 = 10 My × 0.001 s/s/My = 0.01 s/s, while in the old phylogeny it 

is τ10 = 100 My × 0.001 s/s/My = 0.1 s/s. The population sizes were translated into 

population size parameters (θs) as well, through θ = 4Νμ. The number of simulation 

replicates was 100. 
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Figure 4.5: A nine-species phylogeny used to simulate gene alignments under the multi-

species coalescent. The fossil constraints used for Bayesian estimation of divergence times 

with the program MCMCTREE are shown as dotted bars. The numbers in brackets 

correspond to the ancestral population sizes, N, for the corresponding branches for the case 

of variable N among lineages. The nodes are numbered from 10 to 17.  

 

 

The simulated alignments were concatenated into a supergene alignment and 

analyzed with the MCMCTREE program to estimate the species divergence times and the 

rate. Analyses were carried out under the clock and under the JC69 model of nucleotide 

substitution. The parameters of the birth-death model with species sampling used to specify 

the time prior on nodes without fossil calibrations were set to λ = μ = l and ρ = 0 (Yang and 

Rannala 2006). These values specify a diffuse uniform kernel density on the node ages. The 

time unit was set to be 10 My for the young phylogeny and 100My for the old one. We used 

diffuse priors on the rate: r ~ G(1, 100) and r ~ G(1, 10) for the young and old phylogenies, 

respectively, with prior means 0.01 and 0.1 substitutions per time unit, respectively, with 

both meaning 10-9 s/s/y. Four nodes have soft fossil calibrations: t10 ~ B(0.5, 1.5), t12 ~ B(0.1, 

0.3), t13 ~ B(0.3, 0.5) and t16 ~ B(0.2, 0.4), where, for example, B(0.5, 1.5) means that the 

divergence time is between 5 and 15 Ma in the young phylogeny, or between 50 and 150 Ma 

in the old phylogeny (Yang and Rannala 2006). The posterior mean of the times and rate, 

their relative errors, and the 95% CIs were collected and averaged among the 100 replicates. 

Table 4.3 shows the posterior means of times and rate and their relative errors averaged 

across all replicates. For the young phylogeny, when N is small (103 and 104) there is no 

incomplete lineage sorting (P = 0 %) and node ages are overestimated, with relative errors 
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ranging from 5% to 20% (Table 4.3). As N increases (105, 106) the ages of nodes close to the 

root (t10, t11, t13, t15) become increasingly underestimated, while the ages of the external 

nodes (t12, t14, t16, t17) become increasingly overestimated. For the larger N values the amount 

of incomplete lineage sorting is substantial and the relative errors in time and rate estimates 

can be quite dramatic. For example, for N = 106, the age of the root is underestimated from 

10 Ma to 4.8 Ma (–52% error) while the age of a young node (17) is overestimated from 1 

Ma to 2.6 Ma (160%), and the molecular rate is overestimated by 628% (Table 4.3). Note 

that the time estimates of all nodes are concentrated between 2.6 Ma and 4.8 Ma. This is 

because the most informative calibrations on nodes 12, 13, and 16 range from 1 Ma to 5 Ma. 

Similar trends can be noticed when N varies among lineages. For example, the ages for 

external nodes with large ancestral population sizes (i.e. nodes 12 and 17) were 

overestimated (errors 105% and 50%, respectively), while the ages for external nodes with 

small ancestral population sizes (i.e. nodes 14, 16) were underestimated (errors −30% and 

−33%, respectively), as did the ages for the nodes close to the root (i.e. nodes 10, 11, 15) 

(Table 4.3). 

Results for the old phylogeny were similar to the young phylogeny, although the errors 

in the estimates are smaller (Table 4.3). This is because in the old phylogeny there is 

substantially less incomplete lineage sorting, and the discrepancies between gene divergence 

times and species divergence times are less severe. For example, for N = 106 and g = 10 y we 

expect genes to coalesce at 2Ng = 20 My over the speciation event, so genes that enter the 

ancestral population at the root of the phylogeny, would have an expected divergence time of 

120 Ma in the old phylogeny, or 20% older than the root speciation event at 100 My. 

However, for the small phylogeny, the equivalent case means an expected gene divergence 

age of 30 Ma, or 200% older than the root speciation event at 10 My. This conflict between 

gene ages and species ages clearly leads to the errors in the divergence time estimates. Note 

that although the situation is not as severe in the old phylogeny, the relative errors are still 

substantial. For example, in the old phylogeny, for N = 106, the relative error on the age of 

the root is –20.5%, while for one of the younger nodes (node 14) the error is 93%, and for 

the molecular rate the error is 54% (Table 4.3). For both the young and old phylogenies, the 

molecular rate is overestimated when the amount of incomplete lineage sorting is substantial 

(Table 4.3). 
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Table 4.3: Posterior means of divergence times and molecular rate and their relative errors for the nine species phylogenies for various population sizes. 

 N 
10t  (error) 11t  (error) 12t  (error) 13t  (error) 14t  (error) 15t  (error) 16t  (error) 17t  (error) r (error) P (%) 

Young 
Phylogeny 

 t10 = 10 t11 = 7 t12 = 2 t13 = 4 t14 = 1 t15 = 8 t16 = 3 t17 = 1 r = 1  

 103 10.6 (6.0%) 7.4 (5.7%) 2.1 (5.0%) 4.2 (5.0%) 1.1 (10.0%) 8.5 (6.3%) 3.2 (6.7%) 1.1 (10.0%) 0.97 (–3.0%) 0 

 104 10.1 (1.0%) 7.2 (2.9%) 2.2 (10.0%) 4.2 (5.0%) 1.2 (20.0%) 8.2 (2.5%) 3.2 (6.7%) 1.2 (20.0%) 1.02 (2.0%) 0 

 105 8.0 (–20.0%) 6.0 (-14.3%) 2.5 (25.0%) 4.0 (0.0%) 1.9 (90.0%) 6.6 (-17.5%) 3.3 (10.0%) 1.9 (90.0%) 1.55 (55.0%) 69 

 106 4.8 (–52.0%) 4.3 (-38.6%) 2.9 (45.0%) 3.6 (-10.0%) 2.7 (170.0%) 4.3 (-46.3%) 3.4 (13.3%) 2.6 (160.0%) 7.28 (628.0%) 100 

 Variable 7.4 (–26.0%) 4.9 (-30.0%) 4.1 (105.0%) 2.8 (-30.0%) 0.7 (-30.0%) 5.1 (-36.3%) 2.0 (-33.3%) 1.5 (50.0%) 1.62 (62.0%) 64 

            

Old 
Phylogeny 

 t10 = 100 t11 = 70 t12 = 20 t13 = 40 t14 = 10 t15 = 80 t15 = 30 t16 = 10  r = 1  

 103 106.6 (6.6%) 74.7 (6.7%) 21.3 (6.5%) 42.6 (6.5%) 10.7 (7.0%) 85.4 (6.8%) 32.0 (6.7%) 10.7 (7.0%) 0.96 (–4.0%) 0 

 104 106.5 (6.5%) 74.4 (6.3%) 21.4 (7.0%) 42.6 (6.5%) 10.8 (8.0%) 85.5 (6.9%) 32.2 (7.3%) 10.9 (9.0%) 0.96 (–4.0%) 0 

 105 103.8 (3.8%) 73.1 (4.4%) 22.3 (11.5%) 42.6 (6.5%) 12.2 (22.0%) 83.4 (4.3%) 32.5 (8.3%) 12.2 (22.0%) 1.00 (0.0%) 0 

 106 79.5 (-20.5%) 59.4 (-15.1%) 26.0 (30.0%) 39.4 (-1.5%) 19.3 (93.0%) 66.3 (-17.1%) 33.2 (10.7%) 19.1 (91.0%) 1.54 (54.0%) 68 

 Variable 78.6 (-21.4%) 54.7 (-21.9%) 29.3 (46.5%) 31.1 (-22.3%) 7.7 (-23.0%) 61.7 (-22.9%) 23.1 (-23.0%) 9.3 (-7.0%) 1.30 (30.0%) 6 

Note.− Time estimates are in My and rate estimates in ×10-3 s/s/My. First row (in bold) in each phylogeny denotes the true node ages and rate. Variable 

means that N varies among lineages as described in Figure 4.5. P is the percentage of the gene trees that do not match the species tree averaged across all 

replicates. 
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4.4 Divergence times of four hominoid species 

We now explore the discrepancies in time and rate estimates when they are estimated 

under the multi-species coalescent vs. estimates obtained when ignoring the coalescent in a 

real data set. We use the hominoid phylogeny of Figure 4.6 as a case study. The molecular 

data are from Burgess and Yang (2008) and consist of 14,663 neutrally evolving loci. First 

we estimated the divergence times and rate ignoring the coalescent process, that is, by using 

the program MCMCTREE. Then we re-analysed the data under the multi-species coalescent, 

that is, by using the program BPP. 

 

 

 

Figure 4.6: The phylogeny of four hominoid species showing the fossil calibrations used for 

time estimation with the program MCMCTREE. The fossil calibrations are soft, i.e., there is a 

2.5% probability that the divergence time lies outside the bounds. 

 

 

For the MCMCTREE analysis all loci were concatenated into a single alignment and the 

analysis was performed under the JC69 substitution model and the strict clock. The time unit 

was set to 10 My. We used a diffuse gamma prior r ~ G(1, 100) with mean 0.01, meaning 

10–9 s/s/y. The fossil calibrations are from dos Reis et al. (2012) and are shown in Figure 4.6. 

We used an upper bound of 33.7 Ma for the human-gorilla split while only a minimum 

bound had been used by dos Reis et al. (2012). 

In the BPP analysis the multi-locus sequence data were analyzed under the multispecies 

coalescent model assuming the same mutation rate across loci. A gamma prior was used for 

the population size parameters, θ ~ G(2, 500), with mean 0.004. The relative age of the root 

in the species tree (τHCGO) was assigned a gamma prior G(4, 219), with mean 0.018, while the 
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other relative divergence times were assigned a diffuse Dirichlet prior conditioned on τHCGO. 

The prior mean for τHCGO was set based on a divergence time for the human-orangutan split 

of 18.3 Ma (Steiper and Young 2006) and a mutation rate equal to 10–9 s/s/y. The relative 

divergence times obtained with BPP were translated into geological times. We used two 

calibration strategies to do so: (1) Values for the age of the human-chimp divergence, tHC, 

were sampled from a uniform distribution between 5.7 and 10 Ma (equal to the fossil 

calibration for this node used with MCMCTREE). Then the sampled values were used to 

calculate samples for the ages of the other nodes and the molecular rate (e.g. r = τHC/tHC  and 

tHCG = tHC × τHCG/τHC). (2) Alternatively, values for the molecular rate, r, were sampled from 

a gamma distribution G(100, 200) with mean 0.5 and 95% prior interval 0.4-0.6 (meaning 

0.4 to 0.6 × 10–9 s/s/y). This distribution is based on experimental estimates of de novo 

mutation rates in the human genome (see Scally and Durbin 2012). The sampled rate values 

were then used to calculate the divergence times (i.e. tHC = τHC/r). Similarly, we obtained 

estimates of ancestral population size (N) by sampling from θ and assuming a generation 

time of 20 years for the ancestral hominoid lineages (Langergraber, et al. 2012; Scally and 

Durbin 2012). 

The MCMC algorithm in the MCMCTREE program was run for burn-in 106 iterations 

and collected 104 samples from the posterior, sampling every 2,000 iterations. In the BPP a 

burn-in of 105 iterations was used and we collected 104 samples from the posterior sampling 

every 100 iterations. The MCMC algorithm in both programs was run twice with different 

starting values to assess convergence. 

Bayesian estimates of divergence times and the molecular rate obtained with the 

MCMCTREE and BPP programs are shown in Table 4.4. The posterior mean of the 

molecular rate obtained with MCMCTREE , r  = 0.80 × 10–9 s/s/y, is higher than the estimate 

obtained with BPP, r  = 0.53 × 10–9 s/s/y, when the human-chimp split is used to calibrate 

the phylogeny (Table 4.4). The BPP estimate is well within the 0.4 × 10–9 to 0.6 × 10–9 s/s/y 

range from mutation experiments (Scally and Durbin 2012). 

Note that the uncertainties (or relative errors) of the MCMCTREE calibrations are 

54.8%, 129% and 100% for the human-chimp, the human-gorilla, and the human-orangutan 

calibrations, respectively, where the uncertainty is measured as the (calibration 

width)/(calibration midpoint) (dos Reis and Yang 2013a). Thus, the human-chimp 

calibration is by far the most precise, and it is thus the most informative to estimate the 

molecular rate. Given that there is substantial ancestral polymorphism and incomplete 

lineage sorting in the ape phylogeny (Burgess and Yang 2008), the estimated molecular rate 

by MCMCTREE is almost surely an overestimate. We can use the estimate of equation (4.14) 

to gain insight into the overestimation error on the molecular rate. For example, 
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Table 4.4: Posterior means and 95% CIs of divergence times, rate and population sizes for 

the hominoid phylogeny. 

 MCMCTREE BPP  BPP   BPP  

  tHC ~ U(5.7, 10) r ~ G(100, 200)  No calibration 

tHCGO 

tHCG 

tHC 

22.9 (16.3, 28.0) 

10.9 (7.8, 13.4) 

8.3 (5.9, 10.1) 

26.6 (19.5, 33.4) 

12.8 (9.5, 16.2) 

7.9 (5.8, 9.9) 

27.8 (22.6, 33.5) 

13.4 (10.9, 16.2) 

8.2 (6.6, 9.9)  

τHCGO 

τHCG 

τHC 

13.7 (13.6, 13.9) 

6.6 (6.6, 6.7) 

4.1 (4.0, 4.2) 

r 0.80 (0.63, 1.08) 0.53 (0.41, 0.69) 0.50 (0.40, 0.60) - - 

NHCGO 

NHCG 

NHC 

- 

- 

- 

197 (144, 247) 

85 (62, 106) 

147 (106, 190) 

205 (165, 247) 

88 (71, 106) 

154 (123, 186) 

θHCGO 

θHCG 

θHC 

8.1 (7.8, 8.4) 

3.5 (3.4, 3.6) 

6.1 (5.7, 6.5) 

Note.− Estimates are the posterior means and 95% CIs (in brackets). Divergence times are 

in My. The rate r is in 10-3 s/s/My. The θ (= 4Nrg) and τ (= rt) parameters are scaled by 103. 

The population sizes, N, are in 103. To calculate N, a generation time of 20 years was 

assumed. 

 

 

 

assuming a true mutation rate of 0.5 × 10–9 s/s/y (Scally and Durbin 2012), a true divergence 

time for human-chimp of 7.85 Ma (the midpoint of the calibration), an ancestral population 

size of 150,000 individuals (Table 4.4), and a generation time of 20 y (Langergraber, et al. 

2012), we get that the rate estimate (equation 4.14) ignoring the coalescent process is ˆ 'r 

0.88 × 10–9 s/s/y, which is reasonably close to the posterior mean of r  = 0.8 × 10–9 s/s/y 

obtained with MCMCTREE.  

Time estimates for the human-gorilla and human-orangutan divergences obtained with 

MCMCTREE are substantially younger than those obtained with BPP. For example, the 

posterior mean of the human-orangutan divergence obtained with MCMCTREE at 22.9 Ma is 

14% and 18% younger than those obtained with BPP at 26.6 Ma and 27.8 Ma (Table 4.4). 

Thus the MCMCTREE estimate of the root age is likely an underestimate. Note that time 

estimates obtained with BPP under the rate calibration are the most precise (i.e. they have the 

narrower 95% CI width). This is because the rate calibration has less uncertainty than the 

human-chimp calibration: 40% vs. 54.8% respectively. Assuming that the rate calibration is 

correct (i.e. that the mutation rate measurements are accurate) then the time estimates under 

the BPP rate calibration would be the most accurate and should be preferred. 

4.5 Remarks and conclusions 

Results from the theoretical, simulation, and real data analyses indicate that 

polymorphism in ancestral lineages and incomplete lineage sorting can significantly affect 
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Bayesian estimates of divergence times and of the molecular evolutionary rate when the 

inference models do not account for the multi-species coalescent. This is the case for both 

shallow and old phylogenies with the biases to be higher in recent divergences. The biases in 

time and rate estimates are more significant in case of large population sizes relative to the 

species divergence times where conflicts among gene trees are favoured. Whether times are 

over or underestimated depends on the relative precision and configuration of the fossil 

calibrations on the tree. If very precise calibrations are used on young nodes on a phylogeny, 

the ages of ancient divergence times can be grossly underestimated. Note that this is 

expected to occur even in ancient phylogenies. For example, if in a three species phylogeny 

the age of the young node, t2, and the ancestral population size are such that the gene 

divergence time is twice the age of the young node (2Ng = t2), then the molecular 

evolutionary rate will be overestimated by 100% (i.e. it will be roughly twice the true value), 

when the age of the young node is used as the calibration time. The age of the root (t1) will 

be underestimated by approximately 50% (i.e. it will be approximately half the true value) if 

the true root age is much older than the age of the young node (t1  t2). On the other hand, if 

the most precise calibrations are placed on the most ancient nodes of a phylogeny (perhaps a 

less common case), then the ages of the younger nodes in the phylogeny will tend to be 

overestimated. In both cases the molecular rate will tend to be overestimated.  

Note that in our Bayesian analyses with the MCMCTREE program the sequence data 

were analysed as a single concatenated alignment. Alternatively we could separate each 

locus into individual partitions (or group into several partitions) and estimate the divergence 

times assuming variable rates among loci. This approach is not expected to affect time 

estimates and their errors because inference is done under the strict molecular clock and the 

species phylogeny is assumed known and the same for all loci. Indeed when we re-analysed 

the simulated data in the nine-species phylogeny with MCMCTREE by allowing each locus 

to evolve according to its own substitution rate the time estimates were virtually identical to 

those for the concatenated alignment. On the other hand, in the new analyses we obtained 

individual rate estimates for each locus, with the rate estimates being overestimated and 

following a distribution centred around the single rate estimate for the concatenated analysis. 

Here we assumed that species were completely separated after speciation, with no gene 

flow between the novel species after the speciation event and with incomplete lineage sorting 

to be the only aspect of evolution causing incongruencies among the gene trees. This is 

clearly an unrealistic assumption and the effect of this on divergence time estimates requires 

further work (e.g. Leache, et al. 2014). An additional assumption of the multi-species 

coalescent is that the sequences sampled are neutrally evolving, like the set of sequences 

analysed for the hominoid phylogeny (Burgess and Yang 2008). Episodes of positive 
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selection may affect the relative ages of gene coalescent events and may affect divergence 

time estimates. More work will be required to address this issue. 

Although incomplete lineage sorting and ancestral polymorphism have long been 

regarded as important aspects of molecular evolution (Takahata, et al. 1995; Edwards and 

Beerli 2000; Knowles and Kubatko 2010; Yang 2014), the vast majority of molecular clock 

dating studies have ignored this issue (e.g. dos Reis, et al. 2012; Jarvis, et al. 2014), perhaps 

under the belief that incomplete lineage sorting and ancestral polymorphism should only be 

taken into account when analysing closely related species. The results presented here 

highlight that the problem is much worse and that the coalescent process should be 

incorporated into analyses of divergence times at all timescales. Unfortunately, software 

currently available to perform Bayesian phylogenetic inference under the multi-species 

coalescent is either computationally expensive (e.g. *BEAST, Heled and Drummond, 2010) 

or has been designed to work only for closely related sequences (e.g. BPP, Yang, 2015), thus 

restricting such analyses for small phylogenies with only a few taxa. For example, we chose 

to analyze the hominoid phylogeny because the BPP program can only perform inference 

under the strict molecular clock and under the JC69 substitution model. These assumptions 

are met in the hominoid phylogeny: The clock is not violated and the molecular distances are 

small enough so that the JC69 model can adequately describe the substitution process. In 

order to analyze more ancient phylogenies, multi-species coalescent models that incorporate 

molecular rate variation among lineages, that use more complex substitution models, and 

that can handle the large amounts of genomic data now available will be required. 
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5 An evaluation of different partitioning 

strategies for Bayesian estimation of species 

divergence times 

In the previous chapter we explored the performance of two Bayesian algorithms in 

estimating species divergence times from molecular data when ancestral polymorphism and 

incomplete lineage sorting are present in the data. In this chapter we will study the effect of 

five commonly used partitioning strategies in Bayesian estimation of species divergence 

times by analysing simulated and real data sets.  

5.1 Accounting for heterogeneity in evolutionary 

substitution patterns  

It is well recognised that different parts of the genome may evolve at different rates and 

with different patterns of substitution (Springer, et al. 1999; Shapiro, et al. 2006). With large 

molecular data sets typically analyzed in phylogenetic studies (Meusemann, et al. 2010; dos 

Reis, et al. 2012; Jarvis, et al. 2014; Misof, et al. 2014; Ruhfel, et al. 2014) there is an 

increased need to adequately model the underlying patterns of evolution (Brown and 

Lemmon 2007). The gamma rate-heterogeneity model is such an approach as it relaxes the 

assumption of rate constancy across sites (Yang 1994c). Although such models offer a 

significant improvement in phylogenetic inference (Yang 1996a; Sullivan and Swofford 

2001), they assume the same substitution patterns for all sites and might not perform well. 

For example, the first, second and third codon positions might have different substitution 

patterns owing to different selection pressures, independently of having the same 

evolutionary rate or not.  

Several methods have been proposed to model the heterogeneity in rates and patterns of 

substitution across the sites in a sequence alignment. These include mixture models (Koshi 

and Goldstein 1995; Pagel and Meade 2004; Le, et al. 2008; Lartillot, et al. 2009) and 

partitioning (Yang 1996b; Koshi and Goldstein 1998; Nylander, et al. 2004; Brandley, et al. 

2005; Brown and Lemmon 2007). In mixture models each site is assigned to a substitution 

model with a probability, with the model parameters and their probabilities to be estimated 

from the data. In partitioning, the alignment is first divided into several site partitions and 

then independent substitution models are assigned for each partition. 
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The major problem in a partition analysis is to choose an appropriate partitioning 

scheme; that is to divide the alignment into partitions consisting of sites with similar 

evolutionary histories. One suggested approach is to select a partitioning scheme for a given 

data set according to a statistical criterion such as the Bayesian Information Criterion (BIC). 

However, even for very short alignments the number of possible partitioning schemes is too 

large to be computationally possible to evaluate all of them using the BIC (Li, et al. 2008; 

Lanfear, et al. 2012). A typical approach for researchers is to specify a partitioning scheme 

based on the structural features of the sequences in the alignment. This often results in 

defining partitions on the basis of genes, codon positions, coding, non-coding, mitochondrial 

or nuclear regions (Strugnell, et al. 2005; Shapiro, et al. 2006; dos Reis, et al. 2012; Fong, et 

al. 2012; Jarvis, et al. 2014). Recently, algorithmic approaches have been developed which 

start from user-defined sets of sites (data blocks) and iteratively merge the sets that improve 

the most the score of an information criterion at each step, until there is no further 

improvement in the score (Lanfear, et al. 2012; Lanfear, et al. 2014). This approach uses 

heuristic algorithms to reduce the total number of schemes to evaluate and return the best-

fitting scheme among a subset of all possible partitioning schemes. Such an algorithm has 

been implemented in the PartitionFinder program and is computationally efficient even for 

very large data sets (Lanfear, et al. 2014). The underlying assumption, however, is that all 

the sites within the user-specified data blocks have evolved similarly. A recent change, 

introduced by Frandsen et al.  (2015), is to treat all sites of the alignment as a single focal 

subset and use an iterative k-means algorithm to divide the focal subset into finer partitions 

according to site rates, making the assignment of data blocks unnecessary. 

The choice of partitioning scheme may affect any downstream phylogenetic analysis 

such as phylogeny reconstruction or estimation of species divergence times and rates. 

Several studies have examined the effect of partitioning scheme on the inference of topology 

(Strugnell, et al. 2005; Ward, et al. 2010; Xi, et al. 2012; Leavitt, et al. 2013) and it has been 

observed that underpartitioning might lead to significant bias, as for example highly 

supported but incorrect nodes on the estimated tree (Kainer and Lanfear 2015). However, 

there has been no systematic effort to explore the effect of partitioning on species divergence 

time estimation. Two studies from Poux et al. (2008) and Voloch and Schrago (2012) used 

only closely related species with many calibrations and they found practically no differences 

among partitioning schemes. Zhu et al. (2015) suggest that in relaxed clock dating, 

increasing the number of partitions is very important to improving the precision of 

divergence time estimation when the fossil calibration information is fixed. An important 

aspect in dating studies is the pattern of rate variation among the branches of the tree 

topology, which may vary across the alignment. The use of some partitioning schemes may 

fail to accommodate such variation, which may result into poor time estimates. Thus, when 
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estimating species divergence times there is a need for a proper data partitioning scheme 

which will capture the variation of substitution patterns, absolute rate and among-branches 

rate variation across the alignment.  

Below we explore the performance of five commonly used partitioning schemes on 

Bayesian estimation of species divergence times using simulated and real data. We simulate 

sequence alignments from a nine-species phylogeny with known node ages and analyse them 

to estimate the divergence times using the five partitioning schemes. We study two different 

cases of clock violation (slight and severe violation of the clock) and use various prior 

assumptions. Results indicate that the time estimates are very similar among schemes, 

especially when the clock is not seriously violated. Highly partitioned schemes reduce 

uncertainty of posterior time estimates but may lead to biases under incorrect prior 

assumptions. However, some results are unexpected and in the absence of any clear 

explanation any further safe conclusion is precluded.  

 

5.2 Methods 

5.2.1 Design of the simulation experiment 

We used the nine-species phylogeny of Figure 5.1 to simulate 50 gene alignments and 

examine how the species divergence time estimates vary across five commonly used 

partitioning strategies. Each gene alignment is simulated using the species tree, with the ages 

of the nodes to be t1 = 1, t2 = 0.95, t3 = 0.55, t4 = 0.40, t5 = 0.25, t6 = 0.15, t7 = 0.10, t8 = 0.50 

(Figure 5.1). The time unit is set to 100 million years (My) so, for example, the ages of 

nodes 1 and 2 are 100 Ma and 95 Ma, respectively. We assume a mean substitution rate μ0 = 

0.5 (meaning 0.5 substitutions per site per time unit or 5 × 10-9 substitutions per site per year) 

over all genes and lineages. We set the overall rate across lineages for gene g to be a random 

variable from the gamma distribution μg ~ G(10, 
0

10


), with mean μ0 and 95% interval (0.24, 

0.85). The log-rates for the branches of the gth gene tree are generated as independent 

random variables from the normal distribution logμgb ~ N(logμg − σ2/2, σ2), for b = 1,...,16. 

Thus, the branch rates for the gth gene are independent random variables from a lognormal 

distribution with mean μg. Then for the gth gene tree we multiply the μgb with the time 

duration of the bth branch to calculate the branch length. In this way we construct 50 gene 

trees with branch lengths. We use two values for the variance σ2 = 0.01 and 0.25, 
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corresponding to slight and serious violation of the clock, respectively. In either case the 50 

genes may have different overall rates, but all genes have the same extent of among-branches 

rate variation (the same σ2). Simple R code is written to sample the branch rates and generate 

the gene trees. 

 

 

 

Figure 5.1: Species tree used to simulate gene alignments. Internal nodes are numbered 

from 1 to 8. Branch lengths, assuming a substitution rate 5 × 10-9 substitutions per site per 

year for all branches, are shown in blue. 

 

 

The generated gene trees have branch lengths measured in substitutions per site. 

Because protein-coding genes are widely used in dating studies (Meusemann, et al. 2010; 

dos Reis, et al. 2012; Misof, et al. 2014) we simulate gene alignments using a codon model. 

Thus we multiply all branch lengths in all gene trees by 3. Gene alignments are then 

simulated on the gene trees under the M3 (discrete) model of codon evolution (Yang, et al. 

2000a) using the program EVOLVERNSSITES from PAML4.8 (Yang 2007). This model 

allows for three classes of codons with different nonsynonymous to synonymous rate ratio 

ω0 = 0.01, ω1 = 0.5 and ω2 = 0.9. We simulate 25 conserved genes with probabilities p0 = 
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0.8, p1 = 0.19, p2 = 0.01 for the three site classes, with the average ω to be 0.112, and 25 

non-conserved genes with probabilities p0 = 0.5, p1 = 0.3, p2 = 0.2, with the average ω to be 

0.335. The sequence length of each gene is n = 500 codons, the transition/transversion rate 

ratio is κ = 2 and the codon frequencies are assumed to be equal. The number of replicates is 

100. Thus we simulate 2 × 100 data sets, each consisting of 50 genes, with 100 for σ2 = 0.01 

and 100 for σ2 = 0.25. 

 

5.2.2 Estimation of divergence times from the simulated gene 

alignments 

We analyzed the simulated gene alignments with the program MCMCTREE v4.8 (Yang 

2007) to estimate the species divergence times. We used the following five partitioning 

schemes:  

1) We concatenated all genes into a single "supergene" (C). 

2) We concatenated the 1st and 2nd codon positions from all genes into one partition and the 

3rd codon positions from all genes into another (CP).  

3) We used the program PartitionFinder v1.1.1 (Lanfear, et al. 2012; Lanfear, et al. 2014), 

(PF), with codon positions 1+2 and 3 of each gene treated as a data block. The program 

explores different partition strategies using the BIC. The number of possible partitions 

ranges from 1 to 100. 

4) We analyzed the data as 50 partitions with each partition to be a gene alignment (G). 

5) We treat the 1st and 2nd codon position of each gene as a partition and the 3rd codon 

positions as another, creating in total 2 × 50 = 100 partitions (GCP).  

In the PartitionFinder program the user has to provide data blocks. Different data blocks may 

be merged (concatenated) into one partition, but sites in the same data block will never be 

separated into different partitions. The program estimates the best-fitting partitioning scheme 

and the best-fitting substitution model for each partition from a user-specified set of models 

based on an information criterion. The topology is either provided by the user or estimated 

by the data.  

We used the data blocks defined in the GCP scheme as the starting point and the tree of 

Figure 5.1. We did not search for the best-fitting substitution model for each partition but we 

used the HKY85 + Γ substitution model for each partitioning scheme (Hasegawa, et al. 

1985). Automatic model selection techniques (Posada and Crandall 1998) might suggest the 

use of pathological models, such as the 'I + Γ' models, or models unavailable to other 

programs, or parameter-rich models which might lead to over-fitting if applied to small 
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partitions. Furthermore, MCMCTREE does not allow for different substitution models across 

partitions and apart from that, the use of different substitution models for the same data 

blocks complicates the comparison of different partitioning strategies. We used the greedy 

heuristic algorithm with the BIC score to search for the best scheme since it was found to 

perform better than the others (rcluster, hcluster), although it requires more computations 

(Lanfear, et al. 2014). We also used the linked option for the branch length estimation 

according to which one set of branch lengths is estimated and a scaling parameter is used to 

adjust the branch lengths within each partition. 

 We set the time unit in MCMCTREE to be 100 My and applied three calibration 

strategies: 1) We assigned the prior t1 ~ B(0.8, 1.2) to the root age, meaning a uniform 

distribution between 0.8 and 1.2 with left and right tail probabilities 2.5% that the age of the 

root is outside the bounds (Yang and Rannala 2006). This mimics a soft-bound calibration at 

the root age between 80 Ma and 120 Ma based on the fossil record. 2) We applied the same 

constraint in the root age and the constraint t3 ~ B(0.525, 0.575) to the age of node 3. This 

mimics a weak calibration on the root and an informative calibration in the younger node 3. 

3) The same constraint in the root age and a conflicting constraint t3 ~ B(0.575, 0.625) on the 

age of node 3. Note that the true age of node 3 is outside those bounds. This mimics an 

incorrect calibration on node 3. The prior ages of the uncalibrated internal nodes are 

specified from a birth-death process through a uniform kernel with rates λ = μ = 1 and ρ = 0 

(Yang and Rannala 2006). We ran the MCMCTREE program without data for calibration 

strategies 2 and 3 and found that the marginal time priors in the calibrated nodes closely 

matched the user-specified densities.  

The rates at the different partitions (loci) are assigned the gamma-Dirichlet prior (dos 

Reis, Donoghue, et al. 2014). A gamma prior is assigned to the average rate over all loci (  ) 

and the overall locus rates are then calculated based on the uniform Dirichlet distributions 

with parameter α = 1. We used  ~ G(2, 4) with mean 0.5, meaning 5 × 10-9 substitutions per 

site per year with prior 95% interval (0.6, 14.0). The mean of this prior matches the overall 

substitution rate (μ0 = 0.5) of all genes under which the gene alignments were simulated. We 

also used two "incorrect" priors, to assess the performance of the partitioning schemes under 

incorrect rate priors: (i) a slow rate,  ~ G(2, 40) and (ii) a fast rate  ~ G(2, 0.4). To model 

the among-branches rate variation we used the independent-rates model (IR) which matches 

the way the data were simulated. We also used the autocorrelated-rates model (AR) to mimic 

a scenario where the rate-drift model used does not describe properly the among branches 

rate heterogeneity of a data set. A gamma prior, 
2 ~ G(2, 20), was assigned to the average 

rate drift parameter among loci with the locus-specific parameters to be defined from the 

Dirichlet process. The topology of Figure 5.1 was used along with the HKY85 + Γ4 model of 
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nucleotide substitution. The approximate likelihood method was used for computational 

efficiency (dos Reis and Yang 2011). The same settings were used in all replicates. 

The MCMC was run with a burn-in of 106 steps and collecting 104 samples from the 

posterior every 500 steps. For the partitioning strategy GCP posterior samples were collected 

every 250 steps to save computational time. Convergence was evaluated for only the first 

replicate for each combination of rate prior, calibration strategy, rate-drift model and 

partitioning scheme by running two independent MCMC runs with different starting values. 

For each replicate we estimated the posterior time means and the 95% HPD intervals. Those 

are averaged over the 100 replicates.  

 

5.2.3 Evaluating the performance of partitioning strategies 

We use the following measures to evaluate the performance of partitioning strategies in 

terms of accuracy and precision of the posterior time estimates. For each partitioning scheme 

we average the first three measures across all nodes and replicates. 

(i) Average Relative Error. We calculate the relative error of the time estimate in node i in 

the jth replicate
ij i

ij

i

t t
d

t


 , where ti is the true age of the node i and ijt  is the time estimate 

(posterior mean), with j = 1,...,100, i = 1,...,s−1, where s is the number of species. This may 

be considered a measure of accuracy. 

(ii) Relative HPD Width. We calculate the relative HPD interval width of the time estimate 

for node i in the jth replicate as ij
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i

w
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t
 , where ijw  is the 95% HPD interval of the time 

estimate ijt . This is a measure of precision. 

(iii) Mean Square Error (MSE). The root of MSE of the time estimate of node i in the jth 

replicate is
2MSE ( ) ( )ij ij ij iVar t t t   . The ( )ijVar t  is estimated as  

2
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This is a measure of both accuracy and precision of the time estimates. 

(iv) Coverage Probability. For each partitioning scheme we calculate the percentage that 

the HPD interval of the time estimate for node i contains the true age ti, from the R replicates 
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5.2.4 Plants data set 

We estimated the divergence times of fifteen plant species using the five partitioning 

schemes considered in the 2 simulations. The molecular data are from Ruhfel et al. (2014) 

and consist of 78 plastid gene alignments (58,347 sites in total). The phylogeny with fossil 

calibrations is shown in Figure 5.2. 

We used PartitionFinder1.1.1 with the same settings as in the simulation analysis, 

except that the GTR + Γ nucleotide substitution model was used. Note that here the G 

scheme involves 78 partitions (one for each gene) while GCP involves 156 (one for each 

gene and codon position). The program MCMCTREE4.8 was used for the Bayesian dating 

analysis with one time unit to be 100 My. We used three priors for the average rate,   ~ 

G(1, 100),  ~ G(1, 10) and  ~ G(1, 1) (Magallon, et al. 2013b). The first prior specifies 

slow rates with mean rate 10-10 substitutions per site per year while the third specifies fast 

rates with mean rate 10-8. The time priors were constructed from the calibrations of Figure 

5.2 together with the birth-death process, with rates λ = μ = 1, and ρ = 0. For the rate drift 

parameter we used the prior 
2  ~ G(1, 10). The GTR + Γ4 substitution model was used in all 

partitions and approximate likelihood calculation was used to save computational time. We 

used both the independent and the autocorrelated rates model for the among-branches rate 

variation. 

All MCMC analyses were run with the same settings as in the simulation. For each 

combination of rate prior, rate-drift model and partition scheme the MCMC was run twice 

from different starting values to evaluate convergence.  

 

5.3 Results 

For the simulated data we estimated the species divergence times using five different 

partitioning schemes: 1) concatenation (C), 1 single partition; 2) codon positions (CP), 2 

partitions (codon positions 1+2 vs. 3); 3) PartitionFinder (PF); 4) gene (G), 50 partitions; and 

5) both gene and codon positions (GCP), 100 partitions. In case of clock-like genes the 

number of partitions determined by PartitionFinder varied from 9 to 16 among replicates, 

while for the non clock-like genes it was from 9 to 17. We evaluated the performance of the 

partitioning schemes using four performance measures: relative error, relative HPD width, 

mean square error and coverage probability, under three calibration strategies, three rate 

priors and two models of among-branches rate variation. 
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Figure 5.2: Phylogeny of 15 plant species. The relative positions of the major groups 

(lycophytes, pteridophytes, gymnosperms and angiosperms) are according to Magallon et al. 

(2013b) while those within the angiosperms are from Ruhfel et al. (2014). Nodes are 

numbered from 16 to 29. Fossil calibrations for five nodes are shown next to the nodes. The 

fossil bounds are soft, with 5% probability that the true age is outside the bounds (2.5% 

probability in each site). The calibrations are according to Clarke et al. (2011) and Zanne et 

al. (2014). 

 

 

5.3.1 Results from simulations when the clock is seriously violated 

In data sets simulated using σ2 = 0.25 the molecular clock is seriously violated. When 

there is a single calibration t1~B(0.8, 1.2), the rate prior is  ~ G(2, 4), and the independent-

rates model is used, the time estimates are close to their true values for all partitioning 

schemes (Figure 5.3B). The relative errors averaged over all nodes and replicates are 0.028, 

0.046, 0.048, 0.039 and 0.039 for the partitioning schemes C, CP, PF, G, and GCP, 

respectively (Table 5.1). The differences in time estimates among the partitioning schemes 

are small; however, the C scheme seems to be the most accurate. The age of the root is 

estimated more accurately than the age of all other nodes for all partitioning schemes due to 

the single calibration on the root. The precision of time estimates under the C scheme is 

lower than that of all other schemes and the true ages are well within the HPD time intervals 
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for all partitioning schemes (Table 5.1). However, the G and GCP schemes seem to perform 

best with respect to MSE ( MSE = 0.056; Table 5.1). 

When we add another good fossil calibration on the internal node 3, 0.525 < t3 < 0.575 

for the true age t3 = 0.55, the time estimates become more precise for all nodes and 

partitioning schemes (compare Figure 5.3B' with 5.3B). For example the relative HPD width 

over all nodes for the C scheme reduces from 0.50 to 0.26 and from 0.43 to 0.16 for the G 

scheme (Table 5.1). Accuracy is either the same or improved for the partitioning schemes C, 

CP and PF but is slightly worse for the highly partitioned schemes G and GCP (Table 5.1). 

The age of node 3 is accurately and precisely estimated for all partitioning schemes owing to 

the informative calibration on it, whereas the age of the root is not accurately estimated in all 

partitioning schemes. For example, the relative error for the root is increased from 0.002 to 

0.029 for the C scheme and from 0.003 to 0.030 for the G scheme after the inclusion of the 

additional calibration in node 3 (Table 5.2). All partitioning schemes but the C scheme have 

similar MSE (e.g. MSE  = 0.026, 0.026, 0.027, 0.025 for the schemes CP, PF, G, GCP, 

respectively) but the highly partitioned schemes G and GCP have smaller coverage 

probabilities due to the higher precision and lower accuracy that they have. 

We now explore the impact of partitioning schemes when incorrect rate priors are used; 

a slow rate  ~ G(2, 40) or a fast rate  ~ G(2, 0.4). When using a single calibration on the 

root the time estimates are worse using the slow rate prior than using the correct rate prior 

for all partitioning schemes (Figure 5.3A, B). The time estimates under the slow rate prior 

are older and more biased than those under the correct prior. For example, the absolute 

relative errors with the slow prior are 0.177 and 0.203 with the C and CP schemes compared 

to 0.028 and 0.046 with the correct rate prior (Table 5.1). Moreover, the use of the slow rate 

prior produces misleadingly precise estimates (Tables 5.1 and 5.2), since the estimates are 

far from the true values and for many nodes the true ages are not within the HPD intervals 

for all partitioning schemes (Figure 5.3A). For example, the age of the root was estimated at 

114.6, 115.7, 116.0, 115.0 and 116.4 for the schemes C, CP, PF, G and GCP, respectively, 

with only the HPD interval using the C scheme to include the true value (in 48 out of 100 

replicates; Table 5.1). Overall, all partitioning schemes seem to perform equally bad in case 

of a slow rate prior when a single calibration is used on the root, with the G scheme to be 

preferable in terms of MSE (Table 5.1). The use of another correct calibration on node 3 

improves the time estimates with the slow rate prior for all partitioning schemes. The fast 

rate prior gives similar estimates to the correct rate prior especially when two calibrations are 

used (Tables 5.1 and 5.2). Hence, results for this case are not reported in Figure 5.3.  
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Figure 5.3: Posterior divergence time estimates from simulated data when the clock is 

seriously violated for each combination of rate prior, calibration strategy and rate-drift model. 

The true timetree is shown in black. Horizontal bars represent the 95% high posterior density 

intervals under the five partitioning strategies. These are (from the top to the bottom): (i) 

concatenation (C), 1 single partition (light blue); (ii) codon positions (CP), 2 partitions (codon 

positions 1+2, 3) (yellow); (iii) PartitionFinder (PF), variable partitions (green); (iv) gene (G), 

50 partitions (red); and (v) both gene and codon positions (GCP), 100 partitions (blue).  The 

gaps within the bars represent the posterior means. The time estimates and their intervals 

are averages over 100 replicates. IR: independent-rates model, AR: autocorrelated-rates 

model. The time estimates with the fast rate prior μ ~ G(2, 0.4) and two calibrated nodes are 

very similar to those with the correct rate prior μ ~ G(2, 4) and two calibrations, and are not 

reported here. 
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We now explore the time estimates in case an incorrect calibration 0.575 < t3 < 0.625 is 

used on node 3 for the true age t3 = 0.55, in addition to the correct calibration on the root. 

The accuracy of time estimates is worse for all partitioning schemes than that when correct 

calibrations are used. For example, the relative error for schemes C and CP are 0.072 and 

0.080, respectively, compared to 0.028 and 0.046 when a single calibration is used on the 

root, with the GCP scheme to have the smallest relative error (Table 5.1). The precision of 

time estimates is higher than that under a single calibration on the root for all partitioning 

schemes and similar to that under two correct calibrations with the PF and GCP schemes to 

have the highest precision (Table 5.1). In general, all node ages are overestimated for all 

partitioning schemes owing to the incorrect informative calibration on node 3. The age 

estimate of node 3 is most significantly affected with the HPD intervals for all partitioning 

schemes not to include the true node age. Overall, the GCP scheme has the highest accuracy 

and precision but the coverage probability is low (0.62; Table 5.1). 

We also analyzed the simulated data sets with the autocorrelated-rates model (Figure 

5.3D and 5.3D'). In this case, the time estimates show considerable variation among the 

partitioning schemes. When using a single calibration on the root, increasing the number of 

partitions produces older and biased time estimates for all nodes (Figure 5.3D). For example, 

the absolute relative error for the C scheme is 0.060 while is approximately 7 times higher 

(0.435) for the G scheme (Table 5.1). Moreover, the highly partitioned schemes lead to 

misleadingly high precision (Figure 5.3D, Table 5.1). With the addition of a correct 

calibration on node 3 the accuracy of time estimates is improved, particularly for the 

schemes G and GCP. However, the ages of the deep nodes (i.e. nodes 1 and 2) are more 

severely underestimated as the number of partitions increases while those of younger nodes 

are more severely overestimated (Figure 5.3D'). This is probably because the calibration in 

the internal node 3 is more informative (uncertainty 10%) than the one in the root 

(uncertainty 40%). No matter the calibration strategy, the node ages estimated with a highly 

partitioned scheme (PF, G, GCP) are seriously biased (Figure 5.3D, D') and have very small 

coverage probabilities (Table 5.1).
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Table 5.1: Performance of different partitioning strategies in data simulated with serious clock violation. 

   rel. error  HPD width/age  MSE   coverage probability (%) 

Rate 

model 
 ~ Calibration 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

 (50P) 

GCP 

(100P) 

IR G(2, 40) t1 ~ B(0.8, 1.2) 0.177 0.203 0.204 0.138 0.177  0.40 0.27 0.24 0.26 0.22  0.092 0.096 0.098 0.082 0.094  72 7 5 46 11 

 G(2, 4) t1 ~ B(0.8, 1.2) 0.028 0.046 0.048 0.039 0.039  0.50 0.45 0.44 0.43 0.42  0.060 0.058 0.058 0.056 0.056  100 100 100 100 100 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 0.032 0.036 0.032 0.052 0.037  0.50 0.45 0.44 0.42 0.42  0.060 0.057 0.055 0.057 0.055  100 100 100 100 100 

 G(2, 40) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.030 0.032 0.030 0.039 0.032  0.27 0.16 0.14 0.16 0.14  0.034 0.024 0.023 0.026 0.022  100 96 95 92 93 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.028 0.030 0.032 0.046 0.040  0.26 0.16 0.15 0.16 0.14  0.033 0.026 0.026 0.027 0.025  100 94 91 85 86 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.029 0.040 0.032 0.047 0.041  0.26 0.17 0.15 0.16 0.14  0.033 0.029 0.026 0.027 0.026  99 92 90 83 84 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.575, 0.625) 

0.072 0.080 0.072 0.063 0.062  0.26 0.17 0.15 0.17 0.15  0.047 0.040 0.037 0.043 0.038  82 52 53 68 62 

AR G(2, 4) t1 ~ B(0.8, 1.2) 0.060 0.040 0.091 0.435 0.388  0.53 0.47 0.45 0.30 0.26  0.067 0.059 0.069 0.161 0.150  100 100 100 0 0 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.044 0.036 0.034 0.101 0.083  0.25 0.19 0.16 0.15 0.13  0.037 0.030 0.027 0.051 0.045  95 92 92 38 43 

Note.−The performance measures are averages over the 100 replicates and over the 8 internal nodes on the tree. The partitioning strategies are C: 

concatenation (1 partition), CP: codon position (2P), PF: PartitionFinder (V) G: gene (50P), GCP: gene and codon position (100P). IR: independent-rates 

model, AR: autocorrelated-rates model. Cells in bold indicate the preferable partitioning strategy according to the respective measure.  

 

 

 

 

 

 

 



 

 

1
1
1

 

Table 5.2: Performance of different partitioning strategies to estimate the ages of nodes 1 (top) and 4 (bottom) when the clock is seriously violated. 

   rel. error  HPD width/age  MSE   coverage probability 

Rate 

model 
 ~ Calibration 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 

IR G(2, 40) t1 ~ B(0.8, 1.2) 0.141 

0.183 

0.154 

0.216 

0.159 

0.218 

0.151 

0.136 

0.166 

0.188 

 0.23 

0.40 

0.20 

0.27 

0.19 

0.25 

0.21 

0.27 

0.17 

0.22 

 0.153 

0.084 

0.162 

0.091 

0.166 

0.091 

0.160 

0.061 

0.172 

0.078 

 48 

73 

0 

4 

0 

1 

0 

56 

0 

2 

 G(2, 4) t1 ~ B(0.8, 1.2) 0.002 

0.030 

0.005 

0.054 

0.010 

0.056 

0.003 

0.033 

0.015 

0.038 

 0.40 

0.50 

0.40 

0.45 

0.40 

0.44 

0.40 

0.43 

0.40 

0.43 

 0.102 

0.053 

0.102 

0.052 

0.102 

0.052 

0.102 

0.046 

0.102 

0.047 

 100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 0.027 

0.032 

0.026 

0.034 

0.026 

0.032 

0.027 

0.051 

0.025 

0.033 

 0.40 

0.49 

0.40 

0.45 

0.40 

0.44 

0.40 

0.42 

0.40 

0.42 

 0.105 

0.053 

0.105 

0.049 

0.105 

0.047 

0.105 

0.049 

0.105 

0.046 

 100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

 G(2, 40) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.027 

0.016 

0.031 

0.020 

0.033 

0.018 

0.028 

0.026 

0.028 

0.019 

 0.24 

0.18 

0.15 

0.12 

0.13 

0.12 

0.15 

0.13 

0.13 

0.11 

 0.070 

0.020 

0.051 

0.016 

0.049 

0.015 

0.050 

0.018 

0.045 

0.014 

 100 

100 

93 

99 

89 

100 

99 

99 

96 

100 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.029 

0.026 

0.046 

0.017 

0.049 

0.019 

0.030 

0.040 

0.039 

0.029 

 0.23 

0.19 

0.15 

0.13 

0.14 

0.12 

0.16 

0.14 

0.13 

0.12 

 0.068 

0.022 

0.063 

0.016 

0.063 

0.015 

0.053 

0.022 

0.055 

0.018 

 99 

99 

82 

99 

68 

99 

99 

90 

80 

96 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.031 

0.027 

0.048 

0.020 

0.051 

0.020 

0.031 

0.042 

0.041 

0.031 

 0.23 

0.19 

0.15 

0.14 

0.14 

0.12 

0.16 

0.14 

0.13 

0.12 

 0.069 

0.023 

0.065 

0.017 

0.065 

0.016 

0.053 

0.023 

0.057 

0.018 

 99 

99 

78 

99 

61 

99 

98 

84 

79 

94 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.575, 0.625) 

0.063 

0.067 

0.045 

0.086 

0.041 

0.079 

0.073 

0.047 

0.054 

0.062 

 0.22 

0.20 

0.15 

0.14 

0.14 

0.13 

0.16 

0.14 

0.14 

0.13 

 0.087 

0.034 

0.063 

0.037 

0.057 

0.035 

0.085 

0.024 

0.068 

0.028 

 92 

86 

85 

22 

85 

30 

57 

78 

65 

58 

AR G(2, 4) t1 ~ B(0.8, 1.2) 0.013 

0.071 

0.012 

0.041 

0.055 

0.096 

0.166 

0.478 

0.168 

0.433 

 0.40 

0.53 

0.40 

0.47 

0.37 

0.45 

0.17 

0.30 

0.17 

0.26 

 0.103 

0.063 

0.102 

0.052 

0.112 

0.062 

0.171 

0.194 

0.173 

0.175 

 100 

100 

100 

100 

100 

99 

0 

0 

0 

0 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.030 

0.039 

0.029 

0.027 

0.042 

0.020 

0.141 

0.054 

0.129 

0.046 

 0.28 

0.15 

0.22 

0.12 

0.17 

0.12 

0.11 

0.11 

0.10 

0.10 

 0.079 

0.022 

0.065 

0.017 

0.065 

0.015 

0.144 

0.025 

0.132 

0.022 

 100 

96 

98 

97 

91 

99 

0 

64 

0 

74 

Note.− See caption of Table 5.1. 
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5.3.2 Results from simulation when the clock is slightly violated 

When the clock is slightly violated the time estimates show similar trends to those under 

serious violation of the clock. However, for all combinations of prior specifications, the time 

estimates are more precise and accurate (Figure 5.4). For example, the relative error in case 

of a single calibration in the root with correct rate prior for the partitioning scheme C is 

0.019 compared to 0.028 when the clock is seriously violated and the relative HPD width is 

0.43 vs. 0.50, respectively (Tables 5.3 and 5.1). In general, the time estimates are more 

similar among partitioning schemes than in the case of serious clock violation.  

The effect of an incorrect rate prior is the same as when the clock is seriously violated, 

with the slow rate prior to produce less accurate estimates than a correct one, for all 

partitioning schemes. When two correct calibrations are used and correct rate priors the time 

estimates are more precise than when a single calibration is used (Table 5.3). For example, 

with a single calibration in the root the relative HPD widths for nodes 1 and 4 with the C 

scheme are 0.40 and 0.43, while they are 0.16 and 0.13, respectively with two correct 

calibrations (Table 5.4). When an incorrect calibration is used in node 3 all node ages are 

slightly overestimated for all partitioning schemes as in the serious clock violation. 

With an incorrect rate-drift model the time estimates show the same pattern as in the 

case of serious clock violation, although differences among partitioning schemes are smaller. 

With a single calibration in the root the time estimates under the partitioning schemes C, CP, 

PF and G are close to the true values while the time estimates under the GCP scheme are 

older and less accurate, especially for the deep nodes (Figure 5.4D). Adding a correct 

calibration on node 3 improves the time estimates for all partitioning schemes (Figure 5.4D'). 

However, all schemes but the C scheme tends to give younger and less accurate estimates for 

the deep nodes. 
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Figure 5.4: Posterior divergence time estimates from simulated data for each combination of 

rate prior, calibration strategy and rate-drift model, when the clock is slightly violated. See 

legend of Figure 5.3 for more details. 
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Table 5.3: Performance of different partitioning strategies in data simulated with slight clock violation. 

   rel. error  HPD width/age  MSE   coverage probability (%) 

Rate 

model 
 ~ Calibration 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

 (50P) 

GCP 

(100P) 

IR G(2, 40) t1 ~ B(0.8, 1.2) 0.148 0.187 0.179 0.133 0.176  0.29 0.22 0.20 0.22 0.19  0.083 0.092 0.091 0.079 0.091  57 0 1 39 1 

 G(2, 4) t1 ~ B(0.8, 1.2) 0.019 0.031 0.026 0.029 0.026  0.43 0.42 0.41 0.40 0.41  0.054 0.054 0.053 0.052 0.053  100 100 100 100 100 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 0.032 0.029 0.018 0.043 0.023  0.43 0.44 0.41 0.40 0.41  0.054 0.055 0.052 0.053 0.052  100 100 100 100 100 

 G(2, 40) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.019 0.014 0.014 0.031 0.019  0.17 0.12 0.10 0.10 0.10  0.022 0.016 0.015 0.017 0.015  100 100 100 74 96 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.027 0.017 0.023 0.037 0.029  0.16 0.12 0.11 0.11 0.11  0.022 0.019 0.018 0.019 0.019  100 99 97 67 88 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.034 0.018 0.024 0.038 0.031  0.18 0.12 0.11 0.11 0.11  0.025 0.019 0.019 0.019 0.019  99 99 97 67 87 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.575, 0.625) 

0.063 0.075 0.067 0.056 0.060  0.17 0.13 0.11 0.11 0.11  0.041 0.038 0.036 0.037 0.035  75 35 32 44 42 

AR G(2, 4) t1 ~ B(0.8, 1.2) 0.051 0.019 0.021 0.039 0.042  0.45 0.43 0.41 0.40 0.41  0.058 0.053 0.052 0.052 0.056  100 100 100 100 100 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.033 0.021 0.024 0.037 0.028  0.17 0.14 0.11 0.11 0.11  0.026 0.020 0.018 0.019 0.019  90 100 95 67 89 

Note.− See caption of Table 5.1. 
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Table 5.4: Performance of different partitioning strategies to estimate the ages of nodes 1 (top) and 4 (bottom) when the clock is slightly violated.  

   rel. error  HPD width/age  MSE   coverage probability (%) 

Rate 

model 
 ~ Calibration 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 
 

C 

(1P) 

CP 

(2P) 

PF 

(V) 

G 

(50P) 

GCP 

(100P) 

IR G(2, 40) t1 ~ B(0.8, 1.2) 0.146 

0.144 

0.157 

0.194 

0.160 

0.188 

0.150 

0.136 

0.164 

0.185 

 0.22 

0.29 

0.19 

0.23 

0.18 

0.20 

0.21 

0.22 

0.18 

0.19 

 0.156 

0.065 

0.164 

0.081 

0.167 

0.078 

0.159 

0.059 

0.170 

0.077 

 5 

82 

0 

0 

0 

0 

0 

30 

0 

0 

 G(2, 4) t1 ~ B(0.8, 1.2) 0.002 

0.014 

0.007 

0.035 

0.010 

0.033 

0.003 

0.014 

0.012 

0.029 

 0.40 

0.43 

0.40 

0.42 

0.40 

0.42 

0.40 

0.40 

0.40 

0.41 

 0.102 

0.044 

0.102 

0.046 

0.102 

0.045 

0.102 

0.041 

0.102 

0.044 

 100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 0.027 

0.037 

0.026 

0.020 

0.026 

0.013 

0.027 

0.040 

0.026 

0.014 

 0.40 

0.43 

0.40 

0.44 

0.40 

0.41 

0.40 

0.40 

0.40 

0.41 

 0.105 

0.046 

0.105 

0.047 

0.105 

0.043 

0.105 

0.044 

0.105 

0.042 

 100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

 G(2, 40) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.009 

0.017 

0.017 

0.010 

0.018 

0.009 

0.011 

0.019 

0.018 

0.009 

 0.16 

0.13 

0.12 

0.11 

0.10 

0.10 

0.10 

0.10 

0.10 

0.10 

 0.043 

0.015 

0.035 

0.012 

0.033 

0.011 

0.029 

0.013 

0.032 

0.011 

 100 

100 

100 

100 

98 

100 

100 

99 

97 

100 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.020 

0.033 

0.035 

0.013 

0.035 

0.015 

0.020 

0.033 

0.036 

0.021 

 0.16 

0.13 

0.12 

0.11 

0.11 

0.10 

0.11 

0.10 

0.10 

0.10 

 0.045 

0.019 

0.048 

0.013 

0.045 

0.013 

0.035 

0.017 

0.045 

0.014 

 100 

100 

95 

100 

91 

100 

100 

92 

90 

100 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.022 

0.039 

0.038 

0.014 

0.037 

0.017 

0.022 

0.035 

0.038 

0.023 

 0.16 

0.14 

0.12 

0.11 

0.11 

0.10 

0.11 

0.10 

0.10 

0.10 

 0.048 

0.022 

0.049 

0.013 

0.046 

0.013 

0.036 

0.018 

0.047 

0.014 

 100 

99 

95 

100 

91 

100 

99 

92 

88 

100 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.575, 0.625) 

0.069 

0.055 

0.052 

0.079 

0.053 

0.075 

0.069 

0.054 

0.051 

0.068 

 0.16 

0.14 

0.13 

0.11 

0.11 

0.11 

0.11 

0.10 

0.11 

0.11 

 0.080 

0.026 

0.061 

0.034 

0.060 

0.032 

0.075 

0.024 

0.058 

0.029 

 79 

83 

74 

2 

55 

3 

10 

39 

59 

7 

AR G(2, 4) t1 ~ B(0.8, 1.2) 0.025 

0.067 

0.020 

0.018 

0.019 

0.017 

0.020 

0.035 

0.030 

0.047 

 0.40 

0.45 

0.40 

0.43 

0.40 

0.41 

0.40 

0.40 

0.39 

0.41 

 0.104 

0.053 

0.103 

0.045 

0.103 

0.043 

0.103 

0.043 

0.105 

0.046 

 100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 

0.009 

0.041 

0.025 

0.020 

0.028 

0.019 

0.019 

0.034 

0.035 

0.021 

 0.20 

0.12 

0.14 

0.11 

0.11 

0.10 

0.11 

0.10 

0.11 

0.10 

 0.053 

0.021 

0.046 

0.014 

0.042 

0.013 

0.035 

0.017 

0.045 

0.014 

 100 

91 

99 

100 

97 

100 

100 

93 

91 

99 

Note.− See caption of Table 5.1.
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5.3.3 Divergence times of plants 

We estimated the divergence times of fifteen plant species using the five partitioning 

schemes and the tree topology of Figure 5.2. The PartitionFinder program generated a best-

fitting scheme with 11 partitions. The posterior means and 95% HPD intervals of divergence 

times of the plant phylogeny are shown on Table 5.5. The time estimates were very similar 

for the three rate priors G(1, 100), G(1, 10) and G(1, 1) and thus only the estimates under the 

 ~ G(1, 10) prior are reported.  

Figure 5.5 shows the divergence times and their HPD intervals estimated with the five 

partitioning schemes under the independent and autocorrelated rates models. The differences 

in time estimates among the partitioning schemes are large, even for some calibrated nodes. 

Under the independent rates model the estimated ages of the deep nodes (i.e. nodes 16, 17, 

and 29) become older as the number of partitions increase, whereas those of the other nodes 

become younger. For example, the age of pteridophytes (node 29) varies between 264 Ma (C 

scheme) and 368 Ma (GCP scheme) while the age of angiosperms (node 19) varies between 

127 Ma (GCP scheme) and 204 Ma (C scheme) (Table 5.5). The time estimates for the 

angiosperms are within the minimum and maximum calibration bounds with the youngest 

estimate to be very close to the minimum bound (124 Ma). However, for node 28 the time 

estimates vary from 13 Ma (GCP scheme) to 70 Ma (C scheme) with the estimates under the 

G and GCP schemes to be well below the minimum bound (65 Ma).  

The estimates among partitioning schemes using the autocorrelated rates model show 

similar high discrepancies. For example, the age of the root varies from 438 Ma (C scheme) 

to 453 Ma (GCP scheme) and the age of node 29 from 303 Ma (C scheme) to 375 Ma (PF, G 

schemes). The age estimates of the deepest nodes become older as the number of partitions 

increases. The time estimates with the autocorrelated rates model are in general older than 

those with the independent rates model. For example, the posterior mean of node 29 is 264 

Ma and 296 Ma with the schemes C and CP, respectively, under the independent rates 

model, compared with 303 Ma and 347 Ma, under the autocorrelated rates model (Table 

5.5).  

In general the differences among the partitioning schemes are large, as was the case in 

the simulation analysis with severe clock violation when an incorrect rate-drift model was 

used. The highly partitioned schemes G and GCP tend to produce precise estimates, far from 

these of the other three schemes. In some cases those estimates are outside the calibration 

bounds (e.g. node 28) irrespective of the clock model, raising concerns about their accuracy. 
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Note that the estimate for the rate drift parameter σ2 using the C scheme and the independent 

rates model was 0.58, indicating severe clock violation.  

 

5.4 Discussion 

Partitioning is a commonly used approach to account for variation in the substitution 

patterns among the sites of a molecular alignment in any phylogenetic analysis (Nylander, et 

al. 2004; Brandley, et al. 2005; Brown and Lemmon 2007). Although its importance has long 

been recognised (Yang 1996b) its effect on estimation of species divergence times has not 

been studied in detail.  

Results from our simulation and real data analyses suggest that low partitioned schemes 

(e.g. C, CP schemes) produce uncertain time estimates (wide HPD intervals) but have high 

coverage probabilities. The use of finer partitions (e.g. PF, G, GCP schemes) increases 

precision but may lead to seriously biased estimates (low accuracy), especially when prior 

assumptions are incorrect. The number and quality of calibrations are very important. 

Multiple fossil calibrations increase accuracy, improve precision and reduce the differences 

in time estimates among partitioning schemes. However, incorrect calibrations exert a 

significant effect in time estimates and introduce bias no matter the partitioning scheme 

used. Results also indicate that the use of automated tools, such as PartitionFinder, to select 

the best-fitting partitioning scheme does not seem to always improve the inference.   

The choice of the partitioning scheme seems to be more important when the clock is 

seriously violated. In that case a highly partitioned scheme in combination with incorrect 

prior assumptions such as an incorrect clock model may produce significant bias. Results 

from simulations showed that when the incorrect autocorrelated rates model was used, 

increasing the number of partitions produced higher bias with its direction to depend on the 

configuration and precision of fossil calibrations on the tree (Figure 5.3D). The use of many 

calibrations seems to improve accuracy but large biases may still remain for highly 

partitioned schemes (Figure 5.3D'). Thus the partitioning scheme may have a strong effect in 

divergence time estimation when the clock is seriously violated and attention should be 

given by performing a robustness analysis (e.g. see dos Reis, et al. 2015). Some previous 

studies have failed to identify differences in time estimates among partitioning schemes 

because they used many calibrations and focused on the analyses of closely related species 

where the clock approximately holds (Poux, et al. 2008; Voloch and Schrago 2012). 

However, when we analyzed the plant data set, where substantial rate variation was detected, 

we found large differences in the time estimates among partitioning schemes, irrespective of  
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Table 5.5: Posterior estimates of divergences times of plants (Ma) using different partitioning schemes 

Rate drift 
model Node Clade 

Prior  C (1P)  CP (2P)  PF (11)  G (78P)  GCP (156P) 

Mean (95%CI)  Mean (95% CI)  Mean (95% CI)  Mean (95% CI)  Mean (95% CI)  Mean (95% CI) 

IR 16 Root 437 (417, 455)  440 (419, 456)  442 (421, 456)  451 (440, 457)  453 (448, 457)  454 (450, 458) 

17 Helianthus / Psilotum 412 (386, 443)  420 (389, 448)  427 (397, 452)  445 (431, 455)  452 (446, 456)  453 (449, 457) 

18 Angiosperms / Ginkgo 337 (306, 367)  332 (305, 363)  329 (304, 361)  326 (305, 349)  310 (302, 319)  305 (297, 311) 

19 Angiosperms 186 (124, 249)  204 (155, 251)  197 (155, 245)  184 (164, 206)  144 (136, 152)  127 (122, 133) 

20 Helianthus / Nymphaea 172 (111, 237)  189 (142, 237)  183 (140, 223)  172 (152, 191)  135 (128, 143)  120 (114, 125) 

21 Helianthus / Acorus 158 (102, 223)  166 (123, 211)  159 (122, 197)  147 (131, 164)  115 (109, 121)  101 (97, 106) 

22 Eudicots 134 (76, 211)  138 (97, 180)  131 (99, 167)  121 (106, 137)  95 (89, 101)  84 (80, 88) 

23 Helianthus / Eucalyptus 111 (38, 180)  109 (70, 148)  103 (74, 134)  93 (81, 107)  75 (70, 80)  67 (63, 70) 

24 Helianthus / Cornus 71 (0, 132)  82 (39, 120)  79 (47, 108)  74 (63, 87)  59 (54, 63)  53 (50, 57) 

25 Oxalis / Eucalyptus 71 (0, 131)  85 (44, 123)  81 (52, 113)  76 (64, 88)  63 (58, 67)  57 (53, 60) 

26 Monocots 130 (78, 192)  141 (102, 184)  137 (103, 171)  129 (114, 144)  96 (90, 103)  84 (80, 89) 

27 Yucca / Chamaedorea 101 (66, 152)  106 (77, 141)  103 (80, 130)  98 (88, 110)  59 (53, 64)  51 (48, 56) 

28 Elaeis / Chamaedorea 74 (65, 81)  70 (64, 80)  68 (64, 76)  65 (62, 67)  17 (15, 20)  13 (12, 15) 

29 Ferns 146 (0, 369)  264 (138, 386)  296 (185, 385)  339 (303, 374)  362 (349, 376)  368 (356, 378) 

                    
AR 16 Root    438 (418, 455)  439 (418, 455)  443 (426, 456)  452 (446, 457)  453 (446, 458) 

17 Helianthus / Psilotum    416 (387, 443)  419 (390, 446)  433 (414, 452)  450 (443, 455)  450 (443, 455) 

18 Angiosperms / Ginkgo    342 (313, 368)  347 (320, 368)  361 (348, 371)  358 (347, 367)  344 (332, 355) 

19 Angiosperms    229 (197, 254)  232 (204, 253)  237 (222, 251)  191 (178, 204)  166 (155, 176) 

20 Helianthus / Nymphaea    219 (187, 245)  221 (195, 243)  226 (210, 240)  179 (167, 192)  156 (146, 166) 

21 Helianthus / Acorus    194 (164, 221)  196 (170, 219)  199 (184, 213)  152 (141, 164)  131 (122, 140) 

22 Eudicots    162 (129, 192)  165 (139, 191)  168 (153, 183)  122 (113, 132)  106 (99, 114) 

23 Helianthus / Eucalyptus    119 (87, 154)  122 (94, 152)  127 (112, 143)  90 (82, 98)  80 (74, 87) 

24 Helianthus / Cornus    95 (68, 130)  100 (73, 127)  106 (91, 121)  73 (66, 80)  66 (60, 71) 

25 Oxalis / Eucalyptus    99 (69, 131)  102 (74, 129)  108 (93, 124)  76 (69, 83)  68 (63, 74) 

26 Monocots    177 (149, 205)  179 (155, 202)  181 (167, 194)  133 (122, 143)  114 (105, 122) 

27 Yucca / Chamaedorea    141 (116, 167)  142 (122, 165)  143 (131, 155)  92 (83, 100)  77 (70, 84) 

28 Elaeis / Chamaedorea    71 (64, 80)  69 (64, 77)  65 (63, 68)  29 (24, 33)  21 (18, 24) 

29 Ferns    303 (153, 396)  347 (288, 397)  375 (353, 396)  375 (362, 387)  369 (357, 380) 

Note.−Node numbers are according to Figure 5.2. The rate prior was  ~ G(1, 10). See caption of Table 5.1 for more details. 
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Figure 5.5: Posterior divergence times of fifteen plant species using five partitioning 

schemes and two rate drift models. Horizontal bars represent the 95% high posterior density 

intervals under the five partitioning strategies with the gaps to denote the posterior mean. 

These are (from the top to the bottom): (i) concatenation (C), 1 single partition (light blue); (ii) 

codon positions (CP), 2 partitions (codon positions 1+2 vs 3) (yellow); (iii) PartitionFinder 

(PF), 11 partitions (green); (iv) gene (G), 78 partitions (red); and (v) both gene and codon 

positions (GCP), 156 partitions (blue). The timetrees shown in black were estimated using 

the C scheme. Node numbers are reported and calibrated nodes are indicated by red circles. 

IR: independent-rates model, AR: autocorrelated-rates model, S: Silurian. 
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the rate drift model used. Especially the use of the highly partitioned schemes G and GCP 

gave very different estimates than all other schemes, which in some cases were outside the 

calibration bounds raising concerns on their accuracy. 

In the simulation analysis when we use a single calibration in the root, correct rate prior 

and rate drift model, increasing the number of partitions further from the CP scheme does 

not reduce further the HPD widths (Figure 5.3B and B') as one might expected (Zhu, et al. 

2015). This is probably because the alignment is long (75,000 bp in total) and also the 

increase in the number of partitions is not based on the addition of new molecular data but on 

the division of the whole alignment in finer partitions. In the simulation analysis we also saw 

that the time estimates under the slow rate prior were more biased (overestimates) than under 

the fast rate prior (underestimates) for all schemes, although the two priors were wrong by 

the same magnitude (10 times slower and 10 time times faster, respectively). This could be 

because under a fast rate prior time estimates are expected to be younger, but node ages are 

bounded below by 0 (the age of the youngest node can’t be lower than 0). Under a slow rate 

prior time estimates are expected to be older with no bound to be applied to the root age, 

letting them to move back with any constraint. 

Many of previous studies have used protein-coding genes to estimate species divergence 

times (Meusemann, et al. 2010; dos Reis, et al. 2012; Misof, et al. 2014). We thus simulated 

gene alignments from a phylogeny of nine species using a codon site model which allows for 

different ω ratios across sites to mimic such data sets. Although a branch-site model 

allowing for additional variation among branches in the ω ratio would be more realistic, that 

would increase the complexity of the simulation process with probably only minimal effects 

on divergence time estimation. Another important aspect of the simulation analysis is the use 

of equal codon frequencies in all genes. This is an unrealistic assumption and variable codon 

frequencies among genes may affect divergence times estimation. In such a case, a 

partitioned analysis might be more useful as it accounts for heterogeneity in base frequencies 

across the alignment, but further research is needed. Moreover, the same gene tree was used 

to simulate gene alignments, which is unrealistic (Nichols 2001). The use of different gene 

trees is not expected to highlight differences among partitioning schemes because in the 

Bayesian dating analysis with the MCMCTREE program the same phylogeny is assumed for 

all partitions.  
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6 Uncertainty in the timing of origin of animals 

and the limits of precision in molecular 

timescales 

In the previous chapter we evaluated the performance of different partitioning strategies 

in Bayesian estimation of species divergence times. In this chapter we will use the Bayesian 

algorithm implemented in the MCMCTREE program to estimate the divergence times of 54 

metazoan species. The effect of incomplete lineage sorting was found to be less important in 

old phylogenies (see chapter 4); thus it is ignored in the following analysis.  

6.1 Introduction 

Estimating the timing and rate of animal evolution has been one of the most appealing 

and enduring problems in evolutionary biology. The knowledge of early metazoan 

diversifications may provide an insight into the underlying processes of animal evolution. 

The fossil record suggests a possible divergence of metazoans before 635 Ma, during the 

Cryogenian (Love, et al. 2009; Maloof, Rose, et al. 2010). This is further supported by 

molecular clock dating studies (Sperling, et al. 2010; Erwin, et al. 2011). Despite the 

consistency on the Cryogenian origin of the crown Metazoa, the evidence for the 

diversification of Bilateria remains controversial. Molecular dating studies place the origin 

of Bilateria during the Ediacaran period (635−541 Ma) (Peterson, et al. 2008; Erwin, et al. 

2011) but the fossil record suggests a massive radiation of Bilateria phyla after the first 20 

My of the Cambrian (541−485 Ma) with no unequivocal records of crown bilaterians prior to 

the Cambrian (Budd 2008; Maloof, Porter, et al. 2010; Erwin, et al. 2011). Nevertheless, 

there is increasing acceptance of a Precambrian history to animal evolution and only its 

extend remains open to question. Was there a rapid radiation of crown Bilateria close to the 

base of Cambrian (Budd 2008; Lee, et al. 2013)? Or is there an extensive Precambrian 

history which extends into Cryogenian and the absence of a fossil record simply reflects 

preservation and/or interpretation biases? 

A promising approach to deal with the issue has been to estimate the timescale of 

animal evolution using molecular clock methodology. Indeed, several efforts have been 

made but the estimated times have been inconsistent among studies. For example, the age of 

Bilateria has been estimated at 700 Ma (Peterson and Butterfield 2005) and 573 Ma 
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(Peterson, et al. 2004), both before the Ediacaran−Cambrian boundary. The disparity 

between molecular clock estimates and clade ages suggested by the fossil record have been 

diminished with the increase of molecular data and the improvement of molecular clock 

methodology, especially concerning the accommodation of rate variation. More recent 

molecular dating studies have been performed within the Bayesian framework because it 

provides a straightforward way to integrate much of the uncertainty associated with 

divergence time estimation such as uncertainties in fossil information, due to rate variation 

among lineages (the relaxed clock), in branch length estimation due to limited molecular 

data, in the phylogenetic relationships of species under study (the tree topology) and 

parameters such as data partitioning. However, the time estimates are still largely 

inconsistent among methods and parameter settings (Peterson, et al. 2008; Erwin, et al. 2011; 

Lee, et al. 2013; Rota-Stabelli, et al. 2013). Moreover, the cumulative impact of those 

uncertainties on the precision of evolutionary timescales has not been studied in detail.  

Here, we use a Bayesian method to estimate the divergence times of Metazoa and show 

that the precision of molecular clock time estimates has been grossly overestimated. We 

perform a sensitivity analysis and explore in detail the impact of different sources of 

uncertainties in posterior time estimates. We use a large amino acid alignment (38,557 sites) 

of 203 nuclear coding genes from 54 species in combination to 34 fossil calibrations. We use 

four fossil calibration strategies which reflect different interpretations of the fossil record 

and, show that these have a dramatic impact on estimated times. We also explore the use of 

different relaxed clock models and show that the molecular clock is significantly violated at 

this level of divergence. We test for the effects of different data partitioning strategies and 

show that this, too, has a significant impact on divergence time estimates. Finally, we show 

that competing phylogenetic hypotheses lead to different divergence time estimates. The 

estimated evolutionary timescale accommodating these uncertainties has low precision 

preventing the inference on plausible scenarios for the emergence and evolution of early 

animal life forms. Although some of this uncertainty can be reduced by using more 

molecular data and reducing the topological uncertainty, the limitations of the fossil record 

and the confounding effect of times and rates will remain, hampering out efforts to draw 

conclusions on the timeline of metazoan diversification. 
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6.2 Methods 

6.2.1 Molecular data and tree topology 

Two independent molecular data sets from Philippe et al. (2011) and Erwin et al. (2011) 

were combined into a single amino acid alignment. Missing or incomplete proteins in the 

original alignments were updated with the non-redundant protein database from GenBank. In 

addition, 5 new species (Homo sapiens, Mus musculus, Ornithorhynchus anatinus, Tribolium 

castaneum and Caenorhabditis elegans) were added in order to accommodate more 

calibration points. For each gene, amino acid sequences of all species were aligned with 

PRANK (Loytynoja and Goldman 2005) and the alignment gaps were removed using 

GBLOCKS (Castresana 2000). The combined alignment consists of 203 nuclear proteins 

(38,577 amino acid positions) from 71 species (missing data 21.49%).  

As the relationships among many taxa remain unresolved, 17 species were removed 

from the dataset to reduce the uncertainty in the topology. This resulted in a smaller 

alignment of the remaining 54 species (missing data 13.97%). The tree topology for these 54 

species has 5 uncertain nodes; four of them can be rearranged in three ways and one of them 

can be rearranged in two ways, giving 34×2 = 162 possible fully resolved trees which were 

analysed. One of those trees (Figure 6.6), mainly based on Philippe et al. (2011) was chosen 

for the main analysis while the other 161 trees were used to assess the robustness of the time 

estimates to the various topologies. 

6.2.2 Data partitioning 

Six partitioning schemes were considered. First, we used the relative rates to partition 

the combined alignment. Amino acid distance estimates for each gene were obtained from 

pairwise comparisons between Strongylocentrotus purpuratus and Hydra magnipapillata 

under the WAG+Γ4+F model in CODEML (Yang 2007). These two species were chosen 

because of their deep divergence time and because they have the most complete sequence 

data. For one missing gene of Strongylocentrotus purpuratus, the same gene of Saccoglossus 

kowalevskii, its close relative, was used instead. Assuming that the divergence time is the 

same for all genes, the estimated distances reflect the relative evolutionary rates. These 

distances were used to assign the 203 genes into two, four, five and ten, rate categories 

(partitions), in addition to the single partition, thus forming five partitioning schemes.  
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There is a possibility, however, that the rates estimated from these two chosen species 

may not be representative of the rates across branches. To address this issue, the suitability 

of the partitioning strategy was assessed by calculating the branch lengths of each partition 

in each partitioning scheme using the WAG+Γ4+F model. If the use of the pairwise distances 

is suitable in partitioning the data, the sum of the branch lengths (i.e. tree length) is expected 

to be approximately ordered from a partition with the lowest rate category to one with the 

highest rate category. This was found to be the case.  

Second, the data were divided into two partitions according to hydrophobicity, using the 

hydropathy index (Kyte and Doolittle 1982). An average of the hydropathy index for each 

site in the alignment was calculated (gaps excluded). Then the site was classified as 

hydrophilic if the averaged hydropathy index was negative, otherwise it was classified as 

hydrophobic. The time estimates from this partitioning scheme were very similar to the two 

partitions scheme according to rate and thus are not reported.  

6.2.3 Fossil calibrations 

We constrained the ages of thirty-four nodes in the metazoan tree based on fossil 

information from Benton et al. (2009) with updates from Benton et al. (2015) and Warnock 

et al. (2012). The minimum ages were determined from the oldest uncontroversial record 

belonging to one of the two sister clades. The maximum ages were derived from the base of 

the youngest stratigraphic range or geological formation known not to contain any members 

of the clade of interest (Benton and Donoghue 2007; Donoghue and Benton 2007). A critical 

fossil is the Ediacaran Kimberella (552.85 Ma) which we interpret as a protostome, thus 

providing the minimum age constraint for Metazoa, Eumetazoa, Bilateria and Protostomia.   

We translated the fossil calibrations into statistical distributions mapped onto the nodes 

of the metazoan tree (see §2.3). Four calibration strategies (Table D.1) were used to assess 

robustness of time estimates to the calibration choice.  

1) Strategy 1 (S1): The 34 calibrations are represented as uniform distributions between 

the minimum and maximum bounds. Bounds are soft, and we assigned 0.1% and 2.5% tail 

probabilities that minimum and maximum bounds are violated (but we used 0.1% for both 

bounds on the age of the root). A variation of the S1 was also tested where the Cambrian 

snail Aldanella (532 Ma) was used instead of Kimberella to constrain the basal clades of 

Metazoa, Eumetazoa, Bilateria and Protostomia. This change did not affect the results. 

2) Strategy 2 (S2): 13 calibrations are represented as skewed-normal distributions. This 

was done for nodes for which the oldest in-group fossil is thought to be very close to the 

actual parent node being calibrated. The parameters of the skew-normal (location, scale, 
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shape) were chosen to provide a distribution with the mode near the minimum bound and the 

tail extending towards old ages, with the 0.3% and 97.5% quantiles of the distribution lying 

roughly at the equivalent minimum and maximum bounds from S1. These calibrations 

represent an optimistic interpretation of the fossil minima as a close approximation of the 

true clade age. The remaining 21 nodes are as in S1.  

3) Strategy 3 (S3): The same 13 nodes are calibrated using a truncated Cauchy 

distribution (Inoue, et al. 2010) with 0.1% left tail probability, with the mode of the 

distribution on the minimum bound, and with tail parameter equal to 10, leading to a long 

right tail for the distribution. No maximum bound is imposed on these nodes. The root node 

has an older minimum bound (634.9 Ma) accounting for alternative fossil interpretations. 

4) Strategy 4 (S4): Like S3, but the tail parameter is 0.1 rather than 10, producing a 

truncated-Cauchy calibration with a much shorter tail.  

Note that the Cauchy is a heavy-tailed distribution, that is, it places considerable 

probability mass on its tail in contrast to the skew-normal (in S2) which is light-tailed. 

Strategies 3 and 4 represent a pessimistic interpretation of palaeontological evidence in 

which the first fossil records of clades are a poor approximation of their antiquity. Moreover, 

under strategies 1 and 2, the age of crown Metazoa has the minimum constraint based on a 

protostome interpretation of the Ediacaran Kimberella, whereas in strategies 3 and 4 it is 

based on the disputed biogeochemical evidence of Cryogenian demosponges (Love, et al. 

2009; Antcliffe, et al. 2014). 

6.2.4 Divergence time estimation 

All molecular dating analyses were performed using the program MCMCTREE v4.8 

(Yang 2007). The time unit was set to 100 My. The prior on times was constructed using the 

fossil calibrations and the birth-death process with parameters λ = μ = 1, ρ = 0, which specify 

a diffuse uniform kernel and hence a diffuse prior. MCMCTREE applies a truncation to the 

user-specified densities to ensure that ancestral nodes are older than descendant nodes. This 

may result in marginal priors very different from the specified calibration densities (see 

§2.3). To assess the effect of truncation, the marginal priors were obtained by running the 

MCMC without sequence data and were compared with the calibration densities. In addition, 

comparing the marginal priors with the marginal posteriors allows the relative impact of the 

prior and the sequence information to be assessed. The marginal priors for all the nodes are 

shown in Figure D.1 and summarized in Table D.2.  

Because the molecular alignment is large, the likelihood was calculated approximately 

to save computational time (see §2.3.2). CODEML was used to estimate the branch lengths. 
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The LG+Γ4+F amino acid substitution model was used in all partitioning schemes. For the 

combined alignment and the two partitions scheme according to hydrophobicity we also used 

the GTR+Γ4+F model to assess robustness of the time estimates to the substitution model. 

The results were very similar to those under the LG+Γ4+F model and thus are not reported 

here.  

Both the independent-rates and the autocorrelated-rates models were used. The 

gammaDirichlet prior was used for both model parameters (see §2.3.4). The prior on the 

mean rate (or the ancestral rate) was set to G(2, 40). This is a diffuse prior with mean 0.05, 

meaning 5×10-10 amino acid substitutions per site per year. The overall mean was derived 

from the average pairwise amino acid distances between the 203 proteins of Hydra 

magnipapillata and Strongylocentrotus purpuratus (0.29 substitutions/site) assuming a 

divergence time of 636.1 Ma, so that the mean rate is 0.29/6.361 = 0.046  0.05. The prior 

for σ2 (or ν) was set to G(1, 10), with mean 0.1, indicating serious violation of the clock.  

The number of iterations, the burn-in and the sampling frequency were adjusted in test 

runs of the program. The step sizes of the proposals used in MCMC were adjusted such that 

the acceptance proportions were close to 0.3. Convergence was assessed by comparing the 

posterior means from two independent runs with different starting values. The resulting 

posterior distribution from one of the two runs was summarized as the means and 95% HPD 

intervals. 

6.3 Estimates of metazoan divergence times 

6.3.1 The impact of fossil calibrations on divergence time estimates 

To assess the robustness of estimated Metazoan divergences to calibration choice, we 

established temporal constraints on the ages of 34 nodes of the Meatazoan phylogeny based 

on fossil evidence (Table 6.1). These were then translated into probability densities 

according to four calibration strategies, reflecting different interpretations of the fossil 

evidence (Table D.1). The program MCMCTREE was used to obtain posterior time estimates 

under these four strategies on the fixed tree topology of Figure 6.6. All gene alignments were 

concatenated and analysed as a single partition under the LG+Γ amino acid substitution 

model and the independent-rates model for among branches rate variation. In all instances, 

we first ran the analyses without sequence data to establish the effective time prior and 

evaluate the impact of truncation (Inoue, et al. 2010; Warnock, et al. 2012). 
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Calibration strategy has a large impact on estimated divergence times (Figure 6.1, Table 

D.3, Figure D.2). Specifically, when the skew-normal distribution is employed (strategy 2), 

the resulting posterior time estimates agree largely with those obtained using a uniform prior 

time distribution (strategy 1; Table 6.1, Figure 6.2A). In contrast, calibration densities 

modelled with the Cauchy distribution (strategies 3 and 4) exhibit strong truncation effects in 

the time priors (Figure 6.1C), resulting in substantially older time estimates (Figure 6.1D). 

This can be seen, for example, in association with Bilateria, Deuterostomia and Protostomia, 

where truncation caused the effective priors to place considerable probability mass beyond 

the maximum bound of 636.1 Ma (Figure 6.1C). This differs significantly from the specified 

calibration densities (Figure 6.1B), resulting in posterior time estimates that are substantially 

older than those derived using strategies 1 and 2 (Figure 6.1D). Thus truncation can have 

dramatic and perhaps surprising effects. These effects may be hard to predict, highlighting 

the challenges in constructing fossil calibrations, as calibrations based on the same fossil 

information can unintentionally lead to dramatically different estimates of divergence times. 

Age estimates for the younger nodes are similar under all four calibration strategies (e.g. 

nodes 68, 86, 92; Table D.3). However, the posterior age estimates of nodes close to the root 

exhibit dramatic differences among the different calibration strategies. This is probably 

because of the paucity of palaeontological evidence close to the root and more severe 

truncation effects. Strategies 3 and 4 yield timescales that strongly favour an early 

Cryogenian (834-780 Ma) diversification, evidently constrained by the root age, while the 

age estimates arising from calibration strategies 1 and 2 are compatible with metazoans 

diversifying at any time within the Cryogenian, though these analyses are not otherwise very 

informative (Figure 6.1D). 

Calibration strategies 1 and 2 are based on a protostome interpretation of the Ediacaran 

Kimberella (552.85 Ma), to constrain the minimum time of divergence of Protostomia, 

Bilateria, Eumetazoa and Metazoa (Table 6.1). However, to some, there is no unequivocal 

fossil evidence of metazoans prior to the Cambrian. In this view, interpreting Kimberella as a 

protostome leads to unduly ancient time estimates. To assess the impact of using Kimberella 

as a minimum constraint on the age of the protostome clade, we employed a variation of 

calibration strategy 1 in which the next-oldest record of Protostomia and oldest unequivocal 

total-group mollusc, the Cambrian Aldanella yanjiahensis (532 Ma), was used in place of 

Kimberella. The resulting divergence time estimates are effectively the same as those 

derived using strategy 1 (Figure D.4). Thus, even under the assumption that the fossil record 

of Metazoa is limited to the Cambrian, the results suggest an Ediacaran origin for most 

crown bilaterian phyla, a late Cryogenian - early Ediaracan origin of crown-Bilateria, and 

early Cryogenian origin of crown-Metazoa. 
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Table 6.1: Minimum and maximum fossil constraints and 95% HPD of posterior divergence 

times (Ma) for various metazoan clades. 

Node Crown group Min. Max. S1, IR, 1P S2, IR, 1P S1, IR, 10P S1, AR, 1P Composite 

55 Metazoa 552.85 833 680.6 832.7 716.2 833.4 786.8 833.5 649.8 763.9 649.8 833.5 

58 Eumetazoa 552.85 636.1 630.7 652.9 649.5 714.2 712.2 746.2 625.9 648.0 625.9 746.2 

59 Cnidaria 529 636.1 533.3 620.5 537.7 631.9 596.2 641.7 587.4 629.0 531.5 641.8 

63 Bilateria 552.85 636.1 615.1 637.8 624.2 672.3 665.6 688.3 595.7 618.7 595.7 688.3 

64 Deuterostomia 515.5 636.1 593.7 627.9 598.0 649.6 639.5 662.3 587.2 610.6 587.2 662.3 

65 Chordata 514 636.1 555.4 611.3 558.1 622.2 609.0 635.7 573.9 600.6 555.4 635.7 

66 Olfactores 514 636.1 516.6 583.6 524.3 588.0 568.0 600.0 551.2 587.0 516.3 600.0 

68 Vertebrata 457.5 636.1 459.6 527.9 467.1 527.6 483.3 512.9 481.4 533.8 459.3 533.8 

69 Gnathostomata 420.7 468.4 432.9 468.7 433.9 468.6 436.2 451.3 440.5 468.9 432.1 468.1 

70 Osteichthyes 420.7 453.7 420.6 444.1 420.6 443.9 420.6 425.0 420.6 438.1 420.6 444.2 

71 Tetrapoda 337 351 338.3 351.4 338.4 351.5 346.5 352.1 345.8 352.2 338.2 354.0 

72 Amniota 318 332.9 318.0 331.4 318.0 331.1 318.0 321.5 318.0 323.7 318.0 331.5 

73 Mammalia 164.9 201.5 165.1 200.7 164.9 200.5 164.8 186.5 167.8 202.8 164.8 204.7 

74 Euarchontoglires 61.6 164.6 61.4 140.2 61.4 135.3 61.3 67.3 61.6 124.7 61.2 140.3 

75 Cyclostomata 358.5 636.1 358.1 458.0 358.1 455.8 358.3 416.5 378.1 494.3 358.0 494.3 

76 Xenambulacraria 515.5 636.1 569.8 614.5 575.9 632.2 617.6 639.9 577.8 603.0 569.3 639.9 

77 Ambulacraria 515.5 636.1 534.6 591.3 538.5 603.5 572.6 600.1 556.0 586.9 534.1 603.1 

80 Hemichordata 504.5 636.1 504.2 537.6 504.2 540.0 504.1 511.4 504.2 535.8 504.1 540.0 

82 Protostomia 552.85 636.1 598.0 626.4 603.6 647.5 635.3 653.5 578.1 599.0 578.1 653.1 

85 Annelids-Molluscs 534 636.1 552.3 586.1 554.1 591.7 577.4 595.1 556.4 572.5 552.2 595.1 

86 
Capitellid-
Polychete-leech 

476.5 636.1 476.3 548.1 480.9 550.9 476.3 517.5 503.5 548.7 476.3 550.9 

90 Mollusca 534 549 538.4 549.6 539.1 549.7 545.8 550.3 540.9 549.5 538.3 550.3 

91 Bivalve-Gastropod 530 549 530.0 539.1 530.0 538.6 530.0 532.6 530.0 536.9 530.0 539.2 

92 Gastropoda 470.2 549 470.0 508.3 470.3 506.2 470.0 478.8 470.5 512.6 470.0 512.6 

96 Ecdysozoa 528.82 636.1 577.8 613.2 581.9 627.1 608.8 628.9 566.5 585.8 566.5 628.9 

97 
Nematoda-
Arthropoda 

528.82 636.1 561.4 599.8 563.8 608.3 589.8 610.4 557.2 575.5 557.2 610.4 

98 Lobopodia 528.82 636.1 545.1 582.8 547.8 588.5 568.5 587.0 546.1 561.7 545.1 588.5 

99 Euarthropoda 514 636.1 530.8 559.4 531.9 560.7 543.3 556.2 533.0 540.9 530.8 560.7 

100 Mandibulata 514 531.22 523.4 532.3 524.0 532.3 530.3 536.1 528.1 532.8 523.4 536.1 

101 Pancrustacea 514 531.22 514.0 522.8 514.0 522.3 514.0 517.5 514.0 517.6 514.0 522.8 

102 
Copepoda-
Branchiopoda 

499 531.22 499.0 510.1 498.9 509.2 498.9 500.5 499.0 506.4 498.9 510.1 

105 Eumetabola 305.5 413.6 305.3 396.8 305.3 393.1 305.3 335.8 318.5 418.3 305.2 418.3 

106 
Pycnogonida-
other chelicertates 

497.5 531.22 497.5 526.1 497.5 525.8 497.4 509.1 497.5 518.5 497.4 526.3 

107 Acari-Arenacea 416 531.22 415.9 479.9 415.8 477.5 415.8 436.4 419.6 492.5 415.7 492.5 

Note: Posterior times are the 95% HPD interval, estimated with MCMCTree v4.8 under the LG+Γ4+F 

model. S1: Calibration strategy 1. S2: Strategy 2. IR: Independent-rates model. AR: Autocorrelated-

rates model. 1P: The 203 proteins analysed as a single partition. 10P: The proteins are grouped into 10 

partitions according to their evolutionary rates. Node numbers as in Figure 6.6. Nodes in bold have 

calibrations that differ in S1 and S2. Composite: 95% HPD interval is a composite of the 95% HPD 

intervals across all the analyses, except those under S3 and S4 and under alternative topologies. 
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Figure 6.1: The effect of fossil calibrations on posterior divergence time estimates of 

metazoans. (A) Timetrees showing posterior divergence time estimates for major metazoan 

groups. Nodes are drawn at the posterior means obtained and horizontal bars represent 

95% HPD intervals. Estimates were obtained with MCMCTREE using the LG+Γ4+F model, 

independent-rates, and with the 203 proteins concatenated into a single alignment. Names 

of taxa are as in Figure 6.6. (B-D) Calibration, prior and posterior densities for four ancient 

nodes in the metazoan phylogeny. Node numbers (according to Figure 6.6) are in 

parentheses. 
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Figure 6.2: Sensitivity of time estimates to fossil calibrations, rate model and number of 

partitions. The posterior mean times estimated under calibration strategy 1, independent-

rates and a single partition are plotted against: (A) estimates using strategy 2, (B) estimates 

under the autocorrelated-rates model, and (C) estimates obtained when the 203 gene 

alignments are divided into 10 partitions according to substitution rate. The bars are the 95% 

HPDs. 

 

6.3.2 The impact of strong violation of the molecular clock in 

ancient timescales 

When rate variation across a phylogeny is extreme (i.e. the clock is seriously violated), 

the rates calculated on parts of the phylogeny where fossil calibrations are available will 

serve as bad proxies to estimate divergence times in other parts of the tree. In such cases 

divergence time estimation is challenging and the analysis becomes sensitive to the rate 

model used.  

To examine the impact of the rate model we re-estimated the divergence times of 

metazoans using the autocorrelated-rates model under calibration strategy 1. We found that 

the relaxed-clock model has a strong impact on the estimated divergences (Table 6.1, Figure 

6.2B). The results show that many posterior time estimates for young nodes using the 

autocorrelated-rates model are older than those derived using the independent-rates model, 

whereas a few nodes, especially the deep ones, are younger (Table 6.1, Figure 6.2B). For 

example, the divergences of Metazoa (764–650 Ma), Bilateria (619–596 Ma), Deuterostomia 

(611–587 Ma) and Protostomia (599–578 Ma), are substantially younger. 

The autocorrelated-rates model penalises extreme rate variation over short time 

intervals while allowing large rate variation among distant clades. This contrasts with the  
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Figure 6.3: Explosive relaxation of molecular rates during Metazoan evolution.  

In the autocorrelated-rates model (AR), the rates at the tips of a star phylogeny are log-

normally distributed with mean rA (the ancestral rate at the root) and log-variance of the rate 

σ2 = tν. For the metazoan phylogeny, the posterior mean of rA is 0.089 s/s/100My and of v is 

0.468/100My. The graph shows the evolution of the rate of molecular evolution through 500 

My of metazoan history assuming the AR model to be correct. The numbers in brackets are 

the 95% equal-tail range of the distribution of the rate for the given time. As the star 

phylogeny evolves, the variance of the rates increases exponentially. After 500My evolution, 

the 95% equal-tail range encompasses two orders of magnitude. Note that in case of the 

independent-rates model with μ = 0.089/100My and σ2 = 0.468/100My, the shape of the log-

normal distribution is the same as that for 100My for the autocorrelated-rates at any time 

point.  

 

 

independent-rates model, which assumes that the variance of the rate is independent of the 

divergence time, so that the variance is the same whether the species are closely or distantly 
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related. Figure 6.3 shows the change in the shape of the log-normal distribution of rates 

under the autocorrelated-rates model across 500 My of evolution and highlights the extreme 

level of rate variation in the metazoan phylogeny. At short time scales, the distribution is 

more symmetrical and has a smaller variance than at longer time scales. In the case of the 

independent-rates model with μ = 0.089/100My and σ2 = 0.468/100 My, the log-normal 

distribution has the same shape as that for 100 My for the autocorrelated-rates (Figure 6.3, 

3rd plot). 

6.3.3 The impact of data partitioning 

Partitioning of the molecular sequence alignment may impact on divergence time 

estimates (Zhu, et al. 2015). To test whether the choice of partitioning scheme has an 

influence on time estimation the protein alignment was divided into two, four, five, and ten 

partitions, according to the relative substitution rates among genes. The posterior mean times 

for the most ancient nodes tended to increase as the number of partitions increases (Figure 

6.2C). For example, the divergence time of the Metazoa vary from 833–681 Ma (single 

partition) to 834–787 Ma (10-partition; Table 6.1). Indeed, the closer to the root, the higher 

the discrepancy is, regardless of whether or not the nodes are calibrated (Figure 6.2C). Age 

estimates on intermediate nodes (e.g. all vertebrates and most arthropod nodes) do not vary 

significantly with partition strategy and for a small number of nodes, younger date estimates 

were obtained with increasing the number of partitions (Figure 6.2C, Table 6.1). Overall, 

nodes with highly variable time estimates among different partitions are those without 

calibration or are close to the root where the calibrations are less informative (Table D.4, 

Figure D.3). 

Figure 6.4 shows the so-called infinite-sites plot in which the widths of the 95% HPD 

intervals are plotted against the posterior mean times (Rannala and Yang 2007). The scatter 

plot for the time prior shows high levels of uncertainty owing to the uncertain fossil 

calibrations: every 100My of divergence add 30My of uncertainty to the 95% prior interval 

width. The addition of molecular data increases precision substantially, and every 100My of 

divergence adds 18My of uncertainty to the posterior HPD interval (Figure 6.4B). The 

precision of node age estimates increases with the number of partitions. Dividing the data 

into more partitions gives narrower HPD widths, as indicated by the reduced regression 

coefficients in the plot. The extent of the reduction diminishes with higher numbers of 

partitions (for example, compare 4, 5 and 10 partitions), indicating that, given a fixed set of 

calibrations and fixed sequence data, the number of partitions is already near optimal in 

terms of dating precision. Nodes with the widest HPD intervals are those with no fossil 
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calibrations indicating that including more calibration points is likely to improve the 

precision of the time estimates. Finally, since the plots are very scattered (very low R2 

values), adding more sequence data may lead to more precise node age estimates. 

 

 

 

Figure 6.4: Infinite-sites plots. The 95% HPD width is plotted against the mean of the 

divergence times estimated without molecular data (prior) and with the 203 gene alignments 

divided into 1, 2, 4, 5, and 10 partitions under calibration strategy 1. The low correlations (R2) 

indicate that the limited amount of sequence data contributes substantially to posterior 

uncertainty and the regression coefficients also indicate that the fossil calibrations involve 

much uncertainty. Node numbers are shown for nodes with the most uncertain time 

estimates. 

 

6.3.4 The impact of phylogenetic uncertainty 

In all previous analyses, a single tree topology has been used (Figure 6.6). However, the 

phylogenetic position of some metazoan taxa remains a subject of debate (Dunn, et al. 2014). 

To account for this uncertainty, we analysed 161 alternative binary trees accounting for 

uncertainties in the positioning of bilateria, chaetognaths, molluscs, nematodes, and 

xenacoelomorphs. The results show that nodes are affected differently depending on the tree 

topology. For example, some nodes have highly stable estimates across all topologies  
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Figure 6.5: Effect of uncertainty in tree topology on divergence time estimates of the 

Metazoa. Four nodes (A-D) can be rearranged in three different ways (1-3) and a fifth node 

(E) can be rearranged in two ways resulting in a total of 162 tree topologies reflecting the 

uncertain relationships around these five nodes. Divergence times were estimated using 

calibration strategy 1, independent-rates model and 1 partition using each tree (bottom 

panel). Tree 1 is the main tree used in all other analyses. Some phylogenetic hypotheses 

had a strong effect on posterior mean times, for example, placing the Placozoa as the most 

basal with respect to Cnidaria and Bilateria (A), leads to substantially older divergence times 

for the Metazoa (bottom panel), while placing Cnidaria as the most basal leads to 

substantially older times for the divergence of Eumetazoa. 
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(Figure 6.5). These nodes are usually well calibrated and/or the local phylogeny well 

accepted, such as in deuterostomes and arthropods (Figure 6.5). In contrast, nodes with 

uncertain phylogenetic relationships exhibit considerable variation in estimated ages. These 

include the nodes close to the root of the tree such as Metazoa, Bilateria and Cnidaria; this 

variation increases with proximity to the root. For example, moving the position of Placozoa 

around the eumetazoan node has a profound impact on the estimated age of the root (Figure 

6.5). 

Other parameter settings such as the amino acid substitution model or the parameters of 

the birth-death model for the construction of time priors were found not to have a significant 

impact in time estimation.  

 

 

6.4 Conclusions 

There always has been a great interest in estimating the timeline of the evolution of life 

on earth and in particular that of animals. Powerful Bayesian methods based on the 

molecular clock methodology integrate information from molecular data and the fossil 

record, and have been promising in dealing with the issue. However, the results presented 

here indicate that the estimation of divergence times of the very early, ancient animal life 

forms via Bayesian molecular dating is extremely hard.  

Our analysis integrated different interpretations of the animal fossil record in informing 

the minimum age of animal clades. Some of these identify fossil evidence of animals 

extending into the Cryogenian (Love, et al. 2009; Maloof, Rose, et al. 2010) while, at the 

other extreme, others argue that coherent evidence of animals is limited to the Cambrian, or 

the last few millions years of the Neoproterozoic (Budd and Jensen 2000). This is actually 

the long-standing conundrum of the Cambrian: whether the first animal fossils faithfully 

reflect an explosion in animal biodiversity, or merely an explosion of fossils (Runnegar 

1982). In addition to discrepancies in interpretation of the early fossil record, the serious 

violation of the clock, the limited molecular data and uncertainties in the phylogenetic 

relationships of several metazoan taxa preclude the inference of a precise timeline of the 

metazoan evolution.  

Composite results from our analyses, integrating major sources of uncertainties, indicate 

unequivocally that crown Metazoa originated 833–650 Ma in the Cryogenian, Eumetazoa 

746–626 Ma, Bilateria 688–596 Ma, Deuterostomia 662–587 Ma, and Protostomia 653–578 

Ma (Figure 6.6, Table 6.1). All last four groups diverged either in the late Cryogenian or the 
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early- to mid-Ediacaran. Those results suggest that the Cambrian Explosion is a phenomenon 

of fossilization, while biological diversity was established in the Neoproterozoic.  

 

 

Figure 6.6: The timetree of the Metazoa encompassing major sources of uncertainty in time 

estimates. Node ages are plotted at the posterior mean for the analysis using calibration 

strategy 1, 1 partition, independent-rates model and LG+Γ4+F substitution model. The node 

bars are composites extending from the minimum 2.5% HPD limit to the maximum 97.5% 

limit across all analyses (excluding results from calibration strategies 3 and 4 and from 

alternative topologies). Ce: Cenozoic, Cr: Cretaceous, J: Jurassic, T: Triassic, P: Permian, 

C: Carboniferous, D: Devonian, S: Silurian, O: Ordovician, Ca: Cambrian, E: Ediacaran, Cg: 

Cryogenian. 

 

 

Our analysis allows, unequivocally, the rejection of the hypothesis that metazoans, 

eumetazoans, bilaterians, protostomes, deuterostomes, ecdysozoans, lophotrochozoans, or, 

for that matter, any of the major animal phyla, originated in the Cambrian. However, the 

uncertainties from competing interpretations of the fossil record, through the choice of rate 

models and sequence partition strategies, to competing phylogenetic hypotheses, all 

contribute to an evolutionary timescale that lacks sufficient precision to answer with 

confidence any other interesting hypotheses such as the relative divergence of protostomes 
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and deuterostomes. Some of this uncertainty can be reduced, for example, by adding more 

sequence data. Addition of molecular data will also help resolve phylogenetic relationships 

among specific metazoan taxa. However, the improvements in precision possible even with 

genome scale sequence data will be limited by the confounding effects of time and rate, 

which is the crux of the problem. 

Thus attempts to build evolutionary narratives of animal evolution based on recent 

molecular clock studies appear to be premature. They fail to integrate different sources of 

uncertainties, which make accurate and precise divergence time estimates impossible with 

current data and methods. Nevertheless, some future progress might be possible through 

analysis of combined morphological and molecular data ("total-evidence" analysis) which 

uses morphological data of extant species to infer the placement of fossils on the 

phylogenetic tree, calibrating the tree at the same time. This combined analysis has been 

found to provide time estimates more precise and more robust to prior assumptions than 

traditional analyses based on fossil-based constraints (Ronquist, Klopfstein, et al. 2012). 

However, the morphology model used is very simplistic and improved models of 

morphological traits are required. We note that most combined analyses conducted to date 

have yielded unacceptably old divergence time estimates, even older than traditional node-

calibrated studies (Ronquist, Klopfstein, et al. 2012; Arcila, et al. 2015). Thus much work 

remains to be done to elucidate the timeline of animal evolution on earth. 
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Summary 

This thesis presented Bayesian methods to model sequence evolution and address 

important biological questions with particular emphasis on methods to study natural 

selection and species divergence times. 

In Chapter 1 we provided an overview of the Bayesian theory and highlighted some key 

aspects necessary for the better understanding of the applications presented in the subsequent 

chapters.  

In chapter 2 we presented some methods and popular programs for Bayesian 

phylogenetic analysis. Particular emphasis was given to Bayesian techniques to detect 

positive selection and estimate species divergence times integrating information from 

molecular data and the fossil record.  

In Chapter 3 we developed a novel Bayesian method to estimate the nonsynonymous/ 

synonymous rate ratio and the sequence distance for pairwise comparisons of protein-coding 

gene sequences. Existing counting methods and the ML method based on a codon model of 

sequence evolution do not have nice statistical properties as they may return 0 or ∞ estimates 

in some data sets. In large genome-scale comparisons of protein-coding genes such extreme 

estimates are common and might cause difficulties in the calculation of summary statistics 

(e.g. mean, variance across all genes). In particular, the infinite estimates of ω are confusing 

to many users of the methods and ad hoc treatments are used to deal with the issue. The new 

Bayesian method always returns finite and reasonable estimates because the prior shrinks the 

posterior estimates away from extreme (0 or ∞) values and thus may provide a better 

procedure than ad hoc treatments which may introduce bias. Computer simulation and real 

data analyses revealed nice statistical properties for the Bayesian estimates (e.g. well 

defined, low MSEs). The Bayesian estimates are close to the MLEs when the data are 

informative, that is, when the sequences are long and the sequence divergence is 

intermediate. However, they can be quite different from the MLEs when the sequences are 

short and are either too similar (have little information about ω) or extremely divergent 

(contain too much noise about ω) because in those cases the prior has higher impact in 

posterior estimates. With informative data the power of the Bayesian method to detect 

positive selection (indicated by ω > 1) is similar to that of the ML, but could be lower in case 

of uninformative data because of the prior. The effect of the prior decreases as the sequence 

length increases. The Bayesian method has been implemented in the CODEML program in 

the PAML package and is fast enough for genome scale comparisons of protein-coding gene 

sequences: a pair of sequences is analyzed in 1 to 2 seconds. 



Summary 

 

139 

 

In chapter 4 we studied the impact of ancestral population size and incomplete lineage 

sorting in species divergence times estimated under the molecular clock with a Bayesian 

method which ignores the coalescent process. The coalescent process has long been 

recognised as an important aspect of molecular evolution however, the vast majority of 

molecular clock dating studies have ignored the effects of ancestral polymorphism and 

incomplete lineage sorting, probably because of the misconception that these aspects of 

evolution are only relevant to closely related species. We performed a combination of 

mathematical analysis, computer simulation and analysis of real data and we found that the 

estimates of divergence times and rate could be significantly biased when ancestral 

populations are large and when there is substantial incomplete lineage sorting. Divergence 

times are either over- or underestimated depending on the relative precision and 

configuration of fossil calibrations on the tree. For example, if the most informative 

calibrations are placed on the younger nodes of the phylogeny the ages of the internal nodes 

are underestimated, whereas if they are placed on the most ancient nodes the ages of the 

younger nodes are overestimated. In both cases the molecular rate is overestimated. We 

found that this is the case in both shallow and deep phylogenies with errors in deep 

phylogenies to be smaller. Although several Bayesian phylogenetic methods perform 

inference under the multi-species coalescent they are either computationally expensive or 

have been designed to work for only closely related species and are thus inappropriate to 

analyze the large genomic data currently available for many species. Further improvement of 

those methods could be advantageous to study species divergences. 

In chapter 5 we evaluated the performance of five commonly used data partitioning 

strategies for the Bayesian estimation of species divergence times. In large genomic data sets 

it is important to account for variation in the evolutionary patterns across sites and 

partitioning is a commonly used approach. The method involves the grouping of sites that 

have been evolved under similar processes and the estimation of independent substitution 

models for each group. There are several ways to partition a data set into groups and the 

choice of partitioning scheme might affect the inference of divergence times. We used 

computer simulation and real data analysis to study differences in divergence time estimates 

using five partitioning strategies. In general, time estimates are similar among partitioning 

schemes, especially when the clock is not seriously violated, and thus not many safe 

conclusions can be made. The use of highly partitioned schemes reduces uncertainty of 

posterior estimates but accuracy may be poor when an incorrect rate-drift model is used. 

Automated tools to select the best-fit partitioning schemes, such as PartitionFinder, seem not 

to provide any advantage. Differences among partitioning schemes are larger when the clock 

is seriously violated. In an analysis of 78 plastid genes from 15 plant species where serious 

clock violation was detected, the time estimates varied substantially among partitioning 
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schemes, irrespective of the clock-model used. The similar performance of the partitioning 

schemes in most cases that we explored and some unexpected results with no obvious 

explanation precluded any further important conclusions, indicating that further research is 

needed. 

In chapter 6 we applied a Bayesian algorithm implemented in the MCMCTREE program 

to estimate the timeline of animal evolution. Current molecular studies place the origin of 

Metazoa during the Cryogenian period which is further supported from recent fossil findings. 

Despite the consistency on the Cryogenian origin of the crown Metazoa, the evidence for the 

diversification of Bilateria remains controversial. Molecular studies place the origin of 

Bilateria during the Ediacaran period but the fossil record suggests a massive radiation of 

Bilateria after the Ediacaran-Cambrian boundary. Previous molecular dating studies have 

ignored the cumulative impact of several sources of uncertainty such as subjective 

interpretations of the fossil record, serious violation of the molecular clock, limited amount 

of molecular data and unresolved phylogenetic relationships among several taxa and have 

led to unduly precise time estimates. Our Bayesian dating analysis revealed that metazoan 

divergence time estimates are highly variable, largely depending on a series of analysis 

settings such as fossil calibrations, model of among-branches rate variation, data partitioning 

and tree topology. The analysis was based on 203 amino acid nuclear genes from 54 

metazoan species in combination with 34 fossil calibrations. Although some of the 

uncertainty of time estimates can be reduced, for example by adding molecular data, this will 

be limited due to the confounding effect of rate and time possibly preventing a precise 

estimation of the animal evolutionary timescale. Recent alternative techniques based on a 

combined analysis of molecular and morphological data seem to be advantageous but more 

realistic models need to be developed for the accurate and precise estimation of the timescale 

of animal evolution. 

Bayesian inference has become the basis of many phylogenetic results over the last 

years as many popular phylogenetic programs (e.g. MrBayes, BEAST) implement powerful 

MCMC algorithms and allow inference under complex and more realistic models. With this 

thesis I contribute in the development and proper use of Bayesian methods in molecular 

evolution. I developed a new Bayesian method to study natural selection, I examined the 

performance of a Bayesian method in estimating species divergence times and I used a 

Bayesian algorithm to estimate the divergence times of Metazoa highlighting important 

aspects for any study of species divergence times. I am optimistic that the proper use of 

existing Bayesian algorithms and the development of new more sophisticated Bayesian 

methods will help to shed light on important and interesting biological problems such as 

those examined here. 
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Appendices 

 

A. Gaussian quadrature 

Gaussian quadrature is a numerical integration method which uses Legendre 

polynomials to approximate any continuous integrand function f(x). Because any polynomial 

is integrable analytically the integral is approximated as  
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where the weights wi and the points xi are predetermined given the total number of points n 

(Abramowitz and Stegun 1972, p. 887). The points are the roots of the n order Legendre 

polynomial Pn(x) used to approximate the integrand while the weights are given by
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. Gaussian quadrature is optimal because if the integrand is a 

polynomial of degree 2n−1 or less the method is exact. The number of points could be 

critical for the accuracy of the estimation. If the integrand is nearly flat over the interval (−1, 

1) a few points are enough to approximate the integral reliably. In the extreme case that the 

integrand is perfectly flat even one point is enough for accurate estimation. However, if f(x) 

is spiky and a small number of points is used the approximation might be quite poor and only 

if f(x) is a low order polynomial the integral will be accurately estimated. In general the more 

points are used the better the approximation is but more calculations are necessary. Ideally, 

more points should be used in regions in which the integrand changes rapidly.  

Legendre polynomials are defined in the interval [−1, 1] and thus the limits of 

integration are −1, 1. If the integration interval is different, say (a, b), this can be converted 

into the Gaussian-Legendre interval [−1, 1]. For example, using the transformation
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Some mappings (a, b) to (−1, 1) might be more efficient than others as they might give a 

transformed integrand more flat in the interval (−1, 1) and thus the same accuracy would be 

achieved with fewer points. A proper transformation can then offer computational advantage. 

Similarly we can estimate a two-dimensional integral as  
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where r(u,υ) = f(x,y) J  with J = ( , )

( , )

x y

u 




 to be the Jacobian determinant of the transform x = 

x(u,υ), y = y(u,υ) and ui, uj, wi, wj to be pre-determined given the total number of points n in 

each dimension. Different numbers of points may be used in the two dimensions. Note that 

for d-dimensional integrals the computation is proportional to nd, making the calculation of 

high dimensional integrals (d > 3) practically impossible. 

 

B. Estimating the variance of ω and t using the Nei & 

Gojobori method 

According to Nei and Gojobori's (1986) method given an alignment of two sequences 

the numbers of synonymous (dS) and nonsynonymous (dN) differences per site are given by 
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where ˆ d
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  are the observed proportions of synonymous and 

nonsynonymous differences per site. The Sd, Nd, S, N are calculated as Nei and Gojobori 

(1986) proposed (see §3.1). We assume that ˆ
Sp  and ˆ

Np  are independent binomial 

proportions and thus 
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We use the Delta method to estimate the variances  ˆ
SV d  and  ˆ

NV d . The Delta method 

states that given a random variable x with mean μx and variance 
2

x , the variance of the 

random variable y = g(x) is given by 
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where  ˆ ˆ
SV p and  ˆ ˆ

NV p  are given by (B.2). 

Given two random variables x, y with means μx, μy and variances
2
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of the random variable z = x/y, according to the Delta technique, is  
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with  ˆ ˆ
SV p and  ˆ ˆ

NV p  as in (B.2). 

The distance t according to the Nei and Gojobori (1986) method is given by  
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Thus the estimate of the distance variance is  
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C. Calculating P(ω > 1 | x) using Gaussian quadrature 

We are interested in calculating the posterior probability for ω > 1 for a pairwise 

sequence alignment. This is given by  
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where f(x|t,ω, ̂ ) is the likelihood, f(x|t,ω) is the joint prior on ω and t and, C is the 

normalizing constant. Following similar techniques to §3.2 the integral 
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as in §3.2. 

We assume that x1 = logt ~ Logistic(μ1, σ1) and x2 = logω ~ Logistic(μ2, σ2) and we 

perform the following change of variables: 
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where ( )LF x is the CDF of the logistic distribution. Thus the integral becomes 
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Thus the integral becomes 

     
1 1

1 2
1 2 1 22 2

11 1

2 2 1
( ) d d

1 1 2 i jmax max i j

i , j

t a
I exp l h t, z z exp l w w q z ,z

z u

 


 


 

 
  , where t, ω, u 

are given by (C.2), (C.3), (C.4), respectively. Then   1 2

, 1

1
1| ( , )

i j

n

i j

i j

P x w w r z z
A




   , where 

A = Cexp(−lmax) and C is as in (3.13). The constant term exp(lmax) cancels during 

calculations.  

D. Supplementary tables and figures for chapter 6 

Here are additional tables and figures concerning the estimation of divergence times of 

Metazoa described in chapter 6. 
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Table D.1: Fossil calibration densities constructed from the minimum and maximum constrains. 

Node Clade Min Max Strategy 1 Strategy 2 Strategy 3 Strategy 4 

55 Metazoa 552.85 833 B(5.5285,8.33,0.001,0.001) B(5.5285,8.33,0.001,0.001) B(6.349,8.33,0.001,0.001) B(6.349,8.33,0.001,0.001) 
58 Eumetazoa 552.85 636.1 B(5.5285,6.361,0.001,0.025) SN(5.6,0.34,7) L(5.5285,0,10,0.001) L(5.5285,0,0.1,0.001) 
59 Cnidaria 529 636.1 B(5.29,6.361,0.001,0.025) SN(5.38,0.44,7) L(5.29,0,10,0.001) L(5.29,0,0.1,0.001) 
63 Bilateria 552.85 636.1 B(5.5285,6.361,0.001,0.025) SN(5.6,0.34,7) L(5.5285,0,10,0.001) L(5.5285,0,0.1,0.001) 
64 Deuterostomia 515.5 636.1 B(5.155,6.361,0.001,0.025) SN(5.255,0.5,7) L(5.155,0,10,0.001) L(5.155,0,0.1,0.001) 
65 Chordata 514 636.1 B(5.14,6.361,0.001,0.025) SN(5.25,0.5,7) L(5.14,0,10,0.001) L(5.14,0,0.1,0.001) 
66 Olfactores 514 636.1 B(5.14,6.361,0.001,0.025) SN(5.25,0.5,7) L(5.14,0,10,0.001) L(5.14,0,0.1,0.001) 
68 Vertebrata 457.5 636.1 B(4.575,6.361,0.001,0.025) SN(4.7,0.75,9) L(4.575,0,10,0.001) L(4.575,0,0.1,0.001) 
69 Gnathostomata 420.7 468.4 B(4.207,4.684,0.001,0.025) B(4.207,4.684,0.001,0.025) B(4.207,4.684,0.001,0.025) B(4.207,4.684,0.001,0.025) 
70 Osteichthyes 420.7 453.7 B(4.207,4.537,0.001,0.025) B(4.207,4.537,0.001,0.025) B(4.207,4.537,0.001,0.025) B(4.207,4.537,0.001,0.025) 
71 Tetrapoda 337 351 B(3.37,3.51,0.001,0.025) B(3.37,3.51,0.001,0.025) B(3.37,3.51,0.001,0.025) B(3.37,3.51,0.001,0.025) 
72 Amniota 318 332.9 B(3.18,3.329,0.001,0.025) B(3.18,3.329,0.001,0.025) B(3.18,3.329,0.001,0.025) B(3.18,3.329,0.001,0.025) 
73 Mammalia 164.9 201.5 B(1.649,2.015,0.001,0.025) B(1.649,2.015,0.001,0.025) B(1.649,2.015,0.001,0.025) B(1.649,2.015,0.001,0.025) 
74 Euarchontoglires 61.6 164.6 B(0.616,1.646,0.001,0.025) B(0.616,1.646,0.001,0.025) B(0.616,1.646,0.001,0.025) B(0.616,1.646,0.001,0.025) 
75 Cyclostomata 358.5 636.1 B(3.585,6.361,0.001,0.025) B(3.585,6.361,0.001,0.025) B(3.585,6.361,0.001,0.025) B(3.585,6.361,0.001,0.025) 
76 Xenambulacraria 515.5 636.1 B(5.155,6.361,0.001,0.025) B(5.155,6.361,0.001,0.025) B(5.155,6.361,0.001,0.025) B(5.155,6.361,0.001,0.025) 
77 Ambulacraria 515.5 636.1 B(5.155,6.361,0.001,0.025) B(5.155,6.361,0.001,0.025) B(5.155,6.361,0.001,0.025) B(5.155,6.361,0.001,0.025) 
80 Hemichordata 504.5 636.1 B(5.045,6.361,0.001,0.025) B(5.045,6.361,0.001,0.025) B(5.045,6.361,0.001,0.025) B(5.045,6.361,0.001,0.025) 
82 Protostomia 552.85 636.1 B(5.5285,6.361,0.001,0.025) SN(5.6,0.34,7) L(5.5285,0,10,0.001) L(5.5285,0,0.1,0.001) 
85 Annelids-Molluscs 534 636.1 B(5.34,6.361,0.001,0.025) SN(5.41,0.43,9) L(5.34,0,10,0.001) L(5.34,0,0.1,0.001) 
86 Capitellid-Polychete-leech 476.5 636.1 B(4.765,6.361,0.001,0.025) SN(4.86,0.68,10) L(4.765,0,10,0.001) L(4.765,0,0.1,0.001) 
90 Mollusca 534 549 B(5.34,5.49,0.001,0.025) B(5.34,5.49,0.001,0.025) B(5.34,5.49,0.001,0.025) B(5.34,5.49,0.001,0.025) 
91 Bivalve-Gastropod 530 549 B(5.30,5.49,0.001,0.025) B(5.30,5.49,0.001,0.025) B(5.30,5.49,0.001,0.025) B(5.30,5.49,0.001,0.025) 
92 Gastropoda 470.2 549 B(4.702,5.49,0.001,0.025) SN(4.75,0.33,9) L(4.702,0,10,0.001) L(4.702,0,0.1,0.001) 
96 Ecdysozoa 528.82 636.1 B(5.2882,6.361,0.001,0.025) B(5.2882,6.361,0.001,0.025) B(5.2882,6.361,0.001,0.025) B(5.2882,6.361,0.001,0.025) 
97 Nematoda-Arthropoda 528.82 636.1 B(5.2882,6.361,0.001,0.025) SN(5.38,0.44,7) L(5.2882,0,10,0.001) L(5.2882,0,0.1,0.001) 
98 Lobopodia 528.82 636.1 B(5.2882,6.361,0.001,0.025) B(5.2882,6.361,0.001,0.025) B(5.2882,6.361,0.001,0.025) B(5.2882,6.361,0.001,0.025) 
99 Euarthropoda 514 636.1 B(5.14,6.361,0.001,0.025) SN(5.22,0.52,9) L(5.14,0,10,0.001) L(5.14,0,0.1,0.001) 
100 Mandibulata 514 531.22 B(5.14,5.3122,0.001,0.025) B(5.14,5.3122,0.001,0.025) B(5.14,5.3122,0.001,0.025) B(5.14,5.3122,0.001,0.025) 
101 Pancrustacea 514 531.22 B(5.14,5.3122,0.001,0.025) B(5.14,5.3122,0.001,0.025) B(5.14,5.3122,0.001,0.025) B(5.14,5.3122,0.001,0.025) 
102 Copepoda-Branchiopoda 499 531.22 B(4.99,5.3122,0.001,0.025) B(4.99,5.3122,0.001,0.025) B(4.99,5.3122,0.001,0.025) B(4.99,5.3122,0.001,0.025) 
105 Eumetabola 305.5 413.6 B(3.055,4.136,0.001,0.025) B(3.055,4.136,0.001,0.025) B(3.055,4.136,0.001,0.025) B(3.055,4.136,0.001,0.025) 
106 Pycnogonida-other chelicertates 497.5 531.22 B(4.975,5.3122,0.001,0.025) B(4.975,5.3122,0.001,0.025) B(4.975,5.3122,0.001,0.025) B(4.975,5.3122,0.001,0.025) 
107 Acari-Arenacea 416 531.22 B(4.16,5.3122,0.001,0.025) B(4.16,5.3122,0.001,0.025) B(4.16,5.3122,0.001,0.025) B(4.16,5.3122,0.001,0.025) 

Note.− B(tL, tU, pL, pU) means the node age has a soft uniform distribution between a minimum time tL and a maximum time tU, with probabilities pL and pU that 

the age is outside the bounds. SN(t, a, b) means the node age has a skew-normal distribution with location t, scale a, and shape b. L(tL, p, c, pL) means that 

the node age has a Cauchy distribution truncated on the left at tL, with mode parameter p, tail parameter c, and probability pL that the node age is younger 

than the minimum bound. Nodes and calibration densities that are different among the calibration strategies are indicated with bold typeface and italics. 
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Table D.2: Minimum and maximum fossil constraints and 95% interval of prior divergence 

times (Ma) for all metazoan clades under the four calibration strategies. 

Node Crown group Min Max S1, IR, 1P S2, IR, 1P S3, IR, 1P S4, IR, 1P 

55 Metazoa 552.85 833 641.3 832.6 629.5 833.2 757.5 833.5 689.0 833.3 
56    123.1 679.0 115.6 664.5 160.0 826.9 129.8 768.3 
57    622.4 778.9 599.9 777.8 738.2 832.5 662.6 826.7 
58 Eumetazoa 552.85 636.1 616.6 642.7 589.5 658.7 717.4 830.5 629.4 806.7 
59 Cnidaria 529 636.1 538.8 634.8 536.7 615.8 543.5 795.1 529.0 687.5 
60    371.8 630.3 373.7 609.4 332.1 702.7 336.6 625.1 
61    49.2 577.5 58.7 567.3 53.8 616.1 50.1 572.1 
62    139.9 626.1 135.2 602.5 108.4 704.4 121.3 631.0 
63 Bilateria 552.85 636.1 605.4 637.6 579.6 635.6 677.0 817.9 598.3 751.5 
64 Deuterostomia 515.5 636.1 581.0 633.7 558.2 618.9 618.4 785.4 564.5 695.3 
65 Chordata 514 636.1 535.2 623.1 532.1 596.3 546.0 749.5 519.0 630.1 
66 Olfactores 514 636.1 513.9 598.1 518.1 576.0 506.8 696.9 513.9 584.2 
67    107.8 592.6 112.6 573.8 110.6 641.8 89.7 570.1 
68 Vertebrata 457.5 636.1 457.4 565.4 464.6 545.7 451.9 633.4 457.4 532.4 
69 Gnathostomata 420.7 468.4 429.6 469.6 430.1 470.1 429.6 469.6 429.8 469.5 
70 Osteichthyes 420.7 453.7 420.7 451.2 420.7 451.4 420.7 451.2 420.6 451.2 
71 Tetrapoda 337 351 337.2 350.9 337.2 350.9 337.2 350.9 337.4 351.0 
72 Amniota 318 332.9 318.3 332.9 318.2 332.7 318.3 332.8 318.1 332.6 
73 Mammalia 164.9 201.5 165.6 201.2 165.5 201.2 165.9 201.5 165.6 201.2 
74 Euarchontoglires 61.6 164.6 63.2 163.6 63.9 163.8 63.5 163.6 63.3 163.5 
75 Cyclostomata 358.5 636.1 358.1 509.9 358.3 500.6 358.1 539.8 358.2 491.4 
76 Xenambulacraria 515.5 636.1 547.0 625.3 534.4 605.8 561.6 643.2 548.2 638.8 
77 Ambulacraria 515.5 636.1 519.3 605.8 516.1 586.7 526.8 630.5 517.6 616.2 
78    335.9 592.6 338.9 578.2 331.8 607.7 334.7 595.2 
79    45.3 556.6 51.0 552.9 34.7 550.4 50.1 556.5 
80 Hemichordata 504.5 636.1 504.2 577.4 504.2 563.8 504.3 593.7 504.3 584.4 
81    133.2 613.3 136.6 595.9 140.3 634.7 146.0 628.0 
82 Protostomia 552.85 636.1 587.2 634.4 567.3 619.5 620.8 786.0 573.6 693.7 
83    563.3 628.8 552.0 608.3 572.3 756.5 551.3 655.7 
84    548.9 619.4 545.1 597.7 549.2 726.2 543.4 631.5 
85 Annelids-

Molluscs 
534 636.1 539.4 605.5 539.8 582.6 539.6 693.8 536.4 601.8 

86 Capitellid-
Polychete-Leech 

476.5 636.1 476.7 581.5 487.2 566.3 471.7 642.7 476.5 565.5 

87    321.4 570.8 323.4 557.4 321.0 607.6 315.4 559.4 
88    39.9 542.9 41.3 538.2 37.3 545.9 37.1 534.8 
89    85.5 567.6 90.9 557.9 70.6 591.6 82.0 558.7 
90 Mollusca 534 549 535.2 549.3 535.2 549.3 535.4 549.5 535.0 549.2 
91 Bivalve-

Gastropod 
530 549 530.0 545.2 530.0 544.7 530.0 545.3 530.0 544.9 

92 Gastropoda 470.2 549 470.2 532.7 472.3 527.0 460.7 536.8 470.1 528.2 
93    106.6 544.9 106.7 545.5 100.6 544.4 108.4 545.5 
94    134.0 613.7 134.2 592.0 104.0 646.5 126.1 612.9 
95    147.7 623.1 140.4 600.8 110.5 685.0 137.9 634.0 
96 Ecdysozoa 528.82 636.1 562.8 627.6 551.4 607.6 575.8 641.6 560.3 638.2 
97 Nematoda-

Arthropoda 
528.82 636.1 543.0 614.7 539.7 591.8 551.7 634.0 538.2 617.8 

98 Lobopodia 528.82 636.1 529.7 595.0 529.3 577.1 531.7 613.4 528.8 594.2 
99 Euarthropoda 514 636.1 520.8 574.9 522.3 560.6 521.3 588.1 519.5 567.8 
100 Mandibulata 514 531.22 517.6 532.0 517.6 531.8 517.6 531.9 517.3 531.7 
101 Pancrustacea 514 531.22 514.0 528.2 514.0 528.1 514.0 528.3 514.0 528.0 
102 Copepoda-

Branchiopoda 
499 531.22 499.0 522.3 499.0 522.1 499.0 522.4 499.0 522.0 

103    388.4 524.7 393.1 525.3 386.4 524.9 396.9 524.7 
104    321.7 507.1 323.4 509.4 319.4 505.1 322.4 506.8 
105 Eumetabola 305.5 413.6 305.4 409.2 305.4 409.7 305.5 409.6 305.4 409.1 
106 Pcynogonida-

other 
chelicertates 

497.5 531.22 497.5 529.9 497.5 529.8 497.6 530.1 497.5 529.7 

107 Acari-Arenacea 416 531.22 415.9 509.7 416.0 509.8 416.0 509.3 416.0 509.6 

Note.− Prior times are 95% intervals estimated by running MCMCTREE without sequence 

data under the four calibration strategies S1–S4. IR: Independent-rates model. 1P: The 203 

proteins analysed as a single partition. Node numbers are as in Figure 6.6. 
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Table D.3: Minimum and maximum fossil constraints and 95% HPD interval of posterior 

divergence times (Ma) for all metazoan clades under the four calibration strategies. 

Node Crown group Min Max S1, IR, 1P S2, IR, 1P S3, IR, 1P S4, IR, 1P 

55 Metazoa 552.85 833 680.6 832.7 716.2 833.4 795.2 833.6 780.0 833.5 
56    314.6 639.9 318.6 646.6 319.2 670.6 319.2 661.1 
57    649.2 776.7 686.1 805.5 779.5 832.2 761.6 831.4 
58 Eumetazoa 552.85 636.1 630.7 652.9 649.5 714.2 738.5 808.8 715.4 798.7 
59 Cnidaria 529 636.1 533.3 620.5 537.7 631.9 583.8 760.0 531.5 715.7 
60    318.9 554.4 319.3 550.0 350.7 637.9 319.6 591.2 
61    110.4 458.5 118.1 452.7 126.1 475.4 129.2 461.8 
62    125.5 488.1 133.8 485.5 188.3 542.2 167.2 519.5 
63 Bilateria 552.85 636.1 615.1 637.8 624.2 672.3 685.4 759.2 666.4 736.4 
64 Deuterostomia 515.5 636.1 593.7 627.9 598.0 649.6 643.7 721.7 625.9 695.3 
65 Chordata 514 636.1 555.4 611.3 558.1 622.2 600.5 693.3 568.6 662.6 
66 Olfactores 514 636.1 516.6 583.6 524.3 588.0 548.2 656.1 521.8 618.6 
67    167.9 480.9 193.2 485.3 236.2 526.3 203.9 486.4 
68 Vertebrata 457.5 636.1 459.6 527.9 467.1 527.6 469.2 564.7 461.8 533.5 
69 Gnathostomata 420.7 468.4 432.9 468.7 433.9 468.6 435.9 469.4 433.8 468.4 
70 Osteichthyes 420.7 453.7 420.6 444.1 420.6 443.9 420.6 443.6 420.6 441.9 
71 Tetrapoda 337 351 338.3 351.4 338.4 351.5 338.8 351.6 338.7 351.6 
72 Amniota 318 332.9 318.0 331.4 318.0 331.1 318.0 330.7 318.0 330.7 
73 Mammalia 164.9 201.5 165.1 200.7 164.9 200.5 164.9 200.6 165.0 200.5 
74 Euarchontoglires 61.6 164.6 61.4 140.2 61.4 135.3 61.4 127.6 61.3 128.4 
75 Cyclostomata 358.5 636.1 358.1 458.0 358.1 455.8 358.1 469.1 358.1 453.0 
76 Xenambulacraria 515.5 636.1 569.8 614.5 575.9 632.2 606.4 646.4 600.6 644.4 
77 Ambulacraria 515.5 636.1 534.6 591.3 538.5 603.5 554.8 620.1 552.7 618.8 
78    330.6 537.8 334.3 541.3 348.9 550.0 343.3 548.1 
79    250.6 507.0 266.4 509.1 285.6 510.8 277.5 508.1 
80 Hemichordata 504.5 636.1 504.2 537.6 504.2 540.0 504.1 545.6 504.2 546.2 
81    378.5 585.8 404.9 594.0 421.7 605.3 420.1 605.0 
82 Protostomia 552.85 636.1 598.0 626.4 603.6 647.5 644.4 712.3 632.2 690.5 
83    582.7 616.2 587.6 633.1 620.3 693.2 610.6 672.4 
84    570.0 605.7 573.7 618.3 596.5 671.0 588.8 649.1 
85 Annelids-

Molluscs 
534 636.1 552.3 586.1 554.1 591.7 564.2 630.1 559.5 611.9 

86 Capitellid-
Polychete-Leech 

476.5 636.1 476.3 548.1 480.9 550.9 468.3 573.6 476.4 550.0 

87    398.5 536.0 407.4 534.2 413.1 548.3 406.2 533.6 
88    310.5 501.1 312.3 489.6 315.3 499.9 312.1 481.2 
89    201.6 487.0 220.6 485.2 231.3 482.9 226.7 473.5 
90 Mollusca 534 549 538.4 549.6 539.1 549.7 540.8 550.0 540.5 550.0 
91 Bivalve-

Gastropod 
530 549 530.0 539.1 530.0 538.6 530.0 538.2 530.0 538.3 

92 Gastropoda 470.2 549 470.0 508.3 470.3 506.2 450.8 505.3 470.1 500.9 
93    265.0 516.5 285.1 512.1 300.3 505.4 291.9 507.6 
94    310.6 541.4 314.2 538.2 319.4 549.4 318.5 544.6 
95    72.7 452.4 84.3 447.5 93.3 454.7 88.8 447.7 
96 Ecdysozoa 528.82 636.1 577.8 613.2 581.9 627.1 610.1 644.5 602.6 641.6 
97 Nematoda-

Arthropoda 
528.82 636.1 561.4 599.8 563.8 608.3 583.9 628.6 577.8 625.0 

98 Lobopodia 528.82 636.1 545.1 582.8 547.8 588.5 558.5 606.1 554.7 602.0 
99 Euarthropoda 514 636.1 530.8 559.4 531.9 560.7 535.4 571.0 534.5 567.1 
100 Mandibulata 514 531.22 523.4 532.3 524.0 532.3 525.2 532.6 525.0 532.4 
101 Pancrustacea 514 531.22 514.0 522.8 514.0 522.3 514.0 521.8 514.0 521.9 
102 Copepoda-

Branchiopoda 
499 531.22 499.0 510.1 498.9 509.2 498.9 508.0 498.9 508.3 

103    414.4 496.1 414.2 493.6 418.0 490.3 417.6 491.5 
104    324.8 441.5 325.3 438.8 327.0 433.4 327.6 435.5 
105 Eumetabola 305.5 413.6 305.3 396.8 305.3 393.1 305.2 387.2 305.2 388.3 
106 Pcynogonida-

other 
chelicertates 

497.5 531.22 497.5 526.1 497.5 525.8 497.5 526.9 497.5 526.4 

107 Acari-Arenacea 416 531.22 415.9 479.9 415.8 477.5 415.9 474.0 415.8 474.4 

Note.− Posterior times are the 95% HPD intervals estimated with MCMCTREE under the 

LG+Γ4+F model, using four calibration strategies S1–S4. IR: Independent-rates model. 1P: 

The 203 proteins analysed as a single partition. Node numbers are as in Figure 6.6. 
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Table D.4: 95% HPD interval of posterior divergence times (Ma) for all metazoan clades 

under various partitioning schemes. 

Node Crown group  S1, IR, 1P S1, IR, 2P S1, IR, 4P S1, IR, 5P S4, IR, 10P 

55 Metazoa  680.6 832.7 701.0 831.2 736.9 832.6 748.9 832.3 786.8 833.5 
56   314.6 639.9 326.2 632.6 387.9 639.0 413.3 639.2 440.3 631.0 
57   649.2 776.7 674.7 781.6 712.5 794.3 726.8 798.5 771.7 823.1 
58 Eumetazoa  630.7 652.9 638.9 669.0 664.2 699.9 677.5 711.0 712.2 746.2 
59 Cnidaria  533.3 620.5 532.7 620.2 548.7 635.6 559.0 637.4 596.2 641.7 
60   318.9 554.4 315.9 531.3 315.7 501.8 310.6 487.4 335.4 469.1 
61   110.4 458.5 119.5 388.5 154.1 349.4 159.3 336.3 186.2 320.4 
62   125.5 488.1 155.3 432.4 176.7 365.6 187.8 358.0 207.0 331.1 
63 Bilateria  615.1 637.8 623.1 643.3 636.6 660.0 646.4 666.5 665.6 688.3 
64 Deuterostomia  593.7 627.9 602.2 630.1 617.0 640.5 624.2 644.0 639.5 662.3 
65 Chordata  555.4 611.3 567.9 611.3 586.2 619.3 593.4 621.6 609.0 635.7 
66 Olfactores  516.6 583.6 527.9 584.5 544.0 586.5 552.0 589.6 568.0 600.0 
67   167.9 480.9 215.4 444.5 233.7 391.3 246.4 383.9 274.6 371.0 
68 Vertebrata  459.6 527.9 464.5 520.8 472.3 515.6 475.4 514.4 483.3 512.9 
69 Gnathostomata  432.9 468.7 432.5 464.7 433.6 457.4 434.8 456.2 436.2 451.3 
70 Osteichthyes  420.6 444.1 420.6 437.8 420.6 430.6 420.6 428.8 420.6 425.0 
71 Tetrapoda  338.3 351.4 339.8 351.7 342.7 351.9 343.8 352.0 346.5 352.1 
72 Amniota  318.0 331.4 318.0 329.3 318.0 325.2 318.0 323.9 318.0 321.5 
73 Mammalia  165.1 200.7 164.9 200.0 164.8 197.8 164.8 196.4 164.8 186.5 
74 Euarchontoglires  61.4 140.2 61.3 102.8 61.3 76.8 61.3 73.2 61.3 67.3 
75 Cyclostomata  358.1 458.0 358.3 442.2 358.1 426.1 358.2 420.4 358.3 416.5 
76 Xenambulacraria  569.8 614.5 580.7 615.2 595.1 623.7 601.7 626.6 617.6 639.9 
77 Ambulacraria  534.6 591.3 542.9 588.2 555.1 591.4 559.6 592.3 572.6 600.1 
78   330.6 537.8 331.9 516.0 341.2 488.9 348.9 481.5 367.8 469.9 
79   250.6 507.0 268.9 468.2 296.2 445.1 304.2 436.2 317.9 422.4 
80 Hemichordata  504.2 537.6 504.1 525.8 504.1 517.5 504.1 515.5 504.1 511.4 
81   378.5 585.8 441.9 575.7 492.5 578.8 497.3 576.4 526.9 588.8 
82 Protostomia  598.0 626.4 605.5 628.4 617.6 637.8 624.1 640.3 635.3 653.5 
83   582.7 616.2 591.8 618.1 603.6 626.5 609.7 628.6 621.2 640.5 
84   570.0 605.7 578.4 605.9 590.2 613.5 595.6 615.6 605.7 625.4 
85 Annelids-Molluscs  552.3 586.1 559.2 585.3 567.2 588.8 570.6 590.3 577.4 595.1 
86 Capitellid-

Polychete-Leech 
 

476.3 548.1 476.3 536.4 476.3 528.3 476.3 526.4 476.3 517.5 

87   398.5 536.0 421.0 517.4 435.6 507.6 439.3 505.6 439.2 493.5 
88   310.5 501.1 320.7 469.9 362.9 465.2 371.9 462.2 384.0 446.6 
89   201.6 487.0 248.1 452.6 265.9 417.3 272.5 401.6 295.2 379.2 
90 Mollusca  538.4 549.6 540.8 549.8 543.4 549.9 544.3 550.0 545.8 550.3 
91 Bivalve-Gastropod  530.0 539.1 530.0 536.5 530.0 534.2 530.0 533.7 530.0 532.6 
92 Gastropoda  470.0 508.3 470.1 497.9 470.0 487.4 470.0 484.6 470.0 478.8 
93   265.0 516.5 304.5 486.8 313.2 452.3 314.3 444.6 324.8 431.8 
94   310.6 541.4 317.1 512.1 344.0 502.9 349.3 489.6 394.2 481.2 
95   72.7 452.4 90.5 350.9 110.4 254.0 122.5 248.1 140.6 225.2 
96 Ecdysozoa  577.8 613.2 585.3 613.2 594.3 618.4 599.6 620.5 608.8 628.9 
97 Nematoda-

Arthropoda 
 

561.4 599.8 568.6 598.4 577.7 602.4 581.6 604.0 589.8 610.4 

98 Lobopodia  545.1 582.8 551.8 580.3 558.4 581.2 561.8 582.9 568.5 587.0 
99 Euarthropoda  530.8 559.4 534.8 555.5 538.9 554.5 540.1 554.3 543.3 556.2 
100 Mandibulata  523.4 532.3 526.2 532.6 528.4 533.1 528.9 533.4 530.3 536.1 
101 Pancrustacea  514.0 522.8 514.0 520.4 514.0 518.5 514.0 518.0 514.0 517.5 
102 Copepoda-

Branchiopoda 
 

499.0 510.1 498.9 505.8 498.9 502.5 498.9 501.8 498.9 500.5 

103   414.4 496.1 420.1 485.7 423.7 476.8 426.1 474.9 435.2 468.1 
104   324.8 441.5 328.0 424.0 330.4 392.4 332.8 387.2 334.8 374.4 
105 Eumetabola  305.3 396.8 305.3 378.9 305.2 352.7 305.3 347.2 305.3 335.8 
106 Pcynogonida-

other chelicertates 
 

497.5 526.1 497.4 520.5 497.4 514.7 497.4 512.5 497.4 509.1 

107 Acari-Arenacea  415.9 479.9 415.9 466.3 415.8 453.2 415.7 448.4 415.8 436.4 

Note.− Posterior times are the 95% HPD intervals, estimated with MCMCTREE under the  

LG+Γ4+F model, using the calibration strategy 1 and different partitioning schemes. 1P: The 

203 proteins analysed as a single partition. 2P, 4P, 5P, 10P: The proteins are grouped into 

2, 4, 5, 10 partitions according to their evolutionary rates. Node numbers are as in Figure 

6.6. 
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Figure D.1: Marginal prior densities of divergence times for all nodes in the tree under four 

different calibration strategies. For each strategy results from two MCMC runs are reported. 

Node numbers are as in Figure 6.6. Calibrated nodes are denoted with (C). 
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Figure D.2: Marginal posterior densities of divergence times for all nodes in the tree under 

four different calibration strategies. For each strategy results from two MCMC runs are 

reported. Node numbers are as in Figure 6.6. Calibrated nodes are denoted with (C). 
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Figure D.3: Calibration, marginal prior and marginal posterior densities for various 

partitioning schemes under the calibration strategy 1. Node numbers are as in Figure 6.6. 

Calibrated nodes are denoted with (C). 
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Figure D.4: Sensitivity of the time estimates to the fossil used to constrain basal clades in 

the metazoan phylogeny. The posterior mean times estimated using the fossil Kimberella to 

constrain the ages of the Metazoa, Eumetazoa, Bilateria and Protostomia clades are plotted 

against the estimates using the fossil Aldanella. The estimates are virtually identical. 
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