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The two visual systems hypothesis suggests processing of visual information into two distinct routes in
the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects.
Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent,
but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral
streams are important for controlling complex object-oriented hand movements, especially skilled grasp.
Anatomical studies have reported the existence of direct connections between dorsal and ventral stream

Keywords: areas. These physiological interconnections appear to be gradually more active as the precision demands
Hand of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed in-
ggﬁgl stream formation about object identity, stored in ventral stream areas, when the object properties require
Connectivity complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related
Visual input information from dorsal stream areas to refine the object internal representation. Future research will
Haptics provide direct evidence for which specific areas of the two streams interact, the timing of their inter-

actions and in which behavioural context they occur.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

When grasping an object, the processing of sensory informa-
tion is crucial to perform the movement accurately. For instance,
the grasp needs to be adapted to the size and location of the ob-
ject, which can be visually perceived before the start of the motion
and implemented into the motor plan. During the movement, vi-
sual and haptic feedback can be used to adjust errors. It has been
suggested that the information used to control movements is
processed differently than information that is used to recognise
objects. An influential theory divides the processing of visual in-
formation into two streams that follow different routes in the
brain after the primary visual cortices. Ungerleider and Mishkin
(Mishkin et al., 1983; Ungerleider and Mishkin, 1982) made this
division based on anatomical findings in monkeys. From the early
visual areas, the ventral stream runs to the inferotemporal cortex,
whereas the dorsal stream projects to the posterior parietal cortex.
Mishkin et al., (1983) concluded that the ventral stream was im-
portant for the identification of objects (‘what’) and the dorsal
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stream for spatial information (‘where’). Similar dissociations have
been found in auditory (Romanski et al., 1999) and haptic (Reed
et al.,, 2005) perception. Goodale and Milner (Goodale et al., 1994;
Goodale and Milner, 1992; Milner and Goodale, 2008) dis-
tinguished the two streams not into the kind of information that is
processed, but into the function the information is used for. They
argued that the ventral stream is involved in the perception of
information about objects (vision for perception) and the dorsal
stream processes information to guide actions (vision for action).
Furthermore, it has been suggested that the dorsal stream can be
subdivided into a dorsolateral and dorsomedial circuit (Binkofski
and Buxbaum, 2013; Grafton, 2010; Rizzolatti and Matelli, 2003).
The dorsolateral circuit includes the anterior intraparietal sulcus
(aIPS) and the ventral part of the premotor cortex (PMv). The
dorsomedial circuit runs through V6A and the medial intraparietal
sulcus to the dorsal premotor cortex (PMd). While dorsomedial
regions classically contribute to the planning of reaching move-
ments (Davare et al., 2015; Davare et al., 2012; Vesia and Crawford,
2012), dorsolateral areas integrate grasp-related information (Da-
vare et al., 2007; Davare et al., 2010; Tunik et al., 2005). Recently,
these two subcircuits have also been found to interact depending
on the degree of online control required by the action (Grol et al.,
2007; Verhagen et al., 2013).
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Since the introduction of the dual-stream theory, many studies
have confirmed and disproved hypotheses of this theory. It is not
the scope of this paper to provide an extended review of the lit-
erature, as others have provided such overviews (Cloutman, 2013;
Grafton, 2010; Milner and Goodale, 2008). Critical views on the
theory have been reported as well (Pisella et al., 2006; Schenk and
McIntosh, 2010; Smeets and Brenner, 2006). Still, the dual-stream
theory remains to have a strong impact on the interpretation of
many motor and perceptual findings as it often provides a good fit
to the different pattern of results found in motor control or per-
ceptual tasks (e.g. Aglioti et al., 1995). Recently, more attention has
been focussed on the possible interactions between the dorsal and
ventral streams. This paper proposes that these interactions might
be especially important for complex object-oriented hand move-
ments, such as skilled grasp. Skilled grasp can be defined as hand
movements requiring independent control of each finger, which
has been shown to rely on a highly developed corticospinal tract
(Lemon, 2008). The motor command mediating skilled grasp is
characterised by fractionated movements and the control of small
muscle groups in a highly selective manner. Skilled grasp is driven
by sensorimotor processing of object properties, such as the or-
ientation, size, material or shape. In addition, the context in which
the object is grasped also plays a role, for instance in the use of
tools or when the same object can be used for different
applications.

2. Anatomical connections between dorsal and ventral
streams

Neuroanatomical studies have not only traced the dorsal and
ventral pathways (Mishkin et al., 1983; Ungerleider and Mishkin,
1982) but have also established numerous connections between
them (see also Cloutman, 2013; Grafton, 2010). In studies where
tracer fluids were injected in the brain of monkeys, connections
between inferotemporal areas of the ventral stream and parietal
areas of the dorsal stream were discovered. For instance, in-
ferotemporal area TE has connections with the intraparietal sulcus
and prefrontal areas (Borra et al., 2010). TE was also found to be
connected directly to the inferior parietal lobe, or indirectly via the
superior temporal sulcus (Zhong and Rockland, 2003). The pos-
terior portion of the inferior temporal cortex TEO has connections
with the lateral intraparietal area (Distler et al., 1993). In turn, alPS
has been found to be connected not only to dorsal stream areas,
but also to the superior and middle temporal gyrus (Borra et al.,
2008).

In human subjects, diffusion tensor imaging reveals white
matter tracts between the middle temporal gyrus (MTG) and the
supramarginal gyrus in the context of tool use (Ramayya et al.,
2010). When applying transcranial magnetic stimulation (TMS) to
parietal areas, remote activations have been found in the ipsi-
lateral middle temporal and fusiform gyri (Zanon et al., 2010).
Altogether this indicates that both streams are able to commu-
nicate with each other in a bidirectional way, although the func-
tional role of the interactions between these separate areas is still
unclear.

3. Behavioural studies in patients and healthy subjects

Anatomical evidence for connections between the dorsal and
ventral streams does not inform us about the behavioural context
in which these interactions might be important. One way to ad-
dress this issue is to investigate what behavioural parameter is
impaired when one of the streams is damaged. Indeed, a sub-
stantial piece of evidence for the distinct role of the dorsal and

ventral streams comes from patient studies. If either the dorsal or
ventral stream is damaged, this leads to dissociable behavioural
deficits. For example, patients with optic ataxia have lesions in
parietal areas, which are part of the dorsal stream. They have
deficits in reaching and grasping objects, but are able to visually
discriminate different objects. On the other hand, patients with
visual form agnosia show lesions to ventral stream areas but have
intact dorsal areas. A well-known patient with this type of im-
pairment is patient DF. In contrast to patients with optic ataxia,
she is unable to visually identify objects, but if asked to pick them
up she performs as well as healthy subjects (Goodale et al., 1994).
This pattern of results confirms the hypothesis of the dual-stream
theory: the dorsal stream is used to guide actions and the ventral
stream to perceive object properties.

Despite this seemingly clear evidence for an independent
processing of information, there may be particular action contexts
in which retrieving details about object identity is crucial for
controlling how the object should be grasped, for example, with
tools. The objects that had to be picked up in the study of Goodale
et al. (1994), were meaningless shapes. In more demanding tasks
such as grasping complex shapes (Goodale et al., 1994), when
predictions must be made about tool use (Carey et al., 1996) or
comfortable end-position (Dijkerman et al., 2009), errors are seen
in DF’s grasping behaviour as well. In addition, lesions in both
parietal and occipitotemporal areas are especially associated with
impairments in (pantomimed) tool use (Ambron et al., 2015;
Hoeren et al., 2014). It is suggested that increased functional in-
teractions between the two streams are needed as the task re-
quires more complex processing of the object conceptual
knowledge.

In behavioural studies involving healthy participants, some
findings show that the dorsal and ventral streams are not as in-
dependent as might have been suggested by the dual-stream
theory (Franz et al., 2000; Lee and van Donkelaar, 2002; Pavani
et al.,, 1999), for reviews see Schenk and McIntosh (2010), Smeets
and Brenner, (2006) and Smeets et al. (2002). For example, illu-
sions thought only to influence the ventral stream (e.g. Aglioti
et al., 1995) have been found to affect the lifting, but not the
grasping of objects (Brenner and Smeets, 1996). Furthermore, a
visually noticeable weight change after the start of the movement
can be incorporated into the lifting movement of an object, despite
the short time frame (Brouwer et al., 2006). The authors argued
that this online adjustment, thought to rely on the dorsal stream,
seems to be influenced by visual cues about weight information
that are processed by the ventral stream.

Although behavioural studies provide valuable insights into the
functioning of the brain, it cannot be inferred which specific areas
of each stream interact. The question might not be if the two
streams interact, but rather how, when, and in which behavioural
context. As mentioned above, the various anatomical sources for
connections between areas of the dorsal and ventral streams do
not reveal how these areas communicate in a specific task. Patient
studies have the limitation that lesions are often incomplete or
spread over multiple areas. Therefore, patients show a variety of
impairments (Pisella et al., 2006), where it is not always clear if
these deficits arise from damages in lower or higher order visual
areas (Serino et al., 2014). In addition, redundancy and adaptation
of specific areas might lead to false conclusions. Non-invasive
procedures like transcranial magnetic stimulation (TMS), electro-
encephalograms (EEG) and functional magnetic resonance ima-
ging (fMRI) allow us to study the activation of specific brain areas
in healthy subjects. For instance, during grasping movements, an
extensive network of cortical areas is recruited (Binkofski et al.,
1999; Ehrsson et al., 2000; Gallivan et al., 2011, for reviews see also
Davare et al., 2011 and Grafton, 2010). There is, however, little
research that looked at the involvement of both dorsal and ventral
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stream areas in grasping. In the following section, we will discuss
fMRI and TMS studies investigating skilled grasping behaviour in
healthy participants.

4. Interactions between dorsal and ventral stream subserve
skilled grasp

The dorsal stream is involved in the control of action with
online visual feedback. When the object must be grasped from
memory, as happens when a delay is introduced between the
presentation of the object and the actual grasp, online visual
control is not possible. As such, delayed grasping is thought to be
controlled by the ventral stream (Milner and Goodale, 2008). In-
deed, optic ataxia patients improve in the pointing to targets and
grasping if a delay is introduced (Milner et al., 2001; Milner et al.,
1999), whereas for visual agnosia patient DF performance de-
creases (Goodale et al., 1994).

In contrast to this idea, other studies have shown that both the
dorsal and ventral streams are involved in delayed grasping. Cohen
et al. (2009) applied TMS to the lateral occipital cortex (LO), a brain
area in the ventral stream, and the alPS, a dorsal stream area. They
found that TMS to LO impaired delayed grasping, but TMS to aIPS
impaired both immediate and delayed grasping. In an fMRI study,
Singhal et al. (2013) found that the lateral occipital complex (LOC)
and the early visual cortex (EVC) were reactivated with delayed
grasping. Dorsal stream areas remained active during the delay, as
shown by sustained activation of aIPS, PMd and the supplemen-
tary motor area (SMA). These studies indicate that in delayed or
memory driven tasks the ventral and dorsal areas interact to
control grasping. The information that is needed to perform an
accurate grasping movement when no visual input is present
anymore (i.e. after the delay) seems to be acquired from ventral
stream areas.

Moreover, in grasping experiments without a delay, circum-
stances arise where the interactions between dorsal and ventral
streams are more important. In a study of Verhagen et al. (2008),
participants were asked to grasp an object that was positioned in
different orientations with monocular or binocular vision. When
the object is more slanted, the depth information from pictorial
cues becomes more important in monocular viewing conditions.
They found that in this condition the ventral stream area LOtv was
more coupled with dorsal stream areas alPS and PMv. The authors
concluded from this that when prehension relies on pictorial in-
formation, the ventral stream supports the dorsal stream in the
organisation of the movement.

An important limitation of the above studies is that the object
was not visible during grasping (Verhagen et al., 2008) or even
during the planning of the grasping movement (Cohen et al., 2009;
Singhal et al.,, 2013) therefore preventing online visual control.
Moreover, there are indications that in studies using remembered
targets it is not the delay or a shift from dorsal to ventral stream
control, but the amount of visual feedback that causes differences
between grasping after a delay and with full vision (Franz et al.,
2009). Since the dual-stream theory states that the dorsal stream
controls movements through online visual control, it remains
unclear if the same results would be found under full vision. Some
experiments with sustained visual information have been per-
formed with pantomime grasping and tool use. In pantomime
grasping, increased connections between alPS and the posterior
inferotemporal gyrus (pITG) were found when participants had to
change their grip selection for an object (Makuuchi et al., 2012).
The authors used a dynamic causal model analysis for the panto-
mimed grasping of different objects with a precision or power
grip. However, it must be noted that pantomimed grasping re-
cruits different brain areas than actual grasping (Kroéliczak et al.,

2007).

In even more complex tasks than simple grasping, like tool use,
a broad network of brain areas is active. Brandi et al. (2014)
showed that when objects were used instead of just transported,
dorsomedial areas are recruited, but also ventral LOC. Specifically
for tool use compared to the use of neutral bars, dorsolateral areas
are more active as well as the MTG in the ventral stream. This
suggests that tool use, which requires complex movements and
conceptual knowledge of the objects, critically relies on interac-
tions between ventral and dorsal areas.

It is noteworthy that besides interconnections between differ-
ent areas of both streams, there might also be single areas that are
involved in object identification as well as motor control pro-
cesses. For example, motion processing area V5/MT which is active
in the perception of motion (Maunsell and Van Essen, 1983) was
also found to be involved in catching a moving object compared to
grasping a stationary object (Schenk et al., 2005).

A recent study examined the representation of object weight in
dorsal stream areas controlling object lifting and ventral stream
areas processing object properties (Gallivan et al., 2014). The au-
thors focussed on the primary motor cortex, the somatosensory
cortex and PMd, as well as ventral areas in LOC: LO and the pos-
terior fusiform sulcus. Interestingly, LOC represented object
weight, even though no visual differences were visible between
the objects. When there were different texture cues, texture-sen-
sitive areas in the occipitotemporal complex (OTC) represented
object weight as well as texture. These results indicate that
properties that are not visual and related to object-oriented ac-
tions are represented in the ventral stream. The ventral stream
could thus be involved in storing learned associations between
visual object properties and mechanical properties, for example
weight, that can be used to guide behaviour.

In sum, there are situations in which the dorsal and ventral
streams seem to be jointly involved in grasping. The ventral
stream seems to be gradually more recruited as information about
the object from pictorial cues or memory is needed to control the
grasping movement, or if conceptual knowledge about more
complex objects that are used every day or tools needs to be re-
trieved for allowing the most appropriate grasp.

5. Towards defining a possible hierarchical organisation in
ventral-dorsal stream interactions

Still much remains unknown about the precise interactions
between the dorsal and ventral streams underlying grasping (see
also Cloutman (2013) for several options). First, how these areas
are hierarchically linked remains an open question. Besides ana-
tomical connections, little is known about which areas do func-
tionally interact and which areas control how much interaction is
needed between the two streams. Regarding the input of the
ventral to the dorsal stream, the more lateral part of the dorsal
stream might play a specific role, as the dorsolateral stream is
suggested to be more involved in using rather than just grasping
objects (Binkofski and Buxbaum, 2013) and considering its ana-
tomically more adjacent position to the ventral stream, it is
plausible that information from the ventral stream is fed to the
dorsolateral stream. Could the reliance on object identity in-
formation in more complex object-oriented hand actions be pro-
cessed by the dorsolateral stream without inputs from the ventral
stream? This seems unlikely considering the finding of the in-
volvement of LOC, which is part of the ventral stream. A candidate
structure in the dorsal stream that might combine information
from the ventral stream in sensorimotor control tasks is aIPS. This
area has connections with many other areas in both streams (Borra
et al.,, 2008) and can incorporate spatial and pictorial information
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into the motor plan (Verhagen et al., 2012). The involvement of
alPS in cross-modal (visual and haptic) processing of object fea-
tures (Grefkes et al., 2002) might also be relevant for this in-
tegration, considering the importance of haptic feedback for the
calibration of grasping movements (Bingham, Coats et al., 2007;
Schenk, 2012). Moreover, LOC plays a role in object recognition for
both haptically and visually perceived stimuli (Amedi et al., 2001;
Costantini et al., 2011). The multimodal nature of these areas
might be a benefit for complex grasping tasks. In other words,
increased interactions between, for instance, LOC and alPS might
be important to integrate information from multiple senses into
the grasp plan.

How information arising from the two streams is finally im-
plemented into a grasping plan is another open question. Top-
down control and recurrent processes might arrange the in-
formation that is gathered from earlier visual areas. The dorsal
stream projects to premotor areas PMv and PMd, which as men-
tioned earlier, play a significant role in grasping (Davare et al.,
2006; Singhal et al., 2013; Verhagen et al., 2008) and can bias the
motor command. For instance, in an experiment where monkeys
had to reach for targets, neuronal recordings indicated that PMd
was activated before the parietal reach region (PRR) when mon-
keys were free to choose the target compared to a predefined
search order, suggesting that PMd influenced PRR when a decision
for selecting a movement had to be made (Pesaran et al., 2008).
Likewise, prefrontal areas might play an important part in struc-
turing the incoming information from the two streams. In the af-
fordance competition hypothesis, information is processed recur-
rently in parietofrontal loops until enough evidence has been
gathered for selecting a specific action amongst competing alter-
natives (Cisek, 2007). For example, it has been shown that the
dorsolateral prefrontal cortex (DLPFC) is involved in action selec-
tion, especially when individuals are free to choose their move-
ment (Duque et al., 2010; Hadland et al., 2001; Hasan et al., 2013)
Here we argue for a similar mechanism in selecting the appro-
priate grasp amongst multiple competing grasps driven by the
combination of an object representation and its contextual use
located in ventral stream areas. The role of DLPFC in skilled grasp
is not yet understood but it is likely DLPFC channels the interac-
tions between the ventral and dorsal stream based on how context
should be incorporated into the selection of a specific grasp.

This hierarchical organisation of ventral-dorsal stream inter-
actions can also control when these connections come into play.
Information transfer from the ventral stream into the motor
command that is implemented by dorsal stream areas might occur
in a gradual way. Fast movements might be controlled auto-
matically (e.g. automatic pilot, Pisella et al., 2000), whereas for
movements in which (non-spatial) object properties must be in-
tegrated in the movement or movement correction input from the
ventral stream is required, but this may take time. A study in
which participants had to make pointing movements to different
targets has found that the improved behaviour when pointing
with a delay was gradual with optic ataxia patients (Himmelbach
and Karnath, 2005). This suggests a continuous transfer from
dorsal to ventral stream control. Milner and Goodale (2008)
mention that there might be a distinction between the planning
and programming of an action, as the planning might involve re-
ceiving information about object properties from the ventral
stream, whereas the dorsal stream conducts the programming.
However, ventral stream activations have been found during the
execution phase of a grasping movement as well (Brandi et al.,
2014; Singhal et al., 2013). Unfortunately, subtle timing differences
are difficult to distinguish in fMRI experiments. Methods with a
higher temporal resolution could provide more insight into the
relative timing of activation between ventral and dorsal areas.

Similar to a possible gradual transfer of information from the

ventral stream to the dorsal stream as a function of time, there
might also be a continuous increase of interactions between the
streams with increasing task complexity. Ranging from simple
grasping tasks to complex tool use, where conceptual knowledge
about object functions and thus identity is more important, an
increase of ventral stream contribution might be expected. De-
pending on the task context, information from the ventral stream
might be weighted differently in a way comparable to maximum-
likelihood estimation (Ernst and Banks, 2002). In this model,
sensory information from multiple sources is incorporated into the
estimation of an object property based on its reliability, with
higher weights given to more reliable sensory sources. In a similar
way, the impact on grasp control can be higher when specific
object identity information is more relevant and reliable for the
task. This weighting might present itself especially in illusionary
contexts, where information conflicts occur. In addition, time and
accuracy constraints could shape the ventral stream input, because
these computations are likely to increase processing time in the
typically fast dorsal stream visuomotor loops. Furthermore, ex-
perience with the task might alter the contribution weighting. The
gradual interaction between ventral and dorsal stream might be
altered if a movement is well learned and becomes automatic.
Milner and Goodale (2008) argued that unpractised movements
required influence of the ventral stream that transferred to dorsal
stream control during learning. However, when contextual in-
formation is still important, ventral stream influence will probably
not be completely diminished. For instance, a highly practiced
movement like picking up a cup of tea still requires knowledge
about whether the cup is made out of plastic or porcelain to lift it
with the correct force. Ventral-dorsal interactions might be more
optimized in these perfected and familiar actions, possibly invol-
ving memorized motion schemas that are learned to be associated
with specific contextual information. Therefore, experience might
also decrease time costs associated with slow ventral stream
processing by shaping connectivity strength as more permanent
pathways are formed.

A largely unaddressed point is the transfer of information from
the dorsal stream to the ventral stream. The study of Gallivan et al.
(2014) suggests that information gathered from a grasp (weight)
can be stored in the ventral stream, possibly to make associations
between mechanical and material object properties. In this way,
action related information can be used to build up a richer internal
object representation. These bidirectional interactions between
the ventral and dorsal streams might be crucial for learning to
manipulate new objects.

Finally, a more difficult question is what kind of information is
transferred. It might seem inefficient to process each object
property twice: once in the ventral and once in the dorsal stream
(Franz et al., 2009). Similarly, different effects of illusions on motor
and perceptual tasks might be explained by different attributes
that are used to perform the task (Smeets et al., 2002). It is difficult
to infer what information is used or even necessary to perform
certain tasks, but investigating the interactions in specific task
contexts might lead to a better understanding of the information
that is communicated between the different areas in the two
streams.

6. Conclusions

We suggest that the dorsal and ventral streams alone are not
sufficient to control skilled grasp, but that interactions between
the streams are necessary. In simple action contexts, grasp control
can be driven only by the dorsal stream, but as the complexity of
object-related properties increases and information about object
identity is necessary, the involvement of ventral stream areas
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becomes more prominent for ensuring accurate movement per-
formance. Still, much about the nature, strength and timing of
interactions between both streams remains unknown and further
research is needed to address these issues.
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