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ABSTRACT

Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the on-
going electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations.
These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and
consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchro-
nization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in
the parameters that control oscillations in neuronal networks and, depending on the frequency at which they
occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are com-
monly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial vari-
ability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to
(1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of
ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental fac-
tors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using
principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distri-
butions; (2) time-frequency multiple linear regression with dispersion term (TF-MLR4) enhances the signal-to-
noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and
magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with
other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods
described in this article allow exploring fully non-phase-locked stimulus-induced cortical oscillations, obtaining
single-trial estimate of response latency, frequency, and magnitude. This permits within-subject statistical compar-

isons, correlation with pre-stimulus features, and integration of simultaneously-recorded EEG and fMRL
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

onset (Mouraux and lannetti, 2008; Pfurtscheller and Lopes da Silva,
1999). The same events can also induce non-phase-locked modulations

The human electroencephalogram (EEG) and magnetoencephalo-
gram (MEG) largely reflect synchronous changes of slow postsynaptic po-
tentials occurring within a large number of similarly oriented cortical
pyramidal neurons (Nunez and Srinivasan, 2006). Brisk sensory, motor
or cognitive events can elicit transient changes in the ongoing EEG activ-
ity. Such changes are commonly detected as event-related potentials
(ERPs) that are both time-locked and phase-locked to the stimulus
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of ongoing oscillatory EEG activity, consisting in transient decreases
(event-related desynchronization, ERD) or increases (event-related syn-
chronization, ERS) of EEG power, usually confined to a specific frequency
band. The functional significance of ERD and ERS differs according to the
frequency band in which they occur. For example, within the alpha
band (frequencies ranging from 8 to 12 Hz) ERD and ERS have been sug-
gested to reflect cortical activation and cortical deactivation, respectively
(reviewed in Pfurtscheller and Lopes da Silva, 1999). In contrast, ERS in
the gamma band (frequencies >30 Hz) has been suggested to reflect
the formation of transient cortical assemblies and thus to play a role in
cortical integration (Rodriguez et al.,, 1999; Tallon-Baudry et al., 1997).
Similarly to ERPs, the magnitude of ERD/ERS is often several factors
smaller than the magnitude of the background EEG activity (Hu et al.,
2010). To enhance the signal-to-noise ratio (SNR) of ERD/ERS, across-

1053-8119/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.01.062&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.neuroimage.2015.01.062
mailto:huli@swu.edu.cn
mailto:g.iannetti@ucl.ac.uk
http://dx.doi.org/10.1016/j.neuroimage.2015.01.062
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/10538119

L. Hu et al. / Neurolmage 111 (2015) 442-453 443

trial averaging of time-frequency decompositions (Pfurtscheller and
Lopes da Silva, 1999) is the most widely used approach. This approach
is based on the expression of signal power within a specific frequency
band of interest, as a function of time, or the joint time-frequency distri-
bution (TFD) of the power changes obtained using different approaches,
like the windowed Fourier transform or the continuous wavelet trans-
form (Mouraux and lannetti, 2008). Unfortunately, all the dynamic infor-
mation concerning across-trial variability of ERP/ERD/ERS is lost by this
across-trial averaging procedure (Mouraux and lannetti, 2008). This var-
iability may reflect important factors such as changes in stimulus inten-
sity, habituation (Iannetti et al,, 2008; Ohara et al., 2004; Stancak et al.,
2003), as well as fluctuations in vigilance, expectation, task complexity,
and emotional or attentional status (Mu et al., 2008; Ploner et al.,
2006). The availability of robust signal processing techniques that can
quantify latency, frequency, and magnitude of stimulus-induced oscilla-
tions in single-trials would allow exploring such physiologically-relevant
information in a range of analyses. These include within-subject statisti-
cal comparisons, correlation with pre-stimulus features, integration of
simultaneously-recorded EEG and functional magnetic resonance imag-
ing data (fMRI) (Debener et al., 2006).

A variety of advanced methods for single-trial analysis of phase-
locked ERPs have been proposed (Barbati et al., 2008; Barbati et al.,
2006; Hu et al., 2010; Hu et al,, 2011b; Jung et al,, 2001; Mayhew et al.,
2010; Mayhew et al., 2006; Porcaro et al., 2008; Porcaro et al., 2009;
Porcaro et al., 2010; Quiroga, 2000; Quiroga and Garcia, 2003; Tang
etal,, 2005; Tecchio et al,, 2007). An important step to improve the effec-
tiveness of extracting single-trial information is enhancing the low SNR
of ERPs. This can be obtained by exploiting the spatial information of
multielectrode EEG recordings using spatial-temporal filtering based
on blind source separation (BSS) methods (e.g., independent component
analysis [ICA] and second-order blind identification) to isolate stimulus-
related responses from background EEG (Bingham and Hyvarinen, 2000;
Hyvarinen, 1999; Hyvarinen and Oja, 2000; Jung et al., 2001; Makeig
et al., 1997; Tang et al., 2005). Time-frequency filtering based, for exam-
ple, on a continuous or discrete wavelet transform (Hu et al., 2010; Hu
et al, 2011b; Jongsma et al., 2006; Mouraux and Plaghki, 2004;
Quiroga, 2000; Quiroga and Garcia, 2003) can also be used to isolate ef-
fectively stimulus-related, phase-locked responses from background
EEG and non-cerebral artefacts. In a previous study aiming at measuring
single-trial ERP features, Mayhew et al. (2006) suggested the use of a
multiple linear regression method to estimate ERP latencies and ampli-
tudes. This approach was later extended by including a dispersion term
to increase the accuracy and the number of estimated features (Hu
et al., 2011a). Importantly, most of the available single-trial analysis
methods were developed to estimate stimulus-evoked phase-locked re-
sponses in the time domain (i.e., ERPs). Therefore, these methods are en-
tirely blind to stimulus-induced non-phase-locked modulations of
ongoing EEG oscillations (i.e., ERD and ERS). Extending these approaches
to explore the dynamic information of stimulus-induced non-phase-
locked activity at a single-trial level constitutes the objective of the pres-
ent study.

Laser-evoked potentials (LEPs) are considered the best tool to assess
the function of nociceptive pathways, and are widely used in both phys-
iological and clinical studies (e.g., Bromm and Treede, 1991; Cruccu
et al.,, 2008; lannetti et al., 2001). When applied onto the skin, brief
laser heat pulses excite selectively Ad and C fibre free nerve endings in
the superficial epidermal layers without coactivating Ap mechanore-
ceptors (Bromm and Treede, 1984; Carmon et al., 1976), and EEG re-
sponses have been shown to be related to the activation of the
spinothalamic tract (lannetti et al., 2003; Treede et al., 2003). Latency,
amplitude and morphology of LEPs exhibit an especially high across-
trial variability (Hu et al., 2011a; lannetti et al., 2005a; Purves and
Boyd, 1993), most probably due to a unique combination of peripheral
(e.g., time-dependent fluctuations in baseline skin temperature, vari-
ability in the number of activated nociceptive fibres, variability in con-
duction velocity resulting in differences in the spatial summation at

central synapses) and cognitive factors (e.g., fluctuations in vigilance,
attentional focus and task strategy) (Baumgartner et al., 2005; Lee
etal.,, 2009; Legrain et al., 2003). Therefore, laser-evoked EEG responses,
adopted in the current study, represent an interesting model to develop
novel approaches to estimate time-frequency features at single-trial
level, with potential applications for basic and clinical research.

We describe a novel approach to measure different parameters (la-
tency, frequency, and magnitude) of non-phase-locked time-frequency
responses in single trials. Briefly, this approach consists of two steps.
First, we used a principal component analysis (PCA) decomposition
with Varimax rotation to isolate different response features (i.e., ERP,
ERD and ERS) from single-trial TFDs in the time-frequency domain. Sec-
ond, we used a time-frequency multiple linear regression with a disper-
sion term (TF-MLRy) to estimate latency, frequency and magnitude of
ERP, ERD and ERS in each single trial. To validate our approach, we ap-
plied it to both real and simulated EEG datasets.

Methods
Subjects, experimental paradigm and EEG recording

EEG data were collected from ten healthy volunteers (4 females)
aged from 22 to 36 years (29.7 + 4.6, mean =4 SD). All participants
gave written informed consent, and the local ethics committee ap-
proved the procedures.

Noxious radiant-heat stimuli were generated by an infrared neo-
dymium yttrium aluminium perovskite (Nd:YAP) laser with a wave-
length of 1.34 um (Electronical Engineering, Italy). These laser pulses
activate directly nociceptive terminals in superficial skin layers
(Baumgartner et al., 2005; lannetti et al., 2006). Laser pulses were di-
rected to the dorsum of the right hand and a He-Ne laser pointed to
the area to be stimulated. The laser pulse was transmitted via an optic
fibre and focused by lenses to a spot diameter of approximately 7 mm
(38 mm?) at the target site. The duration of the laser pulses was 4 ms.
Three different energies of stimulation were used (E1: 3.5 + 0.7 J; E2:
4 4 0.8 J; E3: 4.5 4 0.7 ]J). With these parameters laser pulses elicit a
clear pinprick sensation, related to the activation of Ad skin nociceptors
(Iannetti et al., 2006) and result in subjective reports of a range of per-
ceived intensities. After each stimulus, the laser beam target was shifted
by approximately 10 mm in a random direction, to avoid nociceptor fa-
tigue and sensitization. The laser beam was controlled by a computer
that used two servo-motors (HS-422; Hitec RCD, USA; angular speed,
60°/160 ms) to orient it along two perpendicular axes (Lee et al., 2009).

EEG data were collected in three recording blocks with different
stimulus energies, which were counterbalanced across subjects. Partic-
ipants were seated in a comfortable chair and wore protective goggles.
They were asked to focus their attention on the stimuli, relax their mus-
cles and keep their eyes open and gaze slightly downward. Acoustic iso-
lation was ensured using earplugs and headphones. Both the laser beam
and the controlling motors were completely screened from the view of
the participants. The experiment consisted of three blocks of 60 trials,
with an inter-stimulus interval ranging between 20 and 25 s. Between
3 and 6 s after each stimulus, participants were asked to rate verbally
the intensity of the sensation evoked by the stimulus, using a numerical
scale ranging from 0 to 10, where 0 was “no pain” and 10 was “pain as
bad as it could be” (Jensen and Karoly, 2001).

The EEG was recorded using 32 Ag-AgCl electrodes placed on the
scalp according to the International 10-20 system, using the nose as ref-
erence. Electrode impedances were kept <5 k(. To monitor ocular
movements and eye blinks, electro-oculographic (EOG) signals were si-
multaneously recorded from two surface electrodes, one placed over
the lower eyelid, the other placed 1 cm lateral to the outer corner of
the orbit. Signals were amplified and digitized using a sampling rate
of 1024 Hz and a precision of 12 bits, giving a resolution of
0.195 v digit~! (System Plus; Micromed, Italy).
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EEG data preprocessing

EEG data were imported and preprocessed using Letswave (http://
nocions.webnode.com/letswave/), and EEGLAB (Delorme and Makeig,
2004), an open source toolbox running under the MATLAB environ-
ment. All statistical analyses were carried out using SPSS 16.0 (SPSS
Inc., Chicago, IL).

Continuous EEG data were down-sampled to 500 Hz and band-pass
filtered between 1 and 30 Hz. EEG epochs were extracted using a win-
dow analysis time of 1500 ms (500 ms before and 1000 ms after the
laser stimulus) and baseline corrected using the pre-stimulus time in-
terval. To test the possible bias in the automated single-trial detection
method, the same number of trials of resting EEG (4000 ms to
2500 ms pre-stimulus) were extracted from the dataset of each subject.

Trials contaminated by eye-blinks and movements were corrected
using an ICA algorithm (Delorme and Makeig, 2004; Jung et al., 2001;
Makeig et al., 1997). EEG epochs were then visually inspected and trials
contaminated by artefacts due to gross movements were removed. In all
datasets, individual eye movements, showing a large EOG channel con-
tribution and a frontal scalp distribution, were clearly seen in the re-
moved independent components.

After these pre-processing steps, 58 & 2 epochs remained for the au-
tomated analysis for each subject (577 for all subjects). Similarly, 58 + 2
epochs of resting EEG were kept for testing detection bias.

EEG data analysis: time-frequency feature (TF-feature) separation

A time-frequency distribution of each single EEG epoch was calculat-
ed using the continuous wavelet transform (CWT) (Mouraux et al.,
2003; Mouraux and lannetti, 2008). The explored frequencies ranged
from 1 to 30 Hz in steps of 1 Hz, and the explored latencies between
—500 and 1000 ms in steps of 2 ms. For each estimated frequency,
the magnitude of the power spectrum was baseline-corrected by
subtracting the average power of the signal in the time-interval be-
tween —400 and — 100 ms, which avoids the positive bias introduced
by the percentage approach (Hu et al., 2014). The result of CWT is an ex-
pression of the oscillation magnitude (in pV) as a function of time and
frequency, including both phase-locked (ERP) and non-phase-locked

Time-frequency distribution

Eigenvalue plot

(ERD/ERS) brain responses (Mayhew et al, 2010; Mouraux and
lannetti, 2008). To distinguish between phase-locked and non-phase-
locked EEG responses, we calculated, in each subject, the phase-
locking value (PLV; Lachaux et al., 1999), as follows:

PLV(t,f) =

NZ\F tf M

where N is the number of trials, and F(tf) is the complex time-frequency
estimate at each point (t,f) of the single-trial EEG time course.

PCA separation

In order to separate physiologically relevant TF-features (i.e., ERP,
ERD, and ERS) within the TFDs of single-trial laser-evoked EEG re-
sponses measured from Cz-nose, we performed a PCA decomposition
with Varimax rotation (Bernat et al., 2005; Dien, 2010; Kayser and
Tenke, 2003), as successfully implemented in several recent studies
(Bernat et al., 2007; Bernat et al., 2005; Mayhew et al., 2010). This ap-
proach allows the separation of physiologically distinct EEG activities
that are contained in the time-frequency plane. The procedure of PCA
with Varimax rotation consists in the following five steps (summarized
in Fig. 1) (Bernat et al., 2005; Mayhew et al., 2010).

(1) Data concentration. The TFD of each single trial was re-arranged
as a vector, and all vectors from all single trials across all sub-
jects were stacked sequentially to form a single matrix. [n this
study, we re-arranged the time-frequency matrices from
Kr x Nt x Ng (three dimensions: trial numbers of all
subjects x time points x frequency points) to Kt x Nt (two di-
mensions: trial numbers x time-frequency points).

PCA decomposition of the covariance matrix. The matrix gener-
ated in step 1 was decomposed into a set of principal compo-
nents (PCs) by PCA.

Varimax rotation. These PCs were further rotated using the
Varimax algorithm, which maximizes the sum of the variances
of the squared loadings so that the matrix can be optimally de-
scribed by a linear combination of few basis functions (Kaiser,
1958; Kayser and Tenke, 2003; Richman, 1986).
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Fig. 1. Time-frequency feature isolation using PCA decomposition with Varimax rotation. Left: Group-level TFDs of laser-elicited responses at electrode Cz. x-axis: latency (s); y-axis: fre-
quency (Hz). Both TFDs (top: Magnitude; bottom: PLV) were averaged across all single-trial TFDs of all subjects, after subtracting the baseline. As compared to the baseline, significant
differences in PLVs are outlined in white (bootstrapping test with FDR correction), which indicate that only the ERP response was phase-locked to stimulus onset, while the other TFD
responses were not. Middle: The eigenvalue plot shows the variance explained by the first 30 extracted PCs. The first three PCs explained the largest amount of variance in the data
(23.1%, 9.2% and 5.9%, corresponding to ERP, ERD and ERS responses), while the explained variance for any of the remaining PCs was less than 5%. Right: The first three PCs correspond
to the ERP, ERD and ERS in the time-frequency plane, respectively. The thresholded TFDs were obtained by applying a two-SD cut-off. The amount of background EEG noise was remarkably
reduced, while the regions corresponding to ERP/ERS/ERD responses were clearly preserved. The ERP region was located at 50-550 ms post-stimulus (in time) and 3-10 Hz (in frequency);
the ERD region at 50-1000 ms and 9-12 Hz; the ERS region at 217-447 ms and 10-19 Hz in frequency.
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(4) Rearrangement of PC vectors to TFDs. The three PCs that ex-
plained the maximum variance in the matrix were selected,
and re-arranged into three-dimensional matrices (i.e., with
the same number of dimensions of the original single-trial
TFDs). Note that the number of PCs was chosen empirically
based on our previous studies (lannetti et al., 2008; Mayhew
etal, 2010; Mouraux et al., 2003), where three main PCs rep-
resented the stimulus-elicited ERP, ERD and ERS. The obtained
PCs were then re-arranged from Kp x N1¢ (two dimensions: PC
numbers x time-frequency points) to Kp x (Nt x Ng) (three di-
mensions: PC numbers x time points x frequency points).
TED thresholding. To isolate significant signal changes from back-
ground noise, the time-frequency maps of each PC were
thresholded using a cut-off at two standard deviations from the
mean of all time-frequency points (Mayhew et al., 2010). The ef-
fect of TFD thresholding using different cut-off levels on the perfor-
mance of single-trial estimation is shown in the Supplementary
Materials. Therefore, only the time-frequency points with ampli-
tudes above (ERP and ERS) or below (ERD) two standard devia-
tions from the mean were retained. The value of all other time-
frequency points was set to zero (Mayhew et al., 2010).

—~
5]
—

The scalp topography of each thresholded TFD was computed by
spline interpolation of the mean power of the 20% time-frequency
points displaying the highest power increase (ERP and ERS) or decrease
(ERD), across all channels (Fig. 2). This “top 20%” summary value re-
flects, in each subject/trial, the highest response magnitudes in the
thresholded TFD for each TF-feature, and reduces the noise that would
be presented by including in the mean all points of the spectrogram,
some of which would display little or no response. This approach avoids
only selecting outlier values, and it has been successfully applied in pre-
vious studies (Iannetti et al., 2008; lannetti et al., 2005b; Mayhew et al.,
2010; Mitsis et al., 2008; Mouraux and lannetti, 2008).

EEG data analysis: single-trial analysis

We describe two methods to estimate automatically the single-trial
latency, frequency and magnitude of each time-frequency feature (ERP,
ERD, and ERS): multiple linear regression in the time-frequency domain
without a dispersion term (TF-MLR) and with a dispersion term (TF-
MLR4). These methods are summarized in Figs. 3 and 4 respectively.
Both methods have been developed into user-friendly software running
under the MATLAB environment, which can be freely downloaded from
www.iannettilab.net.

Time-frequency multiple linear regression (TF-MLR)

The MLR method to estimate the single-trial latency and amplitude of
ERPs in the time domain was first described in Mayhew et al (2006), and
successfully applied to the single-trial detection of the N1 wave of laser-
evoked potentials (LEPs) (Hu et al., 2010), and of auditory-evoked poten-
tials (AEPs) collected during simultaneous EEG-fMRI recording
(Mayhew et al., 2010).

When extended in the time-frequency domain, such time-frequency
MLR (TF-MLR) approach takes into account not only the latency jitter of
the examined TF-feature, but also its variability in frequency. Thus, the
variability in single trials can be modelled as follows.

F(t,f) = kg Fi[(6 +ay), (f +by)] + ky Fa[(t + ay), (f + by)] 2)
+k3 F3[(¢ +a3), (f +bs)] + &

Where F(t,f) is the TFD of a single-trial LEP waveform which repre-
sents as a joint function of time t and frequency f, and F;(t,f), F>(t,f), and
F3(t,f) are the across-trial averages of ERP, ERD, and ERS, respectively.
F(t,f) can be modelled as the weighted sum of the ERP, ERD, and ERS,
plus background noise €. As unknown parameters in the single-trial

analysis, kq, k; and ks are the weighted constants; ay, a, and as are the
values representing the variability in latency; and by, b, and b are the
values representing the variability in frequency of ERP, ERD and ERS
respectively.

Using the Taylor expansion, the MLR model can be simplified as:

0F;(t,f) 0F;(t.f)
ot + kb of

aFZ(t:f) an(tvf) (3)
ot of

ot of

F(t, f)=ki Fy(t, f) + kyaq

+ky Fy (8, f) + ka, + kyb,

+ks F5(t, f) + ksas + k3bs

where 2Pt 9FLN) and 9%(L0) re the temporal derivatives of ERP, ERD,

and ERS; and aFla(]f'f ) aFf,f;*f ) and 3F3(ft‘f ) are the frequency derivatives of

ERP, ERD, and ERS respectively. Thus, a single-trial TFD can be approxi-
mated as the sum of a set of weighted basis (average, its temporal deriv-
ative and its frequency derivative) (Fig. 3).

Based on the fitted single-trial TFD (Fig. 5, top panel), we calculated,
for each TF-feature, the correlation coefficient (CC;, CC, and CG; for ERP,
ERD and ERS, respectively) between the fitted single-trial TFD and the
thresholded TFD obtained from PCA decomposition with Varimax rota-
tion. Single-trial ERP and ERS magnitudes were finally obtained by cal-
culating the mean of the 20% of points (relative to all the non-zero
points in the thresholded TFD for each TF-feature [Fig. 1, right panel],
the same hereinafter) displaying the highest increase (if CC; > 0 or
CCs > 0, i.e., a positive fit) or the highest decrease (if CC; < 0 or
CC;3 <0, i.e., a negative fit), respectively. In contrast, single-trial ERD
magnitude was obtained by calculating the mean of the 20% of points
displaying the highest decrease (if CC; > 0, i.e., a positive fit), or the
highest increase (if CC, < 0, i.e., a negative fit). Finally, single-trial laten-
cies and frequencies corresponding to the measured ERP/ERD/ERS were
obtained by calculating the mean latency and frequency of the selected
“top 20%” of points in the time-frequency plane.

TE-MLR with dispersion term (TF-MLR,)

Similarly to what observed in ERP waveforms (Mouraux and
lannetti, 2008; Spencer, 2005), the time-frequency response averaged
across trials is more dispersed in both time and frequency domains
compared to each of single-trial TFDs, because of the latency and fre-
quency variations from trial to trial.

To obtain an accurate estimate of single trial time-frequency re-
sponses, not only their variability in latency and frequency, but also
their variability in morphology (both in time and frequency domain)
should be taken into account. This has a physiological rationale. For ex-
ample, in some clinical conditions (e.g., optic neuritis during multiple
sclerosis), visual-evoked potentials are “desynchronized”, i.e., their am-
plitudes are reduced because of increased latency jitter, as well as in-
creased width of single-trial responses (Orssaud, 2003; Pelosi et al.,
1997). Latency jitter, as well as trial-by-trial variability in response mor-
phology (i.e., wave width or frequency variability) could thus be impor-
tant parameters for clinical studies. Therefore, in addition to the basis
set of TF-MLR, two more regressors, representing the scaling of the
single-trial response in time or frequency domain are considered,
which leads to the following TF-MLR4 model (Fig. 4):

E(t, f) = ky Fy[(s1t + ay), (c1f 4 b)) + ky Fy[(828 + ay), (€1 + b)) 4)
+ k3 F3[(s3t +a3), (¢ f +b3)] +¢

where s;, 5, and s3 are the coefficients that determine the compression ra-
tios of the time width of ERP, ERD and ERS of each single-trial TFD com-
pared to those of the average TFD, respectively, while c;, ¢; and c3 are
the coefficients that determine the compression ratios of the frequency
width of ERP, ERD and ERS of each single-trial TFD compared to those
of the average TFD, respectively.
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To estimate the unknown parameters k, s, ¢, a, and b of each
single-trial TFD, we generate a basis set to fit the ERP, ERD and
ERS by employing PCA, i.e., a non-parametric data-driven ap-
proach (Jolliffe, 2002). We generated five PCs representing, for
each feature of the TFD (1) the average of the response, (2) the
variability in latency, (3) the variability in frequency, (4) the var-
iability in morphology in the time domain, and (5) the variability
in morphology in the frequency domain. The procedure for gener-
ating the TF-MLRq4 regressors consists in the following five steps
(Fig. 4).

(1) Generating the variability matrices (Fig. 4, step 1). For each TF-

—

=

~—

~—

feature, four groups of plausible TFDs were generated by shifting
([1] from — 100 ms to 100 ms in steps of 2 ms in the time domain,
[2] from —2 Hz to 2 Hz in steps of 0.1 Hz in the frequency do-
main, centred at the peak of the TF-feature) and compressing
([3] from 1 to 2 in steps of 0.01 in the time domain, [4] from 1
to 2 in steps of 0.025 in the frequency domain, centred at the
peak of the TF-feature) the thresholded TFD in an enumerative
fashion using resampling technique (i.e., increasing the frequen-
cy resolution before shifting and compressing the plausible TFDs,
as well as decreasing the frequency resolution afterwards). Each
of these plausible bidimensional TFDs was re-arranged into a
monodimensional vector, and all vectors were stacked to form
four bidimensional data matrices that we called variability matri-
ces (latency-shift matrix, frequency-shift matrix, latency-
compression matrix, frequency-compression matrix), for each
TF-feature. Note that the variability of TF-feature magnitude is
captured by the coefficients weighting the basis sets, and thus it
is not included in these variability matrices.

PCA separation (Fig. 4, step 2). Each of the four variability
matrices was separately fed into a PCA, to obtain the PCs
representing the linear subspace for each variability matrix. As
the first few PCs are responsible for most of the data variance
(Hossein-Zadeh et al., 2003; Jolliffe, 2002), it is expected that
the first PCs resulting from the variability matrices would repre-
sent the average TFD for each TF-feature and the second PCs em-
body its variability in latency, frequency, morphology in the time
domain, and morphology in the frequency domain.

Basis set definition (Fig. 4, step 3). Since the second PCs
resulting from the variability matrices always captured the
variability of latency, the variability of frequency, the vari-
ability of morphology in the time domain, and the variability
of morphology in the frequency domain, the basis sets (five
regressors) for each TF-feature was defined by [1] the aver-
age of each thresholded time-frequency features (Gaussian
smoothed, Mayhew et al., 2010); [2] the second PC from
the latency-shift variability matrix; [3] the second PC from
the frequency-shift variability matrix; [4] the second PC
from the latency-compression variability matrix; [5] the sec-
ond PC from the frequency-compression variability matrix.

Single-trial fitting (Fig. 5, bottom panel). The obtained basis
sets were regressed against the TFD of each single trial. The
coefficient (i.e., p value) of each of the five regressors was es-
timated by the least square approach, as described in
Mayhew et al (2006) and Hu et al (2010). By multiplying
these estimated coefficients by the corresponding regres-
sors, the fitted TFDs of each single trial were reconstructed.

Single-trial latency, frequency, and magnitude estimation.
Based on the fitted single-trial TFD (Fig. 5, bottom panel),
we calculated the correlation coefficients (CCy, CC,, and CCs
for ERP, ERD, and ERS respectively) between the fitted
single-trial TFD and the threshold TFD obtained from PCA
decomposition with Varimax rotation for each TF-feature.
The calculation of single-trial parameters is the same as the
approach described for TF-MLR.

Single-trial performance assessment

The performance of the TF-MLR and TF-MLRy in estimating single-
trial parameters was assessed both on simulated and real EEG datasets
(performance on simulated data is reported in the Supplementary
Materials).

(1) Goodness of fit (TF-MLR vs. TF-MLR,). Compared with the TF-MLR

(2

(3

—

~—

—

approach, the TF-MLR takes the variability of morphology (both
latency and frequency) into consideration, and thus generates
two additional basis sets for each TF-feature. To determine
whether the TF-MLRy approach gives a significantly better fit to
the data than the TF-MLR approach regardless of the number of
basis sets in each of the two approaches, we performed an F
test, which takes into account the number of the compared
model parameters (Motulsky and Christopoulos, 2004). Let's
consider two models, 1 and 2, where model 1 is “nested” within
model 2. That is, model 1 has p; parameters, and model 2 has p,
parameters, where p, > py, and, for any choice of parameters in
model 1, the same regression curve can be fitted by some choice
of the parameters in model 2. It is obvious that in this example
the model with more parameters will always fit the data at
least as well as the model with fewer parameters. Therefore,
any method to compare a simple model with a more complicated
model has to balance the decrease in sum-of-squares with the in-
crease in the number of parameters. This can be achieved using
the F test (Eq. (5)), which determines whether model 2 gives a
significantly better fit to the data than model 1 regardless of
the number of parameters (Motulsky and Christopoulos, 2004),
as follows:

p_ (RS5—RSS,)/(p,—p1)
RSS;/(n—p,)

(5

where RSS; and RSS; are the residual sum-of-squares of model 1
and model 2 respectively, and n is the number of data points.

F will have an F distribution with (p, — p1, n — p») degrees of
freedom. The null hypothesis is that model 2 does not provide
a significantly better fit than model 1, and this hypothesis should
be rejected if the F value is greater than the critical value of the F
distribution for a desired false-rejection probability (p < 0.05).
Detection bias. To examine whether the two explored ap-
proaches (TF-MLR and TF-MLRy) introduce a biase into the
analysis by, for example, fitting noise, each of them was ap-
plied to resting EEG epochs obtained from the same subjects.
Such possible detection bias was quantified by comparing
the obtained magnitudes of each TF-feature against zero,
using a one sample ¢ test.

Comparison of single-trial magnitudes (TF-MLR vs. TF-MLRy).
Single-trial magnitudes of each TF-feature obtained using
the TF-MLR approach were averaged across trials and com-
pared to the corresponding values obtained using the TF-
MLRy approach. Their differences were then assessed using a
paired sample ¢ test.

Correlation between different single-trial estimates, as well as
correlation between single-trial estimates and corresponding
single-trial subjective pain intensity. Single-trial parameters
(latency, frequency, and magnitude) obtained using the TF-
MLR and TF-MLRy approaches were further compared with
each other, as well as with the single-trial ratings of the sub-
jective pain intensity. For both approaches, all possible corre-
lations (between each estimated single-trial parameter and
the corresponding subjective pain intensity, and between
each pair of the estimated single-trial parameters) were per-
formed for each subject (lannetti et al., 2005a). The obtained
correlation coefficients were transformed to Z values using
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Fisher R-to-Z transformation. The resulting Z values were fi-
nally compared against zero using a one sample t test.

Results
EEG data analysis: TF-feature separation

Fig. 1 shows the first three PCs obtained from PCA decomposi-
tion with Varimax rotation. These three PCs explained the largest
amount of variance (23.1%, 9.2% and 5.9%, respectively), while
the explained variance for any of the remaining PCs was less
than 5%.

After thresholding using the two-SD cut-off, the amount of
background EEG noise on the time-frequency plane was remark-
ably reduced while the regions corresponding to ERP/ERD/ERS
were clearly preserved (Fig. 1). The ERP region (feature 1) was lo-
cated at 50-550 ms post-stimulus (in time) and 3-10 Hz (in fre-
quency); the ERD region (feature 2) was located at 50-1000 ms
and 9-12 Hz; and the ERS region (feature 3) was located at 217-
447 ms and 10-19 Hz. The group-level PLVs indicated that only
the ERP response was phase-locked to stimulus onset, while the
other TFD responses (ERD and ERS) were not (Fig. 1, left panel).
Similar time-frequency distributions of the EEG responses elicited
by transient laser pulses (Ilannetti et al., 2008; Mouraux et al.,
2003; Mouraux and Iannetti, 2008; Ohara et al., 2004; Ploner
et al., 2006) and by transient auditory stimuli (Makinen et al.,
2004; Mayhew et al., 2010) have been reported previously.

Fig. 2 shows the scalp topographies of the ERP, ERD, and ERS re-
sponses elicited by laser stimulation of the right hand dorsum. While
the scalp topography of ERP response was centrally distributed and
maximal at the vertex, the scalp topography of ERS was slightly more
frontal. The scalp topography of the ERD response had a maximum con-
tralateral to the stimulated side, and for this reason single-trial ERD pa-
rameters were measured from electrode C3. The similarity between the
scalp topography of ERP in the time-frequency domain and the scalp to-
pography of N2-P2 complex in the time domain (Mouraux and lannetti,
2009), together with the observation of their similar modulation by dif-
ferent experimental factors (Iannetti et al., 2008; Schulz et al., 2011;
Valentini et al,, 2011; Zhang et al., 2012), suggests that the neural activ-
ity reflected in the N2-P2 complex in the time domain corresponds to
the ERP region in the time-frequency domain.

Single-trial performance assessment

Fig. 3 shows the three regressors for the ERP response (i.e., the
thresholded feature 1) generated using the MLR approach. These re-
gressors represent the average amplitude (Gaussian smoothed) of the
response, its temporal derivative and its frequency derivative. The re-
gressors for the ERS and ERD responses were generated in the same
way.

Fig. 4 shows the procedure used to generate the regressors for the
ERP response (thresholded feature 1), in the TF-MLRy approach. The
first two PCs, obtained from the latency-shift, frequency-shift, latency-
compression, and frequency-compression variability matrices, ex-
plained 96%, 95%, 99%, and 96% of the total variance, respectively. The
same procedure was used to generate regressors for the ERS and ERD
responses.

When comparing the regressors obtained using the TF-MLR and TF-
MLRy approaches (Figs. 3 and 4), we observed that the temporal deriv-
ative in TF-MLR is very similar to the second PC of the latency-shift var-
iability matrix in TF-MLRy, and that the frequency derivative in TF-MLR
is very similar to the second PC of the frequency-shift variability matrix
in TF-MLRy. In addition, the second PC obtained from the latency-
compression variability matrix and the second PC obtained from the
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Fig. 2. Time-frequency distributions of ERP/ERD/ERS and their scalp topographies. Group-
level TFDs and scalp topographies of ERP, ERD, and ERS responses elicited by laser stimu-
lation of the right hand dorsum. The scalp topography of the ERP response is centrally dis-
tributed and maximal at the vertex, similarly to that of the N2-P2 complex in the time
domain (top panel). The scalp topography of the ERD response has a maximum contralat-
eral to the stimulated side (middle panel). The scalp topography of the ERS response is
symmetrically distributed, with a maximum on the frontal electrodes (bottom panel).
These different topographies suggest that the three TFD responses have different underly-
ing neural sources.

frequency-compression variability matrix were included in the TF-
MLRy approach. Thus, the TF-MLRy analysis can better explain the vari-
ability of single-trial TFD than the TF-MLR analysis, especially for the
variability of response morphology (Hu et al., 2011a), both in the time
domain and in the frequency domain.

(1) Goodness of fit assessment (TF-MLR vs. TF-MLR). The top and bot-
tom panels of Fig. 5 show the fitted responses of a same single-
trial using TF-MLR and TF-MLRy, respectively. In the fitted re-
sponse the information-of-interest, reflected in the ERP, ERS
and ERD, was correctly preserved, while the information-of-no-
interest, represented by the stimulus-unrelated background
EEG was removed. This procedure increased the SNR of the
brain responses (both phase-locked and non-phase-locked) in
the time-frequency plane. Importantly, the F test performed be-
tween the goodness of fit obtained with the TF-MLR and the
TF-MLR4 approaches indicated that the better performance of
TF-MLR4 was not simply due to the larger number of regressors
(F = 126, p < 0.001; Fig. 5, right panel), but to the actual fitting
of physiologically-relevant sources of variability (e.g., variability
of morphology in the time and frequency domains).

(2) Detection bias. To test whether the methods (TF-MLR and TF-
MLR4) used to estimate single-trial magnitude of ERP, ERS and
ERD introduced any detection bias, they were applied to an
equal number of resting EEG epochs obtained from all subjects.
When estimated using TF-MLR approach, the mean (£ SEM) of
single-trial estimate of response magnitude in resting EEG
epochs were 0.15 4 0.12 pV, —0.09 + 0.21 pV, and —0.06 +
0.14 pV for ERP, ERD, and ERS. These magnitude values were
not significantly different from zero (ERP: p = 0.24; ERD: p =
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Fig. 3. Generation of regressors in the TF-MLR approach. Left panel: Time-frequency representation of one of the thresholded features (‘ERP’, in this example) of the EEG response, obtained
by PCA decomposition with Varimax rotation (Fig. 1). Right Panel: The three regressors obtained by the TF-MLR approach represent the average (Gaussian smoothing; the spread param-
eters of the Gaussian kernel are: 0y = 30 ms, 0, = 3 Hz), the temporal derivative and the frequency derivative of the ERP response, respectively. The temporal and frequency derivatives
will be used to capture the variability in latency and frequency of single-trial TFDs.

0.69; ERS: p = 0.68, one sample ¢ test). When estimated using 0.14 pv, —0.04 £ 0.20 pV, and 0.001 + 0.14 pV for ERP, ERD,
the TF-MLRy approach, the mean (4 SEM) single-trial estimate and ERS. These magnitude values were not significantly different
of response magnitude in resting EEG epochs were 0.19 + from zero (ERP: p = 0.22; ERD: p = 0.83; ERS: p = 0.99, one
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Fig. 4. Generation of regressors in the TF-MLRy4 approach. First column: Time-frequency representation of one of the thresholded features (‘ERP’, in this example) of the EEG response,
obtained by PCA decomposition with Varimax rotation (see Fig. 1). Second column: TFDs representing plausible variability in latency, frequency, morphology in the time domain, and mor-
phology in the frequency domain were generated by shifting and compressing the thresholded response in an enumerative fashion. Third column: For each source of variability, the plau-
sible responses were re-arranged into vectors, which were subsequently stacked into a data matrix (variability matrix). Fourth column: The eigenvalue plots show the explained variance
for each of the first 20 generated PCs, for each variability matrix. Note that the first two PCs explain the largest part of the total variance of each source of variability. Fifth column: Five
regressors capturing the average magnitude of the considered TF-feature, and its variability in latency (the second PC in latency-shift variability matrix), in frequency (the second PC in
frequency-shift variability matrix), in morphology in the time domain (the second PC in latency-compression variability matrix), and in morphology in the frequency domain (the second
PC in frequency-compression variability matrix).
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Fig. 5. Example of a single-trial TFD modelled using both TF-MLR and TF-MLR. Left panel: A single-trial TFD of a laser-elicited EEG response recorded at electrode Cz. Middle panel: Time-
frequency response features (ERP, ERD and ERS) fitted using TF-MLR and TF-MLRy. Note that the information-of-interest (i.e., the ERP, ERD and ERS responses) is preserved, while the
information-of-no-interest (e.g., background EEG noise) is largely removed, thus increasing the response SNR. Right panel: The sum of the fitted ERP, ERD and ERS responses constituted
the modelled single-trial TFD. TF-MLRy provides a significantly better fit of single trials than TF-MLR (F = 126, p < 0.001).

-

-

sample t test). These results clearly show that both TF-MLR and
TF-MLR4 approaches provide an unbiased estimate of single-
trial magnitude of ERP, ERS and ERD. A comparison of the
single-trial magnitude values obtained from LEP trials vs. the
resting EEG trials using the two approaches is shown in Fig. 6.
Comparison of single-trial magnitudes (TF-MLR vs. TF-MLRy). Fig. 6
shows the comparison of the average of single-trial ERP, ERD and
ERS magnitudes estimated using TF-MLR and TF-MLRy. The
single-trial ERP and ERS magnitudes estimated using TF-MLR
were significantly smaller than those estimated by TF-MLRq4
(ERP: 4.70 + 0.79 pV vs. 493 + 0.80 uV; p < 0.007; ERS:
1.39 £ 0.35 uV vs. 1.52 &+ 0.35 pV; p < 0.008, paired sample ¢
test). In contrast, there was no significant difference between
the single-trial ERD magnitudes estimated using TF-MLR and
TF-MLR4 (ERD: —0.91 4 0.29 puV vs. —0.94 + 0.32 pV; p >0.05,
paired sample t test).

Correlation between different single-trial estimates, as well as corre-
lation between single-trial estimates and corresponding single-trial
subjective pain intensity. Fig. 7 shows all possible correlations be-
tween single-trial parameters estimated using TF-MLR and TF-
MLRy. Overall, correlations were markedly similar in the data es-
timated using TF-MLR and TF-MLR4. We observed significant
negative correlations between single-trial ERP latencies and the
corresponding ERP frequencies (mean R = —0.31 £ 0.07,

5 C TF-MLR TF-MLR,
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Fig. 6. Comparison of single-trial magnitudes estimated using TF-MLR and TF-MLR, of LEP
trials and resting EEG trials. Single-trial magnitudes of ERP (left), ERD (middle), and ERS
(right) estimated using TF-MLR (blue) and TF-MLR4 (red) from LEP trials (palisaded)
and resting EEG trials (filled). For both TF-MLR and TF-MLRy, the magnitudes of ERP,
ERD and ERS estimated from resting EEG trials are not significantly different from zero
(p > 0.05 for all comparisons; one sample t test). Whereas the single-trial magnitudes of
ERD estimated from LEP trials using TF-MLR and TF-MLR4 are not significantly different,
the single-trial magnitudes of ERP and ERS estimated from LEP trials using TF-MLR were
significantly smaller than those estimated using TF-MLRy (p < 0.01 for both comparisons,
paired sample ¢ test).
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Fig. 7. Correlation between different single-trial estimates, as well as correlation between single-trial estimates and the corresponding single-trial subjective pain intensity. Top panel: All
possible correlations between different single-trial estimates, measured using TF-MLR (left) and TF-MLR4 (right), as well as between these single-trial estimates and the corresponding
subjective pain intensity. Red and blue dots represent positive and negative correlations. When a correlation was significant, the corresponding box was marked in yellow. Note that
the correlations were markedly similar between TF-MLR and TF-MLRy. Bottom panel: Representative correlations between different single-trial estimates, measured using TF-MLRg.
The single-trial ERP latencies showed a significant negative correlation with the corresponding ERP frequencies (mean R = —0.31 4 0.07, p < 0.0001; left). The single-trial ERD latencies
showed a significant negative correlation with the corresponding ERD frequencies (mean R = —0.36 + 0.09, p < 0.0001; middle). The single-trial ERP magnitudes showed a significant
positive correlation with the corresponding pain perception intensity (mean R = 0.51 4 0.15, p < 0.0001; right).

p <0.0001, obtained from TF-MLRg, hereinafter), and between
the single-trial ERD latencies and the corresponding ERD
frequencies (mean R = —0.36 + 0.09, p < 0.0001). In addition,
we observed significant positive correlations between the
single-trial ERP and ERS magnitudes and the corresponding sub-
jective pain intensity (ERP: mean R = 0.51 + 0.15, p < 0.0001;
ERS: mean R = 0.15 4+ 0.19, p = 0.03).

Discussion

The present study shows that different features (i.e., ERP, ERD, and
ERS) of the time-frequency EEG response elicited by transient sensory
stimuli can be (1) isolated and characterized using PCA with Varimax
rotation, and (2) reliably estimated at single-trial level using multiple
linear regression approaches (TF-MLR and TF-MLRy). Such approaches
allow estimating the trial-to-trial variability of the latency, frequency
and magnitude of several time-frequency features. When testing such
approaches on a real EEG dataset we observed meaningful correlations
between different stimulus parameters and the subjective sensations
elicited by a somatosensory stimulus.

PCA-separation of different time-frequency features

We showed that PCA with Varimax rotation can extract successfully
different time-frequency features of the EEG response elicited by a tran-
sient stimulus (Fig. 1). Such approach has been previously applied to
separate and quantify different ERP peaks in the time domain (Dien,
2010; Dien et al., 2007; Kayser and Tenke, 2003), as well as different

features of the time-frequency EEG responses (Bernat et al., 2007;
Bernat et al., 2005; Mayhew et al., 2010). It should be noted that PCA
converts a set of observations of possibly correlated variables into a
set of principal components, which are orthogonal (i.e., linearly uncor-
related; Jolliffe, 2002). This orthogonality is still present after the
Varimax rotation, which is normally applied to the PCA solution to sim-
plify the structure of the components by maximizing the sum of the var-
iances of the squared loadings (Kaiser, 1958). Dien (1998) argued that
the orthogonality requirement of PCA with Varimax rotation (i.e., the
requirement that the components should be linearly uncorrelated)
may constitute a problem when extracting ERP components, given
their possible intrinsic correlation. To address this issue, Dien (1998)
suggested the use of oblique/non-orthogonal rotations (e.g., Promax ro-
tation), since these non-orthogonal rotations relax the requirement of
orthogonality of the Varimax rotation. However, it should be also
noted that the requirement of non-orthogonality has been suggested
to represent a disadvantage per se (Kayser and Tenke, 2003), since
non-orthogonal components are dependent on each other, resulting in
the increase of the probability of Type I errors in subsequent statistical
analyses (Kayser and Tenke, 2003).

It should be also noted that to minimize overinterpretations and
misindentifications, researchers have been suggested to examine care-
fully the time/time-frequency distribution, scalp topography, and sensi-
tivity to experimental manipulations of the PCA-isolated components,
based on a priori knowledge of well-characterized event-related fea-
tures (Fabiani et al., 1987). Following this suggestion, we have closely
compared the components isolated by PCA with Varimax rotation
with previously-documented time-frequency features in LEP studies.
Several previous studies (Iannetti et al., 2008; Mouraux et al., 2003;
Ohara et al., 2004; Ploner et al.,, 2006; Stancak et al., 2003) consistently
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reported that laser-evoked EEG responses show three typical time-
frequency features: a phase-locked ERP, and a non-phase-locked ERD
and ERS (Fig. 1). Importantly, these three time-frequency features are
at least partially independent, as demonstrated by their differential sen-
sitivity to experimental manipulations (lannetti et al., 2008; Mouraux
et al., 2003). The phase-locked response (ERP: 50-550 ms, 3-10 Hz),
mainly located in theta band, corresponds to the time-frequency repre-
sentation of the N2-P2 complex of LEPs in the time domain (Mouraux
et al., 2003). Indeed, the scalp topography of the ERP response is similar
to that of the N2-P2 complex, i.e., maximal at the vertex and symmetri-
cally distributed over both hemispheres (Fig. 2). Therefore, the time-
frequency ERP response in the theta band is likely to reflect neural
activities from the anterior cingulate cortex (ACC) and bilateral
operculo-insular areas, which are regarded as the main generators of
the N2-P2 complex of the LEPs (Frot et al., 2008; Garcia-Larrea et al.,
2003). The non-phase-locked ERD in the alpha band (50-1000 ms, 9-
12 Hz) was maximal over the parietal region contralateral to the stimu-
lated hand (Fig. 2). This feature might reflect activation/disinhibition of
the primary sensorimotor cortex (Hu et al., 2013; Neuper and Klimesch,
2006; Pfurtscheller and Neuper, 1994). In addition, the non-phase-
locked ERS (217-447 ms, 10-19 Hz), mainly located in the beta band,
was symmetrically distributed, with a maximum over the frontal regions
(Fig. 2). This feature may partly reflect neural activities in the prefrontal
cortex (PFC), which is commonly activated in response to nociceptive
stimuli in most fMRI studies, but rarely reported in time domain EEG/
MEG studies (Apkarian et al., 2005). These observations suggest the pres-
ence of a neurovascular coupling, resulting in a Blood Oxygenation Level
Dependent (BOLD) signal measured by fMRI, not only triggered by the
phase-locked responses measured by EEG/MEG in the time domain
(Debener et al., 2005; Liu et al., 2012), but also by the non-phase-
locked oscillatory responses (lannetti and Mouraux, 2009).

It should be noted that different features of the EEG response (e.g., the
ERP and ERS) overlap in both time and frequency, and have different time
and frequency limits in different subjects. Previously, single-trial magni-
tudes of such responses have been simply calculated from the mean of
the “top 20%” points within a given time-frequency region-of-interests
(TF-ROI), empirically defined based on the group average time-
frequency distributions (e.g., lannetti and Mouraux, 2009; Mayhew
et al,, 2010). Therefore, this TF-ROI approach has two major limitations:
(1) it cannot isolate different but overlapping time-frequency features,
and (2) it ignores the between-subject variability of the TF-ROI limits.

PCA with Varimax rotation allows overcoming these two crucial lim-
itations. Indeed, it can separate physiologically distinct EEG activities,
even if they overlap in the time domain (Dien, 2010; Dien et al., 2007;
Kayser and Tenke, 2003), in the time-frequency domain, or both
(Fig. 1). Furthermore, when jointly applied with TE-MLR or TF-MLRg, it
allows effectively modeling not only the within-subject, but also the
between-subject variability of TF-ROI limits, using a set of regressors
(e.g., the temporal derivative and the frequency derivative; Figs. 3-4).

We selected three PCs, which explained the maximum variance in
single-trial TFDs and isolated the stimulus-evoked ERP, ERD and ERS.
The number of selected PCs was determined empirically based on previ-
ous studies (lannetti et al., 2008; Mayhew et al., 2010; Mouraux et al.,
2003). When extending the same approach to other applications
(e.g., stimulus-evoked EEG/MEG responses of other sensory modalities),
it will be necessary to ensure that (1) the time-frequency features
isolated by PCA are well studied, and (2) these features are clearly
presented in the average TFDs. Also, the separation of time-frequency
features using PCA with Varimax rotation could be, in principle,
applied to single-trial TFDs measured at all recorded channels (thus
yielding to four dimensions: trial number x time point x frequency
point x channel). Although this approach will require significant compu-
tational resources,' novel or more precise time—-frequency features may

! In the present study, approximately 6 GB of memory were needed to perform PCA
separation with Varimax rotation on single-trial TFDs measured from a single channel.

be identified. Importantly, this technique may not be able to isolate
some high-frequency features of the response (e.g., gamma band oscilla-
tions) due to their lower signal-to-noise ratio, as compared with the low
frequency features (e.g., ERP, ERD, and ERS in the present study). To
achieve this aim, the possibility of processing band-pass filtered TFDs
(e.g., from 50 Hz to 100 Hz, when exploring gamma band oscillations)
should be considered.

Robust and unbiased single-trial estimate of time-frequency features

In the time domain, both MLR and MLRy4 permit to estimate latency
and amplitude of single-trial ERPs, in an automatic and unbiased fashion
(Hu et al., 2011a; Hu et al., 2010; Mayhew et al., 2006). Here we de-
scribed an important extension of these approaches, to allow estimating
single-trial EEG responses in the time-frequency domain (TF-MLR and
TF-MLRy; Figs. 3 & 4).

When comparing the goodness of fit obtained with the TF-MLR and
TF-MLR4 approaches, the latter provides a significantly better fit to the
single-trial time-frequency responses (F = 126, p < 0.0001) (Fig. 5, right
panel). This observation indicates that the TF-MLRy model fits the
single-trial TFDs better than the TF-MLR model regardless of the number
of basis sets employed in each of the two approaches. In addition, the
magnitudes of single-trial ERP and ERS responses estimated by TF-MLRy4
were significantly greater than those estimated by TF-MLR (ERP
magnitude: 6.4 4 7.3% increase, p < 0.007; ERS magnitude: 5.8 4 19.4%
increase, p < 0.008; two tailed t test) (Fig. 6). Importantly, both TF-MLR
and TF-MLRy approaches provide an unbiased estimate of single-trial
magnitude of ERP, ERS and ERD (p > 0.05 for all comparisons, one sample
t test) (Fig. 6). Indeed, when the stimulus does not elicit a physiological
response (a condition we modelled using the resting EEG dataset), the av-
erage of the single-trial estimates of magnitude tends towards zero, under
the unique assumption that a sufficiently high number of trials are esti-
mated. In contrast, when estimated using the TF-ROI approach (estimate
single-trial magnitudes from the mean of “top 20%” points within
the pre-defined TF-ROIs, Mayhew et al., 2010), the mean (4 SEM)
of single-trial estimate of response magnitude in resting EEG epochs
was always significantly different from zero (ERP: 2.74 4 0.26 pV;
ERD: —2.81 £ 0.34 uV; ERS: 2.73 4+ 0.30 uV; p<0.001 for all compar-
isons, one sample t test).

Altogether, these findings indicate that the TF-MLR approach, which
uses fewer regressors than the TF-MLRy approach, is more specific
when detecting stimulus-related responses (Friman et al.,, 2003), but is
unable to capture the variability of the response morphology, both in
the time domain and in the frequency domain. Therefore, the TF-MLR
provides a simple and robust approach to estimate single-trial parame-
ters, and is particularly appropriate for EEG responses with relatively
low SNR (for example the early N1 wave of LEPs; Hu et al., 2010). In con-
trast, the higher number of regressors in the TF-MLR4 approach makes it
more sensitive in detecting response variability (Hu et al., 2011a), with
the possible drawback of fitting some noise (Friman et al., 2003). The
TF-MLRy approach is thus better suited to estimate accurately single-
trial responses with relatively high SNR (e.g., intracranial recordings,
interictal spikes in epilepsy patients). Therefore, TF-MLR and TF-MLRq4
perform differently when applied to estimate single-trial time-
frequency features with different SNR. This notion is also supported by
the simulation study, in which we quantified the performance of the
two approaches at controlled SNR levels (see Supplementary Materials).
Lastly, given that it can be applied to any kind of trial-to-trial variability,
the TF-MLRy approach lends itself to a wide range of applications in sys-
tem neuroscience, although the definition of the parameters to generate
the variability matrices in TF-MLRy (Fig. 4, step 1) could be improved
using some prior knowledge of the possible range of the latency and fre-
quency variability. In addition, the SNR can be significantly improved
using spatial filtering (e.g., ICA and common spatial pattern analysis;
Huang et al., 2013). Finally, multi-way analysis (e.g., tensor decomposi-
tion) of EEG data spanning the spatial-temporal-spectral domain could



452 L. Hu et al. / Neurolmage 111 (2015) 442-453

be considered to further enhance the SNR (Cichocki, 2013). After such fil-
tering, TF-MLR and TF-MLR4 could be also used on independent compo-
nents (ICs), or applied on spatially-filtered signals, thus obtaining single-
trial estimates of brain responses with enhanced SNR.

Understanding the relationship between the magnitude of stimulus-
evoked cortical responses and perceptual experiences is the objective of
perceptual neuroscience (Mountcastle, 1998). Here we related the brain
responses elicited by nociceptive specific laser stimuli (LEPs) with the
corresponding painful percepts. Laser stimuli activate selectively free
nerve endings of skin nociceptors (Iannetti et al., 2006) and LEPs are
widely used to assess the function of nociceptive pathways in health
and disease (Treede et al., 2003). In the time-frequency domain, we ob-
served a strong correlation between the phase-locked ERP magnitude
and subjective pain intensity (mean R = 0.51 4+ 0.15, p < 0.0001;
Fig. 7). This is in line with several previous studies (Carmon et al.,
1978; Carmon et al., 1980; lannetti et al., 2008; Kakigi et al., 1989),
showing that the amplitude of the N2-P2 complex is often highly corre-
lated with the subjective pain intensity. We also observed a positive cor-
relation between non-phase-locked ERS magnitude and subjective pain
intensity (mean R = 0.15 & 0.19, p = 0.03).

In addition to exploring the trial-by-trial correlation between mag-
nitude of the time-frequency EEG responses and perception, the de-
scribed approaches provide a reliable estimation of other parameters
defining an EEG response in the time-frequency domain. Besides re-
sponse magnitude, these approaches allow estimating trial-by-trial var-
iability in latency and frequency, as well as response dispersion in both
time and frequency domains (Fig. 7). The availability of reliable esti-
mates of all these parameters allows a more complete use of the infor-
mation contained in stimulus-elicited EEG response, thus having the
potential of providing novel physiological information in both basic
and clinical studies.
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