
Spectral density affects the intelligibility of tone-vocoded speech:

implications for cochlear implant simulations

Stuart Rosen, Yue Zhang and Kathryn Speers

Speech, Hearing and Phonetic Sciences, University College London

Chandler House, 2 Wakefield Street, London WC1N 1PF, United Kingdom

stuart@phon.ucl.ac.uk, yue.zhang.12@ucl.ac.uk, k.speers.12@ucl.ac.uk

Sparse spectra harm speech intelligibility



Abstract

For small numbers of channels, tone vocoders using low envelope cutoff frequencies are less

intelligible than noise vocoders, even though the noise carriers introduce random fluctuations

into the crucial envelope information. Here it is shown that using tone carriers with a denser

spectrum improves performance considerably over typical tone vocoders, at least equalling,

and often surpassing, the performance possible with noise vocoders. In short, the spectral

sparseness of tone vocoded sounds for low channel numbers, separate from the degradations

introduced by using only a small number of channels, is an important limitation on the

intelligibility of tone-vocoded speech.
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1. Introduction

Noise- and tone-vocoded speech have been widely used to investigate the role of

temporal cues in speech perception and simulate the information in speech received by

users of cochlear implants (CIs). Typically, the speech signal is first divided into a certain

number of frequency bands and the amplitude envelope of each band is extracted to

modulate a carrier signal that is either a tone at the centre frequency of the band or

wide-band noise which is then filtered to the analysis bandwidth. Various parameters of

the vocoder significantly affect the intelligibility of the resulting signal. For instance, the

number of bands constrains the spectral resolution and dynamics of the speech, and the

degree of envelope smoothing (usually implemented through lowpass filtering) constrains

the range of temporal information transmitted [Loizou et al., 1999] [Roberts et al., 2011]

[Rosen, 1992] [Xu and Pfingst, 2008].

The carrier signal, in comparison, has a less obvious impact. Dorman et al. (1997)

reported no differences in performance between noise and tone carriers for vowel, consonant

and sentence recognition. Whitmal et al. (2007), on the other hand, generally found better

speech recognition for a tone carrier, at least when using noise carriers of the type typically

used in such studies. Souza and Rosen (2009) identified an interaction between carrier type

and cutoff frequency: stimuli constructed with tone carriers were less intelligible than

noise-vocoded sounds for a low envelope cutoff frequency (30 Hz), but more intelligible for
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a high envelope cutoff (300 Hz). Note too that Whitmal et al. (2007) used a high envelope

cutoff frequency (300 Hz but limited to half the analysis bandwidth), as did Dorman et al.

(1997) (400 Hz).

The ambiguous effect of carrier type may be due to multiple reasons. Higher envelope

cutoff frequencies on tone-vocoded speech provide both better temporal information and

access to intonation through signalling the F0 contour [Rosen, 1992]. This benefits

tone-vocoded speech in more than one way. Also, there is no inherent fluctuation in a tone

carrier as compared to a noise carrier, which further benefits tone-vocoded speech when

compared to its counterpart [Souza and Rosen, 2009] [Whitmal et al., 2007].

Another possible explanation lies in the differences in spectral density for stimuli used

in these studies. For envelope cutoff frequencies sufficiently lower than the fundamental

frequency (F0), each band of tone-vocoded speech is effectively composed of only one

amplitude modulated tone. When the cutoff frequency is higher than F0, within each band

there emerge sidebands that are the sum and difference frequencies between the carrier

tone and F0 as well as all components in the low-pass filtered envelope. As a result, the

spectrum is denser, especially when the number of bands in the vocoding is low. The

spectral density of noise-vocoded speech, in comparison, is unaffected by the envelope

cutoff frequency, since energy exists at every frequency in each band (Fig. 1). It is possible

that the denser spectrum will contribute to higher speech intelligibility in two ways. First,
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the temporal information in each channel may be improved by having a broader range of

frequencies modulated by the same envelope. Secondly, the spectral shape of the processed

speech with denser spectrum will be a closer match to the spectral shape of the original

speech. Therefore, the differences in results across study may arise from the use of different

lowpass envelope cutoffs that leads to different spectral densities. The 30 Hz cutoff used by

Souza and Rosen (2009) left the spectrum of tone-vocoded speech with ‘holes’ between

each band that damaged its intelligibility. The 300 Hz cutoff, on the other hand, provided

denser spectra than the 30 Hz cutoff tone-vocoded speech but sparser spectra than

noise-vocoded speech. However, the inherent fluctuation of the noise carrier may interfere

with the full use of temporal information [Gonzalez and Oliver, 2005], making it less

intelligible than the tone carrier with 300 Hz cutoff. This was consistent with Whitmal et

al. (2007), where the cutoff frequencies around 300 Hz similarly benefited the tone carrier

more than noise carrier. Dorman et al. (1997)’s work applied different envelope cutoff for

tone-vocoded (400 Hz) and noise-vocoded speech (160 Hz), making the result hard to

interpret. Nevertheless, the high envelope cutoff for the tone vocoder would be expected to

lead to higher levels of performance than low envelope cutoffs, so the denser spectrum may

have led to performance equivalent to that obtained from noise vocoders. However, no

previous studies can directly demonstrate the role of spectral density on speech

intelligibility, due to the various confounds. Therefore, it is not clear what role spectral
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density actually plays and how much it contributes to the intelligibility difference for

different types of vocoded speech.

Hence here, in two studies, we investigated the impact of spectral density on

intelligibility, by comparing typical tone-vocoded speech to a denser tone-vocoded speech

that has more spectral components in its spectrum without introducing more temporal and

spectral information. As the effects of spectral density are only likely to be found for low

band numbers, materials were chosen that allowed reasonable performance with small

numbers of bands. One set of tests used everyday material of simple sentences in an

open-set response format vocoded to 3 ,4 and 5 bands. Another test, one using a closed-set

response, allowed for even fewer bands to be used (2, 3 and 4).

2. Experiment

2.1. Participants

12 and 10 self-reported normal-hearing native standard Southern British English

speaking adults were recruited for the closed-set and open-set sentence tests respectively.

All were students from UCL, ranging in age from 21 to 35 years (mean = 26 years). None of

them had prior experience with vocoded speech. All participants consented to take part by

reading and signing a consent form, as approved by the UCL Research Ethics Committee.

2.2. Stimuli
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The stimuli for the closed-set response test were adapted from the Coordinate

Response Measure sentence corpus (CRM) [Bolia et al., 2000]. Sentences took the form of

‘Show the (animal) where the (colour) (number) is’ (e.g. ‘show the pig where the pink five

is’). There were 6 possible animals (cat, cow, dog, duck, pig and sheep), 6 possible colours

(black, blue, green, pink, red and white) and 8 possible numbers (1 to 9 excluding the

bisyllabic 7). Sentences were recorded at a sampling frequency of 22.05 kHz from 4

different native standard Southern British English talkers (2 male and 2 female) in an

anechoic chamber. Stimuli for the open-set sentence test consisted of BKB sentences

[Bench et al., 1979], spoken by 2 standard Southern British English talkers (1 male and 1

female), also sampled at 22.05 kHz. Each of these sentences contained 3 key words, upon

which the scoring was based.

For the typical tone- and noise- vocoded conditions, each file was digitally filtered into

2 to 6 bands, using sixth-order Butterworth IIR filters. Filter spacing was based on equal

basilar membrane distance [Greenwood, 1990] across a frequency range of 70-6000 Hz. The

output of each band was full-wave rectified and low-pass filtered (fourth-order

Butterworth) at 30 Hz, using a zero-phase forwards-backwards technique to extract the

amplitude envelope. The envelope was then multiplied by a carrier, either a tone at the

band centre frequency or a noise. The resulting signal was filtered using the same bandpass

filter as the first filtering stage. The rms level of the output signal was adjusted to match
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the original analysis band and the signal was summed across all bands.

For the dense tone-vocoded speech, the processing was the same as for typical

tone-vocoded speech, except for the carrier. Here, the carrier was a set of 24

equal-amplitude sinusoidal components based on the centre frequencies of filters that would

be equally spaced on the basilar membrane across the frequency range of 70 - 6000 Hz.

Unlike typical tone-vocoded speech, in which each tone would be modulated by a different

envelope, here all components within each filter band were modulated by the same

envelope. This was created by synthesising for each filter band a distinct carrier wave that

contained only those components of the full 24 that were within the analysis band cutoffs.

For example, for a two-band vocoder, there was 12 components modulated by the envelope

in the lower frequency band (86 - 960 Hz) and 12 modulated by the envelope in the higher

frequency band (1124 - 5594 Hz) (Fig. 2). All stimuli were processed using MATLAB

software.

Each test consisted of 9 conditions: three carrier types (noise, tone and dense tones)

at each of three different numbers of bands (2, 3, 4 for the closed-set test and 3, 4, 5 for the

open-set). Training stimuli were composed of a higher number of bands (5 and 6) to

facilitate adaptation.

2.3. Procedure

Stimuli were presented to the participants binaurally through Sennheiser HD25
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headphones at 66 dB SPL in a quiet room. All testing was conducted in MATLAB using

special-purpose software controlled from a PC.

In the closed-set test, each participant was firstly trained with 72 sentences, randomly

selected from 12 different sentence lists vocoded by different combinations of carrier signals

and band numbers (2 to 6). The first 36 sentences only used 4-6 bands, whereas the second

set used 2-4 bands. They were then tested with another 72 different sentences, 8 for each of

the 9 conditions. Sentences were chosen randomly from each of the 4 talkers, but

constrained by the condition that each talker was heard an equal number of times in each

test or practice session. During both training and testing, participants were required to

click the target number and colour they had heard on a response screen and were presented

with visual feedback (smiley face for a correct response and sad face for an incorrect

response). All responses were saved and the program proceeded to the next trial.

In the open-set sentence test, participants were trained with 36 sentences randomly

selected from the test set (3, 4 and 5 bands). In each trial, participants were scored by the

experimenter based on the number of keywords correctly reported. If the score was lower

than 3, the unprocessed and processed stimuli were played twice as auditory feedback.

Testing used another 180 sentences, 20 for each of the 9 conditions, and followed the same

procedure only without feedback. Again, sentences were chosen randomly from each of the

2 talkers, constrained by the condition that each talker was heard an equal number of
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times in each test or practice session.

2.4. Results

Results of the closed-set response test are shown in Fig. 3. Participants’ responses

were fitted with mixed-effects logistic regression models, using the lme4 package [Bates et

al., 2014] in R. Factors were entered into the model in the sequence below: the model

firstly started with taking listener and talker as random intercepts; fixed effect factors

carrier, band number (transformed to a logarithmic scale [Shannon et al., 2004]) and their

interaction were then entered; finally random slopes were entered into the model. Factors

were retained in the model only if they significantly improved the model fitting, using

Chi-squared tests based on changes in deviance. The best model obtained was: response =

(1 |listener) + band number + carrier (the term (1 |listener) indicates only a significant

random intercept of listener, suggesting that there is a significant difference among

listeners’ average responses but not in the relationship between their responses and fixed

effect factors). Both main factors were found significant (band number :χ2=141.57, df=1,

p<0.01; carrier :χ2=35.57, df=2, p<0.01), with no significant interaction (χ2=1.95, df=2,

p>0.05). Post hoc analysis using Wald tests showed that correct responses increased with

the number of bands (z=11.34, p<0.01). For carriers, dense tones were significantly better

than tones (z=-5.73, p<0.01) but not noise (z=1.90, p=0.06), and the noise carrier was

better than the tone carrier (z=-3.94, p<0.01).
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The results for the open-set sentence test are given in Fig. 4. The proportion of

correct responses was fitted using the same procedure and the best model was also:

response = (1 |listener) + band number + carrier. Band number (χ2=415.00, df=1,

p<0.01) and carrier (χ2=493.31, df=2, p<0.01) were significant but there was no

significant interaction (χ2=3.62, df=2, p>0.05). More bands resulted in higher

intelligibility (z=20.52, p<0.01). The dense tones led to significantly better performance

than tones (z=-21.03, p<0.01) and noise (z=-0.805, p<0.01), and the noise carrier was

better than the tone carrier (z=-13.81, p<0.01).

3. Discussion

This study clearly demonstrates that increasing spectral density alone can enhance

the intelligibility of tone-vocoded speech significantly without providing any extra spectral

or temporal information. Dense tone-vocoded speech in this experiment has the same

degree of spectral resolution and the same modulations as in typical tone-vocoded speech,

only with more sinusoidal components. For two types of speech material and across all

number of bands, dense tone-vocoded speech was significantly more intelligible than

normal tone-vocoded speech. This confirms what has only been suggested in past studies

concerning the positive impact of a denser spectrum on intelligibility [Assmann and

Nearey, 2008] [Churchill et al., 2014] [Souza and Rosen, 2009].

Other findings were also consistent with previous studies. The noise carrier was found
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to be more intelligible than a tone carrier that has a much sparser spectrum. However,

when the spectra were similarly dense (dense tone- and noise-vocoded speech), the inherent

fluctuations of the noise presumably disrupted the temporal envelope information to some

degree, thereby giving poorer performance in the open-set sentence test. Dense

tone-vocoded speech was not significantly better than noise-vocoded speech in the

closed-set response test, possibly due to the small amount of testing.

The disadvantage of a sparse spectrum, as in typical low envelope cutoff tone-vocoded

speech, may lie in the incomplete use of the available spectral and temporal cues. With

spectral ‘holes’ between each sinusoidal carriers, it may be hard for listeners to fuse

disparate frequency components into a single auditory object and observe the between-band

amplitude changes that convey information about spectral dynamics [Roberts et al., 2011].

Furthermore, the temporal envelope of each band may be underrepresented with one

sinusoid. Therefore, having the same temporal information available in more frequency

components, ideally without random fluctuation, may optimise the representation of

aspects of speech essential to intelligibility [Roberts et al., 2011] [Rosen and Iverson, 2007].

This study has important implications for experiments using vocoded speech as CI

simulation. The choice of carrier signal affects both the type and amount of acoustic

information transmitted and these effects interact with the choice of envelope cutoff

frequency. Considering that vocoded speech has been used in a wide range of research
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topics, including speech perception plasticity, effectiveness of CI parameter settings and

training schemes [Guediche et al., 2014] [Shafiro et al., 2012], it is essential to take into

account the impact of the various parameters in vocoder processing, in order to obtain a

clear picture of the experimental factors of main interest.
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Figure captions

Figure 1: Spectrograms of the sentence ‘The birch canoe slid on the smooth planks’

uttered by a male speaker, vocoded with different combinations of carrier signals and

envelope cutoff frequencies. The left panel shows the four-band noise-vocoded versions,

with the top one having an envelope cutoff frequency of 30 Hz (4n30) and the bottom one

a cutoff frequency of 300 Hz (4n300). Correspondingly, the right panel demonstrates the

four-band tone-vocoded versions, with the top one a cutoff frequency of 30 Hz (4s30) and

the bottom one a cutoff frequency of 300 Hz (4s300).

Figure 2: Spectrograms of the two-band tone-vocoded sentence ‘Show the cat where the

blue six is’ uttered by a female speaker, with different types of carrier signals. (a) shows

the dense tone carrier used in the experiment (Mm. 1). The carrier is a set of 24 sinusoids

that are of the same amplitude, equally distant on the basilar membrane. The lower 12

components (band 1) are modulated by the same amplitude envelope and the upper 12

components (band 2) are modulated by another. In comparison, (b) shows the tone carrier,

which has only two sinusoidal components(Mm. 2). Although the tone in band 1 is

modulated by the same envelope as in band 1 of (a) and the tone in band 2 by the same

envelope as in band 2 of (a), the spectral density of the two sounds are different.

Mm. 1. Sound file of the two-band dense tone-vocoded sentence. This is a file of type
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‘.wav’ (89 Kb).

Mm. 2. Sound file of the two-band typical tone-vocoded sentence. This is a file of type

‘.wav’ (89 Kb).

Figure 3: Boxplots of proportion correct for the closed-set response test as a function of

band numbers, with carrier type indicated by differently shaded boxes.

Figure 4: Boxplots of proportion correct for BKB sentences in the open-set test as a

function of band numbers, with carrier type indicated by differently shaded boxes.


