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Abstract 

Due to increasing life expectancy in western societies, a rise in the prevalence of 

Alzheimer’s Disease (AD) is expected to have adverse social and economic consequences.  

The success of emerging treatments for AD relies heavily on the ability to test their efficacy.  

Sensitive biomarkers are required that provide information specific to the therapeutic 

targets.  Through manipulation of the genome, transgenic mice have been bred to exhibit 

particular pathological features of AD in isolation.   Magnetic Resonance Imaging (MRI) of 

these mouse models can be used to observe phenotypic abnormalities in-vivo in a 

controlled environment.  As summarised in the introductory chapter, the aim of this work 

was to develop MRI techniques for inclusion in multi-parametric protocols to characterise 

AD models in-vivo. 

Structural MRI has become an increasingly popular tool in the measurement of atrophy of 

brain tissue over time and requires both accuracy and stability of the imaging system.  In 

chapter 3, a protocol for the calibration of system gradients for high resolution, pre-clinical 

MRI is described.  A structural phantom has been designed and 3D printed for use in a 9.4T 

small bore MRI and micro CT system.  Post processing software is used to monitor gradient 

stability and provide corrections for scaling errors and non-linearity.   

Diffusion Tensor Imaging (DTI) and Quantitative Susceptibility Mapping (QSM) are MRI 

techniques that have shown sensitivity to changes in white matter regions of the brain.  

QSM may also provide a non invasive method for measurement of increased iron 

concentration in grey matter tissue observed in AD.  Chapters 4 and 5 evaluate the utility of 

these measurements as imaging biomarkers in a mouse model that exhibits tau pathology 

associated with AD.  Discrepancies between transgenic and wild-type groups were 

identified for both MRI techniques indicating the potential benefit of their inclusion in a 

multi-parametric in-vivo protocol. 
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1 Alzheimer’s Disease 

1.1 A brief history 

In 1901 Alois Alzheimer(Figure 1a) admitted a patient suffering memory loss, confusion and 

other symptoms of a neurological disorder to Frankfurt Hospital(1,2).  When Auguste D. 

died four years later, Alzheimer conducted a post mortem investigation of her brain. As 

well as finding plaques that had been described previously(3), Alzheimer became the first 

to discover tangle pathology using silver stains(Figure 1b).  In 1906 he presented his 

findings at the 37th meeting of the Society of Southwest German Psychiatrists, defining the 

characteristic clinical and neuropathological features of a disease that would come to bear 

his name.  It was not until 1979 that the first Alzheimer’s Disease (AD) association was 

formed in the USA to attract funding for the necessary pursuit of an understanding of the 

biology of the disease.  In the intervening years, a clinicopathological distinction was 

developed between senile dementia patients (onset > 65 years of age), many of whom 

exhibited AD pathology, and pre-senile dementias (onset < 65 years of age), which include 

conditions such as Picks disease and Creuzfeldt-Jakob disease.  The discovery of familial 

forms of the disease by Schottky in 1932(4) seeded a genetic avenue of scientific research 

in AD. This work has fused with studies of the molecular composition of proteinaceous 

aggregates in the brain over the last three decades to provide some insight into the 

etiology of the disease. 

 

Figure 1. Alzheimer’s disease historical images 

Photograph of Alois Alzheimer(a), and his sketch of stained tangle pathology(b) from his 
1911 publication(5,6). 
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Neuritic plaques that accompany the tangle pathology discovered by Alzheimer had been 

reported previously in 1898 by Redlich(2).  Preliminary electron microscopy (EM) 

investigations of post mortem tissue in the 1960s(7,8) revealed abnormal plaque filaments  

located in the extracellular space, whilst tangles appeared in helical filaments within cell 

bodies and in neurites as well as at the periphery of plaques(1).  It was another 20 years 

before the identification of Amyloid-Beta(Aβ), formed from the cleavage of Amyloid 

Precursor Protein (APP), as a major component of plaques though biochemical 

analysis(2,9).  The primary function of APP remains unclear but it is thought to have an 

impact on neuronal development and function through its involvement in a range of 

biological activities(10).  The role of tau protein, detected within tangle pathology, is to act 

as a microtubule binding and stabilising agent.  Hyperphosphorylation processes are 

thought to be responsible of the manifestation of tau in its tangled filamentous form in AD, 

sometimes described as neurofibrillary tangles (NFTs) (2).  

NFTs in dementia cases are not homogeneously spread throughout the brain but display a 

characteristic pattern(11).  A progressive spread of tau pathology was identified in 1991 

that has become known as ‘Braak Staging’(11).  Six stages were defined corresponding to 

the level of infiltration across distinct brain regions.  In the mildest cases, NFTs are 

restricted to the transentorhinal region (stages 1 and 2).  In the limbic stages (3 and 4), 

pathology builds up and also spreads to the hippocampus.  The low density of tau tangles 

present in the isocortex during the limbic stages increases in the final stages with a heavy 

burden throughout the aforementioned regions of the brain.  Comparisons with cognitive 

tests have indicated that the transentorhinal stages are clinically silent(12).  Mild stages of 

AD memory impairment are associated with NFT spread to the limbic regions, with severe 

memory loss occurring in the final Braak stages.  Furthermore, studies of neuronal cell 

death and tissue atrophy also follow Braak staging patterns(13-16).  In contrast, the 

regional distribution of plaques remains fairly consistent as accumulation occurs over time 

and post mortem analyses show variability in the density of plaques between patients that 

exhibit mild clinical symptoms of AD.  Therefore, although amyloid pathology appears to 

occur early in disease, its utility as a method by which to stage the time course of AD with 

close affinity to clinical symptoms is limited. 

The vast majority of AD cases are of the sporadic form with autosomal dominant(familial) 

cases accounting for less than 1%(1).  This subset of cases often present with symptoms 
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before the age of 65, known as early onset, and is a more rapidly progressing form of the 

disease.  The first links between genetics and pathology were made between plaque 

deposition and mutations and duplications of the APP gene(2).  Discoveries of mutations in 

Presenilin 1 (PSEN1) and Presenilin 2 (PSEN2) genes on chromosome 14 in familial AD 

followed.  The proteins encoded by these genes are involved in the processing of APP and 

Aβ(17) with PSEN1 mutations being the most common cause of autosomal dominant AD.  

The over expression of Aβ generated in these cases is described as a disease trigger in what 

is known as ‘amyloid cascade’ hypothesis(1).  This suggests that the appearance of tangles, 

neurodegeneration, and dementia are downstream events of the disease.  Mutations of 

the Microtubule Associated Protein Tau(MAPT) gene are not implicated in AD but have 

been associated with fronto-temporal dementia linked to chromosome 17(1).  The APOEε4 

allele on chromosome 19 has been identified as a genetic risk factor for late onset AD and 

is associated with mild cognitive impairment(MCI)(17).  MCI is a clinical term used to 

describe patients at an intermediate stage between normal cognition and dementia. 

Functional independence is retained in MCI sufferers but the likelihood of developing AD, 

relative to non-sufferers at a similar age, is increased(18).  Studies have associated APOEε4 

with both MCI and its progression to AD(17). 

Alzheimer’s Disease is now the most common type of dementia  contributing 60-70% of the 

36 million cases worldwide(19).  Lifestyle choices such as diet, exercise and intellectual 

stimulation, are thought to offer protective benefits to developing AD. However, the 

inescapable process of aging is by far the greatest risk factor, with incidence of AD doubling 

every five years after the age of 60(18).  The toll that decline into AD takes on both 

sufferers and their carers is immense with loss of memory and cognitive abilities affecting 

every facet of daily life.  The increasing life expectancy of the population suggests the 

prevalence of AD will increase to 115 million by 2050(20).  A recent study has suggested 

that these projections may be an overestimation since they do not take into account other 

changing factors such as improvements to living conditions, education, and general health 

of the population(21). Nevertheless, there is already an urgent need to develop therapeutic 

treatments to alleviate the burgeoning social and economic burden of AD.  

The connection made between the genetic mutations in familial forms and Aβ in plaque 

pathology provide an obvious target for pharmaceutical development.  Strategies 

implemented in mouse models of familial AD have attempted to block Aβ production by 
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immunisation or by modulating the cleavage process in APP processing using secretase 

inhibitors.  The complete inhibition of these proteases may have potential harmful side 

effects due to the multiple functions they serve and in the case of the γ secretase, this is 

toxic(2,22).  Partial suppression of secretase activity  has been shown to reduce Aβ levels in 

the brain  and cognitive decline in animals and in the case of β secretase, some inhibitors 

are currently at an advanced stage in clinical trials(23).  Aβ immunotherapies have been 

shown to reduce plaque load in the brain in clinical studies of AD but the cognitive benefits 

are less certain(24).  These treatments are also associated with a number of amyloid-

related side effects including increased severity of cerebral amyloid angiopathy, thought to 

be exacerbated by the removal of plaques(24).   

Besides amyloid, other aspects of the AD pathogenesis have been targeted using anti 

inflammatory drugs, metal chelators, antioxidants, tau phosphorylation inhibitors, and 

compounds to lower cholesterol(2).  The recent use of tau immunotherapies in mouse 

models has demonstrated efficacy in reducing tangle pathology and cognitive decline and 

may offer another promising target for AD pharmaceutical development(25,26).  The 

translation of promising preclinical results to viable therapies has been impeded in some 

cases by findings of adverse side effects.  It is also suspected that improvement in the 

design of clinical trials is necessary to better detect the  positive effects of drugs, especially 

with regards to the stage of disease progression at which the treatments are 

administered(27).  To this end, researchers in the field see the development of in-vivo 

biomarkers sensitive to disease pathology essential to guiding and facilitating drug 

development(27). 

1.2 Biomarkers 

The Mini Mental State Examination(MMSE), is a clinical tool widely used to screen for 

dementia and is thought to successfully discriminate sufferers from healthy patient 

groups(28).  However, it lacks specificity to AD and is insensitive to MCI (29).  These tests 

may result in a diagnosis of ‘probable AD’, with post-mortem analysis necessary to confirm 

dementia type.  In 2007, the International Working Group for New Research Criteria for the 

Diagnosis of AD proposed a frame work that combined episodic memory tests and the use 

of biomarkers for the in-vivo diagnosis of AD as differentiated from other dementias(30).  

The use of biomarkers to take biochemical, pathological or anatomical measurements may 
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improve early detection and allow staging of disease providing longitudinal measurements 

by which therapeutic effects can be evaluated.  Techniques developed offer sensitivity to 

different factors in the multifaceted pathogenesis of AD and can be broadly divided in to 

biofluid sampling and medical imaging categories. 

The measurement of protein concentrations in sampled Cerebrospinal Fluid (CSF) is the 

most developed biofluid analyte technique(18).  Depressed levels of Aβ have been detected 

in MCI and AD patients, although the relationship with plaque deposition is unclear(17).  

Conversely, CSF concentrations of total tau and phosphorylated tau are elevated in AD and 

have been shown to rise with disease severity(18,31).  Variability between studies indicate 

there may be other factors influencing levels of tau in CSF(32) and the specificity to AD is 

lacking, with similar increases observed in other tauopathies(33,34). The cycle of Aβ 

production by platelets and deposition in the brain maintains a constant level of Aβ in the 

blood in healthy individuals(17).  Detection of disruptions to this status quo in disease has 

been attempted by analysing plasma samples.  While blood Aβ levels increase in familial AD 

have been reported, findings in studies of sporadic forms are inconclusive(17).   

Imaging biomarkers offer a method by which to probe tissue vitality and pathology and 

unlike biofluid markers provide spatial localisation of abnormalities.  The measurement of 

atrophy using MRI and plaque burden using amyloid positron emission tomography (PET) 

are two of the most frequently used techniques for the clinical study of AD(18).  The 

resolution and soft tissue contrast generated using MRI can be used to measure subtle 

volumetric changes in brain structures.  Atrophy occurs in normal aging and is accelerated 

in a number of conditions.   In AD, volume decreases in brain structures measured using 

MRI appear closely linked to both severity and rate of impairment in cognitive 

function(35,36).  Hippocampal reductions and brain-wide distribution of volume changes 

have been shown to correlate with the Braak stages of NFT pathology in AD(37).   

Plaque burden may be measured using amyloid PET which uses Pittsburgh Compound B as 

a tracer (sometimes called PiB PET).  It binds to plaques and the increased signal observed 

in AD has been shown to correspond with Aβ  burden at post mortem and is inversely 

correlated with CSF Aβ(17).  A recent hypothetical model suggests the sensitivity of these 

techniques is such that cases may be detected prior to the appearance of clinical 

symptoms(38).   However, some studies have identified pathology indicative of AD  at 

autopsy in almost one third of healthy subjects which is similar to the proportion of 
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abnormal scans in cognitively normal individuals reported in amyloid PET studies(18).   

Therefore, although sensitive to in-vivo levels of Aβ, amyloid PET may not be the most 

accurate predictor of the development of clinical symptoms.  More recently, fluorine based 

tracers that bind to amyloid have been developed that can successfully differentiate AD 

cases from healthy controls.  These compounds may prove more popular than PiB due to 

their greater availability(18).  Additional AD PET targets include reduced cerebral glucose 

metabolism detected by FDG-PET, and microglial activation detected using molecular 

imaging probes.  SPECT probes have been developed primarily to target dopamine 

transporters or receptors and may find application in the development of neuroprotective 

treatments in AD by providing  a measure of neuronal population (17). 

When envisaging the future of routine clinical care in AD, and the role that imaging might 

play, the completely non-invasive nature of MRI is a favourable attribute.  This confers a 

considerable comfort benefit to patients receiving regular monitoring of their condition 

and may be especially important in AD where subjects are likely to be elderly.   MRI 

includes the spatial information lacking in biofluid analytes and offers increased spatial 

resolution compared to nuclear imaging methods.  Besides structural methods, MRI 

measurements of diffusion, perfusion and spectroscopy are emerging as techniques that 

may provide sensitivity to the deleterious effects of the condition.  The disruption to the 

highly ordered microstructure of white matter tracts is thought to occur early in AD and in 

MCI, which causes measureable alterations in Diffusion Tensor Imaging (DTI) indices(39).  

Arterial Spin Labelling(ASL) is an MRI method used to measure blood perfusion in the brain 

and has shown deficits in AD that correspond to impaired cerebral metabolism in FDG-PET 

scans(18).  It can both differentiate between MCI and AD cases as well as predict transition 

from the MCI to AD(17,40).  Magnetic Resonance Spectroscopy(MRS) of hydrogen can be 

used to detect cellular metabolite levels.  AD patients exhibit reduced N-

acetylaspartate(NAA), thought to reflect decreases in neuronal population, in early 

neurodegeneration.  Neuronal activity can be probed, albeit indirectly, using fMRI and 

studies have been carried out for both task based and resting state paradigms.  There is a 

decreased BOLD signal in the hippocampus of AD patients during cognitive tasks(41) and  in 

the resting state, disruptions to the default mode network can be detected that 

differentiate normal cases from AD and MCI(40).  The endogenous nature of MRI contrast 

means that an assortment of measures of tissue composition, integrity and function may 

be gathered in a single, non-invasive, imaging session.  A number of studies have used 
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Multi-parametric MRI protocols to acquire data in MCI and AD patient cohorts(39,42-46). 

Many of these studies have collected structural MRI and DTI and report that an increased 

diagnostic accuracy is achieved through a combination of parameters(42,43,46).   

The biomarkers described in this section are not in current clinical use due to a lack of 

standardisation and questionable effects on disease outcomes given the absence of an 

effective treatment.  The use of animal models of AD can be used to expedite the 

optimisation of imaging markers for clinical use.  Pathology develops in a much shorter 

timeframe than in humans, typically over a few months, enabling a high throughput of 

biomarker testing.  Genetic mutations in transgenic mice can produce different ‘AD like’ 

pathophysiological features in isolation.  Therefore, biomarkers can be tested in a 

controlled environment and sensitivity to biological changes can be validated using 

histology.   

1.3 Mouse models of disease 

Early in the twenty-first century, in a testament to the value of big science, the sequencing 

of the human genome was completed.  This opened the floodgates for a plethora of 

scientific investigations into gene function and profiling.  Relationships between 

phenotypes and the DNA instructions detailing their architecture could now be defined.  

The benefits of genetic testing are being reaped clinically providing robust diagnostic 

testing for a growing number of conditions.  The mouse was the first animal to have its 

genome sequenced which was found to be very similar to that of humans.  Powerful 

genetic techniques have been developed that can introduce abnormalities into the mouse 

genome to generate AD models.  There are now a number of mice lines available that 

exhibit ‘human like’ plaque and tau pathology.  Low variability in phenotypes can be 

achieved using inbred strains, and the low costs and rapid maturation of these animals 

allows a high experimental throughput(47).    

Mouse models may vary in both the specific genes that are targeted as well as the way in 

which they are manipulated.  Genes can be inactivated known as knocking out, introduced 

known as knocking in, and mutated using chemical processes.  The earliest models of AD 

are based around the known genetic mutations in familial forms and are therefore 

associated with abnormal Aβ processing.  These mice develop plaques, cognitive deficits, 

and in some cases atrophy of brain tissue to varying degrees(48).  The different mutations 
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and promoters - DNA sequences that define where transcription begins, can be used to 

vary the regional distribution of pathology and age at which phenotypic changes occur. 

Transgenic mouse lines have been bred to over express normal hAPP (human APP) which 

causes reduced density in presynaptic terminals but not the accompanying plaque 

pathology observed in models expressing the mutated form(49).  Mutations in the 

presenilin gene produce an increase in Aβ levels(50) without cognitive deficits and plaque 

formation(48) that are only observed when crossed with mice expressing hAPP mutations 

to form a PSAPP model(51).  Interestingly, plaques occur at an earlier age compared to 

hAPP models(52), and appear after measurable cognitive deficits are detected in this 

double transgenic line(53). 

The full pathological profile of AD incorporates both plaque and tangle pathology.  NFTs 

accumulate in a progressive manner with age in mice with the P301L htau (human tau) 

mutation along with motor and behavioural deficits that are similar to the human 

condition(54).  The tau pathology in these mice is more severe when crossed with a hAPP 

model implying that amyloid deposition may intensify NFT formation(55).  Tau models 

expressing wild-type human tau display neuronal dysfunction without the aggregation and 

NFT formation in mutant forms(48).  In a study where mice with no endogenous tau alleles 

were crossed with a hAPP line,  an improvement in memory and learning was observed but 

there was no decrease in amyloid pathology(56).  Combined with the result from the 

P301L/hAPP double transgenic experiment, these findings suggest that tau aggregation 

may be a downstream event from plaque formation in line with the amyloid cascade 

hypothesis.  However, these studies do highlight a detrimental effect of both mutated and 

wild-type human tau on neuronal vitality that is not observed in models expressing 

mutated hAPP only.  Models that can replicate tau deregulation and aggregation in human 

AD therefore have an important place in the ongoing investigation of the disease.   

The increasing number of models available means that it is crucial to make an appropriate 

choice as part of the experimental design process.  In the case of drug development, the 

well documented time course of appearance of plaques and cognitive impairments in 

different models(48,57) should aid selection when targeting a specific stage of AD related 

pathology.  The administration of a pharmaceutical at discrepant timepoints in mouse 

models relative to AD patients may lead to failure to translate successful tests in mice to 

the clinic.  In-vivo biomarkers that provide spatial distribution and density of NFT pathology 
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could be used stratify the Braak stage of the disease and provide homologues between pre-

clinical and clinical studies.  Other important considerations include the fact that transgenic 

mice do not model sporadic AD in which there are differences in clinical and pathological 

symptoms compared to the relatively small population of familial forms.  Drug delivery is 

complicated by the large disparity in pharmacokinetics and the difficulty in equating doses 

in humans to those in mice(48).  These factors may have played a role in the failure of 

amyloid targeting drugs in human trials that had previously shown success in transgenic 

mice. 

The benefits of mouse models in the study of AD so far are undeniable: correlative 

relationships in degenerative processes observed in humans have been replicated and 

validated in mice; potential therapies developed; and the powerful isolation of amyloid and 

tau pathologies have demonstrated that they both have important roles in AD.  The failure 

of candidate amyloid modulating drugs to arrest cognitive decline in clinical trials to date 

has caused a shift in interest to alternative therapeutic pathways(2).  The more recent 

availability of mouse models that develop tau pathology that mimics the human condition 

may provide a new target for diagnostic imaging and therapeutic development. 

1.4 Pre-clinical imaging biomarkers 

Histological staining of ex-vivo tissue in cross sectional studies has provided quantification 

of the plaque and tangle pathology in mouse models of AD.  The age and severity at which 

deposits appear varies between lines, as does the extent of cognitive impairment observed.  

Imaging biomarkers offer the potential to track pathological changes over time in 

longitudinal studies and in many cases have analogous human protocols.  The repeated 

examination of the same subjects generates both group and individual comparison data 

that is both cheaper and reduces animal use.  This can expedite the testing and validation 

of new imaging techniques for clinical applications in AD.  External effects such as lifestyle 

choices are controlled for in animal studies and composite influences from multiple 

pathological processes can be dissected to provide new insights into mechanisms of 

disease. 

Pib-PET studies in mice with APP mutations have previously reported poor retention of the 

tracer(58,59) but more recently PSAPP mice have displayed a correlation between uptake 

and Aβ pathology(60).  Using a fluorine based tracer(florbetapir), thought to bind better to 
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fibrillar amyloid, excellent uptake can be achieved in PSAPP mice(61) and brain regions 

with plaque pathology are differentiated in PET images(62).  Decreases in FDG-PET signal 

have also been observed in PSAPP mice indicating the reduced metabolic activity 

associated with AD(52).  Methods specific to NFT pathology are under development(63) but 

PET has been shown to detect increases in tracers sensitive to reactive microglia in mice 

with a tau mutation(64).  The limited resolution of PET relative to the size of the mouse 

brain is a major drawback of the technique which can make accurate delineation of signal 

from specific structures challenging(65). 

The sophisticated methods of structural MRI analysis developed for measurements of 

volumetric changes in the human brain have been adapted for mice.  Studies in both 

Amyloid and Tau models have detected volumetric reductions in specific brain structures 

relative to wild-type controls(66-70) as well as measuring longitudinal changes(71).  

Plaques can be visualised in hAPP and PSAPP mice using high resolution T2 and T2* 

weighted imaging which may be due to the presence of iron(72-78).  Deficits in cerebral 

blood flow and white matter abnormalities have also been observed in amyloid models 

using ASL and DTI respectively(79-82).  The decrease in NAA levels associated with AD also 

occur in MRS of hAPP and PSAPP models(83). This effect has been shown to be attenuated 

after administration of anti-inflammatory drugs(84).  In a study that used manganese 

enhanced MRI to probe axonal transport transgenic mice that develop amyloid and tau 

pathology, deficits were observed prior to the age at which plaques and tangles appear(85).  

Tau pathology in AD progresses through the brain in a region-by-region manner described 

by Braak staging(11).  Imaging methods sensitive to the regional spread of NFTs over time 

would constitute a powerful marker of disease severity for longitudinal clinical assessment 

and pharmaceutical testing.  Due to the lack of an identified tau mutation in autosomal 

dominant forms of AD, mouse models are selected for the likeness of the pathological 

characteristics they develop to that of the human form.  One such model is the rTg4510 

model of tauopathy which expresses human tau with the P301L mutation.  The soluble tau 

expressed, co migrates with a hyperphosphorylated tau species observed in NFTs in the 

human disease(86).  In the rTg4510, aggregated Tau and NFTs accumulate in an increasing 

age dependent manner in parallel with memory impairment, neuronal cell loss and 

atrophy(87).  The calmodulin kinase II promoter system is used to direct expression to 

frontal brain structures causing high concentrations of tau pathology in the cortex and 
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hippocampus with gliosis(87).  The prevalence of NFTs appears to be independent of 

neuronal cell death in agreement with findings in clinical studies of AD(86,87).  As with 

Braak staging, a progressive regional spread of pathology is observed with age in the 

rTg4510(although this regional pattern is different to that observed in sporadic AD 

sufferers).  NFTs first appear in the cortex at 2.5 month before spreading to the limbic 

structures at 5 months(87).  At 8.5 months, high NFT density is observed throughout the 

forebrain structures and is accompanied by neuronal cell loss with gross atrophy apparent 

in visual comparisons of histology at 10 months(86).   

Prior to this work, a volumetric MRI study of the rTg4510 at five months showed early 

sensitivity to reductions in the hippocampus and cortex relative to wild-type controls.  This 

study also included proton MRS data that showed increases in myo-inositol to creatine 

ratios, indicative of glial activity in the hippocampus(70).  Investigations using manganese 

enhanced MRI revealed a reduction in neural activity in regions associated with memory 

formation at six months of age(88).  These early studies provide an indication of the 

sensitivity of MRI to pathology and degeneration in the rTg4510.  Investigation into 

techniques that probe other distinct aspects of AD pathophysiology such as perfusion, 

microstructure, and protein aggregation may provide a more complete characterisation of 

the rTg4150 phenotype.  

1.5 Summary and thesis aims 

In this introductory chapter, a brief overview of some of the major events in the discovery 

of AD is provided.  There is a need for this debilitating disease to be better understood.  

One method by which to achieve this may be to use mice as reductionist tools to observe 

and analyse individual known biological factors that may be tracked using biomarkers.  In 

this way, MRI may provide a tool to evaluate therapeutics and also elucidate new 

mechanisms in the pathogenesis.  The real power of this non-invasive modality may lie in 

the combination of data from the application of multiple techniques that are directly 

translatable to the clinic, providing a holistic approach to describe the neurodegenerative 

process.  In comparison to studies of mouse models of plaque pathology, there is paucity of 

pre-clinical studies into the role of tau in AD. 

To aid the development of pharmaceuticals that target tau pathology in AD, a collaboration 

was born between CABI and Eli-Lilly & Co. Ltd. with the aim of developing an in-vivo multi-
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parametric MRI protocol sensitive to pathology in the rTg4510.  In addition to structural 

MRI, the goal was to develop new techniques that provide sensitivity to other degenerative 

aspects of the disease to complement the information from this established biomarker.  

Total scan time is restricted by limits of anaesthesia duration in the mouse.  Development 

of time efficient acquisitions are necessary to collect multiple MRI metrics sequentially in a 

single session.  

Magnetic field gradients used for spatial localisation of signal are central to most MRI 

techniques.  Imperfections can cause distortions in structural MRI data used for volumetric 

analysis, and errors in diffusion estimates from DTI protocols.  The first aim of this work 

was to develop a novel calibration protocol that could be used to perform quality 

assurance by monitoring the accuracy of the system gradients of the MRI scanner.  This is 

described in chapter 3 and provided a foundation for the acquisition of consistent multi-

parametric data.  Secondly, the primary aims of this thesis focussed on the development of 

MRI protocols that would provide sensitivity to white matter degeneration in AD mouse 

models.  Diffusion Tensor Imaging and Quantitative Susceptibility Mapping protocols 

suitable for multi-parametric acquisition are designed, systematically optimised, and 

implemented in the rTg4510 mouse in Chapters 4 and 5 respectively.  In the next chapter, 

the theoretical MRI concepts applied in this thesis are outlined. 

 

 



27 

 

2  Magnetic resonance imaging theory and 

methodology 

2.1 Chapter summary 

In the first chapter, an overview of the current understanding of Alzheimer’s Disease was 

provided.  A case was made for the great potential of emerging MRI techniques to provide 

biomarkers of the various pathological traits of the disease and to aid in the development 

of new therapies.  In this chapter, the fundamental principles of MRI and the theory behind 

the relevant MRI techniques that have been applied in this thesis are described.  Firstly, the 

physics of NMR signal generation is outlined as well as basic pulse sequences and MR 

relaxation time constants that are referred to throughout this work.  Chapter three 

describes a technique developed to calibrate gradients so key concepts involved in the 

spatial encoding of the MRI signal are covered.  In the latter sections of this chapter, 

methods of Diffusion Tensor Imaging and Quantitative Susceptibility Mapping are detailed 

to provide the reader with some understanding of steps involved in the protocols applied in 

chapters 4 and 5.  

2.2 NMR signal generation 

The signal in Nuclear Magnetic Resonance(NMR) can be described theoretically using a 

mixture of classical physics and quantum mechanics with each providing an explanation of 

different aspects of the phenomenon.  Whereas quantum mechanics is useful for 

describing the interaction of magnetic fields with individual atomic nuclei, a classical 

treatment is more helpful in understanding the cumulative behaviour of a population.  

Electromagnetic radiation travels in waves consisting of packets of energy known as 

quanta.  The relationship between these wave and quantal properties of radiation are 

described by the equation  

     

Equation 1  

where   is the energy of a quantum, h is Planck’s constant and   is the frequency of the 

electromagnetic wave.  The interaction between magnetic radiation and molecules can 
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involve absorption or emission of a quantum of energy.  This will result in a molecular 

energy level transition that is of equal energy to the quanta.  This interaction between 

matter and radiation is central to the quantum mechanical theory of MRI. 

The 1H nucleus imaged in MRI is a member of a class of nuclei that possess the property of 

spin.  The nucleus of such atoms is often referred to simply as a ‘spin’ in NMR and gyrates 

around its own axis generating an angular momentum(Figure 2) like a spinning top.  The 

hydrogen nucleus consists of a single proton giving it positive electric charge.  In the 

manner of a circulating electrical current in a loop of wire, the spinning motion of this 

positively charged nucleus generates a magnetic field.  When placed in an external 

magnetic field, a turning moment acts on this ‘nuclear dipole’.  This is known as the 

magnetic moment,    and is associated with the angular momentum, of the spin.  This 

angular momentum, p, can only take discrete values specified by quantum number I  and is 

calculated as(89) 

                   

Equation 2  

where          

 

Figure 2. Spin angular momentum 

Schematic of various orientations of the angular momentum vector of a nucleus labeled 
with z components pz and quantum number m.  Figure adapted from (89). 
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I can take integral or half integral values based on the number of protons and neutrons in 

the nucleus in question.  In the case of the 1H nucleus, I = 1/2.  In MRI we are interested in 

the component of angular momentum in the direction of the main magnetic field (B0).  The 

angular momentum is a vector quantity and therefore has both magnitude and direction.  

Another quantum number, m, can be used to define the component in the direction of the 

magnetic field (z) as(89)     

          
 

 
 

Equation 3  

reflecting two possible spin states.  The interaction between the magnetic moment and the 

B0 field causes the nucleus to acquire an energy, E, given by(89) 

         

Equation 4  

where γ is the gyromagnetic ratio (approximately 2.68x108 rad/s/T for the hydrogen proton 

in water). A difference in energy between the two possible values of ±1/2 that m can take 

can be calculated as 

        

Equation 5  

The NMR signal is generated through the transition of spins between the two energy states 

described by Equation 4.  This is achieved through the absorption of energy from an 

oscillating magnetic field, B1, generated using Radio Frequency (RF) pulses.  To induce 

transitions, the frequency of oscillation,  0 , must be such that  

       

Equation 6  

where 

        

Equation 7  

  



30 

 

Equations 5,6, and 7 can be combined to give 

       

Equation 8  

This relationship defines the frequency, known as the Larmor frequency, that nuclei of a 

particular gyromagnetic ratio, will precess at in a magnetic field.  It is also the frequency 

that is required for the oscillating magnetic field, B1, to induce spins to undergo transitions 

between energy levels. 

One of the factors governing the amount of signal available in MRI is the difference in the 

number of nuclei in the higher N+ and lower N- energy states at equilibrium.  This is 

described by the Boltzmann distribution which gives the relative populations of spin states 

in a sample(89) 

  

  
   

 
    

  
 

 

Equation 9  

where k is the Boltzmann constant  and T is the temperature in Kelvin.  The spins in the 

positive energy state are in parallel alignment with the main magnetic field and have less 

energy than those in the negative energy state that are in anti parallel alignment.  The 

lower energy state is more populated at equilibrium and there is a net absorption of energy 

when an oscillating B1 field is applied at the Larmor frequency.  If energy state populations 

were equal, there would be equal transitions in both directions and no signal would be 

generated.  The population difference that gives rise to the NMR signal is very small and is 

responsible for the limited sensitivity of NMR.  As indicated by Equation 9, a greater 

discrepancy in spin states can be generated at greater B0 values, and SNR is increased with 

magnetic field strength. 
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Figure 3. Spin energy states 

Spins with their magnetic moment aligned parallel and anti parallel to the magnetic field.  
Energy equal to ΔE must be absorbed to transition from the lower energy state (m=+1/2) to 
the higher energy stat(m=-1/2).  Figure adapted from (89). 
 

This quantum mechanical description indicates that the source of the measured signal is 

born from the difference in the populations between the two spin energy states.  From 

here on, a more classical physics approach will be taken in describing the properties of the 

cumulative magnetic contributions from the signal generating proton population i.e. only 

those that transition to the higher energy state during a particular RF excitation.  When 

placed in a magnetic field, the angular momentum of a spin causes it to process about the 

field at the Larmor frequency.  At equilibrium, the precessing protons are all out of phase 

with each other and the angles made between their magnetic moments and B0 are 

distributed randomly.  By taking the vector sum of the magnetic vectors we can describe 

the proton ensemble by a net magnetization vector, M, which is at equilibrium is aligned 

along the direction of the main field, z(Figure 4a).  The cancelling of components 

perpendicular to the z axis means that, “at rest”, there is no magnetisation in the xy plane 

(known as the transverse plane), Mxy, necessary for signal detection.   

The equilibrium magnetisation, M0, can be rotated towards the xy plane using an RF pulse 

applied perpendicular to the B0 direction at the Larmor frequency.  The net magnetisation 

vector will precess around the direction of the B1 field generated by the RF pulse.  This 

causes it to tip away from the z axis direction towards the xy plane.  The angle subtended 

between the magnetisation and the z axis directly after the pulse is switched off is known 
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as the flip angle(Figure 4b).  In the case of ‘hard pulses’ which are simply switched on and 

the off, the flip angle(α) is defined by(89) 

          

Equation 10  

where B1 is the strength of the magnetic field applied and tp is the pulse duration.  

Considering the case where a pulse is applied with a flip angle of 900, all magnetisation is 

now aligned with the transverse plane and the z component is zero(Figure 4c).   As soon as 

the pulse is switched off, the protons once again precess around the static B0 field and 

there is now an Mxy component known as transverse magnetisation because the spins 

precess in phase.  The Mxy component rotates round the z axis and can be detected using a 

receiver coil.  An electromotive force is induced in the receiver coil that oscillates at the 

Larmor frequency that is further processed by the receiver hardware to produce the NMR 

signal.   

 

Figure 4. Rotation of the net magnetic vector 

Net magnetic vector in the rotating frame at equilibrium(a), after application of a B1 field 
along x to tip the magnetization by flip angle, α,(b), and when tipped 90

0
  into the 

transverse plane aligned with the y axis(c). 
 

The signal received is known as the free induction decay (FID) since over time the Mxy 

component is reduced to zero again and the Mz component recovers to its initial value 

equal to M0. The mechanisms governing the evolution of each component after excitation 

are different.  The Mz component recovers through spin-lattice relaxation described by the 

T1 time constant, sometimes called T1 relaxation.  During this process, energy absorbed 

through RF excitation is transferred to the lattice.  The Mxy signal decays without energy 

transfer and is caused by dephasing and loss of coherence of the magnetic vector 
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contributions of individual protons.  This decay is driven by spin-spin relaxation, described 

by the T2 time constant, in addition to the T2’ time constant which describes dephasing 

caused by inhomogeneities in the main magnetic field.  These two parameters are often 

combined to give the time constant T2* as 

 

   
  

 

  
 

 

   
 

Equation 11  

The recovery over time, t, of the magnetisation following the excitation pulse along the z 

axis to its initial value, M0, is given by 

                   

Equation 12  

And the decay of the transverse signal can be calculated as 

          
     

 
 

Equation 13  

 

The T2* decay of the magnitude of the FID signal induced in the receiver coil over time is 

depicted in Figure 5.  The net magnetic vector of the transverse magnetisation rotates 

around the z axis with an angular frequency that can be described in terms of phase angle 

as 

       

Equation 14  

i.e. frequency is the rate of phase change with respect to time, t.  Differences in frequency 

between spins will generate a difference in phase over time.  In the case of the FID, the 

effect of a 900 phase difference on the signal can be observed in Figure 5 .  Frequency 

differences can be induced by gradients in the B0 magnetic field across the spin population 

which will give rise to phase differences that can be exploited for spatial encoding or 

contrast purposes. 



34 

 

 

Figure 5. Free Induction Decay 

Two FIDs that are approximately 90
0
 out of phase with each other, at time zero the FID in 

(a) has minimum signal whilst the FID in (b) has maximum signal.  Figure adapted from (89). 

2.3 Echo formation 

An alternative method to sampling the FID is to further manipulate the NMR signal to form 

what is known as an ‘echo’, which is more commonly acquired in MRI.  The two most basic 

sequences used to generate signal in this format are called gradient echo and spin echo 

sequences (Figure 6).  Whereas gradient echoes are formed using magnetic field gradients, 

spin echoes require an additional RF pulse.   

To form a spin echo, spins are left to dephase in the transverse plane after excitation using 

a 900 RF pulse.  At a time equal to half of the time to echo(TE), a 1800 refocusing RF pulse is 

used generate a B1 field in the y direction(orthogonal to the 900 pulse) in the rotating 

frame, to flip the spins in the xy plane such that it reverses the sign of the phase difference 

they have accumulated relative to the Larmor frequency.  The spins precessing at a higher 

frequency now have a phase lag and will catch up with those precessing at a lower 

frequency in the second half of the TE to form a spin echo(Figure 6a).  The effects of field 

inhomogeneities will be reversed by the refocusing pulse and therefore spin echoes are 

unaffected by T2’ relaxation.  The dephasing caused by spin-spin relaxation does occur and 

spin echoes are therefore described by the T2 time constant.   In the case of a spin echo, 

the transverse magnetisation decay over time can be calculated by substituting the T2* 

term for T2 in Equation 13.  Images can be generated through the repeated acquisition of 

echoes combined with spatial encoding using magnetic field gradients which is discussed in 

section 2.5.  This time between excitations is known as the time to repeat (TR) and controls 
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the amount of signal recovery in the longitudinal plane (Mz). The signal from a spin 

isochromat(group of spins precessing at the same frequency) using a spin echo sequence is 

given by 

                       

Equation 15  

where S0 is the signal measured with infinitely long TR and infinitely short TE. 

 

Figure 6. Echo formation 

Echo formation using a spin echo sequence(a) and a gradient echo sequence(b). 
 

In the case of gradient echo acquisitions, a magnetic field gradient is applied after RF 

excitation that causes rapid dephasing of the transverse magnetisation (Figure 6b).  This 

gradient field is then reversed so spins experience an equal and opposite magnetic field 

and frequency change.  This has the effect of rephasing the transverse signal forming an 

echo at a time equal to TE.  Both field inhomogeneities and spin-spin relaxation will 
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contribute to the loss of phase coherence over a TE and will not be eliminated in the 

process of echo formation.  The decay of the transverse magnetisation at echo time is 

driven by T2* and can be calculated using Equation 13.  The lack of a refocusing pulse 

means that flip angles other than 900 may be used in gradient echo sequences.  The use of 

lower flip angles increases the longitudinal magnetisation retained after excitation allowing 

a quicker recovery of signal and rapid acquisitions using lower TRs.  Therefore in addition to 

the parameters of TE and TR that control the signal in spin echo sequences, gradient echo 

acquisitions can be manipulated using the flip angle.  The relationship between these three 

controllable parameters in gradient echo sequences is described by(90) 

                
 
 

           

               
 

Equation 16  

 

2.4 Relaxometry 

The measurement of relaxation time constants T1, T2, and T2* can be performed using 

variations of the spin echo and gradient echo pulse sequences.  In the case of T2*, 

measurement of a multi echo gradient echo sequence can be used to capture the 

transverse decay curve.  Bipolar gradients can be used sequentially after excitation to 

rephase the transverse magnetisation and a monoexponential fit (Figure 7) can be used to 

estimate T2* using Equation 13.  A similar process can be used to measure T2 by fitting the 

decaying signal using a multi echo spin echo sequence using 1800 RF pulses to continuously 

refocus spins to generate echoes of decreasing magnitude. 
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Figure 7. T2* measurement 

Formation of echoes using a multi echo gradient echo sequence.  Rephasing of the 
transverse signal generates echoes of decaying magnitude that can be used for 
monoexponential fitting to estimate T2*. 
 

A popular method by which to measure T1 is using an inversion recovery sequence.  A 1800 

RF pulse is used to invert the longitudinal magnetisation(in the negative direction in the z 

axis) which then recovers towards its equilibrium value.  A time after inversion(TI) a 90 

degree pulse can be used to tip the magnetisation into the transverse plane to allow  a 

measurement of the longitudinal magnetisation recovery.  Repeating this process at 

multiple TIs provides multiple measurements of the T1 recovery curve that can be fit using 

a monoexponential function to estimate the T1 recovery constant.  The signal for an 

inversion recovery spin echo acquisition is given by(91) 

          
  

  
  

 
  

  
  
  

 
         

Equation 17  
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2.5 Spatial encoding 

To generate images using the NMR signal, spatial encoding is required to separate 

components from the different locations in a sample.  In MRI this is accomplished by 

introducing inhomogeneities in the main magnetic field using gradient coils.  The spatially 

varying magnetic field causes the frequency of spin precession to change with position.  

The signal strength at a particular position can then be determined via measurement at the 

corresponding frequency.  The spatial frequencies are mapped in three dimensions by 

application of pulsed gradients in the three axes of the scanner frame of reference. These 

can be described mathematically as 

    
   

  
             

   

  
           

   

  
 

Equation 18  

Where Gi is the gradient magnitude in axis i, Bz is the strength of the magnetic field in the z 

direction and x,y, and z are displacements in the direction of the respective axes. 

The raw MRI data acquired is arranged to form a spatial frequency domain known as ‘k-

space’ which can be transformed into an image space using a mathematical tool called the 

Fourier Transform(FT).  To reconstruct images from sampled data a special version of this 

technique is used called the discrete Fourier transform(DFT).  In order to resolve spin 

isochromats precessing at different frequencies, the DFT requires that they must possess a 

phase difference of at least 2π radians in the sampled signal(92).  The spatial dependence 

of frequency in the presence of an applied gradient in the x direction is given by 

                   

Equation 19  

And using Equation 14 we can express this relationship in terms of signal phase : 

                    

Equation 20  

So the phase at position x is dependent on both the magnitude of the gradient along the x 

axis as well at its duration, t.  It is the product of the gradient amplitude and gradient 

duration that determines the phase offsets between spin isochromats and therefore the 
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final spatial resolution.  Sampling the MR signal as time increases in the presence of a 

gradient field provides information about smaller and smaller volumes in the final image.  

In k-space this corresponds to filling locations further and further out from the centre 

which represent higher spatial frequencies.  The cumulative gradient time product, known 

as k is defined as 

              

Equation 21  

Where i denotes both the axis on which the gradient was applied and the axis along which 

the k-space matrix is filled with the sampled spatial frequency data.  By sampling in 

multiple directions, a matrix representing the distribution of spins at various spatial 

frequencies can be produced that yield an imaging slice(2D) or volume(3D) after Fourier 

transformation.  The conventional methods of spatial localisation of signal in 2D MRI 

acquisitions involve application of linear gradients for slice selection, frequency encoding, 

and phase encoding.  These gradients, are applied in a 2D gradient echo sequence as 

shown in Figure 8. 

 

Figure 8. 2D Gradient Echo pulse sequence 

2D gradient echo pulse sequence with slice select(SS), phase encode(PE), readout(RO) 
gradients. 
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A slice of the volume to be imaged is acquired by simultaneous application of a linear 

gradient along the desired axis (z in this case) and excitation using a frequency selective RF 

pulse.  The position of the slice is determined by the centre frequency(ωrf) of this RF pulse 

which corresponds to a point in space along direction of the applied gradient where spins 

are precessing at this frequency,  This relationship is described by 

             

Equation 22  

 and the slice thickness, Δz, is dependent on bandwidth of the pulse(Δω), given by 

    
  

   
 

Equation 23  

After slice selection, the combination of frequency encoding and phase encoding in the 

remaining two orthogonal axes (in this case, x and y respectively) is used to produce ‘in 

plane’ k-space data.  In the frequency encoding or ‘readout’ direction, the MR signal is 

sampled in the presence of a pulsed gradient with position encoded as in Equation 19.  The 

zeroth gradient moment is equal to zero at the central point of k-space and represents a 

component of the acquired signal that is uniform throughout the volume.  The filling of 

Cartesian k-space follows the pattern similar to that depicted in Figure 9.  For each line in 

the readout direction a dephase gradient is applied prior to acquisition to move to one 

edge of k-space.  A rephase gradient is then applied in the opposite direction and the MR 

signal is sampled as the whole width of k-space is traversed. 
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Figure 9. K-space 

Example of k-space being filled from left to right by sampling the echo during a rephase 
readout gradient (thick blue arrows).  The phase encode gradient and the dephase readout 
gradients are used to traverse to the start point (thin blue lines) before acquisition.  Figure 
adapted from (92). 
 

In the axis perpendicular to readout, known as the phase direction, data is acquired by 

application of a relatively short pulsed gradient prior to readout.  This generates an 

accumulation of phase by the time of acquisition that is position dependent described by 

Equation 20. The magnitude and duration of this phase encode gradient determine the 

point on the phase k-space axis that is traversed during signal readout.  Due to the decay of 

the signal due to relaxation processes, the signal is refreshed for each line of k-space in the 

phase encode direction after one TR.  The whole of k-space can be filled by varying the 

phase encoding gradient for each TR. 

The spacing between points in k-space determines the Field of View (FOV) imaged.  The 

relationship between spatial frequency resolution Δki  and the image domain is described 

by the following equations(92) 

           
 

    
 

Equation 24  
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Equation 25  

where =γ/2π . 

We can rewrite these equations in terms of image domain resolution: 

  

    
    

  
  

 

  
 

Equation 26  

where   can be substituted for x,y, or z axes. 

For 3D MRI acquisition, the slice selection is applied to the whole volume in the required 

FOV, referred to as ‘slab selection’.  This is followed by the application of phase encoding 

gradients in the slice selection axis and  k-space can be extended to a third dimension that 

is traversed a similar manner to the in-plane phase encoding dimension in 2D acquisition.    

2.6 Echo Planar Imaging 

2.6.1 Single and multi-shot acquisitions 

The filling of k-space line by line in the conventional MRI acquisition described in the 

previous section is accomplished by refreshing the transverse magnetisation over multiple 

TRs.  Advances in modern hardware performance allow faster switching of gradients with 

larger amplitudes and rapid sampling of the MR signal.  This has enabled k-space to be 

completely traversed after a single excitation using Echo Planar Imaging (EPI).  The readout 

gradient is repeatedly switched to rephase the transverse magnetisation which can be 

sampled many times before decaying away.  EPI sequences commonly use ‘blipped’ phase 

encoding gradients to step through k-space in the phase direction incrementally.  A 

gradient echo single shot or ‘true’ EPI pulse sequence is shown in Figure 10 along with the 

trajectory in k-space. 
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Figure 10. Single shot EPI 

Pulse sequence for single shot EPI (a) and diagram describing trajectory through k-space(b).  
Figure adapted from (92). 
  

The long readout time in EPI makes the resultant images vulnerable to distortion from 

magnetic field inhomogeneities and signal drop out from T2* decay.  The limitations on the 

amplitude and slew rates of the gradients both limit the achievable resolution as well as 

preventing reductions in readout time to minimize susceptibility effects.  An alternative 

approach is to take an interleaved multi-shot approach to fill k-space using multiple 

excitations (Figure 11).  Although less time efficient and more sensitive to artifacts from 

motion, less demands are placed on the gradients so a greater spatial resolution can be 

achieved.  Multi shot approaches have shorter readouts and are therefore less affected by 

T2* effects and artifacts arising from low bandwidth in the PE direction in true EPI are 

reduced.   
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Figure 11. Multi shot EPI 

Diagram of k-space trajectory of a multi shot EPI acquisition with three excitations.  Figure 
adapted from (92). 
 

2.6.2 Artifacts 

The time between signal samples in the PE direction in EPI is equal to the time between 

echoes formed from consecutive rephrase gradients, known as echo spacing(ES)(Figure 

10a).  This sampling occurs at a much lower rate than in the frequency encoding direction 

and the bandwidth per pixel in the PE direction can be calculated by 

     
 

     
 

Equation 27  

which is lower than the bandwidth per pixel in the frequency encoding direction by 

approximately a factor of approximately     .  This is particularly important when 

considering the effects of the chemical shift phenomenon in MRI.  The electronic 

environment of nuclei can modulate the magnetic field experienced by a spin (Beff) given by 

              

Equation 28  
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Where σ is the shielding constant and is approximately 3.3ppm for fat.  Consequently, the 

protons in fat will precess at a shifted frequency that may cause mislocalisation of the 

signal to neighbouring voxels.  The size of the spatial displacement of the signal is inversely 

proportional to bandwidth per pixel and may be calculated by 

     
   

    
  

Equation 29  

The use of an interleaved multi-shot sequence means that k-space is traversed at an 

increased rate and combining Equation 27 with Equation 29 it is apparent that reducing Npe  

will reduce the pixel shift of fat by a factor of 1/Nshot, where Nshot  is the number of shots 

used in the EPI acquisition.  The spatial shift of fat in tissue can cause significant artifacts in 

EPI images and further measures may need to be taken such as the use of frequency 

selective RF pulses to saturate the fat signal prior to excitation.   

EPI images can often suffer from geometric distortion caused by sources of magnetic 

susceptibility differences between regions in the volume of interest.  The magnitude of 

distortion, d, is increased in the PE direction due to low bandwidth and is given by(92) 

   
    

 
  

       

    
  

Equation 30  

where G is magnitude of the PE gradient blips and    is the resolution in image space in 

the phase encode direction.  The k-space steps in the PE direction in multi shot EPI are 

larger than in single shot acquisitions as can be seen in Figure 11.  The gradient-time 

product of the blips must therefore be greater, and as shown by Equation 30, this will have 

the effect of decreasing distortion.   

Gradients arising from magnetic field inhomogeneities may cause signal loss and blurring in 

addition to geometric distortion.  Consequently, the pulse train length is limited by T2* 

decay which is given by 

 

  
   

 

  
      

Equation 31  
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The readout time in single shot EPI is long relative to the T2* of tissue making it more 

sensitive to effects of signal dephasing when  compared with the truncated echo trains 

used in multi shot acquisitions. 

Both single shot and multi shot EPI acquisitions are susceptible to N/2 or nyquist ghosting 

artifacts.  These are caused by misalignments of echoes along the PE k-space axis which 

manifest in images as faint ‘ghost’ images displaced by half of the field of view.  This 

problem stems from the necessity to acquire each consecutive line of k-space with read 

gradients of alternating polarity.  Echoes acquired with negative gradients are reversed 

with respect to time and effects of eddy currents and processing of the signal by the RF 

receiver produces differences between odd and even lines in k-space(Figure 12). 

The rapid switching of gradients in the MRI scanner causes a fluctuating magnetic field that 

may induce electrical currents into conducting scanner components known as eddy 

currents.  These eddy currents cause a lag between the current in the coil and the gradient 

field and this delay causes the rephasing of the echo to be time shifted with respect to the 

centre of the acquisition window.  After time reversal of the odd echoes, this shift is in the 

opposite direction in k-space creating a zigzag pattern along the phase encode axis in k 

space.  If the eddy currents induced are asymmetric, B0 field modulation occurs and echo 

delays are not consistent across the field of view.  This may be caused by misalignments 

between the gradient coil and the structures in which eddy currents occur.  Another source 

of time delay is introduced during the low pass filtering of the signal in the receiver to 

remove noise from the MR signal. 
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Figure 12. Echo misalignment 

Echo misalignment in k-space caused by time delay between gradient current and gradient 
waveform.  A discrepancy between echo peaks in k-space is caused by time reversal of even 
echoes.  Figure adapted from(92). 

 

2.6.3 Nyquist ghost reduction 

The effects of eddy currents on the gradient waveforms may be reduced by scanner 

manufacturers through the use of pre-emphasis of the gradient waveforms as well as 

hardware to actively shield the gradient coils.  However, further techniques are required to 

remove the residual offsets of odd and even echoes in EPI.  A simple method is to delay to 

the start of the signal acquisition by a time that is equal to the lag between the current and 

the gradient waveform.  This aligns the echoes with the centre of the acquisition window.  

Reference scans are an alternative method used to correct for phase and time shifts 

between odd and even echoes.  Navigator echoes are acquired without phase encoding 

and the position of the echo peaks are detected.  Phase and timing adjustments are then 

calculated to align echoes along the PE k-space axis.  In the case of full reference scans, 

navigator echoes are collected for all lines of k-space in the EPI image which also has the 

effect of doubling the scan time. 
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2.7 Diffusion MRI  

2.7.1 Diffusion weighting of the MR signal  

Diffusion is a process by which molecules travel from areas of high concentration to areas 

of low concentration by way of random thermal motion.  Ficks first law describes the net 

flux of particles from regions of high concentration to low concentration(93): 

        

Equation 32  

Where J is the net particle flux, C is the particle concentration, and D is the diffusion 

coefficient.  Einstein later related the mean displacement of an ensemble of particles that 

occurs as a result of Brownian motion to the diffusion coefficient by the equation(93) 

          

Equation 33  

Where <x2>  is the mean-squared displacement of the ensemble, and Δ is the time over 

which diffusion occurs, known as ‘diffusion time’.  Diffusion weighted (DW) MRI is used to 

measure the amount of displacement of water molecules in tissue.  This can be achieved 

by the addition of ‘diffusion weighting’ gradients to a standard sequence.  In the simple 

case of a spin echo sequence, two identical DW gradients can be added, one between the 

90 degree excitation and the 180 degree refocusing RF pulses, and one after the 180 

degree pulse(Figure 13).  This method developed by Stejskal and Tanner is known as a 

pulsed gradient spin echo sequence. 
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Figure 13. Pulsed gradient spin echo pulse sequence 

Stejkal and Tanner diffusion weighted sequence.  Pulsed gradients are added to a spin echo 
sequence to generate diffusion weighting. 
 

The effects of these additional gradients can be best understood in a ‘narrow pulse’ regime, 

where the separation between the two pulses(Δ), is much greater than the pulse duration 

(δ).  Under these circumstances, diffusion taking place during the pulses is ignored, and the 

calculation describing the attenuation of the MR signal of a populations of spins caused by 

diffusion is much simplified(94).  The application of the first pulsed gradient will induce a 

spatially dependent phase shift, Ф1, in the transverse component of the MR signal of a spin 

that can be described by 

Ф1 = γ.G.z1.δ 

Equation 34  

where G and δ are the magnitude and duration of the gradient pulses and z1 is the position 

of the spin along the z axis in this example.  Likewise, the phase accumulation, Ф2 , of a spin 

generated by the second diffusion gradient is given by 

Ф2 = γ.G..z2.δ 

Equation 35  

The effect of the 1800 RF refocusing pulse is to reverse the direction of the phase induced 

by the second gradient, and therefore the aggregate accumulated phase caused by 

diffusion weighting using this sequence is 
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dФ = Ф2 - Ф1 =  γ.G.δ( z2 - z1) 

Equation 36  

It is apparent from this relationship that stationary spins will experience zero net phase 

change. Since the phase accumulation from the first gradient is flipped in polarity by the 

refocusing pulse, the second gradient has the effect of generating an equal and opposing 

phase change.  Spins that experience a displacement component in the direction of the 

gradient between the pulsing of the gradients will not experience equal phase shifts and 

will therefore have a net phase change at echo time.  The incomplete cancellation of 

induced phase increments will cause a spread of phases that will attenuate the cumulative 

transverse MR signal of a population of spins.  This effect can be described by signal 

attenuation, A, which is equal to the diffusion-attenuated signal, S, divided by the 

unweighted signal, S0, which can be expressed as(94) 

  
 

  
                                         

Equation 37  

The term       is the spin density at the time of the first gradient pulse and describes the 

inital concentration of spins at location   .              is called the diffusion propagator 

and is the conditional likelihood that a spin at location    will have diffused to location   , 

in diffusion time Δ.  Where D is the diffusion coefficient, and diffusion is isotropic(94) : 

            
 

     
  

          
 

    

Equation 38  

By combining Equation 37 with Equation 38 the attenuation can be calculated as  

              

Equation 39  

Sometimes all gradient effects are summarised using a term known a ‘b value’ or ‘b factor’ 

which describes the magnitude of diffusion weighting :  

        

Equation 40  
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In practical situations, the ‘narrow pulse’ assumption is violated and diffusion will occur 

during the application of diffusion gradients.  The diffusion time then becomes less trivial to 

define although            is commonly used instead of Δ.  The b-value is therefore 

calculated as(94) 

                        

Equation 41  

Attenuation of the MR signal may be calculated by division of MRI images acquired with 

diffusion weighting gradients by spatially corresponding unweighted images, known as B0 

images in DW-MRI.  The pulsed gradient parameters can then be used to provide an 

estimate of Diffusion Coefficient.  When applied to measurements in tissue, this is referred 

to as the Apparent Diffusion Coefficient (ADC) and can be used to infer the presence of 

structures that restrict diffusion.  In some cases where microstructural arrangements in 

tissue cause highly anisotropic diffusion of spins, sampling in multiple directions may be 

necessary to characterise the environment.   

 

2.7.2 Diffusion Tensor Imaging 

Some tissues such as the white matter in the brain, have shown diffusion estimates to be 

highly dependent on direction (95) due to the highly ordered nature of their diffusion 

restricting structures.  The spin diffusivity in these environments is direction dependent 

and cannot be fully characterised using the scalar ADC value.  The diffusion tensor model 

(96,97), was developed to describe diffusion in three dimensions.  The diffusion tensor, 

given below, is a 3 x 3 matrix describing displacement in three dimensions, which can be 

calculated at each voxel in the images acquired. 

 

    

         

         

         

  

Equation 42  
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The ‘on diagonal’ elements     ,     , and     indicate the diffusivity along each of the 

three principle orthogonal axes(x,y,z), and the off-diagonal elements give a measure of the 

correlation between them.  The diffusion tensor can be described in terms of an ellipsoid 

(Figure 14), the surface of which represents the distances from the origin that a molecule 

will diffuse.  The principle axes of the ellipsoid are given by the eigenvectors of the tensor 

and diffusion distance along each axis over time t is given by the eigenvalues.   In an 

isotropic medium with equal diffusion in all directions, this ellipsoid will be spherical.  For 

environments where diffusion is more favourable in a particular direction, the ellipsoid will 

become more stretched in this direction.   Since the tensor is symmetric, there are only six 

unknown elements to determine and therefore, we need to image with diffusion weighted 

gradients applied in six different directions to generate the six simultaneous equations 

necessary to solve using linear algebra.    

 

 

Figure 14. The diffusion tensor ellipsoid 

A depiction of the ellipsoid representation of the diffusion tensor labeled with eigen 
vectors,i, and eigenvalues, .  Figure adapted from (93). 
 

A number of clinically useful measures can be derived from the diffusion tensor that are 

rotationally invariant.  The Mean Diffusivity (MD) is simply the mean of the diagonal 
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elements of the tensor, known as the trace of the tensor, and gives a scalar value of the 

average diffusivity in a voxel(93):   

 

   
     

 
 

Equation 43  

The MD can be used in combination with eigenvalues of the tensor to provide a measure of 

the anisotropy of diffusion in the voxel that is rotationally invariant.  The most popular 

anisotropy measure used in the literature is Fractional Anisotropy (FA), which normalizes 

the variance of the eigenvalues to the magnitude of the tensor and is scaled to take values 

in the range zero to 1.  It gives a measure of the fraction of the tensor that can be 

attributed to anisotropic diffusion and is given by(93) 

    
  

  
  
                           

   
    

    
 

 

Equation 44  

where λ1, λ2, and λ3 are the primary, secondary, and tertiary eigenvalues of the diffusion 

tensor.  In white matter tracts of the brain, where highly anisotropic diffusion is observed, 

these eigenvalues can be interpreted as measures of axial diffusivity in the direction of the 

fibres and radial diffusivity perpendicular to fibres across the tract(98).  Axial diffusivity(DA) 

is given by 

DA = λ1 

Equation 45  

and Radial diffusivity(DR) is calculated as 

DR =  (λ2, + λ3)/2 

Equation 46  
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2.8 Quantitative Susceptibility Mapping 

2.8.1 Magnetic susceptibility 

Magnetic susceptibility, χ, is a quantitative property which determines a materials 

tendency to interact with and distort a magnetic field.  A materials magnetization, M, is 

linearly related to the applied magnetic field, H, by the formula 

M= χH 

Equation 47  

Diamagnetic materials have χ < 0 and paramagnetic materials have χ >0, with 

ferromagnetic materials having  χ >> 1.  In the case of human tissue, values of |χ| << 1 are 

typical in MRI, with values close to that of water (χ~-9ppm).    

2.8.2 Magnetic susceptibility from the phase of the MR signal 

The phase of a gradient echo MRI signal at echo time(TE) is sensitive to magnetic 

susceptibility effects that cause variations in the main magnetic field, B0. This relationship is 

described by 

                   

Equation 48  

Where ΔФ is the difference observed in the phase of the net magnetic vector (relative to 

larmor frequency) and ΔB is the difference in magnetic field from the scanner B0 field 

strength.  Equation 48 can be used to calculate changes in the magnetic field, which have a 

functional dependence on the magnetic susceptibility distribution, using the phase of the 

MR signal.  It has been shown that signal phase can be calculated through the convolution 

of the magnetic susceptibility distribution with a magnetic dipole field(99,100). 

                     
   

 

 
  

  
 

               

Equation 49  

Where K is the k-space vector, and  
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Equation 50  

This convolution becomes a pointwise multiplication in the Fourier domain and by 

rearrangement of the Equation 49 we can express the magnetic susceptibility in terms of 

the measured MRI phase signal. 

 

                  
        

        
      

Equation 51  

 

where            
 

 
 

 
  

  
 

   
 

Equation 52  

This method of calculation  of the magnetic susceptibility distribution from the image phase 

is underdetermined as the k-space filter, F, requires a division by zero on the surface of a 

cone at the magic angle in the Fourier domain.  The simplest method by which to remove 

the division by zero is by regularisation using a thresholded K-space division(TKD) 

technique(101), which sets the value of the filter to a constant at these discontinuities.  

Thresholded k-space division provides a computationally efficient method of calculating the 

susceptibility distribution in an imaging volume from the phase of the MRI signal 

generating a Quantitative Susceptibility Map (QSM). 

By thresholding the K-space filter, magnetic susceptibility maps can be reconstructed from 

phase field maps that have had background contributions removed.  However, 

unfavourable side effects of the regularisation include streaking artifacts, noise 

amplification and systemic underestimation of magnetic susceptibility.  In the case of the 

underestimation errors, this can be corrected using a method suggested by schweser et 

al(102).  By dividing the original k-space filter (F) by the thresholded version (F’), the 

modulation transfer function(MTF) of the filter modification can be calculated as 
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Equation 53  

The point spread function (PSF) is equal to the Fourier transform of the modulation transfer 

function which can then be deconvolved with the susceptibility map to perform the 

correction.  The PSF can be approximated by a delta function, scaled by a factor dependent 

on the TKD threshold, tF.  The Fourier transform of a delta function is a constant value.  A 

property of the FT is that point-wise division in the Fourier domain is equivalent to 

deconvolution in the spatial domain.   Therefore the correction can be applied by a simple 

rescaling of susceptibility estimates from TKD by a factor calculated using the TKD 

threshold,tF, to approximate the PSF. 

2.8.3 Phase unwrapping 

3D gradient echo is currently the most commonly used pulse sequence for acquisition of 

data to perform QSM(103,104).  Complex data is reconstructed from the acquired k-space 

matrix using a 3D discrete Fourier transformation.  The signal phase, Ф, can then be 

calculated as 

            
     

     
  

Equation 54  

where Z is the complex reconstructed imaging data.  A volume of phase values called a field 

map is generated from this calculation that can take values in the limited range [-π, π] 

radians for which the arctan function is defined.  The phase of a spin is dependent both on 

the magnetic field experienced at its location and the time period over which it is measured 

as indicated in Equation 20.  Therefore, the presence of field gradients across the field of 

view due to large field inhomogeneities or poor shimming will cause phase values to fall 

outside of this range giving rise to ‘phase wraps’ in the image.  Where a phase value 

exceeds ±π it will be aliased back to this range by effectively adding or subtracting multiples 

of 2π(Figure 15).  This causes the appearance of fringe lines across the image where phase 

wrapping occurs. 
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Figure 15. Phase aliasing 

A plot of true phase vs. output from the arctan function.  Values of true phase that fall 
outside of  [-π, π] are aliased back into the range.  Figure adapted from (90). 

 

Path based and laplacian based algorithms are commonly used to spatially unwrap aliased 

images.  In the path based approach, as the name suggests, unwrapping is done by 

following a discrete path adding or subtracting multiples of 2π where aliasing is 

encountered.  These algorithms unwrap regions of ‘high quality’ voxels first to prevent 

error propagation in the unwrapping process.  The quality of a voxel may be established 

using multiple criteria such as estimated noise levels and spatial connectivity.  Unwrapping 

by taking the Laplacian of the phase can be accomplished using properties of Fourier 

transforms with trigonometric functions as described by Schofield and Zhu(105) 

                                 

Equation 55  

where Фw is the wrapped field map and the laplacian terms can be calculated using the 

properties of Fourier transforms(106).  In chapter 5, both path based and laplacian 

methods are applied and evaluated for in-vivo and ex-vivo field maps in the mouse brain. 

2.8.4 Removal of background field contributions 

Field maps of unwrapped phase can be considered to contain both data sensitive to the 

magnetic susceptibility of tissue in the volume of interest as well as what are known as 
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background field contributions.  These unwanted effects come from field inhomogeneities 

that may occur from sources such as boundaries between air and tissue such as the sinuses 

in the head.  In Susceptibility Weighted Imaging(SWI), homodyne (high pass) filtering is a 

popular way of separating the low frequency background contributions from the high 

frequency local susceptibility distribution in tissue.  However, this technique is prone to 

through plane banding artifacts and struggles to remove background effects from tissue 

boundaries of large susceptibility difference(104).  More sophisticated methods of 

background field removal have been developed recently called Projection onto dipole fields 

(PDF) and sophisticated harmonic artifact reduction for phase data (SHARP) that make use 

of the fact that the background field is harmonic within the region of interest.  

The PDF method requires the generation of a mask around the region of interest.  All voxels 

outside of this ROI are assumed to be responsible for the harmonic background 

susceptibility distribution inside, χB.  The strength of a magnetic dipole is then fit at each of 

the voxels outside of the ROI using a weighting matrix W(107): 

  
                       

  

Equation 56  

Where b is the total field and d is the unit dipole field.  The background field is then 

calculated as d    χB
* and removed. 

The harmonic nature of the external field contributions inside the ROI, χB , means that it 

satisfies Laplace’s equation(108): 

         

Equation 57  

In SHARP, the background field is removed from the local field, bL, by convolving the total 

field, b, with the Laplace operator, L.  Next an eroded mask, M, is applied to the data to 

remove unreliable convolution results around the edge of the brain.  In the final step, an 

inverse Laplacian operator, L-1, is applied to the data to compensate for the signal loss 

caused to the local field by the original convolution.  This process can be described by the 

following equation(108): 
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Equation 58  

After removal of the background contributions from the field map by either PDF or SHARP 

methods, quantitative susceptibility maps can be generated using thresholded k-space 

division described in section 2.8.2. 
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3 Development of a gradient calibration 

protocol for pre-clinical imaging at high 

resolution 

3.1 Overview 

As outlined in chapter 1, the study of animal models of AD in-vivo using MRI may offer new 

insights into disease progression and therapeutic response.  This chapter will describe a 

calibration protocol that was developed to ensure accuracy and consistency in the system 

imaging gradients for acquisition of longitudinal multi-parametric MRI data in the mouse 

brain.   The 9.4T MRI scanner at the Centre for Advanced Biomedical Imaging (CABI) was 

calibrated using this technique and data was acquired to evaluate the stability of the 

system.  The importance of such quality assurance protocols for high resolution, pre-clinical 

imaging is demonstrated.  This work lays the foundation for development and robust in-

vivo acquisition of MRI techniques that are highly sensitive to errors in imaging gradients, 

such as Diffusion Tensor Imaging which is the subject of Chapter 4. 

3.2 Background 

Pre-clinical, high-field MRI systems are now widely used to provide high-resolution images 

of animal models of human disease.  Such phenotyping studies have enhanced our 

understanding of numerous disease processes and, when used in combination with 

advanced computational methods, have been used to detect subtle differences in tissue 

structure, particularly in the brain (109).  To perform accurate, longitudinal, phenotyping 

studies, both in-vivo and ex-vivo, requires careful calibration of the MRI scanner, in 

particular of imaging gradients, so that microscopic changes in tissue structure can be 

robustly measured.   

Imaging gradients are generally calibrated via linear scaling factors in each principal 

imaging axis, and any error in their values results in a global compression or expansion of 

acquired images.  Furthermore, imaging gradients are assumed to be spatially linear, and 

complex image distortions can be introduced by gradient non-linearity, which rapidly 
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manifest with increasing distance from the magnet isocentre.  Gradient calibration is 

typically performed annually during routine maintenance by the scanner manufacturers.  

Scaling factors and linearity are assessed using a structural phantom.  Distances between 

structures are measured on a single slice of an MRI image of the phantom and compared to 

those of the original CAD design.  This approach is highly vulnerable to error due to 

operator variability, the small number of measurements taken and the large slice thickness 

(1 mm) used.  Neither drift of applied gradients over time due to hardware instability 

between maintenance visits nor deformations in the phantom structure over time are 

accounted for.  Additionally, acceptance limits specified (≤5% linearity over a 40 mm 

diameter of spherical imaging volume (DSV)) are potentially unsuited to the degree of 

accuracy required for phenotyping studies.   

Whilst several strategies for calibrating imaging gradients have been proposed for clinical 

scanners (110-113), these may not translate to pre-clinical scanners which differ from 

clinical scanners in several fundamental ways.  For example, the maximum imaging 

gradient strengths are typically an order of magnitude greater than those found on a 

clinical system, scanners have a much smaller bore size, and field strengths are typically 

between 7 and 11.7 T, compared with 1.5 or 3 T for clinical systems.  Due to the challenging 

design considerations, large distortions can be observed in pre-clinical gradient sets.  In 

these scenarios, control point or spot matching algorithms employed in clinical protocols to 

unwarp distorted images have been shown to fail and require operator intervention(114).  

Furthermore, the level of accuracy required for phenotyping studies (of the order of 10s of 

microns) outweighs that typically required for clinical in-vivo studies.   

The aim of this work was to develop a gradient calibration and quality assurance protocol 

for pre-clinical MRI scanners, which can be customised to individual systems and RF coils, 

and that aims to reduce geometric distortions and ensure stability over time in both in-vivo 

and ex-vivo longitudinal phenotyping studies.  Moreover, studies using imaging techniques 

that also rely on accurate gradients (such as diffusion MRI) would also benefit.   

The protocol is based on a structural phantom that was constructed and designed in-house.  

3D printing was used to construct the phantom which is a fast, straightforward and cost-

effective method to build bespoke components(115), particularly of the size required for 

pre-clinical systems.  Materials were chosen to be susceptibility matched, robust, and 
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usable in successive studies.  CAD plans for the phantom are open-source, and have been 

published online: https://www.ucl.ac.uk/cabi/publications/open_source.   

The calibration protocol consists of two stages: i) a system calibration method for absolute 

scaling of imaging gradients; ii) a post-processing correction of gradient non-linearity, 

achieved through non-rigid image registration.  All post-processing software is feely 

available to download (NifTK, http://cmic.cs.ucl.ac.uk/home/software/), making this simple 

protocol easy to adopt as part of a pre-clinical quality assurance (QA) procedure.   

In the following sections, the protocol is introduced and it is evaluated to what extent it can 

improve the accuracy of imaging gradients, compared with the values derived from the 

standard calibration procedure performed by the scanner manufacturer.  The variation in 

the calibration parameters were monitored across a six-month period, alongside a serial 

assessment of the structural stability of the phantom.   

Here follows, a brief, step-by-step description of the calibration protocol.   

3.3 Gradient calibration protocol description 

The calibration protocol is shown schematically in Figure 16.  Firstly, a 3D grid phantom is 

constructed using 3D printing, with dimensions set according to the size of the RF coil 

and/or scanner bore to be used.  The phantom is then scanned using X-ray CT to provide a 

set of image data that is free from image distortion(114,116,117) (although for 3D printers 

with a high printing accuracy, the CAD plans for the phantom could be used as a fall back 

option if an X-ray CT system is not available).  Next, scaling errors in the imaging gradients 

are corrected by performing a linear system calibration (Figure 16a).  Here, high-resolution, 

3D gradient echo MR images of the grid phantom are acquired and are overlaid on the CT 

data using affine registration (i. e. scaling, translation, rotation and shearing).  The 

registration parameters are then used to adjust the system gradient scaling values.   

After system calibration of the scaling values, a second set of MR data is acquired, in order 

to perform a post-processing correction of gradient non-linearity.  These data are 

translated into the CT imaging space using a rigid registration and then unwarped by non-

rigid registration.  This removes distortions caused by gradient non-linearity and any 

residual scaling errors that remain after the linear system calibration.   
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Figure 16. Gradient calibration protocol flowchart 

Flowchart detailing the processes involved in the protocol and the order in which they 
should be implemented.  The two major subdivisions of the technique are the system 
calibration (a) and the post-processing correction (b).  Expected image deformations are 
illustrated using schematics. 
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3.4 Methods 

3.4.1 3D Grid phantom 

A phantom containing a three dimensional grid structure was designed in SolidWorks (DSS 

Corp, Concord, MA) computer aided design (CAD) software and was 3D printed using a 

Formiga P100 plastic laser-sintering system (EOS Electro Optical Systems Ltd., Warwick, UK) 

at a layer thickness of 100 µm.  It was manufactured using fine polyamide (PA-2200 nylon), 

a material with low water absorption properties (0.41% over an initial 24hr period) and 

ability to withstand high mechanical and thermal load (EOS, PA 2200 Material Data Sheet).  

Nylon has a magnetic susceptibility that is close to that of water (< 3ppm) and so should 

not cause artifacts in either spin-echo or gradient-echo images (118).   

For the current study, the dimensions of the phantom were 3D-printed to fit into a 35 mm 

birdcage coil that is routinely used for in-vivo phenotyping of mice (Rapid Biomedical 

GmbH, Germany).  The grid pattern occupied 75% of the diameter of the coil and its length 

(60 mm) encompassed its entire sensitive region (50 mm) and extended beyond the 40mm 

DSV of linearity specified by the manufacturer.  To enable removal of waste material 

generated during production, the phantom was formed in four pieces (Figure 17).  After 

cleaning, the grid section was inserted into the outer chamber, where it was sealed by 

attaching a chamber cap with epoxy resin.  Also incorporated into the phantom design is a 

positioner with a thread for a nylon screw that allows consistent placement within the coil.   

The walls of the three-dimensional grid pattern in the phantom were 0.5 mm thick to 

enable adequate sampling at the imaging resolution, and spaced 2.5 mm apart.  An 

irregular prism (Figure 17f) was included in the design of the phantom, at the centre of the 

grid, to aid orientation during post-processing.  When inserted, the centre of the grid 

structure aligned with the isocentre of the magnet.   

The phantom was filled with a solution of copper sulphate (1.25 g/L) and sodium chloride 

(5.3 g/L) in water (measured T1, 245 ms).  The filling tube contained an s-bend shape to 

ensure air bubbles that accumulated at the top when stored in its vertical position were 

prevented from travelling into the main chamber during imaging.  
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Figure 17. 3D grid phantom design  

CAD drawing of phantom sections and photograph of the assembled phantom, which was 
created using 3D printing.  To assemble, the grid section (a) was inserted into the outer 
chamber (b) which was sealed by the chamber cap (c).  It can then be filled through the s-
bend (d) and sealed using a cap (e).  An irregular prism (f) in the centre of the grid structure 
aids in the orientation of images. 

  

3.4.2 CT and MRI imaging 

CT images of the phantom (Figure 18a,b) were acquired prior to filling with solution using a 

Bioscan nanoSPECT/CT system (Mediso, Budapest, Hungary).  The Field of View (FOV) was 

selected to cover the whole grid section of the phantom and images were reconstructed 

using the vendor software to an isotropic resolution of 73 µm (system limit).  To verify that 

the CT data were accurate, 10 manual measurements of the phantom were made using 

digital calipers and compared to CT data using NiftyView software (UCL, London, UK).  

Prior to MRI acquisition, the phantom was filled and placed into the RF coil.  An imaging 

gradient set with a 60 mm inner diameter (SGRAD 115/60/HD/S, Agilent Technologies UK 

Ltd., Berkshire, UK) was used in all experiments (unless stated otherwise), with a maximum 

gradient amplitude of 1 Tm-1.  The gradient set is specified by the manufacturer to have a 

gradient sub-system rise time of 130 µs and a linearity of ≤ 5% within a 40 mm DSV.   

All measurements were performed using a 9.4 T Agilent scanner, and images were acquired 

using a 3D gradient echo sequence, optimized for high resolution imaging of ex-vivo murine 

brains (119).  The FOV was set to 26x30x30 mm3 in the central region of the phantom, 
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within the 40 mm DSV of specified linearity.  Voxel size was set to 40 µm, isotropic, and the 

readout gradient was 0.09 Tm-1, applied in the Z direction (parallel with the bore of the 

magnet).  Other acquisition parameters included TR = 17 ms, TE = 4.54 ms, and a flip angle 

of 51°.  Five averages were acquired, resulting in a total imaging time of 13 hours, 16 

minutes.  To investigate warping effects outside of the specified region of linearity and the 

possibility of reducing acquisition time for system calibration, data were also acquired at a 

reduced isotropic resolution of 100 µm over a larger FOV.  The readout gradient was 

reduced to 0.04 Tm-1 and the FOV was 60x40x40 mm3, imaging the whole grid structure 

(Figure 18c, d) in a reduced time of 3 hours, 46 minutes.   

 

Figure 18. CT and MRI images of phantom 

Axial (a) and coronal (b) slices from CT data and corresponding axial (c) and coronal (d) 
slices from 3D gradient echo MRI data.  Landmarks for distance measurements are shown 
(b) for Z axis (red) and Y axis (blue) (landmarks in X axis are orthogonal to those in the Y axis 
at same Z coordinates). 

 

Shimming was performed manually at the start of each imaging session.  The linewidth of 

the shim was monitored across imaging time points for consistency (40 ± 5 Hz) using a 

pulse and collect sequence and the temperature variation during a scan was measured by 

attaching a probe to the outer surface of the phantom.  

To investigate warping effects that may be specific to the gradient echo sequence 

implemented, 3D Fast Spin Echo images of the phantom were acquired over the larger FOV 

with an isotropic resolution of 100 µm.  Other acquisition parameters included TR = 200 

ms, Echo Train Length = 4, Echo Spacing = 6.86 ms, Averages = 5, and a read gradient 

strength of 0.11 Tm-1 applied in the Z direction (Acquisition time of 11 hours, 7 minutes).  
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To maintain consistency in the comparison between sequences, gradient echo data was 

acquired at an isotropic resolution of 100 µm as detailed above with the read gradient 

strength increased to 0.11 Tm-1. 

3.4.3 System Calibration 

NiftyReg software (120-122) was used for all image registration in this study.  The affine 

and rigid registrations were carried out using the reg_aladin algorithm(120,121) which 

employs  a two step process.  A block matching algorithm provides a set of corresponding 

points between a target and source image before the transformation is evaluated using 

normalized cross-correlation(123).  To reduce processing time, initial alignment is assessed 

based on down-sampled low resolution images before final registration using full resolution 

images.   

Prior to registration, the CT data was cropped reducing the FOV to include the grid section 

of the phantom only, providing initial alignment of the MRI and CT images.  An affine 

transformation matrix was output by the reg_aladin algorithm, which was decomposed 

into its constituent transformation parameters.  The gradient scaling values stored in the 

MRI console software were then adjusted through multiplication with the scaling 

parameters from the registration in the X, Y and Z directions.   

Phantom grid structures were segmented within MRI data by intensity thresholding to 

remove high signal intensity voxels occupied by the filling solution, and was further refined 

by manual segmentation to include only the grid structure.   

To evaluate the improvement in gradient scaling afforded by the affine registration, dice 

coefficients (124) of the segmented grid structures were compared, before and after 

adjustment.  The dice coefficient, s, was defined as 

 

  
               

                 
 

Equation 59  

where MRIG  and CTG  are the segmented grid structures of the MRI and the CT data.  s

ranges from 0 (indicating no overlapping voxels) to 1 (indicating that all voxels overlap 

completely).   
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3.4.4 Longitudinal assessment of calibration accuracy 

After the initial system calibration, MRI acquisitions were repeated at monthly intervals 

over a period of six months to measure stability over time.  Additionally, CT images of the 

phantom were acquired at the same time points to account for structural deformations.  To 

investigate global volume changes in the phantom, affine registrations of the CT data at 

each time point to the CT data acquired at the first time point were implemented, again 

using Niftyreg.  Distortion in the structure was evaluated by taking distance measurements 

(using NiftyView) between grid section landmarks in the CT data (Figure 18b), at three 

evenly spaced points along each axis.  The measurements taken spanned the full diameter 

of the grid section in the X, and Y direction and the full length of the phantom in the Z 

direction.  To test for a dependency between each of the measurements and longitudinal 

time point, a linear least squares regression analysis was performed to identify any 

significant correlation (P=0.05, ANOVA).   

3.4.5 Scaling measurements for correction of Total Brain 

Volume estimates 

Due to differences in experimental setup, structural imaging of the mouse brain in-vivo is 

carried out using a larger 120 mm diameter gradient set (SGRAD 205/120/HD/S, Agilent 

Technologies UK Ltd., Berkshire, UK) with a maximum gradient amplitude of 0.6 Tm-1.  The 

gradient set is specified by the manufacturer to have a gradient sub-system rise time of 180 

µs and a linearity of ≤ 5% within a 80 mm DSV.  The larger diameter facilitates use of a 

mouse bed with anaesthetic breathing apparatus and a two channel mouse brain surface 

coil (RAPID, Germany) for signal detection.  Scaling of the gradient magnitude values for 

each of the gradient sets is done independently which may be a source of error when 

comparing data collected across multiple hardware configurations. 

Prior to development of the protocol described here, in-vivo data was acquired in the larger 

diameter gradients that had been previously calibrated by the scanner manufacturers as 

part of an annual maintenance visit.  Ex-vivo structural imaging of the same mice was 

carried out in the smaller diameter gradient set, post system calibration.  To estimate 

scaling differences between the in-vivo data and ex-vivo datasets related to the hardware, 

the phantom was imaged in the larger diameter gradient set using the larger FOV protocol 
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described in section 3.4.2.  The system calibration protocol was used to calculate scaling 

factors for comparison with those from the smaller diameter set.  

Structural MRI datasets were acquired for a cohort of wild-type mice (n=8) at 7.5 months 

using previously described in-vivo(125) and ex-vivo(119) imaging protocols.  Total Brain 

Volumes (TBVs) were estimated by manually correcting brain masks generated 

automatically using a previously published multi-atlas label fusion algorithm(126).  These 

volumes were then rescaled using the values from the appropriate gradient set calculated 

by the system calibration. 

  

3.4.6 Post-Processing Correction 

The MRI data (defined as the source) was transformed into the imaging space of the CT 

data (defined as the target) by rigid registration using the reg_aladin algorithm in NiftyReg.  

NiftySeg segmentation software was used to automatically generate a registration mask 

that encompassed the area within the outer casing of the phantom in the CT data.  This 

prevented intensity changes outside of the grid section of the phantom affecting the 

registration.  The reg_f3d algorithm(122) in NiftyReg was used to carry out a non-rigid 

registration to warp the MRI data, post rigid registration (source), to the CT data (target).   

The reg_f3d algorithm(122) uses cubic B-splines to generate a deformation field.  The local 

displacement of control points in an equally spaced lattice causes warping that modifies 

mapping between source and target images.  The registration is assessed through 

Normalised Mutual Information as an indication of correspondence between images and 

warping is constrained through bending energy and elastic energy terms(123).  Input 

parameters were optimized to generate a smooth deformation field.  A spline grid spacing 

of 20 voxels was implemented and the weight of the linear elastic energy penalty term was 

increased to [0.01 0.01].   

To investigate the reproducibility of the results, the phantom was imaged four times, back-

to-back, and displacement fields were generated for each scan.  The first acquisition was 

taken as a reference and the absolute displacement differences at each point were 

calculated in the X, Y, and Z orthogonal directions (Z is aligned with the axis of the scanner 

bore), for each subsequent acquisition.   
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3.5 Results 

3.5.1 Phantom stability measurements 

The structural stability of the phantom was assessed over a six month period from CT data 

acquired every month.  The maximum change in scaling identified on any axis was 0.28%.  

Phantom length measurements showed no significant correlation between variables, which 

suggests that there were no gradual changes in the phantom structure over time.  The 

comparison of manual measurements in the CT imaging data to those made using digital 

callipers at a single time point showed a mean percentage difference of 0.27±0.17%, 

indicating a close agreement.  The temperature of the phantom recorded during an MRI 

acquisition ranged between 19.9 °C and 20.2 °C (melting point of PA 2200 is 184 °C).   

3.5.2 System Calibration 

Prior to the start of the study, the imaging gradients of the 9.4 T scanner had been 

calibrated using the scanner manufacturer’s standard protocol described in the 

introduction.  Details of this protocol are published in a user manual supplied with their 

structural phantom.  By comparing the CT phantom images with 100 µm-resolution MRI 

data (acquired with the manufacturer’s calibration) after rigid registration, marked 

discrepancies were observed between CT and MRI images  (white and black structures, 

respectively, in Figure 19(a and b).  Relative to CT, MRI images were globally compressed in 

the Y direction and expanded in the Z direction.  This can be seen most clearly in a central 

section of the phantom, within the 40 mm DSV specified by the manufacturer, where 

gradient linearity is optimal (Figure 19b).  Figure 19e demonstrates the magnitude of these 

global changes, which varied with direction (scaling: X = 100.4%, Y = 105.3%, Z = 97.6%).  

This experiment was defined as scaling time point -1.   

Outside the 40 mm DSV, it was clear that discrepancies between MRI and CT data markedly 

increased due to gradient non-linearity.  To reduce the impact of this distortion when 

comparing image distortion before and after calibration, dice coefficients were only 

calculated in a region of interest corresponding to the central section of the phantom, 

within the 40 mm DSV (Figure 19b).  Correction of image distortion due to gradient non-

linearity is the purpose of the post-processing correction evaluated later in the study.   
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The system was then calibrated using our proposed protocol (scaling time point 0), a new 

set of MRI data was acquired, and rigid registration to the CT data was repeated.  The 

accordance between these data and CT prior to and following calibration (Figure 19) was 

assessed by comparing dice coefficients, s: in the central region of interest, s was 0.73 

before calibration and 0.84 afterwards (0.57 and 0.67, respectively, over the whole FOV).  

Affine registration of the MRI data acquired after the system calibration to the CT data 

produced scaling factors of 99.6%, 99.9%, 100.5% in the X, Y, and Z axes (Figure 19e), which 

is a marked improvement over the pre-calibration values.  The mean scaling factor error 

(relative to unity) across all axes after correction was reduced from 2.7% to 0.3%.   

Using the same approach as described above, the mean and standard deviation of the 

scaling factors measured every month, for a total of six months, were 99.7±0.1%, 

100±0.2%, and 100.1±0.1% in the X, Y and Z directions.   

The scaling factors calculated by registering the MRI data acquired at an isotropic 

resolution of 40 µm to the CT data followed a very similar pattern to the 100 µm MRI data 

(Figure 19e).  The mean percentage difference between the 40 µm and the 100 µm scaling 

factors taken across all time points was 0.52±0.23%.   
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Figure 19. Gradient scaling values before and after system calibration 

Sagittal slices of CT phantom images (white) overlaid on MRI images (filler inside phantom 
shown in green, phantom structure shown in black, 26x60 mm FOV ) showing alignment 
before (a,b) and after (c,d) system calibration.  The errors in the scaling factors (e) prior to 
calibration (time point -1) are reduced after system adjustment (TP 0) and the factors 
calculated using 100 µm data (X,Y,Z) are in good agreement with the 40 µm data 
(x40,y40,z40).  
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3.5.3 Post-Processing Correction 

Alignment of MRI and CT data was further improved after non-rigid registration (Figure 

20a), especially in regions further from the magnet isocentre.  The dice coefficient 

calculated from the whole grid structure in the phantom increased from 0.62 before post-

processing correction, to 0.88.   

A displacement field, generated from the deformation field output by the non-rigid 

registration, shows the magnitude of voxel displacements applied to the MRI data to 

unwarp and register it to the CT data (Figure 19b-f).  The displacements along the Z axis 

(Figure 19b) were less than 0.1 mm at a distance of less than ±10 mm from the isocentre.  

At a distance of ±20 mm, and greater, the displacements increase rapidly to more than 0.35 

mm.  The displacements along the X and Y axes show small displacements of less than 0.1 

mm in central slices (Figure 19c,d) at distances of less than ±5 mm from the centre.  For 

slices located further from the isocentre (in the Z direction) (Figure 19e,f), the magnitude of 

displacements markedly increases.  Outside the central region of relatively low 

displacement, there is a rapid increase to values larger than 0.25 mm in the X and Y 

direction within the walls of the grid section of the phantom.   

Within the central 40 mm DSV, where linearity is specified by the manufacturer, the 

maximum displacement was 0.72 mm, 0.87 mm and 0.6 mm in the X, Y, and Z axes, 

corresponding to a linearity of 3.6%, 4.35%, and 3% respectively.  The maximum 

displacements in the phantom outside of this volume were 3.51 mm, 3.81 mm, and 2 mm 

in the X, Y and Z axes.  The repeated generation of displacement fields to test 

reproducibility revealed the mean discrepancy between calculated displacements to be 

11.8±10.2 µm across all axes for the whole FOV.   
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Figure 20. Displacement fields generated from post-processing correction 

Projection along the X axis from CT phantom data (white) overlaid on MRI images (filler 
inside phantom shown in green, phantom structure shown in black) show good alignment 
after post-processing correction (a).  Displacement fields generated from the non-rigid 
registration show that Z displacements increase along the Z axis (b) as distance from the 
centre increases.  Increased X and Y displacements are observed in the X (c) and Y (d) axes 
respectively for central slices.  Slices taken further from the centre show these 
displacements in the X (e) and Y (f) directions increase more rapidly with distance from the 
slice centre. 
 

 
 

3.5.4 MRI sequence comparison 

Images acquired using the fast spin echo and gradient echo sequences were similar in 

appearance (Figure 21).  Scaling factors calculated using a gradient echo sequence and a 

fast spin echo sequence showed a percentage difference of 0.06%, 0.02%, and 0.03% in the 

X, Y, and Z axes respectively.  The mean displacement difference taken across the whole 

grid structure was 19±30 µm. 
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Figure 21. Sequence Comparison 

Representative axial and sagittal slices of MRI phantom images acquired using the FSE 3D 
sequence(a,b) and GRE 3D sequence(d,e).  Displacement fields generated for each 
acquisition were of similar appearance (c,f). 

 

3.5.5 Scaling of Total Brain Volume estimates 

Scaling factors calculated for the larger diameter gradient set at the in-vivo imaging time 

point were 93.4%, 95.9%, and 92.1% in the X,Y, and Z axes respectively.  The equivalent 

measurements for the ex-vivo data acquired in the small diameter gradient set were 99.5%, 

99.9%, and 100.4% (Figure 22a).  The percentage difference in the mean of the axis scaling 

factors between the small and large diameter sets was -17.4%. 

 The mean estimated total brain volume for the in-vivo samples was 634 mm3 compared to 

484 mm3 in the ex-vivo data.  This corresponded to a 30.8% larger mean volume 

measurement of the brains in-vivo.  After adjustment of the individual volume 

measurements, this mean difference was reduced to 8% (Figure 22b). 
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Figure 22. Scaling factor adjustments of TBV estimates 

Gradient scaling factors calculated using the system calibration protocol for large diameter 
and small diameter gradient sets(a) and TBV estimates for in-vivo and ex-vivo data before 
and after scaling correction. 

 

 

3.6 Discussion 

The precision and stability of a pre-clinical MRI system are of paramount importance when 

performing quantitative, comparative and longitudinal measurements in imaging subjects 

over time.  A gradient calibration protocol has been developed, specific to pre-clinical 

imaging systems, that can quantify and correct for these errors.  Moreover, it has been 

shown that, for the accuracy required for the detection of microscopic changes in tissue 

structure and size, significant measurement errors can be introduced through imperfect 

gradients, particularly when relying on calibration protocols with low acceptance limits.  

Our protocol is based on a 3D-printed geometric phantom, featuring a three-dimensional 
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grid structure.  The plans for the phantom have been published online and can easily be 

adapted for individual RF coils and scanner bore sizes.  The phantom design contains novel 

features such as an s-bend in the filling pipe to prevent air bubbles in the main cavity, and 

the ability to attach as a single piece directly to the RF coil to improve consistency in 

phantom positioning between measurements. 

Monitoring of relative gradient scaling factors using MRI data has been reported 

previously(115).  In this study, high-resolution CT and MRI imaging data were used to 

validate the structural stability of the phantom over time and provided a simple method for 

the absolute scaling of the system gradients.  The ability to reduce errors in scaling values 

will improve accuracy of measurements acquired on the system and invites the possibility 

of reuse of control group data reducing animal numbers.  A post-processing technique has 

been introduced for the correction of image distortions caused by gradient non-linearity.   

Relative to the scanner manufacturer’s standard calibration, the system calibration 

developed here reduced the mean gradient scaling factor error from 2.7% to 0.3%.  Errors 

of the magnitude found prior to our calibration have the potential to be a significant 

confounder to detection of structural volume changes in the mouse brain, which can be 

less than 2% (109).   

The calibration requires the acquisition of three-dimensional gradient echo data, and a 

comparison was made of the accuracy of acquiring at 40 and (more rapid) 100 μm isotropic 

resolution.  There was close agreement between the scaling parameters calculated from  

gradient echo data acquired  at two different resolutions and fast spin echo data, indicating 

that accurate system calibration can be performed using the gradient echo protocol with 

reduced scan time for inclusion in a routine QA protocol.  Application of such a protocol on 

pre-clinical systems is clearly important, particularly given the magnitude of gradient errors 

that resulted from the manufacturer’s standard calibration.  A  5.3% scaling error was 

found in the Y direction prior to calibration, which, for example, would result in a 9.8% 

error in apparent diffusion coefficient (ADC) estimates, calculated from DWI data (due to 

the inverse square relationship between b-value and gradient magnitude).  The scaling 

values, once corrected with our protocol, were stable over the six month period, indicating 

that it may be satisfactory to carry out as few as two system calibrations per annum.   
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Previous pre-clinical structural MRI studies have compared volumetric measurements from 

in-vivo and ex-vivo data sets (127,128) using multiple hardware configurations.  To 

investigate effects of gradient scaling on TBV estimates, in-vivo and ex-vivo imaging was 

performed using different gradient sets for the same cohort of wild-type mice.  The mean 

difference in scaling factor of 17.4% was shown to cause a 22.8% increase in the in-vivo 

volumes measured.  After adjustment for scaling discrepancies, the difference in mean 

volume was reduced to 8% which may be due to dehydration and shrinkage of tissue 

caused by perfuse fixation for ex-vivo imaging(129,130).  These results highlight the 

importance of gradient scaling measurements when comparing data acquired on different 

systems or hardware configurations. 

The post processing correction showed that displacements near to the isocentre of the 

magnet, following calibration, can be less than 0.1 mm.  The deviation from linearity of the 

small diameter gradient set used was specified by the manufacturer as ≤5% within a central 

40 mm DSV region.  The linearity, measured as the maximum spatial deviation as a 

percentage of the 20 mm DSV radius, was found to be within these limits in each axis.  

However, this tolerance corresponds to a maximum spatial deviation of 1 mm which may 

not be satisfactory for phenotyping applications and a correction may be required.  Outside 

of this region, image distortion increases rapidly, with displacements of 0.3 mm and larger.  

With the application of non-rigid registration during post-processing, the dice coefficient 

improved by 26%.  The strong correspondence between the CT data and the corrected MRI 

indicates that non-rigid registration approach is a robust solution to unwarping data in 

regions of large distortion.   

The use of the generated deformation field may reduce distortions significantly, especially 

when imaging samples such as multiple embryos or anatomy that is positioned at a 

distance from the magnet isocentre.  Therefore, the post-processing correction for gradient 

non-linearity can increase the effective FOV over which biological samples can be 

accurately imaged, markedly increasing the efficiency of high resolution scans that are 

often acquired overnight.  Assuming satisfactory stability of the gradients, the deformation 

field from a single time point could be used to correct multiple datasets collected over a six 

month period for animal phenotyping studies (131).   

In this study, MRI acquisition parameters were based on an ex-vivo murine structural 

neuroimaging sequence with the aim of correcting this data using the deformation field.  
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The use of a 3D gradient echo sequence to characterise gradient field distortion is in line 

with previous clinical studies(110,114,116,132,133) and the agreement of scaling factors 

calculated from data acquired at two resolutions  and using a fast spin echo sequence 

indicate robustness of the methodology to changes in the read gradient magnitude and 

MRI sequence.  The mean difference in displacements between the gradient echo and fast 

spin echo data is within a single standard deviation of the reproducibility data mean 

difference, suggesting that the warping, caused by non-linearity of the gradients, is 

dominating any sequence specific effects in the scenario investigated. 

The deformation field could also be used to unwarp in-vivo data sets collected with the 

same imaging protocol although it should be noted that some variability in the accuracy of 

spatial displacement may be introduced by sample-dependent B0 perturbations.  These 

should be minimal in structural imaging and if necessary can be corrected for through the 

use of existing techniques (134).  Minor deviations from the protocol described here may 

be necessary such as adjustments to the phantom dimensions to fit specific hardware 

configurations and an alteration of the composition of the phantom filler solution to 

optimize SNR for the particular pulse sequence used.   

3.7 Conclusions 

In this chapter, a complete protocol has been presented consisting of a system calibration 

of MRI gradients and a post-processing correction for non-linearities away from the magnet 

isocentre.  The phantom design is open-source and can be adjusted as necessary for the 

specific imaging protocol, RF coil and scanner dimensions used.  The NiftyReg software 

used for the system calibration and the post-processing correction is also freely available to 

download and has been used to perform absolute scaling of gradients and an image 

correction of distortions caused by gradient non-linearity.  This simple step-by-step process 

can be integrated with or form the basis of a QA protocol that could be implemented 

during installation and as part of routine maintenance on any pre-clinical MRI system.  
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4  A Diffusion Tensor Imaging protocol for 

in-vivo multi-parametric MRI 

4.1 Overview  

In the previous chapter a gradient calibration protocol was developed to provide quality 

assurance for MR data acquired using the 9.4T MR system in CABI for the in-vivo 

measurement of phenotypic changes in mouse models of AD. The effects of gradient 

inaccuracies on MR measurements of anatomical volume and diffusion in tissue were 

discussed.  Diffusion Tensor Imaging is an MRI technique sensitive to the diffusion of water 

molecules from which the microstructural organisation of tissue can be inferred.  Changes 

to the diffusion environment may be indicative of white matter pathology, known to occur 

in neurodegenerative diseases.   

In this chapter, a time efficient DTI acquisition is developed with the aim of inclusion in a 

multi-parametric protocol.  The design and testing of this sequence is described and data is 

acquired in-vivo in the rTg4510 mouse model of tau pathology in AD.  DTI parameter 

measurements in both grey matter and white matter regions of the rTg4510 are presented 

and compared to those of wild-type controls.  Differences identified indicate the sensitivity 

of this DTI protocol to tau pathology and support its value within a multi-parametric MRI 

protocol to study mouse models of AD in-vivo. 

 

4.2 Background 

4.2.1 White matter pathology in AD 

The tissue of the nervous system consists of regions of grey matter and white matter 

named for the colour exhibited by their parenchymal make up.  Neuronal cell bodies 

(Figure 23c) in grey matter perform integrative functions or act as relays at junctions 

between synapses of axons and neighbouring cell bodies.  The white matter is a network of 

myelinated axons grouped into bundles called tracts that enable communication across the 

central nervous system through the propagation of electrical signals known as action 
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potentials.  Myelin sheaths wrap around the axons of neurons and are made up of 

membrane layers rich in phospholipids that are white in colour.  They provide a layer of 

electrical insulation that increases the speed of transmission of action potentials.  The 

millions of white matter tracts connect neurons across the nervous system to form a 

functional network.  In the human brain, white matter lies centrally, beneath a layer of grey 

matter on the surface known as the cortex (Figure 23b). 

 

Figure 23. Anatomy of the human brain 

Schematics of the human brain with key parts labeled(a) , a coronal slice with grey matter 
and white matter regions indicated(b), and neuronal cell features depicted(c). 
 
 

Damage to white matter that reduces nerve conduction will impact the ability and speed at 

which different parts of the brain communicate with each other, impairing sensory, motor 

and cognitive functions(135).  Although AD is defined by the presence of Aβ and NFT 

pathology in grey matter regions,  there is growing interest in white matter disease(WMD) 

which has been observed at neuropathological examination in over 50% of AD cases(136).  

Numerous white matter changes in AD have been reported in post mortem studies 

including  decreased myelin density(136), decreased myelin basic protein(137), loss of 

oligodendrocytes(138), activation of microglia(139), ventricular ependyma and gliosis, and 

loss of myelinated axons(140).   WMD in AD is mild and distributed throughout the brain, 

with the frontal lobes (Figure 23a) thought to be more severely affected(136).  This 

presentation is unlike other AD-vascular type dementias where focal infarcts occur(141).  It 

is currently unknown whether WMD is a direct result of protein misfolding and aggregation 

in AD or whether it is a secondary effect following connected regions of grey matter 

degeneration.   The former scenario is described by ‘Retrogenesis’, a theory which 
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hypothesizes that white matter regions that myelinate later in development are the first to 

be affected by AD(142,143).  The axons of these tracts have a smaller diameter and less 

oligodendrocytes associated with them when compared to earlier myelinating regions.  In 

supporting  a larger population of axons, a greater metabolic challenge may be placed on 

the oligodendrocytes making them more vulnerable to pathological processes(144).  

Alternatively, the white matter changes observed could be as a direct consequence of 

adjacent grey matter pathology, a process known as Wallerian Degeneration(145).  The non 

invasive nature of DTI offers the possibility to spatially map sequential white matter 

changes in the AD brain over time and may provide insight into the primary cause of white 

matter disease. 

4.2.2 DTI of white matter disease 

The directional arrangement of hydrophobic myelin in the white matter of the brain is 

reflected by a highly anisotropic diffusion environment.  Water molecules diffusing in this 

tissue will find their motion restricted by boundaries created by the walls of the myelin 

sheaths of axons aligned parallel to the orientation of the tract.  Bulk diffusion over time 

will be reduced in directions perpendicular to tracts of densely packed fibres since spins will 

be impeded by these boundaries and will undergo a rather tortuous diffusion trajectory.  

The relative diffusion along the direction of the tract will be much larger due to the 

reduced obstructions encountered.   

The ability of DTI to provide a multi-directional quantification of diffusion in three 

dimensions lends itself to the measurement of anisotropic diffusion in white matter.  

Values of Fractional Anisotropy(FA) and Mean Diffusivity (MD) calculated from the tensor 

can quantify the extent of anisotropy of diffusion and provide a measure of bulk diffusion 

in a voxel respectively.  In the case of white matter voxels, the ellipsoid described by the 

tensor will have much greater diffusivity in the direction of the fibre tract - described by 

Axial Diffusivity(DA), than in the two directions perpendicular to it – described by Radial 

Diffusivity(DR)(146).  By mapping these parameters, regional measurements can be taken 

in specific tracts of interest or fibre pathways can be traced using tractography image 

processing techniques(147). 

As AD progresses, NFT pathology spreads sequentially to different grey matter regions of 

the brain as defined by Braak staging(11).  Initially presenting in the transentorhinal region 
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of the temporal lobe including the entorhinal cortex and hippocampus, NFTs then become 

more widespread throughout the temporal lobe before severely affecting all neocortical 

association areas later in disease(11).  Atrophy of grey matter in the hippocampus has also 

been shown to correlate with this time course of distribution of NFT 

pathology(37,148,149).  The use of DTI to probe white matter tracts associated with 

regions implicated in these stages of disease may offer new insights into the link between 

neurodegeneration and WMD in AD.  

In a study by Huang et al(150) reductions in FA and altered diffusivity relative to healthy 

controls were observed to be greatest in AD patients in the temporal lobe followed by 

lesser changes in the parietal and frontal lobes following a regional pattern that parallels 

NFT pathology.  Furthermore, there was reduced DA and increased DR in the temporal 

white matter in patients with AD compared to reduced DA only in MCI cases.  This was 

attributed to early axonal damage in MCI and a complete loss of myelinated axons in AD.  

The authors concluded that the white matter changes are most likely secondary, following 

perikaryal degeneration, consistent with wallarian degeneration.  This hypothesis has been 

supported by other studies performing similar regional measurements (151,152) and 

correlating white matter damage measured by DTI with cognitive function(153,154).  

The retrogenesis hypothesis suggests WMD is a primary effect that occurs due to the 

formation of plaques and tangles in tissue and to explore this possibility, DTI comparisons 

have been made between early and late myelinating fibre tracts during initial stages of AD.  

Studies supporting retrogenesis have reported lower FA values in late-myelinating 

pathways (uncinate fasciculus, ILF, SLF), limbic pathways (fornix/stria terminalus, 

cingulum), and commissural pathways (splenium of the corpus callosum, forceps major) 

with no significant differences identified for early-myelinating regions included in these 

studies(155,156).  The anterior part(genu) of the corpus callosum myelinates later in life 

relative to the posterior part (splenium)(142) and studies have made comparisons between 

DTI measurements in these two structures.  Although reduced FA in the splenium appears 

to be more prominent in AD(157), reductions in the genu have been reported in MCI 

patients(158,159) indicating sensitivity to changes in this prodromal stage of the disease.   

These findings suggest an increased vulnerability of later myelinating regions to AD.  

However, connections from these white matter structures to other parts of the brain, such 

http://www.sciencedirect.com/science/article/pii/S1053811908012317#200011235
http://www.sciencedirect.com/science/article/pii/S1053811908012317#200014475
http://www.sciencedirect.com/science/article/pii/S1053811908012317#200019616
http://www.sciencedirect.com/science/article/pii/S1053811908012317#200019882
http://www.sciencedirect.com/science/article/pii/S1053811908012317#200021880
http://www.sciencedirect.com/science/article/pii/S1053811908012317#200005839
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as those between the splenium and the temporal lobe(157,160) may mean that results are 

confounded by wallerian degeneration.   

 

4.2.3 Potential of DTI as a disease biomarker 

The utility of DTI as a tool to interpret the order in which WMD and neurodegeneration 

occur is challenging due to  the difficulty in interpreting DTI parameters, conflicting results 

between studies, and the possibility of combined effects from multiple causes such as 

ischemic mechanisms, cerebrovascular disease and reactive gliosis(150).  Through the 

consensus of a number of studies there is a growing body of evidence of widespread 

increased MD and reduced FA in AD brain(144,161,162).  These differences have been 

observed in various white matter regions, using a number of acquisition protocols and 

analyses including ROI based, voxel-wise, and tract based.  Changes in diffusivity have also 

been consistently observed in AD with increased DR thought to represent myelin damage 

that increases with disease progression and DA as a measure of axonal integrity, more 

sensitive to early disease(150).  Correlation between DTI changes in white matter with both 

grey matter volume changes(163) and cognitive performances further support these 

parameters as indicators of disease progression(153,154). 

Sensitivity to early disease has been assessed through DTI studies in MCI cohorts as well as 

cases of increased risk factor of AD including carriers of APOEe4 and parental family 

history.  Patients diagnosed with MCI are considered to be in the prodomal phase of AD 

with increased risk of conversion.  Changes in MD and FA are remarkably similar to those 

observed in AD patients although less widespread(161).  DA has been suggested as a 

particularly sensitive marker to WMD in MCI(161) and that DTI measurements in the fornix 

may be  as useful as hippocampal volume(164,165) as a biomarker in conversion of MCI to 

AD.  In cohorts with an elevated risk factor of AD, reductions in FA in a number of white 

matter regions associated with AD have been observed in APOE e4 and subjects with a 

family history of late onset AD(166-168).   

It should be noted that there are a number of studies that report a lack of group 

differences in AD and MCI compared to healthy controls(162).  The source of these 

discrepancies are unclear with inconsistency in disease stage, low statistical power from 

small cohorts, and the variety of methods of data acquisition and analysis possible reasons.  
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The use of mouse models that mimic WMD found in AD may prove useful in controlling for 

some of these variables.  The ability to image large numbers of subjects and generate 

corresponding histology to analyse microstructural changes and quantify pathological 

burden may provide crucial insights into how to best optimise DTI protocols for AD 

biomarker applications. 

In comparison to white matter, DTI of grey matter is less commonly the subject of studies 

in AD literature.  Often only MD measures are reported due to the lack of anisotropy in the 

tissue.  An elevated MD has been reported in grey matter regions(169-171) as well as 

reduced FA in the hippocampus(171) and the thalamus(169).   

4.2.4 DTI in mouse models 

There may be multiple potential permutations of structural rearrangements in the tissue 

that give rise to a particular DTI contrast.  The lack of specificity makes it difficult to 

attribute a known abnormality to an observed change in a parameter.  MRI diffusion 

measurements in white matter originate from water molecules both within the axon and in 

the extracellular axonal spaces.  There are multiple intra-axonal structures that may 

influence diffusion within this compartment.  Both the axonal membrane and myelin 

sheath surrounding it act as barriers to diffusion, damage to which will cause changes to 

both intra and extra cellular diffusion environments(172).  Alterations to any of these 

structures in pathology may occur in combination with unpredictable effects on diffusion.  

To be able to use DTI parameters as markers of specific microstructural alterations, their 

relationships to the biology must be fully understood. 

DTI studies of mouse models that exhibit specific types of white matter abnormality may 

help to inform on root cause of signal changes.  A number of studies have tried to draw 

parallels between diffusivity parameters and histology in simple models of white matter 

pathology.  Studies in the shiverer mouse model of dysmyelination(98) and of 

demyelination using cuprizone treatment(173) suggest that reductions in myelination of 

the corpus callosum increase DR.  In more subtle white matter pathology induced by 

hypoperfusion, mice exhibited a lower FA in the corpus callosum that correlated with 

measures of reduced myelin integrity(174).  In some rodent models of axonal degeneration 

and injury, reduced DA has been observed in affected white matter regions(175,176).  In 
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other studies including more complex models, these findings have not been 

replicated(177,178) highlighting the need for further investigation of these relationships.   

Mouse models may also be used to better understand the relationship between DTI 

parameters and disease.  The careful breeding and housing of transgenic mouse models of 

AD may reduce group variability through the control of external factors such as diet and 

exercise that can affect human studies.  Histological analysis can be used to identify the 

physical tissue changes driving diffusion measurements and to draw correlations between 

DTI indices and presence of known pathologies in AD.  The expedient progression of 

pathology in models allows rapid longitudinal studies of DTI measurements in early and late 

stages of pathology.  Characterisation of the chronological order of myelination of white 

matter regions(179) will allow the testing of experimental paradigms to evaluate 

retrogenesis and wallerian degeneration hypotheses. 

A number of studies have focussed on beta-amyloid models of AD with varying 

characteristic levels of pathological burden.   Invariably, differences have been reported 

compared to wild-type controls but the nature of the changes in DTI parameters varies 

between studies.  In the corpus callosum, both reductions(81,82) and increases in 

anisotropy(180) have been observed at late time points after the appearance of amyloid 

plaques.  Likewise, grey matter FA increases(180) and decreases(181) have been reported 

for transgenic groups.  Inconsistencies may be due to variations in mouse models, DTI 

protocols, ROIs, and image analysis methods between studies and without strong 

correlations with histology, the cause of differences is speculative. 

 

4.3  Development of a time-efficient DTI protocol 

4.3.1 Introduction and aims 

The in-vivo imaging time for a mouse that is anaesthetised and then recovered is limited to 

protect for the toxic effects of prolonged anaesthesia. In the case of the phenotyping 

project licence (Phenotyping Transgenic Mice licence (PPL: 70/7474)) awarded to CABI by 

the UK Home Office, a maximum of 3 hours is specified.  The aim of this work was to 

develop a methodological protocol for the acquisition of DTI data in the mouse brain at a 
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suitable resolution with sufficient SNR, which runs within an allocated portion of the total 

imaging time(3 hrs).  As part of a multi-parametric MRI protocol that included 3D 

structural, ASL, and CEST, it was required that acquisition took no longer than 45 minutes. 

To resolve white matter structures in the murine brain, a  minimum in plane resolution of 

200µm2 is required(182).  When compared to human imaging, this high resolution 

requirement counteracts the SNR gain of the high field strength in dedicated small animal 

MRI scanners.  Furthermore, the combined lengthening of T1 and shortening of T2 times at 

high field further reduce the amount of signal available for a given DTI scan time(182).  Ex-

vivo imaging offers a less time restricted alternative, however measurements may not 

represent in-vivo diffusion accurately due to the tissue fixation process required for ex-vivo 

sample preparation.  Spin echo sequences have been used previously to measure diffusion 

in white matter of the mouse (183-185).  The relatively long scan times of these protocols 

prohibit their use in this particular application where it is necessary to employ a rapid 

acquisition technique.  Recently, multi-shot DW SE-EPI sequences have shown potential to 

provide high quality DTI data sets at high field with reduced imaging times (186,187).   

Single shot spin echo EPI sequences allow very fast acquisition of images after a single 

excitation making them robust to motion artifacts relative to multi shot acquisitions.  

However, the signal decays with T2* dependence during the image readout and is highly 

sensitive to B0 field inhomogeneities which can lead to distortion and signal loss at long TEs.  

In the brain, these are caused by discontinuities in bulk magnetic susceptibility at tissue 

boundaries where local magnetic field gradients are generated.  Due to its size (and thus 

relatively high surface area to volume ratio), these effects make imaging in the mouse brain 

with EPI particularly challenging.  Imaging at high field is favoured to capitalise on SNR 

increases, however susceptibility effects are worse(188).  Compared to human brains, the 

mouse brain has a much larger surface to volume ratio meaning susceptibility effects in 

images spread to a larger proportion of the brain(189).  There is also significant demand 

placed on the gradient hardware in the presence of a rapidly decaying signal, where high 

slew rates will be necessary to meet the resolution requirements.   

As described in section 2.6.2, the distortion and signal loss caused by off resonances effects 

can be reduced by decreasing the number of PE steps per excitation required to traverse k-

space in the PE direction.  In a multi-shot acquisition, data acquired over multiple 

excitations are combined (commonly in a mesh pattern) to fill the whole of k-space in the 
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PE direction.  This EPI technique places less stress on the gradient hardware whilst offering 

higher achievable resolution and reduced effects of field inhomogeneities and T2* decay.  

A multiple shot approach does necessitate acquiring data over multiple TRs which incur a 

penalty of increased scan time compared to the single shot method and motion between 

shots can introduce artifacts into the images. 

In this section, a multi-shot DW SE-EPI sequence is optimised at 9.4T for the investigation of 

white matter changes in mouse models of AD as part of a multi-parametric MRI protocol.  

Steps taken to mitigate effects of common artifacts in multi-shot EPI sequences are 

described and the rationale behind choices of diffusion weighting parameters discussed. 

Preliminary in-vivo data is acquired and the accuracy of DTI measurements is evaluated 

through comparison to those reported in the literature.    

 

4.3.2 Methods 

4.3.2.1 DW SE-EPI protocol description 

A four shot EPI sequence was developed for in-vivo imaging of the mouse brain based on a 

previously published protocol(187). Multi-shot EPI sequences are vulnerable to bulk 

motion.  To prevent introduction of artifacts due to motion, the head of the anaesthetized 

mouse must be immobilized during imaging.  This is usually achieved by securing the teeth 

of the animal using a bite bar and the use of ear bars to clamp a caudal section of the 

cranium.  This method is very effective but was not compatible with the mouse bed and 

coil setup used in these experiments.  A 72 mm inner diameter volume coil (Rapid 

Biomedical) was used for RF transmission and signal was received using a 4 channel array 

head coil (Rapid Biomedical).  When the four channel array was attached to the mouse bed, 

a standard ear bar setup was not possible due to space restrictions, leaving only the bite 

bar and nose cone to secure the head.  A nose cone attachment with arms that protruded 

outwards towards the caudal end of the mouse’s head was designed and 3D printed by 

collaborators (Figure 24).  Adjustable ear bars were inserted through holes drilled in the 

arms to secure the head from the sides.  The polyamide (PA2200) material used for 3D 

printing is flexible and the dimensions of the head holder were such that they would flex 

inwards as the upper RF coils were secured adding further pressure. 
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Figure 24. Images of mouse head holder 

CAD drawing of mouse head holder (a) and attached to nose cone with ear bars inserted 
(b). 

 

It may not be possible to remove effects of respiratory motion through immobilization of 

the head and in this scenario, gating has been used previously to provide further 

improvements (190,191).  Respiratory gating was added to a four shot EPI sequence to 

prevent acquisition during breaths.  I achieved this by configuring the respiratory 

measurement equipment and by modifying the core EPI sequence code in VNMRJ.  A 

respiratory pad (SA instruments) was used to monitor breathing of the animal and a gating 

output from the vendor software was read by the MR sequence prior to implementing each 

shot.  The gate was configured to open between resps after a delay equal to 10% of the 

previous inter-resp period (Figure 25).  It closed again after a time that was equal to 50% of 

the previous inter-resp period.  The EPI pulse sequence code was amended to read the gate 

output at the start of each shot.  If open, the sequence was played out and data acquired.  

If the start of the shot occurred during respiration, indicated by a closed gate, data was not 

acquired but all RF pulses and gradients would be played out as normal to retain the steady 

state of the MR signal with respect to T1 and T2* relaxation.  Acquisition of the next shot 

would then occur at the next open gate reading. 
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Figure 25. Respiratory gating for EPI sequence 

SA instruments software detects an inter resp. period based on the gradient of the 
respiration signal(a).  The gate is opened after a 10% inter-resp. period delay (b).  The gate 
closes again after a further 50% of the inter-resp. period(c).  Where the start of the pulse 
sequence for an EPI shot occurs while the gate is open, the echo is acquired.  If the gate is 
closed, the echo is not acquired.   

 

In acquiring each shot in an EPI sequence, gradients of alternating polarity are acquired to 

continually refocus the signal(Figure 10, section 2.6.1).  Alterations to desired application of 

imaging gradients from sources such as eddy currents can cause a mismatch in adjacent 

lines of k-space.  These may cause faint artifacts in the resulting images known as N/2 

ghosts (section 2.6.2).  To reduce these artifacts, timing delays were added to the pulse 

sequence to centre echoes in the acquisition window and calibration scans were acquired.  

Full triple reference scans were acquired prior to the EPI acquisition.  These include a scan 

without phase encoding, one with inverted readout polarity and no phase encoding, and a 

scan with inverted readout polarity and phase encoding.  To apply corrections using the 

reference scans, the phase of scans collected without phase encoding is negated and 

multiplied at each pixel with the phase encoded scans acquired with the corresponding 

gradient polarity.  The two sets of modified phase encoded images are then summed at 

each pixel to give the final complex image.      

To ensure sufficient directional diffusion sampling, gradients were applied in thirty 

directions (Table 1) spread equidistantly over a sphere using a Jones30 scheme(192).  This 

scheme has been shown to produce low and rotationally invariant noise in FA estimates 

(193) required for robust estimation of tensor orientation and anisotropy at a b-value of 
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1000 s/mm2 (194).  Collecting diffusion data in a high number of directions limited the 

acquisition to a single b-value due to time constraints.  Previous studies have indicated a 

difference in the optimal DTI b-value depending on diffusion environment in the tissue.  In 

estimating a single tensor in isotropic brain parenchyma, this has been found to be 

approximately 1200 s/mm2 (192).  When anticipating more anisotropic media such as 

white matter tracts, a lower b-value has been suggested  to be approximately 900 s/mm2 

(195).  The final b-value after sequence optimization was 1050 s/mm2 which falls between 

the isotropic and anisotropic values indicated by the literature and is similar to that used in 

previous studies in-vivo in the mouse(185,187).  A single unweighted image was acquired 

prior to collection of diffusion weighted images.  To increase SNR, five signal averages were 

collected for each image to give a scan time of 42 minutes and 41 seconds. 

Order Read Phase Slice 

1 0 0 0 
2 1 0 0 
3 0.166 0.986 0 
4 -0.11 0.664 0.74 
5 0.901 -0.419 -0.11 
6 -0.169 -0.601 0.781 
7 -0.815 -0.386 0.433 
8 0.656 0.366 0.66 
9 0.582 0.8 0.143 

10 0.9 0.259 0.35 
11 0.693 -0.698 0.178 
12 0.357 -0.924 -0.14 
13 0.543 -0.488 -0.683 
14 -0.525 -0.396 0.753 
15 -0.639 0.689 0.341 
16 -0.33 -0.013 -0.944 
17 -0.524 -0.783 0.335 
18 0.609 -0.065 -0.791 
19 0.22 -0.233 -0.947 
20 -0.004 -0.91 -0.415 
21 -0.511 0.627 -0.589 
22 0.414 0.737 0.535 
23 -0.679 0.139 -0.721 
24 0.884 -0.296 0.362 
25 0.262 0.432 0.863 
26 0.088 0.185 -0.979 
27 0.294 -0.907 0.302 
28 0.887 -0.089 -0.453 
29 0.257 -0.443 0.859 
30 0.086 0.867 -0.491 
31 0.863 0.504 -0.025 

Table 1. Diffusion gradient directions 
Unit vector directions for diffusion weighted gradients and the order they were applied in 
the DW SE-EPI sequence.  
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In order to analyse the data, I wrote software in Matlab to construct tensors at each voxel 

using a least squares fit method.(196).  Firstly, a gradient encoding matrix, g, is formed 

using the gradient unit vectors in Table 1.  A b vector, b, is calculated using the acquired 

imaging data and the scalar b value using the equation(196) 

   
       

   
   

 

 
  

Equation 60  

Where Idw is the intensity in the diffusion weighted images, IB0 is the intensity in the b=0 

images, and  b is the scalar b-value.   Once b has been calculated, it can be used with the 

gradient encoding matrix to solve the linear equation(196) 

     

Equation 61  

to give x, which can be rearranged form the diffusion tensor matrix at each voxel.  A least 

squares fit in matlab was used to solve the linear equation followed by an eigen 

decomposition of the diffusion tensor matrix.  Eigen values were used to calculate MD, FA 

and radial and axial diffusivity following standard methods(98,197).  Anatomical structures 

were delineated manually in the parameter maps produced to provide mean ROI 

estimates. 

4.3.2.2 Protocol evaluation in a diffusion phantom 

n-dodecane is a liquid alkane that has previously been identified as suitable for measuring 

the accuracy of DTI sequences(198).  It has a well defined diffusion coefficient over a range 

of temperatures that can be used to test the accuracy of measurements using DTI.  At room 

temperature, it is within the range of ADC  values (0.5 x10-3mm2/s to 0.8 x10-3mm2/s) 

measured in-vivo in the corpus callosum of the developing mouse(185) and T1 and T2 

values are close to those of human white matter. 

A cylindrical diffusion phantom was constructed using 3 ml of Dodecane (Sigma-aldrich, UK) 

in a 5ml plastic syringe.  It was imaged at 9.4T in a 26mm diameter birdcage RF coil used for 

signal transmission and reception.  A temperature probe was attached to the outer surface 

of the phantom to monitor temperature during experiments (SA instruments).   Images 

were acquired using the DW SE-EPI protocol described previously in a central region of the 

http://www.sciencedirect.com/science/article/pii/S105381191500124X#200022559
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phantom. A ROI was drawn in the centre of the phantom across all 16 slices (20 x 20 x 16 

voxels) and the mean and standard deviation of the MD values was calculated to assess the 

accuracy of estimates, given the known diffusion coefficient of the phantom. 

Misalignments of adjacent echoes in k-space caused by eddy currents can cause both 

distortions and translations in images.  In DTI sequences, these effects may vary with the 

direction in which the diffusion weighting gradients are applied.  The presence of these 

artifacts were investigated by applying the DW- SE-EPI protocol in the central slices of the 

dodecane phantom.  The diffusion weighted image acquired first in the sequence was then 

subtracted from all other images to provide a set of difference images.  The presence of 

spatial shifts or distortion should be visible by prominent intensity changes along the edges 

of the phantom.  

4.3.2.3 Protocol evaluation in-vivo 

All of the in-vivo imaging in the protocol evaluation was performed using C57BL/6 mice 

with a 9.4 T VNMRS horizontal bore scanner (Agilent Inc.).  A 72 mm inner diameter volume 

coil (Rapid Biomedical) was used for RF transmission and signal was received using a 4 

channel array head coil (Rapid Biomedical).  Mice were anaesthetised under 2% isoflurane 

and positioned in a MRI compatible head holder to minimise motion artifacts. Anaesthesia 

was then maintained at 1.5% isoflurane in 100% O2 throughout imaging. Core temperature 

and respiration were monitored using a rectal probe and pressure pad (SA instruments). 

Mice were maintained at ~ 37 °C using heated water tubing and a warm air blower with a 

feedback system (SA instruments). 

A four shot Spin Echo EPI sequence was used to acquire sixteen slices.  The olfactory bulbs 

were used as an anatomical landmark to maintain consistency in slice positioning between 

animals(Figure 26). The FOV was 20 × 20 mm with a matrix size of 100 × 100 and a slice 

thickness of 0.5 mm.  Diffusion gradients were applied in thirty directions with the 

following parameters G = 0.25 T/m, Δ = 9.3 ms, δ = 5.5 ms, and b = 1050 s/mm2 to generate 

30 diffusion weighted images in addition to a single unweighted b=0 image.  Acquisition of 

5 averages with a TR of 2000 ms and TE of 24 ms gave a total imaging time of 43 min.  

http://www.sciencedirect.com/science/article/pii/S105381191500124X#200019994
http://www.sciencedirect.com/science/article/pii/S105381191500124X#200003245
http://www.sciencedirect.com/science/article/pii/S105381191500124X#200008650
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Figure 26.  Slice positioning for DW SE-EPI protocol 

Sagittal view of a mouse brain images with positioning of sixteen imaging slices overlaid. 

The junction between the olfactory bulbs and cortex was used as an anatomical landmark for 

the most rostral slice. 

 

A single mouse was imaged to investigate the sensitivity of the DTI sequence to chemical 

shift and motion artifacts.  Due to the low bandwidth in the phase encode direction, EPI 

sequences are highly susceptible to chemical shift artifacts(199).  A frequency selective RF 

pulse was used to saturate the signal from fat to mitigate artifacts.  The pulse was Gaussian 

shaped, non slice selective, and centred at 3.3ppm, the chemical shift of fat relative to 

water.  Images were also collected in-vivo (n=1), without the saturation pulse to investigate 

the severity of chemical shift artifacts.  An unweighted, single shot EPI image was acquired 

at the same resolution in a comparable imaging time (TR=8000ms, TE=24ms) to the multi 

shot sequence to compare distortion artifacts.  Data was also acquired using the multi shot 

sequence to test the efficacy of the respiratory gating added to the sequence and 

customised head holder to reduce motion artifacts. 

To investigate the accuracy of the DTI protocol in-vivo, data was acquired(n=1) and 

compared to  previously published values for C57BL/6 mice during early development (P15 

to P45)(185).  The animal was imaged and DTI parameters were calculated using the 

protocol described earlier.  To compare FA and MD measurements, mean values in ROIs in 

three regions were measured (Figure 27).  A white matter region in the corpus callosum 

and a grey matter regions in the caudate putamen and in the somatosensory section of the 

cortex were manually segmented in three slices to replicate the ROIs in the previous study.  

Low SNR has been shown to reduce both precision and  accuracy of DTI-based contrasts in 

FA(200).  SNR calculations were made using the cortical ROI (Figure 27) by dividing the 
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mean signal intensity by the standard deviation of the signal measured in the four corners 

of the image.   

 

Figure 27. ROIs for study comparison 

ROIs in the corpus callosum (CC), the forelimb region of the somatosensory cortex (S1FL), 
and the Caudate Putamen(CP) are shown for calculation of mean diffusion parameter 
estimates and SNR (corpus callosum and cortex only). 

 

4.3.3 Results 

4.3.3.1 Protocol evaluation in a diffusion phantom 

A dodecane diffusion phantom was used to investigate the accuracy of ADC estimates using 

the DW SE-EPI protocol as well as potential issues of echo misalignment.  The mean and 

standard deviation of MD measurements at a b-value of 1050 s/mm2 was 0.743±0.043 x10-

3mm2/s.  The measured temperature of the phantom during imaging was 18.5±0.30C.  At 

this temperature, the MD was within the range of specified diffusion coefficient values 

previously published (0.708 x10-3mm2/s and 0.788 x10-3mm2/s  measured at 150C and 200C 

respectively )(198).   

Difference images were generated by subtracting the first diffusion weighted image from 

the other diffusion weighted images.  In the case of eddy current induced distortion, it 

would be expected that visible differences would be observed at the periphery of the 

phantom.  The signal magnitude observed in the difference images was very low compared 

to that in the raw diffusion weighted image (Figure 28).  This is expected in such a phantom 

where diffusion should be isotropic and therefore attenuation of the signal should be equal 

in all weighting directions.  Furthermore, the lack of noticeable signal at the edge of the 
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images of the phantom images indicate a lack of direction dependent distortion or 

translation of signal as might be produced in the presence of eddy currents in the gradient 

coils. 

 

Figure 28. Dodecane diffusion weighted difference images 

The first DW images from a central slice of the phantom followed by difference images 
generated by subtracting this image from the twenty nine subsequent DW images.  The DW 
value differences are very small compared to the DW signal magnitude and the lack of large 
differences around the periphery of phantom suggest the eddy current distortions are 
minimal.    

 

The use of calibration scans can reduce the appearance of N/2 ghosting with the 

disadvantage of increasing scan time to acquire the extra data.  Images of the dodecane 

phantom were acquired with and without a full triple reference scan (Figure 29).  Ghosting 

was observed in the images acquired without a reference that disappeared when the full 

triple calibration scan was added to the sequence. 
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Figure 29. Effect of reference scan on EPI images 

SE-EPI images of n-dodecane phantom acquired with no reference scan (a) and with a full 
triple reference scan (b). Intensities were windowed [0 10000].  Ghosting is visible in the 
image acquired without the full triple reference scan. 

 

4.3.3.2 Protocol evaluation in-vivo 

EPI images were acquired in-vivo in a mouse to assess chemical shift artifacts and 

differences in distortion between single shot and multi shot images.  Chemical shift 

artifacts were found to be present in the multi-shot EPI acquisitions (Figure 30a).  These 

were markedly reduced by the addition of a fat saturation RF pulse (Figure 30b).  Significant 

distortion in the phase encode direction was observed in images acquired using a single 

shot EPI sequence (Figure 30c).  Mislocalisation of the MR signal resulted in a smearing 

across the image and a loss of contrast that is particularly apparent at the edges of the 

brain.  

 

Figure 30. Multi-shot EPI with RF fat saturation 

Single image slice for four shot EPI acquisition, chemical shift artifacts are observed(a) that 
are removed by the addition of a fat saturation pre-excitation RF pulse(b).  The single shot 
EPI acquisition(c) exhibits significant mislocalisation of signal in the phase encode direction 
(L to R). 
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Motion artifacts were evident in the multi-shot EPI images in the phase encode direction 

using only the manufacturer supplied nose cone to secure the mouse head(Figure 31a).  

Ghosting was most apparent in the diffusion weighted images(Figure 31a) which is likely to 

be due to the lower SNR and greater susceptibility to motion introduced by the diffusion 

gradients compared to the unweighted images.  Marked improvements were observed in 

the images when respiratory gating was added to the EPI acquisition (Figure 31b) indicating 

that some of the motion was due to the breathing of the animal.  A small time increase of a 

few minutes was caused by the necessity to repeat EPI shots that occurred during 

respiration.  When using the head holder designed to immobilise the animals head, motion 

artifacts in images were further reduced without respiratory gating (Figure 31c).   

 

Figure 31. Respiratory motion artifacts in EPI images 

Single slice b=0 images and six diffusion weighted images acquired without (a) and with(b) 
respiratory gating(NSA=1)(without custom head holder).  Artifacts were found to be 
reduced using the custom head holder with no respiratory gating(c) (NSA=5).  

 

A single wild-type mouse was imaged in-vivo using the optimised DW SE-EPI protocol to 

compare SNR, and MD and FA in with previously published values in selected ROIs(185).  

Sixteen coronal images were generated for a single unweighted b=0 image, followed by 

thirty diffusion weighted images with gradients applied following a Jones30 scheme.  

Images were observed to be free from distortion and motion artifacts (Figure 32).   
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Figure 32. DW SE-EPI in-vivo images 

Representative b=0 and thirty diffusion weighted images for a single coronal slice acquired 
in a wild-type mouse. 
 

DTI parameter maps were generated from tensor calculations at each voxel in the images 

(Figure 33).  It was observed, as expected, that MD values were greater in the CSF filled 

ventricular regions.  White matter regions are clearly visible as areas of increased FA and 

DA and reduced DR in comparison to surrounding grey matter regions.   

 

 

Figure 33. DTI parameter maps 

Maps of MD (a), FA(b), DR(c), and DA(d) acquired in-vivo in the mouse brain  (Diffusivity 
values given in mm

2
/s).   Increased MD can be observed in the ventricles(a) and white 

matter regions display increased FA(b) and reduced DR(c). 
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The SNR value calculated in the cortex of the b=0 images was 55 in the cortex.  This equates 

to an SNR of 35 dB which is less than the value of 46 dB measured in the somatosensory 

cortex by Chahboune et al(185) which is likely due to differences in the imaging parameters 

used.  In the diffusion weighted images, the mean SNR measured across all thirty diffusion 

weighting gradient directions in the cortex was 24.2±1.5. 

The FA and MD measured in the corpus callosum ROI were 0.53±0.07 and 0.75± 0.11 x10-

3mm2/s respectively.  These estimates were in good agreement with values reported in the 

earlier study taken during early development.  The values in the grey matter regions of the 

caudate putamen ( FA = 0.19±0.05 / MD =0.75± 0.07 x10-3mm2/s ) and the somatosensory 

region of the cortex ( FA = 0.13±0.05 / MD =0.77± 0.07 x10-3mm2/s ), also fell within the 

ranges of these parameters measured previously. 
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4.3.4 Discussion 

In this section a multi-shot DW SE-EPI acquisition was optimised and tested for in-vivo 

acquisition in the mouse brain at 9.4T.  The sequence runs in less than 43 minutes making it 

suitable for inclusion in an imaging protocol containing other MRI techniques to be 

performed within the maximum imaging time for an in-vivo murine recovery experiment.  

The protocol was evaluated through comparison of phantom and in-vivo diffusion 

measurements to published values and effects of artifacts known to plague this type of EPI 

acquisition were analysed. 

Distortion experienced by single shot EPI acquisitions at high field can be seen clearly in 

Figure 30c, and are less apparent in the multi-shot sequence implemented.  Artifacts in 

images caused by increased sensitivity to motion of multi shot sequences were reduced by 

introducing gating of the pulse sequence to acquire data between breaths in the 

respiratory cycle.  However, a head holder was subsequently developed to immobilise the 

animal that proved to be a highly robust solution to motion artifacts.  Consequently, the 

respiratory gating was removed from the sequence due to the extra scan time it incurred.  

The use of an RF pulse to saturate fat was successful in removing chemical shift artifacts in 

the phase encode direction. 

The addition of a calibrated time delay was employed to reduce Nyquist or N/2 ghosting 

that can be caused by misalignments of consecutive echoes in k-space.  Despite the 

increased time necessary to acquire them, it was found that full triple reference calibration 

scans provided a significant reduction in ghosting.  The contribution of eddy currents in 

gradient coils due to the rapid switching of current in EPI sequences were investigated 

through the use of difference images in diffusion weighted images.  Phantom images 

appeared to show minor changes in magnitude or spatial localisation in signal between 

images weighted by gradients applied in different directions.  The gradient sets used in 

these experiments are self shielded to reduce eddy currents outside of the set.  Effects of 

any remaining currents are reduced through the use of pre-emphasis or digital eddy 

current compensation that is employed by the console software.   Post processing 

correction techniques can be employed which may involve registration and resampling to 

realign erroneous spatial localisation of signal in images.  These were not employed in this 

study due to the apparent lack of severity of errors induced. 
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The accuracy of the DTI protocol was tested in-vivo and through the use of a diffusion 

phantom and parameter estimates were shown to be in good agreement with values 

previously published.  Repeating the in-vivo experiments with a larger cohort of mice would 

have been desirable to provide a measure of precision of the technique.  Although in-vivo 

SNR estimates in the cortex were lower than those reported, the values measured in both 

the b=0 and the diffusion weighted images were well above the noise floor(201).  

Furthermore, the  increased number of DW gradient directions used in this protocol should 

reduce noise in FA estimates(193).  Varying the number of gradient directions, b-value 

magnitude, and signal averages will have impacts on image SNR, accuracy of DTI parameter 

estimates, as well as scan time of this protocol and further investigation to establish 

optimal balance of these components would be beneficial. 
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4.4 Diffusion Tensor Imaging in a mouse model of 

Tau Pathology 

4.4.1 Introduction 

In recent years, tau has emerged as a potential target for therapeutic intervention in 

AD(25,26).  Tau plays a critical role in the neurodegenerative process: aggregates of 

hyperphosphorylated tau forming neurofibrillary tangles (NFTs) are a major hallmark of AD 

and correlate with clinical disease progression(11).  In the absence of amyloid-beta, NFTs 

are also implicated in several other neurodegenerative diseases (frontotemporal dementia 

with parkinsonism, progressive supranuclear palsy, corticobasal degeneration), further 

supporting the role of tau in the dementing process(202).  The rTg4510, a mouse model of 

tauopathy has been developed that specifically expresses tau in the forebrain but without 

amyloid plaques, enabling dissection of the unique role of tau in AD pathology(203,204).  

Behavioural and histological studies of the rTg4510 mouse have demonstrated cognitive 

deficits in learning and motor tasks and marked atrophy of brain regions known to be 

selectively vulnerable to AD such as the hippocampus and frontal cortex(204). 

In this study, diffusion tensor imaging (DTI) (a sensitive measure of local tissue 

inflammation and cellular integrity) was implemented to probe changes in microstructural 

compartmentation in the rTg4510 mouse.  As part of a multi-parametric protocol, data was 

acquired in a limited scan time and sensitivity to tissue pathology in selected white and 

grey matter regions was evaluated against histological measures.  Diffusion parameters 

were sampled in different sub regions of the corpus callosum.  Differences identified 

between the earlier myelinating splenium(92) and the genu, may indicate a vulnerability to 

disease that is dependent on development.      

It is shown that this DTI protocol can unambiguously discriminate tau pathology from 

healthy control subjects, providing a platform for the longitudinal assessment of 

experimental treatments in combination with other MRI techniques.  Furthermore, we 

demonstrate that DTI metrics are sensitive to tau-pathology in regions of low NFT density, 

providing evidence that these data may inform the development of a multi-parametric 

imaging biomarker for early detection of tau pathology in the clinic.   
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4.4.2 Materials and Methods 

4.4.2.1 Transgenic mice 

Generation of homozygous rTg4510 transgenic mice has been reported previously(203).  

Female rTg4510 mice were licensed from the Mayo Clinic (Jacksonville Florida, USA) and 

bred for Eli Lilly by Taconic (Germantown, USA).  Mice were imported to the UK for imaging 

studies at CABI.  All studies were carried out in accordance with the United Kingdom 

Animals (Scientific Procedures) act of 1986. 

4.4.2.2 Magnetic Resonance Imaging 

All imaging was performed with a 9.4 T VNMRS horizontal bore scanner (Agilent Inc.).  A 72 

mm inner diameter volume coil (Rapid Biomedical) was used for RF transmission and signal 

was received using a 4 channel array head coil (Rapid Biomedical).  Mice were 

anaesthetised under 2% isoflurane and positioned in a MRI compatible head holder to 

minimise motion artifacts.  Anaesthesia was then maintained at 1.5% isoflurane in 100% O2 

throughout imaging.  Core temperature and respiration were monitored using a rectal 

probe and pressure pad (SA instruments).  Mice were maintained at ~37 °C using heated 

water tubing and a warm air blower with a feedback system (SA instruments). 

In this study, rTg4510 and wild-type litter matched control mice at 8.5 months of age were 

imaged.  DTI was conducted on N = 9 rTg4510 mice and N = 17 wild-type controls as part of 

a multi-parametric MRI protocol(125).  The brains of each of the rTg4510 and wild-

type(WT) mice were perfuse fixed for histology which was carried out by collaborators 

directly after imaging.  The reported p-values are from standard t-tests for differences in 

parameters between the rTg4510 and WT groups, unless stated otherwise. 

4.4.2.3 Diffusion Tensor Imaging (DTI) 

A four shot Spin Echo EPI sequence was used to acquire sixteen slices as described in 

section 4.3.  The olfactory bulbs were used as an anatomical landmark to maintain 

consistency in slice positioning between animals.  The FOV was 20 × 20 mm with a matrix 

size of 100 × 100 and a slice thickness of 0.5 mm.  Diffusion gradients were applied in thirty 

directions with the following parameters G = 0.25 T/m, Δ = 9.3 ms, δ = 5.5 ms, and b = 1050 

s/mm2 to generate diffusion weighted images in addition to a single unweighted b=0 
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image.  Acquisition of 5 averages with a TR of 2000ms gave a total imaging time of 43min.  

Software written in Matlab was used to construct tensors at each voxel through a least 

squares solution approach (196).  The parameters MD, FA as well as radial and axial 

diffusivity were calculated from the tensors following standard methods.  Three slices 

posterior to the bregma were selected for comparison to histology in the unweighted 

images and ROIs were manually drawn in the corpus callosum and grey matter areas of the 

hippocampus, cortex and thalamus (Figure 34).  White matter ROIs were also taken in 

single slices located in both a rostral and caudal location(Figure 34a) in the external capsule 

to compare measurements in the Genu and Splenium regions of the corpus callosum 

respectively.  Mean Diffusivity and Fractional Anisotropy values were measured for all 

regions and radial and axial diffusivity were also calculated in white matter structures.  

Mean values were calculated for the ROIs in each group for comparison of the DTI 

parameters. 

 

Figure 34. DTI Regions of Interest 

Location of slices (a) in the rostral (a,r) and caudal (a, c) white matter of the external 
capsule, and in slices posterior to the bregma (a, pb) where ROIs(b) were drawn in the 
cortex(Ctx), Hippocampus(Hp), Thalamus(Th), and corpus callosum(CC)for comparison with 
histology. 

4.4.2.4 Histology and Immunohistochemistry 

Following in-vivo imaging, the brains were perfusion fixed and histology was performed by 

collaborators.  Animals were terminally anaesthetised with Euthanal (0.1 mL) administered 

via intraperitoneal injection.  The thoracic cavities were opened and the animals perfused 

through the left ventricle with 15–20 mL of saline (0.9%) followed by 50 mL of buffered 

formal saline at a flow rate of 3 mL per minute.  Following perfusion, the animal was 

decapitated, defleshed, and the lower jaw removed.  All brains were stored in-skull at 4 °C 

before being dispatched for histology. 
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Brain samples were then processed using the Tissue TEK® VIP processor (GMI Inc,MNUSA).  

After processing, sections were embedded in paraffin wax to allow coronal brain sections 

to be cut.  Serial sections (6-8 µm) were taken using HM 200 and HM 355 (ThermoScientific 

Microm, Germany) rotary microtomes.   

Immunohistochemistry (IHC) was performed using a primary antibody for tau 

phosphorylated at serine 409 (PG-5; 1:500 from Peter Davies, Albert Einstein College of 

Medicine, NY, USA).  Secondary antibody was applied and slides were then incubated with 

avidin biotin complex (ABC) reagent for 5 min (M.O.M.  kit PK-2200, Elite ABC rabbit kit PK-

6101, or Elite RTU ABC PK-7100 Vector Labs).  After rinsing, slides were treated with the 

chromogen 3,3′-diaminobenzidine (DAB; Vector Laboratories, SK-4100) to allow 

visualisation.  The slides were then cover slipped, dried and digitised using an Aperio 

Scanscope XT (Aperio Technologies Inc., CA, USA). 

4.4.3 Results 

4.4.3.1 Regional correlations of diffusion parameters to NFT density 

Immunohistochemistry was performed on each of the individual rTg4510 (n = 9) and WT (n 

= 17) control animals to estimate the density of PG-5 positive NFTs in cortical, hippocampal 

and thalamic regions (Figure 35).  No PG-5 positive cells were observed in any of the 

control mice and quantitative measures were made in the hippocampus, cortex and 

thalamus for each rTg4510 mouse.  There was high pathological burden detected in the 

cortex and hippocampus (mean NFT density = 229 cells/mm2
 and 83 cells/mm2 respectively) 

of the transgenic group.  The positive cell count observed in the thalamus was much lower 

in comparison (mean NFT density 2.3 cells/mm2) (Figure 35).   

The DTI measurements in the cortex and hippocampus, areas of high density of tau 

pathology, showed increased FA and MD in the transgenic group (Figure 36).  Significant 

differences in both FA and MD were observed in the cortex.  The FA in the transgenic and 

wild-type groups were 0.18±0.03 and 0.15±0.01 (p=2.1×10-4) and the MD was 

8.24±0.49x10-4 mm2/s and 7.64±0.35x10-4 mm2/s (p = 7.46 × 10-3).  The Hippocampus 

measurements of FA were 0.21±0.04 and 0.17±0.03 for the transgenic and wild-type groups 

respectively and the MD values were 9±0.49x10-4 mm2/s and 7.7±0.59x10-4 mm2/s, only 
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the MD group differences were significant (p=4.75 × 10-2).  In the thalamus, a region of low 

tau pathology, a significant increase was observed in the MD only (p=4.83 × 10-2).   

 

Figure 35. Immunohistochemistry to estimate regional PG-5 positive NFT 
density 

 a) Single histology slice from a representative rTg4510 mouse  with staining for PG-5 
positive NFTs.  Marked regional  dependence  of NFT density is  observable  (see  inset(b-d) 
for example s of  cortical, hippocampal and thalamic NFT distribution).  E) Quantitative  
regional estimates of NFT density for each of the 17 WT and 9 rTg4510 mice  that were 
used for MRI studies   
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Figure 36. DTI measurements in Grey Matter regions 

Mean Diffusivity(a) and Fractional Anisotropy (b) in grey matter regions in WT and rTg4510 
mice. A significant increase in MD was observed across all regions in the rTg4510.  The 
cortex was the only grey matter regions to exhibit a significant increase in FA. Red crosses 
indicate outliers defined as values that lie greater than ±2.7σ from the mean. 

 
 

No significant correlations between DTI parameters and tau pathology measurements were 

observed within ROIs.  Therefore, a secondary correlation analysis was performed in which 

regions were ranked based on their pathological burden.  The cortex and hippocampus 

were ranked as “high” density while the thalamus was ranked as “low” density.  The 



109 

 

relationship between percentage difference in MRI parameters from WT controls (ranked 

as 0 tau burden) and tau density was examined.  A significant correlation of FA and MD to 

the ranked data was observed (Figure 37).  There was a positive correlation of FA 

(Spearman's CC = 0.48, p = 1 × 10−5) and MD (Spearman's CC =0.57, p=1.2 × 10−7) to group 

ranked tau density.  However, there was no statistical difference in the percentage 

difference from control between the cortex and hippocampus (the “high” ranked regions) 

in each of the MR measures, despite the cortex presenting with a threefold increase in NFT 

density relative to the hippocampus.  This finding suggests a monotonic relationship exists 

between measures of MD and FA and NFT density within a degree of tau burden which 

dissociates between regions of “high” tau burden (the cortex and hippocampus) in the 8.5 

month rTg4510 mice. 

 

Figure 37. DTI correlates to histological ranking of tau density  

Percentage change (normalised to control) in a)MD and b) FA as a function of histological 
ranking of PG-5 positive NFT density.  Spearman's non-parametric correlation coefficient 
was used to investigate a possible correlation of DTI measures to histological ranking (p-
value and correlation coefficient (CC) reported in figure inset).  Box plots represent median, 
interquartile range and range of quantitative MR estimates. Red crosses indicate outliers 
defined as values that lie greater than ±2.7σ from the mean. 
   

4.4.3.2 DTI of white matter regions of high pathology 

DTI was employed to investigate microstructural changes in the white matter of the 

rTg4510 mice relative to the normal brain.  Intensity of PG-5 staining in images of histology 

slices was used to calculate a staining density in the corpus callosum ROI as a ratio of the 

area of positive stain divided by the total area of the region.  The staining density in the 

rTg4510 (3.5 ± 1.37) was significantly greater than that of the wild-type group (0.01 ± 0.01, 

p = 6.12 × 10−5).  The mean ROI measurements of FA and MD in the corpus callosum taken 

posterior to the bregma showed significant differences between the transgenic and control 
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groups (Figure 38).  The transgenic group exhibited a reduced FA of 0.32 ± 0.05 compared 

to the controls (0.48 ± 0.07, p = 4.5 × 10−6, effect size = 2.7).  In contrast, the MD of 9.4 ± 

0.8 × 10−4
 mm2/s observed in the transgenic group was greater than in the controls (7.7 ± 

0.4 × 10−4
 mm2/s, p = 6.3 × 10−8, effect size = 3).   

 

Figure 38. MD and FA measurements in the Corpus Callosum 

Mean Diffusivity (a) and Fractional Anisotropy measurements in the corpus callosum 
posterior to the bregma.  MD is increased and FA is reduced in the rTg4510 group. Red 
crosses indicate outliers defined as values that lie greater than ±2.7σ from the mean. 

 
 

Most marked was the change in radial diffusivity, where a clear discrimination between the 

wild-type and the transgenic groups was observed (p = 1.5 × 10−8, effect size = 3.8) (Figure 

39).  No significant difference was observed in axial diffusivity values (rTg4510 = 11.1 ± 0.9 

× 10−4
 mm2/s, control =10.7 ±0.9 × 10−4

 mm2/s, p = 0.36).  

 

Figure 39. Radial Diffusivity in the corpus callosum 

Measurements of Radial Diffusivity in the corpus callosum posterior to bregma (a) showed 
elevated values in the rTg4510 group.  Representative parameter maps are shown for a 
wild-type (b) and rTg4510(c) mouse.  Red arrows highlight regions of  reduced contrast in 
radial diffusivity between the corpus callosum and surrounding grey matter in the 
transgenic map. 
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4.4.3.3 Comparison of rostral and caudal regions in the corpus callosum 

 

The measurements in regions of the genu and the splenium of the corpus callosum 

displayed a number of significant differences in DTI parameters between the wild-type and 

rTg4510 groups (Figure 40).  In the rostral ROI containing the genu, there was a significant 

FA reduction in the rTg4510 (rTg4510 =0.31±0.07, control =0.51±0.1, p = 8.91 × 10-10).  DR 

and DA were also significantly different with increased DR (rTg4510 = 5.95 ± 1.1 × 10−4
 

mm2/s, control =4.6 ±0.8 × 10−4
 mm2/s, p = 3.86 × 10-5) and decreased DA measured in the 

rTg4510. 

In the caudal ROI containing the Splenium of the corpus callosum, the DTI parameters 

followed a similar pattern to measurements taken for the histology comparison.  There 

were significant increases observed in MD in the rTg4510 (rTg4510 = 7.58 ± 1.1 × 10−4
 

mm2/s, control =6.58 ±0.8 × 10−4
 mm2/s, p = 3.6 × 10−4) and DR (rTg4510 = 6.35 ± 1.2 × 10−4

 

mm2/s, control =5.2 ±1.1 × 10−4
 mm2/s, p = 6.5 × 10−5).  Like the genu measurements, a 

reduced FA was observed in the rTg4510 (rTg4510 = 0.32 ± 0.1, control =0.41 ±0.2, p = 7.4 × 

10−4) decreased.  DA was slightly increased in the transgenic groups but the difference was 

not significant(rTg4510 = 10.05 ± 1.5 × 10−4
 mm2/s, control =9.56 ±2.0 × 10−4

 mm2/s, p = 

0.12).   
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Figure 40. DTI in rostral and caudal slices 

DTI parameter values measured in a rostral slice (a-d) and a caudal slice(e-h).  MD (a,e), 
FA(b,f), DR(c,g) and DA(d,h) are presented for both slice ROIs.  Calculated p-values are 
presented beneath box plots with group differences found not to be significant displayed in 
red. Red crosses indicate outliers defined as values that lie greater than ±2.7σ from the 
mean. 
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4.4.4 Discussion 

In this study, a time efficient acquisition DTI protocol has been deployed to probe distinct 

aspects of AD pathophysiology in the rTg4510 mouse.  The sensitivity of non-invasive DTI 

imaging to provide brain tissue correlates of tau pathology in white matter and in regions 

of high NFT density in the grey matter has been demonstrated.  Increased MD was 

observed in a region of low NFT pathology highlighting the value of DTI for the 

identification of tau-driven pathological processes, suggesting its utility as a biomarker for 

the early assessment of novel tau therapeutics. 

A number of clinical studies using DTI have observed increased MD and reduced FA in the 

white matter of the brains of AD patients when compared to healthy controls(18,65).  

These findings of increased MD and reduced FA in rTg4510 mice relative to wild-type 

controls are consistent with this and suggest that the aberrant white matter microstructure 

observed in AD may be, at least in part, a consequence of the tau pathology underlying the 

disease.  The increase in radial diffusivity in the presence of unchanged axial diffusivity in 

the corpus callosum of the rTg4510 mice suggests a reduction in myelination, mirroring 

previous observations in sub regions of the corpus callosum in AD sufferers(39).  These 

findings are highly concordant with an earlier longitudinal study by Sahara et al.  that 

applied DTI methods to investigate the white matter of the rTg4510 model(205).  Electron 

microscopy measures were performed and demonstrated the presence of tau inclusions in 

the white matter and subsequent micro-structural disorganisation relative to WT controls 

at later time points(205).  The effects of amyloid plaques, the other hallmark pathology of 

AD, have been investigated in previous studies (81,82) where differences in DTI parameters 

have been observed at late time points after the appearance of amyloid plaques.  

Abnormal myelination patterns have been identified prior to appearance of NFTs and 

amyloid plaques in a mouse model exhibiting both pathologies(206).   

To investigate the effects of tau pathology on white matter that matures at different stages 

of development, measurements were taken in the genu region of the corpus callosum and 

the earlier myelinating region of the splenium.  Changes in the splenium mimicked those in 

the white matter region of high tau pathology, exhibiting reduced FA and increased MD 

and DR in the rTg4510.  In the genu, reduced FA and increased DR was observed with 

greater significance than in the splenium and  axial diffusivity was also significantly lower in 

than in the control group.  No differences were detected in genu of the rTg4510 at this time 
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point in the study by Sahara et al..  The increased statistical significance of the diffusion 

changes in the genu compared to the splenium region of the external capsule may offer 

support to the retrogenesis hypothesis, that the later myelinating structures are affected 

more severely by pathology.  However, the rostral location of the genu may make it more 

susceptible to the neurodegeneration that occurs preferentially in the 

forebrain(125,203,204) under the CaMKII promoter in the rTg4510.  Additionally, it should 

be noted that a limitation of this study is the relatively late time point (8.5 months) may 

restrict evidence for specificity of DTI parameters to abnormal tau within and connected to 

the high ranked regions, as marked neurodegeneration is likely to have already occurred.  

Tracking the DTI changes from an early time point using this protocol alongside structural 

MRI atrophy measurements may provide more information on the temporal order of 

changes in white matter regions and their relationship with neuronal cell loss in connected 

grey matter tissue.   

The MD findings in grey matter regions are in good agreement with previous studies that 

have detected elevated values in the brains of AD patients (169,171,207) and in mouse 

models exhibiting amyloid pathology at late stages of progression(82).  In the previous 

longitudinal DTI study in the rTg4510 by Sahara et al(205), no differences in MD were 

observed in any of the ROIs at later time points.  This may be due to the increased animal 

numbers as well as enhanced sensitivity of the DTI protocol used here.  The positive 

correlation between the increased MD and the tau density ranking suggest that the 

disruption to the cytoarchitecture indicated by these increases may be driven by the 

pathology.  Furthermore, the positive correlation of FA with tau density may indicate that 

the structural reorganisation that occurs may have directional specificity.  FA has been 

found to be reduced in AD patients in the hippocampus (171) and the thalamus (169) which 

contradicts the findings in this study where the FA was increased significantly in the cortex 

and hippocampus in the transgenic mice and there is no significant difference in the 

thalamus.  These differences may be due to the addition of amyloid-beta pathology present 

in the brains of AD patients or the inherent differences in murine grey matter tissue 

structure.   

The thalamus of the rTg4510 mice was found to have relatively low NFT density (mean=2.3 

cells/mm2), mirroring human tissue at early Braak staging with low NFT density(208).  We 

observed an increased MD in this region relative to WT controls.  This finding suggests that 



115 

 

microstructural changes that occur with little pathology present can be detected in this 

brain region with DTI.  These imaging changes may reflect very early local markers of tau 

pathology in the thalamus, but it cannot be ruled out that some of these differences may 

also be secondary to the large tau pathology in the forebrain structures, many of which are 

known to project to the thalamus.  This may be important as we know that tau aggregates 

can transfer and propagate/spread within synaptic circuits(209,210).  There is post-mortem 

evidence in AD for this regional spread(11) and more recent neuroimaging studies in 

human AD suggest “epicentres” (211) or “nodes” (212) that may link to network 

dysfunction. 

Histological measures of pathological tau burden in the rTg4510 mice demonstrated a 

strong regional dependence of NFT density ranging from low (2.3 counts/mm2 in the 

thalamus) to high (229 counts/mm2 in the cortex) (Figure 35).  This is to be expected as 

expression of tau is driven by a forebrain specific promoter in the rTg4510 mouse (87).  We 

sought to exploit this marked dynamic range of NFT density (as quantified using PG-5, 

pS409 tau) between regions to investigate correlations between ranked tau burden and 

difference in MR parameters from control (to account for intrinsic regional differences).  

We observed significant correlations between the percentage change from control in MD 

and FA across regions free of NFTs (wild-type), low NFT density (rTg4510 thalamus) and 

high NFT density (rTg4510 cortex and hippocampus), indicating a monotonic relationship 

between NFT density and diffusion changes between different regions of varying tau load 

at this time point.  This observation provides encouragement that DTI could be used to 

broadly classify regions of negligible, low and high NFT density for non-invasive staging of 

AD.  The percentage change in MR parameters in rTg4510 from control were very similar 

between the cortex and hippocampus (high ranked data), despite the marked difference in 

the overall NFT density between these two brain regions.  This may be a feature of the 

rTg4510 model at this time point or reflect the greater and more selective vulnerability (or 

different inherent composition) of the hippocampus, a region known to present with 

marked abnormality in AD patients.  We observed limited within-region correlations of NFT 

density to other DTI parameters in grey matter which may be due to the relatively narrow 

distribution of NFT density within each region (Cortex: 229 (±28), Hippocampus: 82.9 (±15), 

Thalamus: 2.3 (±0.8)(PG-5 positive neurons per mm2)) at this time point.   
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4.5  Conclusions 

This study has demonstrated the value of non-invasive DTI MRI for sensitive detection of 

tau pathology in the rTg4510 model of AD.  These novel data represent a platform for 

future longitudinal and therapeutic evaluation studies in this model.  The time efficient 

acquisition has been integrated into a multi-parametric protocol and merits application in 

clinical populations to investigate the pattern of MR changes in regions known to follow the 

well-defined stages of NFT progression.  Estimates of diffusion can detect changes in 

healthy tissue in a region of low NFT density (2.3 cells/mm2) which provides promise for the 

use of these markers to identify and track subjects early in the Alzheimer's disease 

continuum. 

White matter DTI measurements showed significant changes in the corpus callosum of the 

rTg4510.  Reductions in FA and increases in DR were observed in all measurements and 

may be attributed to a reduction in the presence of hydrophobic myelin in this tract 

suggested in a previous study using Electron Microscopy(205).  However, the 

microstructural rearrangements that occur in disease may not always be straight forward 

and there have been studies that call into question the specificity of FA and DR to 

abnormalities in myelination(177,178).  Quantitative Magnetic Susceptibility 

Mapping(QSM) is an MRI technique sensitive to the diamagnetic properties of myelin and 

has shown increased sensitivity over DTI to the maturation of white matter tracts in the 

developing mouse brain(213).  In the following chapter, a protocol is developed and 

applied in the rTg4510 to investigate the sensitivity of QSM to tau pathology.  
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5 Quantitative Susceptibility Mapping in the 

rTg4510 mouse model 

5.1 Overview 

In the last chapter, an SNR time efficient DTI protocol was developed for integration into a 

multi-parametric MRI protocol and applied to the rTg4510 mouse model of AD.  Differences 

in diffusion parameters relative to wild-type controls indicated a reduction in the 

directional diffusion of spins in white matter tracts which may be due to degradation of the 

myelin sheaths of axons.  Neuroinflammation and oxidative stress in AD are associated with 

NFT pathology and dysfunction of oligodendrocytes - myelin generating glial cells.  

Disruption to the homeostasis of iron in the brain may be a trigger for neuroinflammation 

and excess accumulation of iron in the basal ganglia has been observed(214).  Quantitative 

Susceptibility Mapping (QSM) is an emerging MRI technique that has demonstrated 

sensitivity to the concentration of myelin(diamagnetic) and iron(paramagnetic) which may 

represent an early biomarker of AD. 

In this chapter, a QSM protocol is developed and data is collected both in-vivo and ex-vivo 

in the rTg4510 and WT controls.  Firstly, the phase data from a previously acquired ex-vivo 

dataset was processed and used to carry out a pilot experiment to identify regions of 

reduced magnetic susceptibility contrast between white matter and grey matter.   Gradient 

echo acquisitions were then optimised for collection of both in-vivo and ex-vivo data and a 

post processing software pipeline was developed to generate susceptibility maps from this 

data.  Magnetic susceptibility and T2* estimates in regions of interest in rTg4510s and wild-

type controls are presented and discussed. 
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5.2 Background 

5.2.1 Introduction 

Despite its role in a variety of metabolic processes, iron can take on a reactive ferrous form 

in the body that may lead to tissue damage in the brain caused by the generation of 

biologically toxic Reactive Oxygen Species(ROS) (215,216).  The storage of iron, in its ferric 

form, is disrupted in Alzheimer’s Disease where deposition occurs in excess of the global 

increases associated with healthy ageing(217).  Abnormal accumulation has been shown to 

occur in the iron rich regions of the basal ganglia(214) and co localised with plaque and 

tangle pathology(216).  Oxidative stress is associated with the dysfunction of 

oligodendrocytes in AD(218) and the consequent breakdown of axonal sheaths in white 

matter tracts may lead to the release of myelin-associated iron(219).  It has been 

hypothesized that a breakdown in iron homeostasis is responsible for an increase in the 

harmful redox-active iron population(216).  The use of chelating agents to target these 

reactive species has shown neuroprotective value in mouse models of AD(220). However, a 

causal relationship between iron accumulation and the pathobiological cascade in AD has 

not been demonstrated.  In-vivo biomarkers sensitive to tissue iron concentration may play 

a key role in tracking the progressive iron accumulation that occurs in AD pathogenesis and 

provide a means by which to measure the efficacy of therapeutics.  

5.2.2 Role of Iron in Neurodegenerative disease 

Iron is crucial for the healthy function of neural tissue, it is involved in DNA synthesis, 

mitochondrial respiration, myelin synthesis, and the synthesis and metabolism of 

neurotransmitters.  It occurs in ferric (Fe3+) and ferrous (Fe2+) forms that constitute a redox 

couple, important in its functions of electron and oxygen transport.  Iron is absorbed from 

food in the gastrointestinal tract and is transported through the body in the bloodstream.  

It enters the brain by passing through the vascular endothelial cells of the blood brain 

barrier into the extracellular space.  It can then be taken up by neurons, microglia, 

astrocytes and oligodendrocytes and is stored in the brain in its ferric form bound within 

the proteins ferritin and neuromelanin.  Iron levels need to be tightly regulated in the brain 

but homeostasis can become disturbed during neuroinflammation which is thought to 

increase iron levels in neurons and microglia(221).  Ferritin containing reactive microglia 
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have been found to be present alongside neuroinflammatory AD pathology(222) as well as 

reactive astrocytes, known to express haemochromatosis, a protein linked with congenital 

iron overload(220).  Increased iron levels are associated with ROS generated through the 

Fenton reaction between hydrogen peroxide and ferrous iron.  Oxidative stress can be 

caused if ROS exceed a cells detoxification level leading to cell death. 

The ability to spatially map iron stores in-vivo would provide insight into their link with 

pathology in AD.  The insoluble beta-amyloid plaques and neurofibrillary tangles of tau that 

form in the AD brain have both been found to contain iron(223,224).  The Amyloid 

Precursor Protein(APP) gene is a known to be mutated in familial forms of AD and its 

genetic translation has been shown to be highly sensitive to intracellular iron 

concentration(225).  Genetic studies indicate an association between several iron related 

genes and AD risk factor(226).  Furthermore, previous studies investigating the appearance 

and location of plaques in transgenic mouse models of familial forms of AD have shown a 

co localisation with iron deposition(216).  Aggregation and phosphorylation of tau and iron 

accumulation has been observed in a mouse model over expressing heme oxygenase(HO-

1), which is a haem degrading enzyme that is upregulated in the hippocampus and 

temporal cortex of patients with AD and MCI(216).  Additionally, in vitro experiments have 

shown that aggregation of phosphorylated tau can be mediated by transitions of iron 

between its ferric and ferrous forms(227).  Iron accumulation has also been observed in 

MAPT knockout mice due to impairment of APP mediated iron export(228).  Iron 

accumulation in mouse models that over express tau forming NFT pathology(such as the 

rTg4510) have not been characterised. 

5.2.3 Iron measurement in-vivo using MRI 

The relationship between excess iron deposition and ROS in the brain suggests that iron 

measurement may act as a surrogate marker of oxidative stress(229).  The interaction of 

iron with magnetic fields is due to its paramagnetic susceptibility and is therefore, 

theoretically, detectable in tissue by MRI.  The magnetic properties of haemoglobin in the 

blood are mostly due to the presence of heme iron.  The transition from oxyhemoglobin to 

deoxyhemoglobin during oxygen consumption increases the paramagnetism of the heme 

iron ions and the balance of oxyhemoglobin/deoxyhemoglobin forms the basis of the BOLD 

effect in fMRI(230).  Non-heme iron is found in cells throughout the body and in the brain is 

distributed heterogeneously with greater density found in regions associated with 
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movement such as the globus pallidus, the putamen, the caudate nucleus, and the red 

nuclei(231).  The variations in tissue concentration generate measureable changes in the 

local susceptibility that can be measured using MRI(231).   Non-heme iron stored as ferritin 

and hemosiderin (found in broken down blood products) are the only types present in 

great enough concentrations to be detected(232). 

Perturbations in the B0 field caused by materials with high magnetic susceptibility have a 

shortening effect on the relaxation time constants of the transverse MR signal.   

Hypointensities in T2 and T2* weighted images have been observed in brain regions such 

as the basal ganglia, a structure associated with a greater iron content (229,233).  Iron may 

also cause hyper intensities in T1 weighted images due to shortening of the longitudinal 

relaxation time(231).  A more quantitative correlate of iron concentration in tissue can be 

gained by measurement of transverse relaxation constants T2, T2’, and T2*, where T2* is a 

combination of spin-spin relaxation(T2), and reversible relaxation(T2’) caused by in 

homogeneities in the main magnetic field(see Equation 11).  T2 measurement is robust 

from background susceptibility effects and is reduced in the presence of high iron content 

in tissue(234).  However, its sensitivity to changing water content in tissue may affect iron 

estimates, especially in the presence of inflammation(231).  This issue can be overcome 

using field dependent rate increase (FDRI) technique which requires T2 measurements at 

two different magnetic field strengths(235). 

The reversible relaxation constant, T2’, is directly related to signal phase and shortening of 

this parameter is thought to more accurately relate to iron in brain tissue when compared 

with T2(231,236).  Increased scan times are necessary for the acquisition of both T2 and 

T2* relaxation datasets to calculate T2’ and its relatively small magnitude make it 

vulnerable to noisy estimates due to field inhomogeneities. Consequently, T2* 

measurements are more frequently used(229).  T2* incorporates T2 and T2’ relaxation 

mechanisms and the errors in iron estimation associated with them.  Nevertheless, values 

correlate well with post mortem measurements of iron in human brain samples(237) and 

data can be acquired using a simple multi echo gradient echo acquisition that is fast and 

widely available making this the most established MRI method for this application(233).  

The techniques described so far use the magnitude of the MRI signal to provide a measure 

that is sensitive to magnetic susceptibilities of materials that are both paramagnetic and 

diamagnetic relative to water.  Calcifications and myelin in white matter are diamagnetic 
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and like iron will have the effect of reducing transverse relaxation constants.  Using the 

phase of the signal from gradient echo acquisitions, it is possible to discriminate between 

tissue types that are either diamagnetic or paramagnetic relative to water. 

The phase of the transverse MR signal in a gradient echo acquisition is directly related to 

the magnetic field experienced by the spins.  The interaction with the B0 field is dependent 

on the bulk magnetic susceptibility of the tissue and is proportional to off resonance effects 

on signal phase.  The polarity of the phase of the complex signal allows differentiation 

between positive and negative susceptibility effects on the signal and the size of the phase 

shift has been shown to correlate with iron concentration in the brain(238).  Phase 

measurement at a voxel is complicated by the non local effects from sources at other 

locations within the volume of tissue imaged, peripheral air/tissue/bone interfaces at the 

edge of the brain, as well as any other sources of field inhomogeneity such as poor 

shimming of the B0 field.  The latter two sources are known as background field 

contributions and can cause severe distortion artifacts and signal drop out in affected 

regions.  The relationship between magnetic susceptibility and field strength means 

artifacts related to magnetic susceptibility are exacerbated in high field applications.  

Furthermore, signal phase is only defined between the values of ±π radians and the 

occurrence of values outside of this range cause aliasing, known as phase wrapping in the 

reconstructed images. 

Image post-processing methods can be used to remove wraps and background field 

contributions and the resulting phase images can then be combined with magnitude 

images to generate Susceptibility Weighted Images(SWI).  SWI  enhances T2* contrast with 

phase information to improve visualisation of small blood vessels within the brain(239), 

Cerebral Microbleeds (CMBs)(240), as well as identification of iron and improved grey 

matter/white matter contrast(241).  To remove the effects on phase estimates from non 

local contributions that persist in SWI, a further post-processing step is applied that 

requires deconvolution of the phase map with a magnetic dipole field.  This technique is 

known as Quantitative Susceptibility Mapping.  Magnetic susceptibility estimates using 

QSM correlate well with iron measurement at post mortem(242).  Unlike relaxometry 

techniques, QSM provides contrast between diamagnetic tissue such as calcifications and 

myelin, and paramagnetic iron through negative and positive susceptibility values 

respectively.  One drawback of this method is that the deconvolution calculation is ill-posed 
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and consequently requires regularisation to reduce noise and streaking artifacts.  The 

susceptibility estimates are dependent on the centre frequency used in acquisition and 

values are given relative to reference tissue regions that often vary between studies.  

Additionally, there are a number of alternative methods for the QSM processing of phase 

data reported in the literature with few comparisons made between them.  These 

inconsistencies are due, in part, to the novelty of the QSM technique.  Non-local 

contributions that cause blooming artifacts in T2* maps may impact accuracy and mean 

that QSM offers an improved estimation of iron concentration(103,243).  Conveniently, 

both can be generated from the same multi-echo gradient echo acquisition enabling QSM 

to be validated against the more established T2* method. 

In early studies of iron deposition in AD, focal hypointensities were observed around beta-

amyloid plaques in ex-vivo T2* weighted images(244), and lower regional intensities in the 

putamen and red nucleus were found in AD patients(245).  Relative to healthy subjects, 

regional quantitative measurements of T2 have shown reductions in the caudate 

putamen(246) as well in the cortex, and globus pallidus(231) and a  recent study found 

reductions in T2* in the pulvinar nucleus(247) in AD patients.  MRI phase contrast studies 

also suggest increased iron concentrations in the caudate putamen as well as in the 

hippocampus, frontal and parietal regions in the cortex(248,249).  In a recent QSM study of 

AD the increased magnetic susceptibility measured in the putamen of patients was as 

statistically significant as the differences in atrophy of the hippocampus in this region, a 

measure seen as the ‘gold standard’ MRI biomarker in AD(250). 

High resolution T2 and T2* weighted imaging of APP and PS1 mouse models of AD have 

been used to visualise beta-amyloid plaques and study their distribution in-vivo. 

Hypointensities observed were validated using histological stains sensitive to iron and beta-

amyloid(72-78).  Studies have also shown T2 shortening in amyloid pathology models 

where no iron was detected, suggesting this effect may be due to other plaque 

characteristics, especially in younger mice(251,252).  T2 is thought to better delineate 

these plaques than T2* which may overestimate their size, and T2 relaxation has shown a 

longitudinal relationship with plaque load in the hippocampus and cortex of mice(253).  

T2* and T1 shortening has been observed in plaque-containing structures of the brain in 

APP/PS1 mice but not in pathology free regions (78,254).  Studies using phase based 

methods include the visualisation of plaques using SWI(255) and CMBs using QSM(256).  
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Thus far, QSM group comparisons have only been applied in the ArcBeta model of AD with 

significant differences observed longitudinally(257) but not in a cross sectional study(256).  

There have been no studies using MRI to investigate iron accumulation in models of tau 

pathology of AD.  

5.2.4 Motivation and aims 

Despite the link between iron and tau pathology in neurodegeneration, there have been no 

attempts to use MRI as a measure of non invasive iron quantification to explore this 

relationship.   In this chapter, a QSM protocol is developed and applied in the rTg4510 

mouse in-vivo.  Previous work has shown that reactive microglia and astrocytes, associated 

with neuroinflammation and iron accumulation, are present in higher quantities in this 

model than in controls(258,259).  Abnormalities in myelination in the corpus callosum have 

been observed using DTI and EM in previous studies(125,205) and aggregated tau protein 

has been found to be present in oligodendrocytes(260).  I hypothesized that QSM might 

provide a sensitive in-vivo method to alterations in myelin and potentially iron 

accumulation that may be occurring in the rTg4510. T2* and high resolution ex-vivo 

measurements are presented with histological staining of markers of tissue inflammation 

and white matter integrity to aid the interpretation of in-vivo findings. 
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5.3 An ex vivo pilot study of contrast enhanced 

QSM in the rTg4510 

5.3.1 Introduction 

Quantitative susceptibility maps can be generated from the phase of MRI data acquired 

using a gradient echo sequence.  High resolution gradient echo imaging of the ex-vivo 

mouse brain has been previously optimised in CABI for the study of structural changes in 

disease(119).  Protocols have been designed to maximise contrast between white matter 

and grey matter in fixed tissue.  Voxel sizes of the order of 40µm x 40µm  x 40µm  have 

been achieved using a 12 hr “overnight scan” enabling fine structures in the mouse brain to 

be resolved.  To achieve this resolution, gadolinium, a paramagnetic contrast agent is 

added to the fixative which shortens the longitudinal relaxation time constant for the tissue 

and permits a reduced time to repeat for enhanced SNR efficiency per unit time.  The 

selective uptake of contrast agent in grey matter provides an added benefit of increased 

CNR between grey matter and white matter(261). 

The effects on magnetic susceptibility of ex-vivo mouse brain tissue caused by the addition 

of gadolinium to the perfuse fixation process was the subject of a recent study by Dibb et al 

(261).  As the concentration of the contrast agent was increased, an increased difference in 

magnetic susceptibility between white matter and grey matter tissue was observed.  It was 

suggested that this may be due to a barrier to penetration created by the myelin sheaths in 

white matter restricting the uptake of Gd molecules to the extracellular space.  This 

produces a relatively lower Gd content per unit volume of tissue in white matter compared 

to the grey matter.  Gd is paramagnetic and therefore the greater concentration in grey 

matter generates an increased magnetic susceptibility relative to the white matter.   

As a preliminary investigation into magnetic susceptibility in the rTg4510, data from a 

previous volumetric study was used(data acquired by a collaborator).  This data was 

acquired at high resolution using brains doped with Gadolinium.  I hypothesized that 

disrupted white matter in the rTg4510(205) may be less resilient to penetration from the 

paramagnetic contrast agent, thus reducing differences between QSM estimates between 

grey and white matter in this animal modal (relative to healthy controls).  Deformation 
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fields generated from the non-rigid registration of the magnitude data were used to 

transform magnetic susceptibility maps into a common space for analysis.  A voxel-wise 

group comparison was used to identify differences in magnetic susceptibility between the 

rTg4510 and controls.  This automatic technique expedited analysis, removing the time 

consuming process of manual segmentation. 

5.3.2 Methods 

5.3.2.1 Magnetic Resonance Imaging 

Imaging data was acquired previously by collaborator to perform a high resolution tensor 

based morphometry(TBM) comparison of the rTg4510 mouse with Wild-type controls.  10 

rTg4510 mice and 8 wild-type littermates were culled at 7.5 months and perfuse-fixed with 

0.9% saline (15 – 20 mL) followed by 10% Buffered Formalin (50 mL) doped with Magnevist 

(8 mM).  High resolution ex-vivo images of three brains were acquired simultaneously at 

9.4T (Agilent Inc. Palo Alto, CA, USA) by securing brains in a purpose built holder. A 35 mm 

diameter birdcage RF coil was used for RF transmission and signal detection using a 

gradient echo sequence with the following parameters: FOV = 32 mm x 25 mm x 25 mm; 

resolution = 40 μm x 40 μm x 40 μm; TR = 17 ms; TE = 4.54 ms; flip angle = 51o; NSA= 6. 

Total imaging time was approx. 11 h and was typically performed “overnight”. 

5.3.2.2 Magnetic susceptibility mapping and non-rigid registration 

The post processing of the MRI data involved reconstruction of phase data and generation 

of magnetic susceptibility maps using a combination of software that I developed alongside 

algorithms made freely available by other research groups online.  Corresponding 

magnitude data had already been reconstructed and registered by a collaborator for TBM 

using an automated software pipeline.  The deformation fields from this registration were 

used to transform magnetic susceptibility maps into this common space for voxel-wise 

group analysis.  The data processing protocol is described in the flowchart in Figure 41.     



126 

 

 

Figure 41. Flowchart of image processing 

Flowchart detailing the post processing of the gradient echo to register magnetic 
susceptibility maps into the same space for voxel-wise analysis in SPM. 

 

The first step of the registration pipeline performs automatic separation of the three brains 

in each reconstructed magnitude image.  This separation was then applied by a 

collaborator to the corresponding phase images and I then conducted susceptibility 

mapping processing on these individual brains.  FSL Prelude (fsl.fmrib.ox.ac.uk/fsl/fsl-

4.1.9/fugue/prelude.html) was used to perform spatial unwrapping of the phase images.  

The background field effects were then removed using the Projection on to Dipole Fields 

method (PDF.m, MEDI toolbox, Cornell MRI Research Lab) (107,262). Susceptibility maps 

were calculated by thresholded k-space division (TKD)(101) using a low truncation value 

tF=1 to limit streaking effects in the final susceptibility maps.  This was to limit artifacts that 

might be caused by large susceptibility differences at tissue boundaries due to the 

Gadolinium contrast agent in the fixative. 

After the brain separation, further steps to register the magnitude images were carried out 

by a collaborator (Figure 41).  These included the automatic orientation to a standard atlas 
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followed by an intensity non-uniformity correction (N3 algorithm(263)) before automatic 

skull stripping using the STAPLE algorithm(264) which also generated masks for each brain.  

Group-wise registration was then performed using NiftyReg software(120,122). Firstly, all 

subjects were rigidly aligned to a randomly chosen target member of the group followed by 

five iterations of affine registration producing a matrix describing the transformation of the 

registration for each brain.  Finally, there were 20 iterations of non-rigid registration (NRR).  

After each iteration, the intensity average image was found and used as the target for the 

subsequent registration.  Deformation fields describing the transformation from the affine 

registration were generated for each brain. 

To register susceptibility maps, I applied the rigid, affine, and non-rigid transformations 

from corresponding magnitude image registrations to the susceptibility maps.  Firstly, the 

orientation matrix was added to the header of the nifty file containing the susceptibility 

map.  Next this header matrix was multiplied by the affine registration matrix to combine 

transformations.  Using niftyreg software, the modified affine matrix in the file header was 

used to transform the susceptibility map in the file before a further transformation was 

applied using the deformation field generated from the non-rigid registration.  The 

combination of affine and non-rigid transformations in niftyreg ensured that resampling 

was performed only once on the data in the final step.  

Prior to group comparisons, all susceptibility values were calculated relative to a reference 

to account for differences in centre frequency in the MR acquisitions.  The mean 

susceptibility in the grey matter of each mouse brain was used as a reference and was 

subtracted from each voxel value.  A grey matter mask (Figure 42) was generated 

automatically for this purpose by intensity thresholding in the magnitude atlas image. 
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Figure 42. Grey Matter Mask 

Axial slice of grey matter mask used to generate reference magnetic susceptibility values. 

 

5.3.2.3 Statistical Parametric Mapping 

Statistical Parametric Mapping (SPM) (SPM, http://www.fil.ion.ucl.ac.uk/spm/) was used to 

investigate susceptibility differences between the wild-type and transgenic groups.  Images 

were smoothed to with a 0.1 mm FWHM Gaussian kernel to account for registration error 

and to bring image values closer to a normal distribution.  A two sample, two-tailed, t-test 

at each voxel was carried out for statistical significance.  The results were corrected for 

multiple comparisons using the False Discovery Rate(FDR) method (q=0.05)(265). 

 

5.3.3 Results 

Marked, region-specific,  increases in susceptibility were observed in a rostral section of the 

corpus callosum (less diamagnetic in the rTg4510) as shown in the Statistical Parametric 

Map in Figure 43(a - c).  Mean images of the registered susceptibility maps were calculated 

for the wild-type (Figure 43d-f) and rTg4510 mice (Figure 43g-i).  In both the coronal and 

axial slices presented in Figure 43, a reduction of white matter contrast is observed from 

visual inspection of the rTg4510 susceptibility maps in regions that correspond to increases 

in the comparative SPMs.  This appears to be due to an increase in the mean susceptibility 

in these white matter regions in the rTg4510.  Increased magnetic susceptibility was also 

observed in the striatum (more paramagnetic in the rTg4510) (Figure 43b). 
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Figure 43. Increases in magnetic susceptibility in the rTg4510 

SPM (FDR corrected,q=0.05) overlaid on magnitude image atlas(a-c), showing increases in 
magnetic susceptibility in the corpus callosum and anterior commissure (less diamagnetic), 
and the striatum(more paramagnetic) in the rTg4510 mice in comparison to WT.  
Corresponding slices in mean magnetic susceptibility images display greater contrast 
between the white matter and grey matter in the external capsule in the WT mice (d-f) in 
comparison to the rTg4510 mice (g-i).  
 
 

To investigate the possibility of registration errors causing the loss of contrast in the white 

matter, magnitude images were inspected.  The visible reduction in contrast in the corpus 

callosum in the mean susceptibility maps (Figure 44a) of the rTg4510 mice was not 

observed in the mean magnitude image (Figure 44b).  This finding was replicated in an 

unregistered susceptibility map and magnitude image in a representative mouse (Figure 44 

c,d). 
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Figure 44. White matter contrast in mean images 

Contrast between white matter and grey matter reduced in the rTg4510 mean susceptibility 
maps (a) was not observed in the corresponding mean magnitude images(b).  This finding 
was consistent with comparisons between susceptibility maps in individual rTg4510 mice 
(c), and magnitude images (d) prior to registration. 

 

Decreased magnetic susceptibility was detected in various regions throughout the rTg4510 

brain.  Most notable, bilateral changes appeared to co localise to the motor cortex, 

striatum, the amygdala, the substantia nigra and the dentate gyrus (Figure 45). 

 

Figure 45. Decreased magnetic susceptibility in the rTg4510 

SPM (FDR corrected, p<0.05) overlaid on magnitude image atlas, indicating decreases in 
magnetic susceptibility in the rTg4510 mice.  Significant bilateral decreases were observed 
in the rTg4510 in regions including the motor cortex and caudate putamen (a), the nucleus 
of the posterior commissure and the amygdala(b), and the substantia nigra and the 
polymorph layer of the dentate gyrus(c). 
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Histological staining (n=1) was carried out by collaborators in a coronal slice in the frontal 

cortex to identify any abnormalities in the regions of increased susceptibility (Figure 43 b).  

White matter integrity was probed using a stain consisting of solochrome cyanin sensitive 

to myelin combined with cresyl violet, a neuronal counter stain. To identify reactive 

microglia and astroctyes that are thought to mediate neuroinflammation(221), a GFAP and 

an IBA-1 stain were also used.  In comparison to the WT, the solochrome staining in the 

genu of the corpus callosum showed a more disorganised arrangement of cell bodies and 

myelin with large gaps evident in the rTg4510(Figure 46d,e).  This was accompanied by an 

increased density of reactive microglia in this region (Figure 46b,f,g).  Astrocytic staining 

was also more dense across the corpus callosum in the rTg4510(Figure 46c), with increased 

activity also observed in the striatum(Figure 46h,i). 

 

 

Figure 46. Histology in rTg4510 

Solochrome cyanin / cresyl violet(a), IBA-1(b), and GFAP(c) staining of  a coronal slice 
0.74mm rostral to the bregma for a WT(left) and rTg4510(right) mouse. ROIs are magnified 
at x100 for inspection of the corpus callosum(d,e,f,g) and the striatum(h,i) 
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5.3.4 Discussion 

Magnetic susceptibility maps of the ex-vivo mouse brain were registered using the 

transformations from the non-rigid registration of the magnitude data.  Significant relative  

increases in susceptibility in the white matter of the rTg4510 mouse were observed using a 

voxel-wise group comparison.  A loss of contrast was evident from visual inspection of the 

QSM maps between the white matter of the corpus callosum and the surrounding grey 

matter.  This may be due to a reduction in diamagnetic myelin, which has been shown to be 

disorganised in this model in histology and in previous studies(205).  In the previous 

chapter, increased diffusion perpendicular to the direction of the white matter in the 

rTg4510 tracts was observed, with greater significance observed in the rostral regions of 

the brain.  This further indicates the possibility of reduced myelination which has also been 

observed using EM(205).  However, rather than a decrease in diamagnetic tissue present, it 

may be the case that an increase in paramagnetic components are being observed.  The 

increased presence of reactive microglia and astrocytes suggest neuroinflammation in the 

corpus callosum and striatum and have been linked to iron accumulation(220,221), as has 

the presence of NFT pathology(224) which is present in these regions in the rTg4510 at the 

age imaged(203).  In this study, only a single animal from each group was analysed 

histologically.  Staining for gliosis and iron in a greater number of animals would enable a 

more quantitative group analysis to be conducted as well tests for correlations with MRI 

parameters.   

The use of gadolinium in the preparation of the ex-vivo tissue may have amplified the QSM 

changes in the rTg4510 and possibly masked the underlying pathological changes.  The 

neurodegeneration that occurs in this model may cause damage to tissue in the rTg4510 

that alters the uptake of the paramagnetic contrast agent.  In the case of the rostral white 

matter, a greater concentration of Gd may be present due to disruption to myelin sheaths 

which may be responsible or be contributing to the increased magnetic susceptibility in the 

rTg4510.  Interestingly, a loss of contrast with grey matter was not observed in the 

magnitude images which might be expected if an increased signal in the white matter were 

generated by the T1 shortening effect of an elevated Gd concentration.  Since there is 

marked atrophy in the rTg4510 at the timepoint imaged, an irregular distribution of the 

contrast agent may also be the cause of both paramagnetic increase and decreases 
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observed in the striatum as well as decreases in magnetic susceptibility in other grey 

matter regions.  

This preliminary study indicates that there may be changes in the magnetic susceptibility of 

tissue in the rTg4510 mouse model of Tau pathology that are detectable using QSM.  It is 

unclear whether group differences stem from differences in the magnetic susceptibility in 

the tissue or alterations to contrast agent distribution.  The following sections of this 

chapter attempt to answer this question by optimising and performing QSM in ex-vivo 

rTg4510 tissue omitting Gadolinium from the perfuse fixation process.  This data is also 

used to validate data collected using an in-vivo protocol which suffers from a lower SNR 

and is acquired at a lower spatial resolution.   
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5.4  Development of gradient echo acquisitions 

for QSM in the mouse 

5.4.1 Introduction 

The biological interpretation of the differences in magnetic susceptibility in the rTg4510 

relative to controls identified in the last section was confounded by the presence of 

Gadolinium.  In order to repeat this experiment without contrast agent, the parameters of 

the gradient echo sequence used to acquire data must be adjusted to allow for the 

different MR relaxation properties of the tissue.  The expected increase in the longitudinal 

relaxation constant will cause a reduction in the MRI signal at an echo time given the same 

time to repeat.  The goal of the design of a gradient echo sequence for QSM is to provide 

pristine phase data.  The precision of this data can be estimated by the uncertainty or 

variance of the estimated phase.  Greater variance may reflect noisy estimates that will 

propagate through the susceptibility processing and manifest as artifacts in the maps 

produced.  The variance of the phase is inversely proportional to the SNR of the magnitude 

of the MRI signal(104) as described by the formula(266) 

       
 

      
 

Equation 62  

Where σphase is the standard deviation of the phase in radians and SNRmag is the signal to 

noise ratio of the magnitude of the MRI signal.  So by maximising the SNR of the signal 

magnitude, the uncertainty in phase estimation and noise in the susceptibility maps 

produced will be reduced.  In spoiled gradient echo sequences, commonly used for QSM, 

the signal SSGRE is given by the following equation(90) 

       
                   

                
        

 
 

Equation 63  

Where M0 is the longitudinal equilibrium magnetisation and   is the flip angle, known as 

the Ernst Angle when maximum signal is generated.  This relationship can be used calculate 

the Ernst Angle in tissue of given T1 and T2* for a given TE and TR.  Selection of TR will 
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depend on the total scan time, desired resolution and FOV of the acquisition and the 

number of signal averages taken.  Longer TRs allow longitudinal relaxation to occur over a 

greater time period and more signal available for RF excitation.  For a 3D spoiled GRE 

(SGRE) acquisition, the longest TR possible will be calculated by the division of the scan 

time limit by the number of excitations necessary to cover the FOV at the desired 

resolution.  However, SNR is proportional to the square root of the number of signal 

averages(NSA)(266), assuming uncorrelated noise between transients, and TR will need to 

be reduced if extra averages are collected.  This additional factor can be added to the 

equation above to incorporate the trade off between TR and NSA to calculate the Ernst 

Angle and provide optimal SNR as follows to select the SGRE sequence parameters that will 

yield lowest phase uncertainty. 

          
                   

                
        

 
        

Equation 64  

The phase contrast generated by off resonance due to magnetic susceptibility will increase 

with time after excitation.  Optimal phase CNR is achieved when the echo time is equal to 

the T2* of the tissue imaged (267,268).  Where limitations due to scan time or spatial 

distortion at later echo times in T2* weighted sequences require earlier acquisition, a 

minimum of TE = T2*/2 may be used to provide an acceptable CNR for QSM 

applications(104).  In this section, the T2* measured in the white matter in the corpus 

callosum of ex-vivo mice, was used to calculate the Ernst Angle that would maximise 

magnitude SNR and provide the most accurate phase estimates for QSM.  T1 and T2* 

mapping of fixed ex-vivo mouse brains provided regional estimates that could be used in 

Equation 64 to simulate different combinations of TR and NSA within a 12hr overnight scan. 

A main aim of this thesis is to investigate the potential of new pre-clinical MRI techniques 

for in-vivo imaging of AD mouse models for inclusion in a multi-parametric protocol.  To 

this end, the mapping of relaxation parameters and Ernst angle calculations were also 

carried out to calculate optimal sequence parameters for an in-vivo acquisition.    Phase 

estimation in-vivo is complicated by the presence of flow, most prominent in blood vessels.  

The flow of spins in the direction of an applied magnetic field gradient will cause them to 

accumulate phase and may lead to an error in signal phase as well as mislocalisation of 

signal in phase encoding directions.  To improve accuracy of phase estimates, first order 
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gradient moment nulling was added to the SGRE sequence to provide flow compensation in 

three dimensions.   

 

5.4.2 Methods 

The experimental methods in this section are described in three parts: T1 and T2* mapping 

and regional estimates in ex-vivo and in-vivo animal cohorts; ernst angle simulations; and 

development and testing of a flow compensated 3D SGRE sequence. 

5.4.2.1 T1 and T2* mapping and regional estimates 

Animals 

Ex-vivo animals had been culled at 8 months and perfuse fixed previously by collaborators 

as described in section 5.3.2.1 with the exception of the addition of Magnevist contrast 

agent which was omitted.  The de-skulled brains of wild-type rTg4510 littermates (n=3) 

were rehydrated in 50ml PBS (Sigma-Aldrich, UK) for three weeks to increase proton 

density and T2 in the tissue(for increased SNR)(184,269,270).  They were transferred to 

20ml syringes filled with 10ml of proton MR signal-free, non-viscous Fomblin 

perfluoropolyether (PFS-1, Solvay Solexis SpA., Bollate, Italy) and imaged individually in a 

26mm diameter birdcage coil (Rapid Biomedical GmbH, Germany) at 9.4T (Agilent 9.4 T 

VNMRS 20 cm horizontal-bore system / Agilent Inc. Palo Alto, CA, USA).       

For in-vivo experiments, wild-type littermates (n=8) of a J20 AD mouse model were imaged 

at 15.5 months.  Mice were secured in a cradle under anaesthesia with 1-2% isoflurane in 

100% oxygen using a custom-built head holder to reduce motion.  Body temperature was 

maintained at 36 – 37.5 °C using a water-heating system and warm air fan.  Core body 

temperature and respiratory rate were monitored using a temperature probe and pressure 

pad (SA Instruments, NY).  Scans were performed on an Agilent 9.4 T VNMRS 20 cm 

horizontal-bore system (Agilent Inc. Palo Alto, CA, USA).  A 72 mm birdcage radiofrequency 

(RF) coil was used for RF transmission and a 2 channel mouse brain surface coil (RAPID, 

Germany) was used for signal detection.    
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T1 mapping and image acquisition 

A single slice 4-shot segmented spin echo echo-planar imaging (EPI) readout was 

implemented with the following parameters: slice thickness = 0.5 mm, FOV =15 × 15 mm, 

matrix size = 100 × 100, slice selective inversion pulse width = 100 mm, 16 inversion times, 

TR=16.6 seconds. For the ex-vivo acquisition,   TI = 9, 14, 22, 34, 52, 81, 126, 196, 304, 471, 

732, 1140, 1760, 2700, 4300, and  6600ms, TE = 11 ms.   For the in-vivo acquisition, TI = 30, 

44, 65, 96, 141, 208, 306, 451, 664, 979, 1442, 2124, 3129, 4609, 6789, and 10000 ms, and 

TE=13ms.  T1 maps were calculated using a conventional three parameter fit(271) at each 

pixel across magnitude values for all TIs using a non linear least squares curve algorithm in 

matlab.  Mean T1 values were calculated for each mouse in ROIs in the cortex and 

hippocampus. 

T2* Mapping and image acquisition 

A Spoiled 3D Gradient Recalled Multi-Echo sequence was used to acquire data for both in-

vivo and ex-vivo T2* mapping.  The ex-vivo dataset was acquired with the following 

parameters 16 TEs (TE1 = 2.27ms, ΔTE=2.37ms), TR = 600ms, flip angle =440, NSA=3 at a 

resolution of 80µm x 80µm x 80µm , FOV = 18mm x 12mm x 12mm.  Eight echoes were 

acquired for the in-vivo data: TE1 = 2.33ms and ΔTE=2.3ms, with a flip angle of 270 and 

TR=210ms, at a resolution of 150µm x 150µm x 150µm  (FOV = 15mm x 15mm x 15mm).   

T2* estimates were calculated at each voxel using a non linear least square fitting 

algorithm in matlab using a two parameter fit function.  ROIs were drawn in the cortex and 

corpus callosum and mean T2* values were calculated. 

5.4.2.2 Ernst angle simulations 

The T1 and T2* measured in the corpus callosum was used to optimise values of flip angle, 

TR, and NSA using Equation 64.  Software was written in matlab to estimate maximum SNR 

and optimal flip angle for varying TR and NSA.  For the ex-vivo scan, a time limit of 11 hrs 

was necessary to complete the scan within an overnight time slot on the 9.4T MRI scanner 

in CABI.  At the desired resolution of resolution of 80µm x 80µm x 80µm  and FOV = 18mm 

x 12mm x 12mm, the maximum TR was 1000ms for a single average.  To optimise SNR, 

simulations were run for ten to one signal averages by varying the TR (100, 111.11, 125, 

142.86, 166.66, 200, 250, 333.33, 500, and 1000 ms respectively) to complete in the 

desired scan time.  Each TR/NSA combination was run for integer flip angles from 1 to 90 
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degrees) with the measured T1/T2* in the white matter (952ms and 32ms respectively) 

with TE=T2*.  

The target time for the in-vivo scan was to run in approximately an hour, at a 150µm x 

150µm x 150µm  resolution FOV = 18mm x 18mm x 18mm, a single average could be taken 

with TR=250ms.  To optimise SNR, simulations were run for ten to one signal averages by 

varying the TR (25, 28, 31, 36, 42, 50, 62.5, 83, 125, and 250ms respectively) to complete in 

the desired scan time.  Each TR/NSA combination was run for integer flip angles from 1 to 

90 degrees with the measured in-vivo T1/T2* in the white matter (1533ms and 29ms 

respectively).  Due to poor SNR and distortion at late echo times, TE = T2*/2 of white 

matter was used for in-vivo simulations which is preferred in situations when TE = T2* 

cannot be achieved (104). 

 

5.4.2.3 Flow compensation development and testing  

To reduce error in phase estimates caused by flow in the in-vivo acquisitions, first order 

gradient moment nulling was added to the gradient echo sequence to provide flow 

compensation in three dimensions.   Bipolar gradients were added to null the first moment 

for slice select, readout, and both phase encoding gradients.  I achieved this by modifying 

the core 3D GRE sequence code in VNMRJ.  As shown in Figure 47, the nulling of the slice 

select gradient is carried out by addition of a bipolar gradient immediately after the slice 

select gradient and nulling of readout and phase encoding gradients was implemented 

simultaneously, immediately before the start of the readout rephase gradient.  Bipolar 

gradients were trapezoidal in shape and magnitudes and duration were calculated using 

equations previously published(272).  These values were not ‘hard coded’ and calculated 

based on the imaging gradient dimensions generated by VNMRJ.  This flexibility means that 

the bipolar gradients are automatically adjusted in this sequence if the user changes any 

sequence parameters such as the TE and enables easy portability of this functionality into 

other 3D sequence code. 
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Figure 47. Flow compensation gradient diagram 

Sequence diagram showing the placement of bipolar gradients to implement first order 
gradient moment nulling.  Slice select gradient is nulled using the bipolar gradient in 
interval a, and all other bipolar gradients are implemented in interval b, prior to read 
refocus gradient. 

 

A flow phantom (Figure 51a) was constructed to test the 3D gradient moment nulling 

added to the sequence.  A section of plastic tubing of 2.5mm inner diameter was 

embedded in a 20ml falcon tube filled agar (1%).   The ends of the tubing were connected 

at each end to a water heating system (Haake Circulator DC30 with B3 bath, Thermo Haake, 

Newington NH, USA). The system was configured to pump water through the tubing at a 

flow rate of 12.5 l/min at room temperature.  The effects of phase accumulation of the 

flowing spins can be observed in MRI phase images as disruptions to wrapping in the 

direction perpendicular to flow(266).  The phantom was imaged in a 26mm diameter 

birdcage coil (Rapid Biomedical GmbH, Germany) with a 3D gradient echo sequence with 

the following parameters: TE = 18.5ms, TR=250ms, flip angle =29, FOV = 18mm x 18mm x 

18mm, matrix = 96 x 32 x 32.  Data was acquired without flow compensation with water 
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flow on and off to observe the effects on phase.  This experiment was then repeated with 

flow compensating gradients implemented in the sequence. 

 

5.4.3 Results 

5.4.3.1 T1 and T2* mapping and regional estimates 

Parameter maps of T1 and T2* in ex-vivo and in-vivo mice are shown in Figure 48.  Mean 

values in ROIs were in good agreement with published relaxation measurements at 9.4T 

(273,274).  Ex-vivo estimates of T1 in the cortex and corpus callosum were 1063±66 ms and 

952±32 ms respectively. T2* values measured were 65±3ms in the cortex and 32±7 ms in 

the corpus callosum.  In-vivo measurements of T1 were higher than their ex-vivo 

equivalents.  Unlike the cortex, where the T1 (1917±109 ms) was similar to reported 

values(274), a reduced T1 was found in the corpus callosum (1533±107 ms) possibly due to 

discrepancies in the age and breed of the mice used.  The T2* measured in the cortex 

(37±2ms) and in the white matter (29±2ms) were lower than the ex-vivo estimates and 

similar to  previous high field measurements(275). 
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Figure 48. Ex vivo and In-vivo T1 and T2* maps 

Single slice coronal images of Ex-vivo (a,b) and In-vivo (c,d) T1 and T2* maps. 

 

5.4.3.2  Ernst angle calculations 

The simulated SNR calculated in the ex-vivo data using the relaxation parameters calculated 

for white matter (T1 =952 ms, T2*=32ms) is shown in Figure 49. The optimal flip angle 

decreased as TR was reduced in the simulation and SNR was found to increase with the 

number of averages (Figure 49a).  The percentage gain in SNR decreased with the addition 

of each average (Figure 49b).  The SNR increased by 3.1% by increasing NSA from 1 to 2.  

However, increasing the number of signal averages beyond 5 resulted in percentage 

increases of less than 0.1%.  In light of such minimal gains in SNR, it was decided to limit 

NSA to 5 so as to maintain as long a TR as possible.  This maximises the scanner “dead 

time” built into each repetition, reducing heating in the scanner coils and amplifiers(276).  

The combination of 5 signal averages with a TR of 200ms gave and optimal flip angle of 36 

degrees in white matter and 34 degrees in grey matter in simulations (Figure 49c).    
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Figure 49. Ex vivo signal estimates 

Simulations using the gradient echo equation to estimate SNR for different TR and NSA 
combinations using white matter relaxation parameters(a).  The percentage gain in SNR 
decreases with increasing NSA(b).  Signal for grey matter and white matter is plotted 
against flip angle for TR =200ms and NSA = 5(c). 

 

The simulated SNR calculated in the in-vivo data using the relaxation parameters calculated 

for white matter (T1 =1533 ms, T2*=29ms) is shown in Figure 50.  The flip angle at which 

maximum SNR is achieved, decreased as TR was reduced in the simulation and there was 

only a slight gain in SNR observed for the extra averages acquired (Figure 50a).  The 

percentage increase in SNR by taking two averages over a single average was less than 

0.1%.   The signal in grey matter and white matter was simulated for a single average and a 

TR of 250ms indicating an optimal flip angle of 32 degrees in white matter and 29 degrees 

in grey matter (Figure 50b).   In-vivo data acquired (n=1) with at a TE of 15ms repeated at 

multiple flip angles was in good agreement with simulations indicating a maximum signal at 

a flip angle of 32 degrees in white matter (Figure 50c). 
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Figure 50. In-vivo signal estimates 

Simulations using the gradient echo equation to estimate SNR for different TR and NSA 
combinations using white matter signal relaxation parameters(a).  Simulated signal for grey 
matter and white matter is plotted against flip angle for TR =250ms and NSA = 1(b).  In-vivo 
measurements of white matter signal plotted against flip angle(c). 

 

5.4.3.3 Flow compensation development and testing 

Magnitude images of a cross section of the flow phantom indicate the flowing water region 

within the water bath tubing surrounded by agar (Figure 51a).  When the water bath flow is 

turned off, the phase images display complete phase wrap lines that pass through the 

water tube horizontally across images (Figure 51 b,c).  When the flow was turned on, the 

wrap lines are disturbed in the flowing section of the phantom as the phase of spins in the 

flowing water accumulate phase in the direction of flow (Figure 51d).  This accumulation 

was corrected and the artifacts markedly reduced when the flow compensation gradients 

are turned on and complete phase wrap lines can be observed in the presence of flow 

(Figure 51e). 
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Figure 51. Flow compensation phantom 

Magnitude image of flow phantom(a) with phase images of the same slice where the water 
is not flowing (b,c) and when the flow is switched on(d,e).  The effect on the phase of the 
flowing water can be observed by the disruption to the wrapping pattern(d) that is 
corrected by addition of flow compensation gradients(e).  

 

5.4.4 Discussion 

In this section, ernst angle simulations were carried out to optimise the SNR of the signal 

magnitude of a 3D spoiled gradient recalled echo sequence both in-vivo and ex-vivo.  T1 

and T2* mapping was conducted to provide estimates in white matter and grey matter 

regions that could be used to calculate the flip angle to generate greatest signal at the 

desired echo time.  Optimal values for TR and NSA were calculated for given scan times to 

maximise SNR.   

The signal relaxation values used in simulations were generated through T1 and T2* 

mapping and ROI estimates.  These were in good agreement with values reported in 

previous studies(261,274,275).   The T1 estimates were greater in-vivo than ex-vivo which 
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may be due to both differences in the imaging temperature and fixation effects.  The in-

vivo imaging was conducted at body temperature compared to the room temperature at 

which ex-vivo imaging was carried out.  There is a known increasing relationship between 

spin-lattice relaxation and temperature(277). T1 has also been shown to be reduced in 

tissue fixed using aldehydes thought to be due to the chemical reactions that occur during 

fixation(269).  Increases in temperature and use of formaldehyde fixative have been shown 

to also decrease T2(269,277).  However, it has been shown that the reduction due to 

fixative can be reversed through rehydration of tissue using PBS(269) as carried out in this 

study.  The increased T2* observed in the ex-vivo tissue is contradictory to the expected 

decrease in the T2 component due to temperature.  The use of smaller voxels and 

improved field homogeneity reduce dephasing of the transverse MR signal(278)  and in 

addition to greater tissue hydration may be responsible for the elevated T2*  

measurements in the ex-vivo data. 

To maximise phase SNR, the ex-vivo simulations used an echo time equal to the T2* of 

white matter. At this echo time, maximum magnitude SNR was produced with a flip angle 

of 36 degrees, a TR of 200ms and five signal averages.  An echo time of half of the T2* 

measured in white matter was used in the in-vivo ernst angle simulations and a maximum 

SNR was calculated at a flip angle of 32 degrees for a single average with a TR of 250ms.  

This simulated experiment was in good agreement with empirical data collected.  First 

order gradient moment nulling improves phase estimation of spins moving with a constant 

velocity.  However, it should be noted that there may be extra phase components not 

accounted for from the acceleration of spins (caused by turbulent flow in vessels) and 

inconsistent field gradients in the direction of movement.  Techniques to correct for these 

effects have been reported and are a subject of current research (279,280).  Nevertheless, 

the flow compensation implemented here will improve phase estimation caused by 

mislocalisation of signal and accumulation of spins due to motion at a constant 

velocity(104,279,281).  Spoiled gradient recalled echo acquisitions that include this flow 

compensation, in combination with the optimised parameters from the ernst angle 

simulations carried out in this chapter, should provide ideal data for QSM under these in-

vivo / ex-vivo experimental conditions. 
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5.5 In-vivo and Ex vivo QSM in the rTg4510 

5.5.1 Introduction 

Quantitative Susceptibility Mapping has been shown previously to correlate to iron 

concentrations in tissue(242,282) and myelin in white matter(213,275), both of which are 

thought to be altered in AD(161,216).  In a recent clinical study, significant increases in 

magnetic susceptibility were detected in AD patients relative to controls in the putamen, a 

sub region of the striatum(250).  There have been few studies in mouse models of AD but 

in common with T2* studies of iron, none have been performed in mice exhibiting tau 

pathology.  The magnetic susceptibility findings and histology in the preliminary study in 

section 5.3.3 suggest that QSM may be sensitive to white matter damage and 

neuroinflammation in grey matter regions in the rTg4510.  The loss of contrast between 

rostral white matter and surrounding grey matter that was visually apparent in the mean 

magnetic susceptibility maps may be due to reduced myelin.  This is supported by the 

increased radial diffusivity and reduced FA measured in the genu region of the corpus 

callosum of the rTg4510 presented in chapter 4.  Furthermore, abnormalities in 

myelination in the rTg4510 have been observed at 4 months of age using electron 

microscopy(205).  Magnetic susceptibility measurements have been shown to be more 

specifically related to myelin concentration than measures of diffusion using DTI(213). QSM 

may therefore provide a non invasive method to measure myelin content in tissue and to 

track early white matter damage in-vivo in the rTg4510. 

The increased presence of reactive microglia and astrocytes known to occur in regions of 

NFT pathology in the rTg4510(70,87) were observed in the corpus callosum and striatum in 

section 5.3.3.  Gliosis is associated with oxidative stress and the accumulation of iron which 

may be responsible for the increases in magnetic susceptibility in these regions.  The 

rTg4510 may provide the opportunity to further understand the relationship between iron 

accumulation and tau pathology in the absence of plaques.  Measurement of iron 

concentration in-vivo using QSM may constitute a novel biomarker of neuroinflammation in 

the rTg4510 and a means by which to test iron chelating therapeutics.  

In this study, the sensitivity of QSM to NFT pathology in the rTg4510 is investigated.  In-vivo 

and ex-vivo data are acquired using the gradient echo acquisitions optimised in the 
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previous section.  Commonly used methods for phase unwrapping and background field 

removal are evaluated and a QSM post processing software pipeline is developed. 

Magnetic susceptibility maps are generated and group comparisons are made between 

rTg4510 mice and wild-type controls.  Regions of interest were selected to be comparable 

to those used in the DTI study (Figure 34, section 4.4.2.3) and based on the voxel-wise 

increases detected in the striatum and rostral section of the corpus callosum in the pilot 

study(Figure 43, section 5.3.3).  T2* mapping estimates were taken in corresponding 

regions and comparisons are presented between QSM measurements and this more 

established MRI method of estimation of iron concentration in-vivo. 

5.5.2 Methods 

Animals 

Generation of homozygous rTg4510 transgenic mice has been reported previously(203).  

Female rTg4510 mice were licensed from the Mayo Clinic (Jacksonville Florida, USA) and 

bred for Eli Lilly by Taconic (Germantown, USA).  Mice were imported to the UK for imaging 

studies at CABI.  All studies were carried out in accordance with the United Kingdom 

Animals (Scientific Procedures) act of 1986. 

Imaging 

All imaging was performed with a 9.4 T VNMRS horizontal bore scanner (Agilent Inc.).  In-

vivo imaging was conducted on N = 10 rTg4510 mice and N = 10 wild-type controls.   A 72 

mm inner diameter volume coil (Rapid Biomedical) was used for RF transmission and signal 

was received using a 2 channel array head coil (Rapid Biomedical).  Mice were 

anaesthetised under 2% isoflurane and were immobilised by securing the head using a bite 

bar within the anaesthesia nose cone and ear bars that protruded inward from the sides of 

the mouse bed apparatus (Rapid Biomedical).  Anaesthesia was then maintained at 1.5% 

isoflurane in 100% O2 throughout imaging.  Core temperature and respiration were 

monitored using a rectal probe and pressure pad (SA instruments).  Mice were maintained 

at ~37 °C using heated water tubing and a warm air blower with a feedback system (SA 

instruments).  Shimming was performed using an automatic 3D gradient echo shim 

function (VNMRJ, Agilent Inc.) with a voxel containing the cortex (linewidths were 47±7 Hz).  

Data for QSM was collected using a 3D single echo spoiled gradient recalled echo sequence 

with flow compensation in three dimensions.  Subsequently, a multi-echo sequence was 
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run without flow compensation to acquire data for T2* mapping.  Parameters for both 

sequences are provided in Table 2.  

In preparation for ex-vivo imaging, perfusion fixation was carried out by laboratory 

collaborators.  Animals were terminally anaesthetised with Euthanal administered via 

intraperitoneal injection immediately after in-vivo imaging.  Fixation was then carried out 

by perfusion through the left ventricle: first with 15 – 20 mL of saline (0.9%) and heparin; 

second with 50 mL of buffered formal saline, at a flow rate of 3 mL per minute.  Brains 

were then removed and stored in-skull at 4 oC in buffered formal saline.  After 4 weeks, 

brains were transferred to PBS (50ml refreshed weekly, Sigma-Aldrich) for rehydration 

(184,269,270) for a further 3 weeks.  Ex-vivo imaging was conducted on N = 8 rTg4510 mice 

and N = 8 wild-type controls using a 3D spoiled GRE acquisition with parameters given in 

Table 2.  Brains were secured individually in a 20ml Syringe filled with 10ml proton MR 

signal-free, non-viscous Fomblin perfluoropolyether (PFS-1, Solvay Solexis SpA., Bollate, 

Italy) prior to imaging in a 26mm diameter birdcage coil (Rapid Biomedical GmbH, 

Germany) at 9.4T.  Shimming was conducted using a pulse a collect sequence generating a 

linewidth of 47±5 Hz.   

    

Parameter In-vivo  

Single Echo 

In-vivo  

Multi Echo 

Ex-vivo  

Multi Echo 

TR (ms) 250 250 200 

minTE/dTE/maxTE (ms) 15 2.31/2.46/29.32 3.05/3.92/46.21 

FA (0) 32 32 36 

NE 1 12 12 

Averages 1 1 5 

Scan time 1hr,2s 1hr,2s 10hr,45min,2s 

Spectral width (Hz) 50000 100000 73529 

FOV (mm) 18x18x18 18x18x18 18x17.2x14.4 

Matrix 120x120x120 120x120x120 225x215x180 

Iso. Resolution (µm) 150 150 80 

Table 2. Spoiled GRE sequence parameters 
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Registration and mask generation 

With the exception of the preliminary brain separation step, a group wise registration of 

the magnitude images was conducted by collaborators using an automated pipeline 

described in section 5.3.2.2.  Masks of the brain were generated automatically for 

generation of susceptibility maps which were then transformed back into the atlas space 

using deformation fields from the non-rigid registration.  Mean susceptibility images were 

generated in this space for WT and rTg4510 groups. 

QSM pipeline optimisation 

Reconstruction of the phase of the in-vivo data involves a preliminary processing step 

where phase data from the two receive array coils is combined to remove phase shifts 

between channels.  This was achieved using a global offset correction technique(283). The 

offset was calculated as the mean difference in phase between the two coils calculated in a 

ROI measuring 10x10x10 voxels in the centre of the brain.  The receiver offset was then 

removed by global subtraction of the mean difference calculated from each voxel of one 

coil.  The coil phases with the offset removed were then combined by weighted average.  

The magnitude at each voxel provided the weighting to suppress noise(283). 

There are a number of methods by which to generate magnetic susceptibility maps from 

reconstructed phase data.  All involve three basic stages: phase unwrapping; background 

field removal; and magnetic susceptibility calculated through dipole inversion.  More 

information on these standard methods can be found in section 2.8.  Comparisons were 

made between algorithms that are freely available to download and commonly used in the 

literature.  Evaluation was done both qualitatively though visual observation of artifacts in 

processed data and quantitatively by calculating the standard deviation and CNR of the 

processed phase in ROIs.  A rostral slice was chosen for the quantitative analysis and ROIs 

were drawn manually in the corpus callosum and cortex across five slices in five wild-type 

mice selected at random from the cohort imaged ( the analysis was repeated in rTg4510 

mice to ensure no bias in the processing methodology had been introduced).  The CNR in 

the phase was calculated as 

     
                

              
 

Equation 65  
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where         and         are the mean of the white matter and grey matter regional 

measurements and     and     are the standard devations of the voxels within an ROI. 

Two commonly used phase unwrapping algorithms are path based and laplacian based 

techniques.  Phase data was unwrapped in 3D using algorithms downloaded online from 

the MEDI toolbox (Cornell MRI Research Lab).  For path based unwrapping, the 

unwrapPhase.m algorithm was used and unwrapLaplacian.m was implemented for 

laplacian unwrapping.  Background field removal comparisons were made for the 

projection onto dipole fields (PDF) (PDF.m, MEDI toolbox, Cornell MRI Research Lab) 

(107,262) and Variable Sophisticated Harmonic Artifact Reduction for Phase data 

(VSHARP)(284,285) methods.  The kernel width used in the VSHARP method equates to the 

diameter of a spherical mean value filter used.  The diameter chosen is a trade-off between 

the amplification of phase error using small widths and the increased erosion of data 

around the periphery of the brain using wider kernals(285).  To prevent erosion of white 

matter structures, the kernel width was limited to k=3 voxels for the in-vivo data and k=9 

for the ex-vivo data.  Once the field maps were optimised, the dipole inversion step was 

performed using thresholded k-space division.  The k-space filter threshold was varied 

between values of 2 and 10. 

The multi echo sequence used to collect the ex-vivo data required a further step of 

optimisation where field maps and susceptibility maps were compared to select the echo 

to use for QSM group comparisons.   A frequency field map may be generated by fitting 

phase values from a multi echo sequence across time.  To investigate the possibility of 

generating field maps by combining phase data from difference echoes in the ex-vivo data, 

phase was unwrapped across echo times voxel by voxel using the unwrap function in 

matlab before linear fitting using a least squares algorithm.  The gradient of the linear fit at 

each voxel was used to generate a field map of frequencies prior to susceptibility mapping 

by TKD. 

QSM and T2* group comparisons 

The outcome of the post processing optimisation experiments were used to develop a QSM 

pipeline for the in-vivo and ex-vivo data sets.  After coil combination, in-vivo phase data 

were unwrapped using the laplacian method before background field removal using 

VSHARP (k=3 voxels).  TKD was performed on the field map using a threshold t=5.  Ex-vivo 
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QSMs were generated by path based unwrapping of the fourth echo followed by VSHARP 

background field removal (k=7 voxels) and TKD using a threshold t=5. Susceptibility values 

at each voxel were then calculated for all QSMs relative to the mean susceptibility of the 

whole brain, calculated using the masks from the registration.  T2* estimates were 

calculated at each voxel across all echoes using a non linear least square fitting algorithm in 

matlab using a two parameter fit function. 

Mean QSM and T2* estimates were calculated for within the ROIs shown in Figure 52.  

Regions in the corpus callosum and striatum in a rostral part of the brain were chosen 

based on the increases in susceptibility in the rTg4510 in these regions in the pilot 

study(Figure 43, section 5.3.3).  In the previous chapter, NFT pathology was quantified 

histologically in a caudal region of the brain(Figure 35, section 4.4.3.1), and corresponding 

ROIs in these slices were taken in the QSM and T2* data.  ROIs were drawn manually on the 

magnitude atlas image using Amira software and then back propagated by a collaborator 

on to the susceptibility maps in their original space using deformation fields from the non 

rigid registration.  Errors in segmentation propagation were corrected manually using 

Amira software.  The reported p-values are from standard t-tests for differences in 

parameters between the rTg4510 and WT groups, unless stated otherwise. 

 

Figure 52.  ROIs for group comparisons 

ROIs were drawn in rostral and caudal sections of the brain(a).  In the rostral section(b), the 
corpus callosum CCr, Striatum, Str, and Anterior Commissure, AC, were segmented.  In the 
Caudal section (C) regions were drawn in the Cortex, Ctx, the Hippocampus, Hp, the 
Thalamus, Th, and the Corpus Callosum, CCc. 
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5.5.3 Results  

5.5.3.1 QSM optimisation 

5.5.3.1.1 Optimisation of ex-vivo QSM post processing 

To compare phase unwrapping methods in randomly selected wild-type mice (n=5), 

laplacian and path based region growing algorithms were combined with PDF and 

VSHARP(k=3) to generate field maps.  Reduced variations and artifacts were observed for 

both background field removal unwrapping using the region growing algorithm (Figure 53 

a,b).  In the field maps where laplacian unwrapping was used (Figure 53 c,d) the PDF 

method fails to remove variations across the brain and there are ripples and more local 

dipolar artifacts observed in the VSHARP image.  

 

Figure 53. Phase unwrapping comparison 

Axial images showing a path based region growing unwrapping algorithm combined with 
PDF background field removal(a) and the VSHARP method(b). Images are also shown for 
Laplacian unwrapping combined with PDF background field removal(c) and the VSHARP 
method(d). 
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To compare PDF and VSHARP background removal techniques, ROIs were taken in the 

cortex and corpus callosum to measure mean standard deviation of the phase of the voxels 

in the ROI and mean CNR for the mice in these regions in the field map of the fifth echo.  

The phase was unwrapped using the region growing algorithm and the background field 

contributions were removed using VSHARP with kernel widths of 3, 5, 7, and 9 as well as 

PDF.  In the corpus callosum, the phase standard deviation increased as the kernel was 

widened, and was even larger using the PDF method (Figure 54a). The contrast between 

grey matter and white matter was also greater at larger kernel widths and the CNR is 

greatest at k=9 voxels using VSHARP (Figure 54b).  The larger the kernel width, the more of 

the periphery of the brain is eroded using the VSHARP method, and at a width of 9 voxels, 

the white matter of the external capsule was eroded in some mice particularly in the 

rTg4510 mice where there is significant atrophy in the cortex at the age studied.  A kernel 

size of 7 voxels was selected as optimal since the CNR is similar to that achieved with a 

width of 9 (Figure 54b) and is greater than with the PDF method.  The improved contrast 

and uniformity within the cortex was observed in the field maps at this kernel size (Figure 

54d) compared to smaller kernals where ripples remain in the cortex (Figure 54c) and PDF 

where dipolar artifacts are observed near the olfactory bulbs(Figure 54e). 
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Figure 54. Ex vivo BFR comparison 

Comparison of mean phase standard deviation in the corpus callosum(a) for VSHARP field 
removal with kernel sizes 3 to 7 and PDF method.  CNR between WM and GM is at a 
maximal with the VSHARP method and a kernel size of 9(b).   Example phase field maps are 
shown for VSHARP k=3(c),7(d) and PDF(e). 

 

The SNR of the phase signal in white matter is maximum at TE=T2*, however, the SNR of 

the signal sampled is reduced due to T2* decay at longer echo times which may increase 

variability and error in phase estimates.  Field maps and susceptibility maps were 

generated for each mouse and values of phase variability and CNR was measured in the 

grey matter and white matter ROIs for both sets of data.  The field maps were generated by 

unwrapping using the region growing algorithm before field removal using VSHARP (k=7).  

QSMs were calculated by TKD using a threshold tF=5.  Mean variability in the corpus 
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callosum ROI increased with echo time and CNR in both the field maps and susceptibility 

maps peaked at the fourth echo (Figure 55a-c).  At this echo, susceptibility maps appeared 

to have greater contrast and less noise than those generated for earlier and later 

echoes(Figure 55d-f).  

 

 

Figure 55. Ex vivo echo comparison 

a)Phase s.d. vs echo, b) CNR in field map vs echo, c) CNR in susceptibility map vs echo, and field 
maps of echo=1, 4,and 10 respectively (path based unwrapping with vSHARP BFR(k=7)  TKD 
threshold =5)( d,e,f). CNR calculated between grey matter and white matter ROIs. 
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The final optimisation step involved selection of a TKD threshold value, tF.  At larger values 

of tF, less data is removed through truncation of the k-space filter and a better estimate of 

the susceptibility is expected, however more noise will be included in the inversion 

generating artifacts in the susceptibility maps.  Mean values of susceptibility in the white 

matter regions are shown in Figure 56a.  The values appear to decrease, converging 

towards a minimum value as the tF value increases.  Conversely, the variability in the 

susceptibility values increase with tF value (Figure 56b).  The CNR of the grey matter and 

white matter regions reaches a maximum value at tF=6, although there is a minimal 

increase from tF=5(Figure 56c).  The increased CNR is evident in susceptibility maps 

generated from larger tF values (Figure 56d,e).  At Echo 4, t=5, susceptibility in the corpus 

callosum was -28±2ppb, and in the cortex was -3.6±1.3ppb, and the mean difference of 

white matter relative to grey matter was -31±3ppb.  This is in reasonable agreement with a  

previous study at 9.4T which reported a mean difference value of -29.8ppb between white 

matter and grey matter in control mice(286).  To ensure that the optimisation did not bias 

the post processing towards the wild-type animals, measurements were taken in a 

randomly selected group of rTg4510 mice (n=5).  ROIs were taken in the corpus callosum 

and cortex and CNR in susceptibility maps was measured for each echo and for multiple tF 

values, repeating the wild-type experiments described above.  The results were in good 

agreement with those from the WT group with CNR peaking in susceptibility maps at the 

fourth echo collected and at a TKD threshold equal to 5(data not shown).   



157 

 

 

Figure 56. Ex vivo tF value comparison 

Mean susceptibility in corpus callosum vs t value(a),  s.d. of susceptibility in corpus 
callosum(b),  susceptibility CNR of white matter grey matter vs t value(c).  Examples of 
susceptibility maps at t=2(d) and t=10(e) respectively showing increased contrast but 
increased noise from streaking artifacts. 

 

5.5.3.1.2 Optimisation of in-vivo QSM pipeline 

The phase data was reconstructed from the in-vivo imaging data and after coil 

combination, post processing algorithms were compared through mean measurements in 

ROIs in n=5 WT animals as in the ex-vivo optimisation.  Firstly, phase unwrapping was done 

using both laplacian and path based methods and the background field was removed using 

PDF and VSHARP techniques.  For the VSHARP method, the kernel size was restricted to 

three voxels due to the significant erosion of the cortex at larger widths.  The variability in 

the field map phase was much reduced using the VSHARP field removal method (Figure 

57a).  The use of laplacian phase unwrapping with VSHARP produced the lowest standard 

deviation in the phase.  Additionally, the CNR in the field maps between the white matter 
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and grey matter ROIs was greatest using this combination of techniques (Figure 57b).  

Example field maps for a single mouse are shown in Figure 57c. 

 

Figure 57. In-vivo field mapping comparison 

Comparison of phase variation for various phase unwrapping and field removal 
combinations in the cc and ctx (a).  CNR in the field map for the same combinations(b). Field 
maps in coronal and axial plane with laplacian unwrapping and VSHARP field removal(c). 

 

The field maps generated from laplacian phase unwrapping with VSHARP background 

field removal were used to calculate susceptibility maps using TKD with different filter 

threshold values.  In both ROIs, mean susceptibility estimates peaked in magnitude at 

tF=5 whereas the standard deviation of the susceptibility values increased with tF 

value(Figure 58a-d).  Calculating the mean CNR in the susceptibility maps using the 

ROIs indicated a maximum value was reached at tF=5 before decreasing at larger 

threshold values(Figure 58e).  Mean susceptibility in the white matter ROI at tF=5 was -

29±1ppb and in the cortex the susceptibility was 3±1ppb.  Literature values are given to 

a reference which is rarely reported but the mean susceptibility difference of white 

matter relative to grey matter is  -32±1 ppb which is similar to the difference in a 
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previously published in-vivo paper at 9.4T(256) (cc= -59.9±7.3ppb, cortex = -

33.9±7.3ppb, mean diff = -25.1ppb – values relative to CSF).  To ensure optimisation did 

not bias the WT group, transgenic mice were selected randomly from the cohort (n=5) 

and CNR between grey matter and white matter ROIs in the susceptibility maps was 

measured over the same range of threshold values.  Susceptibility CNR peaked at 0.79 

in the transgenic mice at threshold values of tF=4 and tF = 5. 

 

 

Figure 58. In-vivo tF value comparison 

Mean and s.d. susceptibility in the cc (a,b), and mean and s.d. susceptibility in the 
cortex(c,d), and susceptibility CNR between grey matter and white matter (e) and a 
representative susceptibility map(f) 
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5.5.3.1.3 QSM using multiple echo data 

To combine multiple echo data with the aim of improving SNR in the field maps and 

subsequent susceptibility maps, the reconstructed ex vivo phase datasets were unwrapped 

temporally, voxel by voxel across the twelve TEs collected.  After this unwrapping step, 

spatial phase wraps were observed in the phase data at each echo (Figure 59a).  By 

performing a least squares linear fit at each voxel, the gradient of the fit was used to 

produce a frequency field map and the background field contributions were removed using 

the VSHARP method (k=7) (Figure 59b).  Maps of R2 of the fit were calculated (Figure 59c) 

and low values appeared to form coherent patterns that appeared to coincide with areas of 

large phase gradients in the phase images after temporal unwrapping(Figure 59a).  Plotting 

the phase values vs echo number for a voxel in one of these regions of poor fit, showed 

that the unwrapping had failed (Figure 59d).  As a result of the unwrapping and fitting 

errors in these regions, increased noise and artifacts can be observed in the susceptibility 

maps generated using multiple echoes compared to single echo data (Figure 59e,f).  In an 

attempt to improve the phase fitting, spatial unwrapping of the individual echoes was done 

both prior and post temporal unwrapping with no observed improvement in the 

susceptibility maps.  For this reason, QSM mapping using a multi-echo, temporal 

unwrapping approach was not pursued further and QSM maps were generated from data 

acquired at a single echo (informed by optimisation steps described above). Multi-echo 

magnitude data were used to estimate T2* (the more established biomarker of tissue iron 

concentration) for comparison to QSM metrics generated from simultaneously-acquired 

data.  
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Figure 59. Ex vivo multi-echo QSM 

a)Residual wraps remain after temporal unwrapping of echoes(image shows 12
th

 echo) 
b)field map generated by linear fit of unwrapped phase and background field removal c) 
map of R squared values for linear fits d) errors in temporal unwrapping from a single voxel 
within regions marked in c e) and f) are the multi echo susceptibility map and single echo 
susceptibility map respectively. 
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5.5.3.2 QSM group comparisons 

Deformation fields from the non rigid registration of the magnitude data were applied to 

the QSMs and T2* maps of the individual mice to transform them into the same space.  

Mean maps of the registered data were then calculated separately for the WT(in-vivo : 

n=10, ex-vivo: n=8) and rTg4510(in-vivo : n=10, ex-vivo: n=8) groups.  An axial slice of each 

of the mean QSM and T2* maps for both the ex-vivo and in-vivo datasets is shown in Figure 

60.  The anatomical structures are better delineated in the ex-vivo data owing in part to its 

finer resolution compared to the in-vivo maps.  In a rostral section of the external capsule, 

a marked reduction in contrast with the surrounding cortical grey matter is observed in the 

rTg4510 QSMs (Figure 60b,d).  This does not occur in the corresponding T2* maps (Figure 

60f,h).  A global reduction in intensity in the grey matter of the in-vivo T2* maps indicate a 

shortening of relaxation time compared to the ex-vivo data (Figure 60e-h). 

 

Figure 60. Mean QSM and T2* images 

Mean QSM (a-d) and T2*(e-h) images for registered ex-vivo (a,b,e,f) and in-vivo (c,d,g,h) 
datasets.  A reduction in the white matter / grey matter contrast(yellow arrows) can be 
seen in a rostral section of the external capsule in the rTg4510 QSMs that is not apparent in 
the T2* maps. 
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Regional mean estimates of quantitative measures were generated by delineation of ROIs 

in atlas magnitude images before transformation back into the original image space of each 

animal where maps were segmented.  Regional values of magnetic susceptibility and T2* 

for the WT group are provided in Figure 61.  There was good agreement between the ex-

vivo and in-vivo susceptibility in the deeper grey matter structures whereas an increase was 

observed in the hippocampus and the cortex in the ex-vivo data (p≤0.01, individual t-tests, 

FDR corrected q(<0.05)).  The T2* was elevated in all grey matter regions in the ex-vivo 

data(p≤ 0.0001).   

 

Figure 61. Magnetic Susceptibility and T2* regional estimates 

In-vivo and Ex-vivo mean magnetic susceptibility and T2* values for grey matter(a,b) and 
white matter(c,d). ROIs calculated for wild-type mice. 

 

In comparisons between grey matter regions in WT mice, the in-vivo susceptibility was 

increased in the Hippocampus compared to the Thalamus (p≤0.01, one way ANOVA) and 

Striatum (p≤0.001), and in the ex-vivo data, susceptibility was significantly greater in the 
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Hippocampus and the Cortex compared to the thalamus(p≤0.0001 for both) and 

striatum(p≤0.001 and p≤ 0.0001 respectively).  There were differences between all regions 

in the T2* ex-vivo data, the pattern of greater values in the hippocampus and cortex 

regions was similar to that observed in the QSM data.  These regions also exhibited 

differences, of lower significance, in the in-vivo data with the exception of the thalamus 

and cortex, and the hippocampus and striatum.  Interestingly the striatum T2* was greater 

than that for the thalamus (p≤0.05), with no difference in the magnetic susceptibility 

between these regions. 

In white matter ROIs, the ex-vivo data was found to have a larger negative susceptibility 

(p≤0.0001, t-tests, FDR corrected (q≤0.05)), the rostral corpus callosum (p≤0.0001) was the 

only region with different T2* to the in-vivo data(T2* significantly increased in ex-vivo) .  

The in-vivo magnetic susceptibility in this region was diamagnetic compared to the anterior 

commissure (p≤0.05, ANOVA) and in the ex-vivo data, susceptibility in the caudal corpus 

callosum more diamagnetic compared to both the more rostral measurement(p≤0.0001), 

and the anterior commissure(p≤0.001).  The rostral corpus callosum T2* measurements 

were significantly different to the anterior commissure and the caudal corpus callosum 

regions for both in-vivo(T2* increased, p≤0.01 for both) and ex-vivo (T2* decreased, 

p≤0.05,p≤0.001 respectively) data. 

Differences in magnetic susceptibility and T2* in rTg4510s relative to WT controls were 

most significant in the striatum.  In both the in-vivo, and ex-vivo datasets, an increased 

paramagnetic susceptibility and reduced T2* was calculated for the rTg4510 (Figure 62a,d).  

This region appears hyperintense in the mean ex-vivo QSMs (Figure 62b,c).  In the 

Hippocampus, an increased magnetic susceptibility was also observed in both in-vivo and 

ex-vivo data, with no differences in T2*.  A shortening of T2* in the cortex was observed in 

the in-vivo data only.  The ex-vivo measurements of susceptibility were elevated in the 

rTg4510 thalamus with a reduced T2*, findings that were not replicated in-vivo where 

magnetic susceptibility was found to be decreased with no change in T2*.  
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Figure 62. Magnetic susceptibility and T2* in the striatum 

In-vivo and ex-vivo magnetic susceptibility(a) and T2*(d) values in the striatum for WT and 
rTg4510 cohorts.  Coronal slices of mean ex-vivo QSMs(b,c) show hyperintensity in the 
striatum (black circle) with corresponding slices of ex-vivo T2* maps(e,f).    

 

An increased magnetic susceptibility was detected in the diamagnetic rostral region of the 

corpus callosum of the rTg4510s relative to WT controls.  This was consistent across both 

in-vivo and ex-vivo datasets and was evident as a loss in grey matter / white matter 

contrast in both the mean average images(Figure 60b,d) and coronal slices in unregistered 

representative QSMs(Figure 63b,c).  No significant changes were observed in T2* values 

and differences in representative T2* maps were less apparent (Figure 63e,f).  Other white 

matter measurements did not exhibit differences in rTg4510 values, although T2* was 

reduced in the anterior commissure in the ex-vivo data.  T2* and QSM values for all regions 

are listed in Table 3. 
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Figure 63. Magnetic susceptibility and T2* in the corpus callosum 

Measurements of magnetic susceptibility (a) and T2*(d) in the rostral ROI of the corpus 
callosum for WT and rTg4510 mice(in-vivo and ex-vivo).  Reductions in grey matter / white 
matter contrast were apparent in QSMs(b,c) but not in T2* maps(e,f) when comparing a 
coronal slice for a single representative(unregistered) WT and rTg4510 ex-vivo. 
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χ (ppb) Ex vivo In-vivo 
ROI WT rTg4510 WT rTg4510 

Striatum 0.61 ± 0.81 8.71 ± 3.21 0.54 ± 1.31 4.85 ± 3.09 

Hippocampus 9.45 ± 2.55 13.60 ± 2.91 5.82 ± 1.86 11.11 ± 4.84 

Cortex 7.01 ± 0.92 2.72 ± 5.37 3.46 ± 3.06 1.40 ± 1.79 

Thalamus 1.30 ± 0.97 3.03 ± 1.31 1.33 ± 1.09 -0.45 ± 1.2 

CCr -34.92 ± 4.29 -18.73 ± 7.6 -20.55 ± 6.15 -11.22 ± 5.21 

AC -32.32 ± 1.88 -31.58 ± 3.33 -13.33 ± 3.45 -9.42 ± 5.34 

CCc -46.01 ± 3.97 -48.70 ± 8.88 -18.31 ± 10.14 -17.10 ± 4.43 

     

T2* (ms)     

Striatum 39.79 ± 1.14 35.08 ± 1.61 34.99 ± 1.82 31.58 ± 1.42 

Hippocampus 50.16 ± 1.51 50.39 ± 2.39 36.89 ± 2.48 36.62 ± 2.55 

Cortex 46.14 ± 1.44 45.13 ± 1.81 33.67 ± 1.4 32.01 ± 1.8 

Thalamus 37.41 ± 1.1 35.57 ± 1 31.25 ± 2.44 31.72 ± 0.59 

CCr 25.23 ± 0.86 26.67 ± 2.1 22.58 ± 0.82 24.20 ± 3.2 

AC 24.60 ± 0.73 22.89 ± 0.81 26.46 ± 2.35 25.27 ± 2.08 

CCc 24.08 ± 1.07 23.54 ± 1.25 25.02 ± 1.54 24.73 ± 1.72 

Table 3. ROI magnetic susceptibility and T2* estimates 
List of mean and standard deviation of regional measures of magnetic susceptibility and 
T2*. Abbreviations for white matter regions : CCr – rostral corpus callosum, AC  - anterior 
commissure, CCc caudal corpus callosum. 

 
 

5.5.4 Discussion 

The rTg4510 mouse model develops NFT pathology associated with AD without beta-

amyloid plaques.  The increased presence of reactive microglia and astrocytes has been 

observed in this model previously using histological stains(70,87).  Their presence in brain 

tissue is associated with neuroinflammation in AD(287) and may be related to increased 

iron levels that give rise to ROS causing oxidative stress.  The aggregation of insoluble Tau 

protein found in tangled form in AD has been shown to be mediated by iron (227).  QSM 

and the more established T2* MRI techniques have been shown to be sensitive to iron 

content in the brain(233).  In this work, QSM and T2* were used to non invasively probe 

the magnetic susceptibility in the rTg4510 brain both in-vivo and ex-vivo.  Magnetic 

susceptibility increases relative to WT controls were identified in both grey matter and 

white matter regions and may indicate sensitivity to iron content in-vivo.   QSM in the 
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rTg4510 may therefore present a non invasive method by which to dissect the relationship 

between iron and tau pathology in AD. 

At high field, contributions from background susceptibility sources are increased(188) 

which may affect phase estimates throughout the mouse brain due to its large surface area 

to volume ratio.  Neurodegenerative mouse models such as the rTg4510 may be affected 

disproportionately since marked atrophy may make delineation of structures difficult and 

may decrease the size of the shim voxel relative to controls.  Compared to ex-vivo 

acquisition, additional error may be introduced into in-vivo datasets from increased noise 

and motion artifacts, primarily of physiological origin that fluctuate with the 

cardiorespiratory cycle(128,288) as well as from partial volume effects due to the lower 

resolution attainable.  Furthermore, the use of oxygen to deliver anaesthetic may alter in 

vivo blood oxygen saturation levels, shown to cause changes in the magnetic susceptibility 

in and around blood vessels(289).  This might suggest a fairer group comparison can be 

achieved using ex-vivo data.  However, tissue fixation processes and the difference in 

imaging temperature will alter relaxation properties(269,277) and measurements may not 

reflect in-vivo values. Ex-vivo T2* measurements were increased (relative to in-vivo) in all 

grey matter regions in the WT animals in this study.  This may have been caused by fixation 

and rehydration processes, known to alter the T2 properties of the ex-vivo tissue(269).  

Relative to in-vivo tissue, rehydration of ex-vivo tissue may have increased tissue water 

content, lengthening T2 relaxation.  There may also be reduced dephasing effects from the 

use of smaller voxel sizes.  Interestingly, this increase was not observed in the white matter 

regions which may be due to a decrease in water uptake during ex-vivo rehydration or 

partial volume errors in the in-vivo analysis.  The in-vivo voxel size used is large relative to 

the white matter structures in the mouse brain and incorporation of grey matter into ROIs 

is inevitable.  This may be reflected by the greater standard deviation of the in-vivo data 

compared to the ex-vivo data and may have produced inflated T2* estimates.  In group 

comparisons, regional T2* differences in the rTg4510 relative to controls were in good 

agreement between in-vivo and ex-vivo datasets.  This suggests that any T2* effects of ex-

vivo tissue processing were consistent between transgenic and wild-type mice. 

T2* star has been used previously to estimate iron concentrations in the brain and is 

regarded as an established technique for this purpose(233).  Both in-vivo and ex-vivo 

rTg4510 datasets showed a reduced T2* in the striatum, a region that is known to develop 
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tangle pathology at the age imaged(204).  The hippocampus and cortex also have a high 

density of NFTs present in the tissue whereas the thalamus is less affected(87,125,204).  

Although the rTg4510 exhibited differences in T2* in the cortex and relatively low 

pathology region of the thalamus, no differences were detected in the hippocampus.  This 

suggests that relationships between iron deposition( as inferred by T2* measurement) and 

tau pathology(estimated by histological assessment of NFT density) may not be straight 

forward in the rTg4510 model or that other factors are complicating the interpretation of 

T2* changes in the tissue.   

The QSM results support the notion of iron deposition in the striatum which was 

paramagnetic in the rTg4510s relative to controls.  This increase in magnetic susceptibility 

would cause more rapid spin dephasing in the transverse plane, expediting decay of the 

signal as reflected by the T2* shortening observed.  As with the T2* comparisons, 

differences in the striatum were the most marked of the measured grey matter regions.  In 

a recent QSM study in humans, AD patients were found to have particularly elevated 

magnetic susceptibility in the putamen, a sub region of the striatum(250).  Iron 

concentration in the healthy brain is particularly high in the basal ganglia structures, 

including the striatum, and abnormally high accumulation occurs in AD(214).  These 

findings in the rTg4510 specifically implicate tau as playing a key role in the dysfunction of 

iron storage in this brain region.  Iron-containing microglia have been identified in the 

hippocampus of AD patients(222) which may be responsible for the elevated magnetic 

susceptibility in the rTg4510.  A lack of T2* differences in this region may highlight the 

enhanced sensitivity of the QSM technique to iron.  The NFT histology in the rTg4510 in 

chapter 4 (Figure 35, section 4.4.3.1) showed greatest burden in the cortex, a region in 

where no QSM differences were detected in comparison to wild-type controls.  Similar to 

the T2* measurements, regional magnetic susceptibility estimates do not appear to have 

an obvious relationship with NFT density in the rTg4510 at the time point measured. 

The decreased diamagnetism of the rostral region of the corpus callosum of the rTg4510 

may be due to abnormal myelination.  The contrast with grey matter in this region is driven 

by myelination of white matter, and similar losses in contrast have been observed in mouse 

models of dysmyelination.  However, a reduction in diamagnetic material may cause the 

same effect as an increase in paramagnetic material in elevating the negative magnetic 

susceptibility of white matter.  Oligodendrocytes maintain myelination of axons and have 
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been shown to contain iron, which may increase in disease.  GFAP and IBA-1 staining in this 

region previously has also shown increased reactive microglia and astrocytes, also 

implicated in the elevation of iron and neuroinflammation. 

In chapter 4, reduced FA and increased radial diffusivity, findings suggestive of abnormal 

myelination in white matter, were observed in the rTg4510 mice at 8.5 months of age.  The 

significance was greater for these group differences in the rostral corpus callosum in 

comparison to a caudal region.  The reduced diamagnetism detected in the rostral white 

matter ROI of the rTg4510 in this study was not observed in the caudal section.  Although 

findings of reactive microglia in section 5.3.3 mean that an increase in paramagnetic iron 

cannot be ruled out, these results may reflect a disruption to myelination that is amplified 

in the rostral white matter in the rTg4510.  The magnetic susceptibility of the white matter 

in the WT mice measured in these regions was found to be more diamagnetic in the caudal 

section.  This may suggest that there is greater myelination in the caudal part of the corpus 

callosum.  Relative to the rostral section, the caudal corpus callosum is known to myelinate 

earlier in development(179) which may be the source of the observed resilience to 

pathology in accordance with retrogenesis theory. 

The advantage of QSM over T2* in its ability to provide contrast between tissue types of 

paramagnetic and diamagnetic magnetic susceptibility can be seen in the myelin 

driven(213) negative susceptibility of the white matter versus the positive values in the 

grey matter regions(Table 3).  There were few regions where group differences were 

identified in both the QSM and T2* data.  An increased magnetic susceptibility and 

decreased T2* was observed in the rTg4510 relative to wild-type controls in the in-vivo and 

ex-vivo data in the striatum and in the ex-vivo data only in the thalamus.  This is to be 

expected since the susceptibility effects of a paramagnetic increase in tissue may cause 

more rapid dephasing of the MR signal in the transverse plane, reducing relaxation time.  

The agreement of QSM group differences with the more established T2* measurement 

method lends credence to this novel technique.  In contrast, in-vivo and ex-vivo increases in 

magnetic susceptibility were observed in the rTg4510 in the rostral corpus callosum and 

hippocampus in the absence of T2* changes.  QSM is thought to be more directly related to 

iron content and tissue composition than T2* (which includes T2 effects)(101) which may 

explain the apparent improved sensitivity to changes in the rTg4510.  These measurements 
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can be acquired using a single pulse sequence and the differing mechanisms that drive their 

contrast highlight the complementary nature of the two techniques (101,290).  

The data acquired for in-vivo T2* mapping and QSM were collected using two separate 3D 

gradient echo sequences run sequentially.  T2* mapping was conducted using multi-echo 

data and a single echo sequence was used to acquire data for QSM, with the addition of 

flow compensating gradients to improve phase estimates.  Modification of the multi echo 

sequences to include first order gradient moment nulling(104) would enable simultaneous 

in-vivo acquisition of data for both measures and scan time could be reduced using EPI for 

inclusion in a multi-parametric protocol.  Additionally, further optimisation of the 

acquisition parameters and inclusion of recently developed phase unwrapping techniques 

such as CAMPUS(268) or non-linear field map estimation(291) may remove errors and 

reduce noise in field maps generated from multi echo data and improve the quality of 

magnetic susceptibility maps produced.  

5.6  Conclusions 

In this chapter, T2* mapping and QSM was conducted in a mouse model of AD exhibiting 

tau pathology for the first time.  The results indicate that both techniques are sensitive to 

alterations in the bulk magnetic susceptibility of tissue in-vivo in the rTg4510.   Further 

work to estimate iron and myelin content in post mortem tissue will be conducted using 

histopathological staining techniques and may help to determine the pathological basis for 

these differences.  Preliminary data, enhanced by contrast agent, showed increased 

magnetic susceptibility in white and grey matter regions of the rTg4510 illustrating the 

sensitivity of QSM to altered states in both tissue types.  These findings were replicated 

both ex-vivo, without contrast agent, and in-vivo using optimised acquisitions and post 

processing QSM protocols.  Histological markers of neuroinflammation suggested oxidative 

stress possibly caused by a disruption to iron homeostasis in grey matter regions of the 

rTg4510 where differences in T2* and QSM were detected.  Both T2* and QSM findings 

support the possibility of excess iron accumulation in the striatum of the rTg4510, and may 

provide a disease biomarker that may or may not be directly related to NFT burden.  The 

additional benefit of simultaneous acquisition means that these complementary 

measurements can be acquired in a relatively short scan time.   
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6 Thesis summary, discussion, and 

conclusions 

 

The long road to the development of a cure for Alzheimer’s Disease has now been tread for 

over a century with the urgency of this endeavour building as more and more people are 

left to face the tragic decline into dementia.  In Chapter 1, major scientific breakthroughs 

that have improved our basic understanding of the disease were described along with the 

promising diagnostic tools in development to aid early diagnosis and disease staging.  An 

emphasis was placed on the crucial role of mouse models of AD in the development of new 

biomarkers, the dissection of different aspects of the pathogenesis, in addition to the 

testing of potential therapies.  There is a variety of emerging MRI techniques that can be 

used to probe different aspects of tissue vitality in-vivo.  The benefits of their combination 

into so called ‘multi-parametric’ protocols have already been realised in a small number of 

studies and may provide a more comprehensive characterisation of AD.  As such, the 

application of multi-parametric MRI protocols to mouse models of AD may spawn novel 

imaging-based correlates of the condition and help unlock new mechanisms of disease.  

The Centre of Advanced Biomedical Imaging(CABI) and pharmaceutical manufacturer Eli 

Lilly has forged a collaborative relationship with a mission to develop treatments targeting 

the tangle pathology in AD.  Integral to this effort is the development and evaluation of a 

pre-clinical multi-parametric MRI protocol sensitive to NFT accumulation in the rTg4510 

mouse model of AD.  The staging of the progression of tau pathology through these 

measurements will provide a test bed for the evaluation of drug efficacy in longitudinal 

studies.  Ensuring the accuracy and precision of MRI data is paramount to achieving this 

goal.  In chapter 3, a protocol was developed to both calibrate and monitor imaging 

gradients of the 9.4T MRI scanner in CABI.  In addition, a post-processing technique was 

implemented to correct for spatial gradient non-linearity away from the magnet iso-centre.  

The use of structural MRI to measure volumetric changes is an established biomarker in AD 

and has formed the cornerstone of early multi-parametric MRI studies that have also 

included DTI protocols(42,43,46,70).  Prior to correction, gradient scaling errors were 

calculated that could give rise to a 2.7% overestimation in volumes and 9.8% errors in 

diffusion measurements.  These errors were greatly reduced after adjustments were made 
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to gradient scaling values on the MRI scanner, based on calculations using the new 

calibration method.  Measurements were also used to rescale structural MRI data sets to 

remove effects of scaling discrepancies between different gradient sets used in the 

acquisitions.  This highlighted the importance of consideration of this source of systematic 

error in studies utilising multiple hardware setups.  The stability of scaling values across 

time points was measured and the temporal monitoring of gradients has since been 

employed alongside longitudinal studies in CABI to identify any fluctuations that may occur.   

The incorporation of the gradient calibration protocol developed here into quality 

assurance procedures implemented in pre-clinical laboratories should be trivial.  The 

phantom design can be 3D printed with standard materials and has been made open 

source(https://www.ucl.ac.uk/cabi/publications/open_source) and the software used for 

post processing is freely available to download(http://cmic.cs.ucl.ac.uk/home/software/).  

The versatility of the protocol was demonstrated through acquisition of data using different 

pulse sequences and at multiple resolutions.  Accurate calibration and system monitoring 

was shown to be possible using a relatively low resolution scan to reduce scan time to four 

hours.  Hopefully this work will raise awareness of the importance of accurate gradient 

calibration in pre-clinical systems and provide a useful resource for the pre-clinical imaging 

community. 

This gradient calibration technique has formed the bedrock of the CABI/Eli Lilly multi-

parametric MRI protocol, essential to the acquisition of quantitative data.  In Chapter 4, a 

DTI protocol was developed for longitudinal study of the rTg4510 mouse.  Sitting alongside 

other quantitative MR methodologies, a portion of time for the DTI acquisition was 

allocated from the three hour anaesthesia duration limit stipulated for in-vivo imaging of 

mice.  A SNR and time efficient SE-EPI DTI pulse sequence was optimised to acquire data of 

suitable resolution to generate accurate estimates of diffusion measures in white matter 

regions in the mouse brain.  Steps were taken to reduce motion artifacts, known to plague 

multi-shot EPI acquisitions, and DTI parameter estimates were evaluated against published 

phantom and in-vivo values.  The optimised pulse sequence, which was forty three minutes 

in duration, was then used to acquire DTI data alongside other MRI measures in a single 

timepoint multi-parametric study in rTg4510 mice and wild-type controls.   

DTI parameters measured in the rTg4510 group were significantly different to controls in a 

number of regions.  Measurements in the thalamus, a region of low NFT density, indicated 
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an increased MD in the rTG4510 mice, indicating the sensitivity of this technique to tissue 

changes inflicted by mild pathology.  In the more severely affected regions of the 

hippocampus and cortex, FA and MD were also elevated relative to controls indicating a 

microstructural rearrangement in this tissue that causes a greater diffusion of spins with 

increased directional specificity.  Furthermore, a positive correlation was found between 

regional MD and FA estimates and ranking of hyperphosphorylated tau density.  The 

rTg4510 displays neurodegeneration at the time point imaged and tau pathology has been 

shown previously to correlate with tissue atrophy(13-16).  Therefore caution must be taken 

when interpreting these results, since it may be the case that these DTI measurements are 

also sensitive to other biological changes associated with tissue atrophy in this model. 

The DTI measurements in white matter regions mirror the reduced anisotropic diffusion 

observed AD patients.  In combination with the increased radial diffusivity and unchanged 

axial diffusivity in the rTg4510 relative to controls, this may indicate reduced myelination of 

axons in the white matter tracts of the corpus callosum(98,173,174).  Electron microscopy 

observations in a previous study indicated myelin abnormalities as early as 4 months in the 

rTg4510(205) and further DTI investigations in younger mice would inform on the ability of 

this technique to detect effects of tau pathology at earlier stages of pathogenesis.  The 

retrogenesis hypothesis states that later myelinating regions of white matter in 

neurodevelopment are more vulnerable to damage in AD.  The DTI changes in the rTg4510 

suggest that this may indeed be the case since they were of greater statistical significance 

in the later myelinating rostral section compared to the caudal section of the corpus 

callosum.  However, the promoter driven expression of mutated tau in this model is 

directed to the forebrain and more rostral sections of white matter may be exposed to 

higher levels of tangle pathology.  It is important to recognise that, as with all animal 

models, the rTg4510 does not capture all aspects of the human condition.  There is no 

amyloid pathology and the regional and temporal pattern of NFT progression deviates from 

Braak staging. Nonetheless it does enable the study of unique tau pathology to better 

understand it’s role in AD pathogenesis. 

The changes in microstructure inferred by DTI that were observed in the corpus callosum of 

the rTg4510 were further investigated in Chapter 5 using a recently described MRI 

technique, Quantitative Susceptibility Mapping.  QSM provides an estimate of the bulk 

magnetic susceptibility of tissue and is thought to be a more direct measure of the myelin 
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content in white matter tissue relative to DTI(213).  In this final results chapter, QSM 

protocols were developed and optimised for in-vivo and ex-vivo acquisition and post 

processing.  Regional estimates of magnetic susceptibility were conducted in the rTg4510 

and wild-type controls in the first application of QSM in a mouse model of tauopathy.   The 

QSM measurements in a rostral region of the corpus callosum were increased in the 

rTg4510 mice which may reflect a relative decrease in myelin content in agreement with 

DTI findings in chapter 4.  There were no differences detected in this region in T2* 

measurements and unlike QSM no reduction in contrast was visually apparent between 

rostral white matter and surrounding grey matter.  Like DTI, T2* measurements are 

modulated by a number of mechanisms besides myelin content in tissue.  Quantification of 

myelin using histological measures alongside QSM measures in white matter would allow 

better definition of the relationship observed.  It is also possible that the increases in 

magnetic susceptibility observed in the corpus callosum could be due to the increased 

presence of paramagnetic materials such as iron in the tissue. 

The basal ganglia is known to contain structures that are iron rich relative to the rest of the 

brain and are particularly vulnerable to pathological iron accumulation in AD(214).  The 

striatum, a constituent part of this system, was found to have increased magnetic 

susceptibility in the rTg4510.  Reductions in T2*, the more established method of in-vivo 

iron estimation, supported this finding.  These T2* and QSM findings are in good 

agreement with clinical studies of AD(250) and may indicate that iron deposition in the 

striatum may be related to tangle pathology.  QSM values in the hippocampus, a region 

previously shown exhibit iron accumulation in AD(222), were also paramagnetic in the 

rTG4510 relative to controls.  The lack of findings in the cortex, a region of high NFT 

pathology in the rTg4510, indicates that possible iron driven changes may not be caused by 

iron co localised with NFTs.  Increased histological staining for reactive astrocytes and 

microglia were visually apparent in the corpus callosum and striatum.   The increased 

magnetic susceptibility in the rTg4510 in this region may indicate that rather than tau 

pathology, neuroinflammation and associated iron accumulation may be responsible for 

these changes.  

The work in this thesis has laid the foundations for three MRI techniques important to the 

development of multi-parametric protocols for the in-vivo imaging of AD mouse models.  A 

complete protocol for the system calibration of MRI gradients in pre-clinical scanners has 
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been made open source and available to the imaging community.  The sensitivity of DTI, 

QSM and T2* measurements to effects of NFT accumulation in the brain has been 

demonstrated.  This work could be further extended through longitudinal studies using 

these proven biomarkers alongside detailed histological analysis in the rTg4510 as well as in 

other mouse models to elucidate the relationships iron and myelin have with tangle 

pathology and their roles in neurodegenerative diseases. 
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