
Supplementary material: Challenge Participants Methodology 

While each group employed their own unique pipeline, there were many 

common steps and types of approaches that were implemented, and it will be 

helpful to homogenize the language between them.  There were the common 

pre-processing steps of bias correction, to reduce spatially-varying intensity 

nonuniformities in the image, and standard space alignment, to re-orient the 

images to a consistent anatomical orientation. This orientation is often based on 

a well-established neuroimaging atlas or a groupwise average of the study data. 

After pre-processing, most of the groups segmented the key structures in each 

image, primarily through two main methods. The first method was a tissue 

segmentation that divides the brain into three main tissue types: grey matter 

(GM), white matter (WM), and cerebrospinal fluid (CSF). In some cases, the 

tissue segmentation is simultaneously performed with the bias correction and 

standard space alignment steps. Many groups summed the GM and WM 

components of this tissue segmentation to obtain whole brain regions of interest 

(ROI). The other segmentation approach commonly used was segmentation 

propagation. Here, the unseen image that is to be segmented is registered with 

one or many template datasets that already have the desired structure 

delineated, often by an expert rater. The label describing the structure is 

propagated from the template(s) to the unseen image. In the case of multiple 

templates, a label fusion strategy is required to determine a consensus labeling of 

the ROIs for the unseen image. 

   

Change is often measured simply by computing the volume of an ROI for each 

time point and then taking the difference between the two results. Some 

participants performed a direct measure of change, where the change of volume 

was computed based on the difference between the two images, whether 

intensity based (such as in the boundary shift integral) or deformation based (by 

analyzing the deformation field required to non-linearly align between the two 

images).  

Bahçeşehir University (BAUMIP) 

Bias correction, standard space alignment, and tissue segmentation are 

performed using the unified segmentation framework (Ashburner and Friston, 



2005) that is part of the SPM (Statistical Parametric Mapping) package1 . 

Ventricle segmentation was performed with Automatic Lateral Ventricle 

delIneatioN (ALVIN) (Kempton et al., 2011), an SPM8 extension. Finally, 

hippocampal segmentation was performed using the FSL package FIRST 

(Patenaude et al., 2011), which uses a Bayesian shape and appearance model to 

segment subcortical structures. The participants added a constraint on the 

measures, such that any measurement from a blinded time point could not have 

a volume greater (or in the cases of ventricles, less) than the identified baseline, 

ensuring a change of zero for these instances.   

Brain Image Analysis (Iowa) 

This submission uses an automated image-processing pipeline (Pierson et al., 

2011) based on the BRAINS (Magnotta et al., 2002) software package.  Typically, 

this package expects multimodal data from T1 and T2 images, but for the 

MIRIAD atrophy challenge, it was adapted to handle T1 data only. The steps are 

still quite similar to (Pierson et al., 2011): a multi-step standard space alignment 

(Johnson et al., 2007) to a groupwise template, followed by bias correction using 

the N4 algorithm (Tustison et al., 2010). Tissue segmentations were refined 

using a discriminant classifier, and hippocampal segmentation was performed 

using an artificial neural network (ANN) algorithm. 

CSIRO 

An in-house tissue segmentation method based on (Van Leemput et al., 1999) 

was first performed. The resulting tissue masks were used to skull-strip the T1W 

images. Unbiased within-subject templates were then created with a procedure 

similar to that of FreeSurfer (Reuter 2012). The tissue probability maps were 

propagated to the mean within-subject template space, and averaged across all 

timepoints to generate subject specific priors. Each image was then segmented in 

the mean space using the subject specific priors to generate the final tissue 

segmentations. The within-subject templates were parcellated by segmentation 

propagation using the NiftyReg package2 (Modat et al., 2010) for the non-rigid 

                                                        
1 http://www.fil.ion.ucl.ac.uk/spm/ 

2 http://sourceforge.net/projects/niftyreg/ 

http://sourceforge.net/projects/niftyreg/


registration. Each unseen timepoint was also parcellated in this manner, 

initializing the non rigid registration with the deformation fields computed from 

the within-subject template. Using this first whole brain parcellation, a region of 

interest was defined around the hippocampus, and the procedure was reiterated 

within the ROI to obtain the final hippocampus parcellation. The final 

parcellations were masked using the GM segmentation. The anatomical 

definition of the hippocampus for the template was based on the semi-automatic 

segmentation generated using the Surgical Navigation Technologies (SNT) 

software (Hsu et al., 2002)on the ADNI database. 

Harvard/Mass General Hospital (FreeSurfer) 

All images were processed using the longitudinal pipeline of FreeSurfer (Dale et 

al., 1999; Fischl, 2012; Fischl et al., 1999a, 1999b; Reuter et al., 2012).  First all 

time points are skull stripped and bias corrected. They are then used to create a 

within-subject template by performing an iterative robust, inverse consistent 

rigid registration (Reuter et al., 2010) to an average space, which is based on 

voxelwise intensity median rather than the mean to reduce the effect of outliers. 

The image segmentation as well as pial and white matter surface models are 

constructed on the within-subject template. The surfaces serve as an 

initialization for the surface construction on each individual time point. Initial 

subcortical segmentations are performed by non-linearly registering each image 

to a probabilistic atlas, which consists of 40 subjects of varying age and 

Alzheimer's pathology. In some cases, an additional special flag is used to 

increase flexibility and segmentation accuracy for subjects with very large 

ventricles. After initial segmentations are available, the final image segmentation 

of each time point is performed in the subject template space via label fusion 

incorporating information across all time points. An additional run (FS 5.2 beta) 

was submitted, where a cubic interpolation was used instead of trilinear, and the 

extra processing step to account for subjects with large ventricles was not 

performed. In the meantime FS 5.2 has been shown to produce inaccurate pial 

and white matter surfaces, potentially affecting the full brain measurements (this 

has been resolved in version 5.3). For the challenge, the left and right 

hippocampal volumes are summed. The ventricle volume is represented by left 

and right lateral and inferior lateral ventricle, and includes choroid plexus. The 



full brain measure consists of the partial volume of all labelled structures after 

surface correction, including vessel and optic-chiasm, but without brainstem, 

ventricles (lateral, inferior lateral, 3rd, 4th, 5th), CSF and choroid plexus. 

INRIA Asclepios/Fatebenefratelli (INRIA) 

This submission uses a regional flux analysis (Lorenzi et al., 2012) to determine 

percentage change between each pair of scans for ventricles and hippocampi. 

Before performing the flux analysis, all images in the time series are aligned to 

the baseline using a 9 DOF linear transformation, refining the registration based 

on results from skull stripping (Iglesias and Thompson, 2011). A standard space 

alignment is then performed on the aligned time-series using a 12 DOF affine 

transformation to an atlas created from a subset of healthy elderly subjects from 

the ADNI cohort. All linear registrations were performed by FLIRT (Jenkinson 

and Smith, 2001) and combined into one interpolation step. Non-rigid 

registrations between baseline and follow-up images were performed using the 

LCC-Demons method(Lorenzi et al., 2013), which is an extension of the 

symmetric log demons algorithm (Vercauteren et al., 2008) using a local cross-

correlation as the similarity metric. From the stationary velocity fields obtained 

in the non-rigid registration, the longitudinal atrophy is modeled by obtaining 

the flux of the velocity field at the region boundary. Inward flow across a surface 

represents compression, or atrophy, while outward flow represents expansion. 

Volume change is calculated by integrating the divergence of the velocity field 

over the volume. Unlike the other methods, which attempt to delineate a precise 

boundary around the structure of interest, this method uses ventricular and 

hippocampal regions loosely defined around both the anatomic information and 

priori information of atrophy in AD, estimated from a subset of AD patients in 

the ADNI cohort (Lorenzi et al., 2011). These probabilistic regions were defined 

in the template space and propagated to each image using non-rigid registration. 

Mayo Clinic 

Three separate methods were submitted: one using volumetric differences and 

two using direct measures of change. The first preprocessing step in all three 

submissions was standard space alignment to a template of 400 subjects (200 

controls, 200 AD) aligned to the MNI coordinate system. Next, the image was 



segmented using SPM5 to create a total intracranial volume (TIV) mask, which 

was used for bias correction using N3 (Sled 1998). SPM5 was then re-run on the 

bias corrected images.  The resulting brain mask was cleaned up through a 

region-growing algorithm that started in voxels with high GM and WM 

probabilities. Lateral ventricles and hippocampi were delineated using 

segmentation propagation from the template image, refining the results with the 

corresponding tissue properties at each voxel. Pairwise rigid registration was 

performed between the identified baseline scan and all the follow-up scans for 

each subject using a rigid registration based on the block matching algorithm 

(Ourselin et al., 2001) publicly available in the NiftyReg package.  The 

registration was limited to the region of the TIV mask. The pairwise 

transformations were combined to create a within-subject template space, and 

all images and masks were transformed and resampled into this template space 

at 1mm isotropic resolution. The final step was to create an average image and 

mask from these transformed images. As the BSI method is essentially an 

intensity subtraction, the image intensities need be well-matched. Using 

morphological operators on the automatically delineated brain mask regions 

dominated by CSF, grey matter, and white matter were determined.   For each 

image Gaussian distributions were fitted to intensities in white matter and CSF 

spatial regions.  Image intensities are linearly scaled so that the CSF and white 

matter peaks were at 5,000 and 20,000 arbitrary units.  A single subject mean 

image was calculated as the average of the intensity balanced images after 

spatial co-registration.  The Gaussian fits were repeated for the mean image. In 

addition to white matter and CSF intensities estimates, a grey matter intensity 

estimate is formed by fitting a sum of two Gaussian distributions to regions 

expected to primarily contain grey matter. One of the distributions has a center 

and width fixed at the values obtained from the respective white matter region 

fit.   Images intensities in the individual time point images are adjusted by a 

spline-based remapping to bring the CSF, grey matter and white matter 

intensities estimates in lines with those of the mean image.  A differential bias 

correction is then performed to reduce residual shading artifacts for each input 

image relative to the mean image.  Voxels which are within two standard 

deviations of the gaussian fitted centroids for CSF or white matter in both the 



mean image and each individual image are selected.  The log of the ratio of those 

(scattered) voxels in the individual image to the mean image is 

formed.  Additionally, the outer edges of the log-ratio image are set to zero.  A 

dense field is obtained by tri-linear 3D-interpolation of the defined points in the 

log-ratio image.  The dense field is then smoothed with a gaussian kernel with 

width 20mm.  The resulting field is exponentiated and multiplicatively applied to 

the individual image. The boundary shift integral (BSI; Gunter et al., 2003) was 

computed for the whole brain and ventricle regions, with parameters optimized 

for this data set to find values most consistent with volumetric differences.  The 

second method of direct change was based on non-rigid registration using the 

symmetric normalization (SyN) algorithm (Avants et al., 2008), producing 

deformation fields in both directions for each time-point combination. The 

Jacobians from the resulting deformation field were computed within the brain, 

ventricle, and hippocampal masks to obtain volume change. 

Montreal Neurological Institute (MNI) 

The first pre-processing step is a denoising filter using a patch based method 

(Coupe et al., 2008), followed by bias correction using N3 (Sled et al., 1998), and 

standard space alignment to ICBM152 template space (Collins et al., 1994). A 

within-subject template is created using an iterative groupwise approach: first 

an affine transformation with cross-correlation as the similarity metric, then a 

non-linear registration step using ANIMAL (Collins and Evans, 1997). At the end 

of each iteration, the template is created by averaging the images as well as 

correcting for inter-visit inhomogeneity using a method similar to DBC.  For the 

non-linear registrations, the parameters are modified with increasing iterations 

in a coarse to fine strategy. Segmentation of all structures are performed on the 

template with a patch based method (Coupé et al., 2011; Eskildsen et al., 2011; 

Fonov et al., 2012) using a template that contains manual segmentations labeled 

by experts. The resulting segmentations are then propagated from the subject 

template to each time-point using the deformation fields constructed during the 

template construction. 

   



University College London (UCL) 

Bias correction is performed on all images using the N3 algorithm (Sled et al., 

1998), followed by a groupwise affine registration, using a block matching 

algorithm (Ourselin et al., 2001). In this case, the groupwise is created not only 

with all of the data in the MIRIAD atrophy challenge, but also with the template 

library used for segmentation. The template library consisted of 89 T1-weighted 

scans that had manual segmentations of the brain and ventricles and 66 scans 

that had left and right hippocampal segmentations. It should be noted that the 

template library did not include any scans and segmentations from the MIRIAD 

study. All images and their associated labels were flipped in the left-right 

direction to double the number of images in the template library. Segmentation 

was performed using a multi-atlas segmentation propagation technique. All 

template images were non-linearly registered to the unseen image using a free 

form deformation model in the NiftyReg package (Modat 2010) with normalized 

mutual information as a similarity metric. The propagated labels were then fused 

using STEPS (Cardoso 2013), a modification to the STAPLE technique, where at 

each voxel, only the most similar template images, as determined by the locally 

normalized cross-correlation, are included for the label fusion. A Markov random 

field is added to the label fusion process in order to provide better spatial 

consistency of the labeling. After segmentation, longitudinal change is assessed 

using a symmetric groupwise implementation of differential bias correction and 

the boundary shift integral (Leung et al., 2011).  

University of Pennsylvania (UPenn) 

Our system contains two sequential components: 1) producing segmentations 

for a structure of interest in testing images; 2) estimating volume change for the 

structure of interest. For volume change estimation, both linear registration and 

deformable registration are estimated using the latest version of ANTs software 

(picsl.upenn.edu/ants), which is implemented based on the Version 4 of the 

Insight Toolkit (ITK). We describe each component in detail below. Note that the 

processing decisions made for this challenge were impacted by time constraints 

and may not be optimal in all cases. 

Segmentation of the structure of interest 

Our study focuses on measuring atrophy for the hippocampus. To allow pairwise 



atrophy measurements between any two time points for the hippocampus, for 

each subject, we produce segmentation for the hippocampus at each time point 

using multi-atlas label fusion with 30 randomly selected atlases from the ADNI 

1.5 Tesla dataset. 

To apply the atlas-based approach for segmenting the hippocampus, image-

based registration was performed in two steps: a global affine registration and a 

deformable registration. We follow the registration pipeline implemented by 

AHEAD (http://www.nitrc.org/projects/ahead/; Hanson et al., 2012), which is 

optimized for segmenting the hippocampus. Global affine registration is 

performed using the FSL FLIRT tool (Jenkinson and Smith, 2001) with the 

default parameters. Based on the global affine registration, deformable 

registration is performed using the greedy diffeomorphic Symmetric 

Normalization (SyN) algorithm implemented by ANTS (Avants et al., 2008). SyN 

registrations used the cross-correlation metric with a 5 x 5 x 5 window; 3 

resolution levels with maximum 80, 20 and 5 iterations at the coarse, middle and 

fine levels, respectively; step size 0.25; Gaussian regularization with standard 

deviation of 3 pixels. After registration, reference segmentations from each of the 

atlases were warped into the target image space.  

For each hippocampus, 30 candidate segmentations were produced by warping 

the labels from the atlases. The final segmentation is obtained by combining the 

candidate segmentations with joint label fusion (Wang et al., 2012). The joint 

label fusion algorithm has three parameters: r, the radius of the local appearance 

window 𝒩 used in similarity-based pairwise dependency estimation; rs, the 

radius of the local searching window 𝒩′ used in remedying registration errors; 

and 𝛽, the parameter used to transfer image similarities to dependency 

estimation. For this study, we apply (r, rs, 𝛽) = (2,3,2) to segment all hippocampi, 

which was shown in our previous study (Wang et al., 2012) to be optimal for 

segmenting the hippocampus. 

Processing pipeline for longitudinal change measurements 

Each image underwent intensity inhomogeneity correction using the N4ITK tool 

(Tustison et al., 2010). To measure the longitudinal change in the hippocampus 

between two time points, we applied 9-parameter linear registration that 

accounts for possible anisotropic scaling sometimes present due to scanner drift, 



in addition to rigid rotation and translation. Instead of registering the whole 

brain images, we registered a pair of small ROI images around the hippocampi. 

These ROIs were defined by dilating the hippocampus segmentation mask by 5 

voxels and including 10 additional voxels beyond the boundary of the dilated 

mask. This was done separately for left and right hippocampi. The "Similarity" 

transformation model as implemented in the latest version of ANTs software, 

based on ITKv4, was used. The Mattes mutual information metric is applied with 

32 bins, the regular sampling strategy and 0.05 sampling percentage. Three 

resolution levels with maximum 200, 200 and 50 iterations at the coarse, middle 

and fine levels, respectively. These parameters were selected via optimization on 

the ADNI longitudinal dataset and for speed. 

As has been discussed extensively in the literature (Fox et al., 2011; Reuter et al., 

2010; Yushkevich et al., 2010), to ensure unbiased longitudinal measurements, it 

is important to compute the image similarity metric 𝛱 in a symmetric fashion, so 

that both images undergo the same, minimal number of resampling operations, 

as well as the same amount of global transformation before applying the 

deformable transformations 𝜙1 and 𝜙2 and measuring similarity between them. 

Let 𝑅𝑟𝑒𝑓(𝐼, 𝜓) define a resampling operator that produces an image I’, which is 

resampled in the space of a reference image Iref , from an image I after applying a 

spatial transformation 𝜓 . 

If I and Iref  are defined on a lattice of points {𝑥𝑖} ∈ 𝛺 and {𝑦𝑗} ∈ 𝛺𝑟𝑒𝑓 respectively, 

we have 

𝐼′(𝑦𝑗) = ∑ ℒ(𝜓(𝑦𝑗) − 𝑥𝑖)

𝑖

𝐼(𝑥𝑖) 

where ℒ is an interpolation kernel. We use a tent function which corresponds to 

linear interpolation. If M is the derived global transformation matrix between the 

baseline and followup images IBL and IFU respectively, following (Yushkevich et 

al., 2010), symmetric computation of 𝛱 is given by 

𝛱 [𝑅𝑟𝑒𝑓 (𝐼𝐵𝐿 , 𝑀−
1
2  ∘ 𝜙1) , 𝑅𝑟𝑒𝑓 (𝐼𝐹𝑈 , 𝑀

1
2  ∘ 𝜙2)] 

where ∘ represents the composition operator. 

Deformable registration is performed using the SyN algorithm (Avants et al., 

2010)[1] implemented by the latest ANTs software. For maximal sensitivity in 



longitudinal registration scenarios, we chose the following parameters. The 

Mattes mutual information image similarity metric with a bin size of 32 is used 

for the deformable registration. Three resolution levels with maximum 1200, 

1200 and 100 iterations at the coarse, middle and _ne levels, respectively. Other 

parameters are gradient step = 0.25, update field variance 𝜎 = 2, total field 

variance 𝜎 = 0.5. The input images themselves are not smoothed before metric 

computation. 

Traditional DBM uses Jacobian determinant of the deformation field to estimate 

local change. However, its computation requires computing spatial derivatives of 

𝜙, which is computed in the discrete domain using finite difference 

approximation. This mixes information from a number of neighboring voxels. 

Further, to avoid numerical errors, the deformation field needs to be very 

smooth. Since we are interested in subtle changes over narrow regions, we 

wanted to limit unnecessary smoothing of the deformation field, and cross-

contamination from adjacent ROIs. This motivated us to consider an alternative, 

more direct, way of measuring atrophy using a simple mesh-based approach as 

we did in our previous work (Yushkevich et al., 2010). We fit a volumetric mesh 

consisting of tetrahedral elements to each ROI label in the baseline image. The 

sum of volumes of all the mesh elements is taken as the volume before applying 

the deformation VBD. We apply the 3D deformation field to each vertex of the 

mesh and recompute and add the volumes after deformation VAD. The volume 

change is measured as the volume difference before and after applying the 

deformation field, i.e. VBD - VAD. The TetGen (http://tetgen.berlios.de) software 

package is used for 3D mesh generation. 

Since the segmentation of each time point is performed independently, the 

differences between volumes at different timepoints are likely to be dominated 

by segmentation error, and do not take into account pairwise volume change 

measurements computed by DBM. In order to produce volume measurements 

that take into account the DBM atrophy measurements, we employ the following 

general linear model for each subject: 

 

0 = (1 − 𝑎𝑖𝑗)𝜔𝑖 − 𝜔 + 𝛽 + 𝜖𝑖𝑗 ∀𝑖, 𝑗 ∈ {1, 𝑛} s. t. 𝑖 ≠ 𝑗 ,  

𝜆𝑉𝑘 = 𝜆𝜔𝑘 + 𝜂𝑘  ∀𝑘 ∈ {1, 𝑛}, 



 

where n is the number of timepoints for the subject; 𝜔1 … 𝜔𝑛 are the unknown 

volume measurements to be estimated at each timepoint; aij is the relative 

atrophy computed by DBM in an experiment with i-th timepoint as the baseline 

image and j-th timepoint as the follow-up image; 𝛽 is an unknown parameter 

accounting for bias in volume estimation, and 𝜖𝑖𝑗 ; 𝜂𝑘  are independent identically 

distributed univariate normal random variables with mean 0; and 𝜆 is a 

weighting factor discussed below. Informally, the first part of the model specifies 

that every pair of volume measurements {𝜔𝑖, 𝜔𝑗} should conform to the relative 

atrophy measurement from the DBM experiment, and the second part of the 

model specifies that these volumes should not deviate too much from the 

volumes computed by multi-atlas segmentation. The factor 𝜆 weights the relative 

importance of these components of the model. The model is solved using the 

ordinary least squares approach. Robust regression methods may also be 

employed to help reduce the influence of outlier relative atrophy measurements. 

However, our preliminary examination of the data did not reveal substantial 

effects of outliers and robust regression was not used. The factor 𝜆 was set to 0.1, 

although we found that varying 𝜆 by an order of magnitude had only a minor 

effect on the estimated volumes. 
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