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a b s t r a c t

We derive fixed effects estimators of parameters and average partial effects in (possibly dynamic) nonlin-
ear panel data models with individual and time effects. They cover logit, probit, ordered probit, Poisson
and Tobit models that are important for many empirical applications in micro and macroeconomics. Our
estimators use analytical and jackknife bias corrections to deal with the incidental parameter problem,
and are asymptotically unbiased under asymptotic sequences where N/T converges to a constant. We
develop inference methods and show that they perform well in numerical examples.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Fixed effects estimators of nonlinear panel data models can be
severely biased because of the incidental parameter problem (Ney-
man and Scott, 1948). A growing literature, surveyed in Arellano
and Hahn (2007), shows that the leading term of an asymptotic
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expansion of the bias as both the cross-sectional dimension N and
time series dimension T of the panel grow, can be characterized
and corrected. In models with individual effects, the leading bias
term is of order 1/T and comes from the estimation of the indi-
vidual effects. This result, however, does not apply to models with
individual and time effects, where both of these effects are treated
as parameters to be estimated. In this paper we show that the es-
timation of the time effects causes an additional incidental param-
eter bias of order 1/N . Thus, if N and T are similarly large, the bias
produced by the estimation of the time effects is of similar order of
magnitude to the bias produced by the estimation of the individ-
ual effects, and both biases need to be corrected. We provide the
corresponding analytical and jackknife bias corrections.

The asymptotic approximation to the fixed effects estimators
that lets the two dimensions of the panel to grow with the sample
size is motivated by the recent availability of long panels and other
large pseudo-panel data structures where the indices might not
correspond to individuals and time periods. Examples of these data
sets include traditional microeconomic panel surveys with a long
history of data such as the PSID and NLSY, international cross-
country panels such as the PennWorld Table, U.S. state level panels
over time such as the CPS, and square pseudo-panels of trade flows
across countries such as the Feenstra’s World Trade Flows and
CEPII, where the indices correspond to the same countries indexed
as importers and exporters.
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We focus on semi-parametric models with log-likelihood
functions that are concave in all parameters, and where each
individual effect αi and time effect γt enter the log-likelihood for
observation (i, t) additively as αi + γt . This is the most common
specification for the individual and time effects in linear models
and is also a natural specification in the nonlinear models that
we consider. Imposing concavity of the log-likelihood function
greatly facilitates showing consistency in our setting where the
dimension of the parameter space grows with the sample size. The
most popular limited dependent variable models, including logit,
probit, ordered probit, Tobit and Poissonmodels have concave log-
likelihood functions, possibly after reparametrization (Olsen, 1978,
and Pratt, 1981). We note here that the general expansion that we
derive in Appendix B do not impose additivity and concavity, but
we use these restrictions to apply the expansion to fixed effects
estimators. The models that we consider are semi-parametric
because the joint distribution of the explanatory variables and the
unobserved effects is left unspecified. The explanatory variables
can be either strictly exogenous or predetermined.

We derive bias expansions and corrections for fixed effects
estimators of common parameters β and average partial effects
(APEs). The vector β includes all the unknown parameters that
enter the log-likelihood function other than the individual and
time effects, such as index coefficients in a probit model. The
APEs are functions of the data, the common parameters, and the
individual and time effects in nonlinear models. We find that the
properties of the fixed effects estimators of β and the APEs are
different. For β , the order of the bias is 1/T + 1/N , which is
of the same as the rate of convergence 1/

√
NT under sequences

where N/T converges to a constant. For the APEs, we uncover
that the incidental parameter problem is negligible asymptotically
because the order of the bias, 1/N + 1/T , is smaller than the rate
of convergence, which is 1/

√
N + 1/

√
T , slower than for model

parameters. To the best of our knowledge, this rate result is new for
fixed effects estimators of average partial effects in nonlinear panel
models with individual and time effects.1 In numerical examples
we find that the bias corrections, while not necessary to center the
asymptotic distribution of APE estimators, do improve their finite-
sample properties, specially in dynamic models.

The bias correction eliminates the bias terms of orders 1/T and
1/N from the fixed effects estimators. We consider two methods
to implement the correction: an analytical bias correction similar
to Hahn and Newey (2004) and Hahn and Kuersteiner (2011), and
a suitable modification of the split panel jackknife of Dhaene and
Jochmans (2015).2 However, the theory of theprevious papers does
not cover the models that we consider, because, in addition to not
allowing for time effects, it assumes either identical distribution or
stationarity over time for the processes of the observed variables,
conditional on the unobserved effects. These assumptions are
violated in ourmodels due to the presence of the time effects, sowe
need to adjust the asymptotic theory accordingly. The individual
and time effects introduce strong correlation in both dimensions of
the panel. Conditional on the unobserved effects, we impose cross-
sectional independence and weak time-serial dependence, and we
allow for heterogeneity in both dimensions.

Simulation evidence indicates that our corrections improve
the estimation and inference performance of the fixed effects
estimators of parameters and average effects. The analytical
corrections dominate the jackknife corrections in a probit model

1 Galvao andKato (2014) also found slow rates of convergence for fixed effects es-
timators in linearmodelswith individual effects undermisspecification. Fernández-
Val and Lee (2013) pointed out this issue in nonlinear models with only individual
effects.
2 A similar split panel jackknife bias correctionmethodwas outlined inHu (2002).
for sample sizes that are relevant for empirical practice. In the
online supplement (see Appendix E), we illustrate the corrections
with an empirical application on the relationship between
competition and innovation using a panel of U.K. industries,
following Aghion et al. (2005). We find that the inverted-U pattern
relationship found by Aghion et al. is robust to relaxing the
strict exogeneity assumption of competition with respect to the
innovation process and to the inclusion of innovation dynamics.
We also uncover substantial positive state dependence in the
innovation process.
Literature review. The Neyman and Scott incidental parameter
problem has been extensively discussed in the econometric
literature; see, for example, Heckman (1981), Lancaster (2000), and
Greene (2004). There is also a vast literature that shows how to
tackle the problem in specific models under asymptotic sequences
where T is fixed and N grows to infinity. However, there are
results, e.g. from Honoré and Tamer (2006), Chamberlain (2010),
and Chernozhukov et al. (2013), showing that model parameters
and APEs are not point identified in important nonlinear panel
datamodels under fixed-T asymptotic sequences, implying that no
fixed-T consistent point estimators exist in these models.

A recent response to the incidental parameter problem is to
adopt an alternative asymptotic approximation where both N and
T grow with the sample size. Under these large-T sequences,
the fixed effects estimator is consistent but has bias in the
asymptotic distribution. This asymptotic bias is the large-T version
of the incidental parameter problem and has motivated the
development of bias corrections. Examples of papers that use
this approximation include Phillips and Moon (1999), Hahn and
Kuersteiner (2002), Lancaster (2002), Woutersen (2002), Alvarez
and Arellano (2003), Hahn and Newey (2004), Carro (2007),
Arellano and Bonhomme (2009), Fernández-Val (2009), Hahn and
Kuersteiner (2011), Fernández-Val and Vella (2011) and Kato et al.
(2012). This previous work, however, does not cover models with
time effects.3 Our contribution to this literature is to extend the
large-T bias corrections to models with two-way unobserved
effects such as the individual and time effects commonly included
in linear models.

The large-T panel literature on models with both individual
and time effects is sparse. Pesaran (2006), Bai (2009) and Moon
andWeidner (forthcoming, 2015b) study linear regression models
with interactive individual and time fixed effects. The fixed effects
estimators in these models also have asymptotic bias of order
1/T + 1/N , but the methods used to derive this bias rely on
linearity and therefore cannot be applied to the nonlinear models
that we consider. Hahn and Moon (2006) consider bias corrected
fixed effects estimators in panel linear autoregressive models
with additive individual and time effects. Regarding non-linear
models, there is independent and contemporaneous work by
Charbonneau (2012, 2014), which extends the conditional fixed
effects estimators to logit and Poisson models with individual
and time effects. She differences out the individual and time
effects by conditioning on sufficient statistics. The conditional
approach completely eliminates the asymptotic bias coming from
the estimation of the incidental parameters, but it does not
permit estimation of average partial effects and has not been
developed for models with predetermined regressors. We instead
consider estimators of model parameters and average partial
effects in nonlinear models with predetermined regressors. The
two approaches can therefore be considered as complementary.

3 An exception is Woutersen (2002), which considers a special type of grouped
time effects whose number is fixed with T . We instead consider an unrestricted set
of T time effects, one for each time period.
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Outline of the paper. The rest of the paper is organized as follows.
Section 2 introduces the model and fixed effects estimators. Sec-
tion 3 describes the bias corrections to deal with the incidental
parameter problem and illustrates how the bias corrections work
through an example. Section 4 provides the asymptotic theory.
Section 5 presents Monte Carlo results. The Appendix collects the
proofs of the main results, and an online supplement to the paper
contains additional technical derivations, numerical examples, and
an empirical application (Fernández-Val andWeidner, 2015b) (see
Appendix E).

2. Model and estimators

2.1. Model

The data consist of N × T observations {(Yit , X ′

it)
′

: 1 ≤ i ≤

N, 1 ≤ t ≤ T }, for a scalar outcome variable of interest Yit and a
vector of explanatory variables Xit . We assume that the outcome
for individual i at time t is generated by the sequential process:

Yit | X t
i , α, γ , β ∼ fY (· | Xit , αi, γt , β),

(i = 1, . . . ,N; t = 1, . . . , T ),

where X t
i = (Xi1, . . . , Xit), α = (α1, . . . , αN), γ = (γ1, . . . , γT ),

fY is a known probability function, and β is a finite dimensional
parameter vector. The variables αi and γt are unobserved individ-
ual and time effects that in economic applications capture individ-
ual heterogeneity and aggregate shocks, respectively. The model
is semiparametric because we do not specify the distribution of
these effects nor their relationship with the explanatory variables.
The conditional distribution fY represents the parametric part of
the model. The vector Xit contains predetermined variables with
respect to Yit . Note that Xit can include lags of Yit to accommodate
dynamic models.

We consider two running examples throughout the analysis:

Example 1 (Binary Response Model). Let Yit be a binary outcome
and F be a cumulative distribution function, e.g. the standard
normal or standard logistic distribution. We can model the
conditional distribution of Yit using the single-index specification
with individual and time effects

fY (y | Xit , αi, γt , β) = F(X ′

itβ + αi + γt)
y

× [1 − F(X ′

itβ + αi + γt)]
1−y, y ∈ {0, 1}.

In a labor economics application, Y can be an indicator for female
labor force participation and X can include fertility indicators and
other socio-economic characteristics.

Example 2 (Poisson Model). Let Yit be a non-negative integer-
valued outcome, and f (·; λ) be the probability mass function of
a Poisson random variable with mean λ > 0. We can model the
conditional distribution of Yit using the single index specification
with individual and time effects

fY (y | Xit , αi, γt , β) = f (y; exp[X ′

itβ + αi + γt ]),

y ∈ {0, 1, 2, . . . .}.

In an industrial organization application, Y can be the number of
patents that a firm produces and X can include investment in R&D
and other firm characteristics.

For estimation, we adopt a fixed effects approach, treating
the realization of the unobserved individual and time effects as
parameters to be estimated. We collect all these effects in the
vector φNT = (α1, . . . , αN , γ1, . . . , γT )

′. The model parameter β
usually includes regression coefficients of interest,while the vector
φNT is treated as a nuisance parameter. The true values of the
parameters, denoted by β0 and φ0
NT = (α0

1, . . . , α
0
N , γ 0

1 , . . . , γ 0
T )′,

are the solution to the population conditionalmaximum likelihood
problem

max
(β,φNT )∈Rdimβ+dimφNT

Eφ[LNT (β, φNT )],

LNT (β, φNT ) := (NT )−1/2


i,t

log fY (Yit | Xit , αi, γt , β)

− b(v′

NTφNT )
2/2

, (2.1)

for every N, T , where Eφ denotes the expectation with respect to
the distribution of the data conditional on the unobserved effects
and initial conditions including strictly exogenous variables, b > 0
is an arbitrary constant, vNT = (1′

N , −1′

T )
′, and 1N and 1T denote

vectors of oneswith dimensionsN and T . Existence anduniqueness
of the solution to the population problem will be guaranteed by
our assumptions in Section 4, including concavity of the objective
function in all parameters. The second term ofLNT is a penalty that
imposes a normalization needed to identify φNT in models with
scalar individual and time effects that enter additively into the log-
likelihood function as αi + γt .4 In this case, adding a constant to
all αi, while subtracting it from all γt , does not change αi + γt . To
eliminate this ambiguity, we normalize φ0

NT to satisfy v′

NTφ
0
NT = 0,

i.e.


i α
0
i =


t γ

0
t . The penalty produces a maximizer of LNT

that is automatically normalized. We could equivalently impose
v′

NTφNT = 0 as a constraint, but for technical reasons we prefer
to work with an unconstrained optimization problem. There are
other possible normalizations for φNT , such as α1 = 0. The model
parameter β is invariant to the choice of normalization, that is,
our asymptotic results on the estimator for β are independent of
this choice of normalization. Our choice is convenient for certain
intermediate results that involve the incidental parameter φNT , its
score vector and its Hessian matrix. The pre-factor (NT )−1/2 in
LNT (β, φNT ) is just a rescaling.

Other quantities of interest involve averages over the data and
unobserved effects

δ0
NT = E[∆NT (β

0, φ0
NT )],

∆NT (β, φNT ) = (NT )−1

i,t

∆(Xit , β, αi, γt),
(2.2)

where E denotes the expectation with respect to the joint
distribution of the data and the unobserved effects, provided that
the expectation exists. δ0

NT is indexed by N and T because the
marginal distribution of {(Xit , αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T }

can be heterogeneous across i and/or t; see Section 4.2. These
averages include average partial effects (APEs), which are often the
ultimate quantities of interest in nonlinear models. The APEs are
invariant to the choice of normalization for φNT if αi and γt enter
∆(Xit , β, αi, γt) as αi + γt . Some examples of partial effects that
satisfy this condition are the following:

Example 1 (Binary Response Model). If Xit,k, the kth element of Xit ,
is binary, its partial effect on the conditional probability of Yit is

∆(Xit , β, αi, γt) = F(βk + X ′

it,−kβ−k + αi + γt)

4 In Appendix B we derive asymptotic expansions that apply to general models
with multiple unobserved effects. In order to use these expansions to obtain the
asymptotic distribution of the panel fixed effects estimators, we need to derive
the properties of the expected Hessian of the incidental parameters, a matrix with
increasing dimension, and to show the consistency of the estimator of the incidental
parameter vector. The additive specification αi + γt is useful to characterize the
Hessian and we impose strict concavity of the objective function to show the
consistency.
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− F(X ′

it,−kβ−k + αi + γt), (2.3)

where βk is the kth element of β , and Xit,−k and β−k include
all elements of Xit and β except for the kth element. If Xit,k is
continuous and F is differentiable, the partial effect of Xit,k on the
conditional probability of Yit is

∆(Xit , β, αi, γt) = βk∂F(X ′

itβ + αi + γt), (2.4)

where ∂F is the derivative of F .

Example 2 (Poisson Model). If Xit includes Zit and some known
transformation H(Zit) with coefficients βk and βj, the partial effect
of Zit on the conditional expectation of Yit is

∆(Xit , β, αi, γt) = [βk + βj∂H(Zit)] exp(X ′

itβ + αi + γt). (2.5)

2.2. Fixed effects estimators

We estimate the parameters by solving the sample analog of
problem (2.1), i.e.

max
(β,φNT )∈Rdimβ+dimφNT

LNT (β, φNT ). (2.6)

As in the population case, we shall impose conditions guaranteeing
that the solution to this maximization problem exists and is
unique with probability approaching one as N and T become large.
For computational purposes, we note that the solution to the
program (2.6) for β is the same as the solution to the program that
imposes v′

NTφNT = 0 directly as a constraint in the optimization,
and is invariant to the normalization. In our numerical examples
we impose either α1 = 0 or γ1 = 0 directly by dropping
the first individual or time effect. This constrained program has
good computational properties because its objective function is
concave and smooth in all the parameters. We have developed the
commands probitfe and logitfe in Stata to implement the
methods of the paper for probit and logit models (Cruz-González
et al., 2015).5 When N and T are large, e.g., N > 2,000 and T > 50,
we recommend the use of optimization routines that exploit the
sparsity of the designmatrix of themodel to speed up computation
such as the package Speedglm in R (Enea, 2012). For a probit
model withN = 2,000 and T = 52, Speedglm computes the fixed
effects estimator in less than 2 min with a 2 × 2.66 GHz 6-Core
Intel Xeon processor, more than 7.5 times faster than our Stata
command probitfe and more than 30 times faster than the R
command glm.6

To analyze the statistical properties of the estimator of β it is
convenient to first concentrate out the nuisance parameterφNT . For
given β , we define the optimalφNT (β) asφNT (β) = argmax

φNT∈RdimφNT

LNT (β, φNT ). (2.7)

The fixed effects estimators of β and φNT areβNT = argmax
β∈Rdimβ

LNT (β,φNT (β)) , φNT =φNT (β). (2.8)

Estimators of APEs can be formed by plugging-in the estimators
of the model parameters in the sample version of (2.2), i.e.δNT = ∆NT (β,φNT ). (2.9)

Again,δNT is invariant to the normalization chosen for φNT if αi and
γt enter ∆(Xit , β, αi, γt) as αi + γt .

5 We refer to this companion work for computational details.
6 Additional comparisons of computational times are available from the authors

upon request.
3. Incidental parameter problem and bias corrections

In this sectionwe give a heuristic discussion of themain results,
leaving the technical details to Section 4. We illustrate the analysis
with numerical calculations based on a variation of the classical
Neyman and Scott (1948) variance example.

3.1. Incidental parameter problem

Fixed effects estimators in nonlinear models suffer from the
incidental parameter problem (Neyman and Scott, 1948). The
source of the problem is that the dimension of the nuisance
parameter φNT increases with the sample size under asymptotic
approximations where either N or T passes to infinity. To describe
the problem let

βNT := argmax
β∈Rdimβ

Eφ


LNT (β,φNT (β))


. (3.1)

The fixed effects estimator is inconsistent under the traditional
Neyman and Scott asymptotic sequences where N → ∞ and T is
fixed, i.e., plimN→∞ βNT ≠ β0. Similarly, the fixed effects estimator
is inconsistent under asymptotic sequences where T → ∞ and N
is fixed, i.e., plimT→∞ βNT ≠ β0. Note that βNT = β0 ifφNT (β) is
replaced byφNT (β) = argmaxφNT∈RdimφNT Eφ[LNT (β, φNT )]. Under
asymptotic approximations where either N or T is fixed, there
is only a fixed number of observations to estimate some of the
components of φNT , T for each individual effect or N for each time
effect, rendering the estimator φNT (β) inconsistent for φNT (β).
The nonlinearity of the model propagates the inconsistency to the
estimator of β .

A key insight of the large-T panel data literature is that
the incidental parameter problem becomes an asymptotic bias
problem under an asymptotic approximation where N → ∞ and
T → ∞ (e.g., Arellano and Hahn, 2007). For models with only
individual effects, this literature derived the expansionβNT = β0

+

B/T +oP(T−1) asN, T → ∞, for some constant B. The fixed effects
estimator is consistent because plimN,T→∞ βNT = β0, but has
bias in the asymptotic distribution if B/T is not negligible relative
to 1/

√
NT , the order of the standard deviation of the estimator.

This asymptotic bias problem, however, is easier to tackle than the
inconsistency problem that arises under the traditional Neyman
and Scott asymptotic approximation. We show that the same
insight still applies to models with individual and time effects, but
with a different expansion for βNT . We characterize the expansion
and develop bias corrections.

3.2. Bias expansions and bias corrections

Some expansions can be used to explain our corrections. For
smooth likelihoods and under appropriate regularity conditions, as
N, T → ∞,

βNT = β0
+ B

β

∞
/T + D

β

∞
/N + oP(T−1

∨ N−1), (3.2)

for some B
β

∞
and D

β

∞
that we characterize in Theorem 4.1 and

explain in Remark 2, where a∨b := max(a, b). Unlike in nonlinear
models without incidental parameters, the order of the bias is
higher than the inverse of the sample size (NT )−1 due to the slow
rate of convergence ofφNT . Note also that by the properties of the
maximum likelihood estimator
√
NT (βNT − βNT ) →d N (0, V∞),

for some V∞ that we also characterize in Theorem 4.1. Under
asymptotic sequences where N/T → κ2 as N, T → ∞, the fixed
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effects estimator is asymptotically biased because
√
NT (βNT − β0) =

√
NT (βNT − βNT )

+
√
NT (B

β

∞
/T + D

β

∞
/N + oP(T−1

∨ N−1))

→d N (κB
β

∞
+ κ−1D

β

∞
, V∞). (3.3)

Relative to fixed effects estimators with only individual effects,
the presence of time effects introduces additional asymptotic
bias through D

β

∞
. This asymptotic result predicts that the fixed

effects estimator can have significant bias relative to its dispersion.
Moreover, confidence intervals constructed around the fixed
effects estimator can severely undercover the true value of the
parameter even in large samples. We show that these predictions
provide a good approximations to the finite sample behavior of the
fixed effects estimator through analytical and simulation examples
in Sections 3.3 and 5.

The analytical bias correction consists of subtracting estimators
of the leading terms of the bias from the fixed effect estimator of
β . LetBβ

NT andDβ

NT be estimators of B
β

∞
and D

β

∞
as defined in (4.6).

The bias corrected estimator can be formed asβA
NT = βNT −Bβ

NT/T −Dβ

NT/N.

If N/T → κ2,Bβ

NT →P B
β

∞
, andDβ

NT →P D
β

∞
, then

√
NT (βA

NT − β0) →d N (0, V∞).

The analytical correction therefore centers the asymptotic dis-
tribution at the true value of the parameter, without increasing
asymptotic variance. This asymptotic result predicts that in large
samples the corrected estimator has small bias relative to disper-
sion, the correction does not increase dispersion, and the confi-
dence intervals constructed around the corrected estimator have
coverage probabilities close to the nominal levels. We show that
these predictions provide a good approximations to the behavior
of the corrections in Sections 3.3 and 5 even in small panels with
N < 60 and T < 15.

We also consider a jackknife bias correction method that
does not require explicit estimation of the bias. This method is
based on the split panel jackknife (SPJ) of Dhaene and Jochmans
(2015) applied to the time and cross-section dimension of the
panel. Alternative jackknife corrections based on the leave-one-
observation-out panel jackknife (PJ) of Hahn and Newey (2004)
and combinations of PJ and SPJ are also possible. We do not
consider corrections based on PJ because they are theoretically
justified by second-order expansions of βNT that are beyond the
scope of this paper.

To describe our generalization of the SPJ, define the fixed effects
estimator of β in the subpanel with cross sectional indices A and
time series indices B asβA,B ∈ argmax

β∈Rdimβ

max
α(A)∈R|A|

× max
γ (B)∈R|B|


i∈A,t∈B

log fY (Yit | Xit , αi, γt , β),

where α(A) = (αi : i ∈ A) and γ (B) = (γt : t ∈ B). LetβN,T/2 be the average of the 2 split jackknife estimators in the
subpanels with A = {1, 2, . . . ,N}, and B = {1, 2, . . . , T/2} or
B = {T/2 + 1, T/2 + 2, . . . , T }, i.e. including all the individu-
als and leaving out the first and second halves of the time peri-
ods. LetβN/2,T be the average of the 2 split jackknife estimators in
the subpanels with B = {1, 2, . . . , T }, and A = {1, 2, . . . ,N/2} or
A = {N/2 + 1,N/2 + 2, . . . ,N}, i.e. including all the time periods
and leaving out half of the individuals of the panel.7 In choosing the
cross sectional indexing of the panel, one might want to take into
account individual clustering structures and other dependences to
preserve them in the SPJ. For example, all the individuals belong-
ing to the same cluster should be indexed such that they remain
in the same subpanel after the cross sectional split. If there are no
cross sectional dependences, the indexing of the individuals is un-
restricted.We recommend to constructβN/2,T as the average of the
estimators obtained from all possible partitions of N/2 individuals
to avoid ambiguity and arbitrariness in the choice of the division.8
The bias corrected estimator isβ J
NT = 3βNT −βN,T/2 −βN/2,T . (3.4)

To give some intuition about how the corrections work, note thatβ J
NT − β0 = (βNT − β0) − (βN,T/2 −βNT ) − (βN/2,T −βNT ),

whereβN,T/2 −βNT = B
β

∞
/T + oP(T−1

∨N−1) andβN/2,T −βNT =

D
β

∞
/N + oP(T−1

∨N−1). Relative toβNT ,βN,T/2 has double the bias
coming from the estimation of the individual effects because it is
based on subpanels with half of the time periods, and βN/2,T has
double the bias coming from the estimation of the time effects be-
cause it is based on subpanels with half of the individuals. The time
series split removes the bias term B

β

∞
and the cross sectional split

removes the bias term D
β

∞
.

3.3. Illustrative example

To illustrate how the bias corrections work in finite samples,
we consider a simple model where the solution to the population
program (3.1) has closed form. This model corresponds to a
variation of the classical Neyman and Scott (1948) variance
example that includes both individual and time effects, Yit |

α, γ , β ∼ N (αi + γt , β). It is well-know that in this caseβNT = (NT )−1

i,t


Yit − Ȳi. − Ȳ.t + Ȳ..

2
,

where Ȳi. = T−1
t Yit , Ȳ.t = N−1

i Yit , and Ȳ.. = (NT )−1
i,t Yit . Moreover, from the well-known results on the degrees of

freedom adjustment of the estimated variance

βNT = Eφ[βNT ] = β0 (N − 1)(T − 1)
NT

= β0

1 −

1
T

−
1
N

+
1
NT


,

so that B
β

∞
= −β0 and D

β

∞
= −β0.9

To form the analytical bias correction we can setBβ

NT = −βNT

andDβ

NT = −βNT . This yieldsβA
NT = βNT (1 + 1/T + 1/N) with

β
A
NT = Eφ[βA

NT ] = β0

1 −

1
T 2

−
1
N2

−
1
NT

+
1

NT 2
+

1
N2T


.

This correction reduces the order of the bias from (T−1
∨ N−1)

to (T−2
∨ N−2), and introduces additional higher order terms.

7 When T is oddwe defineβN,T/2 as the average of the 2 split jackknife estimators
that use overlapping subpanels with B = {1, 2, . . . , (T + 1)/2} and B = {(T +

1)/2, (T + 1)/2 + 1, . . . , T }. We defineβN/2,T similarly when N is odd.
8 There are P =


N

N/2


different cross sectional partitions with N/2 individuals.

When N is large, we can approximate the average over all possible partitions by the
average over S ≪ P randomly chosen partitions to speed up computation.
9 Okui (2013) derived the bias of fixed effects estimators of autocovariances and

autocorrelations in this model.
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Table 1
Biases and Standard Deviations for Yit | α, γ , β ∼ N (αi + γt , β).

N = 10 N = 25 N = 50
T = 10 T = 10 T = 25 T = 10 T = 25 T = 50

(βNT − β0)/β0
−.19 −.14 −.08 −.12 −.06 −.04

(β
A
NT − β0)/β0

−.03 −.02 .00 −.01 −.01 .00
(β

J
NT − β0)/β0

−.01 .00 .00 .00 .00 .00
VNT /β

0 .13 .08 .05 .06 .04 .03
V

A
NT /β

0 .14 .09 .06 .06 .04 .03
V

J
NT /β

0 .17 .10 .06 .07 .04 .03

Notes: V
J
NT obtained by 50,000 simulations with β0

= 1.
The analytical correction increases finite-sample variance because
the factor (1 + 1/T + 1/N) > 1. We compare the biases and
standard deviations of the fixed effects estimator and the corrected
estimator in a numerical example below.

For the Jackknife correction, straightforward calculations give

β
J
NT = Eφ[β J

NT ] = 3βNT − βN,T/2 − βN/2,T = β0

1 −

1
NT


.

The correction therefore reduces the order of the bias from (T−1
∨

N−1) to (TN)−1.10

Table 1 presents numerical results for the bias and standard de-
viations of the fixed effects and bias corrected estimators in finite
samples. We consider panels with N, T ∈ {10, 25, 50}, and only
report the results for T ≤ N since all the expressions are symmet-
ric in N and T . All the numbers in the table are in percentage of the
true parameter value, so we do not need to specify the value of β0.
We find that the analytical and jackknife corrections offer substan-
tial improvements over the fixed effects estimator in terms of bias.
The first and fourth row of the table show that the bias of the fixed
effects estimator is of the same order of magnitude as the standard
deviation, where VNT = Var[βNT ] = 2(N − 1)(T − 1)(β0)2/(NT )2

under independence of Yit over i and t conditional on the unob-
served effects. The fifth row shows the increase in standard devia-
tion due to analytical bias correction is small compared to the bias
reduction, where V

A
NT = Var[βA

NT ] = (1 + 1/N + 1/T )2VNT . The
last row shows that the jackknife yields less precise estimates than
the analytical correction when T = 10.

Table 2 illustrates the effect of the bias on the inference based
on the asymptotic distribution. It shows the coverage probabilities
of 95% asymptotic confidence intervals for β0 constructed in the
usual way as

CI.95(β) = β ± 1.96V 1/2
NT = β(1 ± 1.96


2/(NT )),

whereβ = {βNT ,βA
NT ,
β J

NT } andVNT = 2β2/(NT ) is an estimator
of the asymptotic variance V∞/(NT ) = 2(β0)2/(NT ). To find the
coverage probabilities, we use that NTβNT/β

0
∼ χ2

(N−1)(T−1) andβA
NT = (1 + 1/N + 1/T )βNT . These probabilities do not depend on

the value of β0 because the limits of the intervals are proportional
to β . For the Jackknife we compute the probabilities numerically
by simulation with β0

= 1. As a benchmark of comparison, we
also consider confidence intervals constructed from the unbiased
estimatorβNT = NTβNT/[(N − 1)(T − 1)]. Here we find that the
confidence intervals based on the fixed effect estimator display

10 In this example it is possible to develop higher-order jackknife corrections that
completely eliminate the bias because we know the entire expansion of βNT . For
example,Eφ [4βNT−2βN,T/2−2βN/2,T+βN/2,T/2] = β0 , whereβN/2,T/2 is the average
of the four split jackknife estimators that leave out half of the individuals and the
first or the second halves of the time periods. See Dhaene and Jochmans (2015) for
a discussion on higher-order bias corrections of panel fixed effects estimators.
Table 2
Coverage probabilities for Yit | α, γ , β ∼ N (αi + γt , β).

N = 10 N = 25 N = 50
T = 10 T = 10 T = 25 T = 10 T = 25 T = 50

CI.95(βNT ) .56 .55 .65 .44 .63 .68
CI.95(βA

NT ) .89 .92 .93 .92 .94 .94

CI.95(β J
NT ) .89 .91 .93 .92 .93 .94

CI.95(βNT ) .91 .93 .94 .93 .94 .94

Notes: Nominal coverage probability is .95. CI.95(β J
NT ) obtained by 50,000

simulations with β0
= 1.

severe undercoverage for all the sample sizes. The confidence
intervals based on the corrected estimators have high coverage
probabilities, which approach the nominal level as the sample
size grows. Moreover, the bias corrected estimators produce
confidence intervalswith very similar coverage probabilities to the
ones from the unbiased estimator.

4. Asymptotic theory for bias corrections

In nonlinear panel data models the population problem (3.1)
generally does not have closed form solution, so we need to rely on
asymptotic arguments to characterize the terms in the expansion
of the bias (3.2) and to justify the validity of the corrections.

4.1. Asymptotic distribution of model parameters

We consider panel models with scalar individual and time ef-
fects that enter the likelihood function additively through πit =

αi + γt . In these models the dimension of the incidental parame-
ters is dimφNT = N +T . The leading cases are single indexmodels,
where the dependence of the likelihood function on the parame-
ters is through an index X ′

itβ + αi + γt . These models cover the
probit and Poisson specifications of Examples 1 and 2. The addi-
tive structure only applies to the unobserved effects, so we can al-
low for scale parameters to cover the Tobit and negative binomial
models. We focus on these additive models for computational and
analytical tractability, because we can establish the consistency of
the fixed effects estimators under a concavity assumption in the
log-likelihood function with respect to all the parameters.

The parametric part of our panel models takes the form

log fY (Yit | Xit , αi, γt , β) =: ℓit(β, πit). (4.1)
We denote the derivatives of the log-likelihood function ℓit by
∂βℓit(β, π) := ∂ℓit(β, π)/∂β , ∂ββ ′ℓit(β, π) := ∂2ℓit(β, π)/(∂β
∂β ′), ∂πqℓit(β, π) := ∂qℓit(β, π)/∂π q, q = 1, 2, 3, etc. We drop
the arguments β and π when the derivatives are evaluated at the
true parameter values β0 and π0

it := α0
i + γ 0

t , e.g. ∂πqℓit :=

∂πqℓit(β
0, π0

it ). We also drop the dependence on NT from all the
sequences of functions and parameters, e.g. we use L for LNT and
φ for φNT .

We make the following assumptions:
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Assumption 4.1 (Panel Models). Let ν > 0 and µ > 4(8 + ν)/ν.
Let ε > 0 and let B0

ε be a subset of Rdimβ+1 that contains an ε-
neighborhood of (β0, π0

it ) for all i, t,N, T .11

(i) Asymptotics: we consider limits of sequences where N/T →

κ2, 0 < κ < ∞, as N, T → ∞.
(ii) Sampling: conditional on φ, {(Y T

i , XT
i ) : 1 ≤ i ≤ N} is

independent across i and, for each i, {(Yit , Xit) : 1 ≤ t ≤ T }

is α-mixing with mixing coefficients satisfying supi ai(m) =

O(m−µ) as m → ∞, where

ai(m) := sup
t

sup
A∈Ai

t ,B∈Bi
t+m

|P(A ∩ B) − P(A)P(B)|,

and for Zit = (Yit , Xit), Ai
t is the sigma field generated

by (Zit , Zi,t−1, . . .), and B i
t is the sigma field generated by

(Zit , Zi,t+1, . . .).
(iii) Model: for X t

i = {Xis : s = 1, . . . , t}, we assume that for all
i, t,N, T ,

Yit | X t
i , φ, β ∼ exp[ℓit(β, αi + γt)].

The realizations of the parameters and unobserved effects that
generate the observed data are denoted by β0 and φ0.

(iv) Smoothness and moments: We assume that (β, π) →

ℓit(β, π) is four times continuously differentiable over B0
ε

a.s. The partial derivatives of ℓit(β, π) with respect to the
elements of (β, π) up to fourth order are bounded in absolute
value uniformly over (β, π) ∈ B0

ε by a function M(Zit) > 0
a.s., and maxi,t Eφ[M(Zit)8+ν

] is a.s. uniformly bounded over
N, T .

(v) Concavity: For all N, T , (β, φ) → L(β, φ) = (NT )−1/2
{


i,t
ℓit(β, αi+γt)−b(v′φ)2/2} is strictly concave over Rdimβ+N+T

a.s. Furthermore, there exist constants bmin and bmax such that
for all (β, π) ∈ B0

ε , 0 < bmin ≤ −Eφ


∂π2ℓit(β, π)


≤ bmax

a.s. uniformly over i, t,N, T .

Remark 1 (Assumption 4.1). Assumption 4.1(i) defines the large-
T asymptotic framework and is the same as in Hahn and
Kuersteiner (2011). The relative rate of N and T exactly balances
the order of the bias and variance producing a non-degenerate
asymptotic distribution.

Assumption 4.1(ii) does not impose identical distribution nor
stationarity over the time series dimension, conditional on the
unobserved effects, unlike most of the large-T panel literature,
e.g., Hahn and Newey (2004) and Hahn and Kuersteiner (2011).
These assumptions are violated by the presence of the time effects,
because they are treated as parameters. The mixing condition is
used to bound covariances andmoments in the application of laws
of large numbers and central limit theorems—it could replaced by
other conditions that guarantee the applicability of these results.

Assumption 4.1(iii) is the parametric part of the panel model.
We rely on this assumption to guarantee that ∂βℓit and ∂πℓit have
martingale difference properties.Moreover, we use certain Bartlett
identities implied by this assumption to simplify someexpressions,
but those simplifications are not crucial for our results.We provide
expressions for the asymptotic bias and variance that do not apply
these simplifications in Remark 3.

Assumption 4.1(iv) imposes smoothness and moment condi-
tions in the log-likelihood function and its derivatives. These con-
ditions guarantee that the higher-order stochastic expansions of

11 For example, B0
ε can be chosen to be the Cartesian product of the ε-ball around

β0 and the interval [πmin, πmax], with πmin ≤ πit − ε and πmax ≥ πit + ε for all
i, t,N, T . We can have πmin = −∞ and πmax = ∞, as long as this is compatible
with Assumption 4.1(iv) and (v).
the fixed effect estimator that we use to characterize the asymp-
totic bias are well-defined, and that the remainder terms of these
expansions are bounded.

The most commonly used nonlinear models in applied eco-
nomics such as logit, probit, ordered probit, Poisson, and Tobit
models have smooth log-likelihoods functions that satisfy the
concavity condition of Assumption 4.1(v), provided that all the
elements of Xit have cross sectional and time series variation. As-
sumption 4.1(v) guarantees that β0 and φ0 are the unique solution
to the population problem (2.1), that is all the parameters are point
identified.

To describe the asymptotic distribution of the fixed effects
estimatorβ , it is convenient to introduce some additional notation.
Let H be the (N + T ) × (N + T ) expected Hessian matrix of the
log-likelihood with respect to the nuisance parameters evaluated
at the true parameters, i.e.

H = Eφ[−∂φφ′L] =


H

∗

(αα) H
∗

(αγ )

[H
∗

(αγ )]
′ H

∗

(γ γ )


+

b
√
NT

vv′, (4.2)

where H
∗

(αα) = diag(


t Eφ[−∂π2ℓit ])/
√
NT , H

∗

(αγ )it =

Eφ[−∂π2ℓit ]/
√
NT , and H

∗

(γ γ ) = diag(


i Eφ[−∂π2ℓit ])/
√
NT .

Furthermore, letH
−1
(αα),H

−1
(αγ ),H

−1
(γ α), andH

−1
(γ γ ) denote theN×N ,

N × T , T ×N and T × T blocks of the inverse H
−1 of H . We define

the dimβ-vector Ξit and the operator Dβπq as

Ξit := −
1

√
NT

N
j=1

T
τ=1


H

−1
(αα)ij + H

−1
(γ α)tj

+ H
−1
(αγ )iτ + H

−1
(γ γ )tτ


Eφ


∂βπℓjτ


,

Dβπqℓit := ∂βπqℓit − ∂πq+1ℓitΞit , (4.3)

with q = 0, 1, 2. The kth component of Ξit corresponds to the
population least squares projection of Eφ(∂βkπℓit)/Eφ(∂π2ℓit) on
the space spanned by the incidental parameters under a metric
given by Eφ(−∂π2ℓit), i.e.

Ξit,k = α∗

i,k + γ ∗

t,k,
α∗

k , γ ∗

k


= argmin

αi,k,γt,k


i,t

Eφ(−∂π2ℓit)

×


Eφ(∂βkπℓit)

Eφ(∂π2ℓit)
− αi,k − γt,k

2

.

The operator Dβπq partials out individual and time effects in non-
linear models. It corresponds to individual and time differencing
when the model is linear. To see this, consider the normal lin-
ear model Yit | X t

i , αi, γt ∼ N (X ′

itβ + αi + γt , 1). Then, Ξit =

T−1T
t=1 Eφ[Xit ]+N−1N

i=1 Eφ[Xit ]−(NT )−1N
i=1
T

t=1 Eφ[Xit ],
Dβℓit = −X̃itεit ,Dβπℓit = −X̃it , and Dβπ2ℓit = 0, where εit =

Yit − X ′

itβ − αi − γt and X̃it = Xit − Ξit is the vector of individual
and time demeaned explanatory variables.

The following theorem establishes the asymptotic distribution
of the fixed effects estimatorβ.

Theorem 4.1 (Asymptotic Distribution ofβ). Suppose that Assump-
tion 4.1 holds, that the following limits exist

B∞

= plim
N,T→∞

−
1
N

N
i=1

T
t=1

T
τ=t

Eφ


∂πℓitDβπℓiτ


+

1
2

T
t=1

Eφ(Dβπ2ℓit)

T
t=1

Eφ


∂π2ℓit


 ,
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D∞ = plim
N,T→∞

−
1
T

T
t=1

N
i=1

Eφ


∂πℓitDβπℓit +

1
2Dβπ2ℓit


N
i=1

Eφ


∂π2ℓit


 ,

W∞ = plim
N,T→∞


−

1
NT

N
i=1

T
t=1

Eφ


∂ββ ′ℓit − ∂π2ℓitΞitΞ

′

it


,

and that W∞ > 0. Then,
√
NT
β − β0

→d W
−1
∞

N (κB∞ + κ−1D∞, W∞),

so that B
β

∞
= W

−1
∞

B∞, D
β

∞
= W

−1
∞

D∞, and V∞ = W
−1
∞

in (3.2) and
(3.3).

Remark 2. The complete proof of Theorem 4.1 is provided in the
Appendix. Herewe point outwhy the argument for the consistency
proof in models with only individual effects does not apply to our
setting, give a heuristic derivation of the asymptotic distribution,
and highlightwhere some of the assumptions are used in the proof.

(i) The consistency proof for models with only individual effects
relies on partitioning the log-likelihood in the sum of
individual log-likelihoods that depend on a fixed number of
parameters, the model parameter β and the corresponding
individual effect αi. The maximizers of the individual log-
likelihood are then consistent estimators of all the parameters
as T becomes large by standard arguments. This approach
does not work in models with individual and time effects
because there is no partition of the data that is only affected
by a fixed number of parameters, and whose size grows with
the sample size.

(ii) In the following we give a heuristic discussion of the
asymptotic distribution result forβ . A first-order Taylor series
expansion to approximate the first order conditions of (2.8)
around β0 gives

0 = ∂βL(β,φ(β)) ≈ ∂βL(β0,φ0)

−W∞

√
NT (β − β0), (4.4)

whereφ0
=φ(β0). A second-order Taylor series expansion to

approximate ∂βL(β0,φ0) around φ0 yields

∂βL(β0,φ0) ≈ ∂βL(β0, φ0) + ∂βφ′L(β0, φ0)[φ0
− φ0

]

+

dimφ
g=1

∂βφ′φg L(β0, φ0)[φ0
− φ0

][φ0
g − φ0

g ]/2,

where the first term has zero mean and determines the
asymptotic variance, and the second and third termdetermine
the asymptotic bias. Thus, by the central limit theoremand the
information equality,

∂βL(β0, φ0) →d N (0,W∞).

The second and third terms satisfy

∂βφ′L(β0, φ0)[φ0
− φ0

]

+

dimφ
g=1

∂βφ′φg L(β0, φ0)[φ0
− φ0

][φ0
g − φ0

g ]/2

≈
√
NT (B∞/T + D∞/N),

where B∞ and D∞ are characterized from a second-order
Taylor series expansion to approximate φ0 around φ0. We
refer to the Appendix for the details of this derivation. There
we show that B∞ and D∞ originate from the elements ofφ0 corresponding to the individual effects and time effects,
respectively. Plugging those results into (4.4), and solving for
√
NT (β − β0) yields

√
NT (β − β0) ≈ W

−1
∞

[∂βL(β0, φ0) + B∞


N/T

+D∞


T/N] →d W

−1
∞

N (κB∞ + κ−1D∞,W∞).

This derivation shows that the source of the bias is that the
score ∂βL(β,φ(β)) is not centered at zero when β = β0.
This problem arises from the substitution of the incidental
parameter φ by the sample analog φ0 that has a rate of
convergence slower than

√
NT . Thus, B∞ originates from the

estimators of the individual effects in φ, which have rate of
convergence

√
T ; whereas D∞ originates from the estimators

of the time effects in φ, which have convergence rate
√
N .

(iii) The two key assumptions in the derivation of the asymptotic
distribution are the additive separability of αi and γt in
Assumption 4.1(iii) and the concavity in Assumption 4.1(v).
We resort to concavity to prove consistency of β and to
bound the remainder terms in all the expansions. Additive
separability is convenient to characterize the order of the
inverse average Hessian, H , defined in (4.2). This inverse
Hessian features prominently in the second-order Taylor
series expansion ofφ0 around φ0 used to characterize B∞ and
D∞.

It is instructive to evaluate the expressions of the bias in our
running examples.

Example 1 (Binary Response Model). In this case

ℓit(β, π) = Yit log F(X ′

itβ + π) + (1 − Yit) log[1 − F(X ′

itβ + π)],

so that ∂πℓit = Hit(Yit − Fit), ∂βℓit = ∂πℓitXit , ∂π2ℓit = −Hit∂Fit +

∂Hit(Yit − Fit), ∂ββ ′ℓit = ∂π2ℓitXitX ′

it , ∂βπℓit = ∂π2ℓitXit , ∂π3ℓit =

−Hit∂
2Fit − 2∂Hit∂Fit + ∂2Hit(Yit − Fit), and ∂βπ2ℓit = ∂π3ℓitXit ,

where Hit = ∂Fit/[Fit(1 − Fit)], and ∂ jGit := ∂ jG(Z)|Z=X ′
itβ

0+π0
it
for

any function G and j = 0, 1, 2. Substituting these values in the
expressions of the bias of Theorem 4.1 yields

B∞ = plim
N,T→∞

−
1
2N

N
i=1

T
t=1

Eφ[Hit∂
2Fit X̃it ]

T
t=1

Eφ (ωit)

−
1
N

N
i=1

T
t=1

T
τ=t+1

Eφ


Hit(Yit − Fit)ωiτ X̃iτ


T

t=1
Eφ (ωit)

 ,

D∞ = plim
N,T→∞

−
1
2T

T
t=1

N
i=1

Eφ[Hit∂
2Fit X̃it ]

N
i=1

Eφ (ωit)

 ,

W∞ = plim
N,T→∞


1
NT

N
i=1

T
t=1

Eφ[ωit X̃it X̃ ′

it ]


,

where ωit = Hit∂Fit and X̃it is the residual of the population
projection of Xit on the space spanned by the incidental parameters
under ametricweighted byEφ(ωit). For the probitmodelwhere all
the components of Xit are strictly exogenous,

B∞ = plim
N,T→∞

 1
2N

N
i=1

T
t=1

Eφ[ωit X̃it X̃ ′

it ]

T
t=1

Eφ (ωit)

β0,
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D∞ = plim
N,T→∞

 1
2T

T
t=1

N
i=1

Eφ[ωit X̃it X̃ ′

it ]

N
i=1

Eφ (ωit)

β0.

The asymptotic bias is therefore a positive definite matrix
weighted average of the true parameter value as in the case of the
probit model with only individual effects (Fernández-Val, 2009).

Example 2 (Poisson Model). In this case

ℓit(β, π) = (X ′

itβ + π)Yit − exp(X ′

itβ + π) − log Yit !,

so that ∂πℓit = Yit − ωit , ∂βℓit = ∂πℓitXit , ∂π2ℓit = ∂π3ℓit = −ωit ,
∂ββ ′ℓit = ∂π2ℓitXitX ′

it , and ∂βπℓit = ∂βπ2ℓit = ∂π3ℓitXit , where
ωit = exp(X ′

itβ
0
+π0

it ). Substituting these values in the expressions
of the bias of Theorem 4.1 yields

B∞ = plim
N,T→∞

−
1
N

N
i=1

T
t=1

T
τ=t+1

Eφ


(Yit − ωit)ωiτ X̃iτ


T

t=1
Eφ (ωit)

 ,

W∞ = plim
N,T→∞


1
NT

N
i=1

T
t=1

Eφ[ωit X̃it X̃ ′

it ]


,

and D∞ = 0, where X̃it is the residual of the population projection
of Xit on the space spanned by the incidental parameters under a
metric weighted by Eφ(ωit). If in addition all the components of Xit
are strictly exogenous, then we get the no asymptotic bias result
B∞ = D∞ = 0.

Remark 3 (Bias and Variance Expressions for Conditional Moment
Models). In the derivation of the asymptotic distribution, we apply
Bartlett identities implied by Assumption 4.1(iii) to simplify the
expressions. The following expressions of the asymptotic bias and
variance do not make use of these identities and therefore remain
valid in conditional moment models that do not specify the entire
conditional distribution of Yit :

B∞ = plim
N,T→∞

−
1
N

N
i=1

T
t=1

T
τ=t

Eφ


∂πℓitDβπℓiτ


T

t=1
Eφ


∂π2ℓit




+
1
2

plim
N,T→∞

 1
N

N
i=1

T
t=1

Eφ[(∂πℓit)
2
]

T
t=1

Eφ(Dβπ2ℓit)
T

t=1
Eφ


∂π2ℓit

2
 ,

D∞ = plim
N,T→∞

−
1
T

T
t=1

N
i=1

Eφ


∂πℓitDβπℓit


N
i=1

Eφ


∂π2ℓit




+
1
2

plim
N,T→∞

 1
T

T
t=1

N
i=1

Eφ[(∂πℓit)
2
]

N
i=1

Eφ(Dβπ2ℓit)
N
i=1

Eφ


∂π2ℓit

2
 ,

V∞ = W
−1
∞

Ω∞W
−1
∞

,

Ω∞ = plim
N,T→∞


1
NT

N
i=1

T
t=1

T
τ=1

Eφ


Dβℓit(Dβℓiτ )

′


,

andW∞ is the same as in Theorem 4.1.
For example, consider the Poisson fixed effects estimator in the
conditional mean model E[Yit | X t

i , φ, β] = ωit = exp(X ′

itβ +

αi + γt). Applying the previous expressions to ℓit(β, π) = (X ′

itβ +

π)Yit − exp(X ′

itβ + π) − log Yit ! yields the same expressions for
B∞, D∞, W∞ as in Example 2, and

Ω∞ = plim
N,T→∞


1
NT

N
i=1

T
t=1

Eφ


(Yit − ωit)

2X̃it X̃ ′

it


,

where X̃it is defined as in Example 2. If all the components of Xit are
strictly exogenous, then we get again the no asymptotic bias result
B∞ = D∞ = 0.

4.2. Asymptotic distribution of APEs

In nonlinearmodels we are often interested in APEs, in addition
to model parameters. These effects are averages of the data,
parameters and unobserved effects; see expression (2.2). For the
panel models of Assumption 4.1 we specify the partial effects as
∆(Xit , β, αi, γt) = ∆it(β, πit). The restriction that the partial
effects depend on αi and γt through πit is natural in our panel
models since

E[Yit | X t
i , αi, γt , β] =


y exp[ℓit(β, πit)]dy,

and the partial effects are usually defined as differences or
derivatives of this conditional expectation with respect to the
components of Xit . For example, the partial effects for the binary
response and Poisson models described in Section 2 satisfy this
restriction.

The distribution of the unobserved individual and time effects
is not ancillary for the APEs, unlike for model parameters. We
therefore need to make assumptions on this distribution to define
and interpret the APEs, and to derive the asymptotic distribution of
their estimators.We control the heterogeneity of the partial effects
assuming that the individual effects and explanatory variables
are identically distributed cross sectionally and/or stationary over
time. If (Xit , αi, γt) is identically distributed over i but can be
heterogeneously distributed over t , then E[∆it ] = δ0

t , and δ0
NT =

T−1T
t=1 δ0

t changes only with T . If (Xit , αi, γt) is stationary over
t but can be heterogeneously distributed over i, then E[∆it ] = δ0

i ,
and δ0

NT = N−1N
i=1 δ0

i changes only with N . Finally, if (Xit , αi, γt)
is identically distributed over i and stationary over t , thenE[∆it ] =

δ0
NT , and δ0

NT = δ0 does not change with N and T . We also impose
smoothness andmoment conditions on the function∆ that defines
the partial effects. We use these conditions to derive higher-order
stochastic expansions for the fixed effect estimator of the APEs and
to bound the remainder terms in these expansions. Let {αi}N :=

{αi : 1 ≤ i ≤ N}, {γt}T := {γt : 1 ≤ t ≤ T }, and {Xit , αi, γt}NT :=

{(Xit , αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T }.

Assumption 4.2 (Partial Effects). Let ν > 0, ϵ > 0, and B0
ε all be as

in Assumption 4.1.
(i) Sampling: for all N, T , {Xit , αi, γt}NT is identically distributed

across i and/or stationary across t .12
(ii) Model: for all i, t,N, T , the partial effects depend on αi and γt

through αi + γt :

∆(Xit , β, αi, γt) = ∆it(β, αi + γt).

The realizations of the partial effects are denoted by ∆it :=

∆it(β
0, α0

i + γ 0
t ).

12 In the working paper version, Fernández-Val and Weidner (2015a), we also
consider inference conditional on the unobserved effects by assuming that {αi}N
and {γt }T are deterministic sequences.
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(iii) Smoothness and moments: The function (β, π) → ∆it(β, π)
is four times continuously differentiable over B0

ε a.s. The
partial derivatives of ∆it(β, π) with respect to the elements
of (β, π) up to fourth order are bounded in absolute value
uniformly over (β, π) ∈ B0

ε by a function M(Zit) > 0 a.s.,
and maxi,t Eφ[M(Zit)8+ν

] is a.s. uniformly bounded over N, T .
(iv) Non-degeneracy and moments: 0 < mini,t [E(∆2

it) −

E(∆it)
2
] ≤ maxi,t [E(∆2

it) − E(∆it)
2
] < ∞, uniformly over

N, T .

Analogous to Ξit in Eq. (4.3) we define

Ψit = −
1

√
NT

N
j=1

T
τ=1


H

−1
(αα)ij + H

−1
(γ α)tj

+ H
−1
(αγ )iτ + H

−1
(γ γ )tτ


∂π∆jτ , (4.5)

which is the population projection of ∂π∆it/Eφ[∂π2ℓit ] on the
space spanned by the incidental parameters under themetric given
by Eφ[−∂π2ℓit ]. We use analogous notation to the previous section
for the derivatives with respect to β and higher order derivatives
with respect to π .

Let δ0
NT andδ be the APE and its fixed effects estimator, defined

as in Eqs. (2.2) and (2.9) with ∆(Xit , β, αi, γt) = ∆it(β, αi + γt).
13

The following theorem establishes the asymptotic distribution ofδ.
Theorem 4.2 (Asymptotic Distribution of δ). Suppose that the
assumptions of Theorem 4.1 and Assumption 4.2 hold, and that the
following limits exist:

(Dβ∆)
∞

= plim
N,T→∞


1
NT

N
i=1

T
t=1

Eφ(∂β∆it − Ξit∂π∆it)


,

B
δ

∞
= (Dβ∆)

′

∞
W

−1
∞

B∞

+ plim
N,T→∞

 1
N

N
i=1

T
t=1

T
τ=t

Eφ


∂πℓit∂π2ℓiτΨiτ


T

t=1
Eφ


∂π2ℓit




− plim
N,T→∞

 1
2N

N
i=1

T
t=1


Eφ(∂π2∆it) − Eφ(∂π3ℓit)Eφ(Ψit)


T

t=1
Eφ


∂π2ℓit


 ,

D
δ

∞
= (Dβ∆)

′

∞
W

−1
∞

D∞

+ plim
N,T→∞

 1
T

T
t=1

N
i=1

Eφ


∂πℓit∂π2ℓitΨit


N
i=1

Eφ


∂π2ℓit




− plim
N,T→∞

 1
2T

T
t=1

N
i=1


Eφ(∂π2∆it) − Eφ(∂π3ℓit)Eφ(Ψit)


N
i=1

Eφ


∂π2ℓit


 ,

V
δ

∞
= plim

N,T→∞


r2NT
N2T 2

E


N
i=1

T
t=1

∆it


N
i=1

T
t=1

∆it

′

+

N
i=1

T
t=1

ΓitΓ
′

it


,

13 We keep the dependence of δ0
NT on NT to distinguish δ0

NT from δ0
=

limN,T→∞ δ0
NT .
for some deterministic sequence rNT → ∞ such that rNT =

O(
√
NT ) and V

δ

∞
> 0, where ∆it = ∆it − E(∆it) and Γit =

(Dβ∆)
′

∞
W

−1
∞

Dβℓit − Eφ(Ψit)∂πℓit . Then,

rNT (δ − δ0
NT − T−1B

δ

∞
− N−1D

δ

∞
) →d N (0, V

δ

∞
).

Remark 4 (Convergence Rate, Bias and Variance). To understand
the asymptotic distribution ofδ is useful to decomposeδ − δ0

NT = [δ − δ] + [δ − δ0
NT ],

where δ := (NT )−1N
i=1
T

t=1 ∆it . In this decomposition the
first term captures variation due to parameter estimation, whereas
the second term captures variation due to estimation of a pop-
ulation mean by a sample mean. Under Assumption 4.2(iv) the
convergence rate rNT is determined by the convergence rate of
δ − δ0

NT , which depends on the sampling properties of the unob-
served effects. For example, if {αi}N and {γt}T are independent se-
quences, and αi and γt are independent for all i, t , then rNT =√
NT/(N + T − 1), and

V
δ

∞
= plim

N,T→∞


r2NT
N2T 2

N
i=1


T

t,τ=1

E(∆it∆′

iτ ) +


j≠i

T
t=1

E(∆it∆′

jt)

+

T
t=1

E(ΓitΓ
′

it)


.

In the expression of V
δ

∞
, the first two terms come from δ − δ0

NT ,
whereas the last term comes fromδ − δ. The first two terms of V

δ

∞

are of order NT (T + N − 1)r2NT/(NT )2 = O(1) by construction, the
last term of V

δ

∞
is of order NTr2NT/(NT )2 = O(T−1

+ N−1), and the
asymptotic bias rNT (T−1B

δ

∞
+N−1D

δ

∞
) is of order rNT (T−1

+N−1) =

O(T−1/2
+ N−1/2). Thus, the bias and variance coming from pa-

rameter estimation are asymptotically negligible relative to the
variances coming from the estimation of a population mean by a
sample mean. In numerical examples, however, we find that cor-
recting the mean and variance for parameter estimation improves
the finite-sample estimation and inference properties of the APE
estimators.

Remark 5 (Average Effects from Bias Corrected Estimators). The
first term in the expressions of the biases B

δ

∞
and D

δ

∞
comes

from the bias of the estimator of β . It drops out when the APEs
are constructed from asymptotically unbiased or bias corrected
estimators of the parameter β , i.e.δ = ∆(β,φ(β)),

whereβ is such that
√
NT (β −β0) →d N(0,W

−1
∞

). The asymptotic
variance ofδ is the same as in Theorem 4.2.

In the following examples we assume that the APEs are
constructed from asymptotically unbiased estimators of themodel
parameters.

Example 1 (Binary Response Model). Consider the partial effects
defined in (2.3) and (2.4) with

∆it(β, π) = F(βk + X ′

it,−kβ−k + π) − F(X ′

it,−kβ−k + π) and

∆it(β, π) = βk∂F(X ′

itβ + π).
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Using the notation previously introduced for this example, the
components of the asymptotic bias ofδ are

B
δ

∞
= plim

N,T→∞

 1
N

N
i=1

T
t=1

T
τ=t+1

Eφ


Hit(Yit − Fit)ωiτ Ψ̃iτ


T

t=1
Eφ (ωit)

−
1
2N

N
i=1

T
t=1

Eφ(Ψit)Eφ(Hit∂
2Fit) + Eφ(∂π2∆it)

T
t=1

Eφ (ωit)

 ,

D
δ

∞
= plim

N,T→∞

−
1
2T

T
t=1

N
i=1

Eφ(Ψit)Eφ(Hit∂
2Fit)

N
i=1

Eφ (ωit)

+
1
2T

T
t=1

N
i=1

Eφ(∂π2∆it)

N
i=1

Eφ (ωit)

 ,

where Ψ̃it is the residual of the population regression of
−∂π∆it/Eφ[ωit ] on the space spanned by the incidental parame-
ters under the metric given by Eφ[ωit ]. If all the components of Xit

are strictly exogenous, the first term of B
δ

∞
is zero.

Example 2 (Poisson Model). Consider the partial effect

∆it(β, π) = git(β) exp(X ′

itβ + π),

where git does not depend onπ . For example, git(β) = βk+βjh(Zit)
in (2.5). Using the notation previously introduced for this example,
the components of the asymptotic bias are

B
δ

∞
= plim

N,T→∞

 1
N

N
i=1

T
t=1

T
τ=t+1

Eφ


(Yit − ωit)ωiτ g̃iτ


T

t=1
Eφ (ωit)

 ,

and D
δ

∞
= 0, where g̃it is the residual of the population projection

of git on the space spanned by the incidental parameters under a
metric weighted by Eφ[ωit ]. The asymptotic bias is zero if all the
components of Xit are strictly exogenous or git(β) is constant. The
latter arises in the leading case of the partial effect of the kth com-
ponent of Xit since git(β) = βk. This no asymptotic bias result ap-
plies to any type of regressor, strictly exogenous or predetermined.

4.3. Bias corrected estimators

The results of the previous sections show that the asymptotic
distributions of the fixed effects estimators of the model parame-
ters and APEs can have biases of the same order as the variances
under sequences where T grows at the same rate as N . This is the
large-T version of the incidental parameter problem that invali-
dates any inference based on the fixed effect estimators even in
large samples. In this section we describe how to construct ana-
lytical and jackknife bias corrections for the fixed effect estimators
and give conditions for the asymptotic validity of these corrections.

The jackknife correction for the model parameter β in Eq.
(3.4) is generic and applies to the panel model. For the APEs, the
jackknife correction is formed similarly asδJ
NT = 3δNT −δN,T/2 −δN/2,T ,
whereδN,T/2 is the average of the 2 split jackknife estimators of the
APE that use all the individuals and leave out the first and second
halves of the time periods, andδN/2,T is the average of the 2 split
jackknife estimators of the APE that use all the time periods and
leave out half of the individuals.

The analytical corrections are constructed using sample analogs
of the expressions in Theorems 4.1 and 4.2, replacing the true
values of β and φ by the fixed effects estimators. To describe
these corrections, we introduce some additional notation. For any
function of the data, unobserved effects and parameters gitj(β, αi+

γt , αi + γt−j) with 0 ≤ j < t , letgitj = git(β,αi + γt ,αi + γt−j)

denote the fixed effects estimator, e.g., Eφ[∂π2ℓit ] denotes the fixed
effects estimator of Eφ[∂π2ℓit ]. Let H−1

(αα), H−1
(αγ ), H−1

(γ α), and H−1
(γ γ )

denote the blocks of the matrix H−1, where

H =

 H∗

(αα)
H∗

(αγ )

[ H∗

(αγ )]
′ H∗

(γ γ )


+

b
√
NT

vv′,

H∗

(αα) = diag(−


t
Eφ[∂π2ℓit ])/

√
NT , H∗

(αα) = diag(−


i
Eφ[∂π2ℓit ])/

√
NT , and H∗

(αγ )it = − Eφ[∂π2ℓit ]/
√
NT . Let

Ξit = −
1

√
NT

N
j=1

T
τ=1

 H−1
(αα)ij +

H−1
(γ α)tj

+ H−1
(αγ )iτ + H−1

(γ γ )tτ


Eφ


∂βπℓjτ


.

The kth component ofΞit corresponds to a least squares regression
of Eφ


∂βkπℓit


/ Eφ(∂π2ℓit) on the space spanned by the incidental

parameters weighted by Eφ(−∂π2ℓit).

The analytical bias corrected estimator of β0 is

βA
= β −Bβ

NT/T −Dβ

NT/N, (4.6)

whereBβ

NT = W−1B,Dβ

NT = W−1D,
B = −

1
N

N
i=1

L
j=0

[T/(T − j)]
T

t=j+1

Eφ


∂πℓi,t−jDβπℓit


+

1
2

T
t=1

Eφ(Dβπ2ℓit )

T
t=1

Eφ


∂π2ℓit

 ,

D = −
1
T

T
t=1

N
i=1


Eφ


∂πℓitDβπℓit


+

1
2

Eφ


Dβπ2ℓit


N
i=1

Eφ


∂π2ℓit

 ,

W = −(NT )−1
N
i=1

T
t=1


Eφ


∂ββ ′ℓit


−

Eφ


∂π2ℓitΞitΞ

′

it


, (4.7)

and L is a trimming parameter for estimation of spectral
expectations such that L → ∞ and L/T → 0 (Hahn and
Kuersteiner, 2011). Here we use truncation instead of kernel
smoothing in the estimation of spectral expectations following
Hahn and Kuersteiner (2007). Note that, unlike for variance
estimation, a kernel is not needed to ensure that the bias estimator
be positive. Instead of choosing a value of L, our recommendation
for practice is to conduct a sensitivity analysis by reporting
estimates for multiple values of L starting from L = 0. From our
experience based on extensiveMonte Carlo simulations, we do not
recommend values of L greater than 4, because the finite-sample
dispersion of the estimator quickly increases with L. We refer to
Section 5 for an example of sensitivity analysis with respect to
L. The factor T/(T − j) is a degrees of freedom adjustment that
rescales the time series averages T−1T

t=j+1 by the number of
observations instead of by T . Similar corrections for conditional
mean models can be formed using the sample analogs of the
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expressions of B∞ and D∞ in Remark 3. We do not spell out these
estimators for the sake of brevity.

Asymptotic (1−p)–confidence intervals for the components of
β can be formed as

βA
k ± z1−p

W−1
kk /(NT ), k = {1, . . . , dimβ},

where z1−p is the (1 − p)–quantile of the standard normal
distribution, and W−1

kk is the (k, k)-element of the matrix W−1. In
conditional moment models we replace Wkk by the (k, k)-element
of the matrix W−1ΩW−1, where

Ω =
1
NT

N
i=1

T
t=1

T
τ=1

Eφ


Dβℓit(Dβℓiτ )′


.

We have implemented the analytical correction at the level of
the estimator. Alternatively, we can implement the correction at
the level of the score or first order conditions by solving

(NT )−1/2∂βL(β,φ(β)) =B/T +D/N, (4.8)

for β . Global concavity of the objective function guarantees that
the solution to (4.8) is unique. Other possible extensions such as
continuously updated score corrections where B∞ and D∞ are
estimated together with β , corrections at the level of the objective
function, or iterative corrections are left to future research.

The analytical bias corrected estimator of δ0
NT isδA

=δ −Bδ/T −Dδ/N,

whereδ is the APE constructed from a bias corrected estimator of
δ0
NT . Let

Ψit = −
1

√
NT

N
j=1

T
τ=1

 H−1
(αα)ij +

H−1
(γ α)tj

+ H−1
(αγ )iτ + H−1

(γ γ )tτ


∂π∆jτ .

The fixed effects estimators of the components of the asymptotic
bias are

Bδ
=

1
N

N
i=1

L
j=0

[T/(T − j)]
T

t=j+1

Eφ


∂πℓi,t−j∂π2ℓitΨit


T

t=1

Eφ


∂π2ℓit



−
1
2N

N
i=1

T
t=1


Eφ(∂π2∆it ) − Eφ(∂π3ℓit ) Eφ(Ψit )


T

t=1

Eφ


∂π2ℓit

 ,

Dδ
=

1
T

T
t=1

N
i=1


Eφ


∂πℓit∂π2ℓitΨit


−

1
2

Eφ(∂π2∆it ) +
1
2

Eφ(∂π3ℓit ) Eφ(Ψit )


N
i=1

Eφ


∂π2ℓit

 .

The estimator of the asymptotic variance depends on the sampling
properties of the unobserved effects. Under the independence
assumption of Remark 4,

V δ
=

r2NT
N2T 2

N
i=1


T

t,τ=1

̃
∆it
̃
∆

′

iτ +

T
t=1


j≠i

̃
∆it
̃
∆

′

jt

+

T
t=1

Eφ(ΓitΓ
′

it)


, (4.9)

where ̃∆it = ∆it − N−1N
i=1
∆it under identical distribution

over i, ̃∆it = ∆it − T−1T
t=1

∆it under stationarity over t , and̃
∆it = ∆it −δ under both. Note that we do not need to specify
the convergence rate rNT to make inference because the standard
errors

√V δ/rNT do not depend on rNT . Bias corrected estimators
and confidence intervals can be constructed in the same fashion as
for the model parameter.

We use the following homogeneity assumption to show the
validity of the jackknife corrections for the model parameters and
APEs. It implies thatβN,T/2 −βNT = B

β

∞
/T + oP(T−1

∨ N−1) andβN/2,T − βNT = D
β

∞
/N + oP(T−1

∨ N−1), which are weaker but
higher level sufficient conditions for the validity of the jackknife
for the model parameter. For APEs, Assumption 4.3 also ensures
that these effects do not change with T and N , i.e. δ0

NT = δ0. The
analytical corrections do not require this assumption.

Assumption 4.3 (Unconditional Homogeneity). The sequence {(Yit ,
Xit , αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T } is identically distributed across
i and strictly stationary across t , for each N, T .

This assumption might seem restrictive for dynamic models
where Xit includes lags of the dependent variable because in
this case it restricts the unconditional distribution of the initial
conditions of Yit . Note, however, that Assumption 4.3 allows the
initial conditions to depend on the unobserved effects. In other
words, it does not impose that the initial conditions are generated
from the stationary distribution of Yit conditional on X t

i and φ.
Assumption 4.3 rules out time trends and structural breaks in the
processes for the unobserved effects and observed variables.

Remark 6 (Test of Homogeneity). Assumption 4.3 is a sufficient
condition for the validity of the jackknife corrections. It has the
testable implications that the probability limits of the fixed effects
estimator are the same in all the partitions of the panel. For
example, it implies that β1

N,T/2 = β2
N,T/2, where β1

N,T/2 and β2
N,T/2

are the probability limits of the fixed effects estimators of β in the
subpanels that include all the individuals and the first and second
halves of the time periods, respectively. These implications can be
tested using variations of the Chow-type test proposed in Dhaene
and Jochmans (2015). We provide an example of the application
of these tests to our setting in Section S.1.1 of the supplemental
material.

The following theorems are the main results of this section.
They show that the analytical and jackknife bias corrections
eliminate the bias from the asymptotic distribution of the fixed
effects estimators of the model parameters and APEs without
increasing variance, and that the estimators of the asymptotic
variances are consistent.

Theorem 4.3 (Bias Corrections for β). Under the conditions
of Theorem 4.1,W →P W∞,

and, if L → ∞ and L/T → 0,
√
NT (βA

− β0) →d N (0,W
−1
∞

).

Under the conditions of Theorem 4.1 and Assumption 4.3,
√
NT (β J

− β0) →d N (0,W
−1
∞

).

Theorem 4.4 (Bias Corrections forδ). Under the conditions of Theo-
rems 4.1 and 4.2,V δ

→P V
δ

∞
,

and, if L → ∞ and L/T → 0,

rNT (δA
− δ0

NT ) →d N (0, V
δ

∞
).
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Under the conditions of Theorems 4.1 and 4.2, and Assumption 4.3,

rNT (δJ
− δ0) →d N (0, V

δ

∞
).

Remark 7 (Rate of Convergence). The rate of convergence rNT
depends on the properties of the sampling process for the
explanatory variables and unobserved effects (see Remark 4).

5. Monte Carlo experiments

This section reports evidence on the finite sample behavior of
fixed effects estimators of model parameters and APEs in static
models with strictly exogenous regressors and dynamic mod-
els with predetermined regressors such as lags of the dependent
variable. We analyze the performance of uncorrected and bias-
corrected fixed effects estimators in terms of bias and inference ac-
curacy of their asymptotic distribution. In particular we compute
the biases, standard deviations, and root mean squared errors of
the estimators, the ratio of average standard errors to the simu-
lation standard deviations (SE/SD); and the empirical coverages of
confidence intervals with 95% nominal value (p; .95).14 Overall, we
find that the analytically corrected estimators dominate the uncor-
rected and jackknife corrected estimators.15 Apossible explanation
for the better finite-sample performance of the analytical over the
jackknife corrections is that the jackknife increases dispersion be-
cause the components of the bias are estimated from subsamples
that include half of the observations of the panel. We observe this
variance increase in all our numerical examples, specially in short
panels. The jackknife corrections are also more sensitive than the
analytical corrections to Assumption 4.3. All the results are based
on 500 replications. The designs correspond to static and dynamic
probit models. As in the analytical example of Section 3.3, we find
that our large T asymptotic approximations capture well the be-
havior of the fixed effects estimator and the bias corrections in
moderately long panels with N = 56 and T = 14.

5.1. Static probit model

The data generating process is

Yit = 1 {Xitβ + αi + γt > εit} , (i = 1, . . . ,N; t = 1, . . . , T ),

where αi ∼ N (0, 1/16), γt ∼ N (0, 1/16), εit ∼ N (0, 1), and
β = 1. We consider two alternative designs for Xit : autoregressive
process and linear trend process both with individual and time
effects. In the first design, Xit = Xi,t−1/2 + αi + γt + υit , υit ∼

N (0, 1/2), and Xi0 ∼ N (0, 1). In the second design, Xit = 2t/T +

αi + γt + υit , υit ∼ N (0, 3/4), which violates Assumption 4.3. In
both designs Xit is strictly exogenouswith respect to εit conditional
on the individual and time effects. The variables αi, γt , εit , υit , and
Xi0 are independent and i.i.d. across individuals and time periods.
We generate panel data sets with N = 56 individuals and three
different numbers of time periods T : 14, 28 and 56.16

Table 3 reports the results for the probit coefficient β , and
the APE of Xit . We compute the APE using (2.4). Throughout the
table, MLE-FETE corresponds to the probit maximum likelihood

14 The standard errors are computed using the expressions (4.7) and (4.9) with̃
∆it = ∆it −δ, evaluated at uncorrected estimates of the parameters. We find
little difference in performance of constructing standard errors based on corrected
estimates.
15 Kristensen and Salanié (2013) also found that analytical corrections dominate
jackknife corrections to reduce the bias of approximate estimators.
16 Following a suggestion from an anonymous referee, we obtained results for
panel data sets with T = 56 and N in {14, 28, 56}. These results are similar to the
results reported and are available from the authors upon request.
estimator with individual and time fixed effects, Analytical is the
bias corrected estimator that uses the analytical correction, and
Jackknife is the bias corrected estimator that uses SPJ in both the
individual and time dimensions. The cross-sectional division in the
jackknife follows the order of the observations. All the results are
reported in percentage of the true parameter value.

We find that the bias is of the same order of magnitude as the
standard deviation for the uncorrected estimator of the probit co-
efficient causing severe undercoverage of the confidence intervals.
This result holds for both designs and all the sample sizes con-
sidered. The bias corrections, specially Analytical, remove the bias
without increasing dispersion, and produce substantial improve-
ments in rmse and coverage probabilities. For example, Analytical
reduces rmse by 50% and increases coverage by 26% in the first de-
signwith T = 14. As inHahn andNewey (2004) and Fernández-Val
(2009), we find very little bias in the uncorrected estimates of the
APE, despite the large bias in the probit coefficients. Jackknife per-
forms relatively worse in the second design that does not satisfy
Assumption 4.3.

5.2. Dynamic probit model

The data generating process is

Yit = 1

Yi,t−1βY + ZitβZ + αi + γt > εit


,

(i = 1, . . . ,N; t = 1, . . . , T ),

Yi0 = 1 {Zi0βZ + αi + γ0 > εi0} ,

where αi ∼ N (0, 1/16), γt ∼ N (0, 1/16), εit ∼ N (0, 1),
βY = 0.5, and βZ = 1. We consider two alternative designs
for Zit : autoregressive process and linear trend process both with
individual and time effects. In the first design, Zit = Zi,t−1/2 +

αi + γt + υit , υit ∼ N (0, 1/2), and Zi0 ∼ N (0, 1). In the second
design, Zit = 1.5t/T+αi+γt+υit ,υit ∼ N (0, 3/4), which violates
Assumption 4.3. The variablesαi, γt , εit ,υit , and Zi0 are independent
and i.i.d. across individuals and time periods. We generate panel
data sets with N = 56 individuals and three different numbers of
time periods T : 14, 28 and 56.

Table 4 reports the simulation results for the probit coefficient
βY and the APE of Yi,t−1. We compute the partial effect of Yi,t−1
using the expression in Eq. (2.3) with Xit,k = Yi,t−1. This effect is
commonly reported as ameasure of state dependence for dynamic
binary processes. Table 5 reports the simulation results for the es-
timators of the probit coefficientβZ and the APE of Zit .We compute
the partial effect using (2.4) with Xit,k = Zit . Throughout the tables,
we compare the same estimators as for the static model. For the
analytical correction we consider two versions, Analytical (L = 1)
sets the trimming parameter to estimate spectral expectations L to
one, whereas Analytical (L = 2) sets L to two.17 Again, all the re-
sults in the tables are reported in percentage of the true parameter
value.

The results in Table 4 show important biases toward zero for
both the probit coefficient and the APE of Yi,t−1 in the two designs.
This bias can indeed be substantially larger than the corresponding
standard deviation for short panels yielding coverage probabilities
below 70% for T = 14. The analytical corrections significantly
reduce biases and rmse, bring coverage probabilities close to their
nominal level, and have little sensitivity to the trimming parameter
L. The jackknife corrections reduce bias but increase dispersion,
producing less drastic improvements in rmse and coverage than
the analytical corrections. The results for the APE of Zit in Table 5

17 In results not reported for brevity, we find little difference in performance of
increasing the trimming parameters to L = 3 and L = 4. These results are available
from the authors upon request.
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Table 3
Finite-sample properties in static probit model (N = 56).

Coefficient APE
Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

Design 1: autoregressive with individual and time effects
T = 14

MLE-FETE 14 11 18 0.88 0.71 1 8 8 0.93 0.93
Analytical 1 9 9 1.05 0.97 0 8 8 0.94 0.94
Jackknife −6 11 13 0.88 0.87 1 9 9 0.80 0.87

T = 28
MLE-FETE 7 7 10 0.93 0.81 1 5 5 1.02 0.96
Analytical 0 6 6 1.03 0.95 0 5 5 1.03 0.96
Jackknife −2 7 7 0.96 0.92 0 6 6 0.94 0.94

T = 56
MLE-FETE 5 4 6 1.01 0.82 0 4 4 0.98 0.94
Analytical 0 4 4 1.07 0.98 0 4 4 0.98 0.94
Jackknife −1 4 4 1.00 0.95 0 4 4 0.93 0.93

Design 2: linear trend with individual and time effects
T = 14

MLE-FETE 18 13 22 0.85 0.62 −3 10 10 0.76 0.85
Analytical 0 10 10 1.10 0.96 −4 10 10 0.77 0.84
Jackknife −13 20 23 0.55 0.74 −3 11 11 0.71 0.82

T = 28
MLE-FETE 8 7 11 0.93 0.79 −2 7 7 0.84 0.88
Analytical 0 7 7 1.05 0.95 −2 7 7 0.84 0.89
Jackknife −5 8 9 0.91 0.87 −2 7 7 0.81 0.87

T = 56
MLE-FETE 6 5 7 0.97 0.77 0 5 5 0.85 0.89
Analytical 0 4 4 1.05 0.97 0 5 5 0.85 0.89
Jackknife −2 5 5 0.99 0.92 0 5 5 0.83 0.89

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated from the probit model: Yit = 1(βXit + αi + γt > εit ), with
εit ∼ i.i.d. N(0, 1), αi ∼ i.i.d. N(0, 1/16), γt ∼ i.i.d. N(0, 1/16) and β = 1. In design 1, Xit = Xi,t−1/2 + αi + γt + νit , νit ∼ i.i.d. N(0, 1/2), and Xi0 ∼ N(0, 1). In
design 2, Xit = 2t/T + αi + γt + νit , and νit ∼ i.i.d. N(0, 3/4), independent of αiyγt . Average effect is βE[ϕ(βXit + αi + γt )], where ϕ() is the PDF of the standard normal
distribution. MLE-FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical is the bias corrected estimator that uses an analytical
correction; and Jackknife is the bias corrected estimator that uses split panel jackknife in both the individual and time dimension.
are similar to the static probit model. There are significant bias
and undercoverage of confidence intervals for the coefficient βZ ,
which are removed by the corrections, whereas there are little bias
and undercoverage in the APE. As in the static model, Jackknife
performs relatively worse in the second design.

6. Concluding remarks

In this paper we develop analytical and jackknife corrections
for fixed effects estimators of model parameters and APEs in
semiparametric nonlinear panel models with additive individual
and time effects. Our analysis applies to conditional maximum
likelihood estimators with concave log-likelihood functions, and
therefore covers logit, probit, ordered probit, ordered logit,
Poisson, negative binomial, and Tobit estimators, which are the
most popular nonlinear estimators in empirical economics.

We are currently developing similar corrections for nonlinear
models with interactive individual and time effects (Chen et al.,
2014). Another interesting avenue of future research is to
derive higher-order expansions for fixed effects estimators with
individual and time effects. These expansions are needed to justify
theoretically the validity of alternative corrections based on the
leave-one-observation-out panel jackknife method of Hahn and
Newey (2004).

Appendix A. Notation and choice of norms

Wewrite A′ for the transpose of a matrix or vector A. We use 1n
for the n×n identitymatrix, and 1n for the column vector of length
nwhose entries are all unity. For square n×nmatrices B, C , we use
B > C (or B ≥ C) to indicate that B − C is positive (semi) definite.
Wewrite wpa1 for ‘‘with probability approaching one’’ and wrt for
‘‘with respect to’’. All the limits are taken as N, T → ∞ jointly.

As in the main text, we usually suppress the dependence on
NT of all the sequences of functions and parameters to lighten the
notation, e.g. we write L for LNT and φ for φNT . Let

S(β, φ) = ∂φL(β, φ), H(β, φ) = −∂φφ′L(β, φ),

where ∂xf denotes the partial derivative of f with respect to x,
and additional subscripts denote higher-order partial derivatives.
We refer to the dimφ-vector S(β, φ) as the incidental parameter
score, and to the dimφ × dimφ matrix H(β, φ) as the incidental
parameter Hessian. We omit the arguments of the functions when
they are evaluated at the true parameter values (β0, φ0), e.g. H =

H(β0, φ0). We use a bar to indicate expectations conditional on φ,
e.g. ∂βL = Eφ[∂βL], and a tilde to denote variables in deviations
with respect to expectations, e.g. ∂β

L = ∂βL − ∂βL.
We use the Euclidean norm ∥.∥ for vectors of dimension dimβ ,

and we use the norm induced by the Euclidean norm for the
corresponding matrices and tensors, which we also denote by
∥.∥. For matrices of dimension dimβ × dimβ this induced norm
is the spectral norm. The generalization of the spectral norm to
higher order tensors is straightforward, e.g. the induced norm of
the dimβ × dimβ × dimβ tensor of third partial derivatives of
L(β, φ) wrt β is given by∂βββL(β, φ)

 = max
{u,v∈Rdimβ , ∥u∥=1, ∥v∥=1}

×

dimβ
k,l=1

uk vl ∂ββkβlL(β, φ)

 .

This choice of norm is immaterial for the asymptotic analysis
because dimβ is fixed with the sample size.
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Table 4
Finite-sample properties in dynamic probit model: lagged dependent variable (N = 56).

Coefficient of Yi,t−1 APE of Yi,t−1

Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95
Design 1: autoregressive with individual and time effects

T = 14
MLE-FETE −43 29 52 0.94 0.64 −51 26 57 0.93 0.43
Analytical (L = 1) −4 26 26 1.07 0.96 −4 27 28 0.88 0.92
Analytical (L = 2) −3 27 27 1.01 0.95 −3 29 29 0.83 0.91
Jackknife 12 32 34 0.86 0.89 −3 33 33 0.73 0.84

T = 28
MLE-FETE −20 19 28 0.96 0.80 −27 18 32 0.96 0.67
Analytical (L = 1) −3 18 18 1.04 0.95 −3 19 19 0.94 0.92
Analytical (L = 2) −1 18 18 1.01 0.94 0 19 19 0.91 0.91
Jackknife 2 19 19 0.96 0.94 −1 21 21 0.86 0.90

T = 56
MLE-FETE −9 13 16 0.99 0.89 −13 13 19 0.98 0.83
Analytical (L = 1) −1 12 12 1.03 0.95 −1 13 13 0.97 0.94
Analytical (L = 2) 0 13 13 1.02 0.95 0 14 13 0.96 0.93
Jackknife 1 13 13 0.99 0.94 1 14 14 0.92 0.93

Design 2: linear trend with individual and time effects
T = 14

MLE-FETE −48 35 60 0.94 0.69 −59 28 65 0.95 0.43
Analytical (L = 1) −6 30 31 1.11 0.97 −11 30 32 0.88 0.88
Analytical (L = 2) −6 32 33 1.05 0.95 −11 32 34 0.83 0.87
Jackknife 8 46 47 0.73 0.86 −19 35 40 0.75 0.80

T = 28
MLE-FETE −23 24 33 0.94 0.79 −33 22 39 0.93 0.61
Analytical (L = 1) −4 22 22 1.03 0.97 −6 22 23 0.90 0.90
Analytical (L = 2) −2 22 22 1.00 0.95 −5 23 24 0.87 0.90
Jackknife 1 25 25 0.87 0.91 −7 25 26 0.81 0.87

T = 56
MLE-FETE −11 15 19 1.01 0.89 −17 15 23 0.97 0.78
Analytical (L = 1) −3 14 15 1.07 0.95 −3 16 16 0.96 0.94
Analytical (L = 2) −2 14 15 1.05 0.95 −2 16 16 0.95 0.94
Jackknife −1 16 16 0.95 0.94 −3 17 17 0.88 0.91

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated from the probitmodel: Yit = 1(βY Yi,t−1+βZZit +αi+γt > εit ), with Yi0 =

1(βZZi0+αi+γ0 > εi0), εit ∼ i.i.d.N(0, 1), αi ∼ i.i.d.N(0, 1/16), γt ∼ i.i.d.N(0, 1/16), βY = 0.5, andβZ = 1. In design 1, Zit = Zi,t−1/2+αi+γt+νit , νit ∼ i.i.d.N(0, 1/2),
and Zi0 ∼ N(0, 1). In design 2, Zit = 1.5t/T + νit , and νit ∼ i.i.d. N(0, 3/4), independent of αiyγt . Average effect is E[Φ(βY + βZZit + αi + γt ) − Φ(βzZit + αi + γt )], where
Φ() is the CDF of the standard normal distribution. MLE-FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical (L = l) is the
bias corrected estimator that uses an analytical correction with l lags to estimate the spectral expectations; and Jackknife is the bias corrected estimator that uses split panel
jackknife in both the individual and time dimension.
In contrast, it is important what norms we choose for vectors of
dimension dimφ, and their corresponding matrices and tensors,
because dimφ is increasing with the sample size. For vectors of
dimension dimφ, we use the ℓq-norm

∥φ∥q =


dimφ
g=1

|φg |
q

1/q

,

where 2 ≤ q ≤ ∞.18 The particular value q = 8 will be chosen
later.19 We use the norms that are induced by the ℓq-norm for the
correspondingmatrices and tensors, e.g. the induced q-norm of the
dimφ×dimφ×dimφ tensor of third partial derivatives ofL(β, φ)
wrt φ is∂φφφL(β, φ)


q = max

{u,v∈Rdimφ , ∥u∥q=1, ∥v∥q=1}

18 We use the letter q instead of p to avoid confusion with the use of p for
probability.
19 The main reason not to choose q = ∞ is the assumption ∥ H∥q = oP (1) below,
which is used to guarantee that ∥H−1

∥q is of the same order as ∥H
−1

∥q . If we
assume ∥H−1

∥q = OP (1) directly instead of ∥H
−1

∥q = OP (1), then we can set
q = ∞.
×

dimφ
g,h=1

ug vh ∂φφgφhL(β, φ)


q

. (A.1)

Note that in general the ordering of the indices of the tensor would
matter in the definition of this norm, with the first index having a
special role. However, since partial derivatives like ∂φgφhφlL(β, φ)

are fully symmetric in the indices g , h, l, the ordering is not
important in their case.

For mixed partial derivatives of L(β, φ) wrt β and φ, we use
the norm that is induced by the Euclidean norm on dimβ-vectors
and the q-norm on dimφ-indices, e.g.∂ββφφφL(β, φ)


q = max

{u,v∈Rdimβ , ∥u∥=1, ∥v∥=1}

× max
{w,x∈Rdimφ , ∥w∥q=1, ∥x∥q=1}dimβ

k,l=1

dimφ
g,h=1

uk vl wg xh ∂βkβlφφgφhL(β, φ)


q

, (A.2)

where we continue to use the notation ∥.∥q, even though this is a
mixed norm.

Note that for w, x ∈ Rdimφ and q ≥ 2,

|w′x| ≤ ∥w∥q∥x∥q/(q−1) ≤ (dimφ)(q−2)/q
∥w∥q∥x∥q.
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Table 5
Finite-sample properties in dynamic probit model: exogenous regressor (N = 56).

Coefficient of Zit APE of Zit
Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

Design 1: autoregressive with individual and time effects
T = 14

MLE-FETE 19 12 22 0.91 0.57 5 9 10 0.90 0.88
Analytical (L = 1) 2 10 10 1.11 0.97 2 9 9 0.91 0.92
Analytical (L = 2) 2 10 10 1.10 0.97 2 9 9 0.91 0.92
Jackknife −7 12 14 0.88 0.85 4 10 11 0.80 0.84

T = 28
MLE-FETE 10 7 12 0.94 0.69 3 6 7 0.94 0.92
Analytical (L = 1) 1 7 7 1.05 0.97 1 6 6 0.95 0.95
Analytical (L = 2) 1 7 7 1.04 0.97 1 6 6 0.95 0.94
Jackknife −2 7 8 0.94 0.91 1 7 7 0.88 0.91

T = 56
MLE-FETE 6 5 8 0.98 0.77 1 5 5 0.95 0.92
Analytical (L = 1) 0 4 4 1.05 0.97 0 5 5 0.96 0.94
Analytical (L = 2) 0 4 4 1.05 0.97 0 5 5 0.96 0.94
Jackknife −1 5 5 0.98 0.95 0 5 5 0.92 0.91

Design 2: linear trend with individual and time effects
T = 14

MLE-FETE 19 13 23 0.86 0.62 −3 11 11 0.75 0.83
Analytical (L = 1) 1 10 10 1.13 0.97 −3 11 11 0.76 0.83
Analytical (L = 2) 1 10 10 1.12 0.97 −4 11 11 0.75 0.82
Jackknife −16 22 27 0.52 0.70 −2 12 12 0.67 0.80

T = 28
MLE-FETE 10 8 13 0.88 0.72 −2 8 8 0.83 0.86
Analytical (L = 1) 1 7 7 1.01 0.96 −2 8 8 0.83 0.87
Analytical (L = 2) 1 7 7 1.01 0.96 −2 8 8 0.83 0.87
Jackknife −4 8 9 0.90 0.87 −2 8 8 0.79 0.86

T = 56
MLE-FETE 6 5 8 0.89 0.73 −1 6 6 0.83 0.90
Analytical (L = 1) 0 5 5 0.98 0.95 −1 6 6 0.84 0.90
Analytical (L = 2) 0 5 5 0.98 0.95 −1 6 6 0.83 0.90
Jackknife −2 5 5 0.94 0.92 −1 6 6 0.83 0.89

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated from the probit model: Yit = 1(βY Yi,t−1 + βZZit + αi + γt > εit ), with
Yi0 = 1(βZZi0 + αi + γ0 > εi0), εit ∼ i.i.d. N(0, 1), αi ∼ i.i.d. N(0, 1/16), γt ∼ i.i.d. N(0, 1/16), βY = 0.5, and βZ = 1. In design 1, Zit = Zi,t−1/2 + αi + γt + νit ,
νit ∼ i.i.d. N(0, 1/2), and Zi0 ∼ N(0, 1). In design 2, Zit = 1.5t/T + νit , and νit ∼ i.i.d. N(0, 3/4), independent of αiyγt . Average effect is βZE[ϕ(βY Yi,t−1 +βZZit +αi + γt )],
where ϕ() is the PDF of the standard normal distribution. MLE-FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical (L = l) is
the bias corrected estimator that uses an analytical correction with l lags to estimate the spectral expectations; and Jackknife is the bias corrected estimator that uses split
panel jackknife in both the individual and time dimension.
Thus, wheneverwe bound a scalar product of vectors, matrices and
tensors in terms of the above norms we have to account for this
additional factor (dimφ)(q−2)/q. For example,dimβ
k,l=1

dimφ
f ,g,h=1

uk vl wf xh yf ∂βkβlφf φgφhL(β, φ)


≤ (dimφ)(q−2)/q

∥u∥ ∥v∥ ∥w∥q ∥x∥q ∥y∥q
∂ββφφφL(β, φ)


q .

For higher-order tensors, we use the notation ∂φφφL(β, φ) inside
the q-norm ∥.∥q defined above, while we rely on standard index
and matrix notation for all other expressions involving those
partial derivatives, e.g. ∂φφ′φg L(β, φ) is a dimφ×dimφ matrix for
every g = 1, . . . , dimφ. Occasionally, e.g. in Assumption B.1(vi),
we use the Euclidean norm for dimφ-vectors, and the spectral
norm for dimφ × dimφ-matrices, denoted by ∥.∥, and defined
as ∥.∥q with q = 2. Moreover, we employ the matrix infinity
norm ∥A∥∞ = maxi


j |Aij|, and the matrix maximum norm

∥A∥max = maxij |Aij| to characterize the properties of the inverse of
the expected Hessian of the incidental parameters in Appendix D.

For r ≥ 0, we define the sets B(r, β0) =

β : ∥β − β0

∥ ≤ r

,

and Bq(r, φ0) =

φ : ∥φ − φ0

∥q ≤ r

, which are closed balls of

radius r around the true parameter values β0 and φ0, respectively.
Appendix B. Asymptotic expansions

In this section, we derive asymptotic expansions for the score
of the profile objective function, L(β,φ(β)), and for the fixed
effects estimators of the parameters and APEs,β andδ. We do not
employ the panel structure of the model, nor the particular form
of the objective function given in Section 4. Instead, we consider
the estimation of an unspecified model based on a sample of size
NT and a generic objective function L(β, φ), which depends on
the parameter of interest β and the incidental parameter φ. The
estimatorsφ(β) andβ are defined in (2.7) and (2.8). The proof of all
the results in this Section are given in the supplementary material
(see Appendix E).

Wemake the following high-level assumptions. These assump-
tions might appear somewhat abstract, but will be justified by
more primitive conditions in the context of panel models.

Assumption B.1 (Regularity Conditions for Asymptotic Expansion ofβ). Let q > 4 and 0 ≤ ϵ < 1/8 − 1/(2q). Let rβ = rβ,NT > 0,
rφ = rφ,NT > 0, with rβ = o


(NT )−1/(2q)−ϵ


and rφ = o


(NT )−ϵ


.

We assume that

(i) dimφ
√
NT

→ a, 0 < a < ∞.
(ii) (β, φ) → L(β, φ) is four times continuously differentiable

in B(rβ , β0) × Bq(rφ, φ0), wpa1.
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(iii) sup
β∈B(rβ ,β0)

φ(β) − φ0

q = oP(rφ).

(iv) H > 0, and
H−1


q
= OP (1).

(v) For the q-norm defined in Appendix A,

∥S∥q = OP

(NT )−1/4+1/(2q) , ∥∂βL∥ = OP(1),

∥ H∥q = oP(1),∂βφ′L

q = OP


(NT )1/(2q)


,∂ββ ′L

 = OP(
√
NT ),

∂βφφL

q = OP((NT )ϵ),∂φφφL


q = OP ((NT )ϵ) ,

and

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ ,φ0)

∂βββL(β, φ)
 = OP

√
NT


,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ ,φ0)

∂ββφL(β, φ)

q = OP


(NT )1/(2q)


,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ ,φ0)

∂ββφφL(β, φ)

q = OP ((NT )ϵ) ,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ ,φ0)

∂βφφφL(β, φ)

q = OP ((NT )ϵ) ,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ ,φ0)

∂φφφφL(β, φ)

q = OP ((NT )ϵ) .

(vi) For the spectral norm ∥.∥ = ∥.∥2,

∥ H∥ = oP

(NT )−1/8 , ∂ββ ′ L = oP(

√
NT ),∂βφφ

L = oP

(NT )−1/8 ,∂βφ′ L = OP (1) ,dimφ

g,h=1

∂φφgφh
L [H

−1
S]g [H

−1
S]h

 = oP

(NT )−1/4 .

Let ∂βL(β,φ(β)) be the score of the profile objective func-
tion.20 The following theorem is the main result of this Appendix.

Theorem B.1 (Asymptotic Expansions of φ(β) and ∂βL(β,φ(β))).
Let Assumption B.1 hold. Thenφ(β) − φ0

= H−1S + H−1
[∂φβ ′L](β − β0)

+
1
2

H−1
dimφ
g=1

[∂φφ′φg L]H−1S[H−1S]g + Rφ(β),

and

∂βL(β,φ(β)) = U − W
√
NT (β − β0) + R(β),

where U = U (0)
+ U (1), and

W = −
1

√
NT


∂ββ ′L + [∂βφ′L] H

−1
[∂φβ ′L]


,

U (0)
= ∂βL + [∂βφ′L] H

−1
S,

U (1)
= [∂βφ′ L]H

−1
S − [∂βφ′L] H

−1 H H
−1

S

+
1
2

dimφ
g=1


∂βφ′φg L + [∂βφ′L] H

−1
[∂φφ′φg L]


[H

−1
S]gH

−1
S.

20 Note that d
dβ L(β,φ(β)) = ∂βL(β,φ(β)) by the envelope theorem.
The remainder terms of the expansions satisfy

sup
β∈B(rβ ,β0)

(NT )1/2−1/(2q)
Rφ(β)


q

1 +
√
NT∥β − β0∥

= oP (1) ,

sup
β∈B(rβ ,β0)

∥R(β)∥

1 +
√
NT∥β − β0∥

= oP(1).

Remark 8. The result for φ(β) − φ0 does not rely on Assump-
tion B.1(vi). Without this assumption we can also show that

∂βL(β,φ(β)) = ∂βL +

∂ββ ′L + (∂βφ′L)H−1(∂φ′βL)


(β − β0)

+ (∂βφ′L)H−1S +
1
2


g


∂βφ′φg L

+ [∂βφ′L] H−1
[∂φφ′φg L]


[H−1S]gH

−1S + R1(β),

with R1(β) satisfying the same bound as R(β). Thus, the
spectral norm bounds in Assumption B.1(vi) for dimφ-vectors,
matrices and tensors are only used after separating expectations
from deviations of expectations for certain partial derivatives.
Otherwise, the derivation of the bounds is purely based on the q-
norm for dimφ-vectors, matrices and tensors.

The proofs are given in Section S.3 of the supplementary
material. Theorem B.1 characterizes asymptotic expansions for
the incidental parameter estimator and the score of the profile
objective function in the incidental parameter score S up to
quadratic order. The theorem provides bounds on the remainder
terms Rφ(β) and R(β), which make the expansions applicable
to estimators of β that take values within a shrinking rβ-
neighborhood of β0 wpa1. Given such an rβ-consistent estimatorβ that solves the first order condition ∂βL(β,φ(β)) = 0, we
can use the expansion of the profile objective score to obtain
an asymptotic expansion for β . This gives rise to the following
corollary of Theorem B.1. LetW∞ := limN,T→∞ W .

Corollary B.2 (Asymptotic Expansion of β). Let Assumption B.1 be
satisfied. In addition, let U = OP(1), let W∞ exist with W∞ > 0,
and let ∥β − β0

∥ = oP(rβ). Then
√
NT (β − β0) = W

−1
∞

U + oP(1).

The following theorem states that for strictly concave objective
functions no separate consistency proof is required for φ(β) and
forβ .

Theorem B.3 (Consistency under Concavity). Let Assumption B.1(i),
(ii), (iv), (v) and (vi) hold, and let (β, φ) → L(β, φ) be strictly
concave over (β, φ) ∈ Rdimβ+dimφ , wpa1. Assume furthermore that
(NT )−1/4+1/(2q)

= oP(rφ) and (NT )1/(2q)rβ = oP(rφ). Then,

sup
β∈B(rβ ,β0)

φ(β) − φ0

q = oP(rφ),

i.e. Assumption B.1(iii) is satisfied. If, in addition, W∞ exists with
W∞ > 0, then ∥β − β0

∥ = OP

(NT )−1/4


.

In the application of Theorem B.1 to panel models, we
focus on estimators with strictly concave objective functions. By
Theorem B.3, we only need to check Assumption B.1(i), (ii), (iv),
(v) and (vi), as well as U = OP(1) and W∞ > 0, when we apply
Corollary B.2 to derive the limiting distribution ofβ . We give the
proofs of Corollary B.2 and Theorem B.3 in Section S.3.
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Expansion for average effects

We invoke the following high-level assumption, which is
verified under more primitive conditions for panel data models in
the next section.

Assumption B.2 (Regularity Conditions for Asymptotic Expansion ofδ). Let q, ϵ, rβ and rφ be defined as in Assumption B.1. We assume
that

(i) (β, φ) → ∆(β, φ) is three times continuously differentiable
in B(rβ , β0) × Bq(rφ, φ0), wpa1.

(ii)
∂β∆

 = OP(1),
∂φ∆


q = OP


(NT )1/(2q)−1/2


,
∂φφ∆


q =

OP((NT )ϵ−1/2), and

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ ,φ0)

∂ββ∆(β, φ)
 = OP (1) ,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ ,φ0)

∂βφ′∆(β, φ)

q = OP


(NT )1/(2q)−1/2 ,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ ,φ0)

∂φφφ∆(β, φ)

q = OP


(NT )ϵ−1/2 .

(iii)
∂β

∆ = oP(1),
∂φ

∆ = OP

(NT )−1/2


, and

∂φφ
∆ =

oP

(NT )−5/8


.

The following result gives the asymptotic expansion for the
estimator,δ = ∆(β,φ(β)), wrt δ = ∆(β0, φ0).

Theorem B.4 (Asymptotic Expansion of δ̂). Let Assumptions B.1 and
B.2 hold and let ∥β − β0

∥ = OP

(NT )−1/2


= oP


rβ

. Then

δ − δ =


∂β ′∆ + (∂φ′∆)H

−1
(∂φβ ′L)


(β − β0) + U (0)

∆

+U (1)
∆ + oP


1/

√
NT


,

where

U (0)
∆ = (∂φ′∆)H

−1
S,

U (1)
∆ = (∂φ′∆)H

−1
S − (∂φ′∆)H

−1 HH
−1

S

+
1
2

S′H
−1


∂φφ′∆ +

dimφ
g=1


∂φφ′φg L

 
H

−1
(∂φ∆)


g


H

−1
S.

Remark 9. The expansion of the profile score ∂βkL(β,φ(β)) in
Theorem B.1 is a special case of the expansion in Theorem B.4, for
∆(β, φ) =

1
√
NT

∂βkL(β, φ). Assumption B.2 also exactly matches
with the corresponding subset of Assumption B.1.

Appendix C. Proofs of Section 4

C.1. Application of general expansion to panel estimators

We now apply the general expansion of Appendix B to the
panel fixed effects estimators considered in the main text. For
the objective function specified in (2.1) and (4.1), the incidental
parameter score evaluated at the true parameter value is

S =




1
√
NT

T
t=1

∂πℓit


i=1,...,N

1
√
NT

N
i=1

∂πℓit


t=1,...,T

 .

The penalty term in the objective function does not contribute
to S, because at the true parameter value v′φ0

= 0. The
corresponding expected incidental parameter Hessian H is given
in (4.2). Appendix D discusses the structure of H and H

−1 in more
detail. Define

Λit := −
1

√
NT

N
j=1

T
τ=1


H

−1
(αα)ij + H

−1
(γ α)tj

+ H
−1
(αγ )iτ + H

−1
(γ γ )tτ


∂πℓjτ , (C.1)

and the operator Dβ∆it := ∂β∆it − ∂π∆itΞit , which are similar to
Ξit and Dβℓit in Eq. (4.3).

The following theorem shows that Assumptions 4.1 and 4.2 for
the panel model are sufficient for Assumptions B.1 and B.2 for the
general expansion, and particularizes the terms of the expansion
to the panel estimators. The proof is given in the supplementary
material (see Appendix E).

Theorem C.1. Consider an estimator with objective function given
by (2.1) and (4.1). Let Assumption 4.1 be satisfied and suppose that
the limit W∞ defined in Theorem 4.1 exists and is positive definite.
Let q = 8, ϵ = 1/(16 + 2ν), rβ,NT = log(NT )(NT )−1/8 and
rφ,NT = (NT )−1/16. Then,

(i) Assumption B.1 holds and ∥β − β0
∥ = OP((NT )−1/4).

(ii) The approximate Hessian and the terms of the score defined
in Theorem B.1 can be written as

W = −
1
NT

N
i=1

T
t=1

Eφ


∂ββ ′ℓit − ∂π2ℓitΞitΞ

′

it


,

U (0)
=

1
√
NT

N
i=1

T
t=1

Dβℓit ,

U (1)
=

1
√
NT

N
i=1

T
t=1


−Λit


Dβπℓit − Eφ(Dβπℓit)


+

1
2
Λ2

it Eφ(Dβπ2ℓit)


.

(iii) In addition, let Assumption 4.2 hold. Then, Assumption B.2 is
satisfied for the partial effects defined in (2.2). By Theorem B.4,
√
NT
δ − δ


= V (0)

∆ + V (1)
∆ + oP(1),

where

V (0)
∆ =


1
NT


i,t

Eφ(Dβ∆it)

′

W
−1
∞

U (0)

−
1

√
NT


i,t

Eφ(Ψit)∂πℓit ,

V (1)
∆ =


1
NT


i,t

Eφ(Dβ∆it)

′

W
−1
∞

U (1)

+
1

√
NT


i,t

Λit

Ψit∂π2ℓit − Eφ(Ψit)Eφ(∂π2ℓit)


+

1

2
√
NT


i,t

Λ2
it


Eφ(∂π2∆it) − Eφ(∂π3ℓit)Eφ(Ψit)


.

C.2. Proofs of Theorems 4.1 and 4.2

Proof of Theorem 4.1. #First,wewant to show thatU (0)
→d N (0,

W∞). In our likelihood setting, Eφ∂βL = 0, EφS = 0,
and, by the Bartlett identities, Eφ(∂βL∂β ′L) = −

1
√
NT

∂ββ ′L,

Eφ(∂βLS′) = −
1

√
NT

∂βφ′L and Eφ(SS′) =
1

√
NT


H −

b
√
NT

vv′


.
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Furthermore, S′v = 0 and ∂βφ′Lv = 0. Then, by definition of

W = −
1

√
NT


∂ββ ′L + [∂βφ′L] H

−1
[∂φβ ′L]


and U (0)

= ∂βL +

[∂βφ′L] H
−1

S,

Eφ


U (0)

= 0, Var

U (0)

= W ,

which implies that limN,T→∞ Var

U (0)


= limN,T→∞ W = W∞.

Moreover, part (ii) of Theorem C.1 yields

U (0)
=

1
√
NT

N
i=1

T
t=1

Dβℓit ,

whereDβℓit = ∂βℓit −∂πℓitΞit is amartingale difference sequence
for each i and independent across i, conditional on φ. Thus, by
Lemma S.3 and the Cramer–Wold device we conclude that

U (0)
→d N


0, lim

N,T→∞

Var

U (0)

∼ N (0, W∞).

# Next, we show that U (1)
→P κB∞ + κ−1D∞. Part (ii) of

Theorem C.1 gives U (1)
= U (1a)

+ U (1b), with

U (1a)
= −

1
√
NT

N
i=1

T
t=1

Λit

Dβπℓit − Eφ(Dβπℓit)


,

U (1b)
=

1

2
√
NT

N
i=1

T
t=1

Λ2
it Eφ(Dβπ2ℓit).

Plugging-in the definition of Λit , we decompose U (1a)
= U (1a,1)

+

U (1a,2)
+ U (1a,3)

+ U (1a,4), where

U (1a,1)
=

1
NT


i,j

H
−1
(αα)ij


τ

∂πℓjτ


t


Dβπℓit − Eφ(Dβπℓit)


,

U (1a,2)
=

1
NT


j,t

H
−1
(γ α)tj


τ

∂πℓjτ


i


Dβπℓit − Eφ(Dβπℓit)


,

U (1a,3)
=

1
NT


i,τ

H
−1
(αγ )iτ


j

∂πℓjτ


t


Dβπℓit − Eφ(Dβπℓit)


,

U (1a,4)
=

1
NT


t,τ

H
−1
(γ γ )tτ


j

∂πℓjτ


i


Dβπℓit − Eφ(Dβπℓit)


.

By the Cauchy–Schwarz inequality applied to the sum over t in
U (1a,2),


U (1a,2)2

≤
1

(NT )2


t


j,τ

H
−1
(γ α)tj∂πℓjτ

2


×


t


i


Dβπℓit − Eφ(Dβπℓit)

2
 .

By Lemma D.1, H−1
(γ α)tj = OP(1/

√
NT ), uniformly over t, j. Using

that both
√
NT H

−1
(γ α)tj∂πℓjτ andDβπℓit−Eφ(Dβπℓit) aremean zero,

independent across i and LemmaS.2 in the supplementarymaterial
across t , we obtain

Eφ


1

√
NT


j,τ

[
√
NT H

−1
(γ α)tj]∂πℓjτ

2

= OP(1),

Eφ


1

√
N


i


Dβπℓit − Eφ(Dβπℓit)

2

= OP(1),
uniformly over t . Thus,


t


j,τ H

−1
(γ α)tj∂πℓjτ

2
= OP(T ) and

t


i


Dβπℓit − Eφ(Dβπℓit)

2
= OP(NT ). We conclude that

U (1a,2)2
=

1
(NT )2

OP(T )OP(NT ) = OP(1/N) = oP(1),

and therefore that U (1a,2)
= oP(1). Analogously one can show that

U (1a,3)
= oP(1).

By Lemma D.1, H−1
(αα) = −diag


1

√
NT

T
t=1 Eφ(∂π2ℓit)

−1


+

OP(1/
√
NT ). Analogously to the proof of U (1a,2)

= oP(1), one can
show that the OP(1/

√
NT ) part of H

−1
(αα) has an asymptotically

negligible contribution to U (1a,1). Thus,

U (1a,1)
= −

1
√
NT


i


τ

∂πℓiτ


t


Dβπℓit − Eφ(Dβπℓit)



t

Eφ(∂π2ℓit)  
=:U(1a,1)

i

+ oP(1).

Our assumptions guarantee that Eφ


U (1a,1)
i

2
= OP(1),

uniformly over i. Note that both the denominator and the
numerator of U (1a,1)

i are of order T . For the denominator this is
obvious because of the sum over T . For the numerator there are
two sums over T , but both ∂πℓiτ and Dβπℓit −Eφ(Dβπℓit) aremean
zero weakly correlated processes, so that their sums are of order
√
T . By the WLLN over i (remember that we have cross-sectional

independence, conditional on φ, and we assume finite moments),
N−1

i U
(1a,1)
i = N−1

i EφU
(1a,1)
i + oP(1), and therefore

U (1a,1)
= −


N
T

1
N

N
i=1

T
t=1

T
τ=t

Eφ


∂πℓitDβπℓiτ


T

t=1
Eφ


∂π2ℓit


  

=:


N
T B(1)

+oP(1).

Here, we use that Eφ


∂πℓitDβπℓiτ


= 0 for t > τ . Analogously,

U (1a,4)
= −


T
N

1
T

T
t=1

N
i=1

Eφ


∂πℓitDβπℓit


N
i=1

Eφ


∂π2ℓit


  

=:


T
N D(1)

+oP(1).

We conclude that U (1a)
= κB

(1)
+ κ−1D

(1)
+ oP(1).

Next, we analyze U (1b). We decompose Λit = Λ
(1)
it + Λ

(2)
it +

Λ
(3)
it + Λ

(4)
it , where

Λ
(1)
it = −

1
√
NT

N
j=1

H
−1
(αα)ij

T
τ=1

∂πℓjτ ,

Λ
(2)
it = −

1
√
NT

N
j=1

H
−1
(γ α)tj

T
τ=1

∂πℓjτ ,

Λ
(3)
it = −

1
√
NT

T
τ=1

H
−1
(αγ )iτ

T
τ=1

∂πℓjτ ,
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Λ
(4)
it = −

1
√
NT

T
τ=1

H
−1
(γ γ )tτ

T
τ=1

∂πℓjτ .

This decomposition of Λit induces the following decomposition of
U (1b)

U (1b)
=

4
p,q=1

U (1b,p,q),

U (1b,p,q)
=

1

2
√
NT

N
i=1

T
t=1

Λ
(p)
it Λ

(q)
it Eφ(Dβπ2ℓit).

Due to the symmetry U (1b,p,q)
= U (1b,q,p), this decomposition has

10 distinct terms. Start with U (1b,1,2) noting that

U (1b,1,2)
=

1
√
NT

N
i=1

U (1b,1,2)
i ,

U (1b,1,2)
i =

1
2T

T
t=1

Eφ(Dβπ2ℓit)
1
N2

N
j1,j2=1


NTH

−1
(αα)ij1H

−1
(γ α)tj2


×


1

√
T

T
τ=1

∂πℓj1τ


1

√
T

T
τ=1

∂πℓj2τ


.

By Eφ(∂πℓit) = 0, Eφ(∂πℓit∂πℓjτ ) = 0 for (i, t) ≠ (j, τ ), and
the properties of the inverse expected Hessian from Lemma D.1,

Eφ


U (1b,1,2)
i


= OP(1/N), uniformly over i, Eφ


U (1b,1,2)
i

2
=

OP(1), uniformly over i, and Eφ


U (1b,1,2)
i U (1b,1,2)

j


= OP(1/N),

uniformly over i ≠ j. This implies that Eφ U (1b,1,2)
= OP(1/N)

and Eφ


U (1b,1,2)

− Eφ U (1b,1,2)
2

= OP(1/
√
N), and therefore

U (1b,1,2)
= oP(1). By similar arguments one obtains U (1b,p,q)

=

oP(1) for all combinations of p, q = 1, 2, 3, 4, except for p = q = 1
and p = q = 4.

For p = q = 1,

U (1b,1,1)
=

1
√
NT

N
i=1

U (1b,1,1)
i ,

U (1b,1,1)
i =

1
2T

T
t=1

Eφ(Dβπ2ℓit)
1
N2

N
j1,j2=1


NTH

−1
(αα)ij1H

−1
(αα)ij2


×


1

√
T

T
τ=1

∂πℓj1τ


1

√
T

T
τ=1

∂πℓj2τ


.

Analogous to the result forU (1b,1,2), Eφ


U (1b,1,1)

− Eφ U (1b,1,1)
2

= OP(1/
√
N), and therefore U (1b,1,1)

= Eφ U (1b,1,1)
+ o(1).

Furthermore,

Eφ U (1b,1,1)
=

1

2
√
NT

N
i=1

T
t=1

Eφ(Dβπ2ℓit)
T

τ=1
Eφ


(∂πℓiτ )

2


T
t=1

Eφ


∂π2ℓit

2 + o(1)

= −


N
T

1
2N

N
i=1

T
t=1

Eφ(Dβπ2ℓit)

T
t=1

Eφ


∂π2ℓit


  

=:


N
T B(2)

+o(1).
Analogously,

U (1b,4,4)
= Eφ U (1b,4,4)

+ oP(1)

= −


T
N

1
2T

T
t=1

N
i=1

Eφ(Dβπ2ℓit)

N
i=1

Eφ


∂π2ℓit


  

=:


T
N D(2)

+o(1).

We have thus shown that U (1b)
= κB

(2)
+ κ−1D

(2)
+ oP(1). Since

B∞ = limN,T→∞[B
(1)

+ B
(2)

] and D∞ = limN,T→∞[D
(1)

+ D
(2)

] we
thus conclude U (1)

= κB∞ + κ−1D∞ + oP(1).
# We have shown U (0)

→d N (0, W∞), and U (1)
→P κB∞ +

κ−1D∞. Then, part (ii) of Theorem C.1 yields
√
NT (β − β0) →d

W
−1
∞

N (κB∞ + κ−1D∞, W∞). �

Proof of Theorem 4.2. We consider the case of scalar ∆it to
simplify the notation. Decompose

rNT (δ − δ0
NT − B

δ

∞
/T − D

δ

∞
/N) = rNT (δ − δ0

NT )

+
rNT

√
NT

√
NT (δ − δ − B

δ

∞
/T − D

δ

∞
/N).

# Part (1): Limit of
√
NT (δ − δ − B

δ

∞
/T −D

δ

∞
/N). An argument

analogous to the proof of Theorem4.1 using TheoremC.1(iii) yields
√
NT (δ − δ) →d N


κB

δ

∞
+ κ−1D

δ

∞
, V

δ(1)
∞


,

where V
δ(1)
∞

= plimN,T→∞


(NT )−1

i,t Eφ[Γ 2
it ]

, for the expres-

sions of B
δ

∞
, D

δ

∞
, and Γit given in the statement of the theorem.

Then, by Mann–Wald theorem
√
NT (δ − δ − B

δ

∞
/T − D

δ

∞
/N) →d N


0, V

δ(1)
∞


.

# Part (2): Limit of rNT (δ − δ0
NT ). Here we show that

rNT (δ − δ0
NT ) →d N (0, V

δ(2)
∞

) for the convergence rate rNT given in

Remark 4, and characterize the asymptotic variance V
δ(2)
∞

. We de-
termine rNT through E[(δ − δ0

NT )
2
] = O(r−2

NT ) and r−2
NT = O(E[(δ −

δ0
NT )

2
]), where

E[(δ − δ0
NT )

2
] = E

 1
NT


i,t

∆it

2


=
1

N2T 2


i,j,t,s

E
∆it∆js


, (C.2)

for ∆it = ∆it − E(∆it). Then, we characterize V
δ(2)
∞

as V
δ(2)
∞

=

plimN,T→∞{r2NTE[(δ − δ0
NT )

2
]}, because E[δ − δ0

NT ] = 0. The order
of E[(δ − δ0

NT )
2
] is equal to the number of terms of the sums in

Eq. (C.2) that are non zero, which is determined by the sam-
ple properties of {(Xit , αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T }.
Under Assumption 4.2(i), if {αi}N and {γt}T are independent se-
quences, andαi and γt are independent for all i, t , thenE[∆it∆js] =

E[∆it ]E[∆js] = 0 if i ≠ j and t ≠ s, so that

E[(δ − δ0
NT )

2
] =

1
N2T 2


i,t,s

E
∆it∆is


+


i,j,t

E
∆it∆jt


−


i,t

E
∆2

it


= O


N + T − 1

NT


,
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because E[∆it∆is] ≤ E[Eφ(∆2
it)]

1/2E[Eφ(∆2
is)]

1/2 < C by the
Cauchy–Schwarz inequality and Assumption 4.2(ii). We conclude
that rNT =

√
NT/(N + T − 1) and

V
δ(2)

= plim
N,T→∞


r2NT
N2T 2


i,t,s

E
∆it∆is


+


i≠j,t

E
∆it∆jt


.

Note that rNT → ∞ and rNT = O(
√
NT ).

# Part (3): limit of rNT (δ − δ0
NT − T−1B

δ

∞
− N−1D

δ

∞
). The con-

clusion of the Theorem follows because (δ − δ0
NT ) and (δ − δ −

T−1B
δ

∞
− N−1D

δ

∞
) are asymptotically independent and V

δ

∞
=

V
δ(2)

+ V
δ(1)

limN,T→∞(rNT/
√
NT )2. �

Appendix D. Properties of the inverse expected incidental
parameter hessian

The expected incidental parameter Hessian evaluated at the
true parameter values is

H = Eφ[−∂φφ′L] =


H

∗

(αα) H
∗

(αγ )

[H
∗

(αγ )]
′ H

∗

(γ γ )


+

b
√
NT

vv′,

wherev = vNT = (1′

N , −1′

T )
′,H∗

(αα) = diag( 1
√
NT


t Eφ[−∂π2ℓit ]),

H
∗

(αγ )it =
1

√
NT

Eφ[−∂π2ℓit ], and H
∗

(γ γ ) = diag( 1
√
NT


i Eφ[−∂π2

ℓit ]).
In panel models with only individual effects, it is straightfor-

ward to determine the order of magnitude of H
−1 in Assump-

tion B.1(iv), because H contains only the diagonal matrix H
∗

(αα).
In our case, H is no longer diagonal, but it has a special structure.
The diagonal terms are of order 1, whereas the off-diagonal terms
are of order (NT )−1/2. Moreover,

H − diag(H∗

(αα), H
∗

(γ γ ))

max

=

OP((NT )−1/2). These observations, however, are not sufficient to
establish the order of H

−1 because the number of non-zero off-
diagonal terms is ofmuch larger order than the number of diagonal
terms; compare O(NT ) to O(N + T ). Note also that the expected
Hessian without penalty term H

∗ has the same structure as H it-
self, but is not even invertible, i.e. the observation on the relative
size of diagonal vs. off-diagonal terms is certainly not sufficient to
make statements about the structure of H−1. The result of the fol-
lowing lemma is therefore not obvious. It shows that the diagonal
terms of H also dominate in determining the order of H

−1.

Lemma D.1. Under Assumption 4.1,H−1
− diag


H

∗

(αα), H
∗

(γ γ )

−1

max

= OP

(NT )−1/2 .

The proof of Lemma D.1 is provided in the supplementary material
(see Appendix E). The lemma result establishes that H

−1 can be
uniformly approximated by a diagonal matrix, which is given by
the inverse of the diagonal terms of H without the penalty. The
diagonal elements of diag(H∗

(αα), H
∗

(γ γ ))
−1 are of order 1, i.e. the

order of the difference established by the lemma is relatively small.
Note that the choice of penalty in the objective function is

important to obtain LemmaD.1. Different penalties, corresponding
to other normalizations (e.g. a penalty proportional to α2

1 ,
corresponding to the normalization α1 = 0), would fail to deliver
Lemma D.1. However, these alternative choices do not affect the
estimatorsβ andδ, i.e. which normalization is used to computeβ
andδ in practice is irrelevant (up to numerical precision errors).

Appendix E. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2015.12.014.
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