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Abstract 
Lifespan of laboratory animals can be increased by genetic, pharmacological 

and dietary interventions. Increased expression of genes involved in 

xenobiotic metabolism, together with resistance to xenobiotics, are frequent 

correlates of lifespan extension in the nematode worm C. elegans, the fruit fly 

Drosophila and mice. The Green Theory of Aging suggests that this 

association is causal, with the ability of cells to rid themselves of lipophilic 

toxins limiting normal lifespan. To test this idea, we experimentally increased 

resistance of Drosophila to the xenobiotic DDT, by artificial selection or by 

transgenic expression of a gene encoding a cytochrome P450. Although both 

interventions increased DDT resistance, neither increased lifespan. 

Furthermore, dietary restriction increased lifespan without increasing 

xenobiotic resistance, confirming that the two traits can be uncoupled. 

Reduced activity of the insulin/Igf signalling (IIS) pathway increases resistance 

to xenobiotics and extends lifespan in Drosophila, and can also increase 

longevity in C. elegans, mice and, possibly, humans. We identified a nuclear 

hormone receptor DHR96 as an essential mediator of the increased xenobiotic 

resistance of IIS mutant flies. However, the IIS mutants remained long-lived in 

the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in 

Drosophila IIS mutants, increased xenobiotic resistance and enhanced 

longevity are not causally connected. The frequent co-occurrence of of the two 

traits may instead have evolved because in nature lowered IIS can signal the 

presence of pathogens. It will be important to determine if enhanced 

xenobiotic metabolism is also a correlated, rather than a causal, trait in long-

lived mice. 
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Significance  

Lifespan of animals can be extended by genetic and environmental interventions, 

which often also induce resistance to toxins. This association has given rise to the 

Green Theory of Aging, which suggests that the ability to remove toxins is limiting for 

lifespan. To test this idea, we genetically increased resistance to toxins in 

Drosophila, but found no consequent increase in lifespan. Furthermore, we could 

block the xenobiotic resistance of genetically long-lived flies without reducing their 

lifespan. It will be important to understand if the xenobiotic resistance of long-lived 

mice is also a correlated, rather than a causal, trait, and to understand the functional 

significance of the common increase in xenobiotic resistance in long-lived animals.  
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Introduction  

 

The aging process can be ameliorated by genetic and environmental interventions, 

which can also delay or prevent age-related loss of function and pathology (1-4). 

Notably, the lifespans of the nematode worm (Caenorhabditis elegans), the fruit fly 

(Drosophila melanogaster) and the mouse (Mus musculus) can be extended by 

reduced activity of the insulin/insulin like growth factor signalling (IIS) network (1-4), 

which may also be important in human aging (5). This evolutionary conservation 

indicates that at least some aspects of mammalian aging can be understood by work 

with invertebrates, with their short lifespans and ease of genetic manipulation.  

 

In C. elegans and Drosophila, the single Forkhead Box O (FOXO) transcription factor 

is essential for the increased lifespan upon reduced IIS (6-8), suggesting that altered 

transcription of the direct or indirect targets of dFOXO mediates the changes in 

physiology required for longer life. In Drosophila, most of the pleiotropic traits 

induced by lowered IIS are merely correlated with, rather than causal for, extension 

of lifespan, because they are still present in the absence of dFOXO (7). Only 

extended lifespan and increased resistance to xenobiotics of IIS mutants have been 

demonstrated to require the presence of dFOXO (6-8), suggesting that lowered IIS 

may extend lifespan through increased detoxification of endo- and xenobiotic 

compounds.  

 

The metabolism of xenobiotics is divided into three phases: 1) modification, 2) 

conjugation, and 3) excretion. Genome-wide transcript profiles from long-lived 

animals, including IIS mutant worms and flies (9, 10), long-lived mutant Ames and 

Little dwarf mice (11), and mice from crowded litters, subjected to dietary restriction 

or treated with rapamycin (12) all show increased expression of genes involved in 

Phase 1 and 2 drug and xenobiotic metabolism (13). Little mice are also resistant to 

toxicity from xenobiotic compounds (14), indicating that the gene expression profiles 

are physiologically relevant. The link between increased lifespan and xenobiotic 

metabolism has led to the “Green Theory”, which suggests that aging results from an 

accumulation of xenobiotic and endobiotic toxicity as a consequence of a declining 

detoxification response with age (15).  

 

We have found that, in Drosophila, aging and xenobiotic metabolism are 

independently controlled. We identified a nuclear hormone receptor, DHR96, as 
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required for the increased xenobiotic resistance of long-lived IIS mutants. However, 

IIS mutants that lack DHR96 are equally long-lived without enhanced resistance to 

xenobiotics, demonstrating that the association between increased lifespan and 

xenobiotic metabolism is not causal.  

 

 

Results 

 
Increased resistance to the insecticide DDT does not increase lifespan 

In Drosophila, increased lifespan from reduced IIS is consistently associated with 

resistance to the insecticide DDT, and both traits require the presence of dFOXO (7). 

We first investigated if enhanced resistance to DDT would extend lifespan, by using 

artificial selection or over-expression of a cytochrome P450-encoding gene that 

enhances resistance to DDT (16).  

 

Two large populations of Drosophila (sel-A and sel-B) were artificially selected for 

resistance to DDT, and both showed a response to selection (Fig. 1A). However, in 

the absence of DDT the DDT-resistant lines were short-lived compared to controls 

(Fig. 1B). Detoxification enzymes expressed in the insect excretory Malpighian 

tubules play an important role in xenobiotic metabolism (17). DDT resistance was 

induced by over-expression of the cytochrome P450-encoding Cyp6g1 in the 

Malpighian tubules (Fig. 1C). However, the lifespan of the flies in the absence of 

DDT was unaffected (Fig. 1D). Hence, resistance to DDT per se is not sufficient to 

extend lifespan. 

 

Dietary restriction (DR) increases lifespan in diverse organisms, including Drosophila 

(4) where the increased longevity from DR is dFOXO-independent (18). Interestingly, 

we found that flies subjected to DR were not resistant to DDT (Fig. S1A). This result 

cannot be explained by increased consumption of the DDT-dosed food by the DR 

flies, because  DR flies do not differ from fully fed flies in food intake (19, 20). This 

finding demonstrates that DDT resistance is not necessary for increased longevity 

and is associated only with particular interventions that extend lifespan. 

 

 

Transcriptional signatures of long-lived IIS mutants identify DHR96 as 

mediating xenobiotic resistance 

If IIS mutants are long-lived due to enhanced xenobiotic metabolism, a broader 
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spectrum of detoxification activities than those induced by either artificial selection to 

one xenobiotic compound or Cyp6g1 over-expression may be necessary. To address 

this, we identified candidate transcription factors that could mediate the increased 

resistance to xenobiotics of long-lived IIS mutant flies. We profiled transcripts from 

flies of two different IIS mutants: (1) ablation of median neurosecretory cells (mNSC) 

in the brain that produce insulin-like ligands (21) and (2) heterozygous loss of the 

insulin receptor substrate chico (22). Both of these mutants exhibited increased 

resistance to DDT (Fig. S1B). Genes that were down-regulated in the long-lived 

mutants were enriched for functions in growth (including nucleic acid biosynthesis 

and translation), development, and reproduction including gametogenesis (Fig. S2). 

Genes with increased expression were enriched for functions in energy metabolism 

(including amino acid, carbohydrate and lipid catabolism), protein turnover 

(numerous peptidases), and transmembrane transport and defence, including 

metabolism of toxic compounds (Fig. 2). These changes in gene expression correlate 

well with the phenotypes of IIS mutants (7). Within the enriched defence category, 72 

up-regulated genes met our significance cut off and were associated to metabolism 

of toxic compounds (Dataset S1). The majority of these genes were regulated in 

response to heterozygous loss of chico (55 in total) with the remainder regulated in 

mNSC-ablated flies. In concordance with previous comparative studies (13) we 

detected clear differences between the transcriptional profiles (Figure S7), although 

the overlap between them was significant. 

 

Using the program Clover (23), we identified over-represented transcription factor 

binding sites (Table S1) in the promoters of genes with altered expression. Most of 

the putative, cognate transcription factors have documented roles in development, 

but only a few have known roles in adult flies. Despite this, transcripts of all but two 

of the genes encoding these transcription factors (CG10348 and Grn) were 

expressed at reliably detectable levels during adulthood. Of these, two groups are 

involved in immunity (the GATA-binding and AP-1 transcription factors), in 

accordance with the enriched GO category in the IIS mutants and the resistance to 

bacterial infections of chico1 mutant flies (24). We also identified a binding site 

corresponding to the sequence bound by mammalian pregnane X receptor (PXR) 

(25, 26), a nuclear receptor that regulates multiple genes involved in the metabolism 

of endo- and xenobiotic toxins (27). This PXR binding site was enriched near genes 

with higher expression in both long-lived IIS mutants, including those genes with a 

proposed role in toxin metabolism (Dataset S2).  
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PXR is phylogenetically related to Drosophila DHR96, one of 18 nuclear receptors in 

flies (28). Interestingly, null mutation in DHR96 causes flies to become lean and 

sensitive to treatment with xenobiotic toxins (29, 30). DHR96 is also a direct target of 

dFOXO, which is required for basal transcript levels of DHR96 (10). We validated the 

previously published dFOXO chromatin immunoprecipitation (ChIP) binding data by 

quantitative PCR (qPCR) and found, compared with U6 control (a non polII -

transcribed gene), a significant enrichment of DNA neighbouring DHR96 in samples 

immunoprecipitated with a dFOXO antibody (Fig. 3A) Thus, the loss of resistance to 

xenobiotics in IIS mutant flies lacking dFOXO could be attributable to loss of normal 

expression of DHR96. DHR96 was thus selected as a candidate for mediating the 

enhanced xenobiotic resistance of IIS mutants.  

 

DHR96 mediates xenobiotic resistance of IIS mutants 

We first investigated the role of DHR96 in xenobiotic resistance of adult flies. We 

subjected mutant DHR96 null flies (29) to treatment with DDT and found them to be 

sensitive (Fig. S3). In contrast, removal of DHR96 caused  only a mild reduction in 

lifespan under non-stressed conditions (Fig. 3B). Ubiquitous over-expression of 

DHR96 resulted in developmental lethality (Fig. S4), but over-expression in the 

Malpighian tubules increased resistance to DDT (Fig. 3C), without affecting lifespan 

(Fig. 3D), again showing that an increase in DDT resistance does not necessarily 

increase longevity. DHR96 thus has an important role in xenobiotic metabolism of 

adult flies. 

 

To test if DHR96 mediates the xenobiotic resistance of IIS mutant flies, we 

introduced a DHR96 null mutant into two IIS mutants: over-expression of dFOXO in 

muscle (31) or targeted deletion of the mNSC cells (32). Over-expression of dFOXO 

(Fig. 4A, repeated experiment in Fig. S5) and targeted ablation of the insulin-like 

peptide-producing mNSC cells (Fig. 4B, repeated experiment in Fig. S6) both 

significantly increased resistance to the xenobiotics DDT, phenobarbital (PB), and 

malathion. Strikingly, this resistance to all three xenobiotics was lost in a DHR96 null 

background (see Table S2 for Cox Proportional Hazards statistics). DHR96 is thus a 

key mediator of the enhanced xenobiotic resistance of long-lived IIS mutants. 

 

If DHR96 mediates xenobiotic resistance of IIS mutant flies, then it should regulate 

expression of genes directly involved in xenobiotic metabolism in the tissues 

responsible for detoxification. With the help of the software tool FIMO (33), we 

identified the putative binding motif of DHR96 six times in the flanking region of the 



 8 

gluthatione S transferase gene GstE1 (region 2 kb upstream and 2 kb downstream of 

the gene, p ≤0.00096) and ten times in the flanking region of the cytochrome P450 

gene Cyp6g1 (p≤0.00096). Furthermore, GstE1 and Cyp6g1 expression is induced 

by phenobarbital (PB) (29). We therefore investigated the role of IIS and DHR96 in 

regulating their expression in gut and Malpighian tubules. GstE1 and Cyp6g1 were 

both up-regulated in mNSC-ablated flies but not in dFOXO over-expressors (Fig. 

S7A). The up-regulation of GstE1 and Cyp6g1 in MNC-ablated flies was lost in a 

DHR96 null background, suggesting the response was DHR96-dependent (p=0.027 

for GstE1 and p=0.011 for Cyp6g1, Two-way ANOVA, Fig. 5A-B). DHR96 thus 

mediated the increased expression of both detoxification genes.  

 

To further investigate the differences in expression of genes involved in xenobiotic 

metabolism in different IIS mutants, we re-interrogated our chico/+ and mNSC-

ablated array data. In total 72 genes associated to xenobiotic response were 

regulated in at least one array dataset, with the majority of those genes being 

upregulated (Fig. S7B), indicating a common functional response across different 

models. However, the two models show overlapping, but distinct transcriptional 

profiles, 55 genes were regulated in the heterozygous chico flies, and 17 in the 

mNSC-ablated flies, with only 8 being regulated in both (Fig S7C). Two-way ANOVA 

of these common genes confirmed a significant (p<0.0001) interaction, showing a 

mutant-specific response to reduced IIS. Our qPCR data, together with the statistical 

analysis of the microarray data,  thus demonstrate that reduced IIS can induce 

cellular detoxification by regulation of both common and distinct sets of genes, as is 

also the case for IIS mutants in different model organisms (13).  

 

DHR96 does not mediate the increased lifespan of IIS mutant flies 

To determine if the increased lifespan of IIS mutant flies was mediated by DHR96, 

we measured adult survival of flies with dFOXO over-expression in muscle or 

ablation of the mNSC, in the presence or the absence of DHR96. Consistent with 

published data (31), muscle-specific over-expression of dFOXO significantly 

extended lifespan when compared to controls (Fig. 6A; see Table S2 for Cox 

Proportional Hazards statistics). However, this lifespan extension was unaffected by 

null mutation of DHR96 (Fig. 6B). Lifespan was also significantly increased by the 

ablation of mNSC cells (Fig. 6C, repeated experiment in Fig. S8A) and, again, this 

extension was unaffected by the absence of DHR96 (Fig. 6D, repeated experiment in 

Fig. S8B). DHR96 thus played no role in the extension of lifespan by reduced IIS. 
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Discussion 
 
The IIS mutants used in this study showed both enhanced expression of genes 

involved in xenobiotic metabolism and resistance to xenobiotics. Cognate 

observations have led to the proposal that enhanced detoxification processes could 

act as an evolutionarily conserved mechanism for lifespan extension (12, 13, 15, 34). 

Indeed, there is evidence from both worms and flies that enhanced expression of 

glutathione-S-transferase (GST)-encoding genes can increase longevity (35, 36). 

These findings led us to investigate if experimentally enhancing xenobiotic 

detoxification could also promote longevity. However, although artificial selection for 

DDT-resistance and over-expression of the cytochrome P450 Cyp6g1 in a key 

detoxification tissue, the Malpighian tubule, both increased DDT resistance, neither 

intervention increased lifespan and, indeed, artificial selection even decreased 

lifespan. Such costs of selection-induced insecticide resistance have been previously 

reported (37). On the other hand, dietary restriction increased fly lifespan but not 

DDT resistance. Thus xenobiotic resistance and lifespan could clearly be uncoupled 

from each other. 

 

A search for binding motifs of transcription factors differentially regulated in IIS 

mutants revealed a significantly enriched sequence corresponding to the binding site 

of mammalian PXR (Pregnane X receptor), the homolog of Drosophila DHR96. We 

also confirmed DHR96 as a direct target of dFOXO, which is required for basal 

transcript representation of DHR96. We confirmed the sensitivity to xenobiotics of 

DHR96 null mutant flies, and showed that they are also also short-lived, both 

characteristics shared by dFOXO null mutants. Over-expression of DHR96 in the 

Malpighian tubules increased DDT resistance, demonstrating the role of DHR96 in 

mediating xenobiotic resistance in adult flies. Interestingly, however, DHR96 over-

expression did not increase lifespan, again showing that the two traits can be 

uncoupled. We showed that DHR96 mediates the resistance of IIS mutants to the 

xenobiotics that we tested, because this resistance was completely lost when DHR96 

was absent. Furthermore, we demonstrated, using microarray data, that 

detoxification genes are upregulated in two different models of reduced IIS and that 

up-regulation of two of these genes  in mNSC-ablated flies is dependent on DHR96. 

Interestingly, the up-regulated genes were model-specific, but coalesced into a 

protective response evident in the resistance to the three xenobiotics that we tested. 

These model-specific differences agree with previously published studies which have 
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led to the proposal that enhanced detoxification processes could act as an 

evolutionarily conserved mechanism for lifespan extension (12, 13, 15, 34). 

Interestingly, the mammalian DHR96 homologues CAR (constitutive androstane 

receptor) and PXR are also key regulators of phenobarbital-induced xenobiotic 

response (38, 39), but it is not yet known if they function downstream of IIS. It will be 

important to investigate if the increased expression of genes involved in xenobiotic 

metabolism and xenobiotic resistance of long-lived mammals is causal in their 

increased lifespan. 

 

Importantly, we showed that, at least for the three xenobiotics that we tested, the 

increased xenobiotic resistance and lifespan of IIS mutants are independently 

mediated traits with no direct, causal connection between them. Increased 

expression of genes involved in xenobiotic metabolism together with xenobiotic 

resistance are, nonetheless, common correlates of lifespan-extension (7, 10, 11, 13-

15), raising the question of why this association is so frequent. Interestingly, genes 

involved in xenobiotic metabolism are indirectly activated by toxic by-products of 

microbes and pathogens, through the surveillance-activated detoxification and 

defence (cSADD) system (40), which senses xenobiotics through the dysfunction in 

cellular processes that they cause, including decreased host translation and altered 

metabolism (41). Importantly, microbes and pathogens can alter metabolism in the 

gut, resulting in lower IIS (42). Organisms may hence have evolved systems to 

sense lowered IIS as an indirect signal of the presence of pathogens, and mount 

cSADD as a defence response, thus inducing a form of hormesis. Many of the 

interventions that can increase lifespan involve altered signal transduction of 

pathways linked to metabolism, and activation of cSADD could provide a common 

mechanism.  

 

 
Material and Methods 
 

Fly Strains and Maintenance  

The control white Dahomey (wDah) was derived by backcrossing w1118 into the 

outbred, wild type Dahomey background. All transgenic lines were maintained with 

periodic backcrossing into wDah, and are summarized in Table S3. The DHR96 null 

mutant was a generous donation by Dr. Carl Thummel. Generation of mNSC-ablated 

flies, construction of transgenic lines and of DDT selection lines is described in 

Supporting Information S1-S3. 



 11 

 

 

Lifespan measurement  

Lifespans were performed as previously described in Bass et al. (43). Lifespan 

experiments included 100 - 200 female flies per genotype which were allowed to 

mate for 48h prior to the start of the experiment and transferred to fresh food three 

times weekly. Experiments were performed at least twice with the exception of the 

dFOXO over-expression epistasis experiment (Fig. 6) which was performed only 

once. Lifespan measurements and statistical analyses are described in Supporting 

Information S4. 

 

 

Stress assays 

Flies for stress assays were prepared in the same way as for lifespan experiments. 

At least 100 females from each cross were sorted into wide plastic vials, 20 flies per 

vial containing 1 x SYA food, and transferred to fresh food 3 times a week. Stress 

resistance was assayed at age 10 days. Stock solutions of DDT 

(Dichlordiphenyltrichlorethan; Greyhound), and phenobarbital (Sigma Aldrich) were 

dissolved in ethanol, and stock solution of malathion (FLUKA) was dissolved in 

isopropanol. Final concentration was 175 mg/L or 275 mg/L for DDT (see 

Supplement S5 for details), 5% (w/v) for Phenobarbital and 7.5 µM for malathion. 

Nearly all stress assays were performed twice, independent repeats of the 

experiments are in the Supporting Information. 

 

Microarrays 

In total, cRNA derived from 5 biological replicates of each IIS mutant genotype and 

control (Dahomey, chico1/+, UAS-rpr/+ and UAS-rpr/dilp2-Gal4) were hybridized to 

Quintuplicate Affymetrix Dros2 microarrays. We chose a q-value <0.15 as 

significance cut-off to consider a gene to be differentially regulated. A detailed 

description of the microarray experimental procedures and data analysis is 

summarised in Supplement Materials and Methods S6. 

   

 

Chromatin immunoprecipitation  

ChIP was performed on 3 biological repeats of chromatin as described in (10, 13, 22) 
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and DNA quantified by qPCR using the primers Hr96 56 

(CAAAGAGAGCATATTTAGGATACCAAG) with Hr96 36 (CACAGAACCCAC 

GCTTCCAAG). 

 

Quantitative real-time PCR 

For the gene expression analysis of GSTE1 and Cyp6d5 guts including Malpighian 

tubules of 10 - 15 female flies per sample were dissected and expression was 

quantified by qPCR using Taqman probes (Applied Biosystems) for GstE1 

(# Dm01826984), Cyp6g1 (# Dm01819889), Actin5C (# Dm02361909) and Rpl32 

(# Dm02151827) using the ΔΔCt method, n ≥ 3 for all experiments. 
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Figure legends 

Figure 1. Enhancing DDT resistance by artificial selection or over-expression 

of Cyp6g1 in Malpighian tubules did not extend fly lifespan. (A) Both selection 

lines (Selection A and Selection B) showed significant DDT resistance compared 

with three control populations (Control line X, Y and Z) that had been maintained in 

parallel under non-selection conditions. (B) Lifespans of the same lines as in (A), in 

the absence of DDT. The DDT-selected lines were shorter-lived than controls 

(p<0.005 in all comparisons of selection vs. control populations, Log Rank Test). (C-

D) Uo-GAL4 drove expression of Cyp6g1 in Malpighian tubules. This intervention 

increased resistance to DDT (p=0.040 for comparison with Uo-GAL4/+ and p=0.001 

for comparison with UAS-Cyp6g1-8a/+, Log Rank Test) (C) but did not affect 

longevity (D) (p>0.3 for all experimental lines vs. controls, Log Rank Test).  

 

Figure 2. Functionally related  changes in gene expression in IIS mutants. 

Microarray data from chico1 and mNSC-ablated females were analyzed using 

CATMAP, which retrieves significant changes in functionally-related groups of genes 

(44). The p-values for genes with increased expression in common between the two 

mutants are plotted (p<0.1, chico1 compared to wild type Dahomey control, mNSC-

ablated flies compared to UAS-rpr control), where one data point represents a single 

functionally related gene, and the genes are labelled with the higher-level categories 

shown in the legend. P-values from the chico1 comparison are plotted on the x-axis, 

those from the mNSC-ablation comparison on the y-axis. The equivalent data for 

genes with lower expression in common in the two mutants are shown in Figure S2. 

 

Figure 3. DHR96 is a direct target of dFOXO and required for normal xenobiotic 

response and lifespan  

(A) Relative enrichment of chromatin immunoprecipitated with a dFOXO-specific 

antibody. Higher levels in the precipitate of DNA neighboring DHR96 versus U6, a 

non-polII transcribed gene, indicate direct binding of dFOXO to DNA adjacent to the 

gene (p<0.001, Welch T-test). Relative enrichment was calculated as proportion of 

chromatin recovered in the IP for each region divided by the average of the two 

regions (HR96 and U6) for each chromatin (arbitrary scale). (B) Genetic deletion of 

DHR96 modestly decreased lifespan of female flies (p<0.0001, Log Rank Test). (C-

D) Tissue-specific over-expression of DHR96 in the Malpighian tubules (Uo-GAL4 

driver) increased DDT resistance (C, p<0.005, Log Rank Test), but did not affect 

lifespan (D). 
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Figure 4. Analysis of the effects of DHR96 on the xenobiotic resistance of two 

IIS mutants. (A) Muscle-specific over-expression of dFOXO significantly enhanced 

resistance to DDT,  phenobarbital, and malathion when compared to control lines 

(upper graphs, Log Rank Test, p-values for all comparisons with the matching driver 

and UAS lines <0.001, except for comparison of DDT resistance of dFOXO over-

expressors with the MHC-GAL4 line, p=0.61). Enhanced resistance was lost, when 

dFOXO was over-expressed in a DHR96 null background (lower graphs; p-values for 

all comparisons with the matching driver and UAS lines >0.05). Cox proportional 

hazards (CPH) was used to test for a statistical interaction between the effects of 

dFOXO over-expression and genomic deletion of DHR96, and revealed that each 

significantly affected stress resistance, with a significant interaction between them 

(p<0.01, Table S1). 

(B) Deletion of the mNSC cells significantly enhanced resistance to the three 

xenobiotics (upper graphs, Log Rank Test, p-values for all comparisons with the 

matching driver and UAS lines <0.001), and this was lost in a DHR96 null 

background (p-values for all comparisons with the matching driver and UAS lines 

>0.05). CPH analysis revealed a significant interaction between the effect of mNSC 

ablation and genomic DHR96 deletion, indicating that xenobiotic resistance was 

significantly blocked by the genomic deletion of DHR96 (CPH, p<0.001, Table S1).  

 

Figure 5. DHR96 mediates the increased expression of detoxification genes in 

IIS mutants. mRNA expression of GstE1 (A) and Cyp6g1 (B) in the gut of mNSC-

ablated flies was assessed by qRT-PCR to determine if it was regulated by IIS or 

DHR96. Results represent fold changes in mRNA levels relative to the InsP3-GAL4 

control (mean ± SEM). GstE1 and Cyp6g1 were significantly up-regulated in mNSC-

ablated flies in a wild type but not a DHR96 null background. Two-way ANOVA 

revealed a significant interaction term (p=0.027 for GstE1 and p=0.011 for Cyp6g1) 

with the response of both genes in the mNSC-ablated flies being entirely dependent 

on DHR96 (n ≥ 4). Individual pair-wise comparisons used Tukey’s multiple 

comparisons test (*, p<0.05, **, p<0.01, ***, p<0.001). 

 

 

Figure 6. Lifespan extension by lowered IIS is independent of DHR96. Lifespan 

of females was significantly increased by muscle-specific over-expression of dFOXO 

or by targeted ablation of mNSC cells in both a wild type (A and C, respectively) and 
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a DHR96 null background (B and D, respectively) (p-values for all comparisons with 

the matching driver and UAS lines <0.001, Log Rank Test). CPH analysis revealed 

that genomic DHR96 and over-expression of dFOXO or ablation of mNSC each 

significantly affected lifespan, but these effects did not show a significant interaction 

(Table S1). 
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SI Materials and Methods 

 

S1 Fly Strains and Maintenance 

Flies were kept in glass bottles (13.5 cm x 6 cm diameter) on a standard 1x SYA 

medium in a controlled temperature room with a 12:12 light:dark cycle, 65% humidity 

and a temperature of 18°C for stock maintenance and 25 °C for experiments. mNSC-

ablated flies were generated by crossing UAS-reaper to dilp2-GAL4 (21) for the 

microarray experiments (Fig. 2) and stress assays (Fig. S1) or by crossing UAS-

reaper to InsP3-GAL4 (32) for the qPCR (Fig. 5), stress assays (Fig. 4, S5, S6) and 

lifespan measurements (Fig. 6). See Table S3 for a list of fly stocks used in this 

study. 

 

S2 Construction of transgenic lines 

Construction of UAS-DHR96 

Cloned DHR96 coding sequence (kind gift from Tony Southall) was used as a 

template to PCR amplify the wild type DHR96 coding sequence (HR96), using the 

following primers: 

 

Hr96-51- NotI (ACGCGGCCGCATGTCGCCGCCGAAGAAC)  

Hr96-31Stop-XbaI (GTCTAGACTAGTGATTTTTCAAATCGAATATTTC) 

 

PCR product was inserted into the pUAST vector via the restriction sites NotI and 

XbaI. pUAST-DHR96 was injected into Drosophila embryos and resultant UAS-

DHR96 transgenics were backcrossed for at least eight generations into the wDah 

wolbachia+ background.  

 

Generation of UAS-dFOXO and of MHC-GAL4 in a DHR96 null background 

UAS-dFOXO is inserted at the attp40 locus on the second chromosome, and flies are 

marked with the mini white gene and balanced over CyO. The deletion in DHR96 null 

flies is located on the third chromosome and mutants are white-eyed, but marked 

with GFP-expressing eyes (29) and balanced over TM3Sb. Positive UAS-dFOXO; 

DHR96 null were identified by orange, GFP expressing eyes and were crossed to 

homozygosity. 

Both MHC-GAL4 and DHR96 null are on the third chromosome, and were 

recombined. Both were balanced over TM3Sb before recombining them. After 

screening for GFP, positive +; MHC-GAL4/DHR96 null were crossed to 

homozygosity. 
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Generation of UAS-reaper and InsP3-GAL4 in a DHR96 null background 

The crossing for InsP3-GAL4 in a DHR96 null background was performed as for the 

MHC-GAL4; DHR96 null, as the driver is inserted on the third chromosome. UAS-

reaper is integrated into the X-Chromosome and was maintained over FM6. 

 

S3 Construction of DDT selection lines 

From our large population cages containing wDah wolbachia+, six groups of several 

hundred flies were removed and randomly assigned to one of six new population 

cages. Every week, three bottles containing 30 ml of fresh food (1xSYA Brewer’s) 

were introduced into the cages and the three oldest bottles removed. This was 

continued throughout selection so that at all times each cage contained 11 bottles of 

different ages: three within one week old, three between one and two weeks old, 

three between two and three weeks old and two between three and four weeks old. 

Three control cages were always fed normal food while the three selection cages 

were fed food containing 1SYBrewer’s containing DDT at increasing concentrations 

over time. During the course of five months, the DDT dose was incremented in the 

following steps (w/v food): 0.001%, 0.0025%, 0.005%, 0.006%, 0.008%, 0.01%, 

0.012%, 0.015%, 0.018%, and 0.021%. During the transition from 0.018% to 0.021%, 

one of the treatment populations died out. 

 

S4 Lifespan experiments 

Experimental flies were raised at a density of 200-300 flies per bottle containing 70ml 

1xSYA medium. Upon emergence, flies were transferred to fresh bottles for 48h to 

standardize mating status. Subsequently, females were counted for experiments 

under light CO2 anesthesia and transferred to glass vials, 10 flies per vial, and 

transferred to fresh food three times weekly. Statistics were performed using JMP 

statistical software (SAS Institute). Differences in death rates at all ages were 

assessed by Log Rank test, and significance for values of maximum lifespan (final 

surviving 10% for each population) was assessed by the non-parametric median test. 

Cox Proportional Hazards was performed in JMP (SAS) to test for an interaction 

between IIS and DHR96. The model included two covariates in all analyses: the 

status of reduced IIS (dFOXO over-expression or mNSC ablation status versus 

controls) and DHR96 status (wild type DHR96 versus DHR96 null). 

 

S5 Stress Assays 

All xenobiotics were added to 1x SYA food after cooling it down to 55°C. Flies 
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exposed to drugs were not tipped into new vials because they died within few days 

and no progeny developed. Dead flies were counted every 4-8 hours. Measurement 

was stopped when flies were dead or response to xenobiotic ceased. 

 

Note: 

In the first stress assay where flies were treated with DDT (Fig. S5), we used two 

different concentrations for dFOXO over-expressors in a wildtype background (275 

mg/L) and dFOXO over-expressors in a DHR96 null background (175 mg/L). For 

DHR96 mutant flies a lower DDT concentration was used because they were known 

to be sensitive (29) and we were afraid that we would not see differences between 

dFOXO over-expressors in a DHR96 null background and the un-induced controls in 

a DHR96 null background. But even with this low concentration we were unable to 

detect a protective effect of dFOXO over-expression and therefore decided to stick 

with the standard DDT concentration (275 mg/L). 

 
 

S6 Microarray data analyses 

 

Experimental procedure 

For sampling, flies were snap-frozen in liquid nitrogen at 3 pm on day 7 after 

eclosion. For each array, RNA from 20 to 30 whole flies was extracted using TRIzol 

(Gibco, Paisley, UK) and purified with RNeasy columns (Qiagen, West Sussex, UK) 

following the manufacturer’s instructions. The quality and concentration of RNA was 

confirmed using an Agilent Bioanalyzer 2100 (Agilent Technologies, CA, US), and 

further procedures followed the standard Affymetrix protocol. All samples were 

hybridized to the Drosophila Genome 2.0 Genechip in quintuplicates. 

 

Data analysis 

All individual probes were mapped against all known and predicted transcripts of the 

D. melanogaster genome release version 5.4. This mapping allowed for up to one 

alignment error for either perfect match or mismatch of each individual probe, and a 

composite score was calculated for each probe set. This allowed each probe set to 

be assigned a qualitative category: perfect (all probes match a single target gene 

with no mismatches), promiscuous (some or all probes within a probe set map to 

more than one gene in the genome), weak (the probe set maps to a single gene, but 

some probes may have mismatches or may not map to the gene), or orphan (no 

probes in the probe set map to any known or predicted gene in the genome). Both 
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promiscuous and orphan probe sets were excluded from further analysis. FlyBase 

gene ids were mapped to GO ids (version 1.107). 

 

Raw data (cel files) were processed to correct for probe-sequence biases, and R's 

implementation of the Affymetrix’s MicroArray Suite 5.0 software was used to 

determine present target transcripts (46). A transcript was considered present if the 

p-value was < 0.111, and absent otherwise. The data was normalized by eight 

different methods (47) and the statistical analysis of each normalization was 

combined  to identify a robust set of differentially expressed genes. The R code from 

(46) was altered to exclude absent probe sets prior to the final Loess normalization to 

reduce the number of false-positives associated with the absent probe sets.  

 

Since lowered IIS can extend lifespan without reduction of fertility (48), we removed 

ovary-specific transcripts after the first round of normalization. Ovary-specific 

transcripts were identified as follows. Tissue-specific Affymetrix array data from 11 

tissues dissected from the adult fly were downloaded from the FlyAtlas webpage 

(49). As above, the raw data were preprocessed to correct for probe-sequence 

biases, and R's implementation of the Affymetrix’s MicroArray Suite 5.0 software was 

used to determine present target transcripts (46). A probeset was considered to be 

ovary specific if it was called present in ovary but not in any of the other tissues. The 

microarray data for chico1 heterozygotes have previously been reported in (13), but 

were re-analysed here to account for software updates. The data for the mNSC-

ablated flies was generated for this study. We also analyzed chico1 homozygous 

flies, which show a great lifespan-extension than do heterozygotes, but the effect of 

the mutant on the transcriptome was so large that the array data could not be 

normalized adequately for comparison with any of the other groups.  

 

For functional analysis using all expressed genes, we used the Wilcoxon rank sum 

test in CATMAP (44). Ranks of genes were based on the Bayes t-statistic for 

differential expression and, for a given functional category, the significance of the 

rank sum for all genes in the category was calculated analytically based on a random 

gene-rank distribution. 

 

The Clover program (23) was used to identify over-representation of TRANSFAC 

(26) motifs in the 1000 bp upstream of the transcriptional start site, as defined by 

Ensembl (50). 
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Supplemental Tables 
 

 

Table S1. Transcription factor binding sites found over-represented in the promoters 
of genes with higher expression in the long-lived IIS mutant flies (see also dataset 
S2). 

TRANSFAC 
Drosophila TF 
binding to site 

Function summary 

AP-1 
Jra 
Kayak 

Cytoskeletal re-
arrangement in 
development, 
immune response, 
wound healing 

DR1 
PPAR orthologue  
unknown in flies 

Control aspects of fat 
tissue formation and 
metabolism in 
mammals 

Evi-1 
putatively CG10348  
& Hamlet 

Neuronal 
development 

GATA 
Pnr, Srp, Grn, 
GATAd  
GATAe 

Hematopoeisis, 
cardiac development, 
endoderm 
development and 
adult immunity 

HNF4 Hnf4 CNS development 

Pbx Extradenticle 
Developmental leg 
patterning 

PXR DHR96 
Req for normal 
regulation of detox 
enzymes 

TFAM mtTF A 
mitDNA replication 
and maintenance 

TTF1 putatively Vnd 
Ventral nerve system 
development 

Zeste Zeste 
Regulation of 
homeotic genes 

     
   1 known proteins or predicted orthologues of proteins binding to DNA element 
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Table S.2 Cox Proportional Hazard statistics. Interaction was tested between the 

effect of reduced IIS (dFOXO over-expression (oe) status or mNSC ablation status) 
and the effect of DHR96 gene deletion (DHR96 status). The estimate of the 
coefficient states the natural log of the hazard ratio. A beneficial effect on survival is 
displayed by a negative value. “>” Indicates that interaction between two status was 
tested. 

 

Relevant 
Figure 

Experiment Coefficient Estimate SE p-value 

Fig. 4A Stress assay dFOXO oe status 0.0967 0.0433 0.0237 

  DDT DHR96 status 0.4358 0.0441 <.0001 

    DHR96 status > dFOXO oe status - 0.1329 0.0433 0.0021 

  Stress assay dFOXO oe status 0.2411 0.0490 <.0001 

  Phenobarbital  DHR96 status 0.2622 0.0490 <.0001 

    DHR96 status > dFOXO oe status - 0.1377 0.0489 0.0046 

  Stress assay dFOXO oe status 0.0846 0.0506 0.0902 

  Malathion DHR96 status 0.4224 0.0511 <.0001 

    DHR96 status > dFOXO oe status - 0.1816 0.0507 0.0003 

            

Fig. 4B Stress assay mNSC ablation status  -0.425 0.0727 <.0001 

  DDT DHR96 status 0.9092 0.0730 <.0001 

    DHR96 status > mNSC status 0.5854 0.0726 <.0001 

  Stress assay mNSC ablation status -0.2000 0.0521 <.0001 

  Phenobarbital DHR96 status 0.4428 0.053 <.0001 

    DHR96 status > mNSC status 0.2014 0.0508 <.0001 

  Stress assay mNSC ablation status -0.3484 0.0607 <.0001 

  Malathion DHR96 status 0.3035 0.0586 <.0001 

    DHR96 status > mNSC status 0.2694 0.0599 <.0001 

            

Fig. 6A Lifespan assay dfoxo oe status 0.2583 0.0362 <0.001 

    DHR96 status 0.2009 0.0362 <0.001 

    DHR96 status > dfoxo oe status 0.0662 0.0356 0.0909 

            

Fig. 6B Lifespan assay mNSC ablation status -0.309 0.0383 <0.001 

    DHR96 status 0.1518 0.0369 <0.001 

    DHR96 status > mNSC status -0.0377 0.0368 0.3055 
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Table S3 Drosophila strains and transgenic lines. 

 
Wild type, balancer and mutant flies  

Fly strain Reference Details 

White Dahomey wolbachia 

plus (wDah w+) 

Grönke et al., 2010 (12) Wild type Drosophila stock 

wDah w+; CyO Bloomington Drosophila 

Stock Center 

Balancer fly on the 2nd Chromosome, 

homozygous lethal, Curly wings 

wDah w+;; TM3Sb Bloomington Drosophila 

Stock Center 

Balancer fly on the 3rd Chromosome, 

homozygous lethal 

wDah w+; chico1 Clancy et al., 2001 (13) A Drosophila insulin receptor 

substrate protein 

wDah w+;; DHR96Δ King-Jones et al., 2006 

(1) 

DHR96 null mutation on the 3rd 

Chromosome 

GAL4 driver lines   

Fly strain Reference Details 

wDah w+;; mhc-GAL4 Bloomington Drosophila 

Stock Center 

Muscle-specific driver, Chromosome 

3 

wDah w+;; mhc-Gal4/ DHR96 Δ This study 

 

Muscle-specific driver in a DHR96 

null background 

wDah w+; dilp2-GAL4 

 

Broughton et al., 2005 

(14) 

mNSC-specific driver (median 

neurosecretory cell) 

wDah w+;; InsP3-GAL4 Buch et al, 2008 (15) mNSC-specific driver (median 

neurosecretory cell) 

wDah w+;; InsP3-GAL4/DHR96 Δ This study mNSC-specific driver (median 

neurosecretory cell) in a DHR96 null 

background 

wDah w+; Uo-GAL4 

 

Terhzaz et al., 2010 (16) Malpighian Tubule-specific driver  

UAS-responder lines 

Fly strain Reference Details 

wDah w+; UAS-Cyp6g1-8a Yang et al., 2007 (17) Cytochrome P450 6g1  

wDah w+; UAS- DHR96-WT This study Wild type UAS-DHR96 line on 

Chromosome 2 

wDah w+; UAS-dFOXO Giannakou et al., 2004 

(18) 

dFOXO inserted through attp40 sites 

into the 2nd Chromosome 

wDah w+; UAS-dFOXO; 

DHR96Δ 

This study  UAS-dFOXO in a DHR96 null 

background 

wDah w+, UAS-rpr  Broughton et al., 2005 

(14) 

UAS-reaper  

wDah w+, UAS-rpr;; DHR96Δ This study  UAS-reaper in a DHR96 null 

background 
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Supplemental Figure legends  

 
Figure S1. DR flies were not DDT-resistant whereas IIS mutant flies showed 

increased DDT resistance. (A) Long-lived, dietarily restricted flies were not resistant 

to DDT. Age-synchronized female flies were maintained under dietary restriction 

(DR) or fully-fed (FF) conditions as described in Grandison et al., 2009 (45). On day 

7 of adult life, flies were transferred to the same food containing DDT. FF flies were 

significantly longer lived than DR flies under DDT stress (p<0.001 in both trials, Log 

Rank Test). (B) Long-lived chico1-heterozygote and insulin-producing mNSC-ablated 

flies were resistant to DDT (for any comparison of mutant versus control in either trial 

of resistance to either compound, p<0.03, Log Rank Test). 

 

Figure S2. CATMAP categories from microarray data for chico and MNC-

ablated flies. Similar functional groups of genes identified by CAPMAP (44) were 

down-regulated in both long-lived IIS mutants. The p-values for functional group 

changes that were found in common between the two mutants are plotted (p<0.1), for 

chico1 on the x-axis and the mNSC-ablation on the y-axis. 

 

Figure S3. Cyp6g1-8a and DHR96 are important mediators of the response to 

DDT (A) Flies overexpressing Cyp6g1-8a in the Malpighian tubules were resistant to 

DDT compared to driver control   (p<0.05, Log Rank Test; repeat of the experiment 

shown in Fig. 1C). (B) Flies with genetic deletion of the DHR96 gene were sensitive 

to DDT when compared to control wild type flies (wDah)  (p<0.05, Log Rank Test). 

 

Figure S4. Constitutive over-expression of DHR96 in the whole body caused 

developmental lethality. Over-expression of DHR96 using the daughterless-GAL4 

driver resulted in lethality in different stages of Drosophila development, and few 

survivors. Flies reared at 18°C showed increased survival.  

 

Figure S5. Repeat xenobiotic stress assays with dFOXO over-expressing flies 

in wild type and DHR96 null background. (A) dFOXO over-expressing flies were 

resistant to DDT (left panel, 275mg/L DDT, p-values for all comparisons with the 

matching driver and UAS lines <0.001, Log Rank Test), whereas dFOXO over-

expression in a DHR96 null background did not increase DDT resistance (right panel, 

175mg/L DDT, p-values for all comparisons with the matching driver and UAS lines 

>0.05). (B) dFOXO over-expressing flies in a wild type or DHR96 null background 

were exposed to phenobarbital (PB). dFOXO over-expression increased PB 
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resistance, which was entirely dependent on the presence of DHR96. Two-way 

ANOVA revealed a significant interaction term (p=0.016 for Two-way ANOVA against 

the driver control and p=0.0005 against the UAS control). Individual pair-wise 

comparisons used Tukey’s multiple comparisons test (*, p<0.05, **, p<0.01, ***, 

p<0.001). 

  

 

Figure S6. Repeat xenobiotic stress assay with mNSC-ablated flies in wild type 

and DHR96 null background. Ablation of mNSCs enhanced DDT resistance but 

this was lost when mNSCs were ablated in a DHR96 null background as Two-way 

ANOVA revealed a significant interaction term (p=0.0004 for Two-way ANOVA 

against the driver control and p<0.0001 against the UAS control). Individual pair-wise 

comparisons used Tukey’s multiple comparisons test (*, p<0.05, **, p<0.01, ***, 

p<0.001). 

 

Figure S7. Regulation of detoxification genes by IIS is both common and 

model-specific. (A) Fold changes in mRNA expression of GstE1 and Cyp6g1 in guts 

and Malpighian tubules was assessed by qRT-PCR in dFOXO over-expessing flies 

and driver controls. dFOXO over-expression did not affect mRNA expression of 

either gene (p>0.05 for both GstE1 and Cyp6g1, Student’s t test). (B) Correlation of 

fold changes in expression of genes within the GO term Defence in chico/+ and 

mNSC-ablated flies. 55 genes were differentially regulated in chico/+ (green) and 17 

in mNSC-ablated flies (red) with 8 being regulated in both datasets (yellow) with a 

significant overlap between them (p=0.0085, Fisher’s exact test). (C) Differentially 

expressed genes within the GO term Defence common to both chico/+ and mNSC-

ablated flies were generally up-regulated in both mutants (p<0.0001 for both mutants, 

One-sample t-test). Expression changes were significantly different for specific genes 

in the two mutants as revealed by Sidak’s multiple comparison test (p<0.01). Two-

way ANOVA revealed a significant interaction term between differentially regulated 

genes and the mutant genotype (p<0.0001), showing that the two mutants produced 

different changes in expression of genes within the GO term Defence. *Although only 

differently regulated in mNSC-ablated flies, data for Cyp6g1 are included in this 

figure because this gene enhanced xenobiotic resistance when over-expressed in 

the Malpighian tubules (Fig. 1C and S3).    

 

Figure S8. Repeat of lifespan experiment with mNSC-ablated flies in wildtype 

and DHR96 null background. Ablation of mNSCs significantly increased lifespan in 
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a wild type background (A, p-values for all comparisons with the matching driver and 

UAS lines <0.0001, Log Rank Test) and this lifespan extension was not affected by 

DHR96 null mutation (B, p=0.017 when compared to driver control InsP3-

GAL3/HR96Δ and p< 0.001 when compared to UAS control UAS-rpr/HR96Δ, Log 

Rank Test). 
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Supplemental Figures 

 

Figure S1 

 

 

 

 

Figure S2 
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Figure S3 

 

 

 

 

Figure S4 
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Figure S5 
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Figure S6 
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Figure S7 
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Figure S8 
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Supplemental Datasets 

 

Dataset S1 (located in excel workbook)  

Summary of annotated phase I and phase II detoxification genes, their significance 

and fold change values for each of the two IIS mutants versus controls. 

  

Dataset S2 (located in excel workbook) 

List of genes with higher expression in both long-lived IIS mutants than their 

respective controls. Q-value, fold change and occurrence of PXR binding site in the 

promoter is indicated for each gene. 

 
 


