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Abstract

Bacterial infections, namely sepsis and meningitis, are among the major causes

of morbidity and mortality during the neonatal period. In an era of increasing

antimicrobial resistance, when few new types of antibiotics are being developed,

antimicrobial therapy needs to be optimised to ensure that adequate doses are

given. At the same time, since renal function is immature in neonates, the dosing

regime needs to be designed to minimise toxicity.

The studies described here aimed to address the following questions: what

is the appropriate way to scale drug clearance in the paediatric population; how

can treatment be individualised and optimised to help improve the therapeutic

drug monitoring of gentamicin; what meropenem dose should be recommended

for neonates and infants with sepsis or meningitis; and finally how can a mod-

elling approach be used to facilitate the definition of neonatal sepsis. The above

questions were addressed using distinct strategies. An extensive comparison of

published models for scaling clearance was performed. Population pharmacoki-

netic models using data from large gentamicin and meropenem studies in neonates

were developed, and then either implemented in provisional software, or used to

make dose recommendations, respectively. Also, in a preliminary study, item re-

sponse theory models were applied to pharmacodynamic data from neonates with

sepsis.

The use of allometric weight scaling with a postmenstrual age driven sig-
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moidal maturation function was recommended as a standard approach for scaling

clearance. The population pharmacokinetic model developed using gentamicin

data showed that specifically timed trough levels are not needed for therapeutic

drug monitoring. The results of the meropenem study imply that the current

recommended dosing regimen for neonates is appropriate for susceptible bacteria.

Finally, the proof-of-concept study suggested that metabolic acidosis provided the

most information about the sepsis status of neonates.
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Chapter 1

Introduction

1.1 Neonatal infections

Although a neonate is technically a newborn infant in the first four weeks of life,

the term “neonate” will be for the purpose of this thesis occasionally used for

infants older than one month. This is because sometimes infants older than one

month also receive antimicrobial treatment on neonatal intensive care units.

Bacterial infections, including sepsis and meningitis, are among the main

causes of morbidity and mortality during the neonatal period, both in the UK

[1] and worldwide [2]. Although only a small proportion of newborns go on to

develop sepsis (for example, Luck et al [3] found in their study that only 13 out

of 413 screened neonates had probable or definite early-onset sepsis), it can result

in death if untreated [4]. Antimicrobials can therefore have a life-saving effect,

and are especially in the case of premature newborns used as empirical therapy

that usually starts almost immediately after birth [5]. However, inappropriate use

of antibiotics (such as over-prescribing) could have the opposite effect, resulting

in prolonged treatment due to an infection with a resistant microorganism [4].

Rapid development of antimicrobial resistance could also contribute to the fact

that developing new antibiotics is not a priority for pharmaceutical companies,
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and consequently, it does not seem that any considerably new classes of antibiotic

agents will be available soon [6], but there are some new types of β -lactamase in-

hibitors in the pipeline [7]. It is therefore vital that instead, the current antibiotic

treatment is optimised. Optimising the treatment will also ensure that a neonate

receives a high enough dose and help prevent the emergence of resistance.

Although most antimicrobials are not new drugs, it has been shown in a recent

survey of neonatal intensive care units (NICU) in the UK that the variability in

their prescribing and monitoring is large (in the gentamicin example there were

24 different dosing and monitoring regimens within 43 units) [8]. Another study

found that 43 different combinations of empirical treatments for late-onset sepsis

in neonates and infants were used in five European countries [9]. The variability

in clinical practice is an indicator of the limited evidence base behind current

standard of care, and shows the need for evidence-based guidelines that would

standardise treatment. Furthermore, medicines used for treating neonates are

often used “off-label” (outside their product license) [10], which is another reason

for more research needed in this area.

1.2 Pharmacokinetic-pharmacodynamic mod-

elling

In the past descriptive pharmacokinetic (PK) research in neonates and infants

was limited [11] because to perform the traditional non-compartmental analysis

(NCA) one usually requires a minimum of four (ideally more) blood samples to

capture the main PK parameters. However, a model-based approach does not

have this disadvantage. Both of these approaches are briefly described in the

following Section 1.3.

Modelling is a technique where mathematical equations are used to simplify

reality, and characterise the relationship between variables. Modelling can be
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applied to describe and summarise data and to further understanding of biological

processes that occur in the body (and which in some cases cannot be investigated

with in vivo or in vitro experiments). After evaluation of the model, one can also

use modelling for extrapolating beyond the study population, i.e. predicting the

behaviour of the underlying biologic system through simulations from the data

[12]. This so-called pharmacometric approach is especially important and valuable

when conducting paediatric (particularly neonatal) studies, where recruitment can

be challenging and data are often sparse [13].

More specifically, PK modelling mathematically characterises how different

PK processes (i.e. absorption, distribution, metabolism, and elimination) of drugs

change over time. Pharmacodynamic (PD) modelling, on the other hand, focuses

more on the relationship between drug concentration at the site of action and the

intensity of pharmacological response, which can either be the desired effect of a

drug or a toxic effect (Figure 1.1). Pharmacokinetic-pharmacodynamic (PKPD)

modelling is a combination of both, and thus tries to describe and quantify the

relationship between the dose and/or drug concentration and the effect [14].

PKPD models can be empirical or mechanistic, the latter models using knowl-

edge of biological processes and thus being more realistic from a physiological point

of view [14, 15]. In addition to continuous data (e.g. drug concentration), PKPD

models also allow one to model discrete data (e.g. bacterial eradication, progress

of a disease, intensity of pain) [16, 17]. However, developing a PKPD model can

in some cases prove difficult – for example, when dealing with neonates who have

clinical signs of infection, since only a small percentage of them is actually culture

positive [3, 18]. In this case, sepsis could be viewed as an underlying hidden or

latent variable, and other PD markers (such as plasma concentrations of markers

of infection, or increased/decreased white blood cell count) can be modelled using,

for example, item response theory models [19, 20].
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Figure 1.1: Schematic diagram showing pharmacokinetic (PK) - pharmacody-
namic (PD) relationship. Solid lines represent the PK part and dashed lines the
PD part of the pharmacological response of a drug.

1.3 Approaches for analysing data from multiple

subjects

When analysing PK data the traditional method is the descriptive, or non-

compartmental approach. NCA does not depend on a model, and involves taking

multiple samples (across the entire PK profile of a drug (Figure 1.2)) from each

subject to then calculate subject-specific PK parameters, such as, maximal drug

concentration (Cmax), time to Cmax (tmax), and area under the concentration-

time curve (AUC) [21]. This way, a summary of the concentration-time profile is

obtained.

An alternative method for analysing PK data is a model-based (or, com-

partmental) method, where a complete PK profile for each subject is no longer

needed as data from multiple subjects are pooled together and hence fewer sam-

ples per individual are required. Additionally, a model-based approach also allows
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Figure 1.2: An example of concentration-time data.

for different covariates (such as age and weight) to be included, and their effects

quantified [22, 23]; and so facilitates the investigation of the developmental dif-

ferences between the paediatric and adult population [22]. Furthermore, model

parameters can enable one to gain mechanistic insights [24], as, for example, clear-

ance (CL) describes biological processes that represent drug elimination; this is

especially obvious in renally eliminated drugs (such as gentamicin), where CL is

often similar to the patient’s glomerular filtration rate (GFR).

The best fit of a linear model can be found analytically, so where possible,

statisticians advise transforming the data to create a linear relationship. However,

drug concentration-time profiles are non-linear and apart from one exception (1-

compartment intravenous bolus model) PK data cannot be transformed to be

linear. Hence non-linear models are required when analysing PK data.

The paediatric population is not homogeneous, and drug disposition and the

effects of the drugs differ among individuals [13]. It is therefore important to

select an appropriate modelling approach that will not over-/under-estimate the

variability and bias the PK parameter estimates.



1.4. Statistical modelling 25

Figure 1.3: A schematic presentation of the effect of ignored between-subject
variability on the overall trend line (left). Graph on the right shows how individual
regression lines actually look like.

1.4 Statistical modelling

The simplest modelling techniques for statistical analysis of PK data from multi-

ple subjects are the näıve data average and the näıve pooled data approaches. The

data-average method involves calculating the average drug concentration at each

sampling time for all individuals, which requires all individuals to have the same

sampling regimen. This limits its usefulness for neonatal studies, where samples

are taken opportunistically for other purposes (such as to check the blood gasses).

Similarly, in the pooled-data method data from all subjects are pooled together

and so considered as being from a single subject. In both approaches a single

model is then fitted to the mean/pooled values, thus ignoring the fact that data

points taken from the same individual may not be independent (i.e. correlated)

and so ignoring the distinction between the between-subject and residual variabil-

ity [24]. Where between-subject variability is large the model fit can be biased as

highlighted by the example shown in Figure 1.3. Furthermore, in the data-average

approach variability tends to be underestimated (since models are fitted to aver-

aged data), and in the pooled-data approach (because between-subject variability

is not allowed for), the residual variability tends to be overestimated.

Another method for analysing population data is the two-stage approach,

where in the first stage a model is fitted to the data from each individual; and in

the second step, the individual PK parameters from the first step are averaged to
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obtain the estimates of the population PK parameters. This approach relies on

each individual having rich data so that all model parameters can be identified.

Ideally subjects should have the same number and timing of samples to enable the

same model to be fitted to each individual. Whilst it is preferable to averaging

and pooling approaches due to its ability to separate between-subject parameter-

level and residual variability the standard two-stage approach has been shown to

overestimate variability [24].

The drawbacks of these methods have led to a general consensus that the

non-linear mixed-effects (NLME) modelling approach is the most appropriate for

analysing population PK data. NLME models facilitate analysis of sparse and

unbalanced data (meaning that the number of observations and/or sampling times

can differ between individuals, allowing the use of opportunistic sampling) [22, 25].

This is particularly important when dealing with populations such as neonates,

where rich sampling is not possible because of limitations on the total volume of

blood that can be taken for testing purposes [26], or parents may not consent to

repeated blood measurement for research. The significance of the NLME models

for the neonatal population is also shown by the fact that one of the first uses of

these models was for analysing phenobarbital PK data from neonates [27].

Whilst NLME methods are able to handle sparse data, rich data will always

be more informative on individual PK parameters. Rich data can be defined as

data originating from a study where there is more samples per subjects taken

than there are parameters to estimate [28]. But in the case where all samples are

crowded within one part of the dosing interval, even if the “criteria” for rich data

is met, these samples may not be that informative. Therefore, sparse data, taken

at optimal time points might provide a good balance between invasiveness (i.e.

taking multiple samples) and informativeness.

Using the NLME approach, a model is fitted to all available data from all

individuals simultaneously [24]. When modelling continuous data, a NLME model
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can be summarised by Equation 1.1:

yi j = f (ti j,g
(
θ ,xi j,ηi)

)
+h
(
ti j,g(θ ,xi j,ηi),εi j

)
, (1.1)

where an observation yi j for an individual i at time ti j is described by a prediction

function f (which characterises the PK or PD relationship), and an error function

h, which accounts for the differences between the observation and prediction.

The function g describes subject-specific parameters as a function of: θ , which

represents typical population values, xi j, i.e. subject-specific covariates, and ηi,

which are subject-specific random effects parameters [29, 30].

For binary data, a NLME model describes the probability of yi j being 1, using

a probability density function l (Equation 1.2) [31]:

P(yi j = 1) = l(ti j,g
(
θ ,xi j,ηi)

)
. (1.2)

Variability in NLME models can be allocated to different sources, i.e.

parameter-level between-subject variability (BSV, η) and within-subject variabil-

ity (sometimes called inter-occasion variability), and observation-level variability

or residual error (ε). Subject-specific covariates, such as, weight, age, markers of

renal function, can explain some of the BSV. The residual variability can, for ex-

ample, originate from the assay, or be a consequence of a measurement error, and

represents the difference between the observation (usually plasma concentration

of a drug) and the model predicted value.

Both η and ε are (after a transformation) assumed to follow a normal distri-

bution with a mean of zero (assuring that the model predicted values go through

the middle of the data), and a variance (ω2 and σ2, respectively), which is es-

timated [32]. Normality is assumed in modelling software, such as NONMEM

(ICON Development Solutions Ellicott City, Maryland) [27], Monolix [33] and
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ADAPT [34]. However, the assumption of normality (or some transformation of

normal) is not mandatory and other computer programs (e.g. non-parametric

adaptive grid and non-parametric Bayesian algorithm [35]) can be used to facili-

tate other distributions.

To obtain estimates of the PK and PD parameters that are most likely to

occur in the data (i.e. such estimates that the observed data become most likely)

the likelihood function (Equation 1.3) is maximised [36]. The likelihood function is

a product of the marginal probability density functions of the individual observed

values (or the individual likelihoods) over all (N) individuals (Equation 1.3):

L (y,Θ) =
N

∏
i=1

∫
∞

−∞

f (yi,ηi)dηi =
N

∏
i=1

Li(yi,Θ), (1.3)

where Θ represents a set of all estimated parameters, i.e. θ , Σ, Ω. However, it is

computationally challenging to integrate over η , therefore approximations of the

likelihood, such as first-order conditional estimation (FOCE) approximation, or

Laplace approximation are used. Also, addition is a mathematically easier proce-

dure than multiplication of likelihoods (especially if the likelihoods are very small),

hence in most computer programs log likelihood is minimised instead (Equation

1.4).

log(L (y,Θ)) =
N

∑
i=1

log(Li(yi,Θ)). (1.4)

Two NLME models can be compared using the likelihood ratio test. The

objective function value (OFV) is based on this test, and represents minus 2 log

likelihood of the data. The difference between OFV (∆OFV) for nested models is

therefore χ2-distributed with degrees of freedom equal to the number of parame-

ters by which the models differ; for example, for a nested model with 1 parameter

differing, or 1 extra degree of freedom, ∆OFV of >3.84 and >10.83, corresponds

to a p-value of <0.05 and <0.001, respectively.
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1.5 Evaluation of non-linear mixed-effect mod-

els

To asses whether a NLME model (i.e. a population PK model) has good de-

scriptive and predictive properties, several (internal and external) methods can

be used [37, 38].

Internal methods involve diagnostic goodness-of-fit (GOF) plots and statistics

that are used to estimate the precision on final model parameters – e.g. standard

errors (SE) and confidence intervals (CI) [12]. GOF plots are, for example, obser-

vations (DV) versus population (PRED) or individual (IPRED) predicted values.

Also, to confirm the assumption of standardised residuals following a N (0,1)

distribution, diagnostic plots, such as conditional weighted residuals (CWRES)

versus time after dose or PRED, are examined for any potential trends. Another

way of investigating the distribution of residuals is by plotting a histogram or a

QQ-plot of the residuals [12, 37].

SEs are usually obtained from the covariance step in NONMEM. In the co-

variance step, the Fisher information matrix, i.e. the negative of the Hessian

matrix (which is the second derivative of the log likelihood function) is computed.

The covariance matrix is then the inverse of the Fisher information matrix, and

SEs are the square roots of the diagonal elements in the covariance matrix. Un-

certainty on model parameter estimates can also be obtained with a bootstrap,

which is a technique where replicates (usually 1,000) of the original dataset are

obtained by random sampling with replacement. A NLME model is then fitted to

each of the replicated datasets, and the parameters are re-estimated. Then, a 95%

non-parametric confidence interval of the final parameter estimates is obtained.

A model can also be evaluated by using Monte Carlo simulations, as for ex-

ample, when performing a visual predictive check (VPC) [37, 39]. In a VPC a
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large number (e.g. 1,000) of datasets is simulated using the estimates of the final

parameters and the variability from the (final) NLME model. By performing a

VPC one can inspect whether the NLME model is able to reproduce the distri-

bution of the original dataset [40, 41], and it can help identify the presence of

potential problems in the fixed or random effects model [42].

External techniques for NLME model evaluation involve testing a model that

was developed using one dataset on another dataset and then comparing predic-

tions from both. One can also divide the dataset used to develop the NLME

model into two parts – i.e. a learning and an evaluation dataset; and then use

the evaluation subset for external evaluation of the model. This can be repeated

several times, as in the so-called cross-validation approach [37]. Then, metrics,

such as prediction errors (PE), are calculated [37].

1.6 Developmental pharmacology

Changes in the human body due to growth and maturation are non-linear and

especially obvious in the first year of life [43, 44]. A consequence of these changes

are differences in the PK processes between neonates and adults.

1.6.1 Pharmacokinetic differences

Absorption of drugs is different in neonates compared to adults, especially due

to higher gastric pH in neonates [45, 46]. But since drugs are absorbed from

the gastrointestinal tract when given orally, and both gentamicin and meropenem

(i.e. two drugs that are studied in this thesis) are administered intravenously,

absorption will not be described in more detail.

Distribution of drugs in neonates is affected by higher membrane perme-

ability, reduced total plasma proteins (and their binding affinity), and a higher

(80-90% versus 55-60%) percentage of body water, compared to adults [44, 47].
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Consequently, the fraction of protein bound drug is lower (therefore the fraction of

free drug is increased), and the volumes of distribution of water soluble drugs (such

as aminoglycoside and β -lactam antimicrobials; i.e. gentamicin and meropenem,

respectively) are higher. Moreover, the penetration of small hydrophilic molecules

(i.e. meropenem) into the central nervous system is increased in neonates, com-

pared to adults, resulting in higher cerebrospinal fluid (CSF) concentrations [48].

Both gentamicin and meropenem are mainly renally excreted [49, 50], how-

ever, meropenem is also partly metabolised. Metabolism is a process in which a

drug is transformed into a more hydrophilic form; and usually occurs in the liver,

but can also take place in, for example, the kidneys [47]. There are two phases

of hepatic metabolism. In the first phase drugs undergo oxidation (typically with

cytochrome enzymes from the CYP P450 family), reduction, and hydroxylation.

Most enzymes of the first phase of the hepatic metabolism are half-mature at birth,

and reach adult activity at around 1 year of age [46]. Phase two involves chemical

reactions, such as conjugation, glucoridation, sulphation, and acetylation. While

enzymes involved in glucoridation achieve adult activity at approximately 3-4

years of age; sulphotransferase activity is already significant at birth [46, 51].

Most antimicrobial agents are excreted via the kidneys [47], by either

glomerular filtration or tubular secretion. Maturation of renal function is a com-

plicated process that starts in utero with nephrogenesis occurring between week 6

and 36 of gestation; hence it correlates better with postmenstrual age (PMA) than

postnatal age (PNA) [52, 44]. PMA is a sum of gestational age (GA) and PNA,

i.e. chronological age [53], and therefore encompasses both pre- and post-birth

maturation, although it might not be able to completely describe the fast changes

in the first day(s) after birth. At birth, newborn neonates exhibit approximately

35% of adult renal activity [22], but due to an increase in renal and intra-renal

blood flow, the GFR and renal function improve rapidly. After that, renal func-

tion increases more gradually, until it reaches adult levels at the age of around
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8-12 months [44, 52]. Similarly to GFR, tubular secretion is also immature at

birth; reaching adult levels at the age of approximately one year [46]. The non-

linear maturation of renal function makes scaling of clearance complicated, and

different approaches have been utilised – as described in more detail in Chapter

2.

1.6.2 Pharmacodynamic differences

Only after accounting for the PK differences or PK maturation one can start

focusing on the PD differences as well. Not many studies focus on measuring the

PD in neonates, which may be because drug effect is more difficult to measure

and evaluate in neonates [54]. It might also be contributed to the fact that the

consensus on the appropriate endpoints is lacking, for example the endpoints one

should look at when defining neonatal sepsis are not clearly defined [55].

PD differences between neonates and adults can be present as a result of

different concentration of proteins (that the drug targets) and/or different function

of receptors [22], which leads to a different response of the neonatal body to the

drug given. An example of a PD difference is seen in the immature neonatal lung;

it lacks smooth muscle, which reduces the effect of bronchodilatators [22, 56].

Another example is the central nervous system, more specifically, GABAergic

inhibitory system, which is immature in neonates (especially premature neonates),

compared to adults, which causes benzodiazepines to paradoxically worsen the

seizures [57, 58]. A higher thymic output of T-cells in neonates [59], compared to

adults, is also an example of a PD difference between neonates and adults.

Additionally, as neonates are not (usually) exposed to pathogens before they

are born, their innate (and adaptive) immune response is still developing, therefore

they are more vulnerable to infections with pathogens than adults [60, 61, 62].

Hence, higher PD targets for antimicrobial agents might be needed.
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1.7 Pharmacokinetic-pharmacodynamic rela-

tionship of antimicrobial agents

Whilst PKPD relationship of drugs describes the link between exposure and effect,

the antimicrobial PKPD has the advantage of having a surrogate measure of

efficacy, namely the minimal inhibitory concentration (MIC). MIC is the lowest

concentration of an antibiotic that averts the growth of bacteria (i.e. is needed

for bacteriostasis). It is determined in vitro, which has some drawbacks, such as,

the media that is used is artificial, and the duration of incubation (when visible

growth of bacteria is determined) is usually 24 hours, whilst treatment might last

for several days, or even weeks [63]. However, it is a simple, reproducible measure

of antibacterial activity, and concentrations that are used to determine the MIC

can be easily compared to free concentrations of a drug measured in plasma or,

for example, CSF [63].

By using MIC alone, one does not get any information on the time course

of the antimicrobial treatment, or on how to best increase the efficacy of an

agent. Hence antibiotics have been divided into three groups, according to the

PD measure that links their exposure to microbiological and clinical effects. Some

antibiotics (such as gentamicin) exhibit concentration-dependent killing, meaning

that they are most effective when their peak concentration (relative to the MIC of

a pathogen) is maximised [17, 64, 65]. For time-dependent antibacterials (e.g. β -

lactam meropenem) the time in the dosing interval when free drug concentration

is above the MIC (%T>MIC) is best linked to their efficacy. Also, for some

antimicrobial agents (e.g. fluoroquinolones), a related PKPD parameter – total

drug exposure, i.e. AUC to MIC ratio, needs to be maximised [64].

Once the antimicrobial PD target has been determined, and the MIC break-

points (or ideally, the MIC distribution of a pathogen in the environment where

the drug is going to be used) are known, a dose that has the highest probability
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of achieving this target can be selected (using, e.g. Monte Carlo simulations)

[17]. The target might be increased for immunocompromised subjects (such as

neonates) [64], however, clinical studies are needed to determine more specifically

how high the PD target should be in this population.

Most antibiotics also exhibit a post-antibiotic effect (PAE), meaning that

the bacterial growth continues to be suppressed even when their concentration is

below MIC [66]. The PAE is longer when bacterial exposure to the antibiotics is

longer, if maximal plasma concentration of a drug is higher, and if the MIC of a

specific bacterium is lower [67, 49]. PAE for aminoglycosides usually lasts between

2 and 4 hours [49]; and for meropenem approximately 5 hours for Escherichia coli

(E. coli) (with meropenem concentration 4-fold higher than the MIC) [68]. The

proposed mechanism of the PAE is that it is a result of bacterial damage caused

by the antibiotic [17].

1.8 Aims and Structure

The overall aim of the work described in this thesis was to optimise neona-

tal antimicrobial treatment by using non-linear mixed-effects modelling. More

specifically, the aims were to determine which of the published clearance scaling

methods provides the best results, so that this model could then be used in the

following chapters. Population pharmacokinetic models for both gentamicin and

meropenem were then developed and used to either individualise therapy, or to

suggest an optimal dose, respectively. And since there is no agreement on the

definition of sepsis in neonates, which makes the comparison of clinical sepsis trial

results difficult, the aim was also to define which laboratory test (from a set of

five predetermined tests) for defining sepsis is the most informative.

The structure of the following chapters 2-5 is similar throughout the whole

thesis, and represents the main body of this work. Each chapter starts by in-
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troducing the background and what is already known about the subject that is

presented in the chapter, and then presents the methods needed to achieve the

above-mentioned aims. The results are then presented and discussed, and a brief

summary of the chapter is given. The work presented in the main chapters is as

follows: comparison of clearance scaling approaches in the paediatric population,

development of a population pharmacokinetic model to individualise therapy and

so improve the current therapeutic drug monitoring of gentamicin, development

of a model to describe the plasma and CSF pharmacokinetics of meropenem in

neonates and infants with sepsis or meningitis (and make dosing recommenda-

tions), and development of an item response theory model using pharmacody-

namic data from a neonatal study to facilitate the definition of sepsis.



Chapter 2

Comparison of methods for

scaling clearance in neonates,

infants and children

2.1 Introduction

As described in Section 1.6 children, especially neonates and infants, differ from

adults. They are smaller, lighter, and have a different body composition to adults,

namely a higher proportion of total body water. Also, the function of the elim-

inating organs, such as the kidneys, and the liver, is immature in neonates and

infants, as indicated by the lower glomerular filtration rate (GFR) and lower ex-

pression of some hepatic enzymes [44]. These physiological differences are the

main source of the differences in pharmacokinetic processes between adults and

children, which results in altered PK parameters (such as drug clearance) in chil-

dren [44]. Two approaches can be used to take these differences into account, and

to scale adult PK to children: allometric scaling with varying allometric exponent

or a mathematical function that describes the dynamics of the change in organ

function, and physiologically-based pharmacokinetic (PBPK) models [69]. These

approaches will briefly be discussed below.
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Whole-body PBPK models use a system of equations, which is based on

biological knowledge of physiological blood flows, anatomical organ structures,

tissue and organ volumes [70]. The compartments in these models represent ac-

tual anatomical parts of the body. PBPK models are mostly useful in predicting

first-in-man doses prior to human exposure, but have also been proposed for scal-

ing PK predictions to special populations such as children [71, 72]. A major

limitation of PBPK models for extrapolation is the requirement that the PBPK

model must first describe the existing adult data well. Getting detailed informa-

tion about many physiological processes and measurements can also be expensive

and time consuming [73]. Moreover, for some compounds there is insufficient in

vitro information to make accurate predictions, leading to poor predictive perfor-

mance of the PBPK model. To address this some authors have looked at fitting

PBPK models to data [74, 75] but as yet this approach has not been widely used

in the paediatric research.

The alternative method (which is discussed in the remainder of this chapter)

and a method more commonly used by paediatric pharmacologists for scaling PK

from adults to the paediatric population is through fitting models to observed

PK data and using demographic covariates to describe PK parameter ontogeny.

The main focus is usually on CL since many pharmacological effects are driven

by drug exposure (AUC), which is inversely proportional to CL. CL changes with

size and age, so models accounting for these two processes are required.

To account for body size, it has been noted since the 1950s that body surface

area (BSA) is a better predictor of optimal dosing than linear body weight [76].

More recently it has been proposed that the underlying biology of scaling of

metabolic processes with body size (such as body weight raised to some power)

can also provide explanation of changes in drug CL [77]. This so-called allometric



2.1. Introduction 38

scaling approach is given by the following standard allometric equation:

yi = a ·WT b
i , (2.1)

where yi is the individual subjects body function of interest (that is being pre-

dicted), for example drug clearance, WTi is the individuals body weight in kilo-

grams, a is the allometric constant, which assumes the value of y when WT = 1

kg, and b is the allometric exponent [78]. Historically, several different values of

the allometric exponent have been proposed. Almost 80 year ago Benedict [79]

advocated that the basal metabolic rate scales best with body surface area, which

approximates to WT raised to the power of 0.67. Around the same time Kleiber

[80], having examined 13 different groups of mammals (ranging in weight from 150

grams to 679 kilograms), concluded that the allometric exponent should be 0.75.

However, he also noticed that in order to see a difference in predictions relating

to using the exponent of 0.67 versus 0.75, the difference between the lightest and

the heaviest subjects studied needed to be at least 9-fold [81]. Nephrologists usu-

ally scale GFR per 1.73m2 [82, 83] (∼ weight raised to the power of 0.67), and

a study of GFR maturation using data from 923 individuals with ages ranging

from neonates to adults (31 years of age) by Rhodin et al provided an allometric

exponent of 0.632 [52]. Concerning the maturation of hepatic elimination routes,

both Noda et al [84] and Johnson et al [85] found that liver size (volume) scales

approximately with body weight raised to the power of 0.78. Also, a recent meta-

analysis of 484 PK studies by McLeay et al [86] examined the relationship between

CL and weight and found that the median (estimated) allometric exponent in the

studies was 0.65 (ranging from -1.2 to 2.2). This shows that allometric exponent

is usually within the 0.63-0.78 range, and that there is no agreement on its exact

value, but when the allometric exponent was fixed, the value of 0.75 was the most

common when studying PK of children and/or neonates [86]. In practice, value

of b <1 indicates that the process studied (e.g. CL maturation) increases with
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Figure 2.1: Maturation of renal function, specifically glomerular filtration rate
(GFR). Red dotted line represents the postmenstrual age (PMA) of 37 weeks,
which is when a full-term neonate is born. Adapted from [52].

body size at a slower rate than overall body weight.

Scaling of CL with allometric models alone is insufficient to capture the PK

differences across the entire paediatric age range [72] because physiological imma-

turity in infants and neonates [51] means CL is lower than expected. One there-

fore also needs to account for maturation due to immaturity of organ function,

especially in neonates, where body functions change rapidly [44]. As described

in Section 1.6.1 maturation of renal function is a complicated and a non-linear

process. Figure 2.1 illustrates this process.

Since every model is only a simplification of reality and it is known that “all

models are wrong, some are useful” [87], many different approaches are utilised

in order to account for both age and size related changes in CL (not considering

the PBPK approach). These approaches can be divided into two groups: a) some

models have an allometric exponent that varies with age or weight [73, 88], and b)

some models use a single allometric exponent (which can be fixed or estimated)

to explain the changes in CL with size, and an additional function accounting

for the eliminating organ maturation. A widely used approach is to use a fixed
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allometric exponent, and a sigmoid maturation function (Equation 2.2) [69, 89] –

this method was recently suggested as a standard approach for scaling CL in the

paediatric population in a study by Holford et al where it was evaluated on data

from 46 different drugs [69].

maturation f unction =
PMAHill

PMAHill
50 +PMAHill

, (2.2)

where PMA is postmenstrual age in (usually) weeks, Hill is a sigmoidicity coeffi-

cient and PMA50 is the PMA when maturation is half complete [52, 90].

2.2 Aim

Different modellers use different parameterisations for scaling drug clearance, and

there is no agreement on how to best account for both maturation and size in pae-

diatric PK studies [69, 73, 91]. The aim of this chapter of my thesis is to identify

different approaches for scaling CL in neonates, infants and children used in the

literature, and to compare them between each other, and against the suggested

standard approach, which is allometric scaling with a single fixed allometric ex-

ponent combined with a sigmoid maturation function, by applying all models to

the same dataset.

2.3 Methods

2.3.1 Search for published models for scaling clearance

The MEDLINE database was systematically searched through PubMed in January

2015 and again in March 2015 to identify models for scaling drug clearance using

the allometric approach. Search key words included allometry, allometric, scaling,

pharmacokinetic, and PK. Also, NMUsers discussion group (i.e. a forum for users

of the NONMEM software) [92] was emailed in order to find models that could
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have been missed by searching only through PubMed.

The search produced 14 distinct models for describing the change in CL be-

tween neonates and adults. Additionally, three simple allometric models (one

model with a single estimated allometric exponent, and two with a fixed expo-

nent of 0.75 or 0.67), and a model comprising allometric weight and a sigmoidal

maturation function (with all parameters estimated and another model with all

parameters fixed to the values of a previously published study of renal maturation

[52]) were also compared.

2.3.2 Data collection

Electronic bibliographic database MEDLINE was searched through PubMed in

December 2014 (and the search was updated in March 2015) to identify clinical

PK studies where clearance of gentamicin was reported. Gentamicin was chosen

as it is one of the drugs discussed in this thesis, and because it undergoes mainly

renal elimination (the same as meropenem, the other drug that is discussed in

this thesis). The filter “humans” was applied and the search strategy included

key words gentamicin, pharmacokinetic, PK. Only reports where gentamicin was

administered intravenously were chosen. Age of the subjects in the studies was

not specified in the search as the goal was to find clearance values across the whole

age range, from birth to adulthood. The reference lists of the publications that

were identified were also manually searched.

Since it is known that during the first week of life due to changes in renal

and intra-renal blood flow clearance changes very rapidly [51, 52], a study that

only reported one mean value of the PK parameters for a group of subjects with

a wide age range (from the first month of life, up to 16 years) was not included

[93]. Also, as the kidney function decreases in adults and the elderly (Figure 2.2),

publications that only included a single value of CL for subjects with their ages

ranging from approximately 15 up to 80 or 90 years, were excluded [94, 95, 96].
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Figure 2.2: Gentamicin clearance plotted against age in years. Green dashed
vertical line indicates age of 50 years. Data from Table 2.1 and the following
references: [97, 98, 99, 100, 101, 102, 103].

Similarly, CL reports for only subjects with their ages >50 years were also not

included (there were eight such CL values) [97, 98, 99, 100, 101, 102, 103].

There were 25 manuscripts in total that satisfied the search criteria, with 41

gentamicin clearance values reported. In addition to gentamicin CL, individuals’

demographics (ages and weights) were also extracted from the publications. An

overview of the dataset is shown in Table 2.1. If only a range of the subjects’

weights or ages was given, the middle of the range was used. In neonatal studies,

if only birth weight was reported, this was assumed as the current body weight.

A gestational age (GA) of 40 weeks was assumed for children and adults that did

not have GA reported. Some studies [101, 104, 105] did not report the weight

of the subjects, thus their weight was calculated using a previously published

weight-for-postmenstrual age formula [106].

Additionally, median gentamicin CL data predicted by a published PBPK

model [71] were extracted from the plot, in order to allow for comparison of the

PBPK model performance as well.
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Table 2.1: Overview of the dataset used for model comparison

Reference N GA PNA range PNA PMA WT CL
(weeks) (weeks) (kg) (L/h)

Neonates (days or o.w.) (days)
[107] 18 38 0 (few hours) 0 38 3.3 0.17
[108] 29 32 1-7 6 32.86 1.8 0.09

5 33 12-24 15 35.14 1.95 0.2
[109] 113 33.5 1-46 23.5 36.86 2.2 0.1
[110] 7 39.3 <6h at inclusion 1 39.44 3.27 0.16
[111] 79 35.1 4.2 (3-7) 4.2 35.7 2.06 0.07
[112] 97 38.11 7.78 (2-30) 7.78 39.22 2.95 0.2
[113] 200 32.19 5.49 +/- 5.41 5.49 32.97 1.68 0.07
[114] 277 36 0 (0-27) 0 36 2.52 0.12
[115] 97 33.24 4.61 (1-26) 4.61 33.9 1.93 0.13
[116] 26 26.62 2 2 26.91 0.94 0.03

5 26.8 3 3 27.23 0.9 0.03
99 33.04 2 2 33.33 2.03 0.08
43 32.65 3-4 3.5 33.15 2.13 0.09
64 39.33 2 2 39.62 3.38 0.2
30 39.2 3-4 3.5 39.7 3.14 0.16

[117] 19 29.6 1 1 29.74 1.288 0.06
20 29.6 4 4 30.17 1.288 0.04
18 33 1 1 33.14 1.827 0.11
21 33 4 4 33.57 1.827 0.08

[118] 11 35 0.2-3 1.6 35.23 1.82 0.11
[119] 61 28.9 1 (0-45) 1 29.04 1.4 0.03
[105] 12 40 9 (5-16) 9 41.29 3.51* 0.2
[120] 139 32 0-10 5 32.71 1.92 0.07
Children (years or o.w.) (years)
[121] 208 40 5.8 mo (1-24) 0.48 65.2 6.4 0.83
[104] 31 40 0.5-4 2.25 157 13.1* 1.81

40 5-10 7.5 430 25.4* 3.38
40 11-18 14.5 794 51.5* 5.51

[122] 13 40 2.9 (1-5) 2.9 190.8 14.9 2.44
5 40 9.0 (6-12) 9 508 27 3.78
7 40 15.3 (13-18) 15.3 835.6 53.5 7.54

[123] 52 40 6.6 +/- 4.1 6.6 383.2 24.1 2.82
40 7.7 +/- 4.4 7.7 440.4 28.2 2.41

[124] 14 40 1.8 d (0.9-15.2) 0.005 40.3 3.3 0.11
36 40 14 mo (5-50) 1.17 100.9 7.9 0.47

Adults (years) (years)
[101] 469 40 21-40 30.5 1626 70.9* 6.24

225 40 41-60 50.5 2666 72.2* 5.42
[125] 7 40 21-43 32 1704 77.5 5.75
[126] 10 40 22-32 27 1444 70.51 5.08
[127] 11 40 38 (18-55) 38 2016 73 4.21
[128] 11 40 44 +/- 14.1 44 2328 73.4 4.98

GA is gestational age, PNA is postnatal age, PMA is postmenstrual age, WT is weight,
CL is clearance, o.w. is otherwise, d is days, mo is months; value +/- standard deviation,
or () range; *WT was calculated using a formula from [106]
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2.3.3 Comparison of different models for size and matu-

ration

There were 14 models identified in the literature search, and additionally, another

five models were compared (individual model equations are listed in Table 2.2).

All parameters that were fixed and not estimated in the original study, were fixed

during the model comparisons as well – except allometric exponents from the study

by Wang et al [129], where the exponent was fixed to a different value according

to the cut-off weight of 16.5 kg (1.68 and 0.614 for ≤ and >16.5 kg, respectively).

The exponent was estimated in this case because it otherwise produced unrealistic

final clearance estimates. Also, to facilitate comparison of the results, all models

were normalised to 70 kg, a standard adult weight. There was no information

on birth weight for children and adults, hence current body weight was used in

model 10 instead [130].

The first group of models (that described the changes in CL from the neona-

tal/paediatric period throughout adulthood) included simple allometric models,

with only allometric weight scaling and a single allometric exponent (Equation

2.3).

CL = θ1 ·
(

WT
70

)b

, (2.3)

where θ1 is the predicted value of gentamicin clearance in L/h/70 kg and 70 kg is

the standard weight for an adult. In model 1 (Table 2.2) the allometric exponent

(b) was estimated, and in models 2 and 3 b was fixed to 0.75 and 0.67, respectively.

The second group of models comprised modelling approaches where the value

of the allometric exponent varied as the demographics of the subjects changed. In

some models a different value of the allometric exponent was assumed according

to a cut-off age (model 4) [73] or weight (models 5 and 6) [73, 129]. A different

approach was taken in model 7, where b changed exponentially with body weight



2.3. Methods 45

[131]. In models 8 and 9 the allometric exponent changed in a sigmoidal fashion

with weight [88] or age [132].

The last group of compared models were models that had a single non-varying

allometric exponent (either fixed or estimated) and a function, accounting for the

maturation part of the differences between the adult and the paediatric clearance

(Equation 2.4).

CL = θ1 ·
(

WT
70

)b

·maturation f unction. (2.4)

Models 10, 11 and 12 had the age (either the postnatal or postmenstrual age)

effect incorporated in the model in a linear way [130, 115, 89], and model 13 in

an exponential manner [133]. The next set of models (models 14-16) were models

with recently suggested approach for scaling clearance [69], that is, the maturation

function was in this case a sigmoidal function, driven by the postmenstrual age.

In model 14 all parameters were estimated, in model 15 the allometric exponent

was fixed to 0.75 and the parameters of the maturation function were estimated

[89], and in model 16 all parameters were fixed [52]. A similar approach was

adapted in model 19 where the allometric exponent was fixed to 0.75, but the

sigmoid maturation function was driven by the postnatal age, instead of PMA

[134]. The remaining two models (models 17 and 18) are models where b was also

fixed to 0.75; however, the maturation function was characterised either in an

asymptotic exponential (model 17) [135], or an exponential manner, with special

parameterisation for the magnitude and the rate constant of the maturation as

well (model 18) [136].

The 19 described models (Table 2.2) were then fitted to the gentamicin clear-

ance data extracted from the literature using NONMEM version 7.3 (ICON De-

velopment Solutions, Ellicott City, Maryland) [27]. An exponential residual error

was assumed. Goodness-of-fit graphs were produced using the R program, version

3.1.0 [137], and R-package ggplot2 [138]. Numerical comparison of the models was
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undertaken by comparing the Akaike information criterion (AIC) values (Equa-

tion 2.5), overall, and per age group. Age groups were defined as follows: neonates

(0-28 days of life), infants (1 month-2 years), children (2-12 years), adolescents

(12-18 years), adults (>18 years) [139]. AIC is a goodness-of-fit measure that pe-

nalises the value of the -2 log likelihood according to the p number of parameters

used in the fitted model (Equation 2.5). The model with a lower value is therefore

more parsimonious, and the preferred one.

AIC = −2 · logL +2 · p. (2.5)

2.4 Results

All of the compared models are listed in Table 2.2, together with numerical re-

sults of the model comparisons. Goodness-of-fit of the model predictions to the

literature gentamicin clearance data for each of the 19 models and also predictions

from the PBPK model [71] are shown in Figure 2.3. In three models (models

7-9) the allometric exponent varied within a range of values – this change plotted

against weight is shown in Figure 2.4. The AIC values per age group, relative to

the AIC values for model 15, are presented in Table 2.3.
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Figure 2.3: Plots showing goodness-of-fit of the compared models (described in
Table 2.2) to the gentamicin dataset. Black dots are gentamicin clearance data
from the literature (Table 2.1), and blue lines indicate model predictions. Post-
menstrual age of 100 and 1000 weeks corresponds to approximately 1.15 and 18.4
years of postnatal (or chronological) age, respectively.
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Table 2.2: Results of the model comparison

# Ref Equation
Studied
population

AIC θ1 Allometric exponent Other thetas

1 CL = θ1 · (WT
70 )θ2 -107 8.79 1.27

2 CL = θ1 · (WT
70 )0.75 -34.3 3.15 0.75 fix

3 CL = θ1 · (WT
70 )0.667 -18.4 2.81 0.667 fix

4 [73]
CL = θ1 · (WT

70 )b,
b : 1.2≤ 3mo,1.0 > 3mo−2y,0.9 > 2−5y,0.75 > 5y

Neo-child -131 6.62 1.2, 1.0, 0.9, 0.75 fix

5 [73] CL = θ1 · (WT
70 )b,b : 1.25≤ 9kg,0.76 > 9kg Neo-child -118 7.57 1.25, 0.76 fix

6 [129] CL = θ1 · (WT
70 )b,b : θ2 ≤ 16.5kg,θ3 > 16.5kg Neo-adu -106 7.96 1.24, 1.04

7 [131] CL = θ1 · (WT
70 )b,b = θ2 ·WT θ3 Neo-adu -127 5.95 1.29-0.69 θ2=1.27, θ3=-0.147

8 [88] CL = θ1 · (WT
70 )b,b = θ3− θ5·WT θ2

θ
θ2
4 +WT θ2

Neo-adu -127 5.31 1.19-0.21 θ2=1.12, θ3=1.23, θ4=17.5, θ5=1.27

9 [132] CL = θ1 · (WT
70 )b,b = θ3− θ5·PNAθ2

θ
θ2
4 +PNAθ2

Neo-child -136 5.65 1.19-0.55 θ2=0.66, θ3=1.21, θ4=0.36, θ5=0.68

10 [130] CL = θ1 · (WT
70 )θ2 · (1+θ3 ·PNA) Neo -105 8.79 1.27 θ3=∼0

11 [115] CL = θ1 · (WT
70 )θ2 +θ3 ·PNA Neo -105 7.94 1.24 θ3=0.0324

12 [89] CL = θ1 · (WT
70 )0.75 · (1+θ2 · (PMA−40)) Neo -64.5 1.48 0.75 fix θ2=0.007

13 [133] CL = θ1 · (WT
70 )0.75 · eθ2·(PMA−40) Neo -42.4 2.37 0.75 fix θ2=0.0006

14 CL = θ1 · (WT
70 )θ2 · PMAθ3

θ
θ3
4 +PMAθ3

-136 5.56 0.623 θ3=3.21, θ4=58

15 [89] CL = θ1 · (WT
70 )0.75 · PMAθ2

θ
θ2
3 +PMAθ2

Neo -136 5.99 0.75 fix θ2=3.25, θ3=49.9

16 [52] CL = θ1 · (WT
70 )0.632 · PMA3.33

55.43.33+PMA3.33 Neo-adu -141 5.41 0.632 fix

17 [135] CL = θ1 · (WT
70 )0.75 · (1−θ2 · e

−(PMA−40)· ln2
θ3 ) Neo-adu -138 6.07 0.75 fix θ2=0.68, θ3=32.7

18 [136] CL = θ1 · (WT
70 )0.75 · (θ2 +(1−θ2) · (1− e−PNA·θ3 )) Inf-child -127 5.86 0.75 fix θ2=0.207,θ3=3.59

19 [134] CL = θ1 · (WT
70 )0.75 · (θ4 +(1−θ4) · PNAθ2

θ
θ2
3 +PNAθ2

) Neo-child -126 5.86 0.75 fix θ2=1.4, θ3=0.132, θ4=0.21

# is the model number, Ref is reference, AIC is Akaike information criterion, θ1 is gentamicin clearance (CL) in L/h/70 kg, WT is body weight in kilograms,
mo is months, y is years, PMA is postmenstrual age, PNA is postnatal age, neo is neonates, inf is infants, child is children, adu is adults. All θs represent
parameters that were estimated.
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Figure 2.4: The relationship between the allometric exponent and weight for three
models with varying allometric exponent. Model numbers correspond to models
listed in Table 2.2. The allometric exponent in model 9 changes with age, which
is the reason for the fluctuations.

Table 2.3: AIC values per age group for the compared models

Model overall AIC neonates infants children adolescents adults

1 29.5 6.8 -1.4 7.7 -3.4 11.8
2 102 76.4 -5.3 10.6 2 2.3
3 117.9 90.5 -4.9 9.7 2.8 3.8
4 5.2 2.9 -6.1 -1.8 -5.6 -0.3
5 18 3 0.5 -0.3 -5.7 4.5
6 30.6 9 1.1 11.3 -1.4 10.5
7 8.8 7.4 -3.7 0.9 -2.5 -1.3
8 9 12 3 4.8 3.6 1.5
9 0.6 2.6 4.5 3.1 4.5 1.9
10 31.5 8.8 0.6 9.7 -1.4 13.8
11 31.4 8.3 0.8 9 -1.4 14.7
12 71.8 20 2.8 12.8 -1 29.2
13 93.9 57.5 -3.1 19.7 1.4 10.4
14 0.7 1.4 3.1 1.3 3.1 -0.1
15 0 0 0 0 0 0
16 -4.9 -4.5 -3.1 -4.6 -2.1 -6.6
17 -1.2 -1.5 0.3 -0.1 -0.2 0.3
18 8.9 7.9 0.1 0.7 0.1 0.1
19 10.1 9.2 2 2.7 2.1 2.1

Model numbers correspond to the models described in Table 2.2. AIC is Akaike
information criterion. All AIC values are relative to AIC values for model 15 (in
bold), negative values indicate a better fit than model 15.
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2.5 Discussion

Different approaches for scaling CL in the paediatric population were identified

and compared on the same dataset, using gentamicin as an example drug. This

approach differed than that taken by most authors trying to answer the question

of which model to use, who have tended to compare a limited range of models

[140] on data from multiple drugs. This important question has been addressed

by systematically searching for published models, and then comparing all of them

on the same dataset, thereby providing an objective comparison of model fits.

No model consistently out-performed the fixed allometric weight and sig-

moidal maturation model across all age groups (see Table 2.3), but for gentamicin

(a renally cleared drug) a fixed exponent of 0.63 performed better than 0.75. This

result should perhaps not be a surprise, given that gentamicin is mainly cleared

by glomerular filtration, and 0.63 was the exponent estimated from a study of

glomerular filtration rates across a wide age spectrum [52].

Visual examination of the diagnostic plots (Figure 2.3) showed that using

only allometric scaling (without accounting for maturation) with a single fixed

allometric exponent of either 0.75 or 0.67 (∼BSA) overpredicted the neonatal

gentamicin CL, and underpredicted the adult CL. This is in agreement with Mah-

mood [141], who also found that using this approach results in overprediction of

CL in neonates. Moreover, fixing the allometric exponent resulted in a lower es-

timate of a typical value of CL, compared to when the allometric exponent was

estimated (models 2 and 3 versus model 1, respectively; see Table 2.2). When a

non-varying allometric exponent was estimated the predictions proved better than

when it was fixed; however, CL in adults was overpredicted in this case (this was

probably because the allometric exponent was estimated to be 1.3, which agrees

more with what was previously found for neonates [73]). The reason for the es-

timated value of the allometric exponent to be closer to the value for neonates
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might be that more than half of the data points (i.e. 25 out of 41) came from

neonates, and only 6 from adults (>18 years of age). Allometric scaling with a

single value of the allometric exponent could possibly be used for drugs with their

CL mature at birth; however, this is almost never true. Or, this approach could

be used if the age group studied is older than the age when the maturation of the

eliminating organ is completed.

Models with body weight- or age-dependent allometric exponent, where the

exponent changed according to a cut-off value of a demographic (models 4-6) or

with a function (models 7-9) provided a good fit to gentamicin CL data; except

when models 5 and 6 were used there was some overprediction of adult CL (Fig-

ure 2.3). These two models had higher AIC values (overall and per age group)

compared to other models from this group (Table 2.3).

When size and age effect were taken into account separately – with allometric

equation and a maturation function – and a linear or exponential maturation

function was used (models 10-13) this provided a worse overall fit (Table 2.3)

and under- and overprediction of CL data from children and adults, respectively

(Figure 2.3). Whilst these models did not manage to describe gentamicin CL in

adults, they could still be used when describing CL changes in a population with

a small age range, for example, neonates [115, 142, 143].

The remaining models (models 14-19) managed to describe the CL data (Fig-

ure 2.3), which was seen from the low AIC values for these models (Table 2.3).

Model 16 (namely the model where the parameters were fixed to values from a

renal maturation study [52]) gave consistently the lowest AIC values, in each age

group (Table 2.3). Despite the ability of these models to describe gentamicin CL,

PMA (i.e. the sum of gestational age and PNA) should be used instead of PNA,

since renal maturation begins in utero [44].

For exploratory purposes, median gentamicin CL prediction from a published
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PBPK model [71] was overlaid on the CL data extracted from the literature (Table

2.1). The PBPK model underpredicted paediatric CL data, which was also what

was observed by Johnson et al [71]. The neonatal and adult CL data could not be

compared as only data from individuals of 3 months up to 16 years of age could

be extracted from the graph [71].

All of the compared models except models with only allometric scaling, where

the allometric exponent had a single non-changing value, and models where mat-

uration was taken into account in a linear or exponential way, provided a good

fit to the data (Figure 2.3). Many models had similar AIC values, but none had

consistently better AIC value (across age groups) than the suggested approach,

namely a combination of allometric weight scaling and a sigmoidal maturation

function (Table 2.3); therefore this type of model can be proposed as a standard

approach for describing the changes in CL due to age and weight. The only model

that had lower AIC values (overall and per age groups) was a variation of this

model, i.e. the parameters were fixed to values shown to provide the best fit when

describing the maturation of GFR [52].

There are several advantages of using a combination of the allometric scaling

with a sigmoid maturation function approach. For example, parameters are easy

to interpret – PMA50 indicates the PMA when maturation of the eliminating

organ is half complete (the sigmoidal function approaches the value of 1 with

increasing age, meaning that for older children/adults it is no longer important),

and thus helps to gain more knowledge about the underlying biology. The Hill

parameter, responsible for the steepness of the maturation slope, is flexible enough

to be able to describe both rapid and slow organ maturation. Furthermore, this

model was already evaluated for 46 drugs by Holford et al [69].

Using a model where the allometric exponent varies with age or weight (mod-

els 4-9; Figure 2.4) is perhaps less intuitive; for example in model 7 (see Table 2.2)

the allometric exponent (i.e. exponent on weight) is estimated by having another
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exponent on weight. Moreover, in models 4-6 the threshold when the allometric

exponent changes is arbitrary.

Although some advocate that the allometric exponent should be estimated

[73], this is not always possible, especially when analysing data from a population

with a small age/weight range (and is important particularly when developing

a model that one wants to use to extrapolate to other populations). When the

exponent on weight was estimated (model 14, it was estimated to be 0.623) it

provided a very similar fit to when it was fixed (model 15). Whether the exponent

was fixed to 0.75 (model 2) or 0.67 (model 3) provided similar results (Table 2.3);

which confirmed what was previously found [69] – that the difference between

the value of allometric exponent of 0.75 or 0.67 is not clinically important when

extrapolating within humans. Also, as described in Section 2.1, the variability

in the value of the allometric exponent is such that any value within 0.63 to

0.78 seems appropriate. Thus, it would be more parsimonious to fix (rather than

estimate) the value of the allometric exponent, especially when analysing data

from a population with small age/weight ranges.

Since gentamicin is not metabolised and is mainly excreted via glomerular

filtration [144]; similarly to meropenem, approximately 75% of which is eliminated

unchanged via the kidneys [50, 145], the allometric exponent and the parameters of

the maturation function could be fixed to values from a study of renal maturation

that involved over 1,000 observations, from neonates to adults [52]. The model

where the allometric exponent was fixed to 0.632, and Hill and PMA50 values

were fixed to 3.33 and 55.4, respectively (model 16), had consistently lower AIC

values than model 15, where the allometric exponent was fixed to 0.75 and the

parameters of the maturation function were estimated (Table 2.3).
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2.6 Summary

Nineteen different models to describe the change in CL between the neonatal

period and adulthood were compared on a dataset, containing CL values from

the same drug (gentamicin). The models (apart from a few exceptions) predicted

gentamicin CL data similarly; however, no model performed better than a model

with allometric weight scaling (with a single fixed allometric exponent) and a

PMA driven sigmoidal maturation function. For gentamicin (a renally cleared

drug) a value of the allometric exponent of 0.63 (taken from a study of GFR

maturation) provided lower AIC values than 0.75. Hence, this approach can be

suggested as a standard approach for scaling CL of renally cleared drugs in the

paediatric population. Having one standard model would facilitate comparison of

similar compounds, make meta-analysis easier, and help one to learn more about

CL maturation. Future work should involve testing whether this approach (with

0.75 fixed allometric exponent) can also be used for drugs with hepatic or mixed

clearance.



Chapter 3

Pharmacokinetic model for

treatment individualisation

3.1 Introduction

Gentamicin was discovered in the 1960s [146] and its PK have been studied more

extensively since the 1970s, in adults [147], as well as in neonates [148]. However,

whilst it is definitely not a new drug, there are still problems with its dosing and

monitoring, especially in neonates, as reported in the UK National Patient Safety

Agency alert [149] and a recent study by Valitalo et al, where simulations were used

to define dosing guidelines [150]. To try to improve gentamicin monitoring (and

therefore contribute towards safer use) in the neonatal population the neoGent

study was designed and undertaken, and the results from it are presented in this

chapter.

3.1.1 Gentamicin pharmacodynamics

Gentamicin is an aminoglycoside antibiotic, and like other antimicrobials from this

group is produced by Gram-positive bacteria from the order Actimycetales (more

specifically, gentamicin is produced by Micromonospora purpurea) [151]. Chem-
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Figure 3.1: Chemical structure of gentamicin.

ically it is a cyclitol ring, linked through a glycosidic bond to two 6-membered

sugars, with five amino groups attached to this structure [151] (Figure 3.1).

3.1.1.1 Gentamicin mode of action

Due to its chemical structure gentamicin exhibits high water solubility and has

a basic character [151], which means it cannot easily cross cell membranes [152].

Having a polycationic charge, gentamicin firstly binds to the anions on the outer

cell membrane, which increases the permeability of the membrane. Then, to

pass through the membrane into the cytosol, an electron transport system is

required, and since the source of the electrons is cell’s respiratory cycle, gentamicin

is not effective against anaerobic pathogens [144]. Once in the cytosol, gentamicin

irreversibly binds to the 16S rRNA receptor on the 30S subunit of the bacterial

ribosome and interrupts synthesis of proteins that are involved in the production of

the bacterial membrane. This causes the bacterial membrane to sustain increasing

damage, therefore more gentamicin is able to penetrate the cell, which finally leads

to bacterial cell death [144, 153, 154].

Gentamicin is effective and primarily used against Gram-negative aerobic

bacteria (e.g. Acinetobacter, Pseudomonas, Enterobacter species, Escherichia

coli (E. coli)) and staphylococci [155, 154, 156]. It exhibits a synergistic effect

when administered with drugs that increase its permeability to the bacterial cell

– for example, penicillins or vancomycin, a combination that is commonly used in

neonatal intensive care units (NICU) [154, 144, 157]. Because of its effectiveness
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against E. coli, one of the main pathogens of early-onset neonatal sepsis, espe-

cially in pre-term newborns [1, 158, 159], gentamicin is one of the most frequently

administered antimicrobials in NICU [160, 161]. However, gentamicin use is lim-

ited by its narrow therapeutic index and risk of toxicity, specifically nephro- and

ototoxicity [157].

3.1.1.2 Gentamicin toxicity

Due to similar structures of human mitochondrial ribosomes and bacterial ribo-

somes, gentamicin (especially in higher concentrations) not only affects prokary-

otic cell proteins but also the synthesis of human proteins [153]. This leads to

toxic effects, specifically tubular cytotoxicity and toxicity of the eighth cranial

nerve (causing ototoxicity) [157]. Gentamicin toxicity is related to total drug

exposure (AUC) [162], and not to peak concentrations (Cmax) as its effectiveness.

Tubular necrosis is said to occur in 10-30% of adults, when gentamicin treat-

ment lasts longer than 7 days [152, 163, 164]. Studies in neonates are lacking,

however, the incidence of nephrotoxicity appears to be lower in neonates [165].

Nephrotoxicity is caused by the accumulation of gentamicin within the epithe-

lial cells of proximal tubules (15% of the administered dose is reabsorbed in the

tubuli [166]), where it induces apoptosis of the cell mitochondria. This causes a

decrease in the total number of the proximal tubule cells, activation of local renin-

angiotensin system, local vasoconstriction, tubular obstruction, which reduces re-

nal blood flow and consequently causes the glomerual filtration rate (GFR) to

decrease [163, 152]. GFR is additionally lowered since gentamicin (in addition to

tubuli) also affects glomeruli [152]. Uptake of the aminoglycoside into the tubular

epithelium is a saturable process, meaning that higher doses (and therefore higher

peak concentrations) do not directly lead to higher nephrotoxicity. Conversely,

it is more common with elevated trough concentrations (i.e. increased total drug

exposure) [49, 153], because renal damage causes reduced renal clearance and
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therefore increased trough concentrations. Nephrotoxicity is reversible [49], but

excretion of aminoglycosides from proximal tubules is not a fast process [166] –

renal function is said to return to normal within 3 to 6 weeks [49].

The second most common adverse effect of gentamicin is ototoxicity. It can

occur independently of nephrotoxicity and is usually not reversible, since sensory

hair cells are permanently destroyed [49, 167]. More studies are needed to as-

certain the incidence of ototoxicity in neonates, however, it seems to occur less

frequently and only transiently in this population, compared to adults [165, 168].

It has been suggested that genetic mutations in mitochondrial DNA (e.g. A1555G

mutation) could be the most common reason for the occurrence of ototoxicity

[169, 170, 171, 172]. This mutation makes mitochondrial rRNA appear similar

to prokariontic rRNA, making it a target for gentamicin [169]. Even though all

human cells would be affected by this mutation, it is thought to be only important

in tissues with a lot of mithochondria, such as sensory cells of the ear [169]. An

American study by Ealy et al found that the prevalence of mitochondrial mutation

is approximately 1.8% in population of subjects who were once in NICU [173]. A

noisy environment in the neonatal units could also increase the susceptibility to

aminoglycoside induced ototoxicity [170].

3.1.2 Therapeutic drug monitoring of gentamicin

Gentamicin is an antibiotic with a narrow therapeutic window, i.e. the difference

between its effective and toxic dose is small [174, 175]. Therapeutic drug moni-

toring (TDM) is therefore advised when administering it to ensure adequate peak

concentrations (that is, maximise its efficacy) and trough concentrations – to min-

imise the risk for nephro- or ototoxicity [153, 174]. TDM uses measured circulating

drug concentrations to define or regulate the dosing regimen, and is particularly

important for subpopulations at higher risk of gentamicin toxic effects, such as

neonates, who have immature kidney function and consequently higher gentamicin
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AUC [162, 95, 174]. Additionally, neonates have a large between-subject variabil-

ity in their PK parameters, therefore dose individualisation is also required in this

population [49].

There are three main approaches for model-based/guided dose individualisa-

tion: single-level methods or nomograms, AUC methods and Bayesian methods.

a) Using a nomogram or a concentration dosing table is the simplest and an

inexpensive method. It involves taking one blood sample in the elimination

phase and then comparing it to a nomogram [49, 176, 162]. A study by

Dersch-Mills et al, who validated a nomogram on data from 104 and 38

neonates in their first week of life and with ages >7 days, respectively,

showed that nomograms can be a useful tool for individualising the dose

interval [177, 178]. However, because nomograms only involve a sample from

the elimination phase, Cmax could be underestimated and clinical effects not

reached in case of an increased volume of distribution [162], which is common

during sepsis [100]. Nomograms are also difficult to design for neonatal data,

as it is not possible to incorporate covariates that would affect the clearance,

such as PNA, PMA, and markers of renal function.

b) AUC methods involve taking two or more samples, and then estimating the

AUC using a simplified 1-compartment PK model [49, 176, 162, 179]; or

using a full AUC method (without an underlying model assumption) which

requires ≥4 samples per subject. This method may not be the most suit-

able for neonates, as rich sampling is rarely possible in this population due

to their limited blood volume. Using a 1-compartment model is also not

appropriate as gentamicin mostly shows multi-compartment kinetics [180].

c) Bayesian methods use prior knowledge from a population PK model and

involve taking one or two samples [49, 176, 162, 181]. Particularly the

drawbacks of nomograms and 1-compartment methods make the Bayesian
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method the most appropriate for neonates.

TDM is typically used to define the optimal dosing interval, and/or an opti-

mal dose. Historically, gentamicin was administered several times a day, but, now

the preferred dosing regimen is once-daily or an extended-interval dosing regimen

[66, 49, 153]. This has several advantages over the multiple-daily dosing, for ex-

ample, higher peak and lower trough concentrations, meaning higher efficacy and

lower toxicity [182, 183, 184, 67]. Higher Cmax means that the post-antibiotic effect

is prolonged and the risk of bacteria developing adaptive resistance is minimised,

as more of them get initially killed [182, 185]. What is especially important for

the neonatal population is that an extended-interval dosing regimen ensures lower

toxicity even when renal function is impaired [182] and allows for less frequent

TDM [177], lowering the burden on neonates.

Dosing in neonates is usually based on their body weight and/or age [153],

and the British National Formulary for Children (BNFC) recommends a dose of

5 mg/kg for neonates with PNA <7 days and >7 days with a dosing interval

of 36 and 24 hours, respectively [186]. According to the European Committee

on Antimicrobial Susceptibility Testing (EUCAST) the most common MIC for

E. coli when treated with gentamicin is between 0.25 and 1 mg/L [187]; and

the resistance and susceptibility breakpoints for Enterobacteriaceae are 4 and 2

mg/L, respectively [188]. Considering this and the fact that Cmax/MIC ratio for

gentamicin should be approximately 8-12 [65, 64], it can be concluded that gen-

tamicin target peak level in neonates should be >16 mg/L for MIC of 2 mg/L (i.e.

sensitivity breakpoint for Enterobacteriaceae [188]). However, this is a worst-case

scenario, the majority of e.g. E. coli has MIC below that value. Recommended

trough levels (to prevent the onset of toxicity) for gentamicin in neonates are <2

mg/L or <1 mg/L, according to BNFC [186] and the National Institute for Health

and Care Excellence (NICE) [189] guidelines.
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3.1.3 Gentamicin pharmacokinetics

Gentamicin is not absorbed from the gastrointestinal tract [183, 66], hence has to

be administered intravenously. Because of its hydrophilic nature gentamicin dis-

tributes mainly into the extracellular water [66, 49], with <10% of the drug in the

systemic circulation bound to plasma proteins [49, 190]. Due to a higher propor-

tion of total body water and other specific developmental differences, described

in Section 1.6.1 neonates exhibit higher volume of distribution (V) of gentamicin

compared to older children and adults [49, 179, 47]. Establishing reference values

for V in neonates proved difficult as there was no agreement on PK parameters

reporting. For example, V was reported for groups of neonates with different de-

mographic characteristics (e.g. sometimes neonates were grouped by their current

body weight, birth weight, GA or PMA), or medical conditions were not the same

[191, 192, 193, 107]. Still, according to some studies, premature neonates (GA<37

weeks) in the first week of life had gentamicin V of 0.34-0.77 L/kg [177, 157, 194],

and mature neonates (GA≥37 weeks) 0.4-0.5 L/kg [177, 109, 195].

Gentamicin is not metabolised in the liver, and is almost entirely eliminated

by the kidneys as an active compound [152, 144]; approximately 90% of ad-

ministered dose is cleared by glomerular filtration [153]. Gentamicin clearance

(CL) is thus highly dependent on renal function, specifically GFR. The kidneys

of neonates are immature, thus their renal function is reduced, and they have

lower CL and longer half-lives, compared to adults [157]. Because renal matu-

ration starts in utero, gentamicin CL is better correlated with PMA than PNA

[153, 119, 114, 44, 46]. CL of gentamicin was in some studies 0.03-0.05 L/h/kg

for preterm [157, 194, 114, 109, 195], and 0.05-0.07 L/h/kg for term newborns

[153, 194, 109].
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3.1.4 Previously published population pharmacokinetic

models

Deriving a Bayesian prior for TDM requires a non-linear mixed-effect PK model,

and gentamicin has been widely studied in neonates previously. Therefore, to find

previously published such studies, electronic databases, PubMed and EMBASE

(through Ovid), were searched in April 2013 (the search was updated in September

2014). There were 12 such studies [196, 197, 109, 198, 199, 115, 114, 113, 119,

124, 200, 111], and a summary of the final model equations from publications is

given in Table 3.1.

Table 3.1 shows that published population PK models for gentamicin in

neonates are very heterogeneous. Moreover, the majority of them found that

the final model is a 1-compartment model, even though gentamicin usually ex-

hibits multi-compartment kinetics [201, 180]. The reason for most studies finding

a single compartment kinetics was probably that in general the models were de-

veloped using a sparse dataset (with mean number of samples of approximately

two per subject). Additionally, serum creatinine has not been found a covariate

often (although it is a marker of GFR, and therefore a proxy for gentamicin CL),

and the changes in SCr have not been properly accounted for before.

3.1.5 Creatinine

Creatinine, a nitrogenous end product of creatine metabolism in the muscle, is

the most commonly used marker of kidney function, more specifically GFR.

3.1.5.1 Creatinine as a marker of glomerular filtration rate

There are three processes that control the elimination of a substance through

the kidneys; these are: glomerular filtration, tubular reabsorption and tubular

secretion. Glomerular filtration is the easiest to define, therefore it is used to
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Table 3.1: A summary of published neonatal gentamicin population pharmacoki-
netic models

Ref N
Samples

per subject
Cmt Final model equations

[196] 143* 3.4 1 CL = θ ·WT +θ ·PNA+θ ·SCr
V = θ ·WT

[197]# 84 NR 1 CL = θ ·WT +θ ·PNA−θ ·GA
V = θ ·WT

[109] 113 2.4 1 CL = θ ·WT ·θPMA≤34 ·θApgar<7
V = θ

[198]# NR NR 1 CL = θ ·
(WT

2.4

)1.36

V = θ ·WT

[199] 469 2.3 1 CL = θ ·
(WT

2.6

)0.78 ·
( GA

1.21

)1.21 ·
(SCr

96

)−0.35

V = θ ·
(WT

2.6

)0.78

[111] 79 1.7 1 CL = θ ·BWT ·GA ·gender f actor
V = θ ·BWT

[115] 97 2 1 CL = θ ·WT θ +θ ·PNA
V = θ ·WT θ

[114] 277 2.1 1 CL = θ +θ · (GA−20)+θ ·Apgar5
V = θ +θ · sepsis

[113] 200 2.1 2 CL = (θ ·WT +θ ·CLCR) ·WT +θ ·PNA
VC = θ ·WT

Q = θ

VP = θ ·WT

[119] 61 14.9 3 CL = θ ·WT 0.75 · (1+θ · (GA−28.9)) · (1+PNAθ )
V = θ ·WT · (1+θ · (GA−28.9))

[124] 50* 4.7 2 CL = θ ·
(WT

70

)0.75 ·
(PNA

162

)θ

[200] 1449 2.1 2 CL = θ ·
( WT

2170

)0.75 ·
(
1+θ · GA−34

34

)
·

·
(
1+θ · PNA−1

1

)
· (1+θdopamine)

VC = θ · WT
2170 ·

(
1+θ · GA−34

34

)
Ref is a reference, N is the number of subjects in the study (* denotes that the
study included neonates and also infants and children), NR is not reported, # in-
dicates that only an abstract was available, Cmt is the number of compartments
in the final model, CL is gentamicin clearance, V is gentamicin volume of distri-
bution, WT is body weight, BWT is birth weight, GA is gestational age, PNA
is postnatal age, PMA is postmenstrual age, SCr is serum creatinine, CLCR is
creatinine clearance, Apgar5 is Apgar score at 5 minutes.
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assess the overall kidney function. The rate of glomerular filtration (GFR) can

be either measured or estimated/calculated [202, 203, 204].

Measuring GFR actually means knowing the urinary and plasma concen-

tration of a substance, and the urine flow rate, and then calculating the CL of

this substance, which approximates GFR [202, 203]. There are several markers

that can be used for measuring GFR, for example, exogenous markers (e.g. in-

ulin, iothalamate, iodothalamate, chromium ethylendiamine tetraacetic acid (Cr-

EDTA), iohexol), which are not suitable for routine clinical use due to expensive

and lengthy procedures needed to define their concentration [205, 202, 203, 206].

Another option is to use an endogenous marker (such as creatinine, urea, urate,

cystatin C, β -microglobulin, α-microglobulin, retinol binding protein [202, 203]),

which also eliminates the possibility of an allergic reaction [207]. An ideal en-

dogenous marker for measuring GFR is produced at a stable rate, has a con-

stant plasma concentration, is not protein bound, and is excreted only by GFR

[202, 207].

Creatinine is an adequate marker since it is produced at a fairly constant

rate, is unbound to proteins, and its concentration can be defined using a rapid,

simple, and cheap technique [208]. But, being a small molecule, it is (in addition

to glomerular filtration) also eliminated by tubular secretion, which can overesti-

mate GFR by 10-40% (compared to inulin clearance), when renal function is low

(GFR <10 mL/min), as creatinine then mostly undergoes tubular secretion [209].

Furthermore, serum creatinine concentration (SCr) can vary, depending on the

method that was used to determine it [210], with SCr values determined by en-

zymatic methods approximately 10-30% lower than when using the Jaffe method

[205, 211] (Figure 3.2).

Additionally, due to a non-linear, parabolic relationship between SCr and

GFR, normal SCr values do not necessarily indicate normal renal function (Figure

3.3) [212]. Recently, cystatine C has been suggested as a preferred marker of GFR
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Figure 3.2: Graph of serum creatinine concentration in µmol/L determined using
the Jaffe (black line) or enzymatic method (grey line) versus postnatal age in
days. Data from a study on preterm newborns [211].

over creatinine as it more sensitive, eliminated only by glomerular filtration, and

its plasma concentration is independent of muscle mass, sex, or body composition

[213, 214]. Also, unlike SCr, it does not cross the placenta [215]. However, its

plasma concentration could be affected by high levels of C-reactive protein [216],

it cannot be used to measure GFR as it is completely metabolised in renal tubules

[209], and methods for measuring its concentration are more expensive [208, 217],

compared to SCr. So, despite its drawbacks, creatinine is still widely used in

clinical settings.

Measuring GFR can prove difficult, as collecting a 24-hour urine sample is

impractical, time-consuming, and not always possible. An alternative option is

to estimate the GFR. However, most GFR estimating equations were developed

using data from adults and are intended for that population, for example, the

Cockroft-Gault equation [213, 218], the Modification of Diet in Renal Disease

(MDRD) equation [219, 213, 220], and the Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI) equation [220]. There is only one equation designed for
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Figure 3.3: Graph of serum creatinine concentration versus percentage of glomeru-
lar filtration rate (GFR) from total. The dashed line represents the upper limit
of normal serum creatinine concentration. Adapted from [212].

the paediatric population, the Schwartz equation [209, 213]:

eGFR(mL/min/1.73m2) =
k ·height(cm)

SCr(mg/dL)
, (3.1)

where eGFR is estimated GFR, and k is the proportionality constant that de-

scribes the relationship between body size and renal elimination of creatinine.

However, there are several disadvantages to using this formula in neonates. The

proportionality constant is different for preterm and term neonates [213, 221],

but, it assumes the same value for infants from birth up to 1 year of age, which

is when renal function changes dramatically. Additionally, the equation is not

appropriate for GFR <50 mL/min/1.73m2 [209], which is common in neonates

[216, 222]. Moreover, the neonatal renal function is changing rapidly [223], hence

making a correct estimation of GFR difficult [210].

3.1.5.2 Reference values of serum creatinine

Serum creatinine concentration is inversely related to GFR, meaning that higher

values of SCr indicate lower GFR, and thus renal function. Values of SCr are

lower in females [224], as they have less muscle mass, compared to men. After
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Figure 3.4: Serum creatinine concentration versus age for males (blue dashed line)
and females (red solid line). The x-axis in the plot on the right is logarithmic.
Serum creatinine concentrations were determined by an enzymatic method. Data
include levels from preterm and term newborns and are from [224].

reaching adulthood, renal function starts slowly deteriorating, which is seen as an

increase in SCr (Figure 3.4) [224].

At birth SCr is around 73-80 µmol/L [224, 214] or 55-60 µmol/L [225, 223,

226], determined by the Jaffe or enzymatic method, respectively. The initial

level appears to be independent of GA, and reflects maternal SCr (Figure 3.5)

[202, 224, 223, 226]. However, Finney et al found in their study that even the

first level differs between term and preterm newborns [225]. A possible reason for

their conclusion could be that they measured SCr in preterm newborns on day 1

of life and in term newborns on day 2. This makes the comparison between both

groups difficult, as SCr changes rapidly within the first days of life.

Some studies [211, 224, 223, 226] found a rise in SCr 1-2 days after birth. This

rise appears to be bigger in less mature newborns [228, 223, 226], and might oc-

cur as a result of terminated maternal clearance, some early creatinine production

(in neonate’s muscles), and low neonatal GFR [211, 214]. Since nephrogenesis is

only complete by approximately 34 weeks of PMA, newborns that are born with

GA<34 weeks have lower GFR and consequently higher SCr [223]. Additionally,

tubular reabsorption or passive tubular diffusion (showing as a back leak) of cre-

atinine might be bigger in more premature newborns, as the tubules are not yet

fully mature [211, 225, 228, 229]. This could be confirmed by studies of only
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Figure 3.5: Graph of serum creatinine concentration in µmol/L versus postnatal
age in days on a logarithmic scale. Data include levels from preterm (black lines)
and term (grey line) newborns and are from [226] and [227], respectively. The
gestational age (GA) in the brackets is in weeks. Creatinine concentration was
determined by the Jaffe assay.

full-term neonates by Boer et al [214] and Manzar et al [230], who did not find a

statistically significant rise in SCr on the second day of life.

From birth, throughout the first month of life, neonatal SCr steeply falls to

approximately 35 µmol/L [231, 232] or 20-25 µmol/L [224, 214, 233], determined

by the Jaffe or enzymatic method, respectively; reaching the nadir (Figure 3.4).

This fall has been shown by Miall et al [223] and Kim et al [234] to occur later in

neonates born more prematurely or with lower birth weight. The steep decrease

in SCr is probably due to a significant increase in neonate’s renal function [228],

caused by the increase in renal and intra-renal blood flows [52]. Then, from the

first month of life until approximately 2 years SCr remains almost constant [224],

which is most likely a result of increased production (because of higher muscle

mass [214]) and increased elimination (as kidney function continues to improve

[230]) of creatinine. After the plateau, SCr starts to gradually rise again (the

muscle mass continues to increase, but not renal function), reaching adult levels
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at approximately age of 20 years [224, 214].

3.2 Aim

The aim of the study described in this chapter was to develop and prospectively

evaluate a new population pharmacokinetic model for gentamicin in neonates,

which would be perhaps more mechanistic, meaning that it would include biolog-

ical prior information by accounting for changes in serum creatinine. This model

was then used for building a Bayesian computer tool, called neoGent, which en-

ables using gentamicin concentrations collected opportunistically for other pur-

poses (such as blood gasses) to predict the time when the concentration is ex-

pected to fall below a pre-specified threshold of 1 mg/L or 2 mg/L, as suggested

by the NICE and BNFC guidelines. Doing so, it should help improve gentamicin

monitoring in neonates, and could make TDM more convenient for babies, their

parents and the clinicians who care for them.

3.3 Methods

3.3.1 Study population

There were two separate datasets used in this study: a model building dataset

(i.e. learning) and an evaluation dataset.

To obtain data for model development, electronic bibliographic databases

(PubMed/MEDLINE and Embase through Ovid) were searched in April 2013

with no time limitations. The search strategy included the following keywords:

(neonates OR neonate OR neonatal OR newborn OR newborns) AND (gentam-

icin) AND (pharmacokinetic OR PK OR pharmacokinetics). Additionally, the

reference lists in relevant papers were manually searched. The inclusion crite-

ria comprised of: a study in neonates, an observational study and not a review,
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Figure 3.6: Observed gentamicin concentrations (from the model building dataset)
versus time in hours after the gentamicin dose has been given. Red line is a lowess
smooth line.

intravenous administration of gentamicin, gentamicin concentrations had to be

prospectively collected, covariates (weight, GA, PNA, SCr measurements) had

to be reported, and the manuscript being in English. The search and screening

process is presented in more detail in Appendix A.

Authors of the publications that met the inclusion criteria (n=8) were then

invited to share their data [179, 109, 119, 124, 117, 235, 236, 237]. However,

despite some email correspondence with a few authors, only data from a study

by Nielsen et al [119] and data that were freely available online from Thomson

et al [109] were obtained. Data from both studies were then pooled and included

1163 gentamicin serum concentrations from 174 neonates with their GA ranging

from 23.3-42.1 weeks, and PNA 0-65 days. Figure 3.6 shows the PK profile of the

dataset used for model development.

Data for the evaluation of the developed PK model and consequently the

Bayesian software were collected as a prospective observational cohort study that

ran from July 2012 to November 2013 and was performed in five UK hospitals:

St George’s Healthcare NHS Trust, Liverpool Women’s NHS Foundation Trust,
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Table 3.2: Summary of analytical methods

LOD (mg/L)
Precision

within-run (%CV) total (%CV) measured at

Coventry 0.24 5.2 6.7 1.6 mg/L
Liverpool 0.3 1 2.9 3.4 mg/L
Oxford 0.17 5.59 6.27 1.52 mg/L
Portsmouth 0.13 3.8 5.3 2.1 mg/L
St George’s 0.4 5 6.4 2.3 mg/L

LOD is limit of detection, CV is coefficient of variation; for each participating
hospital in the neoGent study.

Oxford University Hospitals, Portsmouth Hospitals NHS Trust and Coventry &

Warwickshire University Hospitals NHS Trust. For a neonate to be included in

the study, the following criteria had to be met: <90 days PNA, expected to sur-

vive the study period (as judged by the clinical team), >36 hours gentamicin

therapy anticipated, and not currently receiving extracorporeal membrane oxy-

genation, peritoneal dialysis or hemofiltration. The study was approved by the

London Central Ethics committee (reference 12/LO/0455) and a written consent

was obtained from parents. Each subject had at least two gentamicin concen-

trations taken: a routine pre-dose sample, and additional study sample that was

taken opportunistically when the neonate required blood level for other reasons.

In addition to gentamicin dosing and sampling information, infant’s weight, age

and SCr were also recorded.

Gentamicin serum concentrations from the model building dataset were anal-

ysed using an enzyme immunoassay (EMIT, Syva) [109] and/or fluorescence po-

larization immunoassay (TDx, Abbot) [109, 119]. Similarly, to determine gen-

tamicin concentrations from the evaluation dataset immunoassay techniques were

used (for details see Table 3.2). SCr was determined by the Jaffe method in the

model building dataset, and by both the Jaffe and enzymatic method (data from

137 neonates and 26 neonates, respectively) in the evaluation dataset.
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3.3.2 Non-linear mixed-effects model building

The non-linear mixed-effects analysis was performed by pooling and simultane-

ously modelling the concentration-time data from only the model building dataset,

i.e. previously published studies [119, 109], using NONMEM version VII (ICON

Development Solutions, Ellicott City, Maryland) [27]. The first order conditional

estimation method with interaction (FOCE-I) was used.

To define the basic structural model, 1-, 2-, and 3-compartment models were

fitted to the data. The between-subject variability (BSV) and inter-occasion

variability (IOV) were assumed to follow a log-normal distribution and were tested

on all parameters. Occasion was defined as a single dosing interval, with at least

one observation following a dose. Regarding the residual variability, an additive,

a proportional, and a combination of both models (Equation 3.2) were tested.

yi j = f (ti j;Θi)+ f (ti j;Θi) · εi j,proportional + εi j,additive, (3.2)

where yi j is observed gentamicin concentration for an individual i at time ti j, f

is gentamicin structural model, Θi is a vector of individual parameters, and εi j is

either a proportional or and additive error term.

All PK parameters were a priori scaled by weight, standardised to 70 kg

using allometric scaling. Allometric exponents were fixed to 0.632 for central CL,

0.75 for inter-compartmental CL, and 1 for volumes of distribution. Different

exponents were used for central and inter-compartmental CL as these values were

shown best for describing renal CL maturation [52], and tissue blood flows. A

PMA driven maturation function (with fixed parameters [52]) was also used to

scale CL – i.e. the approach described and suggested in Chapter 2 was applied.

Serum creatinine is an important indicator of GFR and thus gentamicin CL,

and gentamicin CL changes rapidly within first days of life (PNA), therefore these
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two covariates were tested on CL (this decision was also based on the posthoc es-

timates of etas versus covariates plots). The covariates were included in the model

and considered to significantly improve the fit if the difference in the objective

function value (∆OFV) after their inclusion was >3.84 (p <0.05). Also, to avoid

SCr and PNA (time-varying covariates) being interpreted in a step-like fashion,

linear extrapolations between observations were made (using a special parameter-

isation within NONMEM; see Appendix B).

As described in Section 3.1.5 the dynamics of SCr are complicated in new-

borns as shortly after birth neonatal SCr levels still reflect maternal SCr. Hence,

to account for maternal creatinine (and also for endogenous creatinine, and the

change in renal function with PMA) literature was systematically searched in

April 2013 to find a typical value of serum creatinine (TSCr) for a specific PMA.

The search produced 25 publications that satisfied the inclusion criteria, i.e. a

study of creatinine in neonates. But, there was considerable variability in SCr

sampling techniques and times, as well as the reporting of SCr values. Also, in

some cases GA or the exact study day was not reported, the first day of life was

was not specified (day 0 or day 1), the sample size was very small (e.g. n<10),

the sampling was sparse (e.g. one sample in the first 7 days), or SCr results were

given in a graph/bar chart only. The variability between studies made pooling

data impossible, therefore two prospective studies (with SCr determined by the

Jaffe method, the same as in the model building dataset) were selected. Data from

Cuzzolin et al [226] were used to determine TSCr for preterm neonates, and data

from Rudd et al [227] for term neonates (there was no prospective study with

good SCr sampling/reporting that included both preterm and term neonates).

Equation 3.3 describes a linear decline in TSCr with increasing PMA (Figure

3.7).

T SCr =−2.8488 ·PMA+166.48, (3.3)
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Figure 3.7: Serum creatinine concentration in µmol/L determined using the Jaffe
assay from [226, 227] plotted against postmenstrual age in weeks.

where T SCr is typical serum creatinine concentration in µmol/L for a specific

postmenstrual age (in weeks).

Measured serum creatinine from the dataset was standardised by TSCr and

departures from it were estimated according to Equation 3.4.

(
measured SCr

typical SCr

)θ

. (3.4)

A function described in Equation 3.5 was used to test PNA and its effects on

the rapid changes in gentamicin clearance in the first days of life (first day of life

was defined as day 1).

postnatal age function =
PNA

PNA50 +PNA
, (3.5)

where PNA50 is PNA when clearance is half mature.

After the inclusion of all covariates, the structural model was re-evaluated
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and the covariates re-tested. This was done as a backward elimination, meaning

that the covariate only stayed included in the model if after it was removed, the

OFV increased by >10.83 units, which corresponds to a p-value of 0.001.

3.3.3 Model evaluation

3.3.3.1 Internal model evaluation

Basic goodness-of-fit plots (as described in Section 1.5) were produced and visually

examined for any misspecification in the model. The diagnostic plots included

observations versus population and individual predictions, CWRES versus time

after dose and versus population predictions, and were produced using statistical

software R version 2.15.1 [137].

Precision on the final PK parameters was assessed by checking standard errors

from NONMEM covariance step and by performing a non-parametric bootstrap

analysis (n=1000) using Perl-speaks-NONMEM (PsN) [238].

A visual predictive check was produced (using PsN) by simulating 1,000

datasets from the final model. From the simulated data points, a non-parametric

95% confidence interval was calculated for the 2.5th, 50th, and 97.5th percentiles.

Simulated and original gentamicin levels were then plotted against time after dose.

R package Xpose4 [239] was used to graphically present the results of VPC.

3.3.3.2 External model evaluation

The evaluation dataset (i.e. the prospectively collected data from the neoGent

study) was used to externally evaluate the predictive performance of the popula-

tion PK model. Basic GOF plots and a VPC were produced as described above

with no additional fitting of the model to the evaluation data.

Then, only the information from opportunistically collected study samples
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was taken, and the final model was used as a Bayesian prior to predict trough

levels. The predicted trough levels were then compared with measured (routinely

collected) trough levels by calculating the prediction errors (PE) (Equation 3.6)

[37].

PE = observed− predicted. (3.6)

Additionally, predictions that were below/above currently recommended [186,

189] thresholds for gentamicin trough levels of 1 or 2 mg/L and agreed with

measured trough concentrations were counted. This was also done for a subset

of paired samples (i.e. both study and routine samples taken in the same dosing

interval) with a study sample ≥1, ≥2, and ≥3 mg/L, and only unpaired samples

(i.e. study and routine samples not collected within the same dosing interval). In

some dosing intervals more than one routine sample was collected, so technically

these were not pairs, but will sometimes still be referred to as “pairs” (the same

as before, in these situations only the information from the study (i.e. earlier)

samples was used, and routinely taken trough concentrations were predicted).

Paired samples were tested as this is how the neoGent software will be used –

using the data from an opportunistically taken sample to predict the later sample,

in the same dosing interval. Unpaired samples were tested for exploratory reasons,

to test how good the predictive power is if a sample from a different dosing interval

is used.

3.3.3.3 Cross validation

The most interesting comparison was when study sample was ≥3 mg/L, as in this

case the concentration used to predict the trough level was not already below/very

close to the pre-specified trough threshold. However, only 18 “pairs” of such

characteristics were available in the evaluation dataset; therefore, pairs with the

earlier sample ≥3 mg/L from both the model building and the evaluation datasets

were pooled. The pooled dataset (n=260 “pairs”) was then randomly split into
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five subsets, and each time 20% of the pairs were randomly removed and the model

was re-estimated. The models with re-estimated parameters were then used as

a prior to predict trough concentrations in previously excluded pairs. Then, the

predicted concentrations were compared to measured concentrations as described

in Section 3.3.3.2.

Although the focus of this study was on safety, rather than on efficacy, the

ability of the model to predict peak gentamicin concentration (from one randomly-

selected non-peak sample) was also tested for exploratory purposes. Peak concen-

tration was defined as a concentration with time after dose ≤1.5 hours, and there

were 213 peak – non-peak pairs. Cross validation was performed the same way as

described above.

For both trough and peak levels, mean PE (MPE) and root mean square

errors (RMSE), i.e. measures of bias and precision, respectively, were calculated

according to Equations 3.7 [240].

MPE =
1
N

N

∑
i=1

PEi,

RMSE =

√
1
N

N

∑
i=1

PEi
2

(3.7)

3.3.4 Comparison with published models

The developed model was compared with other previously published population

PK models for gentamicin in neonates (described in Section 3.1.4), to check

whether a more mechanistic model could produce better results. Some covari-

ates from these models were not available in the evaluation dataset, for example,

Apgar score [109] and information on co-medication with dopamine [200], so these

covariates were not included. The information about the sepsis status [114] was

also missing, but as all neonates were treated for suspected sepsis, this was as-
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sumed to be 1. A model by Garcia et al [113] was not included in the comparison

as one of the important covariates (creatinine clearance) was unavailable. For

models where only an abstract was available ([197, 198]), and the magnitude but

not the structure of the error model was given, an exponential and a proportional

model was chosen to describe the inter-individual and the residual variability, re-

spectively. The models were then used to predict the trough concentrations from

the evaluation dataset as described above (Section 3.3.3.2).

3.3.5 neoGent software

The model that was externally evaluated was used to develop the so-called

neoGent software, which was implemented in R and NONMEM, and could be

used in the clinic as is. The neoGent program works by reading patient’s data

into R, then NONMEM is run, using the model as a Bayesian prior, and a pre-

diction of the trough (together with a graphical presentation of when gentamicin

serum concentration falls below 2 mg/L) is given.

3.4 Results

3.4.1 Study population

The model building dataset was described in Section 3.3.1. A total of 194 neonates

and infants were enrolled in the neoGent study, but 31 were excluded, therefore

data from 163 neonates were used in the evaluation dataset. Reasons for exclusion

included inaccurately reported sampling times, or insufficient number of samples

taken. Also, if a study level (the level used to predict the trough level) was already

below the limit of quantification, this level was also excluded (there were 12 such

levels). The final evaluation dataset included a total of 483 gentamicin serum

measurements, out of which 229 were opportunistic study levels and 254 were

routinely taken trough concentrations. Median (range) time after dose for these
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Table 3.3: Summary of demographics and dosing/sampling from both the model
building and the evaluation datasets

Model-building dataset Evaluation dataset

number of subjects 174 163
weight (kg)* 1.94 (0.53-5.05) 2.03 (0.48-5.05)
gestational age (weeks)* 30.0 (23.3-42.1) 34.3 (23.9-42.3)
postnatal age (days)* 6 (1-66) 6 (1-78)
postmenstrual age (weeks)* 32.4 (23.3-43.8) 34.9 (24.0-43.3)
females (%) 76 (43.7%) 68 (41.7%)
gentamicin samples per patient# 6.7 3.0
gentamicin concentration (mg/L)* 3.4 (0.3-16.0) 1.0 (0.1-13.2)
time after the dose (h)* 8.5 (0.08-54.1) 23.5 (0.08-79.7)
occasion* 3 (1-22) 2 (1-7)

Weight is weight at treatment initiation, the rest (expect gestational age) are val-
ues at time of gentamicin serum concentration measurements/dosing; an occasion
was defined as a dose with subsequent gentamicin samples taken; day of birth was
defined as day 1; * median (range); # mean.

levels was 13.3 (0.08-53.3) h for study concentrations, and 31.1 (8.0-79.7) h for

routine levels. A summary of demographic characteristics of subjects from both

datasets is given in Table 3.3; and Figure 3.8 shows the concentration-time profile

of the evaluation dataset.

3.4.2 Non-linear mixed-effects model building

Initially, a 2-compartment model was chosen as a basic structural model as there

was no further improvement in the OFV when a 3-compartment model was tested.

However, once the fixed allometric and renal function parameters, the covariates,

and IOV, were added in the model, a 3-compartment model provided a better fit to

the data (∆OFV=64). The residual error was best described with a combination

of a proportional and an additive error, and the BSV was described with an

exponential model. Postnatal age and typical SCr proved significant (∆OFV=88.1

and ∆OFV=60.1, respectively), therefore they were included in the final model.
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Figure 3.8: Observed gentamicin concentration plotted against time after gentam-
icin dose in hours, data from the evaluation dataset. Red line is a lowess smooth
line.

They remained significant even with a 3-compartment model, when tested with a

p-value retention cut-off of 0.001. Equations 3.8 summarise the final population

PK model for gentamicin in neonates.

CL = θCL ·
(

WT
70

)0.632

·
(

PMA3.33

55.43.33 +PMA3.33

)
·
(

PNA
PNA50 +PNA

)
·
(

SCr
T SCr

)θSCr

· e(ηCL+κCL),

V = θV ·
(

WT
70

)
· eηV ,

Q = θQ ·
(

WT
70

)0.75

· eηQ ,

(3.8)

where CL is gentamicin clearance, V is gentamicin volume of distribution, Q is

inter-compartmental CL, WT is body weight in kilograms, PMA is postmenstrual

age in weeks, PNA is postnatal age in days, η is BSV, and κ is IOV.

When time-varying covariates (SCr and PNA) were parameterised so that

there were linear extrapolations between observations, this provided only a slight

improvement in the fit (∆OFV=3.1); however, this parameterisation is more bio-

logically plausible, hence it was chosen for the final model. NONMEM control file

for the final model (in a format that is ready to be implemented in the neoGent
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Table 3.4: Final parameter estimates from NONMEM output file and from the
bootstrap analysis

Parameters from the final model Bootstrap analysis

mean SE %CV η-shrinkage median 2.5%ile 97.5%ile

CL (L/h/70kg) 6.71 0.3 - - 6.69 6.12 7.28
θ on creatinine -0.17 0.05 - - -0.17 -0.29 -0.07
PNA50 (days) 1.77 0.55 - - 1.77 1.3 2.33
V (L/70kg) 27.5 0.96 - - 27.4 26.2 28.7
Q (L/h/70kg) 0.3 0.11 - - 0.3 0.2 0.39
V2 (L/70kg) 157 133 - - 160 81.8 316
Q2 (L/h/70kg) 2.2 0.37 - - 2.23 1.79 2.72
V3 (L/70kg) 21.2 2 - - 21.4 19.1 23.8
IOV 0.024 0.015 15.5 - 0.023 0.01 0.041
BSV on CL 0.066 0.022 25.6 13.6 0.064 0.038 0.107
BSV on V 0.009 0.004 9.6 54.7 0.009 0.001 0.017
BSV on V2 0.022 0.342 14.7 92.6 0.000002 0.000002 0.847
BSV on Q2 0.019 0.153 13.8 83.5 0.006 0.000002 0.174
BSV on V3 0.021 0.026 14.5 75.8 0.018 0.000002 0.095
εprop 0.024 0.004 15.5 - 0.024 0.017 0.032
εadd 0.01 0.019 - - 0.005 0.000001 0.018

BSV is between-subject variability, IOV is inter-occasion variability; CL is clear-
ance, V is volume of distribution, Q is inter-compartmental CL, ε is residual error
for proportional or additive model, SE is standard error obtained with NONMEM
7.2 covariance step, CV is coefficient of variation.

software) is presented in Appendix B.

The OFV dropped from 1889.6 to 530.7 (∆OFV=1358.9), between the basic

and the final model, respectively. Including covariates in the model reduced the

BSV on CL and V, which were 70.8% and 61.1%, respectively, using the basic

model, and 25.6% and 9.6%, respectively, when the final model was used. The

final PK parameter estimates with the uncertainty are presented in Table 3.4.

η-shrinkage was calculated according to the Equation 3.9 [241].

ηshrinkage = 1− SD(ηEBE)

ω
, (3.9)

where ηEBE and ω are the estimated random effects and standard deviation of

the random effects, respectively.
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3.4.3 Model evaluation

3.4.3.1 Internal model evaluation

Figures 3.9 and 3.10 show basic goodness-of-fit plots. There is no obvious bias seen

in the observations versus predictions plots (Figure 3.9), the points are distributed

uniformly around the line of unity. Residual plots (Figure 3.10) look homogeneous,

there is no systematic trend seen; the points are distributed around the line of

zero residuals, and at least approximately 95% of the points lie within -2 and 2

interval. A VPC of the final model is shown in Figure 3.11.

Figure 3.9: Observed gentamicin concentrations plotted against population (left)
and individual (right) predicted concentrations. Red line is a lowess smooth line
and black line is the line of unity.
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Figure 3.10: Conditional weighted residuals versus time after dose (left) and versus
population predictions (right). Red line is a lowess smooth line.

Figure 3.11: Visual predictive check (n=1000) of gentamicin concentration versus
time after dose; points are observations, black lines are the 2.5th, 50th and 97.5th

percentiles of the observed data, and the shaded area is a non-parametric 95%
confidence interval for the corresponding predicted concentrations.
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3.4.3.2 External model evaluation

Basic GOF plots that were produced using the external evaluation dataset without

parameter re-evaluation are shown in Figure 3.12. There is some overprediction by

the model seen in the high concentration end (also observed in the residuals plot

(Figure 3.13)), but, individual predictions (especially for the low concentrations,

i.e. trough levels) appear to agree with the observations well. Figure 3.14 shows

a VPC performed using the evaluation dataset.

Figure 3.12: Observed gentamicin concentrations (from the external evaluation
dataset) plotted against population (left) and individual (right) predicted concen-
trations. Predictions were performed without parameter re-evaluation. Red line
is a lowess smooth line and black line is the line of unity.

Results of the comparison of observed and trough concentrations for five

different subsets of data from the evaluation dataset and pooled results from the

cross validation (for thresholds of 1 and 2 mg/L) are presented in Table 3.5.

Figure 3.15 shows the distribution of prediction errors in the same datasets. In

the dataset that contained both paired and unpaired samples, the median (95%

confidence interval (CI)) PE was -0.002 (-0.87, 0.85) mg/L.
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Figure 3.13: Conditional weighted residuals versus time after dose (left) and versus
population predictions (right). Red line is a lowess smooth line.

Figure 3.14: Visual predictive check (n=1000) of gentamicin concentration versus
time after dose performed using an external evaluation dataset; points are ob-
servations, black lines are the 2.5th, 50th and 97.5th percentiles of the observed
data, and the shaded area is a non-parametric 95% confidence interval for the
corresponding predicted concentrations.
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Table 3.5: Summary of the external evaluation

Limit = 1 mg/L Limit = 2 mg/L

dataset n correct (%) OP UP n correct (%) OP UP

paired and unpaired 215/254 (84.6) 17 22 246/254 (96.9) 6 2
paired: study≥1mg/L 51/57 (89.5) 3 3 57/57 (100) 0 0
paired: study≥2mg/L 30/33 (90.9) 2 1 33/33 (100) 0 0
paired: study≥3mg/L 18/20 (90.0) 0 2 20/20 (100) 0 0
unpaired 136/161 (84.5) 12 13 158/161 (98.1) 2 1
XV, paired: study≥3mg/L 428/456 (93.9) 13 15 421/456 (92.3) 20 15

OP is overprediction, UP is underprediction, correct means that predicted trough
concentration corresponds to observed concentration (i.e. is above/below the
limit), XV is cross validation.

Table 3.6: Cross-validation results

PE (mg/L)
RMSE (mg/L)

median mean 95% CI

trough -0.06 -0.09 (-1.55, 1.04) 0.68
peak 0.14 0.01 (-3.56, 2.25) 1.46

PE is prediction error and RMSE is root mean square error.

3.4.3.3 Cross validation

The median PE from the cross validation was -0.06 (-1.55, 1.04) mg/L (Table

3.6), for trough sample prediction. Individual plots of paired samples (from the

evaluation dataset) where study sample was ≥3 mg/L are presented in Appendix

C. When cross validation was performed to test the ability of the model to predict

peak gentamicin concentrations, the median PE (95% CI) was 0.14 (-3.56, 2.25)

mg/L, mean PE was 0.01 mg/L, and RMSE was 1.46 mg/L (Table 3.6).

3.4.4 Comparison with published models

Figure 3.16 shows prediction errors for this model and previously published neona-

tal gentamicin PK models.
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Figure 3.15: Prediction errors for different subsets (listed in Table 3.5) of the
evaluation dataset (left) and for cross-validation results for both trough and peak
prediction (right). Note that left and right plot are on a different scale.

Figure 3.16: Comparison of the model from this study/chapter (shaded box) with
other previously published neonatal gentamicin PK models.
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3.4.5 neoGent software

The provisional software neoGent was developed as described in Section 3.3.5.

The R code for neoGent is given in Appendix D, and an example output of it is

presented in Appendix E.

3.5 Discussion

A new gentamicin population PK model for neonates and infants was developed

using literature data and evaluated with prospectively collected data. The eval-

uation of the model showed that the model is able to give unbiased predictions

(median prediction error was -0.002 mg/L) of the trough concentrations, using in-

formation from levels collected opportunistically for other clinical purposes; and

comparison with previously published models showed that the predictions are less

biased compared to other models (Figure 3.16). The reason for this might be

that this model was more mechanistic, namely, it included biological information

about serum creatinine.

Although only two datasets [109, 119] were obtained by contacting authors

identified in the literature search, the pooled data was of sufficiently high quality

(approximately 7 samples per subject) to allow developing a model that was shown

to describe both model-building and evaluation data well (Figures 3.11 and 3.14,

respectively).

The values of allometric exponents and maturation function parameters were

fixed to values from a study that focused specifically on how glomerular filtration

(and consequently kidney function) matures [52], a process that is important for

renally eliminated gentamicin. This approach was shown in Chapter 2 to be

able to describe the change in gentamicin CL with age and weight well; and also

since the PMA range in the model-building dataset was insufficient (23.3-43.8

weeks, Table 3.3) to estimate these parameters (for example, PMA50 is usually
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approximately 50 weeks (Table 2.2)). Also, this type of scaling enables using the

model for extrapolations to other populations (such as neonates or infants with

different weights and ages).

However, using only a PMA based maturation function is not sufficient for

describing the rapid changes that occur in the neonatal renal function in the first

days (and even hours) of life, regardless of the GA. An additional function was

therefore used to capture the short-termed changes in CL with PNA directly after

birth. By fixing the parameters of a well-established relationship between PMA

and renal function, PNA50 was possible to estimate, showing that the CL does

change rapidly at the beginning of life (the estimate was 42.5 hours). Gentamicin

CL was at 36% of a typical adult’s value on the first day of life.

Typical serum creatinine that was used in the model originated from SCr

concentrations that were determined using the Jaffe method. This method was

selected since SCr in the model-building dataset was also determined using this

assay. But, in the evaluation dataset, SCr was determined with both the Jaffe

and enzymatic methods and they were shown to affect SCr concentrations [211]

as described in Section 3.1.5 of this thesis. However, since the model fit to the

data and its predictive power was good (and also, only 16% of subjects from the

evaluation dataset had SCr determined with an enzymatic method), no correction

factor to account for this was included. As SCr data from neonates with PMA

up to 44 weeks (e.g. a term neonate of 4 weeks of age) was used to define typical

SCr, this is also the range of PMA for which the model can be used. The value of

the power exponent on the creatinine function was estimated as -0.17, indicating

that if measured SCr was 70 µmol/L and TSCr 60 µmol/L, clearance would be

reduced by 2.6%.

The final estimates for gentamicin CL and volume of distribution (V) were

6.71 L/h/70 kg and 27.5 L/70kg, respectively (Table 3.4). The values of the PK

parameters for a typical neonate from the model-building dataset (with the fol-
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lowing demographics: weight 1.83 kg, PMA 32.8 weeks, PNA 10.3 days, MSCr

75.7 µmol/L, TSCr 73.0 µmol/L) were 0.086 L/h and 0.719 L (and 0.126 L/h

and 0.880 L for a neonate from the evaluation dataset) for CL and V, respec-

tively. These values are in agreement with estimates for CL from other neonatal

PK studies of gentamicin [196, 197, 115, 124, 200, 111]. The neonates from the

model-building dataset were more premature, compared to the evaluation dataset

(median GA of 30 versus 34 weeks, respectively), which is probably the reason for

slightly lower CL in that population. In some cases the estimated values of PK

parameters from this study and previously published studies initially appeared to

differ, which was mostly due to different demographic features of the neonates in

those studies, as the values became similar, when the same demographics were

used. For example, reported CL from a study by Nielsen et al [119] was 0.026

L/h, but when the median demographic values from this study were used (in their

model), CL was 0.090 L/h, similar to the estimate from this study. Another ex-

ample is an estimate of V, which was found to be 0.252 L by Garcia et al [113],

but when weight from this study was used, the V was 0.968 L.

Aminoglycoside antibiotics often follow a multiphasic elimination, and Schen-

tag et al [242] and Laskin et al [180] found evidence of deep tissue accumula-

tion of gentamicin. The rich data in the model-building dataset supported a

3-compartment model with a deep compartment possibly representing the char-

acteristics that could indicate uptake into the renal cortex and slow excretion

[166]. This is shown by the final parameter estimates for the inter-compartmental

clearance (Q) and the peripheral volume of distribution (V2), which were small

(0.3 L/h/70kg) and large (157 L/70kg), respectively. Also, the terminal half-

life for a typical subject from the evaluation dataset (weight 2.24 kg, PMA 35.0

weeks, PNA 12.2 days, MSCr 47.7 µmol/L, TSCr 66.7 µmol/L) was 182.2 hours.

However, the estimates of Q and V2 are rather imprecise (relative standard errors

were 35.5% and 84.8%, respectively).
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The η-shrinkage was large on most of the PK parameters of the final model,

except CL (Table 3.4). Large shrinkage indicates that there is not enough infor-

mation in the data to make a reliable individual estimation. Still, the shrinkage

on clearance is relatively small (13.6%), which is important for making predictions

of the trough gentamicin concentrations.

The small median PE (-0.002 mg/L) suggests that the model implemented in

neoGent can predict gentamicin trough concentrations well, but there were some

outliers that were not captured (range: -1.89-1.64 mg/L). When subsets of study-

routine paired samples were used, the median PEs were negative, meaning that

the model is overpredicting rather than underpredicting, which is preferable from

a safety perspective.

The results of the cross validations for trough gentamicin concentrations

(MPE=-0.09 mg/L) demonstrated that the model will give unbiased predictions

when used as clinically intended (Table 3.6). This means that an opportunistic

sample can define when gentamicin serum concentration will drop below a cer-

tain threshold and hence specific blood sampling times for trough samples are not

required for TDM using this model. As this study was not designed to test the

impact of a specific sample time, this was not tested. However, the samples were

taken from a range of times (0.1-53.3 h), as they would be in routine hospital

tests.

Whilst comparison of this model with previously published models (Figure

3.16) showed that the prediction errors were the smallest when the model de-

scribed in this chapter was applied to the evaluation dataset, three models did

not include all of the covariates reported, which could affect their predictive per-

formance. The information on these covariates (i.e. Apgar score [109, 114], and

co-medication with dopamine [200]) was not available in the evaluation dataset,

thus these covariates were not included.
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For exploratory purposes the ability of the model to predict peak gentam-

icin concentrations was also tested and showed that the model can give unbiased

(MPE=0.01 mg/L) but imprecise (95% confidence interval: -3.56, 2.25 mg/L;

RMSE=1.46 mg/L) predictions of the peak concentrations (Table 3.6). However,

this was only tested using a cross validation, and an external validation is needed

before any conclusions can be made. Also, although peak levels are related to

efficacy, monitoring peak concentrations might be of less importance in neonates,

due to their low CL. Giving a higher dose to achieve higher peak concentration

would possibly lead to higher trough levels, and thus to toxicity in this population.

More research is needed to identify the optimal balance between efficacy targets

and toxicity in infants, particularly in light of increasing pathogen MICs [243].

3.6 Summary

A new population pharmacokinetic model for gentamicin in neonates was devel-

oped using published literature data and evaluated with prospective data from

an observational study. The evaluation showed that the model is able to predict

trough gentamicin concentration from a sample taken for other clinical purposes

than TDM. Thus, by using this model, the need for specifically timed trough

gentamicin levels could be reduced, and the safety concerns about gentamicin

monitoring in neonates (raised by the NPSA) improved. The model was imple-

mented in a provisional software tool, neoGent, and could already be used in the

clinic. However, it does not yet have a user-friendly interface, and also further

clinical evaluation is needed before it can be used in routine neonatal clinical

practice.



Chapter 4

Pharmacokinetic-

pharmacodynamic modelling for

population-level dose

recommendation

4.1 Introduction

As previously mentioned (in Section 1.1), untreated sepsis and bacterial meningi-

tis are amongst the most common causes of morbidity and mortality in neonates

and infants [2, 244, 245]. Antimicrobial treatment can reduce mortality, but,

due to several challenges in rapid diagnosis of bacterial infections, empirical ther-

apy is used [5], meaning that even suspected sepsis or meningitis are treated.

Additionally, antimicrobial resistance to standard agents in increasing, therefore

meropenem (which can penetrate into the cerebrospinal fluid (CSF)) is being used

as a first-line therapy in countries, where this is already a problem. But even when

used as a second-line therapy, it is used off-label in neonates and infants younger

than three months [246], since data are limited in this population. In order to

address this, work was carried out as part of the NeoMero studies and is described
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in more detail in this chapter.

4.1.1 Meropenem pharmacodynamics

Meropenem is a β -lactam antibiotic from the carbapenem family and as all β -

lactams exhibits bactericidal activity by interrupting bacterial cell wall synthesis.

It does so by binding to specific proteins in the bacterial cell wall (namely penicillin

binding proteins), which prevents peptidoglycan strands to crosslink, and inhibits

bacterial cell wall formation [247, 248].

Meropenem is a concentration-independent or time-dependent antimicrobial

agent, meaning that the percentage of a dosing interval that unbound plasma

(or, for example, CSF) concentration is above the MIC of a pathogen (%T>MIC)

is most closely related to the clinical outcome [17]. For meropenem to exhibit

bactericidal effect (i.e. killing 99.99% of a bacterial population), %T>MIC has to

be approximately 40%, and around 20% for bacteriostasis (i.e. averting bacterial

growth) [17, 249, 250]. However, for treating severe bacterial infections, or if

patients are immunocompromised, 70%T>MIC might be needed for a bactericidal

effect [64].

Meropenem is bactericidal against Gram-negative and Gram-positive, aer-

obic and anaerobic microorganisms [251]. For example, meropenem is effective

against some of the most common pathogens that cause late-onset sepsis (LOS,

usually defined as sepsis that starts 48 to 72 hours after birth [244]), such as, E.

coli, Klebsiella spp, Enterobacter spp, Pseudomonas spp [244, 188]. The max-

imal susceptibility breakpoint for these organisms for meropenem is ≤2 mg/L,

and resistance breakpoint >8 mg/L, according to EUCAST [188]. Additionally,

meropenem also exhibits antimicrobial activity against common organisms that

cause bacterial meningitis, for example, Group B streptococcus (Streptococcus

agalactiae), E. coli, Listeria monocytogenes, Haemophilus influenzae, Streptococ-

cus pneumoniae, Neisseria meningitidis [245, 188, 252]. The highest suscepti-
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Figure 4.1: Data from the European Committee on Antimicrobial Susceptibility
Testing (EUCAST). Data for Streptococcus agalactiae came from 8 data sources
(1146 observations) [253], for Escherichia coli from 69 sources (8011 observa-
tions) [254], for Listeria monocytogenes from 4 sources (317 observations) [255],
for Haemophilus influenzae came from 4 sources (6541 observations) [256], for
Streptococcus pneumoniae from 5 sources (675 observations) [257], and for Neis-
seria meningitidis from 2 data sources (301 observations) [258].

bility breakpoint for these pathogens is ≤0.25 mg/L, and resistance breakpoint

>1 mg/L, as reported in the EUCAST clinical breakpoint tables (for breakpoints

that only relate to meningitis isolates) [188]. The available distributions of MICs

(for meropenem) for bacteria causing meningitis are presented in Figure 4.1.

Studies in animals have shown that meropenem does not damage renal

tubules, and causes only minor histopathological changes in the kidneys [259]. Fur-

thermore, studies of meropenem in humans did not report an increase in markers

of renal function (serum creatinine or urea) [247], thus it appears that meropenem

has low potential for nephrotoxicity.

4.1.2 Meropenem pharmacokinetics

Meropenem has to be administered parenterally (e.g. in neonates and infants

it is often given as an intravenous infusion) as it is not absorbed through the

gastrointestinal tract when given orally [50, 145]. Once administered it penetrates
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Figure 4.2: Chemical structure of meropenem.

into several body fluids (e.g. CSF) and tissues (such as, muscle, heart); and

distributes mainly into the extracellular water and plasma (since it is a polar,

hydrophilic drug) [249, 260] (Figure 4.2). Meropenem is only 2% protein bound

[145, 261], and its volume of distribution (V) in neonates is around 0.3-0.7 L/kg

[262, 263, 264, 265, 266], with more premature infants usually having a higher V.

Compared to other carbapenem antibiotics, meropenem is hydrolysed by re-

nal dehydropeptidase-I in a much smaller extent, due to a methyl substitution on

the carbapenem ring, and therefore does not need to be co-administered with an

inhibitor of this enzyme (e.g. cilastatin). Approximately 25% of the administered

dose of meropenem is metabolised – either renally, or extrarenally, producing one

metabolite without antimicrobial activity [50, 145].

Renal elimination represents the main route of elimination for meropenem,

and approximately 75% of administered dose is excreted unchanged via glomerular

filtration and also partly by tubular secretion [50, 247]. Meropenem clearance in

neonates is in the region of 0.1-0.2 L/h/kg [262, 263, 264, 265, 266]; neonates with

lower gestational age and postnatal age have lower clearance.

4.1.3 Cerebrospinal fluid

Cerebrospinal fluid is mainly ultrafiltrate of the plasma that perfuses the choroid

plexus, and partly a by-product of the metabolism in the central nervous system

(CNS) [267]. The function of the CSF is to support the neurons (e.g. by providing
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nutrients, transporting hormones), to protect the brain from mechanical damage,

to minimise the pressure to the neurons in the lower sections of the brain (by

decreasing the weight of the brain), and to remove waste products [267, 268]. The

volume of the CSF is around 150 mL [268, 267].

For an antibiotic agent to effectively treat infections in the CNS, such as

bacterial meningitis, its concentration in the CNS (i.e. infection site) has to be

sufficient. Usually CSF concentration is taken as a proxy for CNS availability of

a drug, as it is the easiest to measure [269]. A drug can reach the CSF by choroid

plexus; but the majority of the drug reaches the CSF indirectly by passing the

blood-brain barrier (BBB) [269]. However, under normal healthy conditions the

permeability of BBB for drugs is very limited, and depends on their molecular

size and the degree of lipid solubility, meaning that small, simple, lipid molecules

pass through the BBB more easily, but the uptake of meropenem is low [270, 271].

During inflammation the pH in the CSF changes due to acidosis, which facilitates

the penetration of meropenem into the CSF [270, 272, 48].

Markers of bacterial meningitis include CSF total protein concentration, CSF

lactate concentration (which are both increased during infection [273, 252, 274]),

and CSF glucose concentration (which is lower when the meninges are inflamed

[273, 274]).

4.1.4 Previously published population pharmacokinetic

models

Pharmacokinetics of meropenem in plasma have been previously described in

neonates and infants [264, 265, 266, 263, 262]. However, meropenem CSF con-

centrations have only been measured in a study by Smith et al [265], where they

collected nine samples from six patients and used the CSF concentrations to de-

termine the uptake of meropenem into the CSF. This study is further discussed
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in Section 4.5.

4.2 Aim

This study aimed firstly to characterise the pharmacokinetics of meropenem in

plasma and cerebrospinal fluid in neonates and infants younger than three months,

who were receiving intravenous meropenem for treatment of clinical or confirmed

late-onset sepsis or bacterial meningitis. Secondly, the objective was to establish

the optimal dose and the length of infusion for meropenem in infants ≤90 days of

age by using Monte Carlo simulations and the population pharmacokinetic model.

4.3 Methods

4.3.1 Study population

Data for the population PK analysis were collected in two European trials (con-

ducted in eight European countries), NeoMero-1 and NeoMero-2. NeoMero-1 was

an open-label phase III randomised controlled trial (where infants were randomly

allocated 1:1 to either meropenem or standard of treatment arm), and NeoMero-2

was an open-label phase I-II observational study. The NeoMero-1 and -2 trials

run from September 2012, or February 2013, respectively, until December 2014.

Ethical approval was obtained for both studies for each participating country.

An infant was included in the NeoMero-1 trial if the following criteria were

met: postnatal age of ≤90 days and ≥72 hours at the beginning of the sepsis

onset, confirmed (by a positive bacterial culture) sepsis with an abnormal clinical

or laboratory measurement; or clinical sepsis, meaning that the bacterial culture

was negative. In the case of a negative bacterial culture, clinical and laboratory

criteria for sepsis consistent with Goldstein et al [275] or the European Medicines

Agency (EMA) [276] had to be met, according to the postmenstrual age of the
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infant. Also, an infant could not have been administered systemic antimicrobials

for >24 hours prior to the randomisation [26].

The inclusion criteria for NeoMero-2 trial were: postnatal age ≤90 days,

clinical signs indicating bacterial meningitis, or pleocytosis (i.e. increased number

of CSF lymphocytes), or a positive Gram stain of the CSF. An infant was excluded

if the CSF device was present, or if meningitis was proven to be non-bacterial.

Also, an informed written consent form had to be obtained (from the parents

or legal guardians) for an infant to be enrolled in either NeoMero-1 or NeoMero-2

trial, and the infant could not have renal failure, severe congenital malformations

(if the expected survival time was less than three months), a causative pathogen

that was suspected or known of being resistant to meropenem, or a known intol-

erance or contraindications to meropenem.

Infants in the NeoMero-1 trial received 20 mg/kg of meropenem every 8 hours

(if their GA was ≥32 weeks, or if their GA was <32 and PNA >2 weeks) or every

12 hours (if the infant’s GA was <32 weeks and PNA <2 weeks). The doses

were doubled in the NeoMero-2 trial, meaning the infants received 40 mg/kg of

meropenem; and the dosing intervals were the same as in the NeoMero-1 trial.

Meropenem plasma samples were planned to be collected at steady state.

Some patients had only one plasma sample taken (usually a pre-dose sample),

and some infants had three samples taken (if the dosing interval was 8 hours,

the samples were planned to be taken before the dose, at the stop of infusion

(i.e. at approximately 30 minutes after the infusion start), and between 5 and

6 hours after the dose; and when meropenem was administered 12-hourly, the

last sample would ideally be collected approximately 7-9 hours after the infusion

start). Optimal design was used to define sampling times for infants, who had

more than one sample collected from. A meropenem CSF sample was planned

to be collected on the same day as plasma sample from all infants undergoing a
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lumbar puncture.

Meropenem concentration in both plasma and the CSF was determined using

ultra-high performance liquid chromatography coupled to tandem mass spectrom-

etry (UHPLC-MS/MS). Plasma samples were prepared using protein precipitation

(with methanol) and cerebrospinal fluid samples using filtration through 0.22 µm

syringe filters. Ertapenem was used as an internal standard. Limit of detection

was 10 ng/mL and 2 ng/mL for plasma and CSF meropenem assays, respectively.

The between-day variability was 4.1-5% for plasma, and 3-5% for CSF assay, over

the whole calibration range.

4.3.2 Non-linear mixed-effects model building

All available meropenem concentration-time data were simultaneously modelled

using NONMEM 7.3 (ICON Development Solutions, Ellicott City, Maryland).

Typical population values for the parameters of the structural model with

between-subject variability, and also the residual error estimates were obtained

by using FOCE method with interaction.

4.3.2.1 Plasma pharmacokinetic model

Firstly, the model was developed only for meropenem plasma concentrations; and

then the CSF concentrations were added in. To define the structural model which

best describes the plasma meropenem data, 1-, 2- and 3-compartment models

were tested. A log-normal distribution was assumed for BSV, and a proportional

and a combination of proportional and additive models were tried for residual

variability.

Weight and postmenstrual age were included a priori by using allometric

weight scaling and a maturation function with fixed parameters to the values

from a renal maturation study [52]; as described in Chapter 3, Section 3.3.2.
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Tested covariates involved covariates for which there was a biological rationale,

and/or a trend seen in the empirical Bayes estimates versus covariates plots; these

were: serum creatinine concentration and postnatal age. Equation 3.4 (described

in Chapter 3) was used to standardise measured SCr according to the typical

SCr, and deviations from it were estimated. The influence of PNA on meropenem

clearance was examined by incorporating PNA in the model as a non-linear logistic

function as described in Chapter 3, and also in a linear way. A covariate was

included in the model if ∆OFV between two nested models after the inclusion was

>6.63 (p <0.01), and if there was an improvement seen in the diagnostic plots.

After all covariates with a significant effect were included, the structural model

was re-tested.

4.3.2.2 Plasma and CSF pharmacokinetic model

Once the population PK model for plasma meropenem concentration-time data

was developed, a separate peripheral compartment relating to the CSF compart-

ment was added into the model. Two different published models, represented

by Equations 4.1 [277, 278] and 4.2 [279, 280] (shown for an example when the

plasma kinetics follow a 1-compartment model), were tested to describe the CSF

pharmacokinetics of meropenem.

dCPL

dt
=−CPL ·

CL
VC
−CPL ·

QCSF

VC
· fCSF · fu +CCSF ·

QCSF

VCSF
,

dCCSF

dt
=CPL ·

QCSF

VC
· fCSF · fu−CCSF ·

QCSF

VCSF
,

(4.1)

where CPL is meropenem plasma concentration, CCSF is meropenem CSF concen-

tration, CL is clearance, VC is volume of distribution of the central compartment,

fCSF represents the uptake into the CSF, fu is the unbound fraction of meropenem

(which was fixed to 0.98 [145, 261]), and QCSF is inter-compartmental CL between

plasma and CSF compartments. Volume of the CSF compartment (VCSF) was

fixed to 0.15 L/70kg [267].
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The second model tested is summarised by Equations 4.2, where kCSF is

distribution rate constant between plasma and CSF compartments.

dCPL

dt
=−CPL ·

CL
VC

,

dCCSF

dt
= kCSF · (CPL · fCSF −CCSF).

(4.2)

As rarely more than one CSF sample was collected per patient, BSV was not

estimated on inter-compartmental CL between the central and the CSF compart-

ment. Additive, proportional, and a combination of both residual error models

were tested for the CSF compartment (separately from the plasma compartment).

Once the best of the two models for describing the CSF PK was determined, the

influence of covariates was examined. A trend was observed in CSF concentration

versus markers of CNS inflammation plots, and also because it is known that the

concentration of these markers correlates with the BBB permeability, the rela-

tionship between CSF proteins, CSF lactate, CSF glucose concentration, or white

blood cell count (WCC) and the fraction of meropenem plasma concentration that

reaches CSF was investigated. One protein concentration (102 g/L) was excluded

due to being physiologically implausible. The median value of a CSF marker of

infection was assumed if no measurements were available for an individual.

4.3.2.3 Model evaluation

The final model was internally evaluated by inspecting the precision of the model

parameter estimates using standard errors obtained during the NONMEM co-

variance step, and the 95% non-parametric confidence interval obtained from a

bootstrap analysis with 1000 replicates. Additionally, diagnostic plots, as de-

scribed in Chapter 1, Section 1.5 were examined, and a prediction-corrected VPC

(pcVPC) (n=1000) was performed using PsN. During a pcVPC predictions and

observations (Yi j) within each bin are standardised, or, corrected for the differ-

ences originating from variations in the independent variables according to the
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Equation 4.3 [40].

pcYi j = Yi j ·
P̃REDbin

PREDi j
, (4.3)

where pcYi j is prediction-corrected Yi j for an ith individual at the jth time point,

PREDi j is typical population prediction, and P̃REDbin is median PREDi j for each

bin of independent variables [40].

4.3.3 Probability of target attainment

A dataset for the simulations was prepared using the same ranges and standard

deviations of PNA and GA as in the original dataset; PNA was randomly sampled

from a log-normal distribution, and a uniform distribution was used for GA.

Weight was calculated using a published equation [106] and the PMA (PMA was

obtained from GA and PNA).

Monte Carlo simulations of 1,000 simulated patients for each of the following

MIC values: 0.25, 0.5, 1, 2, 4, 8, 16, 32 mg/L, was performed using parameter

estimates from the final model. Dosing intervals were the same as in the original

dataset (i.e. every 8 hours, unless GA <32 weeks and PNA <2 weeks, then every

12 hours). Simulated infants were allocated to a group according to their GA and

PNA:

1. GA <32 weeks, PNA <2 weeks,

2. GA <32 weeks, PNA ≥2 weeks,

3. GA ≥32 weeks, PNA <2 weeks,

4. GA ≥32 weeks, PNA ≥2 weeks.

Different doses and lengths of infusions were tested for PD targets of 40%T>MIC

and 70%T>MIC [64]; for all four age groups. The unbound meropenem fraction

was fixed to 0.98 [145].
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Table 4.1: Summary of demographic and sampling characteristics

all data NeoMero-1 NeoMero-2

n** 167 123 49
weight (kg)* 2.12 (0.48-6.32) 1.68 (0.48-5.01) 2.96 (0.60-6.32)
gestational age (weeks)* 33.3 (22.6-41.9) 31.9 (22.6-41.3) 37.1 (23.4-41.9)
postnatal age (days)* 17 (1-105) 17 (3-85) 16 (1-105)
postmenstrual age (weeks)* 37.4 (23.7-51.3) 36.0 (23.7-51.3) 38.8 (24.9-51.1)
females (%) 78 (46.7%) 59 (48.4%) 19 (42.2%)
plasma samples per patient# 2.4 2.1 3.0
CSF samples per patient# 0.47 0.26 0.94
plasma concentration (mg/L)* 7.94 (0.01-147.7) 5.27 (0.01-147.7) 12.4 (0.1-139.0)
CSF concentration (mg/L)* 1.58 (0.04-35.4) 1.23 (0.04-7.34) 1.90 (0.05-35.4)
plasma time after the dose (h)* 5.66 (0-12.4) 5.93 (0-12.4) 5.19 (0-12.2)
CSF time after the dose (h)* 5.27 (0-12.0) 5.99 (0-12.0) 5.03 (0-11.5)
creatinine (µmol/L)* 32.0 (3.54-197.4) 34.5 (3.54-197.4) 27.0 (6.0-133)
C-reactive protein (mg/L)* 23.0 (0.3-280) 23.2 (0.3-242) 22.4 (0.4-280)
procalcitonin (ng/mL)* 2.7 (0.1-377.2) 2.8 (0.1-128.6) 1.8 (0.1-377.2)

CSF is cerebrospinal fluid, *is median (range), #is mean, **five infants switched
from NeoMero-1 to NeoMero-2, which is why the numbers do not add up. First
day of life is day 0.

4.4 Results

4.4.1 Study population

A total of 167 infants with PK samples were enrolled in the NeoMero studies,

with median (range) gestational age of 33.3 (22.6-41.9) weeks, and postnatal age

of 17 (1-105) days. Two plasma and two CSF concentrations of meropenem could

not be determined (because either the sample tube was empty, or the sample was

whole blood and not plasma, which was what the assay was developed for), and 11

meropenem plasma peak concentrations were below 10 mg/L, so these 15 samples

were excluded. There were therefore 401 plasma samples and 78 CSF samples

available for non-linear mixed-effects analysis, with 7 and 1 duplicated (i.e. taken

at the same time) plasma and CSF concentrations, respectively. A summary of

the patients demographic and sampling characteristics is presented in Table 4.1.

Raw plots of meropenem concentration-time profile for both plasma and CSF

is presented in Figure 4.3, and the relationship between CSF meropenem concen-
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Figure 4.3: Raw plots of meropenem plasma (top) and meropenem CSF (bottom)
concentration against time after dose. The y-axis on the plots on the right hand
side is logarithmic. Solid and dashed lines are lowess smooth lines for data from
the NeoMero-1 and NeoMero-2 studies, respectively.

tration and CSF markers of infection (i.e. CSF protein, glucose, lactate, white

blood cell count) is presented in Figure 4.4. There is a positive relationship be-

tween meropenem CSF concentration and CSF lactate concentration; other trends

are not that obvious, but there appears to be a slight upward trend with CSF

total proteins and WBC count, and a downward with CSF glucose (Figure 4.4).
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Figure 4.4: Raw plots of CSF meropenem concentration versus CSF markers of
infection. Blue lines are lowess smooth lines.
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4.4.2 Non-linear mixed-effects model building

The structural model that provided the best fit to the data was initially a 1-

compartment model (the drop in OFV when using a 2-compartment model was

only 1.6 points). The residual error was best described with a combination of

proportional and additive model. Weight and postmenstrual age were included

in the NLME model a priori, and an additional covariate that had a significant

effect on meropenem clearance was standardised serum creatinine. Postnatal age

was found not to further improve the fit. After all covariates were included in

the model, the structural model was re-tested and then, a 2-compartment model

was found to describe the data better (∆OFV=12.1; corresponding to a p-value

for two additional degrees of freedom of 0.002). The drop in the OFV between

the initial model and the model with covariates (i.e. the final plasma PK model)

was 199.4 units. The covariates remained significant with a 2-compartment model

(p-value retention cut-off=0.005).

A CSF compartment was then added to the final plasma PK model, facilitat-

ing the description of the CSF pharmacokinetics (and penetration) of meropenem

in infants. Two different parameterisations were tested, and the model, described

with Equations 4.1, was selected as it provided a lower value of the objective

function (∆AIC=42.6 units); and a better fit was also observed in the diagnostic

plots.

The best model for the CSF residual error proved to be a proportional model.

The influence of CSF markers of inflammation on meropenem CSF penetration

was also investigated, and the inclusion of CSF lactate and CSF protein concentra-

tion resulted in a similar OFV drop (∆OFV=24.7 and 28.3, respectively). When

both were included in the model, this did not provide a further improvement in

the fit. Although the drop in the OFV was slightly bigger with CSF proteins,

the difference was small (3.6) when compared to CSF lactate; furthermore, the
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uncertainty on parameters was smaller, and GOF plots showed better agreement

with the data, when CSF lactate was included. Consequently, CSF lactate con-

centration was included in the final model. NONMEM code for the final model is

given in Appendix F.

Equations 4.4 describe the final model.

CL = θCL ·
(

WT
70

)0.632

·
(

PMA3.33

55.43.33 +PMA3.33

)
·
(

SCr
T SCr

)θSCr

· eηCL ,

VC = θV ·
(

WT
70

)
· eηV ,

Q = θQ ·
(

WT
70

)0.75

,

VP = θV ·
(

WT
70

)
,

QCSF = θQCSF ·
(

WT
70

)0.75

,

VCSF = 0.15 ·
(

WT
70

)
,

fCSF =
1

1+ eθuptake·(1+θlactate·(lactate−1.8))
,

kPL−CSF =
QCSF

VC
·0.98 · fCSF ,

kCSF−PL =
QCSF

VCSF
,

(4.4)

where CL is clearance, VC and VP are central and peripheral volumes of distribu-

tion, respectively, Q is inter-compartmental clearance, fCSF represents the pro-

portion of meropenem that penetrates into the CSF, and k are rate constants.

The final estimates for model parameters, with uncertainty from the NON-

MEM covariance step, and bootstrap analysis are given in Table 4.2 (η-shrinkage

was calculated as described in Chapter 3, Equation 3.9). Internal evaluation

of the model showed good fit to the data, i.e. predictions agreed with the ob-

served concentrations and no particular trend was seen in residual plots, for both

plasma, and CSF (Figures 4.5 and 4.6, respectively). A prediction-corrected VPC

performed using 1,000 replicates is presented in Figure 4.7.
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Figure 4.5: Diagnostic plots showing observed versus predicted meropenem
plasma concentration (top row), and conditional weighted residuals against time
after dose and population predictions (bottom row). Red line is a lowess smooth
line.
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Figure 4.6: Diagnostic plots showing observed versus predicted meropenem con-
centration in the cerebrospinal fluid (top row), and conditional weighted residuals
against time after dose and population predictions (bottom row). Red line is a
lowess smooth line.
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Table 4.2: Parameter estimates with uncertainty from the final model

Parameters from the final model Bootstrap analysis

mean SE %CV η-shrinkage (%) median 2.5%ile 97.5%ile

CL (L/h/70kg) 16.6 2.27 - - 16.6 13.6 19.8
θ creatinine -0.24 0.11 - - -0.24 -0.43 -0.06
V (L/70kg) 37.8 4.48 - - 37.4 32.9 44.3
Q (L/h/70kg) 0.69 0.41 - - 0.66 0.10 1.42
V2 (L/70kg) 124 61.4 - - 114.6 14.8 331.0
CLCSF (L/h/70kg) 0.013 0.004 - - 0.013 0.008 0.040
θ uptake* 1.90 0.16 - - 1.87 1.40 2.22
θ lactate* -0.167 0.11 - - -0.18 -1.09 -0.04
BSV on CL 0.28 0.09 52.9 7.26 0.28 0.15 0.46
BSV on V 0.09 0.13 30.5 32.3 0.09 0.001 0.35
cov BSV CL-V 0.13 0.11 - - 0.13 -0.001 0.34
ε (prop) 0.15 0.03 38.7 - 0.14 0.10 0.19
ε (add) 0.008 0.003 - - 0.007 8 ·10−7 0.015
ε (prop) CSF 0.85 0.16 92.2 - 0.80 0.58 1.19

CL is clearance, V is volume of distribution, Q is intercomparmental CL, CSF
is cerebrospinal fluid, *indicates that values are from a logit function, BSV is
between-subject variability, CV is coefficient of variation, ε is residual error: pro-
portional (prop) or additive (add).

Figure 4.7: Visual predictive check (n=1000) of meropenem plasma (right) and
cerebrospinal fluid (left) concentration versus time after dose; blue points are
observations, black lines are the 2.5th, 50th and 97.5th percentiles of the observed
data, and the shaded area is a non-parametric 95% confidence interval for the
corresponding predicted concentrations.
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Table 4.3: Summary of demographic characteristics of subjects from the original
and simulated dataset

Original dataset Simulated dataset

n 167 1,000
weight (kg) 2.12 (0.48-6.32) 2.36 (0.74-4.83)
gestational age (weeks) 33.3 (22.6-41.9) 32.0 (23.1-41.9)
postnatal age (days) 17 (1-105) 17 (2-95)
postmenstrual age (weeks) 37.4 (23.7-51.3) 36.0 (24.2-51.4)

All values are median (range).

4.4.3 Probability of target attainment

Monte Carlo simulations was performed for 1,000 virtual infants for eight differ-

ent MIC values (ranging from 0.25 to 32 mg/L). A comparison of demographic

characteristics of the subjects from the original and simulated datasets is given in

Table 4.3.

To assess meropenem dose (and infusion length) - response relationship, dif-

ferent combinations of both were tested, and based on the simulations performed,

probability of target attainment (PTA) plots were generated. Pharmacodynamic

targets were defined as 40%T>MIC or 70%T>MIC (PTA40% or PTA70%, re-

spectively), and the results of the simulations are presented in Figures 4.8 and

4.9, respectively.

The current dosing regimen for late-onset sepsis (i.e. 20 mg/kg, given over

30 minutes) enabled approximately 100% of simulated subjects (from all four age

groups) to reach PTA40% target for an MIC of 2 mg/L (Figure 4.8), which is the

highest susceptibility breakpoint for bacteria treated with meropenem, as given in

the EUCAST breakpoint tables [188]. The majority of infants reached PTA70%

with the same dosing regimen. However, for an MIC of 8 mg/L (i.e. resistance

breakpoint for meropenem [188]), a higher dose was shown to be needed - for

example 40 mg/kg, or even 80 mg/kg if the target was PTA70%, and the goal
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was that the majority of patients reaches this target (Figure 4.9).

With the current dosing regimen for treating bacterial meningitis - i.e.

40 mg/kg, infused over 30 minutes - over 75% of infants reached a target of

70%T>MIC for an MIC of 1 mg/kg (Figure 4.9), which is the highest resistance

breakpoint for most common pathogens that cause bacterial meningitis, according

to EUCAST [188].

Boxplots, showing how the distribution of %T>MIC is changing according

to the MIC value, are presented in Figure 4.10.
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Figure 4.8: Probability of target attainment (with target defined as 40%T>MIC)
relationship with MIC values for 4 different age groups. Both gestational age
(GA) and postnatal age (PNA) are in weeks. The dosing interval was assumed
8 hours for all four groups, except for group 1 (12 hours). CSF is cerebrospinal
fluid.
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Figure 4.9: Probability of target attainment (with target defined as 70%T>MIC)
relationship with MIC values for 4 different age groups. Both gestational age
(GA) and postnatal age (PNA) are in weeks. The dosing interval was assumed
8 hours for all four groups, except for group 1 (12 hours). CSF is cerebrospinal
fluid.
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Figure 4.10: Boxplots showing time above MIC for 8 different MIC values; for both
plasma (left) and cerebrospinal fluid (right). The dosing interval was assumed
8 hours for all infants, except for infants with gestational age <32 weeks, and
postnatal age <2 weeks (12 hours).
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4.5 Discussion

A non-linear mixed-effects model that described plasma and CSF pharmacokinet-

ics of meropenem in infants with late-onset sepsis or bacterial meningitis younger

than 90 days was developed using the largest meropenem dataset to have been

collected in this population. The model was then used to perform Monte Carlo

simulations and the results showed that the current standard dosing regimens are

appropriate for treatment of both LOS and meningitis, if the causative pathogen

has an MIC that corresponds to the EUCAST susceptibility breakpoints [188] and

the PD target is 40%T>MIC.

The model described by Equations 4.1 was chosen for describing the PK of

meropenem in the CSF and the relationship between plasma and CSF PK. This

model provided a lower value of the objective function, and the diagnostic plots

showed a better fit. Additionally, the mass balance is preserved in this model,

compared to the model described by Equations 4.2.

The uptake of meropenem into the CSF (i.e. the ratio between CSF and

plasma meropenem concentration at steady state) was estimated to be 13%, which

is at the lower end of what was reported in the literature, where values for pen-

etration range from approximately 10% to 40% [281, 271, 48, 282] (not including

one study [265] that is discussed below). The reason for poorer penetration might

be that the meninges of the infants in this study were not that inflamed, which

is shown by low median CSF protein (1.2 g/L) and CSF lactate (1.8 mmol/L)

concentrations. This could be because infants with both confirmed and suspected

bacterial meningitis were treated. Also, 32 out of 78 CSF meropenem samples

were collected from patients in NeoMero-1 trial (which was a study of LOS, and

subjects were not assumed to have meningitis), and could also explain lower values

of meropenem penetration.

Both CSF lactate and CSF protein concentration were significant covariates
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on the parameter corresponding to meropenem penetration into the CSF, but due

to smaller relative standard errors, and a better fit observed on the diagnostic

plots, lactate was included in the final model. The final estimate of the effect

of CSF lactate concentration was -0.17 (Table 4.2), meaning that an increase in

CSF lactate of 1 mmol/L (e.g. from 1.8 mmol/L (median) to 2.8 mmol/L), would

cause meropenem uptake to increase from 0.13 to 0.17 (a 31% increase). The final

estimate of the parameter corresponding to CSF proteins was -0.30, meaning that

CSF/plasma ratio would increase to 0.21 if CSF protein concentration increased

for 1 g/L (from 1.2 to 2.2 g/L). This agrees with what has been reported in the

literature, i.e. that the penetration of meropenem into the CSF increases when

the meninges are inflamed, which is shown by both elevated CSF lactate and

protein concentration [48].

Diagnostic plots (Figures 4.5 and 4.6) and the VPC (Figure 4.7) showed the

model was able to describe the CSF and plasma meropenem data (there was

no significant bias seen) and had good predictive performance. Serum creati-

nine (standardised using typical serum creatinine for PMA), which is a marker

of renal function, had a significant effect on meropenem plasma clearance, which

is expected since meropenem is predominantly renally eliminated. The values

for a typical infant from this study (weight=2.12 kg, PMA=37.4 weeks, SCr=32

µmol/L, typical SCr=58.9 µmol/L) of meropenem clearance and central volume

of distribution were 0.45 L/h and 1.14 L, respectively. This agrees closely with

what was found by van den Anker et al [266] for a population with similar demo-

graphics. However, studies that involved premature neonates only, e.g. a study by

Padari et al [264] and van Enk at al [262] found lower values of CL (0.06 L/h and

0.145 L/h, respectively). This is not surprising, because renal function is more

immature in the premature neonates, and the median weight for subjects in their

study was only approximately 1 kg, compared to >2 kg in this (i.e. the NeoMero)

study. Smith et al [265] found that CL in their population of both premature
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and mature neonates was approximately 0.13 L/h, which might seem much lower

than what was found in the NeoMero study (0.45 L/h), but again, their median

GA was 28 weeks, and weight 1.1 kg; which could explain the lower value of CL.

According to EUCAST [188], the highest resistance breakpoint for

meropenem (for all listed pathogens in the EUCAST breakpoint tables) is 8

mg/L, and susceptibility breakpoint is 2 mg/L. For pathogens that cause menin-

gitis, the reported breakpoints are 1 mg/L and 0.25 mg/L for resistant and

susceptible bacteria, respectively. These MIC values were considered when select-

ing the optimal dosing regimen for meropenem in infants. Based on the results of

Monte Carlo simulations, the current dosing regime for both bacterial meningitis

(i.e. 40 mg/kg, over 30 minutes), and late-onset sepsis (i.e. 20 mg/kg, over

30 minutes) seem adequate, as all subjects reach the target of 40%T>MIC for

MICs of 2 and 0.25 mg/L, respectively. The current dosing regime for meningitis

appears appropriate for a higher target (70%T>MIC) and MIC of 1 mg/L, as

>75% of infants achieve the target (Figure 4.9). But, in order for the majority of

infants to reach a target of 70%T>MIC and MIC of 8 mg/L in plasma, a higher

dose (e.g. 80 mg/kg) would be needed (Figure 4.9).

The dosing recommendations above were made for a worst case scenario,

most pathogens will have an MIC below the resistance (or even susceptibility)

breakpoints, as Figure 4.1 shows for pathogens causing bacterial meningitis. Also,

the probability of target attainment was determined after the first dose, so if any

accumulation of meropenem was present, it would result in a higher PTA. Ideally,

the MIC distribution of the bacteria in the environment in which meropenem

is intended to be used would need to be determined in order to recommend an

optimal dose for that environment.

Meropenem showed low potential for nephrotoxicity [259, 247], and it has

been reported that a higher dose does not relate to greater toxicity [271], but

this might not be true for a much higher than currently used doses (80 versus
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20 or 40 mg/kg, respectively), therefore perhaps the infusion duration could be

prolonged. But when infusion durations of 1, 2, and 6 hours were tested for a dose

of 20 mg/kg, this only slightly improved target attainment for plasma, but not

for CSF. Moreover, a duration of 6 hours resulted in a lower target attainment

for CSF, probably due to the fact that peak plasma concentration was lower with

this dosing regime. Longer durations than 6 hours were not tested, as meropenem

is unstable at room temperature (e.g. when kept at room temperature as 6%

solution it degrades up to the allowable limit of 10% in 6 hours; but when a 4%

solution is used, the time is increased to 12 hours [283]).

The pharmacodynamic targets of 40% and 70% of the dosing interval above

the MIC of a pathogen were selected, because it is thought that 40%T>MIC is

an adequate target for a bactericidal effect of carbapenems [17]. Furthermore, a

study of β -lactam antibiotics showed that 40%T>MIC provided a bacteriological

cure in 85-100% patients with otitis media [284]. A PD target of 70%T>MIC

was used because it has been suggested that this target might be appropriate

[64] for neonates, who have immature immune system. However, this target was

not determined based on evidence, thus, clinical studies are needed to define the

exact percentage of T>MIC needed for a bactericidal effect and clinical cure in

neonates.

The only neonatal study [265] that reported the uptake of meropenem into the

CSF, used only nine CSF samples from six patients to determine the penetration

– it was reported as 70%. This value was not correctly determined, since β -

lactam antimicrobial agents enter the CSF through the paracellular pathways

[271], therefore the peak CSF concentration is delayed, and one cannot simply

measure plasma and CSF concentation at the same time points to determine

the penetration (which was what was done in the above mentioned study [265]).

Instead, CSF sampling should be performed at different times in different patients

(as the number of CSF samples per patient is usually very limited) [271], and then
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modelling can be used to describe the penetration; as highlighted in this chapter.

It has been suggested that CLCSF could be used to approximate the rate of

CSF formation [285], and the CSF clearance was estimated as 0.013 L/h (for an

adult of 70 kg) (Table 4.2), which is within the range of reported values for CSF

formation in the literature (0.012-0.036 L/h) [267, 272, 286, 287].

On average <1 CSF sample was collected per patient, hence the between-

subject variability was not estimated for the CSF compartment. This means that

residual variability incorporates some of the possible BSV, which could explain

the large value of the proportional residual error for the CSF compartment (0.85)

(Table 4.2).

Typical serum creatinine for a specific PMA was used to standardise measured

serum creatinine, and tested as a covariate when developing the plasma PK model.

The equation used for typical SCr was derived using data from neonates up to 44

weeks of PMA; but, in the dataset used in this study, infants were up to 51 PMA

weeks old (there were 12 infants with PMA>44 weeks). To address this, the value

of the typical SCr was capped at 1 month for those 12 infants, according to what

was reported in the literature – that SCr reaches a plateau around 1 month of age

[224, 214, 233].

The Monte Carlo simulations showed that the current dosing regime for in-

fants with sepsis or meningitis is appropriate for pathogens with MIC values close

to the susceptibility breakpoint [188], but higher doses are needed when dealing

with pathogens with higher MICs. Higher dosing recommendations would need

to be prospectively evaluated in a clinical study, but as already mentioned, they

were made for the worst case scenario of all pathogens having an MIC that corre-

sponds to the meropenem resistance breakpoint, meaning that if an actual MIC

distribution was used, most likely much lower doses than 80 mg/kg would be

needed.
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4.6 Summary

An extensive dataset from a total of 167 infants younger than 3 months (in treat-

ment for confirmed or suspected late-onset sepsis or bacterial meningitis) was used

to develop a non-linear mixed-effects model to describe the relationship between

meropenem plasma and CSF pharmacokinetics. This was the largest dataset so

far, and contained 401 plasma and 78 CSF samples. The evaluation showed the

model was able to describe the data and had good predictive properties, there-

fore it was used in Monte Carlo simulations to determine an optimal dose. The

results showed that current dosing regimes (20 and 40 mg/kg, over 30 minutes,

for late-onset sepsis, and meningitis, respectively) are appropriate when treating

infections caused by pathogens with low MIC values, i.e. MICs that corresponds

to the susceptibility breakpoint for meropenem. The results from this study might

provide the information needed for meropenem to be licensed in infants <3 months

of age. Future work could focus on also including the available pharmacodynamic

data into the model, and using the actual MIC distribution to define an optimal

dose.



Chapter 5

Pharmacodynamics of neonatal

sepsis

5.1 Introduction

Newborn infants admitted to NICU often start antimicrobial therapy immediately

[5] to avoid the development of sepsis, which is one of the most common causes

of morbidity in this population [2]. As treatment often starts before the result

of the blood cultures is known [55], and/or the result can be falsely negative

[288], it is imperative that an informative clinical symptom or laboratory sign

(or a set of them) is also used. However, there is currently no agreement on

which biomarker(s) or symptoms of infection to use to determine neonatal sepsis

[55, 289]. Therefore, a proof-of-concept study (presented in this chapter), using

item response theory (IRT) models, was performed to facilitate the selection of

the laboratory test that provides the most information about the sepsis status.

5.1.1 Item response theory models

The development of the IRT models originates from psychology [290], and a

method, similar to IRT, was first utilised in the 1920s for analysing data from
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psychological and educational tests [291]. Recently, the IRT framework has been

introduced into pharmacometrics [19, 292], where it was, for example, used to

describe efficacy of morphine by analysing neonatal multiple pain scales data [20].

IRT involves mathematical models that specify the relationship between the

probabilities for a specific response to an item (e.g. a result of a laboratory test

in the current example) and the underlying hidden or latent variable of interest

(Ψ) (e.g. sepsis status) [293]. The set of items represents a proxy for the hidden

variable, which cannot be directly measured or observed [19].

The change in the probability for a certain response to an item with the

latent trait is described by an item characteristic function (ICF) and its graphical

representation, item characteristic curve (ICC). ICF puts both item characteristics

and the subject-specific hidden variable on the same scale and so represents the

main concept of IRT. The scale of the hidden variable is hypothetical (going from

-∞ to +∞), but usually assumed to be normally distributed (in the population of

interest) with a zero mean and variance of 1 [293, 294].

Logistic models are used (to characterise the relationship between the hidden

variable and the response to an item) when dealing with binary items. These

models differ according to the number of parameters used in the function, and

the most commonly used are: one-parameter logistic model (1PL), two-parameter

logistic model (2PL), and three-parameter logistic model (3PL), where 1PL and

2PL models are a simplified, or constrained, version of the 3PL [293, 295].

A 3PL model can be mathematically represented by Equation 5.1.

P(Yi j = 1) = c j +(1− c j) ·
ea j·(Ψi−b j)

1+ ea j·(Ψi−b j)
, (5.1)

where P(Yi j = 1) is the probability of the ith subject’s response to the item j being

1, b is the difficulty parameter, indicating location on the latent variable (Ψ) scale
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(where there is 50% probability of Yi j being 1; when c=0), a is the discrimination

parameter (where items with higher values of a are more discriminatory), or the

slope, and c is the guessing parameter, or the lower asymptote, and assumes a

value between 0 and 1 [293, 294]. All three parameters, b, a, and c are properties

of the item and define the ICC.

By fixing the guessing parameter c to zero, the model becomes a 2PL model

(Equation 5.2), and the items are only allowed to differ in a or b parameters.

P(Yi j = 1) =
ea j·(Ψi−b j)

1+ ea j·(Ψi−b j)
. (5.2)

The most constrained version is a 1PL model, where c parameter is fixed

to zero and a parameter is fixed to 1 (Equation 5.3), therefore the ICC is only

allowed to shift left or right.

P(Yi j = 1) =
e(Ψi−b j)

1+ e(Ψi−b j)
. (5.3)

The IRT models are based on assumptions. One of the assumptions is that

the probability of a subject’s response to an item depends on the latent variable,

i.e. it is assumed that the item follows the IRT model used [293, 296]. Another

assumption is unidimensionality, meaning that the items measure only one hid-

den variable, or, that only one latent variable accounts for the majority of the

correlations between items [297]. And, IRT models also assume that the items

are locally or conditionally independent, meaning that there is no relationship

between subject’s responses to any pair or items after controlling for the latent

variable [293].
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5.1.2 Efficacy of gentamicin

The focus of Chapter 3 of this thesis was mostly on toxicity involved with gentam-

icin use in neonates. However, gentamicin is also an effective broad-spectrum an-

tibacterial agent, and therefore one of the most widely used antimicrobials for the

(empirical) treatment of the neonatal sepsis [161]. Gentamicin is a concentration-

dependent agent, meaning that high peak concentrations are needed for it to be

effective [153]. But, whilst empirical therapy should not be unnecessarily pro-

longed [298, 299], it can prove difficult to relate gentamicin Cmax to the resolution

of sepsis when only examining microbiological results, due to reasons described in

the following section (5.1.3).

5.1.3 Defining neonatal sepsis

Whilst the standard test for confirming bacterial sepsis is a positive blood culture

from an otherwise sterile site, Blackburn et al found that from 8904 blood cultures

taken from neonates, there were only 12% culture positive, and the percentage of

the positive samples was the lowest at birth [300]. A possible reason for the low

numbers of culture positive microbiological results might be that a substantial

number of blood cultures are actually falsely negative. This could be due to a

variety of reasons, such as: the volume of the blood sample might be insufficient

to detect bacteria [301], the levels of bacteria in the sample might be too low [289],

the neonate might have been exposed to prior antibiotic treatment, non-typical

bacteria that do not grow in the usual media are present [55], or the infection

was not caused by bacteria. Additionally, the culture positive blood samples

might also be falsely positive – due to a contamination [288]. These reasons are

why microbiological results alone are not sufficient for the sepsis diagnosis, and

different clinical and/or laboratory signs also have to be used.

However, in a recent review of 15 neonatal clinical trials, where antimicrobials

were used for treating early- and late-onset sepsis, Oeser et al [55] found that
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a variety of different clinical and laboratory signs were used to define sepsis.

Wynn et al [289] reviewed the literature and also found considerable heterogeneity

concerning the definition of sepsis in neonates, more specifically, within 42 studies

or guidelines 12 of them used different combinations of 10 laboratory tests; and

62% of them used at least one clinical sign to define sepsis.

Currently, definitions for neonatal sepsis that were agreed on by a panel

of experts are mainly used, such as for example, a definition according to the

EMA [276], or a (different) sepsis criteria defined at the International Pediatric

Sepsis Consensus Conference [275]. Therefore, there is a need for a standardised

and objective definition of neonatal sepsis that is based on evidence rather than

experts’ opinion alone, which would then also facilitate comparison of results of

different clinical trials [55].

5.2 Objective

The objective of the study described in this chapter was to develop an IRT model

(using neonatal pharmacodynamic data) and then use it to define which laboratory

test (from a set of laboratory sepsis signs) is the most informative regarding the

sepsis status. Furthermore, the aim was also to investigate possible effects of

gentamicin Cmax on the rate of the resolution of sepsis.

5.3 Methods

5.3.1 Study population

Data used for the IRT modelling were collected in a prospective multicentre study

of gentamicin in neonates (the neoGent study), and were in detail described in

Chapter 3. However, the datasets were not exactly the same, as not all neonates

provided PK samples; whilst all of them had pharmacodynamic data collected.
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Table 5.1: Description of the items used in the analysis

item description thresholds

1 white cell count <4 or >20 ·1012

2 platelet count <100·1012

3 C-reactive protein (CRP) concentration >15 mg/L
4 glucose concentration >10 or <2.5 mMol/L
5 lactate concentration or base excess (BE) lactate >2 mMol/L or BE <-10 mEq/L

This dataset therefore included a total of 195 neonates (i.e. 32 neonates more

than the dataset described in Chapter 3).

There were many (n>100) different potential markers of sepsis collected in

the neoGent study, but in this proof-of-concept study the focus was only on the

laboratory signs of sepsis – as described by the EMA criteria for defining neonatal

sepsis [276]. This criteria is widely used and was also suggested in a recent review

[55]. Furthermore, laboratory results are potentially less subjective and thus more

reliable than clinical symptoms [26]. There was no information on the immature-

to-total neutrophil ratio available in the data, thus a total of five items was used

in the analysis (Table 5.1).

The results of the tests listed above were then dichotomised according to the

thresholds indicating meeting the sepsis criteria according to the EMA, so that

a value of 1 indicated meeting the criteria, and 0 meant that the criteria was

not met. However, not all laboratory tests were done at each treatment day, and

the missing data were assigned a value of -1. The same was done if there were

no measurements for a whole treatment day - there were 26 such days from 24

subjects (which represents 12.3% of subjects).

5.3.2 Non-linear mixed-effects model building

A logistic function was used to model the binary data. Both, a 2PL and a 1PL

model (Equations 5.2 and 5.3, respectively) were tested in order to describe the

relationship between the probability for a specific response in an item (i.e. labo-
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ratory test) and the latent variable (i.e. sepsis status).

The change in the subject-specific latent variable (Ψi) with time was de-

scribed using a linear function (Equation 5.4) [19]:

Ψi(t) = Ψ
0
i + si · t, (5.4)

where Ψ0
i is baseline, and si is slope. Both baseline and slope were allowed to differ

between subjects, and the variability was described using an additive random

effects model. Random effects (ηs) were assumed to follow a normal distribution.

The baseline and slope were allowed to be correlated, and the correlation was

estimated.

The IRT model was implemented in NONMEM 7.3 (ICON Development So-

lutions, Ellicott City, Maryland), and the estimates of the model parameters (both

item and subject-specific parameters) were obtained using the stochastic approx-

imation expectation maximisation (SAEM) method with Laplace approximation,

followed by the importance sampling (IMP) method to obtain the OFV value.

Since data were not missing at random (i.e. usually fewer laboratory tests

are done when a neonate is more stable), it was assumed that the probability

for a laboratory test result to be missing was dependent on the sepsis status;

therefore, missingness was treated as an additional item with a separate ICF.

The following probabilities were estimated: the probability that the data is non-

missing (P(Y=NM)), and the probabilities that given that the data is not missing

a laboratory test met the sepsis criteria (P(Y=1|NM)), or did not meet the criteria

(P(Y=0|NM)). This conditional probability model is presented in Figure 5.1.

A 2PL model for missingness would assume that whether a test is missing

or not was completely dependent on the sepsis status. However, tests are also

performed routinely, not depending on the sepsis status. This can be modelled
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Figure 5.1: Probability diagram. NM is non-missing, S is sepsis.

with a 3PL model (Equation 5.1), where the c parameter describes the probability

of a test being done independent of the sepsis status.

To describe different patterns in missingness for different items, several covari-

ates were introduced into the model. For example, based on visual examination

of the raw data, a different guessing parameter for the missing data (cMISS) was

assumed for the first day of therapy, for days of therapy >6, and for the last day

of treatment. Additionally, an item 3 specific cMISS, and a cMISS for items 1&2,

and for items 4&5 were tested.

The assumption of missingness being time-dependent, i.e. that with greater

time on therapy it depends more on the disease whether the data is missing or

not (since at the start of treatment laboratory tests would be done regardless of

the disease state), was also investigated. An exponential and a sigmoidal model

(Equations 5.5 and 5.6, respectively) were used to test this assumption.

cMISS = θ +(1−θ) · e−θtime·t , (5.5)

cMISS = 1− (1−θ) · t
θtime + t

, (5.6)

where θtime represents the time effect on cMISS.

Additionally, it was hypothesised that the probability of data being missing

decreases with increasing time since the last laboratory test. However, this trend

was not observed on the plots, therefore this assumption was not tested.
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Gentamicin is a concentration-dependent antimicrobial agent, thus the effect

of Cmax was investigated on the slope corresponding to the change in the sepsis

status. Empirical Bayes estimates of gentamicin peak concentrations (for n=163

subjects) were obtained using the final population PK model, described in Chapter

3, and assuming that “Cmax” occurs 1 hour after the dose [186] (C1h). The highest

C1h per patient was selected. For 32 subjects that were not in the PK dataset, a

mean C1h of 9.4 mg/L was imputed.

The information about the reliability of each of the laboratory tests for dis-

criminating between patients with different sepsis statuses was calculated ana-

lytically (as the second derivative of the log likelihood (i.e. Fisher information)

with respect to the sepsis status), which was possible because the random effects

in the model were only associated with the latent variable [19]. The items were

then ranked according to the average information they provided, and a plot of the

relationship between the information and the latent variable was produced.

5.3.3 Evaluation

To assess the uncertainty of the model parameter estimates, standard errors were

obtained from the NONMEM covariance step, and a non-parametric 95% confi-

dence interval was determined based on n=1000 bootstrap replicates.

Additionally, a visual evaluation of the IRT model was performed by pro-

ducing a categorical VPC [302] with n=1000 simulations using the parameter

estimates from the final model. The proportions of specific responses to an item

in the simulated (n=100) and the observed data were compared using mirror plots.
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Table 5.2: A summary of the dataset

item n DV=0 DV=1

1 789 663 126
2 788 677 111
3 990 625 365
4 957 809 148
5 930 614 316

DV=1 indicates that the item, i.e. result of a laboratory test, was below/above the
threshold indicating meeting the sepsis criteria; and DV=0 indicates the opposite.
Items are specified in Table 5.1.

5.4 Results

5.4.1 Study population

The dataset used in this study included pharmacodynamic data from 195 neonates

and infants that were prospectively collected during the neoGent study in five UK

hospitals. The PNA of subjects ranged from 1 to 83 days (with day 1 defined as

the day of birth), with the median PNA of 5 days (the median PNA at treatment

initiation was 1 day). The patients stayed on therapy for median 6 days (range:

2-21 days). Fifteen subjects (7.7%) were culture positive.

Laboratory signs of sepsis (according to the EMA [276]) were selected from

the available data, and the dichotomised values for each item are presented in

Table 5.2. When the missing data were added in, there was a total of 1163 values

for each item.

Figure 5.2 shows the number of subjects at each treatment day, and Figure

5.3 the patterns of missingness for each item with treatment day.

5.4.2 Non-linear mixed-effects model building

A 2PL model provided a better fit to the data than a 1PL model (∆OFV=92.8).

The missing data was analysed using a 3PL model. From all of the tested effects
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Figure 5.2: Number of subjects at each treatment day.

Figure 5.3: Patterns of missingness depending on the treatment day for each item.
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on the guessing parameter (described in Section 5.3.2), only a separate cMISS for

item 3, items 1&2, and items 4&5, and the effect of the first day of treatment

proved significant (i.e. the drop in the OFV between two nested models was

>3.84). The ∆OFV between the initial and the model with covariates was 217.2

units.

The correlation between the baseline and the slope was not included in the

model, as it was only -0.01, and it produced a non-significant decrease in the OFV

(∆OFV=0.1). Furthermore, with correlation included, the covariance step was no

longer successful.

Including peak gentamicin concentration (C1h) as a covariate on the slope

relating to the rate of the change in the latent variable also did not proved signif-

icant.

The final parameter estimates and the uncertainty associated with them are

presented in Table 5.3, and the NONMEM code for the final model is given in

Appendix G.

Figure 5.4 shows the relationship between the informativeness of each item

(about the sepsis status of an individual) and the latent variable. Item 5 (lactate

concentration or base excess) appears to be the most informative, as seen from the

highest magnitude of the information, indicating that an item is more reliable for

differentiating between individuals at a point on the latent variable scale. Con-

versely, item 3 (CRP concentration) does not seem to contain much information.

Ranking items by their average information content confirms that item 5 is the

most informative item (Table 5.4).

5.4.3 Evaluation

Both item-level categorical VPCs (Figures 5.5 and 5.6) and mirror plots (Figure

5.7) showed that the model fits the data and has adequate predictive power.



5.4. Results 135

Table 5.3: Parameter estimates with uncertainty from the final model

Parameters from the final model Bootstrap analysis

mean SE %CV median 2.5%ile 97.5%ile

slope -0.61 0.15 - -0.64 -25.0 -0.17
Item 1: dis 0.48 0.2 - 0.45 0.00 20.3
Item 1: dif 2.97 1.39 - 3.01 -1 ·106 9 ·103

Item 2: dis 0.73 0.45 - 0.66 0.00 38.8
Item 2: dif 2.17 1.34 - 2.28 -1 ·106 1.6 ·105

Item 3: dis 0.29 0.09 - 0.27 0.00 1 ·106

Item 3: dif 0.85 0.62 - 0.90 -6 ·105 1 ·106

Item 4: dis 0.91 0.19 - 0.88 0.00 1 ·106

Item 4: dif 1.44 0.37 - 1.45 -9 ·103 2.5 ·105

Item 5: dis 1.00 0.17 - 0.96 0.00 1 ·106

Item 5: dif 0.06 0.24 - 0.02 -7 ·105 1 ·106

Missing dis 1.04 0.21 - 1.00 0.00 1 ·106

Missing dif -2.12 0.44 - -2.23 -7 ·105 1 ·106

MGUE I1and2 0.07 0.05 - 0.07 0.00 0.54
MGUE I3 0.58 0.04 - 0.58 0.00 0.72
MGUE I4and5 0.38 0.08 - 0.39 0.21 0.80
MGUE OCC1 0.51 0.1 - 0.51 0.23 0.83
η slope 0.23 0.11 47.6 0.25 0.03 781

Dis is the discrimination parameter (a), dif is the difficulty parameter (b), and
gue is the guessing parameter (c), M indicates missing data, OCC1 is the first day
of treatment, I is item; SE is standard error, CV is coefficient of variation. Items
are specified in Table 5.1.

Table 5.4: Items, ranked by the average information content

item average information

lactate concentration or base excess 0.205
glucose concentration 0.134
platelet count 0.076
white cell count 0.037
C-reactive protein concentration 0.020
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Figure 5.4: Graphs showing the informativeness of each item as a function of the
latent variable (i.e. sepsis status). Grey area indicates the 95% prediction interval
for disease severity at baseline.

Figure 5.7: Mirror plots, for original (left) and simulated data (right), performed
using 100 simulations. DV=1 indicates meeting criteria for sepsis, DV=0 not
meeting the sepsis criteria, and DV=-1 indicates missing data. Items are defined
in Table 5.1.
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Figure 5.5: Visual predictive check (n=1000) for items 1, 2 and 3, showing the
observed fraction of each response to an item against time (black line) and the
corresponding model-based 95% CI (grey area).
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Figure 5.6: Visual predictive check (n=1000) for items 4 and 5, showing the
observed fraction of each response to an item against time (black line) and the
corresponding model-based 95% CI (grey area).
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5.5 Discussion

The IRT framework was used in this proof-of-concept study to determine which is

the most informative laboratory test for determining neonatal sepsis (from a set

of laboratory tests recommended by the EMA [276]), and to find possible effects

of gentamicin peak concentration on the rate of the resolution of sepsis.

The results of the IRT modelling showed that at baseline, in this popula-

tion of neonates, metabolic acidosis (i.e. base excess <10 mEq/L or serum lac-

tate concentration >2 mMol/L) provided the highest precision in distinguishing

whether a neonate had sepsis or not. The potential importance of serum lactate

in neonates was also found by Fitzgerald et al [303] who compared data from 23

culture negative and 6 culture positive premature neonates in their first 48 hours

of life, and found that lactate concentrations were significantly higher in culture

positive newborns. Based on that they concluded that increased serum lactate

could be a potential marker of neonatal sepsis [303]. However, they used a small

sample size, and the variability in lactate concentrations in septic newborns was

large. A prospective study in the neonatal setting is needed to confirm the clinical

significance of serum lactate for defining sepsis. Additionally, although metabolic

acidosis proved to be the most informative indicator about the sepsis status, serum

lactate is not a specific marker of sepsis, since it can also be increased in other

conditions such as trauma, again highlighting the need for further research in this

area.

An interesting result of the current study was also that C-reactive protein

contains very little information about the sepsis status at baseline. However, this

might not be so surprising, since CRP is an acute phase protein, and inflammatory

response needs to be triggered for CRP to increase [299]. It is thus not an early

marker of infection [301].

To avoid the emergence of resistance, empirical treatment should not be un-
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necessarily used, and should be discontinued as soon as it is confirmed that the

sepsis has resolved [298]. Therefore it is important to determine (based on evi-

dence) which signs or what sepsis criteria to use. IRT models could prove useful

as shown in this example. Additionally, IRT models could facilitate the selection

of thresholds for a laboratory test, as it was found that there is no agreement on

which thresholds to use [55]. It would not be too difficult to change the thresholds

in the data and compare which is more informative.

In this analysis gentamicin peak concentration was included as the highest

C1h for a particular neonate, and did not prove significant on the slope, describ-

ing the change in the latent variable. However, peak concentrations could also

be obtained differently - for example, the highest C1h in a treatment day would

possibly relate to the rate of clinical improvement more. But as premature new-

borns were included in this study too, the gentamicin dosing intervals were in

some cases greater than 24 hours, meaning that if this approach was used, “peak”

concentration for some days would be very low.

5.6 Summary

An item response theory framework was applied to PD data from the neoGent

study and a model was developed. In this proof-of-concept study five laboratory

sepsis signs were selected and dichotomised, according to a widely used sepsis

criteria [276]. Out of these items (i.e. laboratory tests), metabolic acidosis (base

excess deficit or increased serum lactate concentration) was shown to provide the

most information about the sepsis status of the neonates in this population at

baseline. Peak gentamicin concentration did not have a significant effect on the

rate of the resolution of sepsis, which might mean that the current practice on

focusing on toxicity and not efficacy when performing therapeutic drug monitoring

is appropriate. Further work could focus on including other possible markers of

neonatal sepsis into the model, and using continuous instead of binary data. The
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focus should also be on obtaining a more appropriate dataset (i.e. with fewer

missing data) to facilitate investigation of sepsis resolution, and hidden Markov

models could instead be applied.



Chapter 6

Conclusions

Although antenatal care has improved dramatically in the last decades, bacterial

infections, namely sepsis and meningitis, still remain a major cause of neonatal

deaths and morbidity [244, 245]. An additional problem is that due to a large

proportion of false negative culture results [288], these results cannot be examined

separately, but need to be combined with other clinical or laboratory markers,

which lack specificity, and furthermore, there is no agreement on which exact

marker(s) to use [55]. Antibacterial agents are therefore often used empirically,

and off-label [10], indicating that more research is needed to provide evidence-

based guidelines, as also shown by a considerable variability in their prescribing

and monitoring regimens [8, 9].

With the work done and described here, I aimed to address some of the

problems mentioned above by firstly selecting an appropriate model for scaling

clearance in the paediatric population (by comparing several distinct models on

the same dataset). For a renally excreted drug (gentamicin) allometric weight

scaling (with a single fixed allometric exponent) and a postmenstrual age driven

sigmoidal maturation function proved to have the lowest AIC value, hence this

model was then used when describing the change in clearance with size and age in

the following chapters (3 and 4). Having a standard model for scaling clearance



143

would enable comparison of similar compounds, and make meta-analyses easier.

This model also facilitates the idea that maturation and growth are continuous not

dichotomous processes and so more can be understood about scaling for size and

age and more can be learnt about clearance maturation. Using an appropriate

scaling method ensures that the models are applicable to all ages, and so for

example the neoGent model could be readily extendible to be used for children of

all ages (subject to evaluation).

One of the interesting findings of performing the non-linear mixed-effects

modelling in Chapters 3 and 4 was that the structural model should be re-tested

after the inclusion of the covariates. This should particularly be done where

covariates are important, for example in neonates due to their high variability in

the pharmacokinetic parameters. In both cases, following covariate addition, a

further distribution compartment significantly improved model fit, and in the case

of the neoGent model may have contributed to its superior predictive performance

over other published models (see Figure 3.16).

The modelling that was undertaken using published gentamicin data and

evaluated on external dataset originating from the neoGent study showed that a

more mechanistic model (compared to previously published models), which con-

tains biological prior information, can provide better individual predictions when

applied to an external dataset. The results (presented in Chapter 3) also showed

that the model is able to predict trough gentamicin concentrations from a pre-

viously taken sample for other clinical purposes. Using this model could enable

prediction of trough levels from samples taken at earlier time points, therefore

eliminating the need for “trough” levels to be collected exactly before the next

dose, which would help address some of the safety concerns raised by the NPSA

[149]. The preliminary work presented in Chapter 5 also showed that peak gen-

tamicin concentration did not significantly affect the rate of the resolution of

sepsis, which could indicate that the current practice on focusing on toxicity and



6.1. Further work 144

not efficacy when performing gentamicin therapeutic drug monitoring in neonates

is appropriate.

Another example of using population modelling was described in Chapter 4,

where treatment (specifically, dosing regimen) was optimised on a population level

using data from the largest so far meropenem pharmacokinetic study in neonates

and infants (i.e. the NeoMero study). A dose needed to reach a specific phar-

macodynamic target for treatment of late-onset sepsis and meningitis, has been

defined, and it appears that the current dosing regimen for these two infectious

diseases is appropriate when dealing with susceptible pathogens with low MIC

values; but higher doses would be needed for resistant microorganisms. Knowing

what dose is sufficiently high would also help prevent the emergence of resistance.

The problem of which (laboratory) marker of sepsis to use was addressed

in Chapter 5, where preliminary work using item response theory models was

carried out, using a gentamicin neonatal dataset as an example. Choosing from

a set of five laboratory tests [276], metabolic acidosis (namely base excess deficit

or increased serum lactate concentration) was shown to be the most informative

about the sepsis status at treatment initiation. Interestingly, CSF lactate was also

shown to have a significant effect on the proportion of meropenem that penetrates

into the CSF. This is perhaps not surprising, given that it is a marker of the blood-

brain barrier permeability, however, CSF lactate concentrations are currently not

routinely measured in all neonatal wards.

6.1 Further work

Although some work has been done in order to help improve antimicrobial therapy

in neonates, there is still potential for future investigations that would further

improve the current clinical practice.

For example, the provisional software tool neoGent that was developed cur-
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rently does not have a user-friendly interface, which would probably limit its

usefulness. Also, a clinical study evaluating the model is needed before it could

be used in routine neonatal care. But since much more work is needed to develop

the neoGent software (i.e. collecting more data of good quality, and developing a

front-end), it could be in the meantime applied to, for example, a nomogram. This

would still improve the dose individualisation since it is presently often only based

on clinical judgement. A nomogram based on predictions from the developed

gentamicin pharmacokinetic model that would allow for inclusion of covariates

(such as postmenstral age, postnatal age, serum creatinine) could prove useful,

especially as preliminary work presented here showed that not focusing on peak

concentrations might be appropriate.

The investigation of how clearance scales from the paediatric population to

adults was performed for a renally cleared drug. Therefore, it should be tested

whether the 0.75 fixed allometric exponent with a sigmoidal maturation function

is also appropriate for drugs that are cleared through the liver, or have mixed

clearance.

The probability of target attainment for different pharmacodynamic targets

was explored, however, future work is needed to determine exactly what per-

centage of T>MIC is needed in neonates for a clinical and microbiological effect.

Also, in the work presented here simulations were done using fixed MIC values,

whilst ideally the MIC distribution should be determined in the environment

where meropenem is intended to be used for, to then correctly define an optimal

dose. Future work should also involve including more pharmacodynamic data into

the model, to help gain more insights into the underlying biological system.

Concerning the work involving item response theory models, more data (with

fewer missing values) is needed, and perhaps actual laboratory values, instead of

binary data could be included.
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In summary the work presented in this thesis has shown how pharmacokinetic-

pharmacodynamic modelling can help understand and improve the management

of neonatal infections. Models allow for a potentially more nuanced understand-

ing of dosing beyond simple MIC targets, and as new and better diagnostics

are developed, PKPD models will be useful in understanding their significance.

Although there are few antimicrobials currently in clinical development, as new

agents are developed their use in neonates will need to be investigated; and PKPD

modelling will be crucial in defining their dosing. In an era of antimicrobial resis-

tance, optimising treatment of neonatal infections with PKPD modelling will be

vital.



Appendix A

Search and screening procedure

Figure A.1: A flow chart illustrating the search strategy (performed in April 2013)
in order to find data for gentamicin PK model building.



Appendix B

NONMEM control file for the
final gentamicin model

$PROBLEM neoGent model Germovsek 2014
$INPUT ID GA GIRL TIME PNA PMA WT CREA TCRE RATE AMT DV EVID OCC MDV
;GA (days), PNA (days), PMA (weeks)
;GIRL: 0=male, 1=female
;TIME (hrs, time after the first dose)
;RATE (mg/h), AMT (mg), DV=genta conc (mg/L)
;EVID: 0=DV measurement, 1=dose given, 2=dummy time point
;WT (g)
;CREAT (umol/L)
;
$DATA Patient_data-NM.csv IGNORE=@
$SUBROUTINE ADVAN6 TOL=6
;
$MODEL
COMP=(CENTRAL)
COMP=(PERIPH1)
COMP=(PERIPH2)
COMP=(COVCMT1) ; PNA time-var. covariate compartment
COMP=(COVCMT2) ; CREATININE t-v. cov. compartment
;
$PK
; Three-comp model
; -------- Parameterization for time-varying covariates --------
IF(NEWIND.NE.2)OTIM1=0
IF(NEWIND.NE.2)OCOV1=0
IF(NEWIND.NE.2)OTIM2=0
IF(NEWIND.NE.2)OCOV2=0
;
WTKG = WT/1000
T50 = 55.4
HILL = 3.33
MF = PMA**HILL/(PMA**HILL+T50**HILL)
;
SECR = CREA
IF(SECR.LE.0) SECR = TCRE
;
P50 = THETA(8) ; postnatal age at 50% of adult’s clearance
;
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CRPWR = THETA(7) ; power exponent on the creatinine function
;
; -------- Inter-occasion variability code ----------------------
BOVC = 0
IF(OCC.EQ.1) BOVC = ETA(7)
IF(OCC.EQ.2) BOVC = ETA(8)
IF(OCC.EQ.3) BOVC = ETA(9)
IF(OCC.EQ.4) BOVC = ETA(10)
IF(OCC.EQ.5) BOVC = ETA(11)
IF(OCC.EQ.6) BOVC = ETA(12)
IF(OCC.EQ.7) BOVC = ETA(13)
IF(OCC.EQ.8) BOVC = ETA(14)
IF(OCC.EQ.9) BOVC = ETA(15)
IF(OCC.EQ.10) BOVC = ETA(16)
IF(OCC.EQ.11) BOVC = ETA(17)
IF(OCC.EQ.12) BOVC = ETA(18)
IF(OCC.EQ.13) BOVC = ETA(19)
IF(OCC.EQ.14) BOVC = ETA(20)
IF(OCC.EQ.15) BOVC = ETA(21)
IF(OCC.EQ.16) BOVC = ETA(22)
IF(OCC.EQ.17) BOVC = ETA(23)
IF(OCC.EQ.18) BOVC = ETA(24)
IF(OCC.EQ.19) BOVC = ETA(25)
IF(OCC.EQ.20) BOVC = ETA(26)
IF(OCC.EQ.21) BOVC = ETA(27)
IF(OCC.EQ.22) BOVC = ETA(28)
;
TVCL = THETA(1)*MF*(WTKG/70)**(0.632) ; typical value of CL
TVV1 = THETA(2)*(WTKG/70) ; typical value of V1
TVQ = THETA(3)*(WTKG/70)**(0.75) ; ty. value of Q
TVV2 = THETA(4)*(WTKG/70) ; ty. value of V2
TVQ2 = THETA(5)*(WTKG/70)**(0.75) ; ty value of CL3
TVV3 = THETA(6)*(WTKG/70) ; ty value of V3
;
CL = TVCL*EXP(ETA(1)+BOVC) ; individual value of CL
V1 = TVV1*EXP(ETA(2)) ; individual value of V1
Q = TVQ*EXP(ETA(3)) ; individual value of Q
V2 = TVV2*EXP(ETA(4)) ; individual value of V2
Q2 = TVQ2*EXP(ETA(5)) ; individual value of Q2
V3 = TVV3*EXP(ETA(6)) ; individual value of V3
;
K = CL/V1 ; rate constants
K12 = Q/V1
K13 = Q2/V1
K21 = Q/V2
K31 = Q2/V3
;
; -------- Code to calculate time after dose ----------------------
IF(EVID.EQ.1) TM=TIME
IF(EVID.EQ.1) TAD=0
IF(EVID.NE.1) TAD=TIME-TM
;
; -------- Parameterisation for time-varying covariates ----------
SL1 = 0
IF(TIME.GT.OTIM1) SL1 = (PNA-OCOV1)/(TIME-OTIM1)
A_0(4) = PNA
;



150

SL2 = 0
IF(TIME.GT.OTIM2) SL2 = (SECR-OCOV2)/(TIME-OTIM2)
A_0(5) = SECR
;
; -------- Differential equations ---------------------------------
$DES
DADT(4)= SL1
TCOV1 = A(4)
;
DADT(5)= SL2
TCOV2 = A(5)
;
PNAF = TCOV1/(P50+TCOV1)
OF = (TCOV2/TCRE)**CRPWR
DADT(1) = A(3)*K31+A(2)*K21-A(1)*(K*PNAF*OF+K12+K13)
DADT(2) = A(1)*K12-A(2)*K21
DADT(3) = A(1)*K13-A(3)*K31
;
$ERROR
CP=A(1)/V1
IF (CP.LE.2) TLE2=TAD
; -------- Statistical model -------------------------------------
Y = CP*(1+EPS(1)) + EPS(2)
;
OCOV1 = PNA
OTIM1 = TIME
;
OCOV2 = SECR
OTIM2 = TIME
;
$THETA 6.71034 FIX ; 1. TVCL
$THETA 27.5169 FIX ; 2. TVV1
$THETA 0.301033 FIX ; 3. TVQ
$THETA 156.775 FIX ; 4. TVV2
$THETA 2.19567 FIX ; 5. TVQ2
$THETA 21.2259 FIX ; 6. TVV3
$THETA -0.173523 FIX ; 7. power exponent on creatinine
$THETA 1.77352 FIX ; 8. P50 = PNA50

$OMEGA 0.0656879 FIX ; 1. IIV_CL
$OMEGA 0.00922249 FIX ; 2. IIV_V1
$OMEGA 0 FIX ; 3. IIV_Q
$OMEGA 0.0216515 FIX ; 4. IIV_V2
$OMEGA 0.0190804 FIX ; 5. IIV_Q2
$OMEGA 0.0208852 FIX ; 6. IIV_V3

$OMEGA BLOCK(1) 0.0240382 FIX ; 7. IOV_CL
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME



151

$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME

$SIGMA 0.024069 FIX ; variance PROP res error, initial estimate
$SIGMA 0.0100037 FIX ; variance ADD res error, initial estimate

$ESTIMATION METHOD=1 INTER MAXEVAL=0 PRINT=1 ; estimation method

$TABLE ID TIME CWRES GA PMA AMT TAD TLE2 CP OCC EVID TCRE SECR PNA
NOPRINT ONEHEADER FILE=sdtab-nG



Appendix C

Individual plots of observed and
predicted gentamicin trough
concentration

Figure C.1: Individual plots of observed (DV) and predicted (IPRED) gentamicin
concentration versus time after dose from dataset of study-routine paired samples
with the earlier (study) sample ≥3 mg/L. In some cases there were more than
two samples in a “pair”. Only the information from the study sample (i.e. first
sample) was used to predict the later, i.e. routine concentration(s).



Appendix D

R code for predicting the time
when plasma concentration of
gentamicin goes below 2 mg/L

#(everything after the "#" is a comment)

####################################################################
## R script for the neoGent software
# developed by Eva Germovsek
# 2014
####################################################################
#
#clean workspace
rm(list=ls())
#
#set working directory
setwd("C:/neoGent/RShell")
#
##### read in a .csv file (from e.g. hospital)
## information needed (with order and names of the columns):
# ID,GA(days),GIRL(1=female),DATE(DD/MM/YYYY),TIME(HH:MM),PNA(days),
# WT(g),CREAT(umol/L),RATE(dose/infusion duration,mg/h),AMT(mg),
# DV(mg/L), OCC(=a dose with subsequent gentamicin samples taken)
# e.g.
# ID GA GIRL DATE TIME PNA WT CREAT RATE AMT DV OCC
# 1 226 1 03/09/2013 12:00 1 1770 59 240 8 0 1
# 1 226 1 05/09/2013 00:15 3 1710 59 240 8 0 1
# 1 226 1 05/09/2013 10:11 3 1710 59 0 0 3.4 1
# 1 226 1 06/09/2013 12:29 4 1710 50 240 8 0 2
# 1 226 1 06/09/2013 15:45 4 1710 50 0 0 6.8 2
#
data1 <- read.csv("Patient_data.csv",head=T,skip=0)
#
##################### change the datafile ##########################
#
####### change date and time to time in decimal hours
colnames(data1)[5]<-"TIMEX"
data1$DT <- do.call(paste,c(data1[c("DATE","TIMEX")],sep=" "))
data1$DT <- as.POSIXct(strptime(data1$DT,format="%d/%m/%Y %H:%M",
tz="UTC"))
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TIME2 <- NA
data1$TIME2<-data1$DT[1]
data1$TIME <- as.numeric(difftime(data1$DT,data1$TIME2,units="hours"))
data1<-data1[,-c(4,5,13,14)]
last<-nrow(data1)
lastT<-data1$TIME[last]
#
####### extend the matrix (300 additional rows)
NAs<-matrix(nrow=300-nrow(data1),ncol=ncol(data1))
colnames(NAs)<-colnames(data1)
data<-rbind(data1,NAs)
#
######## TIME(add in dummy time points,every 15mins,up to 72h)
for(i in(nrow(data1)+1):nrow(data)){
if(data$TIME[nrow(data1)]>0)
data$TIME[(nrow(data1)+1):(length(seq((data$TIME[nrow(data1)]
+0.25),lastT+72,0.25))+nrow(data1))]<-seq((data$TIME[nrow(data1)]
+0.25),lastT+72,0.25)

}
#
## remove rows where TIME=NA
# (since TIME only to 72hrs,some rows TIME=NA)
data<-data[complete.cases(data$TIME),]
#
########## extend ID, GA, SEX, WT, CREAT to all columns
data$ID[2:nrow(data)]<-data$ID[1]
data$GA[2:nrow(data)]<-data$GA[1]
data$GIRL[2:nrow(data)]<-data$GIRL[1]
data$WT[2:nrow(data)]<-data$WT[last]
data$CREAT[2:nrow(data)]<-data$CREAT[last]
#
########## replace NAs with zeros
data$AMT[is.na(data$AMT)] <- 0
data$DV[is.na(data$DV)] <- 0
data$RATE[is.na(data$RATE)] <- 0
#
########## EVID
# if AMT-> EVID=1
# if DV-> EVID=0
# if extra dummy time point-> EVID=2
#
for(i in 1:nrow(data)){
if(data$AMT[i]!=0) data$EVID[i]<-1
if(data$DV[i]!=0) data$EVID[i]<-0
if((data$AMT[i]==0)&(data$DV[i]==0)) data$EVID[i]<-2
}
#
########### PNA
# if t>12 -> +1 day PNA
# if t>36 -> +1 day PNA
# if t>60 -> +1 day PNA
#
for(i in (nrow(data1)+1):nrow(data)){
if(data$TIME[i]<(lastT+12)) data$PNA[i]<-data$PNA[last]
if((data$TIME[i]>=(lastT+12))&(data$TIME[i]<(lastT+36)))

data$PNA[i]<-data$PNA[last]+1
if((data$TIME[i]>=(lastT+36))&(data$TIME[i]<(lastT+60)))
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data$PNA[i]<-data$PNA[last]+2
if(data$TIME[i]>=(lastT+60)) data$PNA[i]<-data$PNA[last]+3

}
#
########### PMA
data$PMA <- (data$GA+data$PNA)/7
#
########### TCREA
# formula:Cuzzolin et al (Pediatr Nephrol.2006);
# Rudd et al (Arch Dis Child.1983)
data$TCREA <- (data$PMA*(-2.8488)+166.48)
#
########### OCC
data$OCC[data$EVID==2]<-data$OCC[last]
#
########### MDV = missing data value
data$MDV[data$EVID==0]<-0
data$MDV[data$EVID!=0]<-1
#
########### rearrange the order of the columns
data <- data.frame(data["ID"],data["GA"],data["GIRL"],data["TIME"],
data["PNA"],data["PMA"],data["WT"],data["CREAT"],data["TCREA"],
data["RATE"],data["AMT"],data["DV"],data["EVID"],data["OCC"],
data["MDV"])
#
########### write .csv file
write.csv(data,file="Patient_data-NM.csv",quote=FALSE,row.names=FALSE)
#
#
######################### run NONMEM #############################
cmd<-paste("nmfe73 neoGent.mod neoGent.lst")
shell(cmd)
#
#
############ read the results from NONMEM back into R ############
sdtab<-read.table(file="sdtab-nG",head=TRUE,skip=1)
#
#only look at the last dosing interval
sdtab<-sdtab[(sdtab$OCC>=sdtab$OCC[last]),]
#
# locate the row where CP(plasma conc) goes below 2mg/L first
dtime<-0
dtime[1]<-1
for(i in 2:nrow(sdtab)){
if((sdtab$TLE2[i]!=0) & (sdtab$TLE2[i-1]==0))
dtime[i]<-100
else
dtime[i]<-1
}
sdtab$dtime <- dtime
below2 <- sdtab[sdtab$dtime==100,]
below2 <- below2[,c("ID","TLE2","CP")]
below2$CP<-round(below2$CP,2)
below2$TLE2<-round(below2$TLE2,1)
name<-below2$ID
time<-below2$TLE2
conc<-below2$CP



156

names(below2) <- c("SubjectID","Time(h)","PredConc(mg/L)")
#
#
########################## results ################################
#
datestamp<-Sys.Date()
#
######### a table
write.csv(below2,file=paste("Below_2mgL_","ID",name,"_",
datestamp,".csv",sep=""),quote=F,row.names=F)
#
########## a plot
#remove the dosing rows
sdtab1<-sdtab[sdtab$EVID==2,] # predictions
sdtab2<-sdtab[sdtab$EVID==0,] # observations
#
pdf(paste("Below_2mgL_","ID",name,"_",datestamp,".pdf",sep=""))
plot(sdtab1$TAD,sdtab1$CP, # predictions
main="Prediction of time when conc<2mg/L",
xlab="Time (h)",
ylab="Gentamicin concentration (mg/L)",
cex.lab=1.5,cex.axis=1.5,cex.main=1.5,
xlim=c(0,75),
ylim=c(0,13),
type="n",
)

lines(sdtab1$TAD,sdtab1$CP,col="black",lwd=2)
abline(h=2,lty=3)
par(new=T)
plot(sdtab2$TAD,sdtab2$DV, # observations
col="red",
pch=4,
lwd=2,
axes=F,
xlab="",ylab="",
xlim=c(0,75),
ylim=c(0,13),
)

par(new=F)
# put a legend in the top right corner
legend("topright",
cex = 1.2,

legend = c("observations","predictions"),
col = c("red","black"),
pch = c("x","line"),

)
# put a legend - central, right
legend(50,8,cex = 1.2,bty = "n",legend = paste("Date:",datestamp),)
legend(50,7,cex = 1.2,bty = "n",legend = paste("ID:",name),)
legend(50,6,cex = 1.2,bty = "n",legend = paste("Time =",time,"h"),)
legend(50,5,cex = 1.2,bty = "n",legend = paste("Conc =",conc,"mg/L"),)
dev.off()
######################### end code #################################
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An example output of the
neoGent software

Figure E.1: An example output of the neoGent software.



Appendix F

NONMEM control file for the
final meropenem model

$PROBLEM NeoMero model Germovsek 2015

$INPUT ID STUDY GIRL GAW BWT=DROP DUR AMT RATE DV CSF EVID
WT CREAT CRP PCT PROT GLU LACT PNA THDAY TIME TAD CSFDV
PMA MDV CMT TCREA FREQ ATBDOSE BEFORE HIGHER HIGHCSF
TAD2 B4 RMV WBC NEUT NEUTP LYMPHO LYMHOP RBC

$DATA NeoMero_18092015-CSFlab2.csv IGNORE=@
;GAW (weeks), PNA (days)- day0= date of birth
;GIRL: 0=male, 1=female
;TIME (hrs, time after the first dose),
;TAD (hrs, time after the last dose)
;RATE (mg/h), AMT (mg), DV=meropenem conc (mg/L)
;EVID: 0=DV measurement, 1=dose given
;WT (kg)
;
$SUBROUTINE ADVAN7
; 3-comp model

$MODEL COMP=(PL) ; Plasma - central cmt
COMP=(PERIPH) ; Peripheral cmt plasma
COMP=(CSF) ; Cerebrospinal fluid

$PK
; Two-compartment plasma model with additional CSF compartment
PMA50 = THETA(7)
HILL = THETA(8)
MF = PMA**HILL/(PMA**HILL+PMA50**HILL)
SCR = CREAT
; for when SCr is NA, i.e. -99
IF(SCR.LE.0) SCR = TCREA
OF = (SCR/TCREA)**(THETA(9))

LACT2 = LACT
; for when lactate is NA, i.e. -99
IF(LACT2.LT.0) LACT2 = 1.8
; uptake into the CSF
UPTK = 1/(1+EXP(THETA(10)*(1+THETA(11)*(LACT2-1.8))))
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TVCL = THETA(1)*OF*MF*(WT/70)**(0.632) ; typical value of CL
TVV1 = THETA(2)*(WT/70) ; typical value of V1
TVQ = THETA(3)*(WT/70)**(0.75) ; ty. value of Q
TVV2 = THETA(4)*(WT/70) ; ty. value of V2
TVCLCSF = THETA(5)*(WT/70)**(0.75) ; ty. value of CL_CSF
TVVCSF = THETA(6)*(WT/70) ; ty. value of V_CSF

CL = TVCL*EXP(ETA(1)) ; individual value of CL
V1 = TVV1*EXP(ETA(2)) ; individual value of V1
Q = TVQ*EXP(ETA(3)) ; individual value of Q
V2 = TVV2*EXP(ETA(4)) ; individual value of V2
CLCSF = TVCLCSF*EXP(ETA(5)) ; individual value of CL_CSF
VCSF = TVVCSF*EXP(ETA(6)) ; individual value of V_CSF
;
K10 = CL/V1 ; rate constants
K12 = Q/V1
K13 = (CLCSF/V1)*0.98*UPTK ; k into the CSF
K21 = Q/V2
K31 = CLCSF/VCSF ; k out of the CSF

$ERROR
; -------- Statistical model -------------------------------------
IPRED=0
; Plasma
IF(CMT==1) IPRED = A(1)/V1
IF(CMT==1) Y = IPRED*(1+EPS(1)) + EPS(2)

; cerebrospinal fluid
IF(CMT==3) IPRED = A(3)/VCSF
IF(CMT==3) Y = IPRED*(1+EPS(3))

$THETA (0,16.585) ; 1. TVCL (lower bound,initial estimate)
$THETA (0,37.7867) ; 2. TVV (lower bound,initial estimate)
$THETA (0,0.691854) ; 3. TVQ (lower bound,initial estimate)
$THETA (0,124.191) ; 4. TVV2 (lower bound,initial estimate)
$THETA (0,0.0128436) ; 5. TVCL CSF
$THETA 0.15 FIX ; 6. TVV of CSF
$THETA 55.4 FIX ; 7. PMA50
$THETA 3.33 FIX ; 8. HILL
$THETA -0.240546 ; 9. power exponent on creatinine
$THETA 1.90382 ; 10. uptake into CSF; logit
$THETA -0.167076 ; 11. lactate; logit

$OMEGA BLOCK(2)
0.279253 ; variance for ETA(1), initial estimate
0.125443 0.0933118 ; COvariance ETA(1)-ETA(2), var for ETA(2)

$OMEGA 0 FIX
$OMEGA 0 FIX
$OMEGA 0 FIX ; eta5, Q:pl-csf
$OMEGA 0 FIX ; eta6, V:csf

$SIGMA 0.152682 ; variance PROP res error, initial estimate
$SIGMA 0.00803814 ; variance add res error, initial estimate
$SIGMA 0.851054 ; variance PROP res error, initial estimate

$ESTIMATION METHOD=1 INTER MAXEVAL=9999 PRINT=1 ; estimation method
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$COVARIANCE

$TABLE ID STUDY GIRL GAW AMT RATE EVID MDV TIME TAD DV CSF CSFDV PNA
PMA WT CREAT TCREA SCR CRP PCT PROT GLU LACT FREQ ATBDOSE BEFORE
HIGHER HIGHCSF CMT IPRED CWRES ETA(1) ETA(2) ETA(3) ETA(4) CL V1
Q V2 CLCSF VCSF LACT2 UPTK OF WBC NEUT NEUTP LYMPHO LYMHOP RBC
NOPRINT ONEHEADER FILE=sdtab72



Appendix G

NONMEM control file for the
final item response theory model

$PROBLEM IRT neoGent PD data
$INPUT ID PNA TIME ITEM DV OCC FIRST TEND
$DATA IRTdata_29.07.2015.csv IGNORE=@

$PRED

;--------------------Hidden variable model-----------------------

TIME0 = TIME - 1
MU_1=THETA(16)
MU_2=THETA(17)
BASELINE=THETA(16)+ETA(1)
SLP=THETA(17)+ETA(2)
PSI=BASELINE+SLP*TIME0

MDIS=THETA(18) ;missing DISPL3
MDIF=THETA(19) ;missing DIFPL3
MGUE = THETA(20) ; missing MGUE for items 1 and 2
IF(ITEM.EQ.3) MGUE = THETA(21) ; missing MGUE for item 3
IF(ITEM.GT.3) MGUE = THETA(22) ; missing MGUE for items 4 and 5
IF(OCC.EQ.1) MGUE=THETA(23) ; missing MGUE for occasion 1

;---------------Item parameter selection-------------------------

IF(ITEM.EQ.1) THEN
DIS=THETA(1) ;I1DISPL3
DIF=THETA(2) ;I1DIFPL3
GUE=THETA(3) ;I1GUEPL3
ENDIF

IF(ITEM.EQ.2) THEN
DIS=THETA(4) ;I2DISPL3
DIF=THETA(5) ;I2DIFPL3
GUE=THETA(6) ;I2GUEPL3
ENDIF

IF(ITEM.EQ.3) THEN
DIS=THETA(7) ;I3DISPL3
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DIF=THETA(8) ;I3DIFPL3
GUE=THETA(9) ;I3GUEPL3
ENDIF

IF(ITEM.EQ.4) THEN
DIS=THETA(10) ;I4DISPL3
DIF=THETA(11) ;I4DIFPL3
GUE=THETA(12) ;I4GUEPL3
ENDIF

IF(ITEM.EQ.5) THEN
DIS=THETA(13) ;I5DISPL3
DIF=THETA(14) ;I5DIFPL3
GUE=THETA(15) ;I5GUEPL3
ENDIF

;----------3 parameter logit model implementation------------------

P_NM = MGUE+(1-MGUE)*EXP(MDIS*(PSI-MDIF))/(1+EXP(MDIS*(PSI-MDIF)))
P1 = GUE+(1-GUE)*EXP(DIS*(PSI-DIF))/(1+EXP(DIS*(PSI-DIF)))
P0 = 1-P1

;----------------Response probability prediction-------------------

IF(DV.EQ.-1) Y=-2*LOG(1-P_NM)
IF(DV.EQ.0) Y=-2*LOG(P_NM) -2*LOG(P0)
IF(DV.EQ.1) Y=-2*LOG(P_NM) -2*LOG(P1)

;----------------Simulation code---------------------------------

IF(ICALL.EQ.4) THEN
CALL RANDOM (2,R)
IF(P_NM.LT.R) THEN

SDV = -1
ELSE

CALL RANDOM (2,R)
SDV=0
IF(P1.GT.R) SDV=1

ENDIF
DV=SDV

ENDIF

$ESTIMATION METHOD=SAEM LAPLACE -2LL NOABORT PRINT=1
MSFO=msf_run1 AUTO=1

$ESTIMATION METHOD=IMP NITER=10 EONLY=1 ISAMPLE=1000

$COV PRINT=E

$THETA (0,0.484642) ; 1 I1DISPL3
$THETA 2.97139 ; 2 I1DIFPL3
$THETA 0 FIX ; 3 I1GUEPL3
$THETA (0,0.726877) ; 4 I2DISPL3
$THETA 2.16772 ; 5 I2DIFPL3
$THETA 0 FIX ; 6 I2GUEPL3
$THETA (0,0.289182) ; 7 I3DISPL3
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$THETA 0.84648 ; 8 I3DIFPL3
$THETA 0 FIX ; 9 I3GUEPL3
$THETA (0,0.912074) ; 10 I4DISPL3
$THETA 1.44461 ; 11 I4DIFPL3
$THETA 0 FIX ; 12 I4GUEPL3
$THETA (0,0.996759) ; 13 I5DISPL3
$THETA 0.0641173 ; 14 I5DIFPL3
$THETA 0 FIX ; 15 I5GUEPL3
$THETA 0 FIX ; 16 baseline
$THETA -0.606681 ; 17 slope
$THETA (0,1.04032) ; 18 missing DISPL3
$THETA -2.11862 ; 19 missing DIFPL3
$THETA (0,0.0659003,1) ; 20 MGUEPL3 I1,2
$THETA (0,0.579741,1) ; 21 MGUEPL3 I3
$THETA (0,0.380483,1) ; 22 MGUEPL3 I4,5
$THETA (0,0.509362,1) ; 23 MGUEPL3 OCC1

$OMEGA 1 FIX ; OMbaseline
$OMEGA 0.227487 ; OMslope

$TABLE ID PNA TIME ITEM DV OCC PSI BASELINE SLP FIRST TEND
ONEHEADER NOPRINT FILE=tab16b

Figure G.1: Excerpt of the data used for the IRT modelling.
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Colophon

This document was set in Computer Modern typeface using LATEX and BibTEX,

composed with the TEXMAKER text editor.
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[121] Medelĺın-Garibay SE, Rueda-Naharro A, Peña-Cabia S, Garćıa B, Romano-
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[125] Simon V, Mösinger E, Malerczy V. Pharmacokinetic studies of tobramycin

and gentamicin. Antimicrob Agents Chemother. 1973;3(4):445–50.

[126] Walker J, Wise R, Mitchard M. The pharmacokinetics of amikacin and gen-

tamicin in volunteers: a comparison of individual differences. J Antimicrob

Chemother. 1979;5(1):95–9.



BIBLIOGRAPHY 179

[127] Demczar DJ, Nafziger AN, Bertino J. Pharmacokinetics of gentamicin at

traditional versus high doses: implications for once-daily aminoglycoside

dosing. Antimicrob Agents Chemother. 1997;41(5):1115–9.

[128] Gilman T, Brunnemann S, Segal J. Comparison of population pharmacoki-

netic models for gentamicin in spinal cord-injured and able-bodied patients.

Antimicrob Agents Chemother. 1993;37(1):93–9.

[129] Wang C, Peeters MY, Allegaert K, van Oud-Alblas HJB, Krekels EH, Tib-

boel D, et al. A bodyweight-dependent allometric exponent for scaling

clearance across the human life-span. Pharm Res. 2012;29(6):1570–81.

[130] De Cock RF, Allegaert K, Schreuder MF, Sherwin CM, de Hoog M, van den

Anker JN, et al. Maturation of the glomerular filtration rate in neonates,

as reflected by amikacin clearance. Clin Pharmacokinet. 2012;51(2):105–17.

[131] Ince I, de Wildt SN, Wang C, Peeters MY, Burggraaf J, Jacqz-Aigrain E,

et al. A novel maturation function for clearance of the cytochrome P450 3A

substrate midazolam from preterm neonates to adults. Clin Pharmacokinet.

2013;52(7):555–65.

[132] Ding J, Wang Y, Lin W, Wang C, Zhao L, Li X, et al. A Population Phar-

macokinetic Model of Valproic Acid in Pediatric Patients with Epilepsy: A

Non-Linear Pharmacokinetic Model Based on Protein-Binding Saturation.

Clin Pharmacokinet. 2015;54(3):305–17.

[133] Kimura T, Sunakawa K, Matsuura N, Kubo H, Shimada S, Yago K. Pop-

ulation pharmacokinetics of arbekacin, vancomycin, and panipenem in

neonates. Antimicrob Agents Chemother. 2004;48(4):1159–67.

[134] Foissac F, Bouazza N, Valade E, De Sousa Mendes M, Fauchet F, Benaboud

S, et al. Prediction of drug clearance in children. J Clin Pharmacol. 2015;.



BIBLIOGRAPHY 180

[135] Robbie GJ, Zhao L, Mondick J, Losonsky G, Roskos LK. Population

pharmacokinetics of palivizumab, a humanized anti-respiratory syncytial

virus monoclonal antibody, in adults and children. Antimicrob Agents

Chemother. 2012;56(9):4927–36.

[136] Savic RM, Cowan MJ, Dvorak CC, Pai SY, Pereira L, Bartelink IH, et al.

Effect of weight and maturation on busulfan clearance in infants and small

children undergoing hematopoietic cell transplantation. Biol Blood Marrow

Transplant. 2013;19(11):1608–14.

[137] R Core Team. R: A Language and Environment for Statistical Computing.

Vienna, Austria; 2014. Available from: http://www.R-project.org/.

[138] Wickham H. ggplot2: elegant graphics for data analysis. Springer Science

& Business Media; 2009.

[139] International conference on harmonisation of technical re-

quirements for registration of pharmaceuticals for human use

(ICH). Clinical Investigation of Medicinal Products in the Pe-

diatric Population; 2000. http://www.ich.org/products/

guidelines/efficacy/efficacy-single/article/

clinical-investigation-of-medicinal-products-in-the-\

pediatric-population.html, last accessed 05/09/2015.

[140] Mahmood I, Staschen CM, Goteti K. Prediction of drug clearance in chil-

dren: an evaluation of the predictive performance of several models. AAPS

J. 2014;16(6):1334–43.

[141] Mahmood I. Evaluation of sigmoidal maturation and allometric models:

prediction of propofol clearance in neonates and infants. Am J Ther.

2013;20(1):21–8.

[142] Lopez SA, Mulla H, Durward A, Tibby SM. Extended-interval gentamicin:

http://www.R-project.org/
http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/clinical-investigation-of-medicinal-products-in-the-\ pediatric-population.html
http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/clinical-investigation-of-medicinal-products-in-the-\ pediatric-population.html
http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/clinical-investigation-of-medicinal-products-in-the-\ pediatric-population.html
http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/clinical-investigation-of-medicinal-products-in-the-\ pediatric-population.html


BIBLIOGRAPHY 181

population pharmacokinetics in pediatric critical illness. Pediatr Crit Care

Med. 2010;11(2):267–74.

[143] Ahsman MJ, Hanekamp M, Wildschut ED, Tibboel D, Mathot RA. Popula-

tion pharmacokinetics of midazolam and its metabolites during venoarterial

extracorporeal membrane oxygenation in neonates. Clin Pharmacokinet.

2010;49(6):407–19.

[144] Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug

Resist Updat. 2010;13(6):151–71.

[145] Craig WA. The pharmacology of meropenem, a new carbapenem antibiotic.

Clin Infect Dis. 1997;24(Supplement 2):S266–S275.

[146] Weinstein MJ, Luedemann GM, Oden EM, Wagman GH, Rosselet JP, Mar-

quez JA, et al. Gentamicin, a new antibiotic complex from micromonospora.

J Med Chem. 1963;6(4):463–4.

[147] Gyselynck AM, Forrey A, Cutler R. Pharmacokinetics of gentamicin: distri-

bution and plasma and renal clearance. J Infect Dis. 1971;124(Supplement

1):S70–6.

[148] McCracken GH. Gentamicin in the neonatal period. Am J Dis Child.

1970;120(6):524–33.

[149] NPSA, National Patient Safety Agency. Safer use of intravenous gentamicin

for neonates; 2010. Available from http://www.nrls.npsa.nhs.uk/

alerts/?entryid45=66271, last accessed 25/10/2014.

[150] Valitalo PA, van den Anker JN, Allegaert K, de Cock RF, de Hoog M,

Simons SH, et al. Novel model-based dosing guidelines for gentamicin and

tobramycin in preterm and term neonates. J Antimicrob Chemother. 2015;p.

dkv052.

http://www.nrls.npsa.nhs.uk/alerts/?entryid45=66271
http://www.nrls.npsa.nhs.uk/alerts/?entryid45=66271


BIBLIOGRAPHY 182

[151] Forge A, Schacht J. Aminoglycoside antibiotics. Audiol Neurootol.

2000;5(1):3–22.

[152] Martinez-Salgado C, Lopez-Hernandez FJ, Lopez-Novoa JM. Glomeru-

lar nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol.

2007;223(1):86–98.

[153] Touw DJ, Westerman EM, Sprij AJ. Therapeutic drug monitoring of amino-

glycosides in neonates. Clin Pharmacokinet. 2009;48(2):71–88.

[154] Rho JP. Principles of Antimicrobial Therapy. In: Norman D, Yoshikawa

T, editors. Infectious Disease in the Aging: A Clinical Handbook. Humana

Press; 2009. p. 43–59.

[155] Gabrielsson J, Weiner D. Aminoglycosides. In: Root RK, Waldvogel F,

Corey L, Stamm WE, editors. Clinical Infectious Diseases: A Practical Ap-

proach. Oxford University Press, Inc.; 1999. p. 273–84.

[156] Rudin A, Healey A, Phillips CA, Gump DW, Forsyth BR. Antibac-

terial activity of gentamicin sulfate in tissue culture. Appl Microbiol.

1970;20(6):989–90.

[157] Pacifici GM. Clinical pharmacokinetics of aminoglycosides in the neonate:

a review. Eur J Clin Pharmacol. 2009;65(4):419–27.

[158] Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA,

et al. Changes in pathogens causing early-onset sepsis in very-low-birth-

weight infants. N Engl J Med. 2002;347(4):240–7.

[159] Stoll BJ, Hansen NI, Sanchez PJ, Faix RG, Poindexter BB, Van Meurs KP,

et al. Early onset neonatal sepsis: the burden of group B Streptococcal and

E. coli disease continues. Pediatrics. 2011;127(5):817–26.



BIBLIOGRAPHY 183

[160] Turner MA, Lewis S, Hawcutt DB, Field D. Prioritising neonatal medicines

research: UK Medicines for Children Research Network scoping survey.

BMC Pediatr. 2009;9(1):50.

[161] Cantey JB, Wozniak PS, Sánchez PJ. Prospective surveillance of antibiotic

use in the neonatal intensive care unit: results from the SCOUT study.

Pediatr Infect Dis J. 2015;34(3):267–72.

[162] Begg EJ, Barclay ML, Kirkpatrick CM. The therapeutic monitoring of

antimicrobial agents. Br J Clin Pharmacol. 2001;52 Suppl 1:35S–43S.

[163] Quiros Y, Vicente-Vicente L, Morales AI, Lopez-Novoa JM, Lopez-

Hernandez FJ. An integrative overview on the mechanisms underlying the

renal tubular cytotoxicity of gentamicin. Toxicol Sci. 2011;119(2):245–56.

[164] Ali BH. Gentamicin nephrotoxicity in humans and animals: some recent

research. Gen Pharmacol. 1995;26(71):1477–87.

[165] de Hoog M, van den Anker JN. Therapeutic drug monitoring of aminogly-

cosides in neonates. Clin Pharmacokinet. 2009;48(5):343–4; author reply

344–5.

[166] Prayle A, Watson A, Fortnum H, Smyth A. Side effects of aminoglycosides

on the kidney, ear and balance in cystic fibrosis. Thorax. 2010;65(7):654–8.

[167] Selimoglu E. Aminoglycoside-Induced Ototoxicity. Curr Pharm Des.

2007;13(1):119–26.

[168] Shahid M, Cooke R. Is a once daily dose of gentamicin safe and effec-

tive in the treatment of uti in infants and children? Arch Dis Child.

2007;92(9):823–4.

[169] Huth ME, Ricci AJ, Cheng AG. Mechanisms of aminoglycoside ototoxicity

and targets of hair cell protection. Int J Otolaryngol. 2011;31(6):937861, 19

pages.



BIBLIOGRAPHY 184

[170] Zimmerman E, Lahav A. Ototoxicity in preterm infants: effects of genetics,

aminoglycosides, and loud environmental noise. J Perinatol. 2013;33(1):3–8.

[171] Bitner-Glindzicz M, Rahman S. Ototoxicity caused by aminoglycosides.

BMJ. 2007 10;335(7624):784–5.

[172] Johnson RF, Cohen AP, Guo Y, Schibler K, Greinwald JH. Genetic mu-

tations and aminoglycoside-induced ototoxicity in neonates. Otolaryngol

Head Neck Surg. 2010;142(5):704–7.

[173] Ealy M, Lynch KA, Meyer NC, Smith RJH. The prevalence of mitochon-

drial mutations associated with aminoglycoside-induced sensorineural hear-

ing loss in an NICU population. Laryngoscope. 2011;121(6):1184–6.

[174] Pokorna P, Martinkova J, Zahora J, Selke-Krulichova I, Chladek J. Thera-

peutic Drug Monitoring of Gentamicin in Neonates Critically Ill at the 1st

Week of Life; 2008.

[175] Siber GR, Echeverria P, Smith AL, Paisley JW, Smith DH. Pharmacokinet-

ics of gentamicin in children and adults. J Infect Dis. 1975;132(6):637–51.

[176] Triggs E, Charles B. Pharmacokinetics and therapeutic drug monitoring of

gentamicin in the elderly. Clin Pharmacokinet. 1999;37(4):331–41.

[177] Dersch-Mills D, Akierman A, Alshaikh B, Yusuf K. Validation of a Dosage

Individualization Table for Extended-Interval Gentamicin in Neonates. Ann

Pharmacother. 2012;46(7-8):935–42.

[178] Dersch-Mills D, Akierman A, Alshaikh B, Sundaram A, Yusuf K. Perfor-

mance of a dosage individualization table for extended interval gentamicin

in neonates beyond the first week of life. J Matern Fetal Neonatal Med.

2015;(ahead-of-print):1–6.



BIBLIOGRAPHY 185

[179] Stickland MD, Kirkpatrick CM, Begg EJ, Duffull SB, Oddie SJ, Darlow

BA. An extended interval dosing method for gentamicin in neonates. J

Antimicrob Chemother. 2001;48(6):887–93.

[180] Laskin OL, Longstreth JA, Smith CR, Lietman PS. Netilmicin and gen-

tamicin multidose kinetics in normal subjects. Clin Pharmacol Ther.

1983;34(5):644–50.

[181] Burton ME, Brater DC, Chen PS, Day RB, Huber PJ, Vasko MR. A

Bayesian feedback method of aminoglycoside dosing. Clin Pharmacol Ther.

1985;37(3):349–57.

[182] Rao SC, Srinivasjois R, Hagan R, Ahmed M. One dose per day compared to

multiple doses per day of gentamicin for treatment of suspected or proven

sepsis in neonates. Cochrane Database Syst Rev. 2011;11:CD005091.

[183] Chirico G, Barbieri F, Chirico C. Antibiotics for the newborn. J Matern

Fetal Neonatal Med. 2009;22 Suppl 3:46–9.

[184] Alsaedi SA. Once daily gentamicin dosing in full term neonates. Saudi Med

J. 2003;24(9):978–81.

[185] Darmstadt GL, Miller-Bell M, Batra M, Law P, Law K. Extended-interval

dosing of gentamicin for treatment of neonatal sepsis in developed and de-

veloping countries. J Health Popul Nutr. 2008;26(2):163–82.

[186] BNFC, British National Formulary for Children. Gentam-

icin; 2015. http://www.evidence.nhs.uk/formulary/

bnfc/current/5-infections/51-antibacterial-drugs/

514-aminoglycosides/gentamicin, last accessed on 06/09/2015.

[187] The European Committee on Antimicrobial Susceptibility Testing (EU-

CAST). MIC distributions for Escherichia coli when treated with gentam-

http://www.evidence.nhs.uk/formulary/bnfc/current/5-infections/51-antibacterial-drugs/514-aminoglycosides/gentamicin
http://www.evidence.nhs.uk/formulary/bnfc/current/5-infections/51-antibacterial-drugs/514-aminoglycosides/gentamicin
http://www.evidence.nhs.uk/formulary/bnfc/current/5-infections/51-antibacterial-drugs/514-aminoglycosides/gentamicin


BIBLIOGRAPHY 186

icin; 2015. http://mic.eucast.org/Eucast2/regShow.jsp?Id=

908, last accessed on 06/09/2015.

[188] The European Committee on Antimicrobial Susceptibility Testing (EU-

CAST). Breakpoint tables for interpretation of MICs and zone diameters.

Version 5.0; 2015. www.eucast.org/fileadmin/src/media/

PDFs/EUCAST_files/Breakpoint_tables/v_5.0_Breakpoint_

Table_01.pdf, last accessed on 29/12/2015.

[189] NICE, National Institute for Health and Care Excellence. NICE guide-

lines: Therapeutic drug monitoring for gentamicin; 2012. http:

//www.nice.org.uk/guidance/CG149/chapter/1-Guidance#

therapeutic-drug-monitoring-for-gentamicin, last accessed

06/09/2015.

[190] Gordon RC, Regamey C, Kirby WM. Serum protein binding of the amino-

glycoside antibiotics. Antimicrob Agents Chemother. 1972;2(3):214–216.

[191] Touw DJ, Proost JH, Stevens R, Lafeber HN, van Weissenbruch MM. Gen-

tamicin pharmacokinetics in preterm infants with a patent and a closed

ductus arteriosus. Pharm World Sci. 2001;23(5):200–4.

[192] Gal P, Gilman JT. Drug disposition in neonates with patent ductus arte-

riosus. Ann Pharmacother. 1993;27(11):1383–8.

[193] Williams BS, Ransom JL, Gal P, Carlos RQ, Smith M, Schall SA. Gentam-

icin pharmacokinetics in neonates with patent ductus arteriosus. Crit Care

Med. 1997;25(2):273–5.

[194] Ariano RE, Sitar DS, Davi M, Zelenitsky SA. Bayesian Pharmacokinetic

Analysis of a Gentamicin Nomogram in Neonates: A Retrospective Study.

Current therapeutic research, clinical and experimental. 2003;64(3):178–88.

http://mic.eucast.org/Eucast2/regShow.jsp?Id=908
http://mic.eucast.org/Eucast2/regShow.jsp?Id=908
www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_5.0_Breakpoint_Table_01.pdf
www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_5.0_Breakpoint_Table_01.pdf
www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_5.0_Breakpoint_Table_01.pdf
http://www.nice.org.uk/guidance/CG149/chapter/1-Guidance#therapeutic-drug-monitoring-for-gentamicin
http://www.nice.org.uk/guidance/CG149/chapter/1-Guidance#therapeutic-drug-monitoring-for-gentamicin
http://www.nice.org.uk/guidance/CG149/chapter/1-Guidance#therapeutic-drug-monitoring-for-gentamicin


BIBLIOGRAPHY 187

[195] Murphy JE, Austin ML, Frye RF. Evaluation of gentamicin pharmacoki-

netics and dosing protocols in 195 neonates. Am J Health Syst Pharm.

1998;55(21):2280–8.

[196] Kelman AW, Thomson AH, Whiting B, Bryson SM, Steedman DA, Mawer

GE, et al. Estimation of gentamicin clearance and volume of distribution

in neonates and young children. Br J Clin Pharmacol. 1984;18(5):685–92.

[197] Grasela T, Ott R, Faix R. Population pharmacokinetics of gentamicin in

neonates using routine clinical data; 1985. Abstr, American Society for

Clinical Pharmacology and Therapeutics, 86th Annual Meeting.

[198] Jensen PD, Edgren BE, Brundage RC. Population Pharmacokinetics of

Gentamicin in Neonates Using a Nonlinear, Mixed-Effects Model. Pharma-

cotherapy. 1992;12(3):178–82.

[199] Weber W, Kewitz G, Rost K, Looby M, Nitz M, Harnisch L. Population

kinetics of gentamicin in neonates. Eur J Clin Pharmacol. 1993;44(1):S23–5.

[200] Fuchs A, Guidi M, Giannoni E, Werner D, Buclin T, Widmer N, et al. Pop-

ulation pharmacokinetic study of gentamicin in a large cohort of premature

and term neonates. Br J Clin Pharmacol. 2014;78(5):1090–101.

[201] Heimann G. Renal toxicity of aminoglycosides in the neonatal period. Pe-

diatr Pharmacol (New York). 1982;3(3-4):251–257.

[202] Price CP, Finney H. Developments in the assessment of glomerular filtration

rate. Clin Chim Acta. 2000;297(1-2):55–66.

[203] Marshall SK William J Bangert. The kidneys. In: Marshall WJ, Bangert

SK, editors. Clinical Chemistry. 6th ed. Elsevier; 2008. p. 71.

[204] Stevens LA, Stoycheff N. Standardization of serum creatinine and estimated

GFR in the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis.

2008;51(4 Suppl 2):S77–82.



BIBLIOGRAPHY 188

[205] Hartmann AE. Nitrogen Metabolites and Renal Function. In: McClatchey

KD, editor. Clinical Laboratory Medicine. 2nd ed. Lippicott Williams and

Wilkins; 2002. p. 378–391.

[206] Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K. Estimating equations

for glomerular filtration rate in the era of creatinine standardization: a

systematic review. Ann Intern Med. 2012;156(11):785–95, W–270–8.

[207] Swan SK. The search continues–an ideal marker of GFR. Clin Chem.

1997;43(6 Pt 1):913–4.

[208] Risch L, Huber AR. Assessing glomerular filtration rate in renal transplant

recipients by estimates derived from serum measurements of creatinine and

cystatin C. Clin Chim Acta. 2005;356(1-2):204–11.

[209] Andersen TB, Eskild-Jensen A, Frokiaer J, Brochner-Mortensen J. Measur-

ing glomerular filtration rate in children; can cystatin C replace established

methods? A review. Pediatr Nephrol. 2009;24(5):929–41.

[210] Peake M, Whiting M. Measurement of serum creatinine–current status and

future goals. Clin Biochem Rev. 2006;27(4):173–84.

[211] Allegaert K, Kuppens M, Mekahli D, Levtchenko E, Vanstapel F, Vanhole

C, et al. Creatinine reference values in ELBW infants: impact of quan-

tification by Jaffe or enzymatic method. J Matern Fetal Neonatal Med.

2012;25(9):1678–81.

[212] Hosten AO. BUN and Creatinine. In: Walker HK, Hall WD, Hurst JW,

editors. Clinical Methods: The History, Physical, and Laboratory Exami-

nations. 3rd ed.; 1990. p. 874–8.

[213] Herget-Rosenthal S, Bokenkamp A, Hofmann W. How to estimate GFR-

serum creatinine, serum cystatin C or equations? Clin Biochem. 2007;40(3-

4):153–61.



BIBLIOGRAPHY 189

[214] Boer DP, de Rijke YB, Hop WC, Cransberg K, Dorresteijn EM. Reference

values for serum creatinine in children younger than 1 year of age. Pediatr

Nephrol. 2010;25(10):2107–13.

[215] Bariciak E, Yasin A, Harrold J, Walker M, Lepage N, Filler G. Preliminary

reference intervals for cystatin C and beta-trace protein in preterm and term

neonates. Clin Biochem. 2011;44(13):1156–9.

[216] Schwartz GJ, Work DF. Measurement and estimation of GFR in children

and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.

[217] Narvaez-Sanchez R, Gonzalez L, Salamanca A, Silva M, Rios D, Arevalo S,

et al. Cystatin C could be a replacement to serum creatinine for diagnos-

ing and monitoring kidney function in children. Clin Biochem. 2008;41(7-

8):498–503.

[218] Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum

creatinine. Nephron. 1976;16(1):31–41.

[219] Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al.

Using standardized serum creatinine values in the modification of diet in

renal disease study equation for estimating glomerular filtration rate. Ann

Intern Med. 2006;145(4):247–54.

[220] Florkowski CM, Chew-Harris JS. Methods of Estimating GFR - Different

Equations Including CKD-EPI. Clin Biochem Rev. 2011;32(2):75–9.

[221] Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concen-

tration for estimating glomerular filtration rate in infants, children, and

adolescents. Pediatr Clin North Am. 1987;34(3):571–90.

[222] Aperia A, Broberger O, Elinder G, Herin P, Zetterstrom R. Postnatal devel-

opment of renal function in pre-term and full-term infants. Acta Paediatr

Scand. 1981;70(2):183–7.



BIBLIOGRAPHY 190

[223] Miall LS, Henderson MJ, Turner AJ, Brownlee KG, Brocklebank JT, Newell

SJ, et al. Plasma creatinine rises dramatically in the first 48 hours of life in

preterm infants. Pediatrics. 1999;104(6):e76.

[224] Pottel H, Vrydags N, Mahieu B, Vandewynckele E, Croes K, Martens F. Es-

tablishing age/sex related serum creatinine reference intervals from hospital

laboratory data based on different statistical methods. Clin Chim Acta.

2008;396(1-2):49–55.

[225] Finney H, Newman DJ, Thakkar H, Fell JM, Price CP. Reference ranges

for plasma cystatin C and creatinine measurements in premature infants,

neonates, and older children. Arch Dis Child. 2000;82(1):71–5.

[226] Cuzzolin L, Fanos V, Pinna B, di Marzio M, Perin M, Tramontozzi P, et al.

Postnatal renal function in preterm newborns: a role of diseases, drugs and

therapeutic interventions. Pediatr Nephrol. 2006;21(7):931–8.

[227] Rudd PT, Hughes EA, Placzek MM, Hodes DT. Reference ranges for plasma

creatinine during the first month of life. Arch Dis Child. 1983;58(3):212–5.

[228] Bueva A, Guignard JP. Renal function in preterm neonates. Pediatr Res.

1994;36(5):572–7.

[229] Guignard JP, Drukker A. Why do newborn infants have a high plasma

creatinine? Pediatrics. 1999;103(4):e49.

[230] Manzar S, Al-Umran K, Al-Awary BH, Al-Faraidy A. Changes in plasma

creatinine in first 72 hours of life. Arch Dis Child Fetal Neonatal Ed.

2001;85(2):F146–7.

[231] Feldman H, Guignard JP. Plasma creatinine in the first month of life. Arch

Dis Child. 1982;57(2):123–6.



BIBLIOGRAPHY 191

[232] Giapros V, Papadimitriou P, Challa A, Andronikou S. The effect of in-

trauterine growth retardation on renal function in the first two months of

life. Nephrol Dial Transplant. 2007;22(1):96–103.

[233] Schlebusch H, Liappis N, Kalina E, Klein C. High Sensitive CRP and

Creatinine: Reference Intervals from Infancy to Childhood. J Lab Med.

2002;26(5-6):341–6.

[234] Kim SM, Ko JH, Shim EJ, Lee DH, J CD, Kim DH, et al. Serum creatinine,

blood urea nitrogen change in low birth weight infants during their first days

of life. Korean J Perinatol. 2008;19(2):181–9.

[235] Ali AS, Farouq MF, Al-Faify KA. Pharmacokinetic approach for optimizing

gentamicin use in neonates during the first week of life. Indian J Pharmacol.

2012;44(1):36.

[236] Lannigan R, Thomson A. Evaluation of 22 Neonatal Gentamicin Dosage

Protocols Using a Bayesian Approach. Paediatr Perinat Drug Ther.

2001;4(3):92–100.

[237] Rastogi A, Agarwal G, Pyati S, Pildes RS. Comparison of two gentamicin

dosing schedules in very low birth weight infants. Pediatr Infect Dis J.

2002;21(3):234–240.

[238] Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)–a Perl

module for NONMEM related programming. Comput Methods Programs

Biomed. 2004;75(2):85–94.

[239] Jonsson EN, Karlsson MO. Xpose–an S-PLUS based population pharma-

cokinetic/pharmacodynamic model building aid for NONMEM. Comput

Methods Programs Biomed. 1999;58(1):51–64.

[240] Sheiner LB, Beal SL. Some suggestions for measuring predictive perfor-

mance. J Pharmacokinet Biopharm. 1981;9(4):503–512.



BIBLIOGRAPHY 192

[241] Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes esti-

mates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.

[242] Schentag J, Jusko W. Renal clearance and tissue accumulation of gentam-

icin. Clin Pharmacol Ther. 1977;22(3):364–70.

[243] Barker CI, Germovsek E, Hoare RL, Lestner JM, Lewis J, Standing JF.

Pharmacokinetic/pharmacodynamic modelling approaches in paediatric in-

fectious diseases and immunology. Adv Drug Deliv Rev. 2014;73:127–39.

[244] Dong Y, Speer CP. Late-onset neonatal sepsis: recent developments. Arch

Dis Child Fetal Neonatal Ed. 2015;100(3):F257–63.

[245] Kim KS. Acute bacterial meningitis in infants and children. Lancet Infect

Dis. 2010;10(1):32–42.

[246] BNFC, British National Formulary for Children. Meropenem;

2015. https://www.evidence.nhs.uk/formulary/bnfc/

current/5-infections/51-antibacterial-drugs/

512-cephalosporins-carbapenems-and-other-beta-lactams/

5122-carbapenems/meropenem, last accessed on 09/10/2015.

[247] Blumer JL. Meropenem: evaluation of a new generation carbapenem. Int J

Antimicrob Agents. 1997;8(2):73–92.

[248] Zhanel GG, Johanson C, Embil JM, Noreddin A, Gin A, Vercaigne L, et al.

Ertapenem: review of a new carbapenem. Expert Rev Anti Infect Ther.

2005;3(1):23–39.

[249] Nicolau DP. Pharmacokinetic and pharmacodynamic properties of

meropenem. Clin Infect Dis. 2008;47(Supplement 1):S32–S40.

[250] Mattoes HM, Kuti JL, Drusano GL, Nicolau DP. Optimizing antimicro-

bial pharmacodynamics: dosage strategies for meropenem. Clin Ther.

2004;26(8):1187–98.

https://www.evidence.nhs.uk/formulary/bnfc/current/5-infections/51-antibacterial-drugs/512-cephalosporins-carbapenems-and-other-beta-lactams/5122-carbapenems/meropenem
https://www.evidence.nhs.uk/formulary/bnfc/current/5-infections/51-antibacterial-drugs/512-cephalosporins-carbapenems-and-other-beta-lactams/5122-carbapenems/meropenem
https://www.evidence.nhs.uk/formulary/bnfc/current/5-infections/51-antibacterial-drugs/512-cephalosporins-carbapenems-and-other-beta-lactams/5122-carbapenems/meropenem
https://www.evidence.nhs.uk/formulary/bnfc/current/5-infections/51-antibacterial-drugs/512-cephalosporins-carbapenems-and-other-beta-lactams/5122-carbapenems/meropenem


BIBLIOGRAPHY 193

[251] Shah P. Parenteral carbapenems. Clin Microbiol Infect. 2008;14(s1):175–80.

[252] Dagan R, Velghe L, Rodda J, Klugman K. Penetration of meropenem into

the cerebrospinal fluid of patients with inflamed meninges. J Antimicrob

Chemother. 1994;34(1):175–9.

[253] The European Committee on Antimicrobial Susceptibility Testing (EU-

CAST). Data from the EUCAST MIC distribution website; Streptococ-

cus agalactiae; 2015. http://mic.eucast.org/Eucast2/regShow.

jsp?Id=4081, last accessed on 30/12/2015.

[254] The European Committee on Antimicrobial Susceptibility Testing (EU-

CAST). Data from the EUCAST MIC distribution website; Escherichia

coli; 2015. http://mic.eucast.org/Eucast2/regShow.jsp?Id=

5402, last accessed on 30/12/2015.

[255] The European Committee on Antimicrobial Susceptibility Testing (EU-

CAST). Data from the EUCAST MIC distribution website; Listeria mono-

cytogenes; 2015. http://mic.eucast.org/Eucast2/regShow.

jsp?Id=16502, last accessed on 28/09/2015.

[256] The European Committee on Antimicrobial Susceptibility Testing (EU-

CAST). Data from the EUCAST MIC distribution website; Haemophilus in-

fluenzae; 2015. http://mic.eucast.org/Eucast2/regShow.jsp?

Id=13679, last accessed on 28/09/2015.

[257] The European Committee on Antimicrobial Susceptibility Testing (EU-

CAST). Data from the EUCAST MIC distribution website; Streptococcus

pneumoniae; 2015. http://mic.eucast.org/Eucast2/regShow.

jsp?Id=6945, last accessed on 28/09/2015.

[258] The European Committee on Antimicrobial Susceptibility Testing (EU-

CAST). Data from the EUCAST MIC distribution website; Neisseria menin-

http://mic.eucast.org/Eucast2/regShow.jsp?Id=4081
http://mic.eucast.org/Eucast2/regShow.jsp?Id=4081
http://mic.eucast.org/Eucast2/regShow.jsp?Id=5402
http://mic.eucast.org/Eucast2/regShow.jsp?Id=5402
http://mic.eucast.org/Eucast2/regShow.jsp?Id=16502
http://mic.eucast.org/Eucast2/regShow.jsp?Id=16502
http://mic.eucast.org/Eucast2/regShow.jsp?Id=13679
http://mic.eucast.org/Eucast2/regShow.jsp?Id=13679
http://mic.eucast.org/Eucast2/regShow.jsp?Id=6945
http://mic.eucast.org/Eucast2/regShow.jsp?Id=6945


BIBLIOGRAPHY 194

gitidis; 2015. http://mic.eucast.org/Eucast2/regShow.jsp?

Id=22856, last accessed on 28/09/2015.

[259] Topham J, Murgatroyd L, Jones D, Goonetilleke U, Wright J. Safety eval-

uation of meropenem in animals: studies on the kidney. J Antimicrob

Chemother. 1989;24(suppl A):287–306.

[260] Schmutzhard E, Williams K, Vukmirovits G, Chmelik V, Pfausler B, Feath-

erstone A, et al. A randomised comparison of meropenem with cefotaxime or

ceftriaxone for the treatment of bacterial meningitis in adults. J Antimicrob

Chemother. 1995;36(suppl A):85–97.

[261] Wong G, Briscoe S, Adnan S, McWhinney B, Ungerer J, Lipman J, et al.

Protein binding of β -lactam antibiotics in critically ill patients: can we suc-

cessfully predict unbound concentrations? Antimicrob Agents Chemother.

2013;57(12):6165–70.

[262] van Enk JG, Touw DJ, Lafeber HN. Pharmacokinetics of meropenem in

preterm neonates. Ther Drug Monit. 2001;23(3):198–201.

[263] Bradley JS, Sauberan JB, Ambrose PG, Bhavnani SM, Rasmussen MR,

Capparelli EV. Meropenem pharmacokinetics, pharmacodynamics, and

Monte Carlo simulation in the neonate. Pediatr Infect Dis J. 2008;27(9):794–

9.
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[274] Guerra-Romero L, Täauber MG, Fournier MA, Tureen JH. Lactate

and glucose concentrations in brain interstitial fluid, cerebrospinal fluid,

and serum during experimental pneumococcal meningitis. J Infect Dis.

1992;166(3):546–50.



BIBLIOGRAPHY 196

[275] Goldstein B, Giroir B, Randolph A, et al. International pediatric sepsis con-

sensus conference: Definitions for sepsis and organ dysfunction in pediatrics.

Pediatr Crit Care Med. 2005;6(1):2–8.

[276] European Medicines Agency (EMA). Report on the Expert Meet-

ing on Neonatal and Paediatric Sepsis; 2010. http://www.ema.

europa.eu/docs/en_GB/document_library/Report/2010/12/

WC500100199.pdf.

[277] Välitalo P, Kumpulainen E, Manner M, Kokki M, Lehtonen M, Hooker

AC, et al. Plasma and cerebrospinal fluid pharmacokinetics of naproxen in

children. J Clin Pharmacol. 2012;52(10):1516–26.

[278] Kumpulainen E, Välitalo P, Kokki M, Lehtonen M, Hooker A, Ranta VP,

et al. Plasma and cerebrospinal fluid pharmacokinetics of flurbiprofen in

children. Br J Clin Pharmacol. 2010;70(4):557–66.

[279] Anderson B, Holford N, Woollard G, Chan P. Paracetamol plasma and

cerebrospinal fluid pharmacokinetics in children. Br J Clin Pharmacol.

1998;46(3):237–43.

[280] Nalda-Molina R, Dokoumetzidis A, Charkoftaki G, Dimaraki E, Margetis

K, Archontaki H, et al. Pharmacokinetics of doripenem in CSF of patients

with non-inflamed meninges. J Antimicrob Chemother. 2012;67(7):1722–9.

[281] Nix DE, Goodwin SD, Peloquin CA, Rotella DL, Schentag JJ. Antibiotic

tissue penetration and its relevance: impact of tissue penetration on infec-

tion response. Antimicrob Agents Chemother. 1991;35(10):1953.

[282] Shin SH, Kim KS. Treatment of bacterial meningitis: an update. Expert

Opin Pharmacother. 2012;13(15):2189–06.

[283] Berthoin K, Le Duff CS, Marchand-Brynaert J, Carryn S, Tulkens PM.

http://www.ema.europa.eu/docs/en_GB/document_library/Report/2010/12/WC500100199.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Report/2010/12/WC500100199.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Report/2010/12/WC500100199.pdf


BIBLIOGRAPHY 197

Stability of meropenem and doripenem solutions for administration by con-

tinuous infusion. J Antimicrob Chemother. 2010;65(5):1073–5.

[284] Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for

antibacterial dosing of mice and men. Clin Infect Dis. 1998;p. 1–10.

[285] Nau R, Zysk G, Thiel A, Prange H. Pharmacokinetic quantification of the

exchange of drugs between blood and cerebrospinal fluid in man. Eur J Clin

Pharmacol. 1993;45(5):469–75.

[286] Cutler R, Page L, Galicich J, Watters G. Formation and absorption of

cerebrospinal fluid in man. Brain. 1968;91(4):707–20.

[287] Silverberg G, Heit G, Huhn S, Jaffe R, Chang S, Bronte-Stewart H, et al. The

cerebrospinal fluid production rate is reduced in dementia of the Alzheimers

type. Neurology. 2001;57(10):1763–6.
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