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ABSTRACT 

Intrinsically disordered proteins (IDPs), due to their dynamic nature, play important 

roles in molecular recognition, signalling, regulation, or binding of nucleic acids. 

IDPs have been extensively studied computationally in terms of binary disorder/order 

classification. This approach has proven to be fruitful and enabled researchers to 

estimate the amount of disorder in prokaryotic and eukaryotic genomes. Other 

computational methods – molecular dynamics, or other simulation techniques, 

require a starting structure. However, there are no approaches permitting insight 

into the behaviour of disordered ensembles from sequence alone. Such a method 

would facilitate the study of proteins of unknown structures, help to obtain a better 

classification of the disordered regions, and the design disorder-to-order transitions. 

In this work, I develop FRAGFOLD-IDP, a method to address this issue. Using a 

fragment-based structure prediction approach – FRAGFOLD, I generate the 

ensembles of IDPs and show that the features extracted from them correspond well 

with the backbone dynamics of NMR ensembles deposited in the PDB. 

FRAGFOLD-IDP predictions significantly improve over a naïve approach and help to 

get a better insight into the dynamics of the disordered ensembles. The results also 

show it is not necessary to predict the correct fold of the protein to reliably assign 

per-residue fluctuations to the sequence in question. This suggests that disorder is a 

local property and it does not depend on the protein fold. 

Next, I validate FRAGFOLD-IDP on the disorder classification task and show that the 

method performs comparably to machine learning-based approaches designed 

specifically for this task. 

I also found that FRAGFOLD-IDP produces results on par with DynaMine, a machine 

learning approach to predict the NMR order parameters and that the results of both 

methods are not correlated. Thus, I constructed a consensus neural network 

predictor, which takes the results of FRAGFOLD-IDP, DynaMine and physicochemical 

features to predict per-residue fluctuations, improving upon both input methods.  
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Chapter 1.  
INTRODUCTION 

1.1. Ordered and intrinsically disordered proteins 

 Historic perspective 

Current understanding of protein structure and function remains greatly impacted by 

the 19th century image created by Emil Fischer’s lock-and-key paradigm for enzyme 

catalysis (Fischer, 1894; Uversky and Dunker, 2013). In late 1950s the seminal work 

on the structure of myoglobin (Kendrew et al., 1958), followed in the early 1960s with 

Anfinsen’s works on protein sequence-structure relationships (Anfinsen et al., 1961) 

strengthened the common understanding of proteins as well-ordered biological 

machines. Although they may additionally possess some degree of conformational 

flexibility (Koshland’s induced fit: Koshland, 1959; or similar mechanisms), they were 

otherwise held be well defined in terms of their shape, fold and structural details. 

It did not take long for the idea of fixed-shape proteins to dissolve. First indirect 

evidence for a protein (serum albumin) to be functional in an ensemble of 

conformations was as early as 1950 (Dunker et al., 2001; Karush, 1950). But it was 

not until 1971, when the first protein (extracellular nuclease from Staphylococcus 

aureus) X-ray structure showing missing electron density region was reported 

(Arnone et al., 1971; Uversky and Dunker, 2013). Since then, the existence of proteins 

that have high flexibility or disordered regions, yet remain functional has been 

acknowledged, but for numerous reasons they were not in the spotlight. The reasons 

were largely of experimental nature, as these proteins, now commonly referred to as 

Intrinsically Disordered Proteins (IDPs), do not crystallize easily and biochemical 

procedures for the preparation of samples were heavily biased towards compact, 

folded proteins (Dyson and Wright, 2005). 

It took until the turn of the millennium, for IDPs to get recognition as an important 

part of the protein universe, rather than being viewed as incidental peculiarities 
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(Dunker et al., 2001; Uversky et al., 2000; Wright and Dyson, 1999). Currently, IDPs 

form the fourth ‘tribe’ within the protein kingdom, alongside globular, fibrillar and 

transmembrane proteins (Figure 1; Uversky and Dunker, 2010). They are estimated 

to contribute to a significant fraction of both the eukaryotic and prokaryotic 

proteomes, having been an important development of evolution (more on the 

abundance of IDPs in section 1.1.3; Schlessinger et al., 2011; Ward et al., 2004b). 

Subsequently, it was experimentally confirmed that the behaviour of IDPs observed 

in isolation corresponds to that in the cellular environment and intrinsically 

disordered proteins are not merely experimental artefacts (Bodart et al., 2008; 

Theillet et al., 2014). These realizations led to the rapid increase in the intensity of 

studies of IDPs, not only because such proteins (or regions) are widely present, but 

because they yield important biological functions. Disorder is predominant in 

regulation, signal transduction, one-to-many and low affinity-high specificity binding, 

kinase activity, or is associated with several disease states, including Parkinson’s 

disease or polyglutamate-repeat disorders, i.e. Huntington’s disease (described in 

detail in section 1.2; Dyson and Wright, 2005; Ward et al., 2004b). 

 

Figure 1. An example of a protein with an intrinsically disordered region. The ordered region of the 
protein is highlighted in green and the disordered region of the protein is highlighted in red. The figure 
shows an experimental structure of putative pre-16S rRNA nuclease (PDB id: 1OVQ) from E. Coli solved 
using NMR spectroscopy. 
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Much is discovered about protein disorder every year and the importance of this 

phenomenon cannot be underestimated. IDP-related research is now at its 

exponential growth phase with more than 530 IDP-related papers published in 2014 

alone (based on Scopus keyword search). Despite the great interest in IDPs, current 

knowledge still seems to be far from complete in understanding the structural 

properties and biological role of these proteins. 

Equally importantly, the physical bases and biophysical properties of intrinsic 

disorder are not yet fully understood. This is of utmost importance for several 

reasons: to be able to adequately describe this ‘tribe’ of proteins and to be able to 

relate the physical properties of IDPs to their function and, therefore, to gain better 

understanding of protein folding in general. 
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 Definition of intrinsic disorder in proteins 

Unfortunately, many researchers publishing on protein disorder give only vague 

descriptions of protein disorder which lack scientific stringency. The most common 

definition used is that disordered proteins are proteins lacking stable tertiary 

structure under physiological conditions. Other, more specific definitions include: 

“Intrinsically disordered proteins fold after binding, 

structured proteins do that before” (Uversky and Dunker, 

2013) 

“Flexibility in IDPs refers to massive changes in backbone 

and side chain dihedral angles leading to changes in shape, 

whilst in folded proteins flexibility corresponds to 

oscillating motions around equilibrium positions, so that 

the overall shape is maintained” (Op. cit.) 

“We consider as disorder whatever is predicted as such.” 

(Schaefer et al., 2010) 

“We refer to disordered regions as those regions in 

proteins that, when in isolation (i.e., not bound to other 

molecules), do not fold into a well-defined 3D structure 

but rather sample a large portion of their available 

conformational space.” (Schlessinger et al., 2011) 

“These proteins lack a stable equilibrium conformation but 

exist as dynamic ensembles within which atom positions 

exhibit extreme temporal fluctuations without specific 

equilibrium values.” (Orosz and Ovadi, 2011) 

“(…) IDPs possess no well-defined 3-D structure but rather 

adopt an ensemble of conformations in solution, yet they 

are functional.” (Habchi et al., 2014) 

It is indeed difficult to provide a single comprehensive definition of protein disorder, 

as the behaviour of disordered regions depends on the environment or partner 

molecules, but perhaps the definition rests mostly on the functional role of such 

proteins or regions. Moreover, serious experimental difficulties exist to observe the 

dynamics of IDPs, hence verification of structural hypotheses is hindered. 

Nevertheless, several important physical and biological features arise from the above 

mentioned definitions and other literature: 
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(1) The free energy landscape of IDPs has a relatively “flat” bottom to its 

spectrum in comparison to ordered proteins. The intermediate states 

occupy and interchange local energy minima. 

(2) Intrinsically disordered regions (IDRs) have a fluctuating backbone. 

(3) In IDRs aperiodic backbone motions should be observed, in contrast to 

ordered but flexible regions where oscillating (periodic) motions occur. 

(4) Flexibility is intrinsic to a protein as a biopolymer, whilst disorder is 

intrinsic to protein’s or region’s function. Flexibility describes changes 

involving few degrees of freedom, while disorder is a state where the 

changes involve many degrees of freedom or there are no constraints on 

the degrees of freedom whatsoever (Janin and Sternberg, 2013). 

(5) IDRs are functional, but their function is not limited to folding-upon-

binding. There are also regions where disorder serves as an entropic 

chain stabilizing the protein thermodynamically, or as flexible linker 

between protein domains, or with only partial folding as observed in 

fuzzy complexes (Fuxreiter, 2012). 

 

It is also important to stress what intrinsically disordered proteins are NOT. At 

present, it is a consensus to use the term intrinsically disordered proteins (or IDPs), 

but until recently this class of proteins was also referred to as unstructured, or 

unfolded proteins, among many other names (Dunker et al., 2014). Both those terms 

are misleading, because unstructured suggests a permanent lack of structure (what 

is not the case in IDPs) and also lack of transient structures. For example, some IDPs 

adapt molten globule conformations (Dyson and Wright, 2005), hence they are not 

unstructured, but disordered. Also the other term, unfolded, is misleading, as it 

suggests that it is a protein not in its native state, or that there is a single folded state 

of that protein. This might be true for some IDPs, but as a general term it should be 

avoided, since not all IDPs fold-upon-binding (Fuxreiter, 2012). Finally, IDPs are 

clearly not misfolded proteins. Although they are more susceptible to proteolytic 

degradation, hence their half-life is shorter and are preferentially located is some 
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cellular compartments, the ensemble of conformations which IDPs explore is their 

native state (Janin and Sternberg, 2013; Ward et al., 2004b). 

 Abundance of IDPs 

Determining the prevalence of IDPs in different organisms and domains of life is a 

crucial piece of information. Because of the limited structural information and 

historic difficulties with characterizing IDPs experimentally, the estimate of 

abundance of IDPs is based on computational techniques. The methods that are used 

to predict disorder in proteins are described in detail in section 1.5. Here, let us 

concentrate on the conclusions from those computational studies on the abundance 

of intrinsically disordered proteins. 

One of the first and still widely cited sources is based on a computational method 

(DISOPRED2) which was trained to yield low false positive rate (Ward et al., 2004b). 

It is a conservative approach, which is unlikely to overestimate the amount of 

disorder. Based on a DISOPRED2 survey of multiple eukaryotic and prokaryotic 

genomes, Ward et al. found that there is generally more disorder in eukaryotes, than 

in prokaryotes. There are around 30% of proteins with long disordered regions (more 

than 30 consecutive residues) in eukaryotes, and between 1% and 7% in prokaryotes. 

Some more recent studies confirm these findings and show that consistently IDPs in 

eukaryotes have more disorder content and are enriched in long disordered 

segments when compared to bacteria and archaea (Peng et al., 2014b). 

Looking at the distribution of disordered proteins between different organisms, it is 

a general consensus that in higher organisms the abundance of IDPs (especially with 

long disordered regions) increases (Habchi et al., 2014; Pentony et al., 2010). For 

example, in humans disordered proteins with long disordered regions are estimated 

at 44% of the proteome (Oates et al., 2013). This observation is tightly linked to 

function and evolution (Dunker and Obradovic, 2001; Schlessinger et al., 2011).  

An interesting addition to this, is the abundance of intrinsically disordered proteins 

encoded in viruses. In this case, a widespread abundance was observed, ranging from 
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around 7% to more than 77% (Habchi et al., 2014; Xue et al., 2012b). In most cases, 

viral proteins are second to eukaryotic proteins in terms of their disorder content, or 

length of the disordered segments (Peng et al., 2014b).  
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1.2. IDPs functions and associations with diseases 

 IDP functions 

Disordered proteins can be associated with the evolutionary functional achievements 

of eukaryotic cells. The functional hallmark of disorder is its ability to mediate specific 

interaction with multiple binding partners (Babu et al., 2012; Dyson and Wright, 

2005). As a result, IDPs can perform molecular recognition associated with signalling 

and regulation, as well as binding (Babu et al., 2011; Cozzetto and Jones, 2013; 

Uversky and Dunker, 2013; Ward et al., 2004b). 

Because of the dynamic nature of the disordered state, IDPs can provide a larger 

interaction surface than ordered proteins of similar size. IDPs are thus able to 

perform low affinity and high specificity binding (Dunker et al., 2002). The fact that in 

eukaryotes disorder is more prevalent may also be associated with unique eukaryotic 

cellular functions, such as organization and biogenesis of cytoskeleton, or functions 

associated with the development of the nucleus (e.g. disorder in histone proteins; 

Peng et al., 2012; Ward et al., 2004b). The lower content of disordered proteins in 

prokaryotes may be associated with a relatively short half-life of disordered proteins, 

which in prokaryotic organisms might have a much greater cost, and the lack of 

cellular compartments which would protect the disordered proteins from 

degradation (Ward et al., 2004b). Because of the higher susceptibility of IDPs to 

proteolysis, in eukaryotes most disordered proteins are located in cellular 

compartments, i.e. cellular cortex and the nucleus. This naturally associates 

disordered proteins with binding of DNA. Because of the dynamic features of disorder 

and its versatility, IDPs can facilitate transposition, transcription, packaging, 

replication and repair. Therefore, another feature of disorder from which the 

eukaryotes benefit is its contribution to cell differentiation. 

As disorder is represented by many conformational states, IDPs can perform one-to-

many binding (e.g. calmodulin and p53) (Oldfield et al., 2008; Romero et al., 1998; 

Wright and Dyson, 1999). p53 is known to interact with multiple partners, binding of 

which is performed by non-overlapping sets of amino acids that also do not share 
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common secondary structure features in the bound state (Uversky and Dunker, 

2013). 

Although IDPs play many highly specific roles in organisms, their functions are even 

broader. Often they are utilized as flexible linkers and entropic chains (Uversky and 

Dunker, 2013; van der Lee et al., 2014). Flexible linkers contribute to overall protein 

plasticity allowing for interactions that would be otherwise impossible. A good 

example are zinc fingers, where flexible linkers enable the protein to wrap around its 

target DNA (Dyson and Wright, 2005). 

From the protein interaction network perspective, IDPs are often found to be hubs 

of protein networks (Bellay et al., 2011; Cumberworth et al., 2013; Ward et al., 

2004b). Their ability to perform one-to-many binding and adopt several folded states 

(as in the case of p53), as well as to form transient interactions makes them ideal for 

the task. It has been estimated that two thirds of all signalling proteins have long 

disordered regions (Iakoucheva et al., 2002; Latysheva et al., 2015). 

This broad functional arsenal of IDPs and their efficacy requires that their expression 

and functional roles are tightly regulated. Disordered proteins are more prone to 

post-translational modifications (i.e. ubiquitination and phosphorylation), which 

enables cells to control the level of regulatory proteins (Edwards et al., 2009; Xue et 

al., 2012a). IDPs are also controlled on the transcript level by mRNA decay and tissue-

specific alternative splicing (Babu et al., 2012; Buljan et al., 2012; Edwards et al., 

2009). Fine-tuning of IDP availability usually keeps the IDP levels low and for short 

periods of time and imbalance is often a cause of IDP-related diseases (overviewed 

in section 1.2.2; Babu et al., 2011; Gsponer et al., 2008; Vavouri et al., 2009). 

On the other hand, IDPs are rarely associated with catalytic functions. The 

requirement for a well-defined binding site precludes IDPs from performing this 

function (Babu et al., 2011). This does not include kinases, where disordered domains 

can be found. Kinases are involved in regulatory processes and need to bind multiple 

substrates (Ward et al., 2004b). 
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Another feature of IDPs, tightly associated with their function, is the presence of 

linear molecular recognition features (MoRFs) (Cozzetto and Jones, 2013; 

Cumberworth et al., 2013). These functional elements are also called preformed 

structural elements (PSEs), molecular recognition elements (MoREs), or pre-

structured motifs (PreSMos) (van der Lee et al., 2014). MoRFs are short segments of 

protein disorder, usually no longer than 70 amino acids that bind to specific partners 

undergoing disorder-to-order transitions (Dunker et al., 2008; van der Lee et al., 

2014). They have a lower mean net charge and higher hydrophobicity than other IDRs 

(Cozzetto and Jones, 2013; Vacic et al., 2007). Functionally, MoRFs are responsible 

for molecular recognition and binding. MoRFs themselves can be further divided into 

α-MoRFs, β-MoRFs and ι-MoRFs depending on their structure in their bound state 

(Vacic et al., 2007). Because of their functional relevance and distinct 

physicochemical characteristics, some predictors were developed to identify MoRFs. 

One of such predictors is MoRFpred (Disfani et al., 2012). It uses a SVM predictor 

based on a manually extracted set of data on MoRFs, from complexes enhanced with 

alignment information. The other, energy-based predictor of MoRFs, is ANCHOR 

(Dosztányi et al., 2009). It first computes local contacts in long disordered regions to 

ensure that the fragment is not prone to fold on its own. Then ANCHOR estimates 

per residue energy gain from interaction of disordered residues with a potential 

globular partner. In principle, ANCHOR is methodologically similar to disorder 

predictor IUpred (Dosztányi et al., 2005a). Later attempts to predict protein binding 

motifs found that predicting MoRFs is an extremely difficult task (Jones and Cozzetto, 

2015). Although the computational methods are able to achieve high specificity, 

sensitivity and precision of current MoRF predictors are very low. 

Features exhibited by MORFs can be more broadly classified as coupled folding and 

binding (Dyson and Wright, 2005; Schlessinger et al., 2011; van der Lee et al., 2014). 

An example of folding upon binding could be p21 and p27. These proteins regulate 

different cyclin-dependent kinases responsible for the control of cell-cycle 

progression in mammals (van der Lee et al., 2014). 
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An extreme example of folding and binding properties of IDPs is phase transitions 

observed in this class of proteins (Brangwynne et al., 2015; Latysheva et al., 2015; 

Toretsky and Wright, 2014). IDPs were shown to form “assemblages” thanks to self-

association and low affinity binding. Those protein aggregates are in the form of 

hydrogels and, just like individual IDPs, are subject to tight regulation (Latysheva et 

al., 2015). IDP assemblages were shown to be associated with disease states and are 

now under active studies. 
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 IDPs and diseases 

It was found that the majority of protein disease-associated mutations are found in 

IDPs (Habchi et al., 2014; Uversky et al., 2008). IDPs are associated with many crucial 

cellular functions, especially in eukaryotes. Therefore, their dysfunction or 

inappropriate expression can result in pathological conditions (Babu et al., 2011). 

Over-expressed flexible regions of IDPs are likely to cause molecular titration and 

bind uncontrollably to other molecular partners, or may produce fibrillar aggregates. 

(Babu et al., 2011; Diella et al., 2008). Under-expression on the other hand may 

perturb cell signalling, or regulation (Grimmler et al., 2007). It was also found that 

around 20% of disease-related mutations in IDPs cause local disorder-to-order 

transitions (Vacic et al., 2012). 

The most widespread associations of IDPs are with cancer and neurodegenerative 

disorders (Uversky et al., 2008). Unsurprisingly, relations between IDPs and cancers 

are an intensive field of study. 

Perhaps the most well-known cancer-related IDP is p53 – an apoptotic tumour 

suppressor. About 70% of its interactions are carried out by disordered regions 

(Oldfield et al., 2008). p53 is a large signalling hub and along with its close partner 

Hdm2/Mdm2 it is responsible for regulating expression of genes involved in the 

induction of apoptosis, DNA repair, response to stress and the progression of cell 

cycle (Anderson and Appella, 2003; Uversky et al., 2008; Vousden and Lu, 2002). 

Therefore, the loss of p53 function can easily lead to cancer. It has been observed for: 

lung, oesophagus, colon, breast, liver, hemopoietic and reticuloendothelial cells 

(Hollstein et al., 1991). Looking at the mutations at the protein domain level, p53 

domain is the most prevalent mutant in breast and colon cancer (Nehrt et al., 2012). 

Another widely studied disordered protein target is p27(Kip1), an inhibitor of cyclin-

dependent kinases where under-expression is associated with various types of cancer 

(Grimmler et al., 2007). 
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Other prominent examples of associations between IDPs and cancer include: BRCA-1 

– associated with breast cancer, which has 79% disordered residues (Mark et al., 

2005); α-fetoprotein – marker of cancer and fetal abnormalities is an intrinsic molten 

globule; structured by its natural ligands (Abelev, 1971; Deutsch, 1991; Uversky et al., 

2008).  

A different group of diseases associated with malfunctioning of IDPs are 

neurodegenerative disorders, i.e. Parkinson’s, Alzheimer’s, dementia with Lewy 

bodies, or multiple system atrophy (Uversky et al., 2008). In particular, a fully 

disordered protein α-synuclein is associated with all of these diseases (also called 

synucleinopathies). Synuclein can form a variety of fibrillar aggregates in neurons; 

depending on the morphology they have different names (e.g. Lewy bodies, Lewy 

neuritis, glial cytoplasmic inclusions). Interestingly, α-synuclein is also a model for the 

development of many experimental techniques to study IDPs (Marsh et al., 2006; Rao 

et al., 2010; Tamiola and Mulder, 2012). 

IDPs are also associated with prion diseases, cardiovascular disease, and type II 

diabetes. A comprehensive review of associations between intrinsic protein disorder 

and diseases is available (Uversky et al., 2008). 
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1.3. Experimental characterization of protein disorder 

Theoretical considerations laid out in previous sections should be put into an 

experimental context. A wealth of experimental techniques enable identification and 

structural characterization of intrinsically disordered proteins. The techniques fall 

into 2 main groups: 

(1) biophysical and biochemical, 

(2) spectroscopic. 

Those techniques usually provide a different level of detail about IDPs (Figure 2). 

 

Figure 2. An overview of experimental techniques used to study intrinsically disordered proteins. 

 Biophysical and biochemical methods 

Biophysical techniques allow the identification of disordered proteins and estimate 

the amount of intrinsic disorder within them (Figure 2). The most widespread 

methods include: gel-filtration, viscosimetry, sedimentation, calorimetry and 

proteolytic degradation (Eliezer, 2009; Habchi et al., 2014). They are all based on the 

fact that hydrodynamic volume, or the radius of gyration in the case of IDPs is 

increased in comparison to ordered, compact proteins of the same mass. 
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 Spectroscopic techniques 

Comparable, yet higher impact information may be derived from small angle X-ray 

scattering (SAXS) and Foerster resonance energy transfer (FRET) experiments (Habchi 

et al., 2014; Mittag and Forman-Kay, 2007). These experiments can provide more 

detailed information about the shape of molecules; help to locate disordered regions 

within the molecule; or to gain long-range information on interacting sites. Often 

these results are used in combination with NMR experiments to derive ensembles of 

disordered proteins (Jensen et al., 2013; Krzeminski et al., 2013). Other spectroscopic 

techniques may be generally divided into 2 groups giving molecular or atomistic 

details (Figure 2). The first group includes circular dichroism (CD), infrared (FT-IR) or 

Raman optical activity (ROA) spectroscopies, with CD being the most widely used 

technique for this purpose. These methods enable the identification and 

quantification of intrinsic disorder in proteins, however they alone do not allow to 

locate or characterize the disorder in atomistic detail. Also, with CD spectroscopy it 

is difficult to distinguish disordered proteins from loopy proteins (low secondary 

structure content) with no repetitive secondary structure (Liu et al., 2002). 

 X-ray crystallography 

More detailed information come from X-ray crystallography, which is the most 

widespread technique for protein structure determination. It provides atomistic 

details averaged over time and space. Due to noncoherent X-ray scattering, 

disordered regions are not visible in the diffraction pattern (Vladimir N. Uversky, 

2013). This way X-ray crystallography accounts for the indirect evidence of disorder. 

Such data has to be approached with caution, as intrinsic disorder is not the only 

cause of the lack of electron density. 

There are some factors which may impact the disordered regions. Crystal packing can 

cause disorder-to-order transitions and result in under-determining disordered 

regions (Dunker et al., 2002). Another factor impacting the disordered state could be 

disordered binding segments crystallized along with the investigated protein. This 
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concerns proteins and peptides, as well as small molecule ligands (Dunker et al., 

2002). 

On the other hand, there are factors which may cause ordered regions to appear 

disordered. This is mostly attributed to wobbly domains and crystal contacts which 

may account for the diffraction pattern to lack some reflections and therefore be 

interpreted as disordered (Dunker et al., 2001; Ward et al., 2004b). 

 NMR characterization of protein structures and disorder 

1.3.4.1. What does an NMR spectrum tell us? 

NMR, unlike X-ray crystallography, is capable of producing a set of output structures 

(an ensemble) giving insight into the dynamics of the protein (Jensen et al., 2013; 

Kosol et al., 2013; Lindorff-Larsen et al., 2005; Mittag and Forman-Kay, 2007). The 

ensembles are in fact alternative possible solutions of restraints obtained from the 

NMR experiment. In NMR, as in any other experimental technique, the structures are 

models fitting the experimental data. They are therefore constrained by the 

technique used and experimental conditions. This should be considered at all times. 

In NMR, a pre-processed protein (deuterated solvent, host organism grown on special 

media to contain 15N or more 13C, etc.) is measured in solution (Roberts, 1993). All 

NMR parameters in some way reflect the molecular conformation of the studied 

system (Cavanagh et al., 2007). Most relevant parameters for the studies of proteins 

are gathered in Table 1 and summarized below. 

From using Nuclear Overhauser Effect Spectroscopy (NOESY) a set of constraints on 

the structure can be derived (Mittag and Forman-Kay, 2007). They are sensitive to 

residue distances as their intensity is proportional to r-6. Therefore, they provide 

some accurate constraints on the structure. 

Chemical shifts (CS) give information on the local structural propensities and 

represent a population-weighted average over all interconverting conformers in an 
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ensemble (Jensen et al., 2013). They are of particular use in analysing proteins 

undergoing transitions including changes in the amount of secondary structures 

(Tamiola and Mulder, 2012). Drawback of CS is the need of reference shifts. Different 

methods were developed for generating random-coil chemical shift libraries and for 

assessing experimental data using CS (Berjanskii and Wishart, 2006, 2007; Tamiola 

and Mulder, 2012). 

Table 1. Summary of the most common NMR parameters. 

parameter information IDP utility 
requirements and 
difficulties 

NOESY (Nuclear 

Overhauser Effect 

SpectroscopY) 

Connectivity between 

residues 

Conformation of 

ordered parts; transient 

interactions within 

disordered regions 

High level of 

deuteration 

CS (chemical shifts) Local structural 

propensities 

(secondary structure) 

Transient 

conformations in 

disordered regions 

Reference needed: 

(1) back-calculations of 

CS from known 

structures; 

(2) random-coil models; 

(3) population-weighted 

averages of reference 

shifts from different 

conformations and a 

random coil shift (De 

Simone et al., 2009) 

CSs are temperature 

and pH sensitive 

RDC (residual 

dipolar couplings) 

Relative orientations 

of secondary 

structure elements; 

Long-range 

interactions; 

Conformational sub-

states in disordered 

ensemble; 

Fold in ordered parts 

Aligning medium (could 

alter the ensemble 

(Dames et al., 2006) 

PRE (paramagnetic 

relaxation 

enhancement) 

Long-range 

interactions 

Characterization of 

poorly populated states 

Paramagnetic spin 

label in the sample (as 

above, could alter the 

ensemble (Mittag and 

Forman-Kay, 2007)) 

SC (scalar coupling) Backbone dihedral 

angles 

Characterization of 

topology 

 

based on: Jensen et al., 2013; Roberts, 1993; Rosato et al., 2013 

Residual dipolar couplings (RDCs), similarly to CS, represent population-weighted 

average of the ensemble, but give information on the relative orientations of 

secondary structure elements and long-range interactions. RDCs require a reference 

frame, therefore an aligning medium is required (Jensen et al., 2013). This parameter 
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can be back-calculated from structures (e.g. using Flexible-meccano (Kragelj et al., 

2013; Ozenne et al., 2012)), hence is also useful for validation of derived ensembles. 

Paramagnetic relaxation enhancement (PRE) provides information about long-range 

interactions. It requires a paramagnetic probe attached to an amino acid. PRE can 

give insight into sub-states probed by CS and RDCs because the line-broadening in 

PRE reflects the timescales responsible for the relaxation of interacting sites. 

Scalar couplings (SC) give information on backbone dihedral angles and can help in 

identifying protein’s topology and amino acid conformations. 

Often, as an additional constraint in solving NMR ensembles, SAXS data is used to 

provide constraints on the shape of the protein determined by the radius of gyration 

(Rg) (Mittag and Forman-Kay, 2007; Sibille and Bernadó, 2012). 

There are several avenues that can be followed in order to derive an ensemble of 

structures from this set of data (Cavanagh et al., 2007; Fisher et al., 2010; Jensen et 

al., 2013). They are discussed below in sections 1.3.4.2 and 1.3.4.3. 

1.3.4.2. Generating models – restrained REMD 

One way to obtain the structural ensemble of the studied protein is to use molecular 

dynamics (MD) restrained by the experimental observables. The MD simulation is 

usually performed as replica exchange molecular dynamics (REMD), meaning that 

multiple models run simultaneously and replicas are exchanged between simulations 

over time (Allison et al., 2009; Esteban-Martiń et al., 2010; Wu et al., 2009). This 

approach requires the restraints to be weighted as pseudo-energy terms biasing the 

simulations. For robust results, it also requires a large number of distance restraints, 

the number of which is difficult to estimate in advance (Fisher et al., 2010). 
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1.3.4.3. Generating models – ensemble selection 

An alternative approach is ensemble selection (Jensen et al., 2013). In this method, a 

library of conformations is pre-generated. Then, suitable conformations are selected 

on the basis of matching the experimental restraints. Initial conformations can come 

either from statistical coil models (Flexible-meccano (Ozenne et al., 2012), TraDES 

(Marsh and Forman-Kay, 2012), or others), fragment selection (Fisher et al., 2010), or 

various crude MD approaches (Lei and Duan, 2007). Selection is then made by 

minimizing the differences between the generated ensemble parameters and 

experimental values. Methods such as ENSEMBLE (Marsh and Forman-Kay, 2012), 

SAS (Chen et al., 2007), both utilising Monte Carlo for selection of sub-ensembles, or 

ASTEROIDS (Nodet et al., 2009) which utilizes an evolutionary algorithm, have been 

developed. 

1.3.4.4. Assessment of NMR models 

Derived NMR protein ensembles can then be assessed either by knowledge-based 

measures, or on the basis of model versus data comparison (Rosato et al., 2013). 

Knowledge-based assessment relies on some prior knowledge of the protein 

conformations and protein biophysics. The knowledge-based information is usually 

derived from highly resolved X-ray structures. This causes some debate in the field, 

as the crystal environment is typically different to solutions used in NMR (Rosato et 

al., 2013). Knowledge-based methods assess either dihedral angle distribution (e.g. 

ProCheck (Laskowski et al., 1996)), atom packing (e.g. Molprobity (Chen et al., 2010)), 

or by energy refinement using energy potentials or structural fragments (van der 

Schot et al., 2013). 

Model versus data assessment utilizes either all of the experimental data used to 

generate the model and checks how well it is fitted to the data, or preferably, is done 

by cross-validation on the data left out from the model generation. It can be done as 

a restraint analysis, or analysis of any of the NMR parameters (CS, PRE, RDC, or 

combinations thereof). 
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Some approaches were also developed to perform fully automated validation of 

models. But until now, blind experiments (e.g. CASD-NMR) proved that still there are 

many cases where manually validated and refined proteins have some important 

differences to automatically generated ones (Rosato et al., 2012). 

1.3.4.5. NMR of IDPs 

Considering the utility of NMR for investigations of intrinsically disordered proteins, 

it should be first noted that it gives a dynamic picture of the disordered ensemble. 

This wealth of dynamic information about the disordered state is not available from 

any other experimental technique. Secondly, NMR studies proved that, contrary to 

some opinions, disorder is not an artefact of sample preparation, but an actual in vivo 

phenomenon (Bertini et al., 2011; Ito et al., 2012; Uversky and Dunker, 2013). That 

is, in vitro observations do not represent an artificial state which would be otherwise 

impossible to maintain within the cell due to the crowding and the cellular 

mechanisms that degrade unfolded proteins (Janin and Sternberg, 2013),  

Atomistic details of disordered proteins come either from X-ray crystallography or 

NMR. Therefore it is justified to seek comparisons between these two methods. 

Current capabilities for the size of proteins feasible for experiments to analyse are in 

favour of crystallography; where it is possible to solve even massive protein 

complexes (e.g. bacterial respiratory complex I (PDB id: 3RKO) having 6 unique chains 

and 2038 amino acids in total (Efremov and Sazanov, 2011)). NMR on the other hand 

is limited at present to chains of less than 300 amino acids (i.e. up to 50 kDa) and the 

structure set is dominated by chains of around 100 amino acids (Ota et al., 2013). 

Also, the cellular localization of the most abundant X-ray and NMR-solved proteins 

are different. X-ray structures are biased towards cytoplasmic proteins, whilst NMR 

solved structures are more populated with nuclear proteins (Ota et al., 2013). This 

bias is fortunate for NMR investigations of IDPs, as it is estimated that nuclear 

proteins contain many disordered regions (Ward et al., 2004b). 
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As mentioned before, crystallography provides only indirect evidence for protein 

disorder (i.e. regions of missing electron density – no structure), while NMR directly 

estimates the dynamic behaviour of disordered regions. Apart from this, NMR 

samples are measured in different environments, without the effects of crystal 

packing. Usual concentrations of protein used in NMR studies are in the millimolar 

range (0.1-3 mM1). For IDPs, the concentrations required are even lower (Dyson and 

Wright, 2004; Jensen et al., 2013). Because of this, as confirmed by in-cell 

experiments, the behaviour of IDPs observed by NMR in vitro likely corresponds to 

the actual functional states (Bertini et al., 2011; Ito et al., 2012). Nevertheless, the 

accurate determination of chain dynamics at atomistic level is demanding. Chemical 

shifts or residual dipolar couplings can unambiguously show which residues are 

disordered, but the determination of the actual ensembles is still a challenging task 

(Cino et al., 2012; Jensen et al., 2013; Tamiola et al., 2010). 

One of the reasons for that is a relatively sparse set of constraints for the structure 

determination coming from NMR parameters. In this case, when the disordered 

region is under-determined many possible conformations that fulfil NMR constraints 

do not guarantee the validity of generated models (Fisher et al., 2010; Jensen et al., 

2013). Even when the models agree with experimental data there is no guarantee 

that the generated ensemble is true. This problem can be bypassed to a certain 

extent using statistical methods (e.g. Bayesian Weighting). Bayesian Weighting can 

estimate the uncertainty of the weights assigned to each conformer in an ensemble. 

Relying on both experimental data and theoretical predictions, such methods can 

calculate probability densities over weights and estimate the uncertainties of each 

assignment (Fisher et al., 2010). Nevertheless, the identification of disordered 

regions is unambiguous and is an important take-home message for the following 

work. 

An important drawback of the currently available NMR ensembles is the shortage of 

reference experimental data other than the models generated by the authors. Only 

recently did it become compulsory to deposit experimental constraints into BMRB 

                                                           
1 http://www2.chemistry.msu.edu/facilities/nmr/900MHz/MCSB_NMR_sample.html 
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(Biological Magnetic Resonance Data Bank) alongside the deposition of the structures 

to the PDB. At present (September 2015), there are 219 entries (heteronuclear NOE 

values) in BMRB, compared to over 11,000 NMR-solved protein structures in the PDB 

(about 2% coverage). 

1.3.4.6. Disorder classification from NMR structures 

Because raw experimental NMR data are still scarce, disorder has to be analysed 

based on the PDB ensembles. To date, there have been several attempts to develop 

methods that would robustly identify disorder in NMR PDBs, as opposed to more 

commonly used crystallographic disorder (derived from missing densities from X-ray-

solved structures). 

One such method is MOBI (http://protein.bio.unipd.it/mobi/; (Martin et al., 

2010)). MOBI classifies each residue as ordered or disordered based on a set of 

criteria derived from NMR PDB ensembles and heuristics. The criteria by which MOBI 

classifies residues as ordered or disordered are:  

(1) Cα distance of superposed residues; 

(2) DSSP annotation consistency; 

(3) Standard deviations of internal coordinates (φ and ψ angles). 

The method also uses heuristics in the form of regular expressions to make its 

annotations consistent (e.g. a single ordered residue flanked by disordered residues 

is re-annotated as disordered). 

The original MOBI paper benchmarks the method against 19 NMR structures from 

the CASP8 disorder prediction category (manually annotated dataset; Noivirt-Brik et 

al., 2009). MOBI achieved the harmonic mean of precision and recall (F-value) of 

0.939. This shows that automated MOBI method reliably reproduces manual 

annotations of NMR PDB ensembles. 
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The other approach aimed to determine the cut-off value for disorder-order 

classification using per residue deviations in IDPs (Ota et al., 2013). The authors were 

comparing X-ray and NMR PDB structures trying to determine the discriminating 

value maximizing the correlation (Matthews Correlation Coefficient; MCC) between 

X-ray and NMR sets of the same proteins. The consensus value of 3.2Å was found 

giving an MCC (Matthews Correlation Coefficient) of 0.63. Imperfect correlation 

between the two sets can be explained by a relatively small overlapping set of 

structures (55 proteins) and varying experimental conditions which have an impact 

on disorder (i.e. some regions become ordered in crowded, highly concentrated 

environments). The latter conclusion can be easily observed in disorder databases 

(e.g. DisProt or mobiDB; see section 1.4). 

1.3.4.7. Future  

Considering the future utility of NMR data there is definitely a need for a wider 

availability of raw experimental restraints. BMRB will undoubtedly grow in size and 

due to the progress of Structural Genomics centres the data is likely to accumulate at 

an even faster pace. Current protocols for solving NMR structures are far from perfect 

and as some experts point out, for IDPs there are many possible solutions to each set 

of experimental data. Therefore it is crucial that all of the future ensembles are not 

only stored as PDB structures, but also should have corresponding raw data freely 

and easily accessible.  

There are also initiatives that concentrate on the use of NMR for IDP studies, such as 

EU FP7 initiative IDPbyNMR (http://www.idpbynmr.eu). This project was 

established to raise awareness of the importance of NMR in the field of IDPs, to train 

young scientist to gain expertise in this area and to network researchers across 

Europe interested in the IDP studies by organizing meetings and workshops. 

Initiatives like this and other possible future initiatives are likely to provide direction 

to the field, establish more robust NMR protocols to deal with IDPs and produce 

substantially more IDP ensembles.  
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1.4. Databases of structural information on intrinsic disorder 

Given the abundance of intrinsically disordered proteins (section 1.1.3), their 

relevance (section 1.2) and structural features characterized by a variety of 

experimental techniques (section 1.3), several databases collecting the information 

on IDPs have been developed. They vary greatly in size and the extent of information 

they provide on intrinsic disorder (Table 2). 

All of the databases summarized here concentrate on different aspects of the 

phenomenon of intrinsic protein disorder, sometimes also combining other 

databases within their own framework (e.g. mobiDB (section 1.4.2) and D2P2 (section 

1.4.3) contain DisProt (section 1.4.1) annotations). 

Table 2. Summary of IDP databases. 

  DisProt IDEAL PED mobiDB D2P2 

number of entries 694 582 26 80,370,243 10,429,761 

last update 05/2013 06/2015 09/2015 09/2014 2012 

manual annotations + +    

experimental data + + + +  

disorder predictions    + + 

 

 DisProt 

DisProt was the first publicly available database of protein disorder (Sickmeier et al., 

2007; http://www.disprot.org/). Its latest release (version 6.02 from 24 May 

2013) contains 694 proteins with 1,539 disordered regions. 

Disorder/order annotations in DisProt emerge from experimental data. However, 

unlike some other databases, or datasets used for disorder classification (e.g. missing 

X-ray density), DisProt does not only rely on 3D structural information. The database 

also combines an array of biophysical and spectroscopic methods, such as circular 

dichroism, fluorescence, hydrogen-deuterium exchange, sensitivity to proteolysis, 
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SAXS and viscosimetry. A full list of experimental techniques used as disorder 

detection methods is available at the DisProt website: 

http://www.disprot.org/view_detection.php. All of the entries in DisProt are 

curated, the conclusion and data based on publications are author-approved. 

DisProt also links all its entries to sequence databases (UniProt, UniGene, SwissPort, 

TrEMBL) and for each protein (or disordered region, if applicable) it includes a 

functional narrative section, sequence annotations (disordered regions, ordered 

regions, unknown regions) and links to relevant literature. 

DisProt is considered the gold standard in disorder databases because of its manual 

curation and some other disorder databases contain DisProt entries (e.g. mobiDB and 

D2P2). Nevertheless, the database has some flaws. 

DisProt entries are not updated when new experimental evidence becomes available. 

Once an entry is deposited and annotations are made, no further data appears to be 

added to it. DisProt is a manually curated database so amending data within the 

database, as well as creating new entries might be cumbersome. Nevertheless, 

comparing DisProt entries to other regularly updated databases, the discrepancies 

are apparent (for instance acyl carrier protein; DisProt record DP00416 and mobiDB 

entry P0A6A8).  

Another issue with DisProt that is also apparent in other databases is the ambiguity 

with which ligands, cofactors or ions should be treated. A good example here is 

cytochrome c. The protein has a well-known structure, yet DisProt treats it as a fully 

disordered protein (DP00006; UniProt ID: P00004). This data is based on the 

observation that cytochrome c without the heme group becomes fully disordered 

(Stellwagen et al., 1972). In contrast, there are no disorder containing entries in 

mobiDB (maximum disorder content 5.71% from 2GIW NMR structure), which bases 

its annotations on solved 3D structures. Obviously, the biologically relevant structure 

of cytochrome c is heme-bound, hence all of the solved structures indicate the lack 

of disorder. 
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 mobiDB 

mobiDB is a database of protein disorder and mobility annotations (Di Domenico et 

al., 2012; Potenza et al., 2015; http://mobidb.bio.unipd.it/). The database 

combines DisProt annotations, disorder/order classification derived from X-ray and 

NMR structures deposited in the PDB (annotations based on the MOBI method 

(section 1.3.4.6)) and the results of 10 disorder/order classification methods (VSL2B, 

GlobPlot, RONN, ESpritz-Xray, ESPritz-NMR, ESpritz-DisProt, DisEMBL-HL, DisEMBL-

465, IUpred-short, IUpred-long; all methods discussed in section 1.5.1). 

The latest version of mobiDB (version 2.2) was released in September 2014 and 

contains annotations for 80,370,243 entries from UniProt (Swiss-Prot: 546,000; 

TrEMBL: 79,824,243). UniProt also links directly to mobiDB in its cross-reference 

section of each UniProt entry. 

Each entry in mobiDB includes all structural information on the given protein along 

with the results of disorder/order classification methods, DisProt annotations (where 

applicable) and the results from the STRING database of interactions (Szklarczyk et 

al., 2015), as well as known Pfam families (Finn et al., 2014). MobiDB also employs a 

naïve scheme providing users with a consensus disorder annotation of the protein. 

Regions where all experimental data agree (all X-ray and NMR structures, and DisProt 

annotations) the region is annotated as ordered or disordered, otherwise the regions 

is annotated as ambiguous. 

MobiDB treats all entries at UniProt ID level. Mutants of a known UniProt entry are 

indexed under the same mobiDB entry. MobiDB therefore loses the ability to trace 

disorder-to-order or order-to-disorder transitions and, as mentioned above in 

DisProt (section 1.4.1), changes in the environment and presence/absence of ligands. 

MobiDB is the most comprehensive database of information on intrinsic protein 

disorder to date. It combines multiple sources of structural information (no 

biophysical data, except from that inferred from DisProt), disorder predictors and 

domain information (Pfam). 
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 D2P2 

D2P2 is the database of disordered protein predictions (Oates et al., 2013; 

http://d2p2.pro/). It contains the results of 9 disorder predictors (VL-XT, VSL2B, 

PrDOS, PV2, ESpritz (3 flavours), IUpred (2 flavours); the predictors are discussed in 

section 1.5.1). The database concentrates on providing disorder predictions for 

genomes on the transcript level. Its latest release contains 1,765 genomes with 

10,429,761 sequences from 1,256 distinct species (no viral genomes). The sequence 

data is based on SUPERFAMILY 1.75 database (last update 8 November 2011; Gough 

et al., 2001). Unlike mobiDB, D2P2 concentrates not on UniProt-level data, but rather 

on SCOP superfamilies (predicted or annotated by SUPERFAMILY) and ENSEMBL 

genome data (Cunningham et al., 2014). 

D2P2 also includes annotations coming from DisProt (as discussed previously), 

predictions of post-translational modification (from PhosphoSitePlus) and MoRFs 

(from ANCHOR (Dosztányi et al., 2009); discussed in 1.2). Some disorder predictors 

were not included in the database, because they were deemed too computationally 

expensive by the authors (e.g. DISOPRED2). 

The 2 largest databases of protein disorder predictions – D2P2 and mobiDB – differ in 

data presentation style and concentrate on slightly different aspects of disorder. 

Notably, mobiDB attempts to annotate all possible proteins using data inferred from 

structural information (X-ray and NMR), while D2P2 uses only disorder predictors. 

D2P2 also tries to characterize individual genomes and enables users to define their 

own thresholds for consensus disorder annotations (25%, 50%, 75% or 100% 

agreement between different disorder predictors). Not only is the database 

constructed to be able to browse particular genomes, rather than UniProt IDs as in 

mobiDB. It also provides statistics on average disorder content within particular 

genomes and compares the predictions of disorder predictors used by the database. 

These genome and predictor-wide comparisons of data are provided as a possible 

source of future improvements to the disorder prediction methods. 
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Nevertheless, it is apparent that both databases share a large degree of redundancy 

and may benefit from joining forces, rather than competing with one another. See 

section 1.4.6 for summary and discussion of this issue. 

 pE-DB (PED) 

Protein ensemble database (previously: pE-DB; now: PED; http://pedb.vib.be/) 

collects experimental data on IDPs (Varadi et al., 2015, 2014). 

The current release of PED (version 2.0) contains 26 entries (as of 22 September 2015) 

with 70 ensembles. This includes protein fragments, e.g. heat shock protein beta-6 

(HSPB6) residues 24-160, 40-160, 57-160 are listed as 3 entries. 

PED relies on experimental data providing information on the ensembles of 

intrinsically disordered proteins from NMR (PREs, CSs, RDC, J-couplings, NOEs, 

paramagnetic shifts; for a discussion of how NMR is used to obtain the ensembles of 

IDPs see section 1.3.4) and SAXS. It also hosts some purely computational models 

coming from MD simulations (not necessarily NMR data-constrained simulations, as 

discussed in section 1.3.4.2). 

Compared with other resources, PED is a small database (hundreds in DisProt and 

IDEAL, and millions in mobiDB and D2P2). It is however the only resource that 

concentrates on providing exhaustive experimental data on IDP ensembles. Provided 

that it is actively maintained, it may become a valuable resource which could enhance 

the understanding of intrinsically disordered proteins and the development of 

computational techniques to study them. At present, the computational methods are 

limited by the availability of data and usually resort to what is available in the PDB 

(either missing X-ray data or NMR PDB ensembles).  
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 IDEAL 

IDEAL is the database of Intrinsically Disordered protein with Extensive Annotations 

and Literature (Fukuchi et al., 2014, 2012; 

http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/). It was first released 

in November 2011 and its latest update (version 12/Jun/2015) contains 582 entries. 

The idea behind IDEAL is to provide the highest quality information on functional 

regions in IDPs (e.g. PTM sites, MoRFs undergoing coupled folding and binding, 

referred by the authors of the database as ProS – protean segments). 

All of the entries in IDEAL have corresponding PDB structures. Disordered regions 

were identified based on several premises: missing X-ray density, regions interfering 

with protein crystallization, high RMSD regions in NMR PDB ensembles, and using 

other spectroscopic methods (i.e. CD) for disorder identification. The final approach 

most closely resembles the methodology used in DisProt. 

ProS (regions undergoing disorder-to-order transitions upon binding) were 

categorized into 2 sub-groups: known ProS and circumstantial ProS. Known ProS were 

annotated if there is experimental evidence of a disordered state in unbound form 

and ordered state in bound form. In case of the lack of hard evidence (e.g. some data 

available only for protein’s homologue) the regions are annotated as circumstantial 

ProS. 

IDEAL also provides SCOP and Pfam assignments and annotations of known binding 

sites and PTMs extracted from the literature and UniProt annotations. For proteins 

with known binding partners, IDEAL illustrates protein-protein interaction networks 

and shows the structures of protein complexes. 

Again, as in the case of mobiDB and D2P2, IDEAL shows some significant similarities 

to DisProt. It is a manually curated database that relies on experimental data to 

annotate ordered and disordered regions. The novelty that IDEAL introduces are the 

ProS, regions undergoing disorder-to-order transitions upon interaction. The authors 

http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/
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of the database claim that it is a broader concept than MoRFs and not limited to 

interactions with other proteins. 

Overall, IDEAL provides a useful and reliable resource on IDPs, albeit rather small and 

biased (the first release of IDEAL consisted of 120 human nuclear proteins), due to 

the manual curation of the database. 

 Summary 

There are many resources that aggregate information on intrinsically disordered 

proteins. The three main groups of databases are: 

(1) Manually curated databases: DisProt, IDEAL; 

(2) Databases of disorder predictions and derived data: mobiDB, D2P2; 

(3) Database of experimental data: PED. 

These databases have distinct approaches and certainly add value to the 

understanding of intrinsic protein disorder. Researchers in the broad field of IDPs are 

interested in different aspects of disorder, and hence alternative sources of 

information aimed at different needs are available. 

However, clearly there is some redundancy in what is available and some databases 

have become outdated (compare Table 2). With any database, the main issue is not 

to establish it, but to maintain and keep it up to date. The study of IDPs is still in the 

early days and it seems that it would be easier and more beneficial for the scientific 

community if more than a single group was involved in the development of any 

database that is supposed to last. 

Extending the development of any given database to more than a single group would 

actually make it serve the community better. It could help to establish some 

standards and address the most important problems raised by the community, rather 

than perceived by any single research group. 
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At present, both mobiDB and D2P2 aggregate data from DisProt. Those databases 

provide less detailed information than DisProt itself, but it is a clear signal that further 

integrations are possible and desirable. In fact mobiDB and D2P2 share a great deal of 

redundancy (Table 3). There are some design and more substantial differences 

behind those resources, e.g. mobiDB is based on UniProt, while D2P2 uses 

SUPERFAMILY. Nevertheless, the majority of calculations required to produce the 

predictions for millions of proteins, as well as storage and infrastructure is common. 

The same stands for other resources. IDEAL could be easily incorporated into 

mobiDB, just as DisProt was. PED also could also become a part of some larger 

database. It is more difficult to unambiguously interpret some of the experimental 

data deposited in PED, but it would be advantageous to see all of the experimental 

evidence on disorder for a given protein in one place. 

Table 3. Comparison of mobiDB and D2P2 databases contents. 

    mobiDB D2P2 

main unit  UniProt ENSEMBL; SCOP 

predictors ESPritz (3 flavours) + + 

 IUpred (2 flavours) + + 

 PrDOS  + 

 VSL2B + + 

 VL-XT  + 

 PV2  + 

 DisEMBL +  

 GlobPlot +  

 RONN +  

experimental data X-ray +  

 NMR +  

annotations Pfam + + 

 STRING +  

 SCOP  + 

 DisProt + + 

 IDEAL  + 

 PhosphoSitePlus  + 

 ANCHOR  + 

 

Finally, today, mobiDB is leading in terms of its comprehensiveness and size, but it 

already lags behind the sequence databases. The latest UniProt release was in 
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September 2015, while the latest mobiDB release was in July 2014 (14 months behind 

UniProt). The amount of data available on intrinsically disordered proteins is already 

vast, however still far from complete, as these targets are difficult to characterize 

experimentally. Hopefully, in the future, some consortium that unifies the storage of 

information on IDPs will arise and the data will be kept up-to-date, well maintained 

and expertly curated. 
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1.5. Computational predictions of intrinsic disorder 

In parallel, or even at times ahead of the development of experimental techniques 

there have been many attempts to study intrinsically disordered proteins 

computationally. The vast majority of these studies focused on the development of 

disorder/order classification methods. These methods take protein sequence as an 

input and provide a binary prediction of order or disorder on a per-residue level, 

often accompanied by various kinds of score or confidence values. 

Disorder prediction methods provided several important conclusions. (1) They 

proved that disorder is not random, but has some important physical characteristics 

that make it possible to identify such regions. (2) Disorder is evolutionarily conserved. 

(3) Consequently, it was possible to estimate the amount of intrinsic disorder within 

various genomes (as described in 1.1.3). (4) That in turn enabled the conclusion that 

disorder is a development of evolution and is more prominent among higher 

organisms. (5) Some functional classes of proteins are enriched in IDPs (see above, 

section 1.2) (Kozlowski and Bujnicki, 2012; Ward et al., 2004b). 

 Sequence-based disorder prediction methods 

1.5.1.1. Disorder as a classification problem 

Sequence-based disorder prediction methods treat intrinsic protein disorder in a 

binary fashion. The aim of these methods is to classify each residue in the query 

sequence as ordered, or disordered. Treating disorder this way greatly simplifies the 

problem, as disorder can have many preferred conformations, functional roles and 

features (compare section 1.2; van der Lee et al., 2014). Still, this simplification proves 

stable and fruitful, as the performance and popularity of these methods show. 

Since the prediction of disordered residues can be defined as a disorder/order 

(binary) classification problem, many algorithms developed in other areas of science 

are applicable in this case. 
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1.5.1.2. Approaches to disorder predictions 

The first disorder prediction algorithms were developed by A. Keith Dunker’s group 

between 1997 and 1999 (Li et al., 1999; Romero et al., 1998, 1997). Predictions were 

based on simple rules derived from the observations of IDPs known at the time and 

three neural network (NN) predictors which specifically identify disordered regions 

of different lengths (i.e. short, medium and long disorder). 

As the interest in IDPs grew, a plethora of prediction methods arose. Disorder 

prediction has been one of the categories assessed during the biennial experiment 

CASP (Critical Assessment of protein Structure Prediction) between CASP5 in 2002 

and CASP10 in 2012. 

At present, sequence-based disorder prediction methods fall into one of the three 

categories: 

(1) Physics-based methods, 

(2) Machine learning-based methods, 

(3) Meta methods. 

Sub-sections below describe each of these approaches and give examples of some 

state-of-the-art methods. Some recent papers also review the disorder prediction 

methods (Ali et al., 2014; Dosztányi et al., 2010; Oates et al., 2013; Orosz and Ovadi, 

2011). 

1.5.1.3. Physics-based predictors 

Intrinsically disordered regions in proteins have some characteristic features that 

make them distinct from ordered regions (Habchi et al., 2014; van der Lee et al., 

2014). Physics-based disorder predictors take advantage of this fact and use one or 

more of the features of intrinsic disorder: low sequence complexity (Li et al., 1999); 

low hydrophobicity and high net charge (CH-plot) (Uversky et al., 2000); disorder 

promoting residues (such as proline, glycine, or charged amino acids) (Dunker et al., 
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2008); low probability to form energetically favourable contacts (Uversky et al., 

2000). 

Although physics-based methods are methodologically simpler than the machine 

learning approaches, they achieve excellent results that prove IDPs have clear 

physical characteristics. For comparison, refer to Mobility Continuous Assessment 

(MoCA; Walsh et al., 2015) and the results presented in Chapter 3. Some of the 

popular physics-based disorder predictors are discussed below and IUpred, the most 

popular and widely used physics-based method is described in more detail in sub-

section 1.5.1.3.a. 

iPDA (Su et al., 2007) combines DisPSSMP2 position-specific scoring matrices of 

amino acid physicochemical properties which are focused on the disorder 

propensities of residues, along with several other sequence predictors which account 

for sequence conservation, secondary structure, sequence complexity and the 

analysis of hydrophobic clusters. 

GlobPlot (Linding, 2003) is based on a scale of residue propensities to form globular 

or non-globular states. It identifies disordered regions by calculating the propensity 

values over protein regions as differences between ‘random coil’ and ‘secondary 

structure’ propensities and applying a low-pass data filter. 

FoldIdex (Prilusky et al., 2005) is based on hydrophobicity/net charge plots of 

sequence fragments. By using a sliding window approach it identifies putative 

intrinsically disordered regions within the sequences. 

a. IUpred 

IUpred (Dosztányi et al., 2005a, 2005b) attempts to predict regions that are unlikely 

to form stabilizing contacts and thereby form intrinsically disordered regions. 

The method is based on a 20 by 20 table of interaction energies derived from a large 

non-redundant set of high resolution globular structures deposited in the PDB. By 
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using a table of physicochemical properties and analysing the sequence environment 

of a given residue it assumes that the ordered regions make enough favourable 

contacts to maintain a stable 3D structure. 

IUpred relies on a single sequence, rather than a MSA. The energy values are 

averaged over a window of 21 residues. The method uses two energy tables – one 

for short disorder and one for long (above 30 consecutive residues) disordered 

regions. 

1.5.1.4. Machine learning-based predictors 

Most of the current top performing disorder/order classification methods are based 

on supervised machine learning approaches; RONN (Yang et al., 2005), DisEMBL 

(Linding et al., 2003), VSL2 (Peng et al., 2006), ESpritz (Walsh et al., 2012), DISOPRED 

(Jones and Cozzetto, 2015; Jones and Ward, 2003; Ward et al., 2004b). This group of 

methods acknowledges the complexity of the phenomenon of intrinsic disordered 

(no single property can fully describe IDPs) and take advantage of the available 

experimental data to train the predictors. 

The majority of machine learning-based methods use missing X-ray data for training 

(e.g. DISOPRED2, ESPritz-Xray, RONN, VSL2B, DisEMBL). Most of the methods use 

either neural networks or SVM approach. 

Because X-ray data is biased towards short disordered regions (less than 30 residues), 

most machine learning-based methods achieve poorer performance on long disorder 

(Ali et al., 2014; Monastyrskyy et al., 2014). Some methods deal with long disordered 

regions by creating separate ‘flavours’ of predictors aimed at long disordered regions 

(e.g. ESpritz (Walsh et al., 2012) or CSpritz (Walsh et al., 2011)). Other methods try to 

combine short and long disorder predictions in one framework (e.g. VSL2 (Peng et al., 

2006)). Finally, there are some methods aimed specifically at long disordered regions 

(e.g. SLIDER (Peng et al., 2014a)). 



Chapter 1. Introduction  48 
 

 

SLIDER is a method based on logistic regression (unique in disorder predictions), 

which uses the following features: amino acid composition, physicochemical 

properties of residues, sequence complexity and combinations of these features. 

Although the method was specifically designed to tackle the issue of long disordered 

regions, it achieves results comparable with a more universal method VSL2 (Peng et 

al., 2006). 

Another interesting approach is s2D, which tries to combine secondary structure and 

disorder predictions within a single method (Sormanni et al., 2015). Secondary 

structure prediction is generally a solved problem now (Jones, 1999), but so far there 

were no methods that attempted to solve both of those issues simultaneously. The 

method utilizes a well-known (both in secondary structure and disorder predictions) 

neural network framework, but enhances it with the use of extreme learning 

machines (ELMs). ELMs speed-up the training process and allow for an evaluation of 

more models, as well as have a proven capability to perform universal 

approximations. The method was not validated or tested externally (e.g. in CASP 

experiment), but it is an interesting approach to the problem of disorder predictions. 

DISOPRED is one of the most popular machine learning-based disorder predictors. It 

is described in more detail below, in sub-section 1.5.1.4.a. 

a. DISOPRED 

The DISOPRED method was initially developed in 2003 (Jones and Ward, 2003). It is 

based on neural networks and was trained on X-ray data. 

DISOPRED2 became a successful disorder prediction method that offered low false 

positive rate and enabled an accurate estimation of the amount of disorder across 

different genomes and, in effect, between different domains of life (Ward et al., 

2004a, 2004b). DISOPRED2 utilizes a combined approach taking advantage of SVM 

training and neural network classifier. At the time of its release it was a state-of-the-

art method, but with time it became apparent that it under-predicts long disordered 

regions (CASP8 assessment; Noivirt-Brik et al., 2009). 
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DISOPRED3 was developed in 2014 and returned to the neural network framework 

to try and tackle the problems of previous DISOPRED releases in dealing with long 

disordered regions (Jones and Cozzetto, 2015). The method combines 3 approaches 

(neural network, SVM and nearest neighbour classifier) within an umbrella neural 

network. 

DISOPRED3 outperforms DISOPRED2 according to all metrics and again it is a high 

specificity method (> 99% specificity, except at terminal protein regions). 

1.5.1.5. Meta predictors 

One of the most popular and effective ways to address the problem of disorder/order 

classification is through the use of meta methods. This class of methods addresses 

the problem by combining the prediction of different individual methods to produce 

a single consensus result. Meta methods usually perform very well and were highly 

ranked in recent CASP disorder evaluations (Monastyrskyy et al., 2014, 2011). 

Some examples of disorder meta predictors include MetaDisorder (Kozlowski and 

Bujnicki, 2012), PONDR-FIT (Xue et al., 2010), PrDOS (Ishida and Kinoshita, 2007), 

MFDp (Mizianty et al., 2010), POODLE (Shimizu et al., 2007). 

PrDOS uses conditional neural fields and metaPrDOS is a meta method using 5 other 

servers (prdos.hgc.jp/cgi-bin/top.cgi). 

MFDp is a meta method using SVM fed with evolutionary profiles, secondary 

structure, solvent accessibility and dihedral angles 

(http://biomine.ece.ualberta.ca/MFDp.html). 

POODLE is another SVM method combining 3 other SVMs: Poodle-S, Poodle-L and 

Poodle-W. 

A different example of a meta server is MeDor (Lieutaud et al., 2008). It combines 

different predictors, such as VL3, VL3H (Radivojac et al., 2003), VSL2B, HCA 
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(hydrophobic cluster analysis; Callebaut et al., 1997) but it does not provide a 

consensus prediction. Instead, it gives the user an opportunity to compare the 

predictions of those methods using a visual output. 

 Computational simulations of intrinsic disorder 

Apart from one-dimensional sequence-based disorder predictors, some approaches 

to computationally model the dynamic nature of IDPs have also been attempted. All 

of the simulations are based either on the use of all-atom molecular dynamics (MD), 

some form of coarse-grained molecular dynamics, or on Metropolis Monte Carlo 

simulations in an implicit solvent. Some of the major computational simulations to 

date are gathered in Table 4. 

1.5.2.1. MD-based disorder simulations 

There are essentially no large scale studies of IDPs using molecular dynamics 

methods, as MD is still computationally expensive and limited to short proteins 

(Baker and Best, 2013). However, using MD simulations it is possible to gain an insight 

into intrinsic disorder that is not possible using sequence-based disorder predictors, 

such as information about the protein ensembles, protein dynamics or disorder-to-

order transitions (Baker and Best, 2013; Bueren-Calabuig and Michel, 2015). 

There was a single study thus far carried out by D.E. Shaw’s group to simulate using 

Anton – a purpose-build supercomputer for MD simulations – the dynamic behaviour 

of acyl-CoA-binding protein (ACBP), a 112 residue protein (Lindorff-Larsen et al., 

2012). The computations showed acceptable agreement with NMR ensembles, 

however leaving the output structure more compact than its experimentally-solved 

counterpart. An important drawback of this approach is its exclusivity (there is only a 

handful of Anton machines with a very limited access) and the computation remains 

demanding, even though the MD timescales accessible via Anton are impressive (200 

μs in the discussed case). 
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Generally, all-atom MD methods are thought to produce models that are too 

compact (Henriques et al., 2015). One of the proposed causes of this is an issue with 

protein-water interface parametrization (Henriques et al., 2015). Nevertheless, most 

of modern force fields are capable of reproducing the behaviour of IDPs reasonably 

well (Palazzesi et al., 2015). 

Even given the issues above, folding-upon-binding (or disorder-to-order transition) 

simulations are possible using MD. They are usually limited to small binding motifs, 

as in the case of MDM2 (119 residues) and p53 TAD domain (12 residues) binding 

simulation (Bueren-Calabuig and Michel, 2015). 

1.5.2.2. Coarse-grained disorder simulations 

Coarse-grained models are also popular in the studies of IDPs (Baker and Best, 2013). 

They allow for more computationally tractable simulations of longer protein chains. 

One of the most active groups in the field of coarse-grained simulations of IDP is Rohit 

V. Pappu’s lab. They developed a continuum implicit solvation model called ABSINTH, 

tailored to the simulation of disordered proteins (Table 4) (Vitalis and Pappu, 2009b). 

In this model, the transfer of polypeptide from gaseous environment to solvent is the 

sum of direct mean field interactions. Then ABSINTH estimates the range of multi-

body interactions by the size of per atom implicit solvation shell. It helps to select 

which interactions should be recalculated in each coming step in addition to the 

motions coming from the next step of simulation (Vitalis and Pappu, 2009a). Using 

this solvation model in combination with Metropolis Monte Carlo (MMC) simulations, 

Pappu’s lab performed a series of experiments on peptides (20-49 residues) to 

investigate the behaviour of some natural and synthetic model IDPs (Das and Pappu, 

2013; Das et al., 2012; Mao et al., 2010; Vitalis et al., 2008, 2007). The main purpose 

of these series of experiments was to discover some rules governing the behaviour 

of IDPs under physiological conditions. From these experiments it was found that:  
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(1) polyglutamine froms disordered, collapsed globules with a potential to 

form multimeric structures depending on the chain length and 

physicochemical environment (Vitalis et al., 2008); 

(2) net charge per residue modulates the radius of gyration or compactness 

of disordered peptides (Mao et al., 2010); 

(3) oppositely charged peptides depending on the intra-chain charge 

balance form either generic Flory random coils (mixed charges) or 

hairpin-like conformations (charges separated) (Das and Pappu, 2013).  

A different study on a small, but more diverse system was carried out on basic regions 

of leucine zippers (bZIP-bRs) and revealed the relationships between the amino acid 

composition and the amount of helicity (Das et al., 2012). Clearly all of these studies 

provided some important insights into how small model IDP systems behave and to 

the driving forces in the behaviour of the disordered ensembles. Unfortunately, to 

date the group had not presented any studies on larger proteins (50 residues or 

more), nor on proteins containing disordered regions. 

One of the other studies concerning disorder-to-order transition focused on a region 

of sortase by performing multiscale enhanced sampling (MSES) (Moritsugu et al., 

2012). The method used is a modification of the classical MD approach that combines 

the all-atom approach with a MD force field and a coarse-grained system described 

by a simplified Hamiltonian that was arbitrarily assigned to the disordered region. 

The study revealed the flexibility and the transition of the investigated fragment 

correctly, but the need for an experimental starting structure and the somewhat 

arbitrary assignment of the disordered region remain as serious drawbacks of this 

approach. 

Several other studies also used MD techniques to: describe a domain or fragment of 

a protein (Ganguly and Chen, 2009; Potoyan and Papoian, 2011); investigate the 

binding of a fragment of a disordered domain to a globular target (Higo et al., 2011; 

Staneva et al., 2012); determine the folding mechanism of a molten globule protein 

(Naganathan and Orozco, 2011). Refer to Table 4 for methodological details.  
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Table 4. Some major computational simulations of IDPs. 

source protein 
PDB id 
(no. res.) method remarks 

Lindorff-

Larsen et al. 

2012 

acyl-CoA binding 

protein (ACBP) 

1k19 (112) MD 

CHARMM22* 

explicit TIP3P water 

ANTON supercomputer 

200 μs simulation 

Vitalis et al., 

2008 

Polyglutamine 

peptides  

(Q5-45) 

- (5-45) Metropolis Monte Carlo 

(MMC) 

OPLS-AA/L 

ABSINTH solvation model 

 

Mao et al., 

2010 

21 positively 

charged 

protamines 

- (24-49) MMC 

OPLS-AA/L 

ABSINTH solvation model 

 

Das et al., 

2012 

15 bZIP-bRs - (27-28) MMC 

OPLS-AA 

ABSINTH solvation model 

CAMPARI package 

TREx sampling 

Das & 

Pappu, 2013 

30 (Glu-Lys)25 

peptides 

- (25) MMC 

OPLS-AA 

ABSINTH solvation model 

CAMPARI package 

TREx sampling 

Moritsugu et 

al., 2012 

Sortase 2kid (148; 

90 used) 

MD (MSES) 

AMBER ff03 + in-house 

VCG 

Arbitrary assignment of 

a different potential to 

disordered residues 

Staneva et 

al., 2012 

p53 & TRTK-12 

(fragments) 

1dt7 & 

1mwn/1mq1 

(15 & 12 

used) 

MD (GROMACS) + MC 

(PROFASI) 

OPLS-AA/L 

explicit SPC/E water 

Binding of disordered 

peptides to a globular 

protein 

Ganguly & 

Chen, 2009 

CREB (KID & 

pKID) 

1kdx (28) REX-MD 

CHARMM22/CMAP 

GBSW implicit solvent 

12 replicas (270-500 K) 

200 ns simulations (160 

ns KID folding) 

Naganathan 

& Orozco, 

2011 

NCBD 2kkj & 1zoq 

& 1jjs (59 & 

47 & 50) 

Cα-Gō (GROMACS) & MD 

AMBER 99 SB* 

TIP3P water 

MD only for 2kkj 

(residues 1-51) 

100 ns simulations 

Potoian & 

Papoian, 

2011 

Histone tails 

(H2A, H2B, H3, 

H4) 

- (14-38) REX-MD 

AMBER ff99SB 

TIP3P water 

3 μs simulations 

Higo et al., 

2011 

Neural restrictive 

silencer factor 

(NRSF; fragment)  

- (15) McMD 

AMBER parm94 & parm96 

TIP3P water 

Binding of a 

NRSF/REST fragment 

to Sin3 

PRESTO package 

10 ns runs (64 & 512 

runs at 1,000 K) 
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Although the presented simulations make it possible to study IDP systems in detail 

they are currently limited to small proteins or peptides (in all but two cases smaller 

than 60 residues) and they often require a starting experimental structure as input. 

On the other hand, these methods provided some important insights into how IDPs 

behave in model systems and have revealed some physicochemical principles 

governing their behaviour. The presented MD simulations also proved that existing 

force fields are capable of capturing the disordered behaviour of proteins, although 

the output structures are often too compact. Another major difficulty in studying IDPs 

– sampling – is bypassed using more refined methods, such as replica exchange (REX), 

multiscale enhanced sampling (MSES) or multicanonical sampling (e.g. Higo et al., 

2011). A methodologically different approach was mastered in Rohit V. Pappu’s lab; 

it employs Metropolis Monte Carlo simulations using General Born approximation-

based implicit solvent model (i.e. ABSINTH). 

There is a recent review available which summarizes the recent advancements in 

simulating IDPs and relates the computational and experimental results to our 

understanding of the physical bases of intrinsic disorder and how they mediate 

protein function (Chen, 2012). 

1.5.2.3. CABSflex 

A different approach, designed specifically to simulate protein flexibility is CABSflex 

(Jamroz et al., 2014, 2013b), also available as a webserver (Jamroz et al., 2013a). 

CABSflex is a coarse-grained method based on the CABS model (Kolinski, 2004). 

The CABS method (Carbon Alpha, Beta and Side-chain) is a coarse-grained model, 

which treats the polypeptide chain in a simplified manner (Kolinski, 2004). It uses Cα 

atoms and centres of mass of the peptide bond as a simplified backbone, and Cβs 

with a virtual side-chain pseudo-atom at the centre of mass to represent each side-

chain. The space in CABS model is also simplified. The main chain moves along a cubic 

lattice, while the side-chains are placed off-lattice. The simulation additionally uses a 

knowledge-based force-field (Kolinski, 2004). After the simulation is finished, the 
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chain is recalculated to an all-atom model. In CABSflex this rebuilding is performed 

using BBQ and ModRefiner methods (Gront et al., 2007; Xu and Zhang, 2011). 

CABSflex was recently made available as a webserver for simulations of protein chain 

flexibility (Jamroz et al., 2013a). Starting from a submitted structure it attempts to 

sample available neighbouring conformations by a series of random Monte Carlo 

conformational transitions modulated by the force-field. In a series of comparisons 

this method produced results in good agreement with MD simulations (Jamroz et al., 

2013b), accurately reproducing the behaviour observed in NMR ensembles (Jamroz 

et al., 2014). Their latter paper shows that starting from a rigid structure CABSflex is 

even more accurate in predicting the protein fluctuations than MD simulations which 

are far more computationally expensive (Jamroz et al., 2014). A very good agreement 

with NMR ensembles was achieved for both ordered but flexible proteins and 

disordered proteins with a mean RS (Spearman’s rank correlation) of 0.72 (± 0.15) on 

a dataset of 140 non-redundant proteins (0.64 ± 0.23 for MD). 

Results from the CABSflex papers show that stochastic simulations based on 

knowledge-based potentials are capable of reproducing what is observed by NMR 

experiments even for disordered proteins. The papers also show that MD simulations 

have no advantage over coarse-grained methods and CABSflex was able to produce 

more accurate results than MD in most cases. Although the method proved to be 

quick and reliable, it also poses a serious drawback – it requires a high-quality starting 

structure as an input. 

1.5.2.4. DynaMine 

DynaMine is a machine learning linear regression model that predicts NMR order 

parameters (S2) from protein sequence (Cilia et al., 2013). The NMR order parameter 

is an experimental NMR parameter which represents how restricted is the movement 

of an atomic bond vector with respect to the reference frame. In case of DynaMine, 

the method predicts backbone (N-H bond) order parameters (Cilia et al., 2013). 
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There have been previous attempts to derive order parameters from structures using 

either derived relationships between the distances within experimental structures 

(Zhang and Brüschweiler, 2002), or machine learning (neural network) methods 

(Trott et al., 2008). DynaMine, however, is the first approach to try and obtain order 

parameter values from sequence alone. 

The order parameter determines the level of constraints in an atomic bond, a value 

of 1 means that the movement is completely restricted (rigid) and 0 means there are 

no constraints on the movement of the bond (highly disordered) (Berjanskii and 

Wishart, 2008). Experimentally, order parameters can represent movements at 

different time scales – from femtosecond to low millisecond. In DynaMine, because 

reference (“experimental”) order parameter values are derived from chemical shifts, 

the predicted order parameter values represent a mix of different timescales (Cilia et 

al., 2013). 

In DynaMine, no training data comes directly from experimentally derived S2 values. 

Instead, the data is calculated from reported experimental chemical shifts (which are 

easily obtained and commonly deposited in BMRB) using the RCI method and then 

re-scaled to match S2 values best (Berjanskii and Wishart, 2005). This re-calculation 

may contribute to a bias in DynaMine, because, as the authors determined, 

comparing S2 values re-calculated using RCI with experimentally determined S2 values 

on a set of 16 proteins, Pearson’s correlation equals 0.685 between the two sets. 

DynaMine is intended to serve as a disorder predictor (when S2 values are binned into 

disordered/flexible, context-dependent and ordered/rigid regions), helping to 

distinguish regions of different structural organization (e.g. folded domains, 

disordered linkers, molten globules, pre-structured binding motifs) and ultimately to 

re-evaluate residue propensities previously derived from X-ray and spectroscopic 

data (Uversky and Dunker, 2010).  
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1.6. Aims and outline of thesis 

The focus of this PhD is to further bridge the gap between the experimental data on 

IDPs and computational methods. Most of current computational techniques rely on 

sequence data alone to provide a binary disorder/order classification and do not yield 

any higher-dimensional information. Few attempts have been made to 

computationally simulate the behaviour of disordered regions in silico. To date, only 

MD or Monte Carlo approaches have been used. These methods require a starting 

structure they may attempt to simulate and significant computational power and 

time, while being applicable only to small or medium-sized proteins. This significantly 

impairs any advances for large-scale computations or the routine use of these 

techniques.  

In this work, I address the issue of utility of protein structure prediction techniques 

to the prediction of intrinsically disordered protein ensembles and protein backbone 

dynamics. 

Chapter 2 describes FRAGFOLD-IDP approach, which takes advantage of FRAGFOLD 

fragment assembly method to predict the ensembles of intrinsically disordered 

proteins from sequence. The ensembles are then clustered and analysed in terms of 

their per-residue fluctuations. FRAGFOLD-IDP is assessed on a set of 200 NMR PDB 

ensembles. The method is compared to a naïve method and analysed on a basis of 

protein CATH class, disorder content and the correlation between the quality of 

structure and backbone dynamics predictions. Finally, FRAGFOLD-IDP is evaluated 

against other methods that provide similar information, or data that can be related 

to protein backbone dynamics – crystallographic B-factor predictions, NMR order 

parameter predictions and disorder classification methods. I show that FRAGFOLD-

IDP achieves superior performance than any of those methods and only FRAGFOLD-

IDP and DynaMine, an NMR order parameter predictor, achieve results that are 

significantly better than the naïve method. 

Chapter 3 explores FRAGFOLD-IDP performance on the task of disorder/order 

classification. It is a well-established problem in bioinformatics and it gives a broader 
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spectrum for comparisons of the method. The assessment includes a wide array of 

top performing disorder classification methods which utilize different approaches 

and were trained on different data. I show that although FRAGFOLD-IDP is a protein 

backbone dynamics prediction method it performs well on the task and is on par with 

the top performing binary disorder/order classification methods. 

Chapter 4 describes a consensus protein backbone dynamics predictor which 

integrates the predictions of FRAGFOLD-IDP and DynaMine. Using a neural network 

approach, I combine the input methods to produce the predictions which are 

significantly better than any of the input methods. The consensus predictor 

established a new state-of-the-art in intrinsically disordered protein backbone 

dynamics predictions. 

Chapter 5 summarises the major contributions of this work in a biological context, 

possible applications and future directions where the use of FRAGFOLD-IDP and the 

consensus predictor could help to address some of the outstanding problems in the 

fields of intrinsically disordered proteins and structural bioinformatics. I also provide 

a general discussion of the limitations in studying intrinsically disordered proteins 

using computational techniques. 

The results of this work are likely to be of great interest to the whole IDP research 

community, both experimentalists and theoreticians alike. This work should help to 

obtain dynamic information for proteins of unknown structure. It could also help to 

gain a better understanding of the physical bases of intrinsic disorder in proteins. This 

would not only enable us to predict disorder using a novel approach, but also provide 

a better insight into how intrinsically disordered regions behave in different classes 

of proteins, or how to quantify disorder in a different manner. 

Finally, I expect these findings to facilitate the design of disorder-to-order transitions, 

what in turn could give a better understanding of the phenomenon and help to study 

some of the IDP-related diseases. 
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Chapter 2.  
FRAGFOLD-IDP DE NOVO PREDICTIONS  
OF INTRINSICALLY DISORDERED PROTEIN 
ENSEMBLES 

2.1. Background 

 Purpose and challenges 

Chapter 1 laid out the current state of knowledge about intrinsically disordered 

proteins and the techniques used to study them. At the core of the computational 

techniques that are currently used to study protein disorder (section 1.5) are disorder 

predictors and simulation techniques. The predictors help to quantify the amount of 

disorder within genomes and led to the realization that intrinsic protein disorder is a 

prevalent phenomenon which has its characteristics (see section 1.5.1). Simulation 

techniques, on the other hand, provide dynamic information on protein disorder. 

Those methods showed that modern force fields are accurate enough to reproduce 

the behaviour of disordered ensembles observed from NMR experiments (see 

section 1.5.2). Nevertheless, these 2 approaches have some serious limitations. 

Disorder predictors limit our knowledge to the classification of residues as ordered, 

or disordered – they provide no structural or dynamic information, treating disorder 

as a binary property. Simulation techniques, either Molecular Dynamics (MD)-based, 

or Metropolis Monte Carlo (MMC)-based, provide a greater level of insight into 

intrinsic disorder than disorder predictors, but at the same time they require starting 

structures to simulate. This itself poses a serious limitation and leaves those 

simulation techniques at a proof-of-concept stage, since they cannot be used to study 

the behaviour of proteins of unknown structures. The other limitation that simulation 

techniques suffer from is their high computational cost. As discussed in section 1.5.2, 

most current simulation approaches are limited to small proteins, usually shorter 

than 100 residues. The simulations of even those small targets are computationally 
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expensive and non-trivial, requiring days of simulations on modern computer 

clusters. 

Disorder is not a binary property and there are different degrees of protein disorder, 

preferred conformations, or intra-chain interactions (Dyson and Wright, 2005; van 

der Lee et al., 2014). In this work I address the problems of current computational 

approaches to enable a greater insight into the dynamics of intrinsically disordered 

proteins of unknown structure. To achieve this, FRAGFOLD, a de novo fragment-

based protein folding approach, is used (see section 2.1.3). By using a de novo 

approach, the study is not limited to proteins of known structure, but for the purpose 

of benchmarking NMR results from the PDB database are utilized. The heterogeneity 

of the intrinsically disordered protein ensembles are measured using per-residue 

RMSD. It quantifies the behaviour of disordered ensembles and provides more 

information than disorder classification. 

 Other approaches used to predict the properties of IDP ensembles 

Although the approach presented in this work is innovative in terms of the 

methodologies used, it is not the first attempt to address the issue of predicting 

backbone protein dynamics in intrinsically disordered proteins, or the properties of 

intrinsic protein disorder from sequence. 

To the best of the author’s knowledge there are two other approaches that address 

this problem – the DynaMine method (Cilia et al., 2014, 2013) and the attempts made 

by David Baker’s group using Rosetta (Wang et al., 2011). Hence, before moving on 

to describing the details of the method developed in this work, let us discuss the 

basics and results of those approaches. 

2.1.2.1. DynaMine – summary of the results 

The method is described in detail in section 1.5.2.4. Briefly, DynaMine uses a linear 

regression model to predict NMR order parameter (S2) for each residue in the query 

sequence. Unlike most modern disorder predictors, DynaMine relies on a single 
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sequence, instead of a sequence profile (compare section 1.5.1) and uses a 51 residue 

sliding window (a shorter window for smaller targets) as an input to the model. 

The method was assessed in several ways: its ability to reproduce known 

experimental order parameter values, as a disorder/order classifier and in a more 

exploratory context predicting the properties of targets not having structural 

information available, but having known domain annotations. The last aspect was 

studied to elucidate the biological relevance of the predictions and to show the 

potential of the method in recognizing the regions of different structural 

organizations, such as disordered linkers, molten globules, or pre-structured binding 

motifs (Cilia et al., 2013). 

DynaMine training relies on order parameter values calculated from chemical shift 

data, rather than directly from experimental order parameters. The authors 

evaluated the calculations of order parameters using the RCI method (Berjanskii and 

Wishart, 2008) and achieved Pearson’s correlation of 0.68 on a set of 16 proteins 

(1,581 residues) with known chemical shift and order parameter data. 

Disorder/order classification was evaluated on two DisProt-derived datasets (DisProt 

is described in section 1.4.1). The first DisProt dataset overlapped with available 

chemical shift data to verify the utility of calculated order parameters in reproducing 

DisProt annotations (< 90% sequence identity with DynaMine training data). The 

second DisProt dataset consisted of other entries not having related NMR data. 

The first assessment showed that calculated order parameters reproduce DisProt 

binary classification remarkably well (AUC = 0.92) and that optimal order/disorder 

threshold values for both calculated order parameters and DynaMine predictions are 

similar (between 0.77 and 0.80 S2 values). The second evaluation compared the 

results of 6 disorder predictors (IUpred (Dosztányi et al., 2005b); RONN (Yang et al., 

2005); PrDOS2 (Ishida and Kinoshita, 2007); VSL2 (Obradovic et al., 2005); FoldIndex 

(Prilusky et al., 2005) and ESpritz (Walsh et al., 2012)) with DynaMine. In this 

evaluation DynaMine performed very well, on par with the top disorder predictors 
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(PrDOS2, ESpritz). The drawback of this analysis is that DynaMine was trained on a 

closely related set of proteins (< 90% sequence identity) in one approach and in the 

other the sequence similarity between the training and test sets is unknown. This 

suggests a possibility that the model was overtrained on the data and the evaluation 

gave the advantage to the previous methods that were trained on DisProt data. 

The DynaMine case studies include 8 proteins: human p53, human CREB-binding 

protein, human cyclin-dependent kinase inhibitor p27, E1A protein from human 

adenovirus 5, human calpastatin, HIV Nef protein, PaaA2 human antitoxin and Phd 

human antitoxin. For those targets, it is possible to estimate the boundaries of folded 

domains basing on DynaMine predictions. The authors also assessed their predictions 

looking at the distributions of predicted S2 values in known domains and disordered 

regions. The distributions of folded and disordered domains are partially overlapping, 

but in most cases have distinct maxima. 

Overall, DynaMine predictions provide a good qualitative tool for the analysis of 

sequences. The predictor does not have a bias towards proteins of known structures 

and can also be used as a disorder/order classification tool (Cilia et al., 2013). Because 

the underlying data (order parameters calculated from chemical shifts) is a source of 

initial bias, DynaMine predictions should rather be interpreted in terms of relative, 

not absolute values. Indeed, in most analysed cases, known secondary structure 

elements correspond to peaks in predicted S2 values, so do some known interaction 

motifs. The authors also suggest that DynaMine predicted S2 values might have a 

meaning in the sense of domain stability. 

2.1.2.2. Study of IDPs using Rosetta 

The study by Wang et al. attempts to use Rosetta to model disordered regions in 

proteins (Wang et al., 2011). The authors observe that protein structure prediction 

methods attempt to find the lowest potential energy conformations, whereas the 

native state of the protein corresponds to the free energy minimum. In the case of 

ordered proteins this discrepancy does not play a major role, since the entropies of 
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ordered (folded) proteins are similar. Whereas for disordered proteins, the entropic 

effects should play a more important role. To address this, the authors arrive at two 

possible solutions. The first solution, starts from predicted low energy models and 

attempts to enhance the models with disorder identification by optimising a free 

energy function. The free energy function takes different forms in the case of internal 

(mid-sequence) disorder and protein termini. Minimization of the free energy 

function is achieved by enumerating possible disorder/order assignments along the 

sequence. The second approach relies on a pre-computed disorder/order 

classification. Residues classified as ordered follow normal Rosetta potentials 

(Leaver-Fay et al., 2011; Rohl et al., 2004; Simons et al., 1999, 1997). Disordered 

residues are treated as interacting via repulsive interactions only – van der Waals 

interactions when the simulations is carried out using only centroids and Lennard-

Jones potential at all-atom level. 

The results for the first approach (calculating the free energy from low-energy 

Rosetta models) are assessed for the termini and internal loops separately on a set 

of 38 proteins in total. In the assessment of 8 targets with disordered termini the 

methodology showed some minor improvements in discriminating native structures 

considering the free energy rather than the potential energy. For the internal 

disorder set (30 proteins), the authors enumerated all possible stretches of disorder 

using the free energy calculations, starting from pre-calculated low energy structures. 

Comparing the results to a null model (assuming all residues are ordered), 

improvements were made in 16 out of 30 cases. The shapes of potential energy and 

free energy landscapes are similar. Overall, this approach requires a significant 

computational cost. It first generates an ensemble of structures and then the 

ensemble is recalculated to obtain the free energy values. The latter calculations 

enumerate all possible stretches of disorder (within given constraints). 

The results of the second approach (using repulsive-only interactions on pre-

annotated disordered regions) were illustrated on 4 cases (1 overlapping with the 

previous 38 case test set) using 3 methodologies: Rosetta ab initio with DISOPRED2 

predictions, CS-Rosetta (Shen et al., 2009) with chemical shift data and a comparative 
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modelling approach. All those approaches yielded better results in terms of overall 

structure prediction quality over the standard Rosetta approach. Nevertheless, given 

the small size of the test set it is difficult to draw general conclusion as to the utility 

of this approach. 

Overall, the method is aimed at improving the predictions of ordered proteins, 

accounting for disordered regions in a different fashion. The authors achieved this 

goal, at the same time gaining some insights into the behaviour of the disordered 

regions themselves. However, the work does not go beyond the binary 

order/disorder scheme and shows modest improvements over a typical approach to 

the structure prediction problem, regardless of the solution used. 

 FRAGFOLD folding engine 

The method developed in this chapter relies on FRAGFOLD calculations, hence the 

method is introduced here. FRAGFOLD is a state-of-the-art de novo fragment-

assembly method for protein structure prediction (Jones and McGuffin, 2003; Jones, 

2001, 1997; Jones et al., 2005). It bases on similar principles as Rosetta (described 

above) and was shown to be effective in de novo structure predictions of globular 

proteins (Jones and McGuffin, 2003; Jones, 2001).  

Because of the complexity of the protein folding problem, most protein structure 

prediction approaches utilize some form of coarse graining to limit the 

conformational search. In FRAGFOLD, the coarse graining is achieved by using 

structural fragments (peptides), instead of individual residues. This allows for both 

spatial and structural coarse-graining. FRAGFOLD fragment library consists of three 

types of fragments: 

(1) Supersecondary fragments; 

(2) 9-residue (fixed-length) fragments; 

(3) Dipeptide and tripeptide fragments. 
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The fragments are pre-computed and assembled into FRAGFOLD fragment library 

(Figure 3 greyed area). They come from a set of highly resolved protein structures. 

The selection of large fragments (supersecondary and 9-residue) is determined by a 

threading score based on the multiple sequence alignment (MSA) and secondary 

structure predictions provided as input for FRAGFOLD (Figure 3 top). Small dipeptide 

and tripeptide fragments are universal and do not depend on the input protein 

sequence. At each position in the target sequence, a shortlist of large fragments that 

both agree with the prediction of secondary structure and which have a favourable 

threading energy are produced. The lists of large and small fragments are sampled 

randomly during the folding run to generate each new conformation. 50% of 

fragments are taken from the pre-calculated large fragment list and the other half is 

taken from the set of small fragments. 

 

Figure 3. FRAGFOLD flow diagram. Elements defined by the user are shown as red ellipses. 

The sampling is performed using Replica Exchange Monte Carlo (REMC) with 

Simulated Annealing (SA) approach (Figure 3 bottom). The simulation starts from a 

random conformation. All fragment insertions are made at random positions within 
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the sequence and are accepted with a probability 
kTEe /

. The temperature of the 

simulation decreases as the simulation progresses. The starting temperature (T0) is 

determined by taking 10 times ΔE of the largest energy difference between a pool of 

random conformations. The temperature is decreased by 0.05T0 after each 10% of 

the maximum number of moves. After each fragment is inserted, side-chain 

conformations are also generated from a library of rotamers. 

The FRAGFOLD objective energy function force field embodies pair-wise potentials of 

mean force determined by inverse Boltzmann equation – short range (6 residues or 

less apart) and long range (7 or more residues separation) potentials; solvation 

potential, hydrogen bonding, structure compactness and steric terms (Jones and 

McGuffin, 2003; Jones, 2001). The final energy function is in the form: 

scompactnesbondH
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ECOMPACTWEHBW

ESTERICWESOLVWELRWESRWE









65

4321
 

Weighting components of the potential function (W1 to W6) are determined by 

comparing the standard deviations of each term, across an ensemble of random 

conformations, to that of the short range (W1) term. Random conformations are 

generated by threading fragments randomly from N- to C-terminus and performing a 

steric clash check. If steric clashes are observed the conformation is discarded and a 

new one is generated in its place. Further weighting (SR, LR, SOLV, STERIC, HB, 

COMPACT) can be user-defined, and by default the STERIC terms are weighted by an 

additional factor of 3.0, while all other terms (SR, LR, SOLV, HB, COMPACT) are left 

unweighted. 

The simulations run up to a pre-defined number of maximum annealing steps or until 

simulation time runs out. The number of steps is typically defined depending on the 

sequence length. For proteins shorter than 120 residues 5,000,000 steps are made 

and for longer proteins 10,000,000 steps. 

Each FRAGFOLD run generates a single three-dimensional protein model. The whole 

FRAGFOLD workflow is summarized in Figure 3.  
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2.2. Dataset 

 Construction 

Because this work moves away from the binary disorder/order classification, NMR 

PDB ensembles are used, instead of relying on the classical DisProt dataset (Sickmeier 

et al., 2007), or missing electron densities from X-ray data (e.g. as in DISOPRED2 

(Ward et al., 2004b)). 

As described in the Introduction (section 1.3.4), NMR ensembles contain dynamic 

information about the disordered state. It is also straightforward to extract per-

residue backbone dynamics data from the ensembles deposited in the PDB 

(described further in section 2.3.4). 

The dataset of NMR-resolved disordered proteins was constructed based on mobiDB 

(Di Domenico et al., 2012) – a comprehensive database of experimentally solved 

disordered proteins and sequence-based disorder predictions (described in section 

1.4.2). The database assesses the disorder content in proteins on the basis of the 

MOBI method (described in section 1.3.4.6; Martin et al., 2010). It also contains 

DisProt annotations (Sickmeier et al., 2007), where applicable. 

The dataset was extracted from mobiDB version 1.2 (accessible via: 

http://mobidb.bio.unipd.it/). The database was queried to extract only the 

proteins: 

(1) solved by NMR; 

(2) that have at least 95% coverage of PDB sequence with UniProt; 

(3) between 50 and 150 amino acids long; 

(4) that have no other molecules in the PDB file, as indicated by COMPND PDB 

keyword; 

(5) that have at least 5 consecutive disordered residues, as indicated by 

MOBI; 
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The criterion for using only NMR-derived structures was chosen to include the 

dynamic information that X-ray PDB structures lack. The coverage criterion was set 

to exclude possible protein constructs, or single domains of multi-domain proteins, 

where the native state might have different disorder characteristics. Limits on size 

were set, so that the simulations that are carried out on those sequences would be 

computationally tractable. PDB files with more than 1 molecule were excluded, to 

remove potential binding-induced changes in the behaviour of the disordered 

ensembles. Finally, the criterion of disorder content was set, so that proteins without 

a significant disordered region are not considered. 

Despite the criteria above, some other proteins that were previously studied using 

different computational techniques (Table 5) were added to the set for comparison. 

 Characterization 

Applying the criteria from 2.2.1 resulted in a dataset of 200 proteins in the dataset. 

The average length of the protein in the dataset is 105 residues (Figure 4) and the 

average disorder content is 33.7% (Figure 5). There are 28 proteins (14%) with at least 

50% of disorder content and 3 fully disordered proteins. The disorder distribution is 

close to what is predicted for the human proteome (Pentony et al., 2010). 

 

Figure 4. Length distribution of proteins in the dataset. 
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Considering only long disorder regions (30 amino acids or more) the dataset contains 

29 such proteins. 

 

Figure 5. Disorder content distribution in the dataset. 

 Benchmark set 

Based on the initial dataset constructed on the basis of mobiDB, a separate subset 

was extracted from it. The subset is designed to serve as a benchmark of the method, 

so that an evaluation of the parameters can be performed (sections 2.3 and 2.4). It 

contains 28 proteins of varied sizes and includes all localizations of disorder (N-

terminal, C-terminal, mid-sequence and full disorder). The average length of the 

proteins in the benchmark set is 110 residues and average disorder content is 32.2%. 

It also contains some of the previously computationally studied targets that do not 

meet the criteria set on the full dataset (described in 2.2.1). For a full list of 

benchmark set proteins refer to Table 5. 
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Table 5. Summary of benchmark set proteins. 

PDB 
id 

UniProt 
id name length 

no. 
disordered 
residues 

disorder 
location remarks 

1b75 P68919 ribosomal protein L25 94 16 m  

1dmo P62155 calmodulin 148 58 N+m+C  

1dvd P01040 stefin A 98 11 N+m  

1fkr P62942 fk506 and rapamycin-binding protein 107 12 M  

1jw3 O27635 conserved hypothetical protein MTH1598 140 34 M  

1k19 Q9NG96 chemosensory protein CSP2 112 38 m+C  

1ni7 P0AGF2 hypothetical protein ygdK 149 15 N+m  

1nin P0C178 plastocyanin 105 37 m 
molten 
globule 

1nnv P44199 hypothetical protein HI1450 107 18 N+m  

1nti P07107 acyl-CoA-binding protein 86 13 m 

from 
Lindorff-
Larsen et 
al., 2012 

1ovq P0A8I1 hypothetical protein yqgF 138 41 m  

1soy P27838 CyaY protein 106 10 m  

1tac P12506 HIV-1 transactivator (TAT) protein 86 67 N+m+C 

fully 
disordered; 
molten 
globule 

1tiv P12506 HIV-1 transactivator (TAT) protein 86 86 N+m+C 
fully 
disordered 

1xhs P0AE48 hypothetical UPF0131 protein ytfP 113 29 m+C  

1xpw Q9Y547 LOC51668 protein 143 17 m+C  

1y6d P0C5S4 phosphorelay protein luxU 114 11 m  

1zza O75324 stannin 90 44 N+m+C  

2aqa Q6Q547 H/ACA ribonucleoprotein complex subunit 3 57 57 N+m+C 
fully 
disordered 

2fki P0AF50 protein yjbR 118 27 m  

2hgk Q46919 hypothetical protein yqcC 117 27 m  

2jo6 P0A9I8 nitrite reductase [NAD(P)H] small subunit 110 11 m  

2ju4 P04972 
retinal rod rhodopsin-sensitive cGMP 3',5'-
cyclic phosphodiesterase subunit gamma 

87 86 N+m+C 
fully 
disordered 

2k36 P68466 protein K7 149 25 N+m  

2k5t P37613 uncharacterized protein yhhK 128 13 m  

2kkj P45481 CREB-binding protein 59 29 N+m+C 

non-bound 
part of CBP; 
from 
Naganathan 
& Orozco, 
2011 

2kx4 P03714 tail attachment protein 117 41 N+m+C  

2py1 P0A552 
deoxyuridine 5'-triphosphate 
nucleotidohydrolase 

129 10 N+m 
molten 
globule 

annotations of disordered residues are taken from mobiDB    

disorder location: N - N-terminal disorder; m - mid-sequence; C - C-terminal disorder  
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2.3. Methods 

The general concept behind this computational method, which will be referred to as 

FRAGFOLD-IDP, is to generate an ensemble of structures using FRAGFOLD and 

compare the backbone dynamics emerging from this ensemble of models to that of 

the NMR experimental ensembles. In this section, the details of the methodology are 

described. 

 FRAGFOLD-IDP workflow 

The models are generated using FRAGFOLD (described in 2.1.3). For each sequence 

in the dataset (section 2.2) FRAGFOLD generates a desired number of structures 

(section 2.3.2). These structures correspond to the energetic minima found by 

FRAGFOLD during the simulation. Because of the complexity of the protein energy 

landscape determined by the available conformational space, some models may not 

correspond to any of the structures found in the experimental NMR ensemble, i.e. 

false predictions. Therefore, all of FRAGFOLD-generated structures for a given 

sequence constitute its raw ensemble, which should contain the desired 

experimental ensemble (Figure 6). This raw ensemble needs to be processed to 

extract what would be a final ensemble and the result of the method. The process of 

obtaining the final ensemble from the initial set of FRAGFOLD-generated structures 

is called ensemble extraction (section 2.3.3). The final step of the methodology is to 

compare the final FRAGFOLD ensemble to its experimental counterpart – ensemble 

comparison (section 2.3.4) – consisting of superposition of individual structures 

within an ensemble (section 2.3.4.1) and scoring the agreement between FRAGFOLD 

and NMR ensembles (sections 2.3.4.2 and 2.3.4.3). The whole process is outlined in 

the diagram below (Figure 6). 
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Figure 6. Schematic workflow used in FRAGFOLD-IDP method. 

 Ensemble generation 

All FRAGFOLD simulations were ran using the all-atom representation, Replica 

Exchange Monte Carlo (REMC) to search for low energy conformations and relative 

weighting of the energy function terms determined by considering the standard 

deviations of each term across an ensemble random chain conformations for the 

target, as described by Jones et al. (Jones et al., 2005). The total number of annealing 

steps was set to 10,000,000 steps per simulation. An ensemble of 200 models per 

protein was generated to ensure reasonable sampling of conformational space. 

For each sequence in the dataset, secondary structure predictions were generated 

using PSIPRED (Jones, 1999) and HHblits was used to generate the input multiple 

sequence alignments (Remmert et al., 2011). Standard HHblits parameters were used 

– 3 iterations, E-value threshold of 10-3, minimum sequence coverage of 50% and 

minimum sequence identity to query of 30%. 

FRAGFOLD takes advantage of a set of parameters (as described in 2.1.3). During 

method’s optimisation alternative sets of potentials were tested: 

(1) All potentials (as in the case of globular proteins; referred to as ALL); 

(2) Removing STERIC potential (STERIC); 

(3) Removing COMPACTNESS potential (COMPACT); 

(4) Using all potentials, but excluding secondary structure predictions from 

the input (noSS). 
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 Ensemble extraction 

Each FRAGFOLD run generates a requested number of models per target sequence. 

The models correspond to minimized structures according to FRAGFOLD potential 

terms, and represent various minima across the free energy landscape. Therefore, to 

obtain a representative and (presumably) correct ensemble corresponding to the 

native disordered ensemble, it is necessary to extract a set of related structures. 

There are several issues that need to be dealt with in order to achieve this – choice 

and optimisation of a clustering method (structural clustering or other approach to 

clustering), determination of the optimal features to be clustered and the size of the 

ensemble. The methods to tackle each of these issues are described below. 

2.3.3.1. Structural clustering 

Structural clustering is an essential technique in structural bioinformatics. The name 

structural is used because some form of structural similarity between models is used 

as a metric in the feature space. Structural clustering is typically used as a final step 

in many modern template-free protein modelling pipelines (Jones and McGuffin, 

2003; Shortle et al., 1998). Structure prediction algorithms (e.g. FRAGFOLD) first 

generate a large number of possible models (decoys) that correspond to minimized 

structures. Then, to account for entropic contributions a structural clustering method 

is employed to group related structures and find patterns in structural preferences. 

In an ideal case, the largest cluster would correspond to the correct structure – most 

of the structures are minimized around the global energy minimum (Shortle et al., 

1998). Here, based on a similar predicate – the correct disordered ensemble should 

lay in a broad global minimum of the free energy – several structural clustering 

methods were evaluated. 

2.3.3.2. Hierarchical clustering 

In the most popular clustering algorithm – K-means clustering – the number of 

clusters to which the algorithm converges needs to be pre-defined. Therefore, this 

approach is not suitable for problems where the structure of the data is unknown in 
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advance. More suitable for this task is hierarchical clustering, where a criterion on 

the relationships between and/or within the clusters can be imposed. In hierarchical 

clustering, the initial set of clusters is composed of pairs of nearest neighbours 

according to the defined distance metric. Then, iteratively, the clusters are merged 

and populated with more distant neighbours. This process takes place until some cut-

off value for the distance between elements in the cluster is reached, or until all 

clustered elements form a single cluster and a hierarchical tree is formed. 

Two in-house clustering methods were used, basing on either RMSD or TM-score 

(described in section 2.3.4.4) as a distance metric – RMSDclust and TMclust (Jones 

and McGuffin, 2003). 

2.3.3.3. SPICKER 

SPICKER is a clustering method tailored to protein structure prediction problem of 

selecting near-native folds from a library of decoys (Zhang and Skolnick, 2004a). The 

method heuristically accounts for the energy landscape and combines clustering with 

model evaluation to iteratively search for an optimal pair-wise RMSD values in order 

to output the most representative structures from the library of decoys. SPICKER 

automatically outputs a single set of best decoys using a combination of pair-wise 

self-adjusting RMSD assessment, neighbour clustering and filtering. 

SPICKER is used in some of the current top-performing protein modelling pipelines, 

such as I-TASSER (Roy et al., 2010), QUARK (Xu and Zhang, 2012), or in EvoDeisgn de 

novo protein design (Mitra et al., 2013). 

2.3.3.4. MaxCluster 

MaxCluster is a versatile clustering program that enhances the repertoire of more 

traditional clustering methods than SPICKER. It contains a variety of hierarchical and 

nearest-neighbour clustering algorithms 

(http://www.sbg.bio.ic.ac.uk/~maxcluster). A total of 15 variations of 

parameters were tested, modifying clustering method (hierarchical clustering: single 
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linkage, average linkage, maximum linkage; and two neighbour pairs algorithms) and 

RMSD of the initial clustering thresholds (4, 5, 8 Å). 

2.3.3.5. PFClust 

The final approach tested was parameter-free clustering (Mavridis et al., 2013; 

Musayeva et al., 2014). PFClust is a partitional algorithm that aims to tackle the 

problem of the lack of unique definition of optimal number of clusters. Instead, based 

on the similarity matrix provided, it attempts to automatically determine an optimal 

number of clusters the data should be split into. 

The method is based on the idea that each cluster can be represented as a non-

predetermined distribution of the intra-cluster similarities of its members (Mavridis 

et al., 2013). The clustering criterion PFClust uses is the expectation value of the 

similarity distribution of its cluster members. Because the distribution is determined 

by all possible clusterings, which in turn are determined by the dataset size, PFClust 

uses random sampling to determine initial parameters. From this, the method 

performs threshold selection and proper clustering. Because the process is 

stochastic, determined by the initial randomization, both randomization and 

calculation steps are repeated until convergence. 

Thresholds are selected from the most significant values of the distribution of 

expectation values calculated from the distribution of intra-cluster similarities. 

Proper clustering is then performed based on those values by an agglomerative 

algorithm and validated based on the Silhouette width of obtained clusterings. 

Finally, runs starting from different randomizations are compared and if they 

converge according to Rand Index criterion the clustering is finished (Rand, 1971). 

Otherwise the lowest scoring (Silhouette width) clustering is discarded and the 

process is repeated. 

Although PFClust is heuristic in the sense that it does not optimise any simple metric, 

the method is robust. It is well-suited to the problem studied here, where it is difficult 

to pre-define a priori clustering parameters, such as the number of desired clusters, 
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number of cluster members or distance metric cut-off for intra- or inter-cluster 

similarity. 

In this work, RMSD was used as the distance metric for PFClust. 

 Ensemble comparison 

2.3.4.1. Structural superposition 

Clustering methods rely on some global similarity or distance metrics to generate the 

final ensemble. Having obtained the final ensemble it is necessary to superpose all 

structures within each of the ensembles – the extracted final FRAGFOLD-IDP 

ensemble and experimental (NMR) ensemble – in the same way, as a necessary step 

to calculate per-residue backbone dynamics within each of the analysed ensembles. 

A set of possible superposition algorithms was evaluated. Two global superposition 

methods: a least-squares method – ProFit 

(http://www.bioinf.org.uk/software/profit/) and a maximum-likelihood 

method – Theseus (Theobald and Steindel, 2012). Each of these methods uses a 

different approach to structural alignment, hence estimating different variations of 

residues along the sequence. Additionally, a sliding window superposition method, 

as an alternative to published and freely available methods, was implemented and 

tested. 

a. Least squares fitting – ProFit 

ProFit performs least squares superposition using the McLachlan algorithm 

(McLachlan, 1982). Optimal superposition of two proteins is determined by 

minimizing the sum of the squared distances between all of the pre-defined atoms 

(Cα trace). The McLachlan algorithm provides an efficient mean to do so, exploiting 

the conjugate gradients method. Therefore, ProFit tries to minimize all inter-residue 

distances at once not accounting for any protein-like features. In the case of 

heterogeneous structures (having high RMSD), results generated by ProFit tend to 



Chapter 2. FRAGFOLD-IDP  77 
 

 

have variations uniformly distributed along the superposed structures (compare 

Figure 7). However, when considering multiple structures to be aligned, ProFit resorts 

to a simplification that increases the algorithm’s efficiency. In each step of multiple 

structural superposition, ProFit averages previously superposed structures and fits 

the considered structure to the average. This implies that the order of the 

superposition may impact the end result.  

Considering overall RMSD across the whole structure, this has a small effect, but 

considering per-residue results, the results can vary substantially over complete 

enumeration of all possible structures, especially in the case of highly variable regions 

(see sub-section 2.3.4.1.c below). 

b. Maximum likelihood fitting – Theseus 

Theseus performs maximum likelihood superposition which weighs more variable 

regions in structures differently to the more conserved ones (Theobald and Steindel, 

2012; Theobald and Wuttke, 2008). This results in more tightly aligned rigid regions 

and more variable mobile and terminal regions (what shows agreement with 

principal component analysis; Figure 7). The method also enables the superposition 

of multiple structures onto each other simultaneously, unlike the sequential 

approach in ProFit. 

 

Figure 7. Comparison of least-squares (LS), maximum-likelihood (ML) superposition and principal 
component analysis (PC1). Figure reproduced from http://www.theseus3d.org/. Superposed 
protein is Kunitz domain from PDB 1ADZ. 
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c. Generalized least squares calculations 

Instead of the approach to least squares fitting presented in ProFit, an analytical 

version of the fitting using a generalized form of RMSD could be considered. It can be 

expressed as: 
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δ in these equations represents per-residue RMSD. This approach is more 

computationally expensive, as it requires calculation RMSD over all pairs of structures 

(or residues) in an ensemble of structures, but it ensures the results are robust 

regardless of the order of superposition, or the flexibility of considered structures. 

d. Sliding-window superposition 

As an alternative to the global superposition approaches discussed in points (a) and 

(b), sliding-window superposition was used to complement them. In this approach, 

only a selected subset of residues (within the window) is superposed at a time. The 

window progresses along the sequence, residue by residue, until it reaches the end 

of the sequence. The superpositions were performed using the generalized least 

squares fitting described above. This approach enables to minimize the impact of the 

quality of structure prediction, separating predictions of per-residue fluctuations 
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(disorder) and predictions of the overall structure (which can be assessed using TM-

score; section 2.3.4.4). Alternatively, sliding window superposition can be interpreted 

as a method to remove the effects of rigid body motions from the comparisons. 

If a residue, or a fragment of the structure, is highly flexible (disordered) it will not 

superpose well to its neighbours. In contrast, when superposing the entire structure 

at a time using a global superposition method, misplaced fragments (poorly predicted 

regions) can make the RMSD profile gain a background signal propagating along the 

sequence (example Figure 16 residues 1-40). In other words, thanks to applying the 

sliding window superposition it is possible to reduce the rate of residues erroneously 

assigned as disordered. 

 

Figure 8. A toy example of sliding window superposition procedure. Loops in the protein structure 
(L1 to L4) are shown as black and grey lines; anti-parallel β-sheets (E1 to E3) are shown as red arrows. 
The sliding window is depicted as a green rectangle in middle and right panels. Global superposition 
(starting) ensemble is shown on the left. The first step of the sliding window superposition procedure 
(middle panel) superposes the L1 loop removing the flexibility visible in the starting ensemble. 
Similarly, as the window proceeds further down the sequence (right panel), E3 flexible sheet becomes 
well-aligned. 

To make this description more tangible, let us consider a schematic example 

presented in Figure 8. The starting ensemble (left panel) shows a possible outcome 

of a global superposition method (least squares or maximum likelihood 

superposition). Generating a per-residue RMSD profile basing on that superposition, 

one would assume that L1 is moderately disordered; E1, L2 and E2 are ordered, while 

L3, E3 and L4 are disordered. However, by applying the sliding window superposition 

it becomes clear that L1 in fact oscillates around an equilibrium conformation and 

therefore is not disordered (middle panel). Similarly, E3 is not disordered (right 

panel), but the flexibility observed in the starting ensemble (left) might have been 
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caused by: an adjacent disordered region L3 due to rigid body motions, the lack of 

stabilizing contacts on the exterior of the sheet, or if it was a model, an error in 

structure prediction. Doing a systematic sliding window analysis of this example, one 

would see that only L3 and L4 are disordered, i.e. these regions would not align across 

the ensemble, as there is no equilibrium conformation. 

A window size needs to be determined in the sliding window methodology. Let us 

consider boundary conditions first. If a window size is equal to the length of the 

sequence, then the alignment becomes effectively a least squares fit of the whole 

structure (because a generalized least squares superposition is used to calculate per-

residue fluctuations). Whereas, if the window size is 1, then each residue is perfectly 

superposed across the ensemble (considering only the main-chain) and there are no 

fluctuations along the whole chain in each of the ensembles. As may be expected, the 

relation of the window size to the disorder match metric (described in section 2.3.4.3) 

is largely monotonic (Figure 9). Therefore, simply maximizing the fit of the window 

size basing on comparisons between predicted and experimental ensembles is 

pointless. As it turns out, it is possible to find an optimal sliding window size based 

on the sequence and structural information content (Šikić et al., 2009). Šikić et al. 

concentrate their efforts on finding a sequence-based method for the prediction of 

protein binding sites. Nevertheless, they perform a systematic survey of a sliding 

window approach and find that window sizes between 7 and 10 residues possess the 

highest amount of structural information content per sequence length. Also, there is 

some insight from older surveys concentrating on the preferred lengths of secondary 

structure elements in proteins (Penel et al., 2003, 1999). Penel et al. show that a 

typical length of a β-strand is 6 residues, whereas a typical α-helix spans 12 residues. 

Over 90% of strands and 50% of helices analysed by Penel et al. fall into a 10-residue 

threshold. Basing on these studies, it was found it to be a reasonable compromise, 

which would not diminish the sensitivity of the sliding window superposition, to 

select a window size of 10 residues. 
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Figure 9. Comparison of sliding window size versus the fit of predicted ensembles to NMR 
ensembles. For the purpose of the comparison a benchmark set was used (section 2.2.3). “cumulative” 
refers to the cumulative value of the predictions made on the benchmark set. 

2.3.4.2. Per-residue RMSD profile 

Starting from any of the structural superposition methods described in section 

2.3.4.1, it is feasible to obtain a per-residue RMSD profile. All three analysed methods 

make it possible to obtain RMSD values for individual residues along the sequence, 

regardless if the methods perform global (ProFit, Theseus) or local superposition 

(sliding window). The profiles give information about the degree of fluctuations of 

individual residues along the protein chain. It is a direct measure of protein backbone 

flexibility and can be interpreted as the degree of intrinsic disorder within protein 

regions. The relationship between per-residue RMSD and disorder/order 

classification is studied in Chapter 3. 

Because the per-residue RMSD profile measures the degree of protein disorder, it will 

be also referred to as disorder profile throughout this work. 

2.3.4.3. Disorder match metric – Spearman’s rank correlation 

To compare how well the generated ensemble matches its experimental counterpart, 

a goodness of fit metric is necessary. In this research, disorder profiles are 

considered, therefore it reasonable to compare them rather than the structures 

explicitly. Also, the exact flexibility values along the chain are not as important as 
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their relative values within an ensemble. Looking at the relative intensities can 

account for insufficient sampling of ensembles on FRAGFOLD side, or on the 

experimental side for inaccuracies emerging from under-determined NMR 

ensembles (refer to section 1.3.4.5). For these reasons Spearman’s rank correlation 

coefficient (RS) was selected as the most appropriate metric for the problem. The 

correlation determines if the order of corresponding data points is consistent 

between the sets. The metric was already used in similar cases comparing a coarse-

grained method (CABSflex) with MD and NMR results (section 1.5.2.3; Jamroz et al., 

2014, 2013a, 2013b). 

2.3.4.4. Structural comparison – TM-score 

Spearman’s rank correlation gives the information about the agreement of the 

disorder profiles between FRAGFOLD-IDP and NMR ensembles. It does not account 

for the fold or tertiary structure of the protein. To make structural comparisons, i.e. 

determine whether the folds of proteins in FRGFOLD-IDP and NMR ensembles are 

similar and to what degree, a different measure is required. For this purpose, TM-

score was used (Zhang and Skolnick, 2004b). 

TM-score is a robust, protein length-independent similarity metric that is routinely 

used in many structure prediction problems (e.g. Kosciolek and Jones, 2014). TM-

score is defined as: 
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where LN is the length of the native structure, LT is the length of the aligned residues 

from the template (model) structure, di is the Cα-Cα distance of the i-th pair of 

aligned residues and d0 normalizes the match difference. 
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The higher the TM-score is (on the scale of 0 to 1), the closer is the predicted structure 

to its experimentally-solved equivalent. Generally, it is assumed that structures with 

TM-score 0.5 or higher have a correct fold and can be considered successful 

predictions (Xu and Zhang, 2010). 

For the current problem, because ensemble versus ensemble comparisons are 

performed, TM-scores need to be calculated differently and accumulated 

accordingly. For each structure in the predicted ensemble, TM-score was calculated 

against each of the NMR models included in the PDB file. For each structure in the 

final FRAGFOLD-IDP ensemble, the highest TM-score was selected. As all of the 

structures in the predicted ensemble had their TM-scores calculated, the mean TM-

score was then computed. This averaging procedure was performed to account for 

the fact that FRAGFOLD ensembles not necessarily include all of the conformational 

states included in the NMR ensemble. Also, the NMR ensemble may not include all 

of the naturally occurring conformations, as it itself rather represents one of the sets 

of conformations that fit the experimental data. This problem was discussed in the 

Introduction, section 1.3.4.5.  
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 Borderline results extraction 

Borderline results are useful to assess the effectiveness of the developed method. In 

case of FRAGFOLD-IDP there are several borderline cases that could be considered. A 

baseline method – needed to assess whether and to what extent the predictions 

made using FRAGFOLD-IDP improve over a simplistic approach that would not require 

any simulations. An upper-bound method – to assess how far from an optimal 

solution within a given framework the predictions are. 

One baseline method was constructed (described in 2.3.5.1) and one approach to 

extract top-scoring ensembles – based on extraction of the top result from a set of 

randomly generated ensembles (section 2.3.5.2). 

2.3.5.1. Baseline method – naïve disorder assignment 

A naïve assumption made for the problem of predicting protein backbone dynamics 

is that all loops are disordered, while all helices and sheets are ordered. In real 

proteins, the helices are most rigid because of local hydrogen-bonding patterns (i+4 

→ i in α-helix), whereas sheets allow for some degree of flexibility due to possible 

bending and twisting motions between individual strands. Secondary structure 

predictions were used for this purpose, because of the assumption that only the 

protein sequence is known. The secondary structure predictions were carried out 

using PSIPRED (Jones, 1999). 

Since Spearman’s rank correlation (RS) is used as the disorder match metric (section 

2.3.4.3), the order of fluctuations along the backbone is important, but not their 

absolute values. Therefore, following the rationale presented in the previous 

paragraph, an arbitrary set of values was assigned to each predicted secondary 

structure element along the protein chain: 2 for loops (C), 1 for sheets (E) and 0 for 

helices (H). To verify if the assumptions were correct other variants were also tested, 

e.g. where sheets and helices were assumed to have equal flexibility, or where helices 

were more flexible than loops (Table 6). The initial assumptions proved to be correct 

and robust (i.e. produced the highest cumulative and mean RS values on the 
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benchmark set compared to experimental ensembles) regardless of the assigned 

flexibility value (Table 6). 

Table 6. Naïve predictions optimisation. 

secondary structure 
type per-residue RMSD values 

H 2 0 1 1 0 1 0 0 1 

E 1 2 1 2 1 0 1 0 0 

C 0 1 0 0 2 2 1 1 1 

mean RS -0.35 0.06 -0.34 -0.31 0.35 0.31 0.24 0.34 0.18 

cumulative RS -9.67 1.79 -9.62 -8.67 9.67 8.67 6.34 9.62 4.03 

The table compares alternative helix (H), sheet (E) and coil (C) per-residue RMSD 

values to find an optimal set of parameters for the naïve approach. 

2.3.5.2. Random ensemble generation 

To assess the ensembles from the complete dataset, 1,000 random ensembles of 10 

structures for each protein in the dataset were generated. It is a reasonable 

compromise between effective sampling of possible ensembles and computational 

efficiency. 

Since the random ensembles can serve as a proxy to the top scoring ensemble in 

terms of the possible per protein performance, top RS and median RS for each target 

was calculated to be used as an indicator of FRAGFOLD-IDP performance (discussed 

in section 2.5.4). 

 Relationship between NMR order parameter (S2) and per-residue 
RMSD 

Order parameter S2 is an NMR experimental value, therefore it is necessary to 

understand its relation to per-residue RMSD in order to make direct comparisons to 

NMR ensembles deposited in the PDB, or generated by the method developed in this 

work. S2 is only sensitive to angular motions and not translations, because it is 
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calculated from the second-order spherical harmonics (Brueschweiler and Wright, 

1994). Formally, order parameter can be defined as: 
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where Y2,m(Ω) are the second order spherical harmonics, and Ω describes the 

orientation of the N-H bond vector (Lipari and Szabo, 1982). Hence, high values of the 

order parameter correspond to rigid structures, while low S2 values represent flexible 

regions. In borderline cases, when S2 = 0 the orientation of the bond vector is 

completely isotropic, i.e. the residue is completely disordered and in case when S2 = 

1 the orientation of the bond vector is fixed, i.e. the residue is completely rigid. 

 

Figure 10. Relation between order parameter S2 and backbone RMSD. Figure reproduced from 
Powers et al., 1993. 

Because S2 is an experimental parameter, it has no analytical correspondence with 

per-residue RMSD (Figure 10; Powers et al., 1993). This somewhat hinders direct 

comparison between other methods (e.g. the method developed in this work) and 

methods producing order parameter values as an output (e.g. DynaMine described 

in 1.5.2.4). But since the main assessment metric in this work is Spearman’s rank 
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correlation, then as long as the relationship between RMSD and S2 is monotonic the 

conclusions would not be affected. Simple inversion the of the S2 function (i.e. 1-S2, 

the higher the value the more disordered the residue) enables a robust comparison 

with per-residue RMSD values in terms of RS. 

Another possibility is to consider the methods that try to estimate the order 

parameter values from other quantities. An example can be Random Coil Index 

method (Berjanskii and Wishart, 2006). RCI uses chemical shift data to calculate 

either S2 values, or RMSF (root mean square fluctuations). The authors of the method 

give analytical expressions how to achieve both of these values from RCI and do a 

comparison showing a correlation between 1-S2 and RMSF calculations. In RCI 

method RMSF are proportional to RCI values, whereas order parameter is given by: 

)101ln(5.012  RCIS  

The relationship is therefore again monotonic and given by a negative logarithm. 

In conclusion, since 1-S2 is monotonically related to RMSD, these quantities can be 

directly compared using RS as a metric.  



Chapter 2. FRAGFOLD-IDP  88 
 

 

2.4. FRAGFOLD-IDP optimisation 

The FRAGFOLD-IDP workflow involves 3 steps: generating raw ensemble, final 

ensemble extraction and assessment of the results (Figure 6). All those steps need to 

be optimised in order to maximize the performance of the method. Although the 

workflow is sequential, each of the steps of the method is inter-dependent on each 

other. For example, the features of the initial raw ensemble (determined by 

FRAGFOLD parameters) may impact the conclusions about which comparison 

method is optimal. For this reason, the optimisation of FRAGFOLD-IDP was performed 

iteratively, until adequate approaches and parameters for each of the steps were 

found. In this section however, the process is described in a sequential manner in the 

same order as FRAGFOLD-IDP proceeds. 

To assess the performance of FRAGFOLD-IDP, three aspects need to be optimised:  

(1) FRAGFOLD parameters; 

(2) ensemble extraction method; 

(3) structural superposition method. 

As mentioned previously, in section 2.3.4.3, FRAGFOLD-IDP results are assessed on 

the basis of Spearman’s rank correlation (RS) values between the per-residue RMSD 

profiles predicted by FRAGFOLD-IDP and corresponding NMR ensemble. 

All calculations in this section were performed on the benchmark dataset of 28 

proteins extracted from the full 200 protein NMR PDB dataset (section 2.2.3), unless 

noted otherwise. 

 FRAGFOLD folding parameters 

FRAGFOLD was designed to effectively predict protein structures of globular proteins 

(Jones and McGuffin, 2003; Jones et al., 2005; Kosciolek and Jones, 2014). The 

parameters embodied in FRAGFOLD were developed and tested on sets of highly 

resolved globular proteins using an inverse Boltzmann approach. Therefore, it is 
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possible that FRAGFOLD is biased towards more globular and compact structures and 

the way it was initially designed might not be optimal for generating the ensembles 

of intrinsically disordered proteins. 

To verify this hypothesis and find an optimal set of FRAGFOLD parameters for 

generating ensembles of intrinsically disordered proteins, a set of alternatives was 

tested. An initial set of calculations on the benchmark set was ran with a set of 

parameters typical for globular protein targets (section 2.1.3) – ALL parameters. 

Further runs involved different combinations of parameters: without the 

compactness potential, but with all other potentials – COMPACT; without the steric 

potential – STERIC. FRAGFOLD also utilizes secondary structure predictions that aid 

the selection of fragments during the simulation. The runs without secondary 

structure predictions included in the input were also carried out – noSS. 

The choice to explore FRAGFOLD simulations without steric or compactness terms 

was dictated by the fact that intrinsically disordered proteins exhibit larger than 

expected radii of gyration given their length. The compactness term in FRAGFOLD 

was explicitly developed to ensure the globular fold of the simulated models (Jones, 

2001). A similar case concerns the steric terms. Although they ensure that no 

conformations involving steric clashes are permitted, the way that FRAGFOLD 

generates new conformations, permitting sterically unfavourable conformations, 

could allow for less conservative sampling. Finally, eliminating secondary structure 

predictions (noSS) was dictated by a possible bias from predicted secondary structure 

elements overestimating the amount of order within predicted structures. 

Results of the calculations are gathered below (Table 7). ‘Good’ predictions (RS ≥ 0.5) 

are shown in bold. Outstanding results (RS > 0.7) are additionally highlighted in green. 

The column best result shows which approaches (ALL, COMPACT, STERIC, noSS) 

produced top scoring results in terms of RS. All approaches that achieved results 

within 10% of the highest score are included. If more than one approach is listed in 

best result column, the RS value (best) is presented for the highest scoring approach 

(listed first).  
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Table 7. Results from the initial studies using FRAGFOLD-IDP on the benchmark set. 

protein length 
no. disordered 
residues best result top10% TM-score RS value (best) 

1b75 94 16 A + C 0.71 0.53 

1dmo 148 58 A + S 0.45 0.62 

1dvd 98 11 S + N 0.51 0.67 

1fkr 107 12 A + C 0.85 0.19 

1jw3 140 34 S + C 0.37 0.41 

1k19 112 38 A 0.36 0.71 

1ni7 149 15 A + S 0.36 0.41 

1nin 105 37 A 0.41 0.51 

1nnv 107 18 S + A + N 0.31 0.40 

1nti 86 13 S 0.39 0.46 

1ovq 138 41 A 0.32 0.53 

1soy 106 10 N + C 0.63 0.61 

1tac 86 67 N 0.18 0.23 

1tiv 86 86 S + N 0.19 0.44 

1xhs 113 29 N 0.25 0.53 

1xpw 143 17 A 0.33 0.32 

1y6d 114 11 A 0.43 0.27 

1zza 90 44 A 0.21 0.26 

2aqa 57 57 A + N + C 0.23 0.51 

2fki 118 27 S 0.42 0.47 

2hgk 117 27 A 0.45 0.75 

2jo6 110 11 C + S + A 0.36 0.30 

2ju4 87 86 A 0.22 0.37 

2k36 149 25 S 0.25 0.60 

2k5t 128 13 N + A 0.39 0.46 

2kkj 59 29 A + N 0.36 0.69 

2kx4 117 41 N 0.29 0.28 

2py1 129 10 S 0.63 0.15 

best result column: A (ALL potentials); C (no COMPACTNESS potential); S (no 
STERIC potential); N (no secondary structure predictions). The order in the best result 
column corresponds to the order of RS values. 
Clustering was performed using RMSDclust. 
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Overall, 12 out of 28 predictions should be considered as ‘good’. All of the tested 

approaches contribute to this set (ALL, COMPACT, STERIC and noSS). Interestingly, 

one of the fully disordered proteins (2AQA) is among the well-predicted targets. Since 

all FRAGFOLD parameters were optimised for globular proteins it was expected, that 

highly disordered proteins should be difficult targets for the method.  

 

Figure 11. Differences in FRAGFOLD performance using different sets of potentials. 

Overall, the benchmark set results do not indicate that any other combination of 

parameters other than using ALL parameters consistently improves the predictions. 

From Table 7 17 out of 44 predictions in best results come from ALL potentials (6 from 

COMPACT, 11 from STERIC, 10 from noSS). There are no other indications that would 

point to cases where using other combinations of potentials would yield better 

results (e.g. disorder content; Figure 11). Also, considering the distribution of RS 

values, ALL parameters perform best on average, although not significantly (Figure 

12). 
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Figure 12. Box-and-whiskers plot comparing the distribution of RS values between different sets of 
FRAGFOLD parameters. The analysis was performed on the full benchmark set. 

In conclusion, using ALL FRAGFOLD parameters is an optimal method for generating 

the ensembles of intrinsically disordered proteins. There are no clear indicators of 

the situations where using some other sets of parameters (COMPACT, STERIC, noSS) 

would be beneficial over ALL parameters. 

 Ensemble extraction method 

In order to obtain the final FRAGFOLD-IDP ensemble, it is necessary to perform 

ensemble extraction which takes the raw ensemble of models generated by 

FRAGFOLD and limits it to the best set of models, which should correspond to the 

ensemble of structures inferred by NMR (Figure 6). To achieve this, an optimal 

clustering algorithm needs to be found and appropriate cluster selection criteria. 

The results described below are based on the ensemble generation method 

described in 2.4.1, i.e. all FRAGFOLD parameters are used and the raw ensemble is 

composed of 200 models per protein. 
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2.4.2.1. Clustering algorithm 

A natural choice was to evaluate some standard structural clustering algorithms that 

are commonly used to in protein structure prediction applications – RMSDclust and 

TMclust, SPICKER and MaxCluster. The algorithms were described in section 2.3.3. 

 

Figure 13. Comparison of standard clustering algorithms. 

Following a systematic survey, an evaluation was made to determine how the 

selection of a clustering algorithm impacts the quality of predictions in terms of RS. It 

was found that overall the algorithms perform similarly (Figure 13). SPICKER generally 

produces inferior results, whereas RMSDclust, TMclust and MaxCluster perform 

equally well. For clarity, only the best MaxCluster set of parameters is shown here. 

As an alternative to the distribution of RS values in Figure 13, a comparison of top 

results for each target was made. In this approach, the number of methods giving 

results in the top10% for each target is compared (Table 8). This approach enables a 

more balanced comparison – if the top RS value is high (e.g. 0.80), a relatively 

permissive threshold is applied (results between 0.72 and 0.80) and all high quality 
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predictions are counted. Whereas, if the results are relatively poor (e.g. 0.20), usually 

only the result of a single clustering approach is counted (results between 0.18 and 

0.20). As a result of this evaluation, it was found that RMSDclust produces 

consistently the best results (Table 8), and was selected as the best classical structural 

clustering approach. However, it should be noted that none of the approaches, 

except from clearly under-performing SPICKER, is outstanding and consistently 

outperforming other methods. 

Table 8. Top clustering method performance on the benchmark set. 

  RMSDclust1 RMSDclust2 TMclust1 TMclust2 SPICKER MaxCluster 

count 
top10% 

18 15 12 12 7 15 

 

As an alternative to the classical structural clustering methods, PFClust was tested 

(described in 2.3.3.5). It is an attractive method, because it does not rely on any 

external parameters except for the distance metric provided (RMSD). Unlike 

hierarchical clustering approaches, which are based on a distance threshold 

parameter to separate the clusters, PFClust should be able to adapt to ensembles of 

different disorder content and effectively extract them without altering any 

parameters. This argument is especially important, since it is impossible to a priori 

estimate the quality of predictions, or (in real life cases) disorder content and impose 

parameters on the clustering.  

Comparing the top PFClust to RMSDclust results (Figure 14), again it is clear that the 

methods achieve comparable results, but PFClust shows superior performance 

comparing both mean (0.42 PFClust and 0.40 RMSDclust) and median (0.48 PFClust 

and 0.44 RMSDclust) RS values. Interestingly, differences in the results (PFClust 

improvement over RMSDclust) are not related to the disorder content of the 

analysed proteins. 

Although RMSDclust and PFClust perform similarly, the latter method does not 

require any external parameters and is an attractive approach to clustering. Hence, 



Chapter 2. FRAGFOLD-IDP  95 
 

 

it was selected as the optimal clustering method to extract the final FRAGFOLD-IDP 

ensembles from raw ensembles of FRAGFOLD models. 

 

Figure 14. Comparison of RMSDclust and PFClust performance on the benchmark set. 

2.4.2.2. Cluster selection criteria 

The default and most typical cluster selection criterion is cluster size. The evaluation 

of the classical structural clustering methods was carried out using cluster size 

criteria, so was the PFClust evaluation in the previous section. 

However, considering the theoretical background behind IDPs (section 1.1), 

intrinsically disordered protein ensembles should consist of structurally 

heterogeneous conformations (depending on the amount of disorder) having similar 

energy (broad energetic minimum of alternative conformational states). 

Therefore, to account for both structural heterogeneity and assumed energetic 

cohesion, several cluster selection criteria were tested: 
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(1) Cluster size ( clust ); 

(2) Mean energy ( E ); 

(3) Median energy (median E); 

(4) Energy difference ( E ); 

(5) Ratio of mean energy to energy difference (
E

E


); 

(6) Product of cluster size and mean energy ( Eclust  ). 

As energy, the final total FRAGFOLD energy of each model was considered (compare 

section 2.1.3). 

For this comparison, instead of the benchmark set, the results were compared on the 

complete dataset (section 2.2.1). The most computationally expensive step of 

FRAGFOLD-IDP is generating raw ensembles and since FRAGFOLD folding parameters 

were established previously (section 2.4.1), it was feasible to perform a large scale 

comparison of cluster selection criteria. 

A comparison of the cluster selection criteria shows that their performance is similar 

(Figure 15). Overall, the selection criteria including cluster size perform best. Both of 

those methods achieve highest mean RS values (Table 9). Overall, 2 (out of 200) 

results between cluster size alone and cluster size and energy are different – one 

selection is better using the cluster size and one if both cluster size and energy are 

considered. 
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Figure 15. Comparison of cluster selection criteria using PFClust on the whole dataset. 

The distributions of the results using all approaches are similar, but there are some 

notable exceptions. Interestingly, 3 out of 4 outliers (values -0.3 and below; 1G6M, 

1K0T, 1XN7) are shared between all cluster selection criteria. One target (1TCP) is 

significantly better predicted thanks to the use of cluster size criterion (RS = 0.51 using 

cluster size; RS = -0.50 using mean energy) and one target (2K02) is significantly worse 

(RS = -0.51 using cluster size; RS = 0.67 using mean energy). Also, there are 22 cases 

where using any of the cluster selection criteria yields identical results. 

Table 9. Comparison of mean RS values for different cluster selection criteria. 

 

The two top methods for cluster selection are cluster size and combining cluster size 

with mean cluster energy. Since cluster size alone is the most popular cluster 

 ΔE median E <E> |cluster| |clust|*<E> <E>/ΔE 

mean RS 0.42 0.40 0.41 0.44 0.44 0.42 
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selection criterion and simpler of the two (adding mean energy information does not 

add any significant value), it was selected as the final cluster selection method. 

 Structural superposition method 

Considering structural superposition methods, it was found that Theseus generally 

produces results consistent with previous disorder annotations (from mobiDB), while 

ProFit generates more diverse results, that not in all cases stay consistent with 

Theseus or mobiDB. Nevertheless, both of these methods produce a signal coming 

from labile, but not disordered regions (e.g. Figure 16). These motions can be either 

a result of poor FRAGFOLD predictions, or artefacts of rigid body motions that leave 

a background signal propagating along the sequence (example Figure 16 residues 1-

40 for Theseus and 1-50 for ProFit). The third superposition method that was 

evaluated – using a sliding window – does not suffer from these effects. 

Sliding window superposition makes it possible to minimize the effects of rigid body 

motions and decouple disorder signal from them. In other words, thanks to applying 

sliding window superposition, it is possible to reduce the rate of residues erroneously 

assigned as disordered. 
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Figure 16. Disorder profile of stefin A (1DVD). NMR ensemble is compared with the same ensemble 
using alternative structural superposition methods – global superposition (ProFit and Theseus) and 
sliding window superposition. Predicted secondary structure elements are also highlighted. 

Sliding window superposition produces more noisy results in some cases (the results 

show more local maxima; e.g. residues 70-80 in Figure 16), but because this approach 

performs multiple local structural superpositions it separates disordered regions 

from poorly predicted, but not disordered ones.  
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Figure 17. Visualisation of an NMR ensemble and FRAGFOLD predictions of 1DVD (stefin A). The 
original NMR ensemble deposited in the PDB was split, so that all of the conformations are overlaid 
onto each other. FRAGFOLD predictions (top-scoring cluster produced by RMSDclust and superposed 
using sliding window approach) are represented here by a spectrum of colours, where blue represents 
the most rigid predicted residues, followed by green and yellow. Orange and red represents the most 
disordered regions according to FRAGFOLD predictions. 

In a PDB NMR ensemble of 1DVD (Figure 16) residues 1-10 are disordered, but in the 

FRAGFOLD-IDP predictions, because of a poorly predicted region, the initial 

superposition methods (ProFit, Theseus) identify residues 1-40 as disordered. When 

the sliding window superposition is applied, the method separates disorder from a 

poor prediction (see Figure 16 and visualisation in Figure 17). This proves that the 

sliding window disorder profiles are robust and effectively decouple backbone 

dynamics from overall structure predictions. Because of that, sliding window 

superposition was selected as an optimal structural superposition method for future 

analyses. 
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 Disorder match metric 

A crucial parameter of the method is the disorder match metric. It should robustly 

assess alternative ensembles of structures and tell which selection or which set of 

FRAGFOLD parameters produces qualitatively (comparing relative residue 

fluctuations along the protein chain) best matching results with an NMR ensemble. 

For the purpose of my current research, Spearman’s rank correlation coefficient (RS) 

was found to be the most reliable and works well in terms of distinguishing correct 

and incorrect predictions. It was also used in other studies concerning the assessment 

of protein dynamics (Jamroz et al., 2014, 2013b). The metric is described in section 

2.3.4.3. 

 Optimal ensemble size 

Given the criteria for an ensemble, it is an arbitrary choice of how large the ensemble 

should be. The most natural choice is selecting 10 or 20 conformers as these are 

typical sizes for experimental NMR ensembles. However, to determine how the 

quality of predictions depends on the size of an extracted ensemble, ensembles of 

different sizes generated by random ensemble generation were compared on the 

benchmark set (described in section 2.3.5.2). 

Ensembles of 2 to 6 structures are sub-optimal and show inferior RS values than larger 

ensembles (Figure 18). 7 to 10 structures in an ensemble show identical quality 

having the highest mean RS value. However, since 10 conformers are more typical to 

experimental NMR ensembles 10 models were selected as a representative size for 

analyses and comparisons using random generation of ensembles (section 2.3.5.2). 

The optimal ensemble size concerns only the ensembles constructed using the 

random generation (section 2.3.5.2). Whenever clustering results are used 

(FRAGFOLD-IDP method), all of the structures belonging to the selected cluster are 

considered as the final ensemble. 
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Figure 18. Optimal ensemble size determination. Values presented are calculated on the basis of the 
benchmark set with mean RS values calculated using the top-scoring ensembles. 

 Final FRAGFOLD-IDP workflow 

All FRAGFOLD-IDP parameters were optimised and a robust workflow was 

established. It was built upon the initial framework (Figure 6) beginning with 

FRAGFOLD simulations generating a raw ensemble of models, which are 

subsequently extracted to form the final ensemble which can be compared to NMR 

PDB results (Figure 19). 

 

Figure 19. Final FRAGFOLD-IDP workflow. 
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The final FRAGFOLD-IDP workflow proceeds as follows. For each protein sequence, a 

multiple sequence alignment and a secondary structure prediction are generated 

(section 2.4.1). MSA and secondary structure predictions serve as an input to 

FRAGFOLD, which generates 200 models per input sequence, using all potentials. This 

set constitutes the raw ensemble (section 2.4.1). The ensemble is then extracted 

using PFClust with RMSD as the distance metric. The largest cluster is selected as the 

output (section 2.4.2). The final ensemble is compared to its experimental 

counterpart by generating a per-residue RMSD profile using a sliding window 

superposition (section 2.4.3). The disorder profiles are then assessed on the basis of 

Spearman’s rank correlation coefficient (section 2.4.4). 
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2.5. Full dataset results 

In the previous section a set of optimal parameters for FRAGFOLD-IDP and the entire 

workflow was established. This section describes the results obtained using the 

optimised FRAGFOLD-IDP on the full dataset (described in section 2.2). 

First, an interpretation of RS values is described (section 2.5.1). RS is used to quantify 

the quality of FRAGFOLD-IDP predictions and it is crucial to understand the limitations 

of this metric and draw the boundaries between high and low quality predictions. 

Equipped with an intuition of how to interpret RS values, I describe the overall 

performance of FRAGFOLD-IDP (section 2.5.2). Some examples of poor, moderate 

and outstanding predictions are also discussed in this section to provide an outlook 

of the results. 

All predictions need some baseline method to which they can be compared to. 

Section 2.5.3 describes the comparison of FRAGFOLD-IDP predictions to a naïve 

method which bases on the secondary structure predictions and eliminates the need 

to carry out any FRAGFOLD simulations. 

In section 2.5.4, further context is put into the predictions. FRAGFOLD-IDP is 

compared to a set of randomly generated ensembles. Median and top results from 

these ensembles are compared to FRAGFOLD-IDP predictions to assess the entire 

method and to gain insight into the effectiveness of ensemble extraction 

methodology. 

Next, the predictions are put into a structural context and I discuss the impact of 

protein fold (section 2.5.5) and disorder content (section 2.5.6) on the quality of 

FRAGFOLD-IDP predictions. 

Because of the way FRAGFOLD-IDP is designed, it decouples protein backbone 

dynamics predictions (by using a sliding window approach) from the predictions of 

protein structures. Therefore, in section 2.5.7 the relationship between the quality of 



Chapter 2. FRAGFOLD-IDP  105 
 

 

protein backbone dynamics predictions and the quality of structure predictions is 

discussed. 

Finally, in section 2.5.8 FRAGFOLD-IDP is compared to other methods that either 

explicitly attempt to predict the protein backbone dynamics from sequence (i.e. 

DynaMine; described in 1.5.2.4 and 2.1.2.1), or predict qualities that were shown to 

be related to protein backbone dynamics. 

 Interpretation of RS values 

FRAGFOLD-IDP uses Spearman’s rank correlation values (RS) as a method to score the 

predictions. It is a reliable comparative metric which works well in a qualitative 

setting. For example, it is suitable while attempting to find the best solution from a 

set of alternatives, as it was the case in optimising FRAGFOLD-IDP methodology 

(section 2.4). However, considering the predictions of protein backbone dynamics RS 

values themselves are difficult to interpret, i.e. does RS = 0.5 represent a good 

prediction? This difference is apparent comparing the interpretation of RS values to 

TM-score, which has clear statistical and structural interpretation (compare section 

2.3.4.4). TM-score of 0.5 and above is typically interpreted as a good prediction and 

the two compared proteins share the same fold (Xu and Zhang, 2010).  

It is difficult to state the boundary between ‘good’ and ‘bad’ predictions for the 

problem of protein backbone dynamics predictions. In structural classification, there 

are terms such as class, fold or topology (and respective databases, e.g. CATH 

(Orengo et al., 1997; Sillitoe et al., 2015) and SCOP (Andreeva et al., 2007; Murzin et 

al., 1995)). In protein backbone dynamics there is still no such classification, except 

for descriptive identification of disordered states, such as molten globule, entropic 

chain, etc. (van der Lee et al., 2014). 

Nevertheless, from the visual analysis of the results and from previous studies 

attempting to predict 1-S2 (NMR order parameter) from NMR ensembles, some 

intuition can be derived. Zhang & Bruschweiler derived an analytical expression to 

calculate the order parameter from NMR and X-ray structures (Zhang and 
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Brüschweiler, 2002).Their method achieves a mean RS value of 0.61 comparing S2 

values calculated from X-ray structures against experimental S2 values for 5 proteins 

and a mean of 0.67 for comparisons with NMR structures on the same set. However 

the test set is small, the results suggest that RS values of above 0.6 indicate very good 

predictions.  

Another way to estimate RS values typical of ‘good’ predictions is to compare them 

to some other prediction methods. One of such methods is CABSflex (described in 

section 1.5.2.3; Jamroz et al., 2014, 2013a, 2013b). It is a coarse-grained method that 

attempts to predict protein backbone dynamics from a single structure. It was shown 

to perform very well in comparison with both NMR and MD results (Jamroz et al., 

2013b). Unlike FRAGFOLD-IDP, CABSflex is given a significant advantage of starting 

from a known structure. Therefore, it can be assumed that CABSflex predictions 

should constitute what can be assumed excellent FRAGFOLD-IDP predictions. Since 

the entire dataset used in this study has corresponding experimental structures, for 

each case in the benchmark set a single structure (MODEL 1) was extracted from the 

PDB file and submitted to the CABSflex server 

(http://biocomp.chem.uw.edu.pl/CABSflex/; Jamroz et al., 2013a). After 

obtaining CABSflex per-residue RMSD predictions, the results were again evaluated 

using RS. Since CABSflex starts from a known structure, there is no need to remove 

the rigid body motions, as in the case of FRAGFOLD-IDP. Therefore, global 

superposition profiles were compared, instead of the sliding window superposition 

results (compare section 2.4.3). Mean RS achieved this way on the benchmark set is 

0.66 (median 0.70). The results are close to the ones reported in the CABSflex paper, 

comparing CABSflex simulations to NMR per-residue fluctuations using RMSF, instead 

of RMSD (Jamroz et al., 2014). The paper reports RS values = 0.72 (±0.15). Again, this 

confirms that RS values of around 0.6 could be considered typical of very good 

predictions and 0.7 and above, excellent predictions. 

To put this discussion into the context of FRAGFOLD-IDP results, let us consider an 

example from the benchmark set. An example of an excellent prediction would be 

2KKJ, the nuclear coactivator binding domain of CBP (Figure 20). The prediction 
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achieves RS = 0.76. FRAGFOLD-IDP correctly identifies the highly disordered termini 

and a disordered region between residues 15 and 25. It only fails to correctly predict 

a short region of disorder between residues 35 and 40. Although, per-residue RMSD 

values between the NMR ensemble and FRAGFOLD-IDP predictions do not match 

exactly, the trends can be clearly seen. The fluctuations at the N-terminus (residues 

1-12) follow the same descending trend. So do the predictions of the C-terminal 

region (residues 44-59), including 2 troughs at residues 50 and 55. The large mid-

sequence disordered region (residues 15-25) is also well reproduced in FRAGFOLD-

IDP predictions – per-reside RMSD values are smaller than those in the termini, but 2 

local maxima and the breadth of the region are well predicted. 

 

Figure 20. Disorder profile of 2KKJ (nuclear coactivator binding domain of CBP). PSIPRED secondary 
structure predictions are represented as a colour bar at the bottom of the plot. 
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 Overall performance 

Equipped with intuition as to how to interpret the RS values, it is possible to discuss 

the overall performance of FRAGFOLD-IDP on the entire dataset (Figure 21). The 

mean RS value is 0.44 and median is 0.48. 

 

Figure 21. Distribution of FRAGFOLD-IDP results on the 200 protein dataset. 

Out of 200 proteins in the dataset, 187 predictions have RS > 0 (93.5%). There are 4 

clear outliers, having predictions with RS < -0.4 (discussed in section 2.5.2.1). On the 

other hand, there are 67 very good predictions with RS ≥ 0.6 (33.5%). They include 35 

excellent predictions with RS ≥ 0.7 (17.5%). 

An example of a poor prediction is 1SIY – lipid transfer protein 1 (Figure 22). The 

prediction achieves an RS value of 0.21. Indeed, the disorder profile is not informative. 

Although the disordered region between residues 50 and 62 is correctly identified, 

the noise coming from false positives makes it lost in 4 other highly disordered 

regions predicted by FRAGFOLD-IDP. Also, the short disordered region around 

residue 20 is completely missed in the prediction. 
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Figure 22. Disorder profile of a poor FRAGFOLD-IDP prediction (1SIY; RS = 0.21). 

An example of a medium quality prediction is 1P94 – ParG protein (Figure 23). The 

prediction achieved RS = 0.54, which is close to the median value of the predictions 

on the entire dataset. Here, FRAGFOLD-IDP correctly identifies first 15 residues as 

highly disordered, but underestimates the breadth of this region, which spans 35 

residues. Finally, the predictions from around residue 48 to 76 are correctly identified 

as ordered and the disorder profile shows low per-residue RMSD values. 
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Figure 23. Disorder profile of a medium quality FRAGFOLD-IDP prediction (1P94; RS = 0.54). 

An example of an excellent prediction is 2KJV – ribosomal protein S6 (Figure 24). It 

achieves an RS value of 0.82. FRAGFOLD-IDP captures all of the features of the NMR 

disorder profile remarkably well. The large disordered region between residues 40 

and 60 is well reproduced, although FRAGFOLD-IDP slightly overestimates it, 

extending the region to around residue 35. The C-terminal region (residues 82-101) 

is also slightly overestimated and in FRAGFOLD-IDP it starts around residue 79. 

Finally, a small medium disorder region around residue 10 is captured by FRAGFOLD-

IDP, but it spans from residue 1 to 15, instead of residue 7 to 12. The increase in per-

residue RMSD signal could be partially attributed to the way sliding window (window 

size = 10) superposition works, i.e. from residues 1 to 9 there are less averaging steps, 

because of the sliding window size – residue 1 is superposed only once, residue 2 

twice, etc. 
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Figure 24. Disorder profile of an excellent FRAGFOLD-IDP prediction (2KJV; RS = 0.82). 

2.5.2.1. Outliers 

An interesting aspect of the initial results are also the outliers in the distribution 

(Figure 21). There are 4 proteins that can be identified as such (RS < -0.4). The results 

of the outliers are gathered in Table 10. The set contains proteins shorter than an 

average in the dataset (75 residues in outliers and 105 residues in the dataset), but 

have a typical disorder content (29% in outliers, 33% in the dataset). FRAGFOLD-IDP 

RS is the output of the FRAGFOLD-IDP method, best cluster RS represents the highest 

RS result generated on the same set of models as FRAGFOLD-IDP RS, but selecting the 

highest RS among the clusters generated by PFClust. Top and median RS values come 

from 1,000 random ensembles (as described in section 2.3.5.2 and discussed in 

section 2.5.4) generated from the same raw ensemble, as previously. Naïve RS are the 

results of the naïve approach that uses only secondary structure prediction, but does 

not require any simulations (described in section 2.3.5.1 and discussed later, in 

section 2.5.3). 
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Table 10. Outliers in FRAGFOLD-IDP predictions. 

protein length 
% 
disorder 

FRAGFOLD-
IDP RS 

best 
cluster RS 

top 
RS  

median 
RS 

naïve 
RS 

1G6M 62 33.87 -0.55 -0.16 -0.23 -0.50 0.26 

1K0T 80 36.25 -0.57 -0.33 0.19 -0.48 -0.02 

1XN7 78 20.51 -0.49 -0.49 0.69 -0.54 0.66 

2K02 79 24.05 -0.51 0.67 0.87 0.71 0.72 

 

Two of the cases among the outliers are clearly related to the ensemble extraction 

method – 1XN7 and 2K02 (Table 10). The final FRAGFOLD-IDP ensemble results are 

low, but among FRAGFOLD-generated models (raw ensembles) there are some with 

excellent RS values (top RS). In case of 2K02, the poor result can be attributed to 

cluster selection criteria, as among the PFClust-generated clusters there is one which 

achieves a very good results (best cluster RS = 0.67). 1XN7 is a more general ensemble 

extraction problem, as the clustering algorithms do not extract a high quality cluster 

at all – both FRAGFOLD-IDP RS and best cluster RS are -0.49. However, FRAGFOLD is 

able to generate better ensembles for this target, with top RS reaching a very good RS 

value = 0.69. Also, the naïve approach deals well with this target (naïve RS = 0.66). 

The remaining cases – 1G6M and 1K0T – are more challenging (Table 10). Although 

all results – best cluster, top cluster and median results are better than the selected 

cluster, the RS values are still very low (the highest RS for 1G6M = -0.16 and for 1K0T 

RS = 0.19). Comparison with the naïve approach hints that some FRAGFOLD problems 

are likely, as for 1G6M the naïve approach generated the best result of all of the 

attempts (naïve RS = 0.26), and for 1K0T only the top RS is higher than the naïve result 

(top random cluster RS = 0.19). Still, even the naïve calculations produce results far 

lower than for the 2 cases discussed previously (1XN7 and 2K02). 

1G6M is a snake Cobrotoxin II from Naja kaouthia (Monocled cobra). It is a mostly 

beta sheet protein. From the NMR PDB ensemble of 1G6M it can be inferred there 

are 4 disulphide bridges that constrain the structure making it more ordered (Figure 

25). The bridges are evenly spaced (bridge 1: residues 3 & 24; bridge 2: 17 & 41; 

bridge 3: 43 & 54; bridge 4: 55 & 60) within the protein structure and constrain the 

loop regions. There are no disulphide bridges in the beta-hairpin region (residues 25-
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40). Those bridges are the likely cause of poor predictions of the backbone dynamics 

achieved by FRAGFOLD-IDP. 

 

Figure 25. NMR PDB ensemble of 1G6M (Cobrotoxin II). Disulphide bridges are represented as yellow 
sticks in the ensemble. The rest of the structure is shown in ribbon representation and each 
conformation in the PDB ensemble is shown as a separate structure. 

1K0T is photosystem I subunit PsaC from Synechococcus sp. Although the protein 

passed all of the dataset criteria (section 2.2.1), it has two inorganic clusters (Fe4S4) 

covalently bound to the protein (Figure 26). Such modification is likely to alter 

backbone dynamics of the protein. It can also be confirmed by the fact that other 

backbone dynamics predictors evaluated fail to significantly improve (e.g. DynaMine 

RS = 0.23) over FRAGFOLD-IDP predictions (comparison with other methods is 

presented later, in section 2.5.8). 
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Figure 26. NMR ensemble of 1K0T (photosystem I Subunit PsaC). The ensemble is rainbow-coloured 
(N-terminus – blue, C-terminus – red). Inorganic (Fe4S4) clusters are represented as yellow and orange 
spheres. 

 FRAGFOLD-IDP and naïve predictions 

For every computational method, it is crucial to estimate how well it performs in 

relation to a baseline method, i.e. a naïve method. The approach developed for 

FRAGFOLD-IDP (described in section 2.3.5.1) assumes that all predicted loops are 

disordered, all beta-sheets allow for some flexibility, whilst all helices are rigid. The 

method does not require any simulations to be carried out, but it requires a sequence 

profile to be computed in order to perform secondary structure predictions.  

A method that would not require any computations could make assumptions that all 

residues at the protein termini are disordered, while all mid-sequence residues are 

ordered. An example of such approach is the naïve method used for disorder 

predictions assessment in CASP10 (Monastyrskyy et al., 2014). The authors assumed 

that the first nine and final four residues are disordered and that all remaining 

residues are ordered. 

Therefore, the method used in this work is more sophisticated than what was used 

in CASP10 disorder assessment. For each protein sequence, no arbitrary choice is 
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made, but instead the simplified disorder profile is dictated by the predicted 

secondary structure of the protein. This is justified by the problem at hand. In CASP 

disorder predictions, the goal is to make disorder/order classification, whilst with 

FRAGFOLD-IDP the goal is to predict protein backbone dynamics. 

The naïve method was optimised to maximize its performance on the benchmark set 

(section 2.3.5.1). Overall, the naïve method achieves a mean RS = 0.37 (median RS = 

0.38) on the complete dataset, while FRAGFOLD-IDP achieves a mean RS = 0.44 

(median RS = 0.48). FRAGFOLD-IDP results are significantly better than the naïve 

method (p-value = 0.004). 

Although, FRAGFOLD-IDP predictions are better than the naïve method, 76 out of 200 

predictions on the dataset are better or equal to FRAGFOLD-IDP predictions in terms 

of RS using the naïve method. Considering only very good predictions (RS ≥ 0.6), the 

naïve approach is better than FRAGFOLD-IDP in 16 cases. The comparison of RS values 

between FRAGFOLD-IDP and the naïve approach is summarized in Figure 27. 

 

Figure 27. Comparison of RS values between a naive approach and FRAGFOLD-IDP. 
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From the results mentioned above, it is clear that FRAGFOLD-IDP goes beyond 

predicting only the flexibility of loops (what the naïve method assumes) and 

FRAGFOLD simulations add value to the predictions. 

An example of such added value could be the previously discussed nuclear 

coactivator binding domain of CBP (Figure 20). Using FRAGFOLD-IDP, the protein 

backbone dynamics are predicted with RS of 0.76, while the naïve prediction achieves 

RS of 0.46. The two terminal regions in 2KKJ both partially overlap with predicted 

helices. FRAGFOLD-IDP accurately reproduces those regions at both termini. At the 

N-terminus, part of the predicted helix (residues 5-10) is included in the disordered 

region that spans residues 1 to 10. At the C-terminus the long disordered region 

begins 5 residues into the predicted helix, spans the rest of it and includes the C-

terminal predicted loop. Also, the mid-sequence low disorder region between 

residues 15 and 25 includes parts of helices flanking the coil region which is the centre 

of this disordered region. 

Most of the disordered regions are within predicted loops, hence the performance of 

the naïve approach is relatively good. An example of a case where the naïve method 

performs remarkably well is 1NSH (naïve RS = 0.69; FRAGFOLD-IDP RS = 0.66; Figure 

28). In this protein, secondary structure predictions precisely reflect protein 

backbone dynamics and there is no space for FRAGFOLD-IDP to improve over those 

predictions. Regardless, the method is able to reproduce the backbone dynamics 

well. Nevertheless, the previous example (2KKJ) exemplifies that FRAGFOLD-IDP as 

able to go beyond the predictions of loop flexibility and adds important information 

to the predictions of protein backbone dynamics. 
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Figure 28. Disorder profile of 1NSH (Rabbit protein S100-A11). 

 Comparison of final FRAGFOLD-IDP ensembles with random and best 
clusters 

Using FRAGFOLD-IDP, a single output ensemble is generated for each protein 

sequence (section 2.4.6). However, to analyse the results in a broader context it is 

useful to look also at alternative ensembles that could be generated from FRAGFOLD 

raw ensembles. It can help to better assess the performance of the elements of 

FRAGFOLD-IDP workflow and to determine which parts of the method could be 

improved in future (e.g. ensemble generation, or ensemble extraction). 

To perform this comparison, three sets of alternative ensembles were extracted: 

(1) best FRAGFOLD-IDP cluster (highest RS cluster from the set of clusters 

generated by PFClust from the raw ensemble); 
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(2) median RS cluster from the set of 1,000 random ensembles (described in 

section 2.3.5.2); 

(3) top RS cluster from the 1,000 random ensembles set. 

Each cluster in the 1,000 random ensembles consists of 10 structures per protein. The 

optimal ensemble size was discussed in section 2.4.5. 

The results from 1,000 random ensembles serve as a baseline for the comparison of 

the ensemble extraction methodology. Figure 29 compares the performance of 

FRAGFOLD-IDP against median random cluster. 

 

Figure 29. Comparison of RS from the final cluster extracted using PFClust with median RS extracted 
from 1,000 randomly generated ensembles. 

Overall, the current clustering methodology performs slightly better than median 

cluster selection. The mean RS value for median cluster is 0.40 and median RS is 0.43 

(mean FRAGFOLD-IDP RS = 0.44; median RS = 0.48). For 139 out of 200 proteins in the 

dataset, higher RS is achieved with FRAGFOLD-IDP than with median random cluster. 

This shows that the cluster selection methodology employed in FRAGFOLD-IDP works 

well and improves the predictions. The clear outliers in favour of median cluster are 

the same as indicated previously in section 2.5.2.1. There are also some outliers in 
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favour of FRAGFOLD-IDP, e.g. 1NY4, 30S ribosomal protein S28e from Pyrococcus 

horikoshii (median cluster RS = 0.01; FRAGFOLD-IDP RS = 0.62; naïve RS = -0.09; Figure 

30). It is a small, 71 residue mostly beta protein. In this case, FRAGFOLD-IDP is able 

to precisely differentiate disordered loops from ordered ones, e.g. loop at residues 

34-39 and 46-52. The median cluster achieves similar results to the naïve method. 

 

Figure 30. Disorder profile of 1NY4 (30S ribosomal protein S28e from Pyrococcus horikoshii). 

Another aspect is to compare how FRAGFOLD-IDP ensembles compare to the best 

FRAGFOLD-IDP cluster ensembles (Figure 31). In 42 cases the FRAGFOLD-IDP result is 

the best cluster and in 102 cases FRAGFOLD-IDP result is within 0.05 RS of the best 

cluster. This confirms that the cluster selection criterion works reasonably well. The 

outlier in Figure 31 is the case which was already discussed in section 2.5.2.1 (PDB id: 

2K02). 
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Figure 31. Comparison of the best cluster from PFClust in terms of RS with FRAGFOLD-IDP. 

The final comparison is between the best FRAGFOLD-IDP clusters and the top random 

clusters (Figure 32). The best cluster achieved by PFClust is close to the top cluster 

extracted from 1,000 random ensembles. One notable outlier is 1XN7 (ferrous iron 

transport protein C) having top random cluster RS = 0.69 and best cluster RS = -0.49 

(discussed in section 2.5.2.1). The results show that selecting the top cluster from 

1,000 random ensembles is a good proxy for estimating what is possible to achieve 

using FRAGFOLD. The best PFClust clusters lay close to the top random cluster results 

and are highly correlated (Pearson’s r = 0.87). This means that the ensemble 

extraction strategy employed works effectively for the problem at hand. 

Overall, the results in this section show that FRAGFOLD-IDP works better than a 

median cluster from a random set of models. The results also show that the cluster 

selection criteria employed in FRAGFOLD-IDP are good, however it is likely that the 

results could be improved, should better cluster selection criteria, or clustering 

methodology exist. PFClust, in general, performs well and the clusters generated 

using this approach are close to what could be achieved within FRAGFOLD-IDP 

framework. 
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Figure 32. Comparison of the top cluster from 1,000 randomly generated ensembles with the best 
cluster in terms of RS extracted using PFClust. 

 Impact of protein class on FRAGFOLD-IDP performance 

A crucial aspect of protein structure prediction is the structural class of the protein. 

Usually, all-alpha proteins are easier to predict than all-beta proteins because of the 

local hydrogen bonding patterns and the number of local interactions (Kosciolek and 

Jones, 2014). The same applies to the predictions of protein secondary structures 

(Cuff and Barton, 2000; Jones, 1999). The aim of FRAGFOLD-IDP is not to predict the 

structure of the protein, but rather its backbone dynamics. Still, it is an interesting 

and important aspect to investigate, whether the quality of backbone dynamics 

predictions also depends on the class of the analysed protein. 

For each protein in the dataset, the structural class defined by the CATH database 

was extracted from the latest CATH version 4.0 (Orengo et al., 1997; Sillitoe et al., 

2015). CATH classifies proteins into four categories – mainly-alpha (alpha), mainly-

beta (beta), alpha/beta and few secondary structures (few). Another class was 

constructed from proteins which were not indexed in CATH (none). Then, the top 

random cluster, median random cluster and FRAGFOLD-IDP results were compared 

on the basis of their RS results in each CATH class (Figure 33). 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

b
es

t 
cl

u
st

er
 R

S

top cluster RS



Chapter 2. FRAGFOLD-IDP  122 
 

 

There are 58 proteins in all-alpha class, 30 in all-beta, 60 in alpha/beta class, 7 in few 

secondary structures class and 45 not classified in CATH (none class). 

The results are consistent between different ensemble extraction methods, i.e. all-

alpha and few secondary structure protein classes achieve the highest scores when 

analysing top random cluster, median random cluster and FRAGFOLD-IDP results. 

 

Figure 33. Comparison of full dataset results by CATH class. 

Overall, the predictions can be grouped into 3 main categories. All-alpha and few 

secondary structures proteins perform better than average (all proteins). Alpha/beta 

proteins perform on par with the average. Beta proteins and none class proteins (not 
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could be expected from traditional protein structure predictions (e.g. Kosciolek and 

Jones, 2014). At the same time, the largest gap between the top RS and FRAGFOLD-
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few secondary structures class or none class. An example could be 2FKX, 30S 

ribosomal protein S15 from Thermus thermophilus. According to MOBI, it is 46.6% 

disordered (88 residues). Nevertheless, the NMR ensemble of this protein shows it is 

a helical molten globule, hence its CATH classification as an all-alpha protein. An 

example of a high disorder all-beta protein is 1TXB, long neurotoxin 2 from 

Ophiophagus hannah (king cobra) (Figure 34). According to MOBI it is 79.4% 

disordered (73 residues). Again, the protein can be described as a molten globule and 

although it is highly disordered, a beta-sheet core of the protein is identifiable (Figure 

34). FRAGFOLD-IDP produces a poor prediction for this protein (RS = 0.28). 

 

Figure 34. NMR PDB ensemble of 1TXB (long neurotoxin 2). The protein is highly disordered (79.4%), 
still it is classified by CATH as an all-beta protein. A beta-sheet core of the protein is visible. 

These observations show that the class of the protein plays a role in the predictions 

of protein backbone dynamics. The fact that the classification is robust regardless of 

the cluster extraction criteria prove that the observations are not biased by the 

ensemble extraction protocol. However, they might be biased by the model 

generation methodology, i.e. FRAGFOLD (sections 2.1.3, 2.3.2 and 2.4.1). Even 

though structure predictions and backbone dynamics predictions are decoupled in 
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FRAGFOLD-IDP by the use of the sliding window (section 2.4.3), it is possible that the 

amount of non-local interactions often encountered in all-beta proteins plays a role 

in the predictions of backbone dynamics and does not only impact structure 

prediction. This way, the structure prediction quality in (usually more difficult to 

predict) all-beta proteins may have an impact on the quality of backbone dynamics 

predictions. The impact of structure prediction quality on the predictions of backbone 

dynamics is discussed elsewhere (section 2.5.7). Also, the links between structure 

prediction and per-class performance are discussed in the summary of this chapter 

(section 2.6). 

 Impact of disorder content on FRAGFOLD-IDP performance 

FRAGFOLD was originally developed as a method to predict the structures of globular 

proteins (described in section 2.1.3). Up to this point in this chapter, I have shown 

that it is possible to use FRAGFOLD also as a method to predict protein backbone 

dynamics de novo from sequence. One of the reasons why this could be possible is 

the fact that the proteins included in the dataset are mostly ordered (mean disorder 

content in the dataset = 33%; section 2.2.2) and FRAGFOLD-IDP performs better on 

the targets with low disorder content, than those significantly disordered. To verify 

this hypothesis, FRAGFOLD-IDP results were plotted against disorder content 

extracted from NMR PDB ensembles using the MOBI method (Figure 35). 

Indeed, most of the targets in the dataset contain between 10% and 50% disorder 

(173 out of 200 cases). Nevertheless, the disorder content in this region does not 

impact the quality of FRGFOLD-IDP predictions in general. Above 50% disorder 

content, the predictions are sparser in terms of sampling the amount of disorder (26 

cases; 14 cases > 60% disorder). The best result for proteins with > 60% disorder is RS 

= 0.6. It is not clear whether for highly disordered proteins FRAGFOLD-IDP is not able 

to perform any better. Still, the plot does not show any significant correlation 

(Pearson’s r = -0.08; p-value = 0.27) between disorder content and the quality of 

FRAGFOLD-IDP predictions (Table 11). 
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Figure 35. Relationship between the disorder content in NMR ensembles and the quality of 
FRAGFOLD-IDP predictions. 

Analysing the results as in the previous section, on a per-CATH class basis, there are 

some more remarks that can be made (Figure 35, Table 11). Clearly, for all-alpha and 

all-beta proteins, there is no significant correlation between the quality of predictions 

and disorder content. For alpha/beta class however, there is a weak negative 

correlation which is statistically significant (p-value = 0.01). For not classified (none 

class) proteins, similarly there is a weak negative, but not significant correlation (p-

value = 0.37). Finally, for few secondary structures (few class) there is a strong 

negative correlation between FRAGFOLD-IDP results and disorder content (Pearson’s 

r = 0.80) which is borderline significant (p-value = 0.03). However, it should be noted 

that there are only 7 proteins belonging to this class – 5 cases have between 20% and 

40% disorder and achieve high results, while 2 cases close to 100% (98.9% and 100%) 

achieve mixed results (Figure 35; grey dots). So although the results are shown to be 

borderline significant, the space between 40% and 100% of disorder is not sampled 

for this class. 

Overall, there is no strong evidence that FRAGFOLD-IDP performance is dictated by 
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indications that for alpha/beta and few secondary structures proteins, the increase 

in disorder content negatively impacts the quality of FRAGFOLD-IDP predictions. 

Possibly, this could be addressed by altering the ensemble generation parameters on 

the basis of secondary structure predictions. 

Table 11. Correlations between FRAGFOLD-IDP RS value and disorder content by protein CATH class. 

 CATH class 

 all alpha beta alpha/beta few 

Pearson's r -0.08 -0.04 -0.02 -0.33 -0.80 

no. proteins 200 58 30 60 7 

 Structure and backbone dynamics predictions 

Sections 2.3.4 and 2.4.3 introduced the idea of separating protein backbone 

dynamics from protein structure predictions. Having established FRAGFOLD-IDP and 

taking advantage of this separation, it can now be compared whether the quality of 

backbone dynamics predictions depend on the quality of structure predictions. To do 

this, the TM-score for each protein in the dataset was calculated as described in 

section 2.3.4.4. The quality of backbone dynamics predictions is described by RS 

values. Therefore, each protein can now characterized by 2 values – the TM-score 

representing the structure prediction quality between the 2 ensembles (FRAGFOLD-

IDP and NMR PDB) and RS reflecting the quality of backbone dynamics predictions. 

The results are plotted in Figure 36. 

The immediate conclusion that is apparent from Figure 36 is that it is not necessary 

to find the correct fold of the protein to predict its backbone dynamics accurately. 

Several examples of that were already presented (compare 1K19 or 2K36 in Table 7). 

Posing an alternative hypothesis is more challenging – does high structure prediction 

quality (high TM-score) hinder the predictions of backbone dynamics (low RS values)? 

The analysed dataset is under-represented in well-folded (TM-score ≥ 0.5) structures. 

Only 8% of the dataset (16 structures) has TM-score ≥ 0.5. In comparison, another 

research concentrated on predicting the structures of globular proteins found that 

FRAGFOLD is able to correctly predict around 14% – 25% of cases, depending on the 
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final model selection criteria (Kosciolek and Jones, 2014). Because of the under-

representation of high quality structure predictions, it is difficult to draw robust 

conclusions based on this dataset. 

 

Figure 36. Impact of structure prediction quality (TM-score) on backbone dynamics predictions (RS). 

An example of a high TM-score, low RS score case is 1APS (Horse acylphosphatase-2) 

(Figure 37). The TM-score of this ensemble is 0.78 – the highest value achieved on 

the dataset; RS of both FRAGFOLD-IDP prediction and the best cluster is -0.15. Figure 

37 shows the disorder profile of this target. Except for the N- and C-terminus regions, 

the disorder profile of FRAGFOLD-IDP shows per-residue RMSD values close to zero. 

This suggests that structural fragments of 1APS or its close homologue are in the 

FRAGFOLD fragment library. As a result, this would make the structure more rigid 

that it is in reality. During conformational sampling FRAGFOLD would be biased to 

select those homologous fragments and produce an ensemble of near-identical 

structures. To verify this hypothesis an additional validation was made, similar to the 

one presented in previous FRAGFOLD predictions validation (Kosciolek & Jones, 

2014). FRAGFOLD was run in refinement mode, using a single structure from the PDB 
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ensemble as a reference structure. During this process, FRAGFOLD verifies fragment 

selection by calculating the RMSD of each selected supersecondary structural 

fragment and 9-residue (fixed-length) fragment (compare section 2.1.3) to the 

reference structure. The output mean RMSD for fixed-length fragments was 0.97 Å 

and for supersecondary fragments 3.30 Å, which is close to the mean values reported 

previously. It therefore suggests that there are no homologous fragments to 1APS in 

the library. 

 

Figure 37. Disorder profile of 1APS (Horse acylphosphatase-2). 

Also, 1APS has the lowest RMSD of the entire raw ensemble (0.14 Å) in the whole 

dataset, this means that the structures generated are near identical. It’s similar with 

the next highest TM-score target 1T8V (TM-score = 0.74; raw ensemble RMSD = 0.19 

Å). The mean raw ensemble RMSD over the entire dataset is 1.66 Å. 
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The overall tendency of how a correct structure impacts the disorder profile remains 

unclear (Figure 36). The data shows almost no correlation between the TM-score and 

RS (Table 12). A very similar behaviour could be observed regardless chosen ensemble 

extraction method, e.g. analysing the data for the best cluster (instead of the selected 

largest cluster). 

Table 12. Correlations between TM-score and RS for different cluster selection criteria. 

  
mean  
TM-score Pearson's r 

FRAGFOLD-IDP cluster 0.31 -0.13 

best cluster 0.31 -0.16 

FRAGFOLD-IDP cluster (TM-score bins) - -0.13 

best cluster (TM-score bins) - -0.18 

 

To investigate this further, an alternative approach was also tested. TM-score is a 

continuous measure, so a TM-score of 0.2 indicates a worse model than one having 

TM-score of 0.3. But still, both of those models indicate unsatisfactory predictions. 

Following this rationale, TM-score values were binned and the correlations were 

recalculated. The bin boundaries were established based on the findings of Xu & 

Zhang (Xu and Zhang, 2010). The first bin contains TM-score values from 0 to 0.2, 

corresponding to random non-homologous structures. The second bin includes 

ensembles with TM-score between 0.2 and 0.4 TM-score – values where the 

posterior probability of 2 structures belonging to the same CATH or SCOP class is close 

to zero. The third bin contains TM-scores between 0.4 and 0.6 – the “phase 

transition” region, where the probability of the two protein belong to the same fold 

increases drastically and reaches around 90%. The last bin includes ensembles with 

TM-score above 0.6 and contains cases where the posterior probability of the two 

proteins/ensembles belonging to the same fold is > 90%. The bin boundaries were 

also validated to maximize the Pearson’s r correlation value between TM-score and 

RS.  

Still, applying this binning protocol did not improve the results significantly (Figure 

38, Table 12). 162 targets that belong to bin 1 or 2 have FRAGFOLD-IDP ensembles 
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that are unlikely to belong to the same CATH or SCOP class as their NMR PDB 

counterparts. Mean RS values in bins 1 and 2 are on average higher than the ones in 

bins 3 and 4 (Figure 38). There are 33 proteins in bin 3 and 5 proteins in bin 4, with a 

total of 14 all-alpha proteins, 11 all-beta, 11 alpha/beta and 2 none class proteins. 

Comparing the enrichment of protein populations in the two top bins (3 and 4), the 

bins are most enriched in all-beta (1.93) and all-alpha (1.27) proteins. Alpha/beta 

proteins are proportionally represented and none class proteins have reduced 

representation (0.23) in the top two bins. As discussed in an earlier section (2.5.5), 

all-alpha and few secondary structures classes generally give higher than an average 

RS values, whereas all-beta and none class proteins perform below average in terms 

of RS. Hence, one of the possibilities why bins 3 and 4 show lower RS predictions, is 

because they are highly enriched in all-beta proteins. However, as it was mentioned 

previously, bins 3 and 4 (high TM-score ensembles) are under-represented in the set 

(38 protein in total) and some of the best scoring targets in terms of TM-score are 

outliers in terms of their backbone dynamics predictions (e.g. 1G6M discussed in 

section 2.5.2.1 and 1APS discussed in this section). Hence, the decrease of RS values 

in bin 4 is unlikely to be a significant effect. 

 

Figure 38. Backbone dynamics predictions quality (RS) from TM-score binning. 
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These observations would point to the conclusion that in FRAGFOLD-IDP it is not 

necessary to find the correct fold of the protein in order to be able to predict its 

backbone dynamics accurately. From a computational perspective, it can be 

interpreted that in FRAGFOLD-IDP, during the folding process (i.e. FRAGFOLD 

simulations), only local conformations play an important role in the outcome of the 

calculations. Looking at the problem biologically, the results suggest that disordered 

regions form early in the folding process and the final conformation reached during 

folding does not significantly impact the disordered regions. Alternatively, it could 

speculated that disorder is an intrinsic local property of the sequence. 

This finding could be related to other studies. During DynaMine optimisation it was 

found that using a wider sequence window as an input for the predictor increases the 

correlation between DynaMine predictions and reference experimental data (Cilia et 

al., 2013). However, the improvements are significant up to a window size of 23 (11 

residues on either side of the residue of interest). As the authors themselves point 

out, the residues in the immediate neighbourhood have the greatest impact on the 

backbone dynamics. Hence, the conclusions from DynaMine also confirm the notion 

of the locality of intrinsic protein disorder. 

This finding not only serves as an important observation in terms of expanding our 

understanding of the protein folding process, but it could also help the possible 

future development of FRAGFOLD-IDP directly. The computational time needed for 

simulating long sequences is substantial and increases exponentially with the length 

of the sequence (discussed in section 2.1.3). Since it is not necessary to find a correct 

fold for the sequence, overlapping sequence fragments could be simulated 

independently and then the disorder profiles assembled from the fragments. This 

could make long sequences accessible to FRAGFOLD-IDP simulations and could also 

reduce the computational time needed to obtain results. 
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 Comparison with other approaches to predict IDP ensembles 

For every newly developed computational method, it is desirable to make 

comparisons to other state-of-the-art approaches to determine how this method 

performs and what are its strengths and weaknesses in the spectrum of all 

computational techniques. In case of FRAGFOLD-IDP, the comparison is difficult, since 

as explained in the introduction to this chapter (section 2.1.2), the number of 

computational methods that attempt to predict protein backbone dynamics is 

limited, i.e. the only approach to predict protein backbone dynamics from sequence 

is DynaMine (sections 1.5.2.4 and 2.1.2.1). To increase the variety of computational 

methods, some other approaches that provide related information were also 

included, i.e. crystallographic B-factor predictors and disorder/order predictors 

which were also shown to contain information related to protein backbone dynamics 

(Daughdrill et al., 2011). 

2.5.8.1. B-factor predictions 

B-factors, also known as Debye-Waller or temperature factors, indicate the degree of 

electron density spread (Rupp, 2009). Therefore, B-factor indicates the static or 

dynamic mobility of an atom and is a function of atom displacement (Rupp, 2009). In 

an experimental setting, B-factor can also indicate possible X-ray structure errors and 

depend on the resolution of the crystal structure, crystal contacts and on the 

structure refinement procedures (Schlessinger and Rost, 2005; Tronrud, 1996). By 

definition B-factors are expressed as:  

228 uB  , 

where u2 is the unidirectional mean-square displacement. 

Predictions of B-factor values from sequence attracted some attention, and several 

computational methods to perform such predictions have been developed over the 

years, e.g. PROFbval (Schlessinger and Rost, 2005; Schlessinger et al., 2006) or the 
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work by Yuan and colleagues (Yuan et al., 2005) and Radivojac and colleagues 

(Radivojac et al., 2004). 

For this comparison, PROFbval was used (Schlessinger and Rost, 2005; Schlessinger 

et al., 2006). It is a sequence-based machine learning method that attempts to predict 

B-factors from sequence. Starting with a query sequence, a PSI-BLAST sequence 

profile is generated first and then based on it, a HSSP profile is generated. The profile 

is used to run PROF predictions of secondary structure (PROFsec) and solvent 

accessibility (PROFacc) (Rost, 2005). The predictor is a set of 2 feed-forward neural 

networks that use the sequence profile, PROFsec and PROFacc predictions and global 

features (global secondary structure, solvent accessibility contents and sequence 

length) as inputs. One of the networks predicts B-factors for all residues, while the 

other network runs only the predictions for buried residues (depending on the 

PROFacc predictions). The method outputs both raw and normalized B-factors: 



BB
Bnorm


 . 

PROFbval was trained on a set of 1,513 non-redundant X-ray structures with 

resolution ≤ 2.5 Å (3-fold cross validation). It achieved a Pearson’s correlation 

coefficient value of 0.44 between the experimental and predicted normalized B-

factors on the entire dataset. 

In the PROFbval evaluation, the results were compared to solvent accessibility 

predictions (PROFacc), which served as a baseline method. It was shown that 

PROFbval significantly improves over those predictions (Schlessinger and Rost, 2005). 

The authors also compared their B-factor predictions to NMR order parameter values 

(S2) for a single case (Schlessinger and Rost, 2005). The comparison concerned only a 

subset of (81 out of 149) residues for RNase H. PROFbval predictions were accurate 

for some regions of the protein, but overall the correlation between order 

parameters and predicted B-factors was lower than the correlation between 

experimental and predicted B-factors. 
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2.5.8.2. Disorder/order predictors 

In one study, Daughdrill and colleagues showed that for a p53TAD domain disorder 

predictor (IUpred (Dosztányi et al., 2005b), VL-XT (Romero et al., 1997), VSL2B (Peng 

et al., 2006)) output values correlate with amide nitrogen and normalized hydrogen 

nuclear Overhauser effect (NHNOE) values (Daughdrill et al., 2011). The predictors 

achieved Pearson’s r correlation values between 0.42 and 0.71 on a dataset of 6 

homologs of p53TAD from different organisms. Overall, none of the methods 

provided outstanding results that would be consistently better than any other 

method. It is not surprising as the problem formulated by the authors is rather 

difficult. They compared 6 closely related proteins (between 42% and 91% pair-wise 

sequence identity) with different disorder profiles. Some targets proved to be more 

difficult than others, i.e. rabbit p53TAD produced an average r = 0.45, while cow and 

guinea pig r = 0.61. Overall, different disorder predictors performed similarly, 

achieving Pearson’s r between 0.54 and 0.57. 

Even though the study was limited and did not show robust results for any single 

disorder predictor, it strongly suggests that relating the values from disorder 

predictors to protein backbone dynamics is a viable option and should be explored. 

2.5.8.3. Overall comparison 

The comparison between FRAGFOLD-IDP, DynaMine, PROFbval, DISOPRED3 and 

IUpred was carried out on the 200 protein dataset introduced previously (section 

2.2). DISOPRED3 and IUpred were selected to represent the disorder predictors as 

they reflect the two main approaches to disorder/order classification – machine 

learning-based (DISOPRED3) and statistical energy-based (IUpred; compare section 

1.5.1).  

For DynaMine, the predictions were run locally using the August 2014 version of 

DynaMine downloaded from the authors’ website 

(http://dynamine.ibsquare.be). PROFbval was downloaded from the Debian 

repository. DISOPRED3.16 and IUpred were also downloaded and run locally. 
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The results of the predictions are presented below (Figure 39). The chart uses median 

RS values for comparison, because it is a more robust metric than the average, 

especially in the presence of outliers. Overall, FRAGFOLD-IDP and DynaMine clearly 

perform best and significantly better than the naïve method (discussed in section 

2.5.3). PROFbval predictions and IUpred achieve performance on par with the naïve 

approach. DISOPRED3 achieves higher median RS than the naïve, but the result is not 

statistically significant (Wilcoxon signed-rank test p-value = 0.73). 

 

Figure 39. Median RS values between FRAGFOLD-IDP and other computational techniques. 

2.5.8.4. FRAGFOLD-IFP and DynaMine 

Because the only computational techniques that achieve results significantly higher 

than the naïve approach are FRAGFOLD-IDP and DynaMine, let us compare the 

results of those methods in more detail. 
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The results of FRAGFOLD-IDP and DynaMine are comparable in terms of their overall 

performance. Median FRAGFOLD-IDP RS is 0.48 (mean RS = 0.44), whereas median 

DynaMine RS is 0.45 (mean RS = 0.44). Analysing the results on a per case basis, 

FRAGFOLD-IDP achieves higher RS for 109 out of 200 cases (Figure 40). But more 

interestingly, the results of the two methods are very weakly correlated (r = 0.17, p-

value = 0.013), even when FRAGFOLD-IDP outliers are removed (p-value goes up to 

0.015). 

 

Figure 40. Per target comparison of FRAGFOLD-IDP and DynaMine results. 

The lack of correlation (or very weak correlation) between the FRAGFOLD-IDP and 

DynaMine results suggests that the methods in a practical setting could complement 

one another. The results also suggest that for the most part poor results achieved by 

FRAGFOLD-IDP are not a cause of some experimental bias (apart from cases 

highlighted in section 2.5.2.1), but rather that FRAGFOLD-IDP is unable to cope with 

them effectively. 
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Orthogonality of FRAGFOLD-IDP and DynaMine is leveraged in Chapter 4, where a 

consensus protein backbone dynamics predictor is constructed and discussed. The 

predictor uses the outputs of these two methods as inputs to further improve the 

backbone dynamics predictions and take advantage of the strengths of both of 

FRAGFOLD-IDP and DynaMine.  
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2.6. Summary 

This chapter introduced FRAGFOLD-IDP, a fragment-based method for de novo 

predictions of protein backbone dynamics from sequence. It addresses the problem 

of intrinsic protein disorder predictions by going beyond the binary order/disorder 

classification. Most of current computational techniques treat intrinsic disorder as a 

binary property (disorder classification), while the methods that go beyond that are 

computationally expensive and require a starting information (section 2.1). 

FRAGFOLD-IDP addresses this issues first by relying on a de novo method (FRAGFOLD) 

to be able to generate the ensembles of proteins of unknown structures and 

secondly, it predicts per-residue RMSD profiles which provide the information about 

backbone dynamics. 

The method was benchmarked and tested on an exhaustive dataset of 200 protein 

structures solved by NMR and deposited in the PDB (section 2.2). FRAGFOLD-IDP 

optimisation included finding suitable parameters and algorithms for each step of the 

method (sections 2.3 and 2.4). During this process, it was found that the optimal 

parameters include using all FRAGFOLD potential terms to generate the raw 

ensemble of structures. Then, to extract the final ensemble, PFClust, a parameter-

free clustering method was used. As a cluster selection criterion, cluster size proved 

to work best. Finally, FRAGFOLD-IDP and NMR ensembles were compared by first 

generating the disorder profiles using a sliding window superposition method and 

then quantifying the agreement between those profiles using Spearman’s rank 

correlation (RS). 

FRAGFOLD-IDP was then evaluated on the 200 protein dataset (section 2.5). It was 

found that RS values of ≥ 0.6 indicate good predictions (67 cases) and RS ≥ 0.7 indicate 

excellent predictions (35 cases). The method also performs significantly better than 

a naïve approach, which bases on secondary structure predictions and assumes that 

all loops are disordered, all sheets allow for some degree of flexibility, while all helices 

are rigid (section 2.5.3). Nevertheless, FRAGFOLD-IDP produced some outliers 

(section 2.5.2.1). Those targets were found to either have some factors affecting their 



Chapter 2. FRAGFOLD-IDP  139 
 

 

backbone dynamics (e.g. disulphide bridges constraining the structure), or for some 

other targets the ensemble extraction criteria failed to extract the correct ensemble. 

Comparing FRAGFOLD-IDP to other ensemble extraction methods, it was found that 

the method performs better than selecting median random cluster and comparably 

to selecting the best cluster from the PFClust pool, which proves that the ensemble 

selection criteria work well (section 2.5.4). 

FRAGFOLD was originally designed to predict the structures of globular proteins. 

Hence it was interesting to check whether disorder content within studied proteins 

impacted the quality of protein backbone dynamics predictions (section 2.5.6). The 

majority (86%) of proteins within the dataset contain between 10% and 50% 

disordered residues, so this evaluation did not sample the whole spectrum of 

disorder. The results showed that for all-alpha and all-beta proteins the disorder 

content does not impact the predictions, but for alpha/beta and few secondary 

structures proteins an increase in disorder content seems to negatively impact the 

quality of FRAGFOLD-IDP predictions. 

The quality of FRAGFOLD-IDP predictions appears to be independent of the quality of 

structure predictions (section 2.5.7), but CATH class of the protein does impact 

FRAGFOLD-IDP performance (section 2.5.5). Proteins belonging to all-alpha or few 

secondary structures classes perform better than an average, whereas all-beta 

proteins are more difficult to predict. These observations suggest that FRAGFOLD-IDP 

samples local protein conformations and that disorder is a local property of the 

protein chain. In all-beta proteins, local conformations are more dependent on the 

overall fold of the protein, since beta-sheets are non-local secondary structures. 

Hence, it is more difficult to predict protein backbone dynamics for this class of 

proteins. 

Practically, the independence of structure and backbone dynamics prediction 

suggests that it could be feasible to run simultaneous FRAGFOLD-IDP simulations of 

fragments of proteins, instead of the entire protein chains. This could speed up the 
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calculations and enable simulations of longer proteins than considered in this study 

(i.e. longer than 150 residues). 

FRAGFOLD-IDP was also compared against a range of other computational 

techniques which use sequence information to predict protein backbone dynamics, 

or other qualities that could be related to it (section 2.5.8). The comparison included 

DynaMine – a method to predict NMR order parameters from sequence (sections 

1.5.2.4 and 2.1.2.1); PROFbval – a sequence-based crystallographic B-factor predictor 

(section 2.5.8.1); IUpred and DISOPRED3 – disorder/order predictors (section 

2.5.8.2). The assessment of those methods showed that only FRAGFOLD-IDP and 

DynaMine produce results that are significantly better than the naïve method. 

Head-to-head comparison of FRAGFOLD-IDP and DynaMine showed that both 

methods achieve comparable results that slightly favour FAGFOLD-IDP (DynaMine 

median RS = 0.45; FRAGFOLD-IDP median RS = 0.48; FRAGFOLD-IDP produced higher 

RS for 109 out of 200 proteins; section 2.5.8.4). More interestingly, the results showed 

no correlation between FRAGFOLD-IDP and DynaMine results. The methods seem to 

be mostly orthogonal in their predictions and could supplement each other well. This 

observation led to the idea of combining both methods into a consensus machine 

learning-based predictor. This approach is described in Chapter 4. 

Overall, FRAGFOLD-IDP proved to be a state-of-the-art method that is able to 

accurately predict protein backbone dynamics from sequence. The only method on 

par with FRAGFOLD-IDP is DynaMine and the predictions of both of those methods 

are significantly better than the naïve approach.  

This chapter introduced FRAGFOLD-IDP, described its optimisation and showed that 

is performs optimally within the designed workflow. It also described how well the 

method performs with regard to proteins of different classes, disorder content and 

FRAGFOLD-IDP predictions are independent of structure predictions quality. 
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Chapter 3.  
DISORDER/ORDER CLASSIFICATION WITH 
FRAGFOLD-IDP 

3.1. Background 

Binary disorder/order classification is the most widespread computational technique 

for the analysis of intrinsically disordered proteins (described in section 1.5.1). The 

methods that perform sequence-based predictions are quick, can be routinely 

performed on many proteins and modern algorithms achieve high precision values 

(Monastyrskyy et al., 2014; Walsh et al., 2015). 

The CASP experiment (Critical Assessment of the techniques for protein Structure 

Prediction) played an important role in the advancement of disorder classification 

methods. Predictions of disordered regions were included for the first time in CASP5 

in 2002 (Moult et al., 2003). Considering that the seminal papers elucidating the role 

of protein intrinsic disorder appeared between 1999 and 2001 (Dunker et al., 2001; 

Uversky et al., 2000; Wright and Dyson, 1999) and the first disorder prediction 

algorithms were developed between 1997 and 1999 (Li et al., 1999; Romero et al., 

1998, 1997), the structure prediction community quite quickly realized the 

importance of computational methods in the area of intrinsic protein disorder. 

So far, the last disorder assessment was carried out in CASP10 in 2012 (Monastyrskyy 

et al., 2014). The main reason behind the halt in the CASP evaluation of disorder 

classification was the way that the experiment runs, accumulating the targets from 

experimental groups and structural genomics centres during the predictions season 

(approx. 6 months in which the CASP experiments is carried out). Most of the 

experimental groups either concentrate on ordered targets, leaving out targets that 

might pose experimental problems due to intrinsic disorder (ironically, often aided 

by disorder classification methods), or removing known disorder regions to help 

crystallization. Hence, the number of disordered targets available for assessment is 

low. Among disordered proteins, the disorder content is also low leaving relatively 
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little space for objective assessment. The majority of the disordered regions in CASP 

are shorter than 10 residues and were mostly determined by X-ray crystallography 

(Monastyrskyy et al., 2014, 2011). 

In CASP9 there were 26,075 residues (2,417 disordered) from 117 sequences in the 

disorder predictions assessment. In CASP10 there were 24,470 residues (1,664 

disordered residues) from 94 sequences in the disorder assessment category. 

Most of top disorder predictors were trained on X-ray data (Ishida and Kinoshita, 

2007; Jones and Cozzetto, 2015; Walsh et al., 2012), or data derived from DisProt 

(Obradovic et al., 2003; Walsh et al., 2012). The physical characteristics of disordered 

regions solved by NMR are similar, but the sources of NMR-resolved proteins are 

usually different, i.e. more nuclear proteins, shorter, etc. (Vladimir N Uversky, 2013). 

The first disorder/order classification method were rule-based and neural network 

predictors (Romero et al., 1997). The rules were based on the identification of 

stretches of order-promoting aromatic residues. Later disorder classification 

methods were mostly based on machine learning approaches, either as individual 

predictors or consensus methods (reviewed in section 1.5.1). 

Although the disorder/order classification problem has been studied since 1997 and 

assessed in 5 CASP experiments, it is still an open problem in many respects. First, 

there is no universal definition of what are the experimental characteristics of 

disordered proteins (see section 1.3). Second, the experimental studies of intrinsically 

disordered proteins show bias to short regions of disorder, i.e. there is a shortage of 

information on long disordered regions (section 1.5.1). Finally, intrinsic protein 

disorder is an unstable phenomenon and various experimental factors (e.g. binding 

partners, inorganic ligands, experimental conditions) impact the behaviour of 

intrinsically disordered proteins observed experimentally (see section 1.2). All those 

arguments are true for both disorder/order classification and for the predictions of 

protein backbone dynamics. 
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 Problem formulation 

In the previous chapter, FRAGFOLD-IDP was introduced, a method to cope with the 

problem of predicting protein backbone dynamics de novo from sequence. This is a 

novel approach to computational studies of intrinsic disorder in proteins and there 

are not many methods available to make an exhaustive assessment of the approach 

(section 2.5.8). 

Alternatively, the problem of predicting backbone dynamics can also be simplified to 

a binning problem. A borderline example of this procedure would be binning the 

predictions into 2 categories – ordered and disordered. 

Binning FRAGFOLD-IDP predictions into ‘ordered’ and ‘disordered’ bins limits the 

amount of information that is produced using this method, since all of the dynamic 

information predicted by FRAGFOLD-IDP is lost. Nevertheless, it enables the 

comparison of the predictions to a wide variety of disorder predictors which have 

been studied and developed over the years (reviewed in 1.5.1).  

Performing such comparisons can not only provide a broader outlook of FRAGFOLD-

IDP performance, but also highlights its strengths and weaknesses. FRAGFOLD-IDP 

predictions are clearly more resource expensive than sequence-based disorder 

classifiers, but should FRAGFOLD-IDP prove to perform well in disorder/order 

classification, it can also be envisaged that the FRAGFOLD approach could be useful 

in cases where one is performing structure prediction, obtaining information about 

disordered regions alongside predicted protein structure. Therefore, despite a large 

computational cost that needs to be paid for in FRAGFOLD simulations, in comparison 

to classical machine learning-based disorder predictors, it can be advantageous to 

carry out an assessment of FRAGFOLD-IDP performance in binary disorder/order 

classification.  
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3.2. Methods 

 Dataset 

The dataset used in this evaluation is identical to the one used and described in the 

previous chapter (section 2.2). It consists of 200 NMR PDB ensembles. Disorder/order 

annotations were also extracted from mobiDB and rely on the MOBI method, which 

uses a set of conditions to assign each residue from an NMR ensemble as ordered or 

disordered (compare section 1.3.4.6 and the discussion in sections 2.2.1 and 3.3.1). 

 NMR ensemble disorder boundaries 

Annotations of NMR ensembles come from mobiDB and were determined using the 

MOBI method (Martin et al., 2010). Nevertheless, it is useful to verify how a single 

per-residue RMSD boundary from a sliding window superposition works on NMR PDB 

ensembles.  

To determine the per-residue RMSD value boundaries between order and disorder, 

first each per-residue RMSD value for each protein in the dataset was separated into 

disorder and order groups according to the MOBI classification. Then the values were 

binned into percentile bins according to the distribution of values in the whole 

population. For each bin, the precision values of selecting disordered residues (ratio 

of disordered residues to all residues in the bin) were calculated and a logistic curve 

was fitted to the data. The value at 0.5 probability of the fitted curve corresponds to 

an optimal partitioning of the data into order and disorder sets on the basis of their 

per-residue RMSD (order/disorder threshold).  

To minimize the impact of borderline cases (i.e. ordered residues between 2 

disordered regions, or vice versa) several variations were also taken into 

consideration (Table 13). For example, only residues neighbouring at least one or 

more residue of the same class were considered (e.g. an ordered residue needs to be 

adjacent to at least one other ordered residue to be considered). The results proved 

to be robust regardless of the neighbourhood considered (Table 13). The results show 
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a stable accuracy of 86% (0.87 F-score), hence the partitioning is not in perfect 

agreement with the MOBI annotations. In contrast with MOBI, no heuristics are used 

to augment the assignments and also MOBI method itself is not in perfect agreement 

with other disorder assignments (0.94 F-score compared to CASP8 annotations on 18 

NMR structures) (Martin et al., 2010; Noivirt-Brik et al., 2009). Also, no single 

definition of intrinsic disorder in proteins exists (compare section 1.1.2), while the 

results here show a behaviour one would expect – with higher RMSD value, the 

probability of correctly annotating a disordered region increases (Table 13). 

Therefore, the partitioning should be considered as reliable. 

Table 13. Order-disorder boundary of NMR ensembles. 

RMSD at 0.5 
probability 

order RMSD disorder RMSD 

prec. recall acc. F1-score 

min. 
neighbours 

mean median mean median disorder order 

1.25 0.68 0.48 1.99 2.03 0.81 0.76 0.86 0.78 0 0 

0.94 0.58 0.46 1.98 2.03 0.90 0.84 0.86 0.87 1 1 

0.95 0.58 0.46 1.99 2.04 0.90 0.84 0.86 0.87 2 1 

0.94 0.58 0.46 1.98 2.03 0.90 0.84 0.86 0.87 1 2 

0.94 0.58 0.46 1.99 2.04 0.90 0.84 0.86 0.87 2 2 

0.97 0.58 0.46 1.97 2.01 0.89 0.82 0.85 0.85 
no N- and  
C-term. (5 res.) 

RMSD at 0.5 probability indicate the RMSD threshold value achieved at 0.5 probability 

calculated from binning annotated ordered and disordered residues. 

 FRAGFOLD-IDP as a disorder/order classifier 

To achieve the correct classification of FRAGFOLD-IDP results, a threshold needs to 

be established separating the residues annotated as disordered and ordered. The 

output of FRAGFOLD-IDP are per-residue RMSD values. The binning of FRAGFOLD-IDP 

output values was done using several approaches: 

(1) raw FRAGFOLD-IDP results, 

(2) a Savitzky-Golay filter, 

(3) a median filter on the output results, 

(4) a Gaussian filter. 
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Data filters were used to remove potential outliers in FRAGFOLD-IDP per-residue 

RMSD profiles. 

Savitzky-Golay filter processes the data by fitting subsets of adjacent data points with 

a low-degree polynomial (2nd and 3rd order) using linear least squares. 

 Sequence-based disorder predictors 

The state-of-the-art in disorder classification can be established by considering 

previous CASP experiment results (Monastyrskyy et al., 2014). Some issues with the 

CASP assessment have already been mentioned (section 3.1), the main ones being 

small sample size, relatively short stretches of disordered residues and bias towards 

X-ray-solved structures. To complement the CASP10 assessment of disorder, the 

results from a systematic assessment of disorder classification by Walsh and 

colleagues were also included (Walsh et al., 2015). The paper is a part of the Mobility 

Continuous Assessment (MoCA; http://moca.bio.unipd.it/). In this study, the 

authors investigated the performance of disorder predictors on 25,833 sequences 

with disorder annotations from X-ray structures. Therefore, this study also is biased 

towards structures solved by crystallography, but the authors take a conservative 

approach and perform a majority vote if there are multiple PDB structures for a given 

sequence available. Another issue with the assessment is that the authors omitted 

some top performing predictors from CASP10 in favour of computational speed. 

Nevertheless, basing on both studies, a representation of high quality disorder 

predictors can be extracted. 

For the evaluation of disorder/order classification, 9 methods (represented by 5 

different algorithms) that are publicly available for download were selected. The 

methods are: 

DISOPRED3 (Jones and Cozzetto, 2015) – the method ranked second in CASP10 

assessment according to most metrics (precision, MCC, AUROC, the area under 

precision-recall curve (AUC (PR)), but was not included in the MoCA evaluation. 

DISOPRED3 uses sequence profiles as an input to a hybrid machine learning approach 

http://moca.bio.unipd.it/
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combining SVM, neural network and a nearest neighbour classifier within a neural 

network framework (described in detail in section 1.5.1.4.a). The method was trained 

on a concatenated dataset from DisProt and high-resolution non-redundant X-ray 

PDB structures with missing density or zero occupancy. 

ESpritz (Walsh et al., 2012) – three flavours of the method were included: ESpritz-

Xray, ESpritz-NMR and ESpritz-DisProt. The flavours indicate sources of training 

information. ESpritz is a bidirectional recurrent neural network method. In CASP10 

ESpritz (consensus single method, without flavour differentiation) ranked in the top 

15. In the MoCA assessment, none of the ESpritz flavours ranked at the top of the list, 

but performed very well on a per-residue basis in terms of accuracy and specificity. 

The arguments for including ESpritz in this evaluation are that ESpritz-NMR is one of 

the few methods trained exclusively on NMR data. Also, none of ESpritz flavours 

cluster closely with any other disorder predictors basing on segment overlap (SOV) 

scores in the MoCA evaluation, so including ESpritz adds extra information that is not 

closely related to any other disorder predictors. 

IUpred (Dosztányi et al., 2005a) – two flavours of the method were included: IUpred-

short and IUpred-long. It is a pair-wise energy-based method (see section 1.5.1.3.a). 

IUpred was not assessed in CASP10, but performed very well in MoCA evaluation. 

IUpred-short ranked highly on each measure and provided consistent results. In 

MoCA, IUpred-short results clustered closely with DisEMBL-465 predictions (Linding 

et al., 2003), hence only one of those methods is included in this evaluation. IUpred-

long achieved worse performance than IUpred-short, but its results cluster with other 

methods not included in the evaluation (e.g. FoldIndex (Prilusky et al., 2005)). 

VSL2 (Obradovic et al., 2005; Peng et al., 2006) – two flavours of the method were 

included: VSL2B and VSL2P. Both VSL2 predictors are SVM meta predictors, which 

combine predictors of short and long disordered regions into a single output. VSL2B 

uses 26 sequence-based features and single sequence as an input. It was assessed in 

Walsh evaluation. VSL2P on the other hand uses VSL2B features, but supplements 

them with additional features coming from a PSI-BLAST profile. Both methods were 
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not assessed in CASP10, but VSL2B performed very well in the MoCA evaluation both 

on per-residue and per-protein levels. It does not cluster closely with any of the 

methods mentioned previously, but produces predictions similar to the RONN 

method (Yang et al., 2005). 

DynaMine (Cilia et al., 2013) – the method is not a disorder/order classification 

method per se. As explained in the previous chapter and in the Introduction (sections 

1.5.2.4 and 2.1.2.1), it attempts to predict NMR order parameter values from 

sequence. Nevertheless, section 2.5.8.4 showed that DynaMine achieves comparable 

performance to FRAGFOLD-IDP for the predictions of protein backbone dynamics. So 

it is reasonable to extend the comparison between those methods to the problem of 

disorder/order classification. Besides, in the original DynaMine paper, the method 

was also compared to a range of disorder/order classification methods and achieved 

high performance (more details in section 2.1.2.1). It wasn’t assessed in the CASP or 

MoCA experiments. 

The methodological details of the predictors included in this evaluation were 

described previously, in the Introduction in section 1.5.1. All methods were run locally 

using sequence data extracted from the PDB files. Default parameters were used for 

each method, unless README or instructions suggested otherwise. 

Some other top performing methods were not included in the evaluation for several 

reasons. Some of the top methods are not publicly available, e.g. PrDOS-CNF, which 

ranked 1st according to AUROC and AUC (PR) in CASP10, or metaPrDOS2 from the 

same group which ranked in the top 10 in CASP10 according to MCC, AUROC and AUC 

(PR) – the method combines predictions of 5 other disorder classification servers. 

Some other methods were also excluded from the comparison, because they were 

shown to be produce predictions closely overlapping with other methods already 

included in the assessment (Walsh et al., 2015). 
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3.3. Results  

 Impact of RMSD thresholding on disorder/order classification 

Using a single threshold to separate disorder from order may not be a perfect solution 

for disorder/order classification using FRAGFOLD-IDP. To account for potential 

outliers, some pre-processing filters were used (compare section 3.2.3). But to verify 

whether simple thresholding is sufficient, an evaluation on NMR data was made (as 

described in section 3.2.1). 

Indeed, the results do not show a perfect agreement between MOBI annotations and 

disorder/order threshold (Table 13). Nevertheless, the accuracy and F1-score are 

high (above 85%). This shows that applying a single threshold to separate annotated 

disorder from order is a robust approach. Moreover, as discussed in section 3.2.1, the 

MOBI method in itself does not achieve 100% accuracy when compared to e.g. CASP 

annotations. 

Therefore, for the purpose of the evaluation of disorder/order classification using 

FRAGFOLD-IDP, it may be concluded that using a single threshold as a boundary 

between disorder and order should be an appropriate and robust approach. 

 Disorder/order classification on FRAGFOLD-IDP dataset 

Disorder/order classification was evaluated on the 200 NMR PDB proteins set 

(described previously in section 2.2). Disorder annotations were extracted from 

mobiDB and rely on the MOBI method (section 1.3.4.6; (Martin et al., 2010)). The 

results were assessed on the basis of a ROC curve, plotting false-positive rate (FPR = 

FP/(FP+TN); FP – false positive, TN – true negative) against true-positive rate (TPR = 

TP/(TP+FN); TP – true positive, FN – false negative) (Figure 41). 
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Figure 41. Disorder/order classification ROC curve. 

ESpritz-NMR is clearly the top performer on the dataset with regard to AUROC and 

MCC results, but this should be expected since it is an advanced machine learning 

approach trained on NMR data (Figure 41, Table 14). The overlap of the evaluation 

dataset with ESpritz-NMR training data is substantial – 60 targets in the 200 NMR PDB 

dataset overlap with 2.187 targets in ESprtitz-NMR training set (data obtained from 

http://protein.bio.unipd.it/espritz/). This overlap is likely to increase the 

performance of the method, but it should not me a major concern, since the focus of 

this chapter is to evaluate how FRAGFOLD-IDP performs as a disorder/order 

classification method in the spectrum of other state-of-the art approaches. 

The best method in terms of precision and specificity is DISOPRED3 (Figure 41, Table 

14). The ROC curve for DISOPRED3 reached only up to about 46% FPR and had to be 

extrapolated from that to 100% TPR, 100% FPR. Notably, DISOPRED3 was trained on 

X-ray data and information extracted from DisProt (NMR and biophysical methods) 

(Jones and Cozzetto, 2015). So unlike ESpritz-NMR, or DynaMine it is less likely that 
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the method was overtrained on NMR data, or that there is an overlap between NMR 

training data and the evaluation dataset here. 

Table 14. Performance of the disorder/order classification methods and FRAGFOLD-IDP. 

The highest and lowest result in each of the metrics were highlighted in green and 

red, respectively. 

DynaMine performs very well in disorder classification. In the DynaMine paper (Cilia 

et al., 2013), 2 methods performed better than DynaMine on that task – PrDOS2 (not 

assessed here) and ESpritz-NMR (marginally better). Here, ESpritz-NMR is 

significantly better than DynaMine, but DISOPRED3 (not assessed in the DynaMine 

paper) also achieves comparable performance. However, the initial concern raised 

while discussing DynaMine results still stands (compare section 2.1.2.1). It is likely 

that DynaMine was overtrained on NMR data. DynaMine is also a non-specific 

method (Table 14). It achieves specificity only higher than ESpritz-DisProt. 

ESpritz-Xray achieves high results according to most metrics (Table 14). However, it 

does not excel in any single one. Similarly to DISOPRED3, it is an example of a machine 

learning-based method that is unlikely to be overtrained on the data assessed here. 

In fact, ESpritz-Xray was trained exclusively on X-ray derived data (Walsh et al., 2012). 

VSL2B and VSL2P go head in head with both FRAGFOLD-IDP approaches up to until 

20% false positive rate (Figure 41). In MoCA evaluation VSL2B was the best method 

in terms of accuracy and recall (VSL2P was not a part of that evaluation (Walsh et al., 

2015)). Here, VSL2B achieves medium level values for both recall and accuracy. 

precision specificity MCC AUROC

DISOPRED3 0.85 0.21 0.98 0.73 0.34 0.33 0.738 1 1 4 3

VSL2B 0.51 0.61 0.71 0.68 0.55 0.31 0.717 8 8 8 5

VSL2P 0.49 0.64 0.67 0.66 0.55 0.30 0.710 9 9 9 6

IUpred short 0.66 0.35 0.91 0.73 0.46 0.33 0.679 3 3 4 9

IUpred long 0.59 0.22 0.93 0.70 0.32 0.21 0.606 5 2 10 10

ESpritz Xray 0.62 0.47 0.86 0.74 0.54 0.36 0.728 4 5 2 4

ESpritz NMR 0.68 0.55 0.87 0.77 0.61 0.45 0.794 2 4 1 1

ESpritz DisProt 0.33 0.98 0.04 0.34 0.49 0.04 0.566 11 11 11 11

DynaMine 0.49 0.74 0.63 0.66 0.59 0.35 0.755 9 10 3 2

FF-IDP (raw) 0.56 0.48 0.82 0.71 0.52 0.32 0.689 7 7 6 8

FF-IDP (SavGol) 0.57 0.47 0.83 0.71 0.52 0.32 0.692 6 6 6 7

rank

method precision recall specificity accuracy F1-score MCC AUROC
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Overall, both methods perform similarly and rank in the middle of the list of 

evaluated methods. 

IUpred-short achieves similar performance to FRAGFOLD-IDP across the whole FPR 

range (Figure 41). In the MoCA evaluation, IUpred-short was indicated as one of the 

top methods. Here, it also ranks highly in terms of precision, specificity and MCC 

(Table 14). Given that it is an energy-based method that does not use sophisticated 

machine learning machinery (as e.g. DISOPRED3 or ESpritz), the results achieved by 

IUpred-short are impressive. 

Finally, IUpred-long and ESpritz-DisProt are significantly worse than all other assessed 

methods (Figure 41). IUpred-long is the most specific of the assessed methods, but it 

comes at a great cost in terms of recall. Hence, low F1-score, MCC and AUROC results 

(Table 14). ESpritz-DisProt, on the other hand, is greatly overpredicting the amount 

of disorder within proteins. For 176 proteins in the dataset ESpritz-DisProt 

predictions indicate 100% disorder. This results in the highest recall among all 

methods, but gives only 0.04 specificity. 

In this comparison, FRAGFOLD-IDP does not stand out in any of the metrics (Table 

14). FRAGFOLD-IDP data pre-processed using Savitzky-Golay filter (SavGol) perform 

slightly better than the raw results (median and Gaussian filter achieve identical 

results as Savitzky-Golay filter; not shown here). In terms of the ROC curve, 

FRAGFOLD-IDP results lie close to the IUpred-short results (Figure 41). Using other 

metrics, FRAGFOLD-IDP (both raw and SavGol) competes closely with both flavours 

of the VSL2 predictor. Overall, FRAGFOLD-IDP shows that it works well as a 

disorder/order classification method, and it achieves results on par with some state-

of-the art disorder classification methods. The raw results of FRAGFOLD-IDP are also 

comparable to FRAGFOLD-IDP with Savitzky-Golay filter and data pre-processing does 

not improve the outcome of the classification significantly. This shows that 

FRAGFOLD-IDP on its own, using a single disorder/order separation threshold, can 

serve as an effective disorder classification method. 
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Figure 42. Disorder/order classification ROC curve up to 10% false positive rate. 

To gain more insight into the results, studying the ROC curve up to 0.10 FPR is helpful 

(Figure 42). In this region, the differences between FRAGFOLD-IDP raw and SavGol 

are more apparent. The use of a Savitzky-Golay filter improves the predictions quite 

visibly and at around 0.03 FPR the performance of FRAGFOLD-IDP SavGol is higher 

than ESpritz-DisProt, IUpred-long, VSL2B and VSL2P, and on par with DynaMine 

(around 0.20 TPR). At around 0.10 FPR the two versions of FRAGFOLD-IDP converge 

and achieve approx. 0.37 TPR. In this region, FRAGFOLD-IDP is a top 5 method in the 

evaluation. 

Also, two ESpritz flavours (NMR and Xray) perform very well at a low FPR range up to 

0.02 FPR. In the region up to 0.10 FPR, DISOPRED3 also performs better than 

DynaMine. This confirms the high specificity of DISOPRED3. In contrast, DynaMine 

overtakes DISOPRED3 from 0.20 FPR onwards (compare Figure 41). 
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 Disorder/order classification of long disordered regions 

An outstanding problem in disorder/order classification is the prediction of long 

disordered regions. The typical definition of a long disordered region, is a continuous 

stretch of at least 20 residues annotated as disordered. One of the reasons why this 

is a problem, is the shortage of data on long disordered regions, but also some 

algorithmic challenges arise for methods that attempt to be universal, e.g. 

DISOPRED3 (compare the discussion in Jones and Cozzetto, 2015). Conversely, some 

algorithms were developed to treat specifically short or long disordered regions, i.e. 

IUpred-short and IUpred-long, or ESpritz-DisProt. 

The MoCA evaluation (Walsh et al., 2015) also showed that some predictors perform 

better on short, rather than long disordered regions (e.g. ESpritz-Xray, ESpritz-NMR, 

or IUpred-short), while other predictors excel when predicting long disorder (e.g. 

VSL2B, RONN, IUPred-long). 

The CASP10 evaluation confirmed the dependency of the quality of predictions on 

the length of disordered regions (Monastyrskyy et al., 2014). On average, CASP10 

disorder predictions systematically decreased in terms of MCC with an increase in the 

length of disorder. The only method that had performed equally well on short and 

long disordered regions (up to 30 residues) using both MCC and AUROC measures 

was DISOPRED3. 

Using the 200 NMR PDB dataset, an initial evaluation was carried out on proteins with 

an average disorder content of 33% (section 2.2). There are 60 proteins in this dataset 

which have long disordered regions (≥ 20 disordered residue segments), with 66 long 

disordered regions in total. It is a relatively small dataset, but comparing it to the 

CASP10 set of long disordered targets (20 cases; 2 from NMR), it makes sense to 

attempt a comparison and identify trends in the data. The results can indicate if 

FRAGFOLD-IDP performs better than other methods classifying regions of long 

disorder. 
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The assessment of long disordered regions was carried out as previously – on the 

basis of ROC curve analysis (Figure 43). Annotated regions shorter than 20 residues 

were ignored in the analysis, i.e. only long disordered and ordered regions were 

considered. 

 

Figure 43. ROC curve of disorder/order classification of long disordered regions (≥ 20 residues). 

In this analysis, up to approximately 0.30 FPR ESpritz-NMR and DISOPRED3 are the 

best predictors. At higher FPR values, VSL2P joins the former methods and also 

performs exceptionally. On average, IUpred-long achieves the greatest improvement 

in prediction quality, but it still performs worse than IUpred-short and is only better 

than ESpritz-DisProt. On the other hand, DynaMine achieves the smallest 

improvement in the quality of predictions compared to all disorder predictions. 

Similarly, both flavours of FRAGFOLD-IDP prediction do not improve greatly and 

overall the method loses some of its initial performance with respect to other 

methods. 
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However, notably, FRAGFOLD-IDP (Savitzky-Golay) performs very well in low FPR 

region (Figure 44). Using the data filter improves the predictions significantly over the 

raw results. Besides, at 0.10 FPR only ESpritz-NMR, DISOPRED3 and ESpritz-Xray 

achieve significantly higher TPR values than FRAGFOLD-IDP (SavGol), while IUpred-

short, DynaMine and VSL2B achieve similar results. 

 

Figure 44. ROC curve of disorder/order classification of long disordered regions up to 10% FPR. 

Overall, both flavours of FRAGFOLD-IDP show that the method is able to capture the 

majority of long disordered regions accurately. From around 0.25 FPR the differences 

between the two flavours of FRAGFOLD-IDP diminish and pre-filtering the data does 

not give any significant advantage (Figure 43). 
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 Relationship between disorder/order classification and backbone 
dynamics predictions 

The evaluation of disorder/order classification showed that FRAGFOLD-IDP is not the 

top performing protein classification method (sections 3.3.2 and 3.3.3). Nevertheless, 

Chapter 2 (section 2.5.8) showed that comparatively only FRAGFOLD-IDP and 

DynaMine are able to accurately predict protein backbone dynamics. The question is 

then, what does the evaluation in this chapter say about FRAGFOLD-IDP capability to 

accurately predict protein backbone dynamics? 

First of all, backbone dynamics were assessed on the basis of RS which is a relative 

metric, i.e. it assesses the relative signal along the protein backbone, not absolute 

values. In disorder/order classification an absolute threshold identical for all protein 

was applied. Even though FRAGFOLD-IDP uses a sliding window approach to decouple 

structure prediction quality from the predictions of backbone dynamics (section 

2.3.4), some targets may have a relatively high background signal. 

Also, in this evaluation FRAGFOLD-IDP attempted to reproduce the MOBI 

classification rather than the data coming from NMR PDB ensembles (compare 

discussion in section 3.3.1). The implication of this is that MOBI classification does 

not reproduce the actual disorder profile fully (Table 13). 

Finally, disorder/order classification methods themselves were not designed to tackle 

the problem of protein backbone dynamics predictions. Their outputs do not 

correspond to per-residue RMSD values, but the thresholds (e.g. < 0.5 ordered, ≥ 0.5 

disordered) were set to distinguish ordered residues from disordered. DynaMine 

showed that it is possible for a machine learning-based method to predict protein 

backbone dynamics well, but the method itself was trained on data related to protein 

backbone dynamics (sections 1.5.2.4, 2.1.2.1 and 2.5.8.4). 
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3.4. Summary 

This chapter describes an evaluation of disorder/order classification using 

FRAGFOLD-IDP and a set of state-of-the-art disorder predictors, including DynaMine. 

Disorder/order classification is a widely studied computational problem, which is still 

relevant today (section 3.1). The purpose behind FRAGFOLD-IDP is not to perform 

disorder/order classification, but to predict protein backbone dynamics. Still, it is a 

good test case to evaluate how well FRAGFOLD-IDP performs compared to a wide 

spectrum of computational methods. Especially, since there are far more methods 

available to tackle the task of disorder classification, rather than backbone dynamics 

predictions. 

FRAGFOLD-IDP performs well on this task, achieving results on par with other state-

of-the-art disorder classification methods (section 3.3.2). Performance-wise it ranks 

closely to IUpred-short and outperforms both VSL2B and VSL2P according to 

precision, specificity and MCC. All those approaches were among the top methods in 

recent MoCA evaluation (Walsh et al., 2015). Data pre-filtering (using either median, 

Gaussian, or Savitzky-Golay filters) improves the raw results of FRAGFOLD-IDP 

slightly, mostly in low FPR regions. 

Looking at long disordered regions, FRAGFOLD-IDP on its own does not solve this 

problem to a greater extent than previously available methods (section 3.3.3). It 

shows good results in low FPR regions, but overall, the changes in predictions are 

weaker than of other methods included in the assessment here. 

Overall, FRAGFOLD-IDP is an effective method for disorder/order classification, 

although it was designed to tackle the problem of predicting protein backbone 

dynamics. Computationally, it is not feasible to use FRAGFOLD-IDP as a routine 

disorder/order classification method, as it requires generating hundreds of protein 

models using FRAGFOLD. The procedure can take up to several hours on a computer 

cluster, while the use of standard disorder/order classifiers is limited by the time 

required to generate a sequence profile, for methods such as ESpritz or DISOPRED3, 
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which usually take in the order of minutes on a desktop computer. Nevertheless, it 

may be feasible to use FRAGFOLD-IDP for disorder/order classification alongside 

protein structure predictions using FRAGFOLD, to provide an additional source of 

information of the disorder content within simulated sequences. 
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Chapter 4.  
CONSENSUS MACHINE LEARNING-BASED 
PREDICTIONS OF PROTEIN BACKBONE 
DYNAMICS 

4.1. Background 

 Summary of FRAGFOLD-IDP and DynaMine results 

Chapter 2 introduced FRAGFOLD-IDP and showed that it is an effective method for 

the predictions of protein backbone dynamics. The results achieved by FRAGFOLD-

IDP are significantly better than those of a naïve approach (sections 2.5.3 and 2.5.8.3) 

and the only other method that achieves comparable performance in an assessment 

of protein backbone dynamics predictions is DynaMine (section 2.5.8.4). 

Both mean and median RS values achieved by FRAGFOLD-IDP and DynaMine across 

the 200 NMR PDB dataset are comparable – FRAGFOLD-IDP mean RS = 0.44 (median 

RS = 0.48); DynaMine mean RS = 0.43 (median RS = 0.44). Also, the predictions of both 

methods are largely orthogonal – correlation between FRAGFOLD-IDP and DynaMine 

predictions is low, r = 0.17 (section 2.5.8.4). 

These observations suggest that it might be useful to combine the predictions of both 

methods to construct a consensus predictor which would elevate the strengths and 

decrease the weaknesses of FRAGFOLD-IDP and DynaMine. 

 Meta predictors in other bioinformatics approaches 

Meta predictors, or consensus methods are one of the most essential and widely 

used tools in bioinformatics. They are especially popular for problems where a simple 

algorithmic solution is impossible or unknown.  
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Consensus methods are used in almost all domains of structural bioinformatics. One 

of the first applications of consensus prediction made its way to secondary structure 

predictions (e.g. JPred using the JNet algorithm (Cuff and Barton, 2000; Drozdetskiy 

et al., 2015)). Sometime later, protein structure prediction meta servers appeared. 

Those methods attempted to combine the wealth of publicly available structure 

prediction methods (fold recognition, homology modelling, sequence alignment and 

other) to obtain consensus predictions from amino acid sequence alone (e.g. 

Bioinfo.pl metaserver (now defunct; (Bujnicki et al., 2001)), the Genesilico 

metaserver (Kurowski, 2003), Pcons (Lundström et al., 2001), Pcons.net (Wallner et 

al., 2007)). Importantly, structure prediction meta servers not only attempt to 

produce consensus predictions from alternative methods, but they actually 

implement their own structure prediction pipelines that rely on several sequence 

search, fold recognition, etc. methods and unify their output formats to 

communicate effectively within the server infrastructure. 

In a similar spirit, the most efficient modern residue-residue contact prediction 

methods rely on meta approaches, combining several sources of information within 

neural network or random forest frameworks (MetaPSICOV (Jones et al., 2015) and 

PConsC2 (Skwark et al., 2014)). For transmembrane proteins, some effective 

transmembrane topology predictors have also been developed (TOPCONS (Tsirigos 

et al., 2015)). 

Finally, in disorder predictions consensus predictors are also popular (e.g. 

MetaDisorder (Kozlowski and Bujnicki, 2012), PrDOS-meta (Ishida and Kinoshita, 

2007), MFDp (Mizianty et al., 2010); section 1.5.1.5). These predictors are one of the 

most effective approaches for disorder prediction (Monastyrskyy et al., 2014). In fact, 

even DISOPRED3 (described in sections 1.5.1.4.a and 3.2.4; Jones and Cozzetto, 

2015), which was included in this work to evaluate its capability to predict protein 

backbone dynamics (in section 2.5.8) and compared to FRAGFOLD-IDP in 

disorder/order classification (in Chapter 3) is also a consensus predictor. It does not 

combine alternative external methods (i.e. developed by other groups, or standalone 

methods), but it does include 3 different predictors – a neural network, a support 
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vector machine and a nearest neighbour classifier – that are combined together using 

another neural network. 

 Consensus backbone dynamics predictor 

Protein backbone dynamics prediction is clearly one of the difficult and unresolved 

problems in bioinformatics (compare results in section 2.5.8). Therefore, it is 

desirable to try and combine the predictions of known methods to improve the 

quality of predictions. Since the known backbone dynamics predictors provide largely 

orthogonal results (as outlined in section 4.1.1), a machine learning framework 

should make it possible to achieve this goal. 

This chapter introduces a novel consensus predictor, which combines the results of 

FRAGFOLD-IDP and DynaMine to produce improved protein backbone dynamics 

predictions. The predictor is based on a neural network architecture, which, as 

discussed above, have previously been utilized to successfully construct consensus 

predictors, significantly improving the predictions in other problems in 

bioinformatics. 
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4.2. Methods 

The consensus protein backbone dynamics predictor was built using a neural network 

(also known as artificial neural network; ANN). It is a statistical learning model 

inspired by the nervous system (Figure 45). Neural networks are supervised learning 

methods, i.e. a network has to learn its parameters on a training set of known data 

before it can be used to carry out predictions on unknown data. They can be used to 

solve both regression and classification problems. 

 

Figure 45. Sample neural network architecture. The network is composed of 1 input layer of 3 units, 
1 hidden layer of 4 units and an output layer of 2 units. Source: 
en.wikipedia.org/wiki/Artificial_neural_network 

Neural networks are common machine learning techniques used in bioinformatics 

(e.g. in secondary structure predictions, disorder predictions; compare sections 

1.5.1.4 and 4.1.2). They are very popular in other areas as well, e.g. handwriting 

recognition, automated stock trading. Recently, neural networks have had their 

renaissance due to the use of deep neural networks (also known as deep learning), 

that show promise in solving difficult cognitive problems (e.g. self-driving cars, 



Chapter 4. Consensus predictor  164 
 

 

computer vision and speech recognition) and due to their ability to perform 

unsupervised learning (LeCun et al., 2015). 

 Consensus predictor input features 

The consensus predictor combines the input methods (FRAGFOLD-IDP and DynaMine 

predictions) using a neural network architecture (Figure 46). The results of backbone 

dynamics prediction methods are not sufficient on their own to provide robust 

information for the network on how to combine the results. So aside the features 

from the two methods, some additional features were introduced (Table 15). 

A good source of additional features is physicochemical information, represented by 

the amino acid composition of the query sequence. From the amino acid composition 

the network can infer information about hydrophobicity, disorder promoting 

residues and related information which needs not to be added separately to the 

network. Amino acid composition information is represented by frequencies of each 

residue or gap (21 features per residue) from the input multiple sequence alignment 

used as an input for FRAGFOLD (compare section 2.3.2). 

Another source of information that should improve the predictions are secondary 

structure predictions (from PSIPRED (Jones, 1999)). It was shown before, that 

FRAGFOLD-IDP and DynaMine go beyond predicting only flexible loops within the 

proteins (compare sections 2.5.3 and 2.5.8.3), still the majority of disordered regions 

occur within loop regions (section 2.3.5.1). Secondary structure predictions are 

represented by 3 features corresponding to the probabilities of helix, strand and coil. 

Also, because the network uses a sliding window method (see section 4.2.2), there is 

one extra feature per residue, indicating if the window reaches beyond the sequence 

(e.g. for a sliding window of size 9, the first residue in the sequence would have 4 

missing residues). 

Finally, features relating to global sequence parameters were introduced – sequence 

length and the distance of a predicted residue from the protein termini. These 
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features should help the network to locate where in sequence the predictions are 

carried out and vary the predictions depending on the location, e.g. sequence termini 

are more often disordered (Monastyrskyy et al., 2014). 

Table 15. Summary of consensus predictor per-residue features. 

Input Number of features 

FRAGFOLD-IDP result 1 

DynaMine result 1 

Amino acid composition frequency 21 

Secondary structure (PSIPRED) 3 

Missing residue 1 

Log sequence length 1 

Log distance from termini 2 

Window features (normal font); global features (in italics) 

Multiple-sequence alignments and secondary structure predictions were used as 

inputs for FRAGFOLD to guide the selection of fragments (compare section 2.1.3). 

Otherwise, none of the consensus predictor input features were used in FRAGFOLD-

IDP or DynaMine methods. 

All of the input features were normalized to values of comparable order. DynaMine 

results are predicted order parameters, so they do not require normalization (i.e. are 

always between 0 and 1). FRAGFOLD-IDP values were normalized using a logistic 

squashing function. PSIPRED secondary structure predictions are probabilities of 

forming helix, strand and coil at a given position, hence they do not require 

normalization. Sequence length and the distance from termini were represented as 

a logarithm of the input values. The features are summarized in Table 15. Training 

output values (NMR per-residue RMSD values) were also subject to the logistic 

squashing function. 
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 Consensus predictor architecture 

 

Figure 46. A schematic representation of the consensus backbone dynamics predictor. 

The consensus predictor is a classical feed-forward neural network with a bias unit in 

input and hidden layers. A sliding window on input features is used. There are 27 

window features and 3 global features (Table 15). Using a sliding window of 9 

residues, there are 246 input features per residue. One hidden layer and a single 

output unit was used. A set of alternative numbers of hidden units were tested: 

between 10 and 200 hidden units. 

Predictions are carried out for each residue in the input sequence. In the case of a 9 

residue window, for each residue, 4 neighbouring residues to each side are also 

considered. Larger sliding windows were also tested (11 and 15 residues). The use of 

a sliding window is a common practice in bioinformatics machine learning methods 

(e.g. PSIPRED (Jones, 1999), MetaPSICOV (Jones et al., 2015)). The sliding window 

enables the network to consider not only the single position in question, but also the 

immediate environment of the residue.  
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 Training procedure 

The network was constructed and trained using the PyBrain Python library 

(http://pybrain.org/). 

Because of the relatively small dataset size (200 proteins; section 2.2), the method 

was cross-validated, instead of creating separate training and test sets. To avoid 

overtaining, the cross-validation was performed on the basis of CATH classification 

(Orengo et al., 1997; Sillitoe et al., 2015), separating the proteins at the fold level. It 

is a rigorous criterion that ensures the proteins share no significant structural 

similarity, regardless of their disorder content (compare section 2.5.5). Some 

proteins in the dataset were not classified in CATH (45 cases). Those examples, for 

the purpose of cross-validation, were assigned to the CATH fold with which they 

share the highest similarity (lowest RMSD). All singletons were clustered together to 

form a separate class for cross-validation. The procedure resulted in 33 sets. 

The training was performed on each class to minimize the mean squared error value. 

It was carried out until convergence with 20% of input data used for validation. 
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4.3. Results 

 Network training 

The consensus predictor was optimised by training it on different window sizes and 

using a set of different architectures (number of hidden units). 

First, the window size was optimised. Four window sizes were tested – 9, 11, 15 and 

21 (Figure 47). All window sizes are odd numbers, because they consider equal 

number of residues on each side of the main residue. In this step of the optimization, 

two variations on the number of hidden units were considered – number of input 

features divided by two (Figure 47A and B) and a geometric mean between the 

number of input and output features (Figure 47C and D). This was done to ensure 

that for varying window sizes the network has similar properties. The window size 

was evaluated using MSE (mean squared error) and RS values. 

The network shows no significant window size dependency on the quality of 

predictions, regardless of the number of hidden units, or scoring. Hence, the 

behaviour of the consensus predictor is substantially different to that of DynaMine 

(compare sections 1.5.2.4 and 2.1.2.1; Cilia et al., 2013), where the authors observed 

a significant dependency of the predictions on the window size used (up to around 

23-residue window). This behaviour of the consensus predictor is likely caused by the 

fact that the most important sources of information, i.e. DynaMine and FRAGFOLD-

IDP results, were already extracted using a sliding window approach. Here, only a 

small window is necessary to account for the immediate sequence and 

physicochemical environment. 

Because there is no strong dependency of the performance of the consensus 

predictor on the size of the sliding window, the smallest sliding window, 9 residues, 

was selected. 
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Figure 47. Optimisation of the consensus predictor. (A and B) optimisation of the window size using 
number of features/2 as the number of hidden units. (C and D) optimisation of the window size using 
geometric mean of the number of input and output units as the number of hidden units. Outliers are 
shown as red dots. 

Having optimised the sliding window size, optimisation of the network architecture 

was performed (Figure 48). The assessment here concentrates on RS value 

distribution, as it is the metric which directly relates to the quality of results, which 

are assessed in this work. The network was trained on a number of different hidden 

units, ranging from 10 to 200. As in the case of optimising the window size, there is 

no significant dependency of the results on the number of hidden units. Hence, the 

criterion by which the final network was selected was to minimize the probability of 

over-training the network and 10 hidden units were selected as the optimal network 

size. 
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Figure 48. Optimisation of the number of hidden units in the consensus predictor. 

 Consensus predictor results 

The results of the consensus predictor come from cross-validation performed as 

described in section 4.2.3. Comparing median RS values obtained on the 200 NMR 

PDB dataset, the consensus predictor quite clearly improves over both FRAGFOLD-

IDP and DynaMine (Figure 49). 

Results obtained by FRAGFOLD-IDP and DynaMine are similar (Figure 49). Although 

FRAGFOLD-IDP achieves higher median RS (0.48) than DynaMine (RS = 0.44), the 

differences are not significant (Wilcoxon signed-rank test p-value = 0.63). In 

comparison, the consensus predictor achieves median RS = 0.54 and those results are 

significantly better than both DynaMine and FRAGFOLD-IDP (Wilcoxon signed-rank 

test p-value < 0.001 for both methods). 
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Figure 49. Comparison of FRAGFOLD-IDP, DynaMine and consensus predictor median RS values. 

Interestingly, the results of both input methods were not correlated (r = 0.17), but 

the results of the consensus predictor are correlated with both FRAGFOLD-IDP (r = 

0.57) and DynaMine (r = 0.65). This shows that the consensus predictor was able to 

extract top results from both approaches, still significantly improving over any of 

them. 

Also, looking at the number of ‘good’ (RS ≥ 0.6) and ‘excellent’ (RS ≥ 0.7) predictions 

(as in section 2.5.2), the consensus predictor performs well (Table 16). It significantly 

improves over both input methods in terms of the number of very good predictions 

(RS ≥ 0.6), achieving 77 such results. But in terms of excellent predictions (RS ≥ 0.7) it 

performs slightly worse than FRAGFOLD-IDP alone (30 in the consensus predictor and 

35 in FRAGFOLD-IDP). The likely cause of the drop in the number of excellent 

predictions is the relatively large discrepancy in the number of FRAGFOLD-IDP and 

DynaMine predictions in this class (Table 16). Although the consensus predictor 

improves over both input methods, it is still constrained by the results provided by 

FRAGFOLD-IDP and DynaMine as inputs.  
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Table 16. Good and excellent predictions produced by the algorithms. 

RS FRAGFOLD-IDP DynaMine consensus predictor 

< 0 12 6 2 

≥ 0.6 67 54 77 

≥ 0.7 35 22 30 

 

The predictions produced by the consensus predictor are also more conservative and 

there are only 2 cases with RS below 0 (Table 16). Notably, the consensus predictor is 

able to remove all of the outliers produced by FRAGFOLD-IDP (compare section 

2.5.2.1). However, the results obtained for some, i.e. 1G6M consensus RS = 0.18 

(Figure 25) and 1K0T consensus RS = -0.10 (Figure 26) are still below the acceptable 

level for the reasons described previously. 

A good example of a target where the consensus predictor works well, improving 

over both input methods and taking advantage of the strengths of both approaches 

is 1P94 (Figure 50). This target was already discussed in section 2.5.2, as an example 

of a medium quality FRAGFOLD-IDP prediction (Figure 23). The consensus predictor 

achieves an excellent result on this target (RS = 0.87). FRAGFOLD-IDP (RS = 0.54) 

correctly identifies part of the highly disordered N-terminal region (up to residue 15) 

and the ordered part of the protein between residues 48 and 76. DynaMine performs 

better (RS = 0.71), but also fails to identify the behaviour of the protein in the highly 

disordered regions between residues 1 and 35. Also, the region between resides 25 

and 35 is predicted to exhibit similar behaviour as the region between residues 50 

and 60. Similarly, residues 1-5 and 70-76 show near identical behaviour, while the 

NMR ensemble shows that the N-terminus is highly disordered, and the C-terminus 

is ordered. The concerns about the behaviour of DynaMine partly stem from the fact 

that DynaMine predicts order parameters, not per-residue RMSD. The results shown 

in Figure 50 are scaled results of 1-S2 (DynaMine predictions). Due to scaling issues 

they might be more difficult to interpret visually, although the predictions achieve a 

high RS score and should behave as described in section 2.3.6. 
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Figure 50. Example of an excellent consensus predictor result – 1P94. DynaMine (RS = 0.71) and 
FRAGFOLD-IDP (RS = 0.54) produce good predictions for this target. Consensus predictor performs 
remarkably well (RS = 0.87). 

The consensus predictor performs remarkably well on this target. Although the per-

residue RMSD values do not match exactly (they were back-calculated from 0 to 1 

values using an inverse logistic function), all of the features of the NMR ensemble are 

captured (Figure 50). The long disordered region between residues 1 and 35 is 

reproduced well – the consensus predictor values are highest in this region (i.e. 

higher than between residues 50 and 60, or in the C-terminus region). This includes 

the trough between residues 20 and 30 and the per-residue RMSD values which are 

higher between residues 1 and 10 than between residues 25 and 30. Also, the short 

region of elevated per-residue RMSD between residues 50 and 60 is reproduced 

accurately. Contrasting the predictions of the consensus predictor with those of 

FRAGFOLD-IDP and DynaMine it is clear that the predictor goes beyond simply 

combining the results of the input methods (Figure 50). For example, let us consider 

the region around residue 20, including the trough around residue 25. Both 

FRAGFOLD-IDP and DynaMine predict that the region around residue 25 has 
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relatively low per-residue RMSD. But considering the immediate environment around 

this trough, both input methods over-predict its breadth, while the consensus 

predictor is able to correctly find the behaviour of the disorder profile between 

residues 20 and 25. Also, according to both input methods, the trough at residue 25 

shows per-residue RMSD values lower than the region between residues 50 and 60. 

The consensus predictor is also able to rectify this mistake and correctly assign per-

residue RMSD values as higher than between residues 50 and 60 (and above 70, 

where DynaMine and FRAGFOLD-IDP also fail). 
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4.4. Summary 

This chapter introduced a consensus predictor which predicts protein backbone 

dynamics from sequence, combining the predictions of FRAGFOLD-IDP and DynaMine 

using a neural network.  

FRAGFOLD-IDP and DynaMine produce predictions of comparable quality, but the 

results of those methods are weakly correlated (sections 4.1.1 and 4.3.2). This 

situation created a good opportunity to design a consensus predictor which would 

attempt to combine the predictions of those two input methods and try to maximize 

the strengths of each approach, at the same time minimizing their weaknesses. 

Consensus predictors are common in almost every branch of bioinformatics (section 

4.1.2). Their strength and popularity come from the fact that using machine learning 

techniques it is possible to effectively combine alternative methods that were 

designed to tackle distinct cases or trained on some specific datasets (e.g. consensus 

disorder classification methods trained on missing electron density and on NMR data, 

or trained to predict short and long disordered regions). 

The consensus predictor developed here uses a feed-forward neural network to 

predict protein backbone dynamics from FRAGFOLD-IDP and DynaMine predictions 

(section 4.2). The predictor uses a 9-residue sliding window and 246 features per 

residue. The window features include: DynaMine predictions, FRAGFOLD-IDP 

predictions, amino acid composition and secondary structure probabilities. There are 

also some global features – sequence length and the distance of a residue from N- 

and C-terminus. All of the features were normalized to produce values of the same 

order of magnitude. The method was rigorously cross-validated using the 200 NMR 

PDB dataset introduced and evaluated previously (section 2.2). 

The results of the consensus predictor are significantly better than both of the input 

methods (section 4.3). The predictor achieves a median RS = 0.54 and is a more 

reliable approach than either of the input methods. There are only 2 predictions with 

RS < 0 (the initial FRAGFOLD-IDP outliers (section 2.5.2.1) were removed by the 
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consensus predictor) and the method is able to make very good predictions (RS ≥ 0.6) 

for 77 proteins (39% of cases). 

In terms of the computational cost, the bottleneck of the consensus predictor are still 

FRAGFOLD-IDP predictions. Once trained, the neural network calculations are quick, 

but they require inputs coming from both methods, i.e. FRAGFOLD-IDP and 

DynaMine. Nevertheless, DynaMine alone is not able to produce predictions on par 

with the consensus predictor. 

Finally, there is an issue about whether the consensus predictor developed in this 

chapter could be improved further. Including more features, even from methods 

marginally better than the naïve approach (discussed in section 2.5.8), could give 

some extra predictive power to the predictor. Also, only a limited subset of network 

architectures were tested. There are also more machine learning algorithms that 

could work well on this problem, e.g. Support Vector Regression, or a Random Forest. 

In machine learning there is no robust way to a priori determine which algorithm 

would work best for a given problem, e.g. the wealth of algorithms and approaches 

used for disorder/order classification (compare sections 1.5.1 and 3.2.4). Regardless, 

there is no other currently available computational method for the predictions of 

protein backbone dynamics that would provide comparable accuracy. 
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Chapter 5.  
DISCUSSION AND PERSPECTIVES 

5.1. Protein backbone dynamics predictions 

The predictions of protein backbone dynamics are in their infancy. Intrinsic protein 

disorder is mostly treated as a binary property (a residue or a region in a protein is 

either ordered, or disordered) and the vast majority of computational methods used 

to study intrinsically disordered proteins are disorder/order classification methods 

(see section 1.5.1 and Chapter 3). Some simulation techniques were also used to 

study IDPs. These techniques are limited by the size of the protein and availability of 

a starting structure with which they can attempt to simulate disorder (section 1.5.2). 

This work introduced two approaches to produce accurate backbone dynamics 

predictions de novo from sequence – FRAGFOLD-IDP (Chapter 2) and the consensus 

predictor combining the results of DynaMine, a machine learning-based predictor 

(sections 1.5.2.4, 2.1.2.1 and 2.5.8.4) with FRAGFOLD-IDP (Chapter 4). According to 

the analyses included in this work, these methods are current state-of-the-art and 

outperform all de novo computational methods. The directions presented here may 

be practically useful, as the consensus predictor is able to provide useful predictions 

for 39% of analysed cases. Some cases included in the dataset are difficult or 

impossible to predict, because of tertiary effects that were pinpointed (compare 

section 2.5.2.1), but were not excluded for the sake of fair comparison (section 2.2.1). 

This means that the consensus predictor should be able to provide useful predictions 

for about 50% of the general population of disordered proteins without further 

methodological improvements. The next generation of such methods could perform 

even better, but even with the current performance the methods presented in this 

work could help to solve some of the outstanding problems (discussed below in 

sections 5.3, 5.4 and 5.5). 



Chapter 5. Discussion  178 
 

 

5.2. FRAGFOLD-IDP as a disorder/order classifier 

FRAGFOLD-IDP was compared to other methods in its capacity to predict protein 

backbone dynamics (section 2.5.8) and perform disorder/order classification 

(Chapter 3). Disorder/order classification is not the main purpose of this method, nor 

a major focus of this work, as it is argued that protein disorder is not a binary property 

and interpreting it in this fashion reduces the amount of information about this 

phenomenon (see section 2.1.1). 

Nevertheless, disorder/order classification is the most popular computational 

technique used to study intrinsically disordered proteins and over the years a variety 

of methods have been developed to study this issue (compare sections 1.5.1 and 

3.2.4). It was therefore desirable to place FRAGFOLD-IDP as a novel method in the 

context of well-established and thoroughly tested disorder/order classifiers. 

Overall, FRAGFOLD-IDP is not better than the top disorder prediction methods, but 

its performance lies closely to some widely used methods and performs very well in 

the low FPR region (compare section 3.3). FRAGFOLD-IDP was developed to solve a 

different, although related problem, yet it performs well in comparison to the current 

state-of-the-art in disorder classification. Comparing FRAGFOLD-IDP performance on 

the task of disorder/order classification with its performance on the task of predicting 

protein backbone dynamics (sections 3.3 and 2.5.8) makes it clear that the 

performance in disorder/order classification is not correlated with the ability to 

predict accurate protein backbone dynamics (discussed in section 3.4). 
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5.3. Efficiency of FRAGFOLD-IDP method in predicting disordered 
ensembles 

Predicting the ensembles of intrinsically disordered proteins explicitly is difficult 

(compare section 2.5.7). Not only does it require that one finds the correct fold of the 

protein, but one is also required to correctly predict its per-residue fluctuations. 

However, the method developed in this work, FRAGFOLD-IDP, shows that it is not 

necessary to find the correct fold of the protein to be able to predict its backbone 

dynamics accurately. This in turn suggests that intrinsic protein disorder is a local 

property of the polypeptide chain. 

Unlike in the field of protein structure prediction (concentrated on ordered proteins), 

there is no consensus as to what are the criteria for a good or excellent backbone 

dynamics predictions. For the purpose of this work some intuitions were derived 

based on other works predicting per-residue fluctuations from known 3D structures 

(section 2.5.1). FRAGFOLD-IDP itself is the most effective single method for the 

prediction of protein backbone dynamics (section 2.5.8). It was able to provide good 

predictions for 33% of cases and excellent ones for 17.5% (section 2.5.2). 

As mentioned above, what FRAGFOLD-IDP in fact predicts are not structural 

ensembles, but protein backbone dynamics represented by per-residue RMSD 

profiles. A step towards predicting actual disordered ensembles (as highlighted in 

section 5.1) could be made using contact predictions. It was shown that predicted 

residue-residue contacts improve the quality of de novo models up to 4-fold 

(Kosciolek and Jones, 2015, 2014). The structure prediction success rate, measured 

by TM-score (metric of structure prediction quality) in this work (discussed in section 

2.5.7) is somewhat lower than expected comparing to a set of globular proteins 

(Kosciolek & Jones, 2014; compare section 2.5.7). So by taking advantage of residue-

residue contact prediction, the quality of structure prediction in FRAGFOLD-IDP could 

be improved and ensembles of disordered proteins could be generated. 

However, the role of predicted contacts in disordered regions is still unknown. One 

possibility is that they correspond to the folded (functional) state of the protein. In 
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which case, it is possible that using contact predictions could actually produce folded 

states of disordered proteins (low per-residue RMSD values in the disorder profile; as 

in the case of matching FRAGFOLD fragments; section 2.5.7). Another possibility is 

that predicted contacts could correspond to the average conformation of the 

disordered region, as it was shown for conformational changes in proteins (Morcos 

et al., 2013). In this case, contact predictions should not have a substantial impact on 

predicting protein backbone dynamics in disordered regions.  

Finally, there is a possibility that the coevolutionary signal in disordered regions is 

depleted. In general, intrinsically disordered regions in proteins show lower sequence 

conservation than ordered regions (Brown et al., 2011, 2010). But when subjected to 

random sequence mutations biased towards order promoting residues, disorder is 

not conserved, as opposed to secondary structure (Schaefer et al., 2010). 

Nevertheless, protein disorder itself is evolutionarily conserved (Schlessinger et al., 

2011). 

Those observations in tandem suggest that the hypothesis that there is no 

coevolutionary signal in disordered regions (or that it is depleted), is unlikely. 

However, should it prove to be true, contact predictions would help to fold ordered 

regions and the predictions of backbone dynamics should remain independent of 

structure predictions. 
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5.4. Biological significance of the current study 

The first conclusion of general biological significance is the confirmation that the 

predictions of protein backbone dynamics are possible. Hence, this property is 

encoded in the protein sequence, similarly to disorder as a state (compare the 

discussion in section 2.1.1 and section 1.5). 

Protein intrinsic disorder is a state related to protein function (as highlighted in 

sections 1.1.2 and 1.2). FRAGFOLD-IDP and the consensus predictor produce only 

information on protein backbone dynamics. However, as described in Chapter 3 

(section 3.2.2) per-residue protein backbone dynamics can be related to annotated 

protein disorder with high accuracy. 

Intrinsic protein disorder is not a binary property and not all conformational states 

are permitted in disordered ensembles (compare section 1.3.4). Disease-associated 

mutations need not cause disorder-to-order transitions (as highlighted below, in 

section 5.5; Vacic et al., 2012; Uversky et al., 2014). The majority of disease-

associated mutations can be classified as disorder-to-disorder transitions, likely 

impacting the ability of the protein to interact with its binding partners, or changing 

the properties of the disordered ensemble. Therefore, going beyond the binary 

disorder-order classification is indispensable to be able to grasp the impact of those 

changes. Accurate predictions of protein backbone dynamics may open up the 

possibility to study the changes of the disordered state in response to external factors 

i.e. to perform disorder design (see section 5.5) and, in future, other biomedical 

applications such as  the design of small molecules to alter the disordered state 

(Heller et al., 2015; Jin et al., 2013). 

In more general terms, protein backbone dynamics predictions could be related to 

functional information in proteins. Such predictions could either serve as a source of 

information for protein function prediction methods, or be used to guide 

experiments aimed at investigating the structure and function of those proteins 

deemed likely to be disordered.  
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5.5. Disorder design 

Disorder design is a term I would like to use to describe conformational transitions in 

IDPs (either disorder-to-order, or order-to-disorder) upon amino acid substitution, or 

via some other external factor (e.g. the binding of a small molecule). Similar to 

protein design, where methods are developed to try and predict sequences of 

proteins showing specific folds (Khoury et al., 2014; Kuhlman et al., 2003), in disorder 

design the aim is to take control over the phenomenon of protein intrinsic disorder. 

Being able to successfully perform disorder design would greatly improve the 

understanding of this phenomenon. 

This understanding could benefit medical applications focused on diseases associated 

with intrinsically disordered proteins. It was argued, that missense mutations often 

impact disordered regions causing loss or gain of function effects and perturbations 

in protein interaction networks (Dembinski et al., 2014; Vacic and Iakoucheva, 2012; 

Vacic et al., 2012). The authors of these works also showed, based on disorder 

predictor results, that disorder-to-order transition mutations are enriched in disease, 

when compared to neutral evolutionary substitutions (Vacic et al., 2012).The utility 

of disorder design was also suggested to be an important source of information in 

facilitating the understanding of how natural variation in disordered regions affects 

the emergence of new phenotypes (Babu et al., 2012). 

Disorder/order classification methods generally perform poorly on the disorder 

design task, i.e. using single-point mutations to trigger disorder-to-order, or order-

to-disorder transitions (Ali et al., 2014). There is only some anecdotal evidence 

coming from single predictions on individual proteins using single sequence-based 

predictors that such design is possible (Dembinski et al., 2014; Vacic and Iakoucheva, 

2012; Vacic et al., 2012). In general, poor performance of disorder predictors in 

disorder design is not surprising. Most of the methods use sequence profiles to 

perform the predictions (compare section 1.5.1) and point mutations do not impact 

the sequence profile significantly. Recently, some sequence-based machine learning 

methods were developed to tackle the problem of predicting disorder-to-order (and 
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order-to-disorder) transitions upon mutation specifically (Ali et al., 2014; Anoosha et 

al., 2015). The first of these methods, PON-Diso (Ali et al., 2014), reported only 

aggregate results (combined disorder-to-disorder, order-to-order, etc.), omitting the 

comparison authors performed for disorder predictors. The work also relied on cross-

validation based on a dataset of 101 cases from 31 proteins, making it likely that the 

method was in fact overtrained on the data, as no measures were taken to separate 

data coming from the same proteins. The second work reported an impressive 

average accuracy of 90% using an SVM-based model (Anoosha et al., 2015). The 

authors used the same dataset as in PON-Diso, but removed disorder-to-disorder and 

disorder-to-order cases, effectively erasing the most biologically relevant case of 

disorder-to-order transitions. Again, no measures were taken to ensure the method 

was not overtrained on the input data. 

FRAGFOLD-IDP, somewhat similarly to other disorder predictors, also uses profile 

information. The method utilizes this information to perform secondary structure 

predictions and pre-select protein fragments from the FRAGFOLD library (compare 

sections 2.1.3 and 2.3.2). It therefore does not explicitly rely on profile information 

while performing the dynamics predictions. This shows promise in providing more 

reliable predictions for disorder design. It is certainly one of the attractive future 

directions that could be explored using FRAGFOLD-IDP. One of possible obstacles in 

doing so is the relative paucity of data. The largest known study to date used only 31 

proteins (101 mutations) with only 3 cases of disorder-to-order transitions (Ali et al., 

2014). An exploratory in-house dataset based on mobiDB (using only structural data, 

either from X-ray or NMR) is slightly larger and contains 7 cases coming from different 

proteins. This amount of data, regardless of possible FRAGFOLD-IDP performance, is 

unlikely to provide robust conclusions about the ability of computational methods to 

perform disorder design. 

A problem related to protein design, which could be more computationally accessible 

is the design for protein dynamics. It is hypothesized that proteins are not only 

subject to selective pressure based on their structural properties, but also their local 

dynamic properties. An example of this could be DHFR protein family (Bhabha et al., 
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2013). E. Coli DFHR and human DHFR share significant structural similarity, but 

because of different dynamic properties it was shown that human DHFR cannot 

substitute its homolog in bacterial cells. So, subject to data availability, this “dynamics 

design” could be an interesting intermediate step towards disorder design. Here, 

more substantial sequence changes are observed which trigger some changes in 

protein disorder (dynamics) profiles. Therefore, this problem seems to be suitable for 

FRAGFOLD-IDP. 
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5.6. Future developments of FRAGFOLD-IDP 

Some additional experiments to expand the analyses performed by FRAGFOLD-IDP 

should include the studies of sequences predicted by the method. It would be useful 

to determine, whether FRAGFOLD-IDP predictions are biased by low complexity 

regions, or bear some other sequence features that could help to discriminate easy 

and difficult targets for the method. 

FRAGFOLD-IDP is a method that is able to predict protein backbone dynamics de novo 

from sequence. Performing broader comparisons including non-PDB data could be 

beneficial. Available NMR PDB data on disordered proteins are quite limited – the 

dataset used in this study consisted of all proteins that fulfilled the criteria 

established in section 2.2.1 which selected only 200 proteins. There are more 

proteins now, as the dataset used in Chapter 2 was assembled using mobiDB v. 1.2, 

the current version of mobiDB is 2.2. There are also longer (than 150 residues) 

proteins which could be explored. The authors of DynaMine paper used over 2,000 

proteins (chemical shifts data) in their study (Cilia et al., 2013). An extensive 

comparison of the relationship between structure prediction and backbone dynamics 

predictions quality was also performed and it was shown that the correct fold is not 

necessary to obtain high quality backbone dynamics predictions (section 2.5.7). 

Hence, protein tertiary structure information is not necessary to evaluate FRAGFOLD-

IDP further. Data such as chemical shifts (CS), or experimental NMR order parameters 

(S2) could be used to broaden the spectrum of investigations. But this has some 

drawbacks – the RCI method (Berjanskii and Wishart, 2008), translating chemical 

shifts to order parameters shows a relatively low correlation between CS and S2 (r = 

0.685). On the other hand, the success of DynaMine shows that using this source of 

data displays great promise (Cilia et al., 2013; compare sections 1.5.2.4, 2.1.2.1 and 

2.5.8.4). 

Another possible development was already highlighted previously – to study whether 

using sequence fragments, instead of the entire sequences would impact FRAGFOLD-

IDP predictions (compare sections 2.5.7 and 2.6). The independence of structure and 
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protein backbone dynamics predictions suggests that the FRAGFOLD-IDP approach 

samples only local protein backbone conformations. Therefore, using only sequence 

fragments should be sufficient to obtain all of the necessary information. Being able 

to simulate fragments would speed-up the calculations, as simulation time grows 

exponentially with chain length. This would make FRAGFOLD-IDP simulations more 

practical in comparison to methods such as DynaMine. The run time of the 

calculations is not the only possible benefit of simulating sequence fragments – it 

should also be possible to simulate longer proteins using FRAGFOLD-IDP. At present, 

FRAGFOLD is able to fold proteins up to around 200 residues, because of both 

computational and complexity reasons (Jones, 2001; Kosciolek and Jones, 2014), but 

using sequence fragments would allow larger sequences to be handled. 

Finally, simulating protein fragments could allow FRAGFOLD-IDP to treat protein 

termini and mid-sequence regions separately. Although FRAGFOLD-IDP, unlike 

DynaMine, does not seem to overestimate the amount of disorder at the protein 

termini (compare Figure 50 and Cilia et al., 2013, including Supplementary 

Information), it is a quite common practice to treat disordered regions at the termini 

separately to mid-sequence disordered regions (e.g. VSL2 predictor; Peng et al., 

2006). 

FRAGFOLD-IDP predictions could also be used to obtain ensembles of intrinsically 

disordered proteins, instead of predicting protein backbone dynamics alone. For this 

purpose, intra-protein contact predictions could be used within FRAGFOLD, as 

discussed in section 5.3.  
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5.7. Limitations of studying disorder 

The predictions of protein backbone dynamics add another dimension to our 

knowledge about proteins. It is an exciting area, but like with any computational 

approach, it is limited by the availability and reliability of the experimental data at 

hand. Disorder is a prevalent phenomenon that is notoriously difficult to grasp 

experimentally (Dyson and Wright, 2005). Several experimental techniques which are 

used to study ordered proteins largely fail when it comes to intrinsically disordered 

proteins (e.g. X-ray and EM). Further complicating the study is the observation the 

disorder a metastable state susceptible to the changes in the environment. 

Since many intrinsically disordered proteins are responsible for regulation (Dunker 

and Uversky, 2008; Ward et al., 2004b), their behaviour is often controlled by post-

translational modifications (PTM), such as phosphorylation (Bah et al., 2015). PTMs 

preferentially occur in intrinsically disordered regions (Theillet et al., 2014). They can 

cause disorder-to-order or order-to-disorder transitions and alter binding affinities. 

Molecular crowding of the cellular environment can also impact the conformational 

ensembles of intrinsically disordered proteins, as it was proven by both NMR 

experiments (Cino et al., 2012) and MD simulations (Qin and Zhou, 2013). 

Even in cases where intrinsically disordered proteins were treated in a binary 

disorder/order fashion, it was shown that the classification of residues can change 

upon environmental variations in the experimental conditions (Mohan et al., 2009). 

The experimental conditions included temperature, pH, salt concentrations, as well 

as, significant changes (disorder-to-order transitions) upon point mutations. 

Hence, going beyond the binary classification makes the predictions even more 

susceptible to some subtle changes. This poses a major challenge on the 

interpretation of the data produced. At the same time, it shows that the selecting 

Spearman’s rank correlation (RS) as an evaluation metric was a good choice (compare 

sections 2.3.4.3 and 2.4.4), since it makes the evaluation less prone to minor changes 

in the disorder profiles.  
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5.8. Concluding remarks 

With FRAGFOLD-IDP I show that the de novo predictions of protein backbone 

dynamics are possible and can be accurate. Using only sequence information, 

FRAGFOLD-IDP achieves state-of-the-art results that are significantly better than a 

naïve approach based on secondary structure predictions. On a related task of 

disorder/order classification, FRAGFOLD-IDP performs well, on par with sophisticated 

machine learning-based approaches designed to specifically to tackle the 

disorder/order classification problem. In this work I also introduce a neural network-

based consensus predictor which combines FRAGFOLD-IDP and DynaMine 

predictions, along with a set of physicochemical features and secondary structure 

information, to produce significantly better results than any of the input methods. 

The consensus predictor generated good results, comparable to the methods which 

simulate protein backbone dynamics from structure, for 39% of the analysed cases. 

The history shows that the study of proteins greatly benefits from the interplay of 

computational and experimental techniques. That was the case for the studies of 

ordered proteins, in protein design and disorder/order classification. To take the 

studies of IDPs further, we need more experimental data under a range of 

experimental conditions to help and evaluate the computational method better. At 

the same time, the computational techniques need to show their worth by guiding 

the experimental studies to spearhead new discoveries in the field. 
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APPENDICES 

A. List of abbreviations 

AUC (PR) Area Under Precision-Recall Curve 

AUROC Area Under Receiver Operating Characteristic Curve 

FPR False Positive Rate 

IDP Intrinsically Disordered Protein 

MCC Matthews Correlation Coefficient 

MD Molecular Dynamics 

MMC Metropolis Monte Carlo 

MoCA Mobility Continuous Assessment 

MoRF Molecular Recognition Features 

MSA Multiple Sequence Alignment 

PTM Post-translational Modifications 

REMC Replica Exchange Monte Carlo 

RS Spearman’s Rank Correlation 

SA Simulated Annealing 

TPR True Positive Rate 

  



Appendices  190 
 

 

B. Software information 

i. General 

3D protein models were generated using PyMOL version 1.7 (www.pymol.org). 

Plots were generated using Python matplotlib library version 1.4.3 and MS Excel. 

All wrappers and scripts were generated using BASH and Pymol 2.7.X scripts 

ii. Chapter 2 

Structural ensembles were generated using FRAGFOLD version 4.62 (available on 

request from Professor David T. Jones (d.t.jones@ucl.ac.uk)) 

Structural similarities were calculated using TM-score (available for download from: 

zhanglab.umich.edu/TMscore) 

Structural superposition methods used: 

(1) ProFit (http://www.bioinf.org.uk/programs/profit/index.html) 

(2) Theseus (http://theseus3d.org/) 

Clustering algorithms used: 

(1) TMclust, RMSDclust (available on request from Professor David T. Jones 

(d.t.jones@ucl.ac.uk)) 

(2) MaxCluster (http://www.sbg.bio.ic.ac.uk/~maxcluster/) 

(3) PFClust (http://chemistry.st-

andrews.ac.uk/staff/jbom/group/PFClust.zip) 

(4) SPICKER (http://zhanglab.ccmb.med.umich.edu/SPICKER/) 

Methods used for comparisons with FRAGFOLD-IDP: 

(1) PROFbval (https://rostlab.org/owiki/index.php/PROFbval) 

(2) DynaMine (http://dynamine.ibsquare.be/download/) 

http://www.pymol.org/
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iii. Chapter 3 

Disorder predictors: 

(1)  IUpred (http://iupred.enzim.hu/) 

(2)  DISOPRED3 

(http://bioinfadmin.cs.ucl.ac.uk/downloads/DISOPRED/) 

(3)  ESpritz (obtained from the Authors; 

http://protein.bio.unipd.it/download/) 

(4)  VSL2 

(http://www.dabi.temple.edu/disprot/download/VSL2.tar.gz) 

iv. Chapter 4 

Consensus predictor neural network was implemented in Python using PyBrain 

machine learning library version 0.3 (http://pybrain.org/) 
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