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Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes
of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in
the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key
thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to
that of the saturated vapour. In our current study, the excess free energy is extracted for clusters
of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on
nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated
with the “mitosis” or division of a cluster of N water molecules into two N /2 sub-clusters is evaluated.
This methodology is an extension of the disassembly procedure used recently to calculate the excess
free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our
findings are compared to the corresponding excess free energies obtained from classical nucleation
theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free
energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but
for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain
values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension
which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be
a monotonically increasing function of cluster size for the studied range. The data are compared to
other values reported in the literature, agreeing qualitatively with some but disagreeing with the values
determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach;
an assessment of the differences is the main motivation for our current study. © 2015 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4935198]
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Water droplet excess free energy determined by cluster mitosis using guided
molecular dynamics

. INTRODUCTION

Atmospheric aerosols play a key role in climate, weather,
pollution, and human health. These substances can influence
the optical properties of clouds as well as their lifetimes and
consequently have an effect on the distribution of precipitation
and the global radiation budget (the difference between solar
energy accumulated by the earth and the energy radiated into
space). Aerosols can give rise to urban pollution episodes'+
and are thought to be responsible for significant morbidity in
vulnerable populations.’~® There is therefore strong motivation
to understand the underlying molecular mechanisms involved
in atmospheric nucleation, namely, the formation of condensed
phase molecular clusters from the ambient metastable vapour
phase.”!* Significant progress has been made in recent
years in identifying the species responsible for the initial
stages of aerosol formation in the atmosphere!'~"> but the
task of properly characterising the formation mechanism in
detail still remains, particularly understanding the population
dynamics and thermodynamics of the molecular clusters in
question.
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The most important quantity in nucleation modelling
within a traditional kinetic/thermodynamic framework is the
excess free energy which is often interpreted as the cost in
free energy associated with the formation of the interface
between the two phases. In classical nucleation theory (CNT)
of a liquid cluster forming from a supersaturated vapour, the
excess free energy F is one of the two terms that comprise
the work of cluster formation ¢,

¢ =Fs— NAp, ey

where N is the number of molecules in the cluster and Au
is the difference in chemical potentials (which is related
to the vapour supersaturation) between the condensed and
vapour phases. The second term is the “bulk” contribution
corresponding to the thermodynamic driving force Au. In
traditional CNT, the excess free energy is represented by the
capillarity approximation, namely, FNT = y A, where y.,
is the vapour-liquid interfacial tension and A is the surface
area of a cluster regarded as a spherical liquid drop with a
constant density matching that of the bulk condensed phase. A
more general framework extending CNT can be devised from
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underlying microscopic models, such as the introduction of a
size-dependent surface tension,'® allowing for models which
do not assume the vapour to be ideal,'”'® and mean-field
kinetic theories.'”

The CNT framework leads to a relationship for the
nucleation rate J which has a sensitive dependence on the
surface tension;

3(Au)kgT @

3.2
J = Kexp (— 16myet, ),
where K is the kinetic prefactor that includes the aggregation
rate of particles to the cluster, kp is the Boltzmann constant,
T is the temperature, and v; is the volume per particle in the
condensed phase.

In fact, the surface tension of curved interfaces is known
not to be constant, and its size-dependence has been the focus
of recent attention.’>! A variety of different methods have
been employed for this purpose, ranging from an evaluation of
the components of the pressure tensor?>~2* and thermodynamic
perturbation methods>~?’ to techniques involving a finite-
size scaling analysis in the grand canonical ensemble.?8-3"
Consistency in the representation of the interfacial properties
has not yet emerged in all cases. In some studies of
water droplets, for example, the tension is found to be a
monotonically increasing function of the droplet size until the
planar limit is reached, but even in cases where the qualitative
trend is the same, the cluster size where the tension essentially
reaches the planar value differs from study to study.’!=* It
should be noted, however, that different models of water have
been employed, and furthermore, the various studies were
conducted under slightly different conditions, so that a direct
comparison is not always possible. In stark contrast, Joswiak
et al.®® have predicted that the specific surface free energy
of clusters of water molecules for the popular TIP4P/2005
model*® will increase monotonically from the planar limit with
decreasing cluster size. These authors employ the “mitosis
method” using a hybrid molecular dynamics (MD)/Monte
Carlo (MC) technique involving umbrella sampling to evaluate
the free energy associated with splitting a water cluster into
two equal sized sub-clusters. This free energy is then related
to the vapour-liquid interfacial tension of the clusters. It is this
recent investigation which motivates our current study.

Our aim is to re-assess the unusual nature of the
cluster-size dependence obtained by Joswiak et al.*> using
the same TIP4P/2005 molecular model, a similar mitosis
procedure, but a different fundamental approach to computing
the thermodynamic properties. In our current work, we
use a combination of nonequilibrium molecular dynamics
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(NEMD) and the Jarzynski equality®’ to extract the excess
free energies. The Jarzynski equality is a simple but powerful
formula relating an equilibrium change in the free energy to
the mechanical work performed during the nonequilibrium
simulations. We carry out the mitosis by dynamically driving
the separation process and relating the extracted difference in
free energy to the excess free energy of the initial and final
clusters. The vapour-liquid interfacial tension can then be
estimated by dividing the excess free energy by an area
commensurate with the representation of the clusters as
spherical drops with a constant density equal to that of the
bulk condensed phase.

In Sections II A-II C, we describe the mitosis method and
how the corresponding work calculated from the simulations
can be related to the free energy difference through the
Jarzynski equality. An analysis relating the free energy of
mitosis extracted from the simulations to the excess free
energy of the free cluster taking into account the perturbation
due to the presence of the mechanical driving forces is made
in Sections II D and II E. Further details of the analysis
are provided in Appendix A. In Section III, we outline the
procedure employed for the NEMD simulations. The results
and discussion are presented in Section IV, and the conclusions
of our work are given in Section V.

Il. CLUSTER SURFACE FREE ENERGIES
FROM GUIDED MOLECULAR DYNAMICS

A. Guided molecular dynamics

The method we employ for evaluating the cluster
free energy involves the disassembly of a cluster via
nonequilibrium MD simulations, originally developed for
studies of argon clusters.?® The technique involves tethering
every cluster molecule to an artificial “guide” particle using
a harmonic potential. The guide particles are then arranged
to move apart at constant speeds, driving cluster disassembly
until a desired final state is reached. In our current study,
the cluster is separated into two sub-clusters of equal size,
corresponding to a mitosis process (cf. Figure 1). The strength
of the harmonic potential can be varied throughout the course
of the simulation. This allows the cluster to be initially weakly
affected by their presence, ensuring minimal perturbation of
the initial cluster structure. Towards the end stages of the
simulation, the springs can be strengthened to ensure that
the mitosis is completed. The work done during the mitosis
process can then be related to the change in free energy.

It is important to mention that the computation of the
change in free energy associated with the separation of a bulk
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FIG. 1. The cluster mitosis process.

Guide particles and the cluster

%% molecules are indicated in grey and

blue, respectively. Initially, the cluster

o) molecules are weakly tethered to the

.&\{ guide particles placed at the origin. The

(] guide particles are then made to drift

apart until the cluster is separated into
two distinct sub-clusters.
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liquid into two (or more) liquid slabs separated by vapour
has a long history. In the early days of the development of
molecular simulation techniques, Mijazaki et al.*° determined
the excess surface free energy of a Lennard-Jones (LJ) fluid
with a thermodynamic procedure involving the separation
of a homogeneous liquid into two slabs separated by two
vapour-liquid interfaces; a step-wise procedure was employed
by introducing an external hard-wall potential to decouple the
liquid stabs which were then allowed to relax to form the
free interfaces. The vapour-liquid surface tension could then
be estimated from the cost in free energy associated with the
formation of the interfaces.

B. Work of mitosis

In general, when the Hamiltonian H is a function of an
externally controlled parameter A, the work done W on a
system over some sampling time interval 7 is

dAOHW)
W= / dr o4 ®)

For a cluster of N molecules tethered to their corresponding
guide particles, the Hamiltonian consists of intermolecular
interactions between the cluster molecules as well as harmonic
interactions between the molecules and their guides. The total
Hamiltonian is therefore a function of the time-dependent
spring constant «(¢), the molecular positions {x;(¢)}, and the
guide positions {X;(¢)}. The total work can be expressed as

N

_ [T dk(t) 0H T dX;(r) OH
‘/0 dr akd”;/o ar ox, "
[T dk() & 5

=3 || S - xora

T N )
- [Cx0 Y wo-xoy- Glar @
i=1

where dX;/dt is the velocity of the guide particle tethered to
molecule i. The first term corresponds to the work done in
tightening or loosening the spring constant over the course of
the simulation, and the second term is the work done on the
molecules by the moving guide particles through the springs.

C. Jarzynski equality

The work performed in the simulations needs to be related
to the change in free energy between the initial and final states.
According to the first and second laws of thermodynamics, the
work done on a system as its Hamiltonian evolves is greater
than or equal to the corresponding change in Helmholtz free
energy: W > AF. Only in the case of an infinitesimally slow
and reversible (quasistatic) process will the work be equal
to the free energy difference between the initial and final
states. However, running simulations at the quasistatic limit
in molecular dynamics is not practicable. On the other hand,
one can perform many fast process simulations and estimate
the change in free energy from the average of the work
performed. Nevertheless, as a consequence of the second law,
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the outcome can only be an upper bound to the free energy
difference: (W) > AF.

One solution to this problem is provided by the approach
of Jarzynski,>” who derived a nonequilibrium relationship,
which is commonly known as the Jarzynski equality,

AF = —kgT In [<exp (_kKT)” , 4)
B

where the difference in free energy between the initial and
final states can be related exactly to an ensemble average of
the Boltzmann factor of the work. The initial state needs to be
represented in the canonical ensemble, but no conditions are
placed on the statistics of the final state after the work process.
Since the Jarzynski equality can be used to relate the change in
free energy to the work performed in nonequilibrium processes
(far from the quasistatic limit), it is particularly suitable for
use in conjunction with MD simulations. It is important to
note, however, that because of limited sampling, the computed
AF may depend on the rate of processing: slower processes
will give rise to a narrower work distribution and hence an
estimate of the change in free energy with lower statistical
error than that derived from faster processes with a broader
distribution of work.

D. Contributions to the excess free energy

The difference in free energy extracted from the MD
simulations corresponds to that associated with the mitosis of
tethered clusters. This quantity can be related to the excess
free energy for the mitosis of a free (undistorted) cluster
using a statistical thermodynamic analysis (details are given
in Appendix A). We find that the difference in excess free
energy between two N/2 sub-clusters and the parent N cluster
(with N even) can be written as a sum of four terms,

2F(N/J2) — Fy(N) = Z fi=go (©6)
i=1
with
fsl = AFmit,
> 4T [L]
Jo = el | vy -
(47T)3/2pvsUHO
2 = |
2/3
fi= (N/z)ﬁ/%%(j—’j;) @3- 1),

where p,, is the saturated vapour density, k; is the initial
spring constant, vyo = (kgT/k;)*/?, and v; is the volume per
particle in the condensed phase. The first term f! corresponds
to the change in free energy associated with the mitosis of a
tethered cluster, as obtained from MD simulations. The second
term f2 accounts for the correction that relates calculations
derived from a MD simulation with distinguishable particles
to a system of indistinguishable particles. The third term f?
is an entropic contribution associated with correcting for the
confinement of the centre of mass of the cluster in the initial
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state, and the centres of mass of the two clusters in the final
state, through the tethering process. The final term f2 corrects
for the perturbation in the cluster energy, before and after
mitosis, caused by the presence of the tethers.

E. Surface tension from mitosis

The excess free energy obtained from the mitosis
procedure can be related to the surface tension. A similar
analysis has been previously performed by Joswiak et al.>® For
a system with a planar interface, the thermodynamic surface
tension is defined as the excess free energy per unit area
v = F;/A for an appropriate choice of dividing surface. For
small liquid clusters, linking the excess free energy associated
with the formation of the surface to the tension requires a
similar analysis but requires the specification of an appropriate
density of the condensed phase. In this study, we introduce
a size-dependent specific surface free energy (tension) y(N)
while making the assumption that clusters are spherical (with
a well defined radius and constant density corresponding to
that of the bulk liquid phase), such that we can write the work
of formation of a cluster of N particles from the vapour as the
sum of a surface term and a volume term,

BN) = 4x[ROVPYN) = SalRONFpigs. )

where R(N) is the radius of the cluster and p; = 1/v; is the
bulk number density of the condensed phase. The density cor-
responding to a bulk liquid phase at the same chemical poten-
tial as a coexisting vapour phase would be a more rigorous
choice but it is more difficult to implement such a procedure;
this would be consistent with the formal thermodynamic ap-
proaches of Gibbs*’ and Tolman.'® We employ the aforemen-
tioned simpler approach to make qualitative comparisons of the
size-dependent tension reported in the literature but are aware
of the difficulties in assigning the macroscopic concept of a
surface tension to small systems. To calculate the surface ten-
sion, Joswiak et al. used the expression of Tolman® relating the
surface free energy to the surface curvature of large droplets.
The Tolman expression can be useful for larger clusters but is
expected to break down at smaller length scales and we opt not
to employ it in our current work.

With the excess free energy of an N molecule cluster
written in the form of a surface term F; = 47[R(N)]*y(N)
and employing the incompressibility condition R(N)
=2'3R(N/2), the excess free energy extracted from the
mitosis procedure can be expressed as

2F,(N/2) - F{(N)
= 87[R(N/2)I*¥(N/2) — 4n[R(N)]*¥(N)
= 87[R(N/2)I*¥(N/2) - 4n2*[R(N/2)I*¥(N)
= 8r[R(N/2)1 [y(N/2) = 27 Py (N))]. 9)

In order to progress, we assume that the planar limit is
valid for the largest cluster studied (of size Nyax), allowing
us to insert the value for y(Npm,x) in Eq. (9). We check the
validity of this assumption by ensuring that the calculated
surface tensions of the Ny.x cluster and the Np.x/2 cluster
differ negligibly. The surface tensions of the smaller clusters
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can then be calculated using Eq. (9) from the excess free
energy obtained from the simulation.

lll. METHODOLOGY

Molecular dynamics simulations are carried out for the
mitosis of clusters for N =6, 12, 24, 48, 76, 96, and 128
TIP4P/2005¢ water molecules. Simulations are performed in
the canonical ensemble in a nonperiodic box at a temperature
of 300 K maintained using a Langevin thermostat*' with
a friction constant of 1 ps~'. For each cluster, 1000 initial
configurations are sampled from an equilibrium trajectory of
duration 10 ns with the guide particles fixed at the origin. An
initial spring constant ; = 0.05 kJ mol™'A~2 is used, deemed
to be minimally perturbing since the mean tether energy of
a molecule for all cluster sizes is then less than the typical
thermal energy kgT. The radii of the clusters are calculated
based on the bulk liquid density (of the TIP4P/2005 model) at
the prevailing temperature.

Starting from the initial configurations, half of the
guide particles are made to drift at a constant speed in
the positive direction parallel to one of the Cartesian axes
while the other half drift in the negative direction. The
spring constant is time-dependent, smoothly varying from
the initial value «; = 0.05 kJ mol™'A~2 to a final value of
k= 0.5 kJ mol~'A=2. The time-dependent form is

k() = ki,  1<H
Kf— K; t—t;
K(t) = ki + L 1 —cos [x—L)|,  n<t<t,
2 tr—1t;
k(t) = kg, t2ty,

where #; is the time when the spring constant starts changing
and f; is the time when the spring constant reaches its
final value. In our simulations, the values #; and t; are
pre-set as the following fractions of the simulation time:
t; = tgm/5 and ty = 4t /5 and we use a total simulation time
of t4m = 10.24 ns. Further details on the justification of our
particular choices of «; and ty,, are given in Appendix B.

The guide particles drift until the two sets of guide
particles are separated by a distance of 40 A as illustrated
in Figure 2. At this point, the guide particle velocities are
reduced to zero and the sub-clusters are allowed to relax while
the tether spring constants are loosened back to their initial
value «; over a further period of 7y,

The differences in free energy obtained from the simu-
lations using the Jarzynski relation are converted to excess
free energy following the analysis presented in Section II. The

40A

FIG. 2. Illustration of the mitosis of an N =48 water cluster into two N /2
=24 clusters over a separation time of 10.24 ns. The guides are indicated by
the turquoise coloured particles.
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FIG. 3. The distribution of work (1000 trajectories) for the mitosis of an
N =48 cluster into two N /2 =24 clusters at 300 K with a separation time of
10.24 ns.

saturated vapour density p,; and the molecular volume v; of
TIP4P/2005 water at 300 K are required as inputs. The cor-
responding values of p,, = 5.642 x 107% g cm™ and v; calcu-
lated from the density p; = 0.9965 g cm™ are taken from an
extensive study of the properties of TIP4P-like models by Vega
and co-workers.*>43

IV. RESULTS

An example of the distribution of work obtained for the
mitosis of the N = 48 cluster is depicted in Figure 3. The
distributions for all clusters exhibit a smooth, near-Gaussian
form suggesting that the statistics are good enough to extract
accurate free energy differences. Values for the excess free
energy for different cluster sizes obtained from a sum of the
four contributions f! are shown in Table I. The vapour-liquid
surface tensions derived from the procedure described in
Section II are also presented in Table 1. The surface tension
for the N = 96 cluster is set to that for the planar vapour-liquid
interface (Yo = 69.3 mN m™! for this model including long-
range corrections*) and serves as an initial input in Eq. (9)
for the surface tensions of the smaller clusters. The results for
N =76 and N = 128 are obtained using interpolated values
for y at N = 38 and N = 64 (derived from the results for N in
the range 24-96) and using them as inputs in Eq. (9) to obtain
yat N =76 and N = 128, since these sizes were those studied

TABLE I. Cluster size, the four contributions to the excess free energy in
Eq. (6), the total excess free energy (all given in units of kpT) and the
estimated surface tension y.

N £ fe £ £l £ y/mNm™!
3 41.5
10.41 -3.00 -7.47 0.16 0.11 52.0
12 17.86 —-6.83 -8.51 0.52 3.04 60.3
24 33.05 —-14.81 -9.55 1.65 10.34 65.0
48 57.08 -31.10 -10.59 5.24 20.63 68.0
76 81.75 -50.28 -11.28 11.27 31.46 69.2
96 97.75 —64.03 -11.63 16.64 38.73 69.3
128 119.07 —-86.07 -12.06 26.88 47.82 69.7
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FIG. 4. The normalised surface tensions y(N)/y(N =96) (o) and the excess
free energies F's (o) as a function of cluster size N at 300 K. The dashed and
continuous curves represent the corresponding excess free energy obtained
from classical nucleation theory (CNT) and internally consistent classical
nucleation theory (ICCT), respectively.

by Joswiak et al.>> The interpolated values for the tension are
estimated from a cubic spline of the data points at N = 24,
48, and 96.

A plot of the surface tension normalised by y(N = 96)
is depicted in Figure 4. It is apparent that this ratio is close
to unity for N =48 (there is a small difference of ~2% in
the value between N =48 and N = 96), suggesting that the
tension has almost reached the planar limit for this cluster
size. This justifies our choice of setting the tension at N = 96
to the planar value although we are aware that, in principle,
the planar value can only be reached in the limit N — oo.
The excess free energy Fy as a function of cluster size N is
also illustrated in Figure 4. In addition, we present curves
of the excess free energy obtained from CNT and internally
consistent classical theory (ICCT),* FNT =y A(N) and
FICCT = 5 [A(N) — A(1)], respectively. In these cases, the
tension is assumed to be that of a planar vapour-liquid interface
of the TIP4P/2005 system at 300 K (i.e., 69.3 mN m™Y). Our
values for the excess free energy are therefore consistent with
CNT for the larger cluster sizes. For clusters of N =3 and
N = 6 particles, our results tend towards the [CCT curve. CNT
is known to break down at small cluster sizes since it fails to
predict a zero excess free energy at N = 1. ICCT addresses
this inconsistency by shifting the CNT free energy curve down
by aconstantsothat F; =0at N = 1.For N = 12and N = 24,
our values lie between the CNT and ICCT curves, indicating
that there is an intermediate length scale corresponding to a
transition from ICCT to CNT.

The vapour-liquid surface tension estimated for the drops
of TIP4P/2005 water as a function of cluster size is plotted
again in Figure 5 for comparison with results obtained in
other studies. We observe the tension to be a monotonically
increasing function of size that approaches the planar limit.
The capillarity approximation, namely, the assumption that
the clusters all have a tension equal to the planar tension,
is surprisingly accurate at this temperature, at least down to
cluster sizes of about N = 40 molecules. After this point, the
tension drops off rapidly to about 60% of the planar value
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FIG. 5. The surface tension of water clusters as a function of cluster size
at 300 K. The data obtained in our current guided MD mitosis study (e)
for the TIP4P/2005 model are compared with: the free energy of excision
simulations of Samsonov et al.3? for the Stockmayer model at 300 K (2);
the volume perturbation simulations of Ghoufi and Malfreyt! for the DPD
model at 298 K (m@); the vapour pressure simulations of Factorovich ef al.??
at 298 K using the mW coarse-grained model and the Kelvin relation to
obtain the tension (A); the test-area (TA) simulations for the TIP4P/2005
model at 293 K3* (©); and the mitosis simulations of Joswiak et al.’ for the
TIP4P/2005 model at 300 K (®). The dashed line corresponds to the planar
limit of the interfacial tension for the TIP4P/2005 model at 300 K.*3

for our smallest system (three water molecules). Our results
do not agree with those obtained by Joswiak et al.’> who
find that the tension increases from the planar limit upon
decreasing the size of the cluster. However, we find that
our results are in near-quantitative agreement with the values
obtained independently by Samsonov et al.,> by Ghoufi and
Malfreyt,*' and by Factorovich et al.** Samsonov et al. used
the Stockmayer potential to represent water and equated the
change in free energy of formation of a drop to the change in
internal energy due to excision from the bulk liquid phase at
300 K. Ghoufi and Malfreyt performed mesoscale simulations
of water at 298 K using a dissipative particle dynamics (DPD)
model and employed a method to calculate the local normal
and transverse components of the pressure tensor using volume
perturbation; the curvature dependent surface tension was then
computed from the pressure components. Factorovich et al.
took a different approach by analysing the saturated vapour
pressure over different sized drops of water represented with
the mW coarse-grained model at 298 K. The latter authors
found that the macroscopic Kelvin relation holds down to
clusters of about 40 molecules, suggesting that the tension has
little dependence on curvature until the dimensions become
very small; the values of the tension reported for Factorovich
et al. in Figure 5 are deduced from a rearrangement of the
Kelvin equation.

In a recent study,** we applied the test-area (TA) method
to TIP4P/2005 water clusters consisting of between N = 16
and N = 1000 molecules at 293 K. In contrast to the other
studies discussed thus far, including our current work, the
tension obtained with the test-area approach was found to
depart from the planar limit at significantly larger cluster
sizes. Nevertheless, the trend of a decreasing tension at
small N is still in qualitative agreement with the other
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studies. At least at a temperature of 7 =~ 300 K, there is
qualitative agreement between most of the existing literature
and our current work. The general consensus appears to
indicate that the capillarity approximation only starts to break
down for clusters with fewer than about 40 particles. Care
should however be employed in the analysis of macroscopic
thermodynamic properties such as the surface tension (or
for that matter the average liquid density) for such small
clusters.

The differences between the size dependence of the
vapour-liquid interfacial tension for water obtained using
the TA and mitosis methodologies may appear to be rather
puzzling. We should, however, acknowledge that the two
approaches characterise the free energy associated with a
(nominal) surface area of the cluster in rather different ways.

In a macroscopic thermodynamic treatment,*® the
interfacial tension for a system in the canonical ensemble can
be expressed as the derivative of the Helmholtz free energy
with respect to the surface area, (0F/0A)n, v, . In the case of a
system with a curved interface, the relation still holds but one
has to be careful with the definition of the dividing surface.
The surface of tension, useful for a mechanical analysis
employing the differential surface tension, is distinct from
the equimolar Gibbs dividing surface that most conveniently
characterises the surface tension as a specific surface free
energy per unit area. If the clusters are large enough, the
radii defining these surfaces are similar (the Tolman length
is small?"), and the definition of the surface area is not
problematic with the differential and specific surface tensions
not differing significantly.

However, for small clusters, an interfacial tension defined
using the excess Helmholtz free energy F; (derived from
a microscopic statistical mechanical analysis) will generally
differ from the differential surface tension. In the macroscopic
thermodynamic analysis,*’ the counterpart to Fj is the surface
grand potential Q, = ypAg, where Ag is the equimolar
surface area and yg is a specific surface free energy defined
with respect to this area. Such an analysis tells us that
the statistical mechanical approach should produce results
consistent with the macroscopic surface tension for large
enough clusters, though it unfortunately has little to say
about the behaviour of the excess free energy at small
sizes.

In the case of the TA method, we determine a quantity
associated with deforming the area of a mechanically stable
(long lived) cluster and relate it to the differential definition
of the surface tension. It is a statistical mechanical approach
based on an evaluation of (0F/0A)n v r using a distortion of
the metric of space as a proxy for differentiation with respect
to a surface area.>* We again expect the results to tend towards
the macroscopic surface tension for large clusters, but for
smaller sizes, we expect differences to arise. Furthermore, we
do not expect coincidence between the resulting differential
surface tension and the excess free energy divided by the area
of equimolar surface. We properly regard these as distinct
cluster properties.

The methods are most appropriate for different ranges
of cluster size. Difficulties associated with the TA approach
applied to very small drops include the lack of mechanical
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stability, stabilization effects due to keeping particles within a
finite-size simulation cell (potentially distorting the statistics),
uncertainties arising from the proportionality of the free energy
of deformation to second order in the distortion parameter
(large numerical fluctuations are seen in Figure 11 of Ref. 34),
and also the non-sphericity of small clusters which can make
the method impracticable. It may therefore not be advisable
to employ the methodology for very small clusters.

In the case of the mitosis approach, we determine a well
defined excess Helmholtz free energy of cluster formation Fyj,
free of any continuum assumptions, even for small clusters
of arbitrary geometry. The only concession to a continuum
treatment is that in relating F to a surface free energy per
unit area, we impose that Fy(N) = 4n[R(N)]*y(N) and make
an assumption of incompressibility of the condensed phase in
order to define the equimolar radius R(N). Such a conversion
is not necessary in an assessment of cluster stability and is
only done for convenience of presentation. It is noted that
the density at the interior of small LJ clusters can be found
to be considerably larger than that of the corresponding bulk
system,?” indicating some degree of compressibility, though it
is not clear that this will be an issue for water at the conditions
investigated.

So while we can reasonably assume that the TA and
mitosis methods will provide an equivalent estimate of the
thermodynamic surface tension for large clusters, for small
clusters we are clearly computing different thermodynamic
quantities. For example, it is straightforward to show that
the TA “surface tension” of a harmonically bound dimer is
zero, while the excess free energy of the same cluster is not.
Differences will persist for more complex interactions or larger
clusters. We regard the TA surface tension as the quantity
most appropriate for comparison with the thermodynamic
surface tension and the excess free energy per unit area as
the quantity most relevant for an accurate characterisation of
cluster stability.

The results for the size dependence of various
formulations of the interfacial tension, normalised by the
planar value, are collected together in Figure 6 for both LJ
and TIP4P/2005 systems. We acknowledge that the different
studies are carried out at a variety of temperatures and
cutoffs of the potential. Results obtained with the TA method
for stable drops of LJ?’ and TIP4P/2005* water particles
appear to follow the same trend (although they are not
expected in general); the water drops are also found to
be stable for smaller clusters as might be expected for a
system with stronger intermolecular forces. The behaviour
obtained with the disassembly and mitosis methods for the
LJ*® and TIP4P/2005 clusters, respectively, also displays
close correspondence. There are clear differences between
the surface tensions derived by the two approaches for both
systems when cluster size is decreased.

Interestingly, results obtained from calculations with a
fundamental measure theory (FMT), a non-local density
functional theory (DFT),?° is based on the excess grand
potential, are in line with the results from the mitosis
and disassembly simulations, as might be expected for
methods based on a computation of specific surface excess
quantities. The dependence obtained by Schrader et al.*
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FIG. 6. The curvature dependence of the interfacial tension relative to the
planar tension for LJ (black symbols) and TIP4P/2005 water clusters (blue
symbols). For the LJ systems, we compare the TA simulations of Sampayo
etal.? at T*=0.8 (©); the grand canonical ensemble simulations of Schrader
et al.?® at T*=0.68 (continuous black curve); the non-equilibrium disassem-
bly simulations of Tang and Ford® at 7*=0.5 (a); and the canonical mean-
field FMT calculations®® at 7*=0.8 (dashed black curve). For TIP4P/2005
water clusters, we compare our current guided MD mitosis study at 300 K
(filled squares); the TA simulations of Lau et al3* at T =293 K (filled circles);
and the MD/MC mitosis simulations of Joswiak ef al.>> at T = 300 K (squares
with dots).

for LJ drops, involving a finite-size scaling analysis within
the grand canonical ensemble, is somewhere between those
obtained with the TA and mitosis approaches. The various
methodologies tend to agree for large systems. Unfortunately,
we are not able to rationalise the apparent increase in the
interfacial tension observed by Joswiak et al. although their
results also tend towards the planar value in the large R limit.>

V. CONCLUSIONS

We have developed a method based on mitosis by guided
molecular dynamics and the use of the Jarzynski equality
to extract the excess free energy and estimate the vapour-
liquid surface tension of water clusters. Simulations have been
carried out for clusters of N = 6 to N = 128 TIP4P/2005 water
molecules at a temperature of 300 K. The size-dependence of
the excess free energy has been extracted and compared to the
CNT and ICCT models. Our results are consistent with CNT
for larger clusters (N > 40) and with ICCT for the smallest
clusters (N = 3 and N = 6). For clusters of intermediate size
(N =12 and N = 24), our values transition between the ICCT
and CNT curves. The surface tension is observed to be a
monotonically increasing function of cluster size, converging
to the planar limit for clusters of N > 40 molecules but
reducing significantly in magnitude at the lower end of the size
scale. Our results are not found to agree with those obtained by
Joswiak et al.,*> who carried out a similar mitosis procedure
using umbrella sampling; by contrast, these authors found that
the tension increased from the planar limit with decreasing
cluster size. On the other hand, our results are in qualitative
agreement with other studies.>'* We conclude that mitosis
simulation in nonequilibrium molecular dynamics appears to
be a powerful and efficient method for the determination of
excess free energy of small clusters.
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APPENDIX A: THERMODYNAMICS OF TETHERED
CLUSTER MITOSIS

The change in free energy extracted from the MD
simulations is associated with the mitosis of tethered clusters.
This quantity needs to be related to the excess free energy
between an untethered (free) cluster of N molecules and two
untethered sub-clusters of size N/2. We follow a procedure
similar to that used recently for cluster disassembly.?®

We start by expressing the free energy of an untethered
cluster of N indistinguishable particles as Fr = —kgT In Zp
with

H
Zr = Nw/l_[dxjdp,exp[ WD

where £ is Planck’s constant, and H({x;}) is the Hamiltonian
of the system, a function of the molecular positions x; and
momenta p;. We can write Zp = VZy, where Zj. is the
partition function of a free cluster w1th its centre of mass
fixed at the origin, and V is the system volume. This is

N
done by inserting 1 = f 0 ( 2 x;/N —xc) dx. into Eq. (A1)
i=1

and recasting the equation in terms of particle coordinates
with respect to the centre of mass x.. The partition function
becomes

N

Zp = N'th/l_[dx dp jdx. exp[— ﬁH({x Hlé (%Zx)
N

- / ]_[dx dpjexpl-BH({x)o ( D )

= VZ§, (A2)

where x; = x; — x. are the transformed particle coordinates.
The free energy of a tethered cluster is Fr = —kgT In Zy

with
1 N
ZT = m/]_[dedpj
! =l

1
‘K( (2 )

In a similar fashion to the case of the free cluster, the
partition function of the tethered cluster can be written as
Zr = [2mkpT/(Nk;)]*/*ZE, where Z¢. is the partition function
of a cluster with the particles tethered to the origin as

X exp (A3)

Mz
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well as being constrained to have its centre of mass at the
origin,

N ’
o , H({x}})
ZT = W / l:ll dxjdpj exp [— kBT
Nk x

S5l o( )

Assuming that the mean tethering energy is less than the

typical thermal energy scale kg7, the difference in free

energy between the free and tethered clusters can be expressed
38

as

Nk;
Fe(N) = FrN) = ~kaT Wl OV] - 3 [ o0,
(A3)

where pN(0) = (N«k; /2rkgT)*'* is the probability density
function, evaluated at the origin, of the centre of mass of
the N tethered particles in the cluster. o N(y) represents the
spatial density profile of a single pamcle in a free cluster
of N particles with the centre of mass constrained to the
origin.

The cluster excess free energy can be defined as

Fy(N) = ¢(N) = ¢(1) + (N = DAu
= Fp(N) = F(1) = (N = Dy,

X exp

(A4)

(A6)

where ¢(N) is the work of formation of an N-cluster, Au
is the chemical potential difference between the condensed
and vapour phases at a given vapour pressure, Fr(N) is
the Helmholtz free energy of an N-cluster, and ug is the
coexistence chemical potential. Eq. (A6) is subtly different
from Eq. (1) in that the work of formation of a cluster
minus that of a monomer is the appropriate quantity that
emerges from careful development of nucleation theory.*
Eq. (1) is commonly taken as an approximation in CNT.
If the vapour phase is considered ideal, then the monomer
Helmholtz free energy is F(1) = —kgTIn(V/A®) and the
coexistence chemical potential is u; = kgT' In(pysA3), where
pys 18 the saturated vapour density, and A is the thermal
de Broglie wavelength. Combining Eqgs. (A6) and (AS),
the excess free energy of an N-cluster can now be written
as

Fy(N) = Fr(N) + kgT In(V/A®) = (N — DkgT In(p,,A?)
- FN) = kal Wl OV1 = 5 [ 1ty

+ kT In(V/A?) = (N = DkgT In(p,sA®). (A7)

It should be recognized that the difference in free
energy obtained from guided molecular dynamics simulations
corresponds to a process involving distinguishable molecules.
However, we require the free energy difference between
a cluster consisting of N indistinguishable molecules
and two sub-clusters which are distinguishable from
each other but each consisting of N/2 indistinguishable
molecules. To relate the change in free energy obtained
from simulation to the desired quantity, we need to
apply the usual classical corrections for indistinguishability.
The partition function corresponding to an initial cluster
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of N indistinguishable molecules is Zy = 1/(N)!Zj‘l,iSt
= exp(—Fp(N)/kgT), where the superscript “dist” de-
notes a system of distinguishable particles. The partition
function corresponding to a final state of two distin-

guishable clusters of N/2 indistinguishable molecules is
L/((N/2))(Zy,)>. The free energy difference is thus AF

J

2F(N/2) = F\(N) = 2Fy(N[2) = 2ksT In[ o *(O)V] = =

- [Fr )~ kaT X OV1 = 5 [ o000y + kal (VA = (N = DT I, ),

which after grouping terms reduces to the following four
contributions:

N!
2Fy(N/2) = Fy(N) = AFio — kgT In [W]

PN (0)pus ]
(pN'(0))>

N
-5 [ 1200 sy, (a9)

We note that there is a cancellation of the terms involving the
system volume V, as required in an expression representing
excess free energies. The third term can be written as

P (0)py | (4m)*% pysvro
kgT [—(py/z(o))z] =kpTIn [‘ (N2 ]’

where vno = (kgT/k;)>/? is the volume scale characterising
the confinement of particles in the final harmonic potential.

For the fourth term, we represent the single particle
density profile as a step function pf)v (y)=pi/N for 0 < y
< rmax. In this approximation, the cluster is imagined to be
spherical with a constant molecular density p; and a radius
Fmax- Inserting this into the fourth term gives

-2 )P - b oiay

Nki [§(3(N/2)v,)2/3 3 (SNUI)2/3:|

2 |5 dr 5\ 4n

+kBT11'1 [

(A10)

2/3
~ _&§(3(N/2)vz) (1 - 223, (A1)

25\ 4n
where v; is the volume per molecule in the bulk condensed
phase. Inserting Eqgs. (A10) and (A11) into Eq. (A9) leads to
the following sum of four terms:

N!
2F,(N/2) = F(N) = AFyi ~ kT In [W]
(47T)3/2pvsUHO
W]

5/3 2/3
N 3 3Ul 2
=) k2] @2 -1

L, /2, 3, ¢4
R R N

+kBT1I1 |:

(A12)

NKl'
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= 2Fp(N/2) - Fr(N) = —ksT In{NV/(N/2!P[(Z855, 21 287}
However, the difference extracted from the molecular
dynamics simulations is AFy; = —kpT ln{(Zg}jtz)z/Z;{}S‘} and
thus AF = AFi + kgT In[(N/2)!?/N1].

We now turn our attention to the excess free energy
between an N cluster and two N/2 subclusters,

/pé)\//z(y)yzdy +2kpT In(V/A®) -2 (g - 1) kT In(py;A°)

(A8)

(

which is the form given in Eq. (7) in the main text.

APPENDIX B: CONVERGENCE OF THE FREE ENERGY

An analysis of the convergence of the change in free
energy associated with the mitosis of a tethered cluster of
TIP4P/2005 water obtained from our MD simulations for the
6, 12, and 24 particle systems as a function of the guided
separation time fgn, is depicted in Figure 7. A value of
tsm = 10.24 ns is seen to be sufficient to obtain a converged
change in free energy without being too computationally
expensive. The time scales are in line with what was found for
the disassembly of argon clusters,* though one should note
that in such a process longer times are expected than for the
mitosis method.

Another possible issue with the calculation of the excess
free energy with the mitosis methodology is sensitivity of
the results to the value of the spring constant employed to
tether the clusters. The excess free energy obtained to split a
cluster of six TIP4P/2005 water molecules (into two clusters
of 3 molecules) as a function of the initial value of the
spring constant is illustrated in Figure 8; the largest variation
between the values is found to be significantly smaller than the

40 T T T T T T T T T T

30

25

20

£ kT

N =6 cluster —e—
N =12 cluster —e—
N =24 cluster —=—

0 ! ! ! ! ! !

0 2 4 6 8 10 12 14 16 18 20 22
tsim / NS

FIG. 7. The change in free energy associated with the mitosis of N =6, 12,
and 24 tethered water clusters obtained from MD simulations for a range of
separation times.
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FIG. 8. The extracted excess free energy difference for the mitosis of the
N =6 cluster as a function of the initial spring constant.
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FIG. 9. The corresponding values (given the excess free energy difference
values for the mitosis of the NV = 6 cluster in Figure 8) of the surface tension
for the N =3 cluster as a function of the initial spring constant.

TABLE II. The number of trajectories with systems that remain bound (clus-
tered) for the duration of the simulation at different values of the initial spring
constant.

;/kJ mol~'A-2 Successful trajectories

0.05 1000
0.04 996
0.03 999
0.01 979

thermal energy kgT (~0.1kgT). The corresponding value of
the excess free energy per unit area for the N =3 cluster
system is depicted in Figure 9 and found to be quite
insensitive to the value of the initial spring constant with
small deviations of ~0.2 mN m™'. These results suggest that
ki = 0.05 kJ mol~'A~2 is a suitable (and sufficient) choice for
the value of initial spring constant. It is also noted that for
lower spring constants, the clusters are not sufficiently long
lived in some trajectories within the duration of the simulation,
so those are not included in the computation of the change in
free energy as shown in Table II.
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