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Abstract

Background: Prognostic studies of time-to-event data, where researchers aim to develop or validate multivariable
prognostic models in order to predict survival, are commonly seen in the medical literature; however, most are
performed retrospectively and few consider sample size prior to analysis. Events per variable rules are sometimes
cited, but these are based on bias and coverage of confidence intervals for model terms, which are not of primary
interest when developing a model to predict outcome. In this paper we aim to develop sample size recommendations
for multivariable models of time-to-event data, based on their prognostic ability.

Methods: We derive formulae for determining the sample size required for multivariable prognostic models in
time-to-event data, based on a measure of discrimination, D, developed by Royston and Sauerbrei. These formulae fall
into two categories: either based on the significance of the value of D in a new study compared to a previous
estimate, or based on the precision of the estimate of D in a new study in terms of confidence interval width. Using
simulation we show that they give the desired power and type | error and are not affected by random censoring.
Additionally, we conduct a literature review to collate published values of D in different disease areas.

Results: We illustrate our methods using parameters from a published prognostic study in liver cancer. The resulting
sample sizes can be large, and we suggest controlling study size by expressing the desired accuracy in the new study
as a relative value as well as an absolute value. To improve usability we use the values of D obtained from the
literature review to develop an equation to approximately convert the commonly reported Harrell's c-index to D. A
flow chart is provided to aid decision making when using these methods.

Conclusion: We have developed a suite of sample size calculations based on the prognostic ability of a survival
model, rather than the magnitude or significance of model coefficients. We have taken care to develop the practical
utility of the calculations and give recommendations for their use in contemporary clinical research.

Keywords: Prognostic modelling, Sample size, Survival data, Multivariable models

Background

Prognosis is one of the central principles of medical
practice. Understanding the likely course of a disease or
condition is vital if clinicians are to treat patients with
confidence or any degree of success. No two patients with
the same diagnosis are exactly alike, and the differences
between them — e.g. age, sex, disease stage, genetics —
may have important effects on the course their disease will
take. Such characteristics are called ‘prognostic factors,
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and this phrase is usually taken to mean a factor which
influences outcome independently of treatment.

For most applications, a single predictor is not suffi-
ciently precise; rather a multivariable approach to progno-
sis is required. Multivariable prognostic research enables
the development of tools which give predictions based
on multiple important factors; these are variously called
prognostic models, prediction models, prediction rules or
risk scores [1]. Such research also means that potential
new prognostic factors are investigated more thoroughly,
as it allows the additional value of the factor, above and
beyond that of existing variables, to be established [1].
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The majority of prognostic research is done retrospec-
tively, simply because results are obtained much more
quickly and cheaply by using existing data. In their 2010
review, Mallett et al. [2] found that 68 % of the 47 prog-
nostic studies using time-to-event data included were
retrospective. Altman [3] conducted a review of publi-
cations which presented or validated prognostic mod-
els for patients with operable breast cancer, and found
that of the 61 papers reviewed, 79 % were retrospective
studies. Disadvantages to retrospective studies include
missing data, a problem which in general cannot be mit-
igated by researchers. In addition, the assumption that
data are missing at random may be implausible in such
datasets, biasing results [4]. This is particularly true with
stored samples, for example McGuire et al. [5] report that
tumour banks usually contain a disproportionate num-
ber of samples from larger tumours, which may introduce
bias. Existing datasets may also contain many more can-
didate variables than are really required to develop a good
model, which can lead to multiple testing problems and a
temptation to ‘dredge’ the data [6].

The best way to study prognosis is in a prospective
study, which ‘enables optimal measurement of predictors
and outcome’ [1]. However, a hurdle to designing good
quality prognostic studies — whether prospective or retro-
spective — is ensuring that enough patients are included in
order that the study has the required precision of results.
In the second of a series of papers on prognosis research
strategies, Riley et al. [7] stress that in particular, studies
aiming to replicate or confirm prognostic factors should
‘incorporate a suitable sample size calculation to ensure
adequate power to detect a prognostic effect, if it exists.
Sample size is always an important issue for clinical stud-
ies; however, little research has been performed which
pertains specifically to the sample size requirements of
multivariable prognostic studies. In his review of 61 pub-
lications concerning breast cancer models, Altman [3]
found that none justified the sample size used; and for
many it was impossible to discern the number of patients
or events contributing to the final model. Mallett et al.
[2] found that although 96 % of studies in their review of
survival models reported the number of patients included
in analyses, only 70 % reported the number of events — a
key quantity for time-to-event data. In the same review,
77 % of the studies included did not give any justification
for the sample size used. It is perhaps unsurprising that
most papers reporting prognostic research do not justify
the sample sizes chosen, as little guidance is available to
researchers on how many patients should be included in
prognostic studies.

Calculations based on the standard formula for the
Cox proportional hazards (PH) model [8] are available
for the situation where just one variable is of primary
interest, but other correlated variables need to be taken
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into account in the analysis [9-11]. For the more com-
mon scenario where researchers wish to produce a mul-
tivariable prognostic model and all model variables are
potentially equally important, basing sample size on the
significance of numerous individual variables is likely to
be an intractable problem. In this situation the most often
cited sample size recommendation is the rule of ‘10 events
per variable’ (EPV) which originated from two simula-
tion studies [12, 13]. In these studies, exponential survival
times were simulated for 673 patients from a real ran-
domised trial with 252 deaths and 7 variables (36 EPV),
and then the number of deaths were varied to reduce
the EPV. The authors found that choosing a single min-
imum value for EPV was difficult but that results from
studies having fewer than 10 EPV should be ‘cautiously
interpreted’ in terms of power, confidence interval cov-
erage and coefficient estimation for the Cox model. A
later simulation study found that in ‘a range of circum-
stances’ having less than 10 EPV still provided acceptable
confidence interval coverage and bias when using Cox
regression, but did not directly consider the statistical
power of analyses nor the variability of the estimates [14].
It is perhaps inevitable that these two papers are often
cited to justify low sample sizes. Indeed, Mallett et al. [2]
found in their review of papers reporting development of
prognostic models in time-to-event data, that of the 28
papers reporting sufficient information to calculate EPV,
14 had fewer than 10 EPV.

In this paper, we take multivariable prognostic model to
mean a model which is a linear combination of weighted
prognostic factors. However when developing such a
model, the individual covariate effects of the prognostic
factors may not be of major interest. Instead the main aim
is likely to be measuring the ability of the model to predict
outcomes for future patients, or to discriminate between
groups of patients. Copas [15] says that ‘...a good pre-
dictor may include variables which are “not significant’,
exclude others which are, and may involve coefficients
which are systematically biased! Thus basing sample size
decisions on the significance of model coefficients alone
may not result in the best prognostic model, as well
as being complex when the model has multiple terms.
Currently there seem to be very few sample size calcu-
lations or recommendations for developing or validating
multivariable models which are based on the prognos-
tic ability of a model, rather than the significance of its
coefficients. During a literature search, few papers were
retrieved which consider the issue from this angle. Smith,
Harrell and Muhlbaier [16] used simulation to assess the
error in survival predictions with increasing numbers of
model covariates. Datasets of 250 and 750 subjects (64 and
185 events respectively) were drawn from an exponen-
tial distribution such that the average 5-year survival was
75 %. Cox models were fitted to the simulated data, with
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between 1 and 29 uniformly distributed covariates. The
authors found that in both the 64 and 185 event datasets,
5-year survival predictions from the Cox models became
increasingly biased upwards as the EPV decreased. In both
datasets, the average error was below 10 % when EPV >10,
and below 5 % when EPV >20. For ’sick’ subjects — those
at high risk of death — higher EPVs were required: EPV
>20 was required to reduce the expected error to 10 %.
This work suggests that an EPV of 20 may be considered a
minimum if accuracy of predictions are important, how-
ever as it is found within a National Institutes of Health
report, it is not easily available and so seems to be sel-
dom cited. Additionally, two papers considered the effect
of sample size on Harrell’s ¢ index. Ambler, Seaman and
Omar [17] noted that the value of the ¢ index increased
with the number of events, however this issue was not the
main focus of the publication and so investigation of this
aspect was limited in scope. Vergouwe et al. [18] consid-
ered the number of events required for reliable estimation
of the c index in logistic regression models and suggested
that a minimum of 100 events and 100 non-events be used
for external validation samples, which is likely to be higher
than 10 EPV in many datasets. However being based on
binary data, the results are not directly comparable to the
sample size issue in prognostic models of time-to-event
data.

In this paper we aim to develop calculations based on
the prognostic ability of a model in time-to-event data, as
quantified by Royston & Sauerbrei’s D measure of prog-
nostic ability. We first describe the D statistic, and then
present sample size calculations based on D for use in
prognostic studies. Finally we give examples and describe
suggested methods for increasing the practical usability of
the calculations.

Methods

Royston & Sauerbrei D measure

There are various discrimination based measures of prog-
nostic ability available for models of time-to-event data.
The measure we have chosen to develop our calculations
is Royston and Sauerbrei’s D measure [19], which has been
shown to have many good properties which are described
below [20]. The most commonly used measure of prog-
nostic ability is probably Harrell’s ¢ index [21], however
this measure has some disadvantages: it is affected by
censoring [22] and has a scale which can be difficult to
interpret. Acknowledging the popularity and prevalence
of the ¢ index in the literature, we do consider the rela-
tionship between c and D to ensure our methods are more
widely usable (see Section Appendix).

D measures prognostic ability by quantifying the sepa-
ration in observed survival curves between subgroups of
patients with differing predicted risks. D was developed in
the Cox model framework and is based on risk ordering;
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thus D can be calculated whether the prognostic tool out-
puts a continuous prognostic index, prognostic groups,
or is even a subjective rule. However, it is assumed that
the prognostic index resulting from the model is Normally
distributed (although this is an approximation in the case
of a non-continuous prognostic index). The full deriva-
tion of D can be found in Royston and Sauerbrei’s original
paper [19], but briefly:

D =«ko",

where o* is an estimate of the standard deviation of the
prognostic index values (under the assumption of Nor-
mality) and ¥ = 4/8/m =~ 1.60, a constant used to give a
direct interpretation to D, as follows.

D has an intuitively appealing interpretation as the log
hazard ratio between two equal-sized prognostic groups
formed by dichotomising the prognostic index at its
median. D’s interpretation as a log hazard ratio means
that it can be translated to a hazard ratio between equally
sized prognostic groups; so a D of 1 corresponds to a haz-
ard ratio of e! = 2.7 and D = 2 to 2 = 7.4. This
allows researchers familiar with hazard ratios of treatment
effects (for example) to have some idea of the increase in
risk across the prognostic index of the model for a partic-
ular value of D. As a log hazard ratio, D can theoretically
take any value in the range (—o0, 00), but in real situa-
tions it is likely to be much closer to zero. A literature
search for published values of D in a wide range of disease
areas found that the highest value out of 101 reported was
3.44; the second highest was 2.8 [23]. D = 0 implies that
the selected model is useless for prediction, and D < 0
may arise when a model fitted to one dataset is validated
on another, indicating that the original model was flawed
in some way. Additionally, D has a functional relationship
with a measure of explained variation R%) [19]. This rela-
tionship is important as most researchers will be more
familiar with the 0-~100 % range of R? in linear regression.

As well as its interpretability and applicability to many
types of prognostic model, D has many other properties
which make it suitable for practical use. These include
robustness to outliers, sensitivity to risk ordering, inde-
pendence from censoring (provided the prognostic model
has been correctly specified and the PI is approximately
normally distributed), and an easily calculated standard
error [19]. Also, since it takes into account the fit of the
model to the outcome data, it can be used in a model val-
idation context; a vital part of a good prognostic study.
Working with RIZD, Choodari-Oskooei et al. [20] found that
it was sensitive to marked non-normality of the prognostic
index, but despite this concluded that overall it was one of
two best explained variation measures for quantifying pre-
dictive ability (along with Kent and O’Quigley’s R%M [24]).
D and R? can be calculated in Stata using the user-written
str2d command [25].
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Sample size calculations

Introduction

To develop the required calculations we start from the
results in Armitage and Berry’s book [26] (p186) for com-
parison of the means of two independent groups, with
equal within-group variance. In this normal errors case,
we consider two means x; and X measured in populations
of size n1 and n; respectively, where s? is the within-group
variance of the response variable in both populations. The
standard error of the difference in x; and % is given by

1 1
SE(x1 — %) = | s> ( + >
ni ny

From this, various sample sizes can be calculated. If #;,
%1 and s? are known, and it is desired that a difference
of X1 — %y = & will be just significant at the required
two-sided « level with power 1 — 8, then the sample size
required in the second population is

-1
) S
. W
Zl—a/2 +21-8 m

where z, is the x-quantile of the standard normal
distribution.

We can also calculate sample size in a different way, bas-
ing it instead on the confidence interval of the estimated
quantity 8. In order that the new estimate of x» will have
a 100(1 — o) % confidence interval of half width w, the
sample size required is

2 27!
_ 2 oy _5
Hy =S5 |:(Zl—a> 711] . (2)

We can work from the same ideas to develop sample size
calculations based on D, as this quantity is also normally
distributed [23]. Consider the scenario where estimates
of D and SE(D) are available from a previous study using
the same model, and researchers wish to validate the esti-
mate of D for the model in a new study. Let D; be the
value of D in the first study, o7 the variance of D;, and
e1 the number of events in the first study. Let Dy be the
D value in the (proposed) second study with ey events,
and 022 = var(Dy). The standard error of D; — D5 is thus

,/012 + 022. As this does not explicitly include e; and e; we
must make an assumption about the relationship between

the variance of D and the number of events in the study in
order to obtain sample size calculations.

The quantity A
To develop the calculations required, we make a propor-
tionality assumption. This is that for a given model with a

certain ‘true’ value of D, the ratio of the variances 012, 022 of
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D in two datasets with differing numbers ej, ey of events
(but sampled from the same distribution of covariates)
equals the reciprocal of the ratio of the corresponding
numbers of events:

2
9 _@
53 = .
0'2 el

This is reasonable, since the variance of a statistic is
inversely related to the information in the data, which in
a censored time-to-event sample is plausibly represented
by the number of events [27]. We have shown through
simulation and resampling that this assumption does hold
reasonably well; and the larger the dataset, the better it
holds (see [23], Tables 4.1 — 4.2).

Under the proportionality assumption we can write
e1 012 = e2022 = A, where A is a model- and disease-specific
structural constant which is incorporated in our calcula-
tions. We can either estimate A by its value in a previous
study (termed A), or use an approximation incorporating
a value of D and the proportion of censoring (cens) in the
dataset:

Am = co + c1DY° 4 cy(D - cens) '3, (3)

where ¢g = 2.66, c; = 126, and ¢ = —1.65. This
model was developed from simulated data and found to
be reasonably accurate (see [23], Section 4.7.5).

Although our findings regarding A are approximations,
this seems a reasonable price to pay when first con-
structing a new method of planning prognostic studies.
Prospective sample size calculations are by definition
based on ‘guesstimated’ parameters, and these are not
always checked post hoc, so in this respect we feel that the
approximations made above are not inappropriate.

A note on the standard error of D

We have found that the default estimate of the standard
error of D output by the str2d Stata command tends to
underestimate the true value (see [23], Section 3.3 for full
details). The negative bias increases the higher D is; for
example, when D = 0.8 simulation studies using different
combinations of dataset size and proportion of censoring
showed that the relative bias varied between 0 and -8 %,
whereas when D = 3.2, it varied from —-17 % to —24 %.
As an estimate of the standard error of D is required to
obtain A, a downward bias in this quantity could reduce
the required sample size and lead to underpowering.

We have found that using bootstrapping with 500 repli-
cations to obtain the standard error reduces the bias
greatly; we observed a relative bias of —2 % (on average)
with the bootstrap estimator when D = 3.2 compared to -
20 % using the default method [23]. The str2d command
has a bootstrap standard error option and we recommend
researchers use this method instead of the default estimate
when calculating A, particularly when D > 2.
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Obtaining the sample size calculations
By applying this proportionality assumption, we can now

write the standard error of D; — D as , /012 + A/ez which,
using the same rearrangement as above, leads us to the fol-
lowing two calculations. Firstly, to detect a difference in D
between the first and second studies of § with significance
level @ and power 1 — 8:

§\?2 !
ezsz) —012:| , (A)
zZZ

where zz = z1_o/2 + z1_p for a two-sided (superiority)
o and zz = z1_y + z1—p for a one-sided (non-inferiority)
test. Secondly, in order that the estimate of D; — D5 has a
100(1 — &) % confidence interval of half width w

2 -1
62=A|:< id ) —012i| . ©)
21—«

By comparing (A) and (C) with (1) and (2) we can see
there is an analogy between the common within-sample
variance s and the quantity A.

Note that unlike in typical sample size calculations, here
the value of o7 is available from the first study. Since e;
must be positive, this places a lower limit on § and w for
these calculations: § > 012z, and w > 01z1_o. Having cal-
culated minimum § for various datasets, we feel that in
general (A) and (C) are not very useful in practice and so
do not consider them further. Instead we develop slightly
different calculations which are described below.

Significance based calculations

Instead of estimating a value of D; and its standard error
from a previous study, we pick a fixed target value of D
that we call D* and assume this has zero uncertainty; so
012 = 0. Thus (A) becomes

2
ey = A <8> (B)
zz

We further obtain two calculations from (B) which are
defined by how A is estimated. Substituting A; into (B)
gives us (B1), while substituting A, gives us (B2):

S -2
2= AS (>
zz
S -2
e = Ay, () .
zZZ

For a one-sided test Hy : D* — Dy > 8§ and Hy : D* —
Dy < §. For a two-sided test Hy : D* — Dy = § and Hy :
D*—D, # §.1fa previous study does exist, then either (B1)
or (B2) can be used. If no previous study exists, then (B1)
cannot be used as A; cannot be calculated. When using
(B1) and (B2) é has a lower bound of zero.

(B1)

(B2)
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One major benefit of using A,, is that using this approx-
imation, different values of D and cens can be input which
enables calculation of a range of sample sizes. This may be
helpful in study planning where the value of D and likely
censoring proportion in the new study is uncertain.

Confidence interval based calculations
We can alter calculation (C) under the same assumption
of a fixed target D which we call D*, as for (B1) and (B2).
The confidence interval is thus around the quantity § =
D* — D,. However, as D* is assumed to have zero variance,
var(D* — Dy) = var(D,); so the width of CI for § = D* —
D, is equivalent to the width of CI for D, only.

Thus to estimate D in a new study with a confidence
interval of half width w, we replace 012 with 0 in calculation
(C), so the number of events required is

-2
ey = A ( w ) (D)
Z1—a/2

Again substituting either A; or A, we get

w -2
e = Ag < )
Z1—a/2
w -2
ey = )‘m ( )
Z1—a/2

The only limit on w when using calculations (D1) and
(D2) is that it must be > 0.

Note that Egs. (D) and (B) are equivalent if the power
in (B) is 50 % and « is two-sided. So, for example, a study
designed to estimate D with a 95 % confidence interval of
half width 0.2 requires the same number of patients as a
study designed such that a difference in D of § = 0.2 from
the target value is significant at the (two-sided) 5 % level
with 50 % power.

(D1)

(D2)

Results

Validating the calculations

The calculations were tested for validity using simulation
studies. The results of four of these studies (one covering
each calculation) are given in the Appendix, however fur-
ther simulations were performed to cover a wide variety
of scenarios; these can be found in [23]. We found they all
showed the desired power and type I error and this was
not affected by random censoring. The calculations using
Am showed small inaccuracies in power in the simulation
studies due to the imperfect nature of estimating A using
Eq. (3). These errors in power were of the order of up to
2 % (absolute) when the desired power was 80 %. All the
calculations, whether using A; or A, give the expected
power and type I error only if the parameters in the new
study are similar to what was expected in the planning
stages (either from the previous study or input into the
model for A,,). In further simulation studies we found that
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if the value of D, or the censoring proportion, in the new
study is larger than it was in the previous study, results in
the new study may be less precise than were expected [23].
Equally if the values are smaller in the new study, results
may be more precise than planned.

Implementation of commands in Stata

We have written two commands in Stata to implement
the four calculations described here. dsampsi sig cal-
culates the sample sizes required by (B1) and (B2), while
dsampsi ci calculates (D1) and (D2). These are avail-
able from the author upon request.

Absolute and relative precision
As D increases, or as cens increases, the number of events
required to retain the same precision increases. This
means that if the observed values of these two quanti-
ties in the finished study are different to those used in
the calculations, the estimate of D in the final study will
have higher or lower precision than was planned. This
inadvertent under- or over-powering is a potential prob-
lem in any sample size calculation for survival outcomes,
including randomised clinical trials: any divergence from
the expected censoring rate or hazard ratio for trial treat-
ment would mean that the original sample size was either
too large or too small; however, post-hoc calculations of
power are not routinely performed. As the sample sizes
output by our calculations are often high, the conse-
quences of this under- or over-powering may be serious
for prospectively planned prognostic studies: either many
more patients are recruited than were really required, or a
study does not meet its aims despite a large sample size.

In an effort to mitigate this problem, we present a prag-
matic method to try and minimise the risk of serious
under- and over-powering when using (B2) and (D2). Essen-
tially § or w are specified as a proportion of D rather than
as an absolute value, formalising the idea that if D turns
out to be higher than expected, researchers may be happy
with a lower absolute precision than initially proposed.

If we denote by p the proportion of the target D that we
will accept as our § or w, then calculations (B2) and (D2)
become

DY 2
e=lm (’;Z) @)
2
e m( pD ) , (5)
Z1—a/2

where D is the best estimate available.

It is clear that for calculations (4) and (5), as p increases
the number of events required decreases. Also, it is impor-
tant to observe that as D increases, the number of events
required decreases, which means we now have the reverse
problem to previously: we lose precision if the value of D
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is lower than expected. A straightforward solution is to
combine the two approaches in a ‘composite’ sample size;
specify both an absolute and a relative precision for § or w.
For example, for a significance-based calculation we may
be happy with precision of either § = 0.150rp = 10 %
of D, whichever requires the smaller sample size at each
value of D. We illustrate this strategy further below with
real data examples.

Examples using parameters from a published paper

To illustrate the calculations we recommend as well as our
composite sample size proposal, we use as a basis for our
examples a paper published in 2008 which compared three
existing staging systems for advanced liver cancer [28]. In
this study the CLIP prognostic model was found to be
most recommended, with D = 1.01. The standard error
of D was given as 0.09, and the models were assessed on a
dataset of 538 patients with 502 events (7 % censoring).

Calculations (B1) and (D1)

Let us first assume that we wish to validate the CLIP
model on new data. Our objective is to have assurance
of a certain level of performance (discrimination) of the
CLIP model, as measured by D. Calculations (B1) and (D1)
require A tobe estimated from the previous dataset; from the
reported results in the paper, A; = 31012 =502 %0.092=4.1.
Note that here we assume that the case mix of the vali-
dation study is identical to the development studys; if this
is not the case then the interpretation of the value of
D (or, indeed, any other model performance measure) at
external validation is more complex [29, 30].

If we require a significance based non-inferiority study
with one-sided « = 0.05, 90 % power and non-inferiority
margin § = 0.25, 558 events are required according to
calculation (B1). If it is expected that the same censor-
ing proportion will hold in the new study, 601 patients
should be recruited. For a study with two-sided @ = 0.05
(all other parameters held equal) 684 events are required.
Figure 1 shows how the number of events required by
calculation (B1) changes with §, for a one-sided test.

If instead of a significance based calculation we wish to
specify the CI for D in the new study, then we use (D1).
In order that our estimate of D in the new study has a
95 % confidence interval with half-width 0.2, we require
391 events. Figure 1 shows the effect of w on the sample
size calculation (D1).

Calculations (B2) and (D2)

Let us now assume that we wish to add a new prognostic
factor to the CLIP model which we believe will improve
its prognostic ability. As we have no previous study using
the proposed model to estimate A from, we can use either
(B2) or (D2). These calculations do not require a previous
study, just a target value of D and the censoring proportion
in the dataset to estimate A,,.
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Fig. 1 Variation in events required by (left) calculation (B1) vs §; (right) calculation (D1) vs w

To determine a target value of D, we note that the paper
in question reported D = 1.01 for the CLIP model, which
is equivalent to RjzD = 19 % [19]. If we believe that the new
factor will increase the proportion of variation explained
by the model by 10 % (absolute) to R = 29 %, our target
value of D should be D = 1.3. If we expect the censoring
proportion to be 10 %, slightly higher than the CLIP paper,
then using (3) we estimate 1, = 4.62.

Under calculation (B2), 633 events are required for a
non-inferiority study with one-sided « = 0.05, 90 % power
and non-inferiority margin § = 0.25. For the equivalent
superiority study with two-sided @ = 0.05, 777 events
are required. Figure 2 shows the variation in number of
events required by calculation (B2) for a two-sided test
vs the § desired, for different values of D and cens. Note
when looking at these graphs that although increasing
cens decreases the number of events required, the total
number of patients required increases.

If a CI-based calculation is desired, in order that our
estimate of D in the new study has a 95 % confidence inter-
val of half-width 0.2, using (D2) we require 444 events
(using 1., = 4.62). Figure 3 shows how required study size
changes with D, censoring proportion and w according to
calculation (D2).

Calculating a range of sample sizes
As already mentioned, by using A,, we can calculate a
range of sample sizes by inputting different likely values

of D and censoring proportion into Eq. (3). We briefly
illustrate this using (D2).

We saw above that if we expect D = 1.3 and 10 % cen-
soring in the new study, to obtain a 95 % CI for D with
half-width 0.2 we require 444 events (494 patients). If we
believe D could be as low as 1.1 or as high as 1.5, then
inputting these values gives us A,, = 4.08 and A = 5.24
respectively, which results in sample sizes of 392 and 504
events (436 and 560 patients). If we think the censoring
proportion might be as high as 30 % in the new study, then
this results in a A, = 4.25 and a sample size of 408 events
if D = 1.3: with 30 % censoring this means 583 patients
are required. If D = 1.5 and cens = 30 % then A,, = 4.79
and 461 events are required; 659 patients.

Performing a range of calculations like this may help
during study planning, and in assessing whether a retro-
spective study might be large enough; and may be espe-
cially useful when the value of D and/or the censoring
proportion in the study is uncertain.

Combining absolute and relative precision
As mentioned above, a pragmatic method for controlling
power when the observed value of D is not very certain
is to define the desired precision with both absolute and
relative limits. We illustrate this idea again using the CLIP
paper example.

We return to the scenario outlined above to illustrate
calculation (B2), but the same ideas hold for (D2). We once

5000
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power=90%

3000
2000

1000

Events
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200+
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Fig. 2 Variation in events required by calculation (B2) vs 8, for different values of cens (left) and D (right)
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again require a study with two-sided o = 0.05 and 90 %
power. Let us suppose that we are happy with precision
of 8, = 025 or p 20 % of D, whichever requires
the smaller sample size at each value of D. The maximum
sample size can be calculated by using calculation (B2):
making § the absolute value desired (0.25 in this exam-
ple), and inputting D = §,p5/p in the equation for A,
(D = 0.25/0.2 = 1.25 in this example). Here this gives
Am = 4.47 and a required sample size of 753.

Figure 4 shows the sample size curves for the absolute
and relative precisions, and the resulting profile for the
smallest sample size is shown as a thick line, with a peak at
D = 1.25 where the number of events is 753. With a study
of 753 events, if the value of D in the new study turns out
to be §/p = 1.25, then the study will have the correct pre-
cision. As can be seen in Fig. 4, if the value of D is either
higher or lower than 1.25 then slightly more patients will
have been recruited than strictly required, so the study
will have slightly higher than anticipated precision. The
precision that will actually be observed with a different
value of D can be calculated by rearranging (B2) and sub-
stituting the new value of D. In this example, before the
study we would anticipate that if D = 2, the smallest §
detectable with 90 % power and two-sided « = 5 % would

2500

2000

1500

Events

1000

500

m——eee5=0.25 8 =20% of D

Fig. 4 Events required by composite calculation (4) vs D, for absolute
and relative values of §

be 0.4 (20 % of D = 2), however with 753 events it is
actually 0.32.

D in practice
In order to use calculations (B2) and (D2), researchers
must have in mind a target value of D so that they can
calculate A,,. Although D is becoming more commonly
reported in prognostic research, it is not yet available for
a wide variety of diseases, so it may be difficult to find a
suitable value of D. For this reason a literature search was
carried out to assess how widely D is used and to deter-
mine its value in various disease areas. The main aim of
the search was to show a method by which researchers
might find a suitable value of D for use in their own work,
but additionally the values found in the search may be
used as a reference library by users of calculations (B2) and
(D2). We also used some of the values collected to develop
an equation to convert Harrell’s c-index to D. The meth-
ods and results of the literature search are described in
detail elsewhere [23]; we present the main findings here.
The search was divided into two parts: first a search for
all reported values of D, second a search for a limited num-
ber of values of Harrell’s c-index. The former resulted in
108 D values reported in 34 separate papers; the latter 331
¢ values from 77 papers. We collated a dataset of models
from the searches which had both D and c values reported,
and augmented these with values from models developed
on publicly available time-to-event datasets (from books
and papers). The 294 paired (D, c) values showed a strong
relationship and we modelled this by simply fitting a frac-
tional polynomial to the data, giving Eq. (6) which could
be used by researchers to convert a value of ¢ to D for use
in our calculations.

D = 5.50(c — 0.5) + 10.26(c — 0.5)3 (6)
Figure 5 shows the data used to develop (6) overlaid with
the model itself. Table 1 shows various points on the
modelled relationship between D and c.

After the obtained c values from the literature search
were transformed to D using (6), the resulting pool of D
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Fig. 5 The (¢, D) pairs used to model the relationship between c and
D and the final model Eq. (6)

values were explored and grouped by disease area. Ulti-
mately, we obtained 480 values of D in total, ranging from
0 to 3.44 and with mean 1.40 (median 1.30). Of these, 296
values were from prognostic models (predicting a disease
event in patients who already have the disease of interest)
and 184 from risk models (predicting onset of a disease
in healthy patients). We found that the mean value of D
amongst the prognostic models (D = 1.30) was slightly
lower than for the risk models (D = 1.47). A full descrip-
tion of the D values collected can be found in [23]. For
most diseases only one or two papers were retrieved.

Discussion

Recommendations for practice

As argued above, we find that calculations based on (A)
and (C) are of limited practical use because of the lower
limits on the values of § and w that can be detected. Thus
the calculations which we find most useful are (B1) and
(B2) which are based on significance testing, and (D1) and
(D2) which are based on the precision of the estimate of D
in the new study. It is purely down to the preferences of the

Table 1 The relationship between ¢, D and Ré: selected points

¢ D R% c D R?,

0.50 0.000 0.000 0.72 1319 0.294
0.52 0.110 0.003 0.74 1462 0338
0.54 0.221 0011 0.76 1610 0.382
0.56 0332 0026 0.78 1.765 0427
058 0445 0045 080 1927 0470
060 0.560 0070 082 2,096 0512
062 0678 0.099 084 2273 0.552
064 0.798 0132 086 2459 0.591
066 0922 0.169 088 2652 0627
068 1050 0.208 0.90 2.857 0661
0.70 1182 0.250 092 3.070 0.692
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researcher as to which type is chosen. Within each type,
there are two options depending on whether researchers
wish to include information from a previous study in their
calculation (B1, D1), or want to (or have no choice but
to) choose target values for the parameters (including D)
instead (B2, D2). The latter option makes it easier to cal-
culate a range of possible sample sizes, as shown in the
example above. This may be important if researchers are
not very confident about the likely values of D that will
be seen in the new study, or wish to explore the effects of
different censoring proportions. For this reason we would
recommend (B2) and (D2) over (B1) and (D1) in most
cases. However, if a reliable previous study exists then (B1)
and (D1) may be preferred (for example, if researchers are
seeking to validate an existing study). If (B1) or (D1) are
used, we recommend that a bootstrap estimate of the stan-
dard error of D is used to calculate A instead of the default
estimate provided, as this is likely to underestimate this
quantity.

If (B2) or (D2) are chosen, a value of D and the
censoring proportion for the proposed study must be
estimated. Estimating the censoring proportion should
be straightforward for researchers but finding a suitable
value of D may be more problematic. If an appropriate
value cannot be found in the library of values presented
in [23], we recommend that researchers search litera-
ture for a suitable c-index value and convert this instead
using (6). The question of what is a ‘suitable’ value of
either ¢ or D, in terms of how similar the study pop-
ulation, methods, model and other aspects must be, is
difficult to answer and we do not attempt to give a solu-
tion here. In the absence of any guidance whatsoever
as to a suitable value of D, we suggest using a value of
D = 1.4, the mean value of D across the large number
of prognostic models collated here. We give a decision-
making flowchart in Fig. 6 to help potential users of our
method determine which calculations can be used in their
situation.

Although the sample sizes output by the calculations
tend to be large, we have given some suggestions on how
study size can be managed, for example by considering
precision as a proportion of the measure of interest, rather
than (or as well as) a fixed value. We recommend using
this method to prevent inadvertent loss of precision due to
uncertainty around the estimated value of D when using
(B2) or (D2). However it is worth noting that this under-
or over-powering is a potential problem in any scenario,
including randomised clinical trials.

Conclusions

Prognostic studies using time-to-event data are often
performed and appear frequently in medical literature.
In general, the aim of such studies is to develop a
multivariable model to predict the outcome of interest,
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and they often use time-to-event data analysed with the
Cox proportional hazards model. Many prognostic studies
are performed with retrospective data and often without
reference to sample size calculations [2], suggesting that
obtaining reliable results from such studies may often be a
matter of chance.

The main sample size guidance available to and used by
researchers developing prognostic survival models is the
events per variable (EPV) calculation with a lower limit
of 10 EPV usually quoted; however, this idea is based on
just two limited simulation studies. These studies con-
centrated on the significance of model coefficients, which
is of secondary importance in a prognostic model to be
used for outcome prediction. In this paper we have pre-
sented some sample size calculations based instead on the
discrimination ability of a survival model, quantified by
Royston and Sauerbrei’s D statistic. We have also given
some suggestions and methods for improving the practical
use of the calculations in research.

Due to the novel nature of the methods presented in this
paper, there are limitations to the work described here and
further avenues yet to be explored. In particular, we note
that the sample size calculations presented here pay no
attention to the number of variables to be explored. From
previous work we know that the number of candidate vari-
ables for a model can have an effect on the estimate of D
in some situations [23]. If a model is developed using an
automatic variable selection method and then validated in
the same dataset, then increasing the number of candidate

Table 2 Results of simulation study to test (B1) and (B2)

variables increases the optimism present in the estimate of
D; however, we have not covered this issue here. Addition-
ally, we acknowledge that changes in case mix between
datasets can add complexity to defining improvement in
the prognostic performance of a model, whether D or
some other performance measure is used. The methods
introduced in [29] may offer a solution to this problem
but it is too early to say; in this paper we have made the
assumption that the distributions of covariates are compa-
rable between datasets used for model development and
validation purposes.

We hope that these calculations, and the guidance pro-
vided for their use, will help improve the quality of prog-
nostic research. As well as being used to provide sample
sizes for prospective studies in time-to-event data, they
can also be used for retrospective research; either to give
the required sample size before suitable existing data is
sought, or to calculate the likely precision of results where
a dataset has already been chosen. At the very least we
hope that the existence of these calculations will encour-
age researchers to consider the issue of sample size as a
matter of course when developing or validating prognostic
multivariable survival models.

Appendix: simulation studies to test sample size
calculations

The sample size calculations were tested using simulation,
to check that they provided the desired power and «, or
the desired confidence interval width.

Simulation parameters Observed (B1) Observed (B2)
B D power ) cens e % type 1 (se) % power (se) e) % type 1 (se) % power (se)
1.0 1.6 80 % 04 0 222 55(0.51) 81.7 (0.86) 222 5.0 (0.49) 81.5(0.87)
80 141 56(0.51) 80.8 (0.88) 133 5.1 (0:49) 79.5(0.90)
20 32 90 % 0.5 0 495 4.0(0.44) 89.6 (0.68) 483 4.0 (0.44) 88.1(0.73)
80 286 4.8(0.48) 92.1 (0.60) 291 44 (0.46) 92.2 (0.60)
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Table 3 Results of simulation study to test (D1) and (D2)
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Simulation parameters

Observed (D1) (95 % Cl)

Observed (D2) (95 % Cl)

B D w cens e % of D (se) within Sk £ w e % of D (se) within Bk £ w
1.0 1.6 0.2 0 553 94.7 (0.50) 550 94.8 (0.50)

80 348 946 (0.51) 331 944 (0.51)
20 32 0.3 0 616 946 (0.51) 602 944 (0.51)

80 356 94.7 (0.50) 363 94.4(0.52)

We simulated time-to-event data from an exponential
distribution, with baseline cumulative hazard function Hy,
using the method described by Bender et al. [31]. The sur-
vival time for the proportion hazards (PH) model with
regression coefficients (log hazard ratios) 8 and covariate
vector X was simulated using

T, = Hy'[ — log(U) exp(—B'X)] (7)

where U ~ U[0,1]. Since simulating a full multivariable
vector is complex both computationally and in terms of
interpretation, we instead used a surrogate scalar X. X was
simulated as ~ N (0, 1), and the value of 8 fixed, so that
the resulting prognostic index BX was also normal. In a
dataset simulated this way, D = B« [23].

We simulated random non-informative right-censoring
using the same method to obtain an exponentially dis-
tributed censoring time T, for each patient; note T, were
not dependent on X. Records where T, < Ts were
considered censored at time T,. The desired censoring
proportion was achieved by changing the baseline hazard.

Throughout our simulations we wished to use datasets
with an exact number of events and censoring proportion.
To obtain a dataset with exactly e; events and exact cen-
soring proportion cens, we first generated a dataset with
2(lfclen ;) records and approximate censoring proportion
cens. We then simply randomly selected e; records ending
in failure, and l_eclem — e; censored records, to form the
final dataset.

The variance or standard error of D was obtained by
bootstrap whenever required.

Calculations (B1) and (B2)

For (B1) the first step of the simulation is to generate
a ‘first’ study with e; /(1 — cens) records and exactly e;
events. This dataset is bootstrapped to obtain 012, the vari-
ance of D, and then A is calculated from this quantity and
e1. For (B2) the first step is to calculate 1, from Eq. (3)
with the desired estimates of D and cens.

The next steps are common to both (B1) and (B2) once
ey is calculated. Datasets of the required size are gener-
ated separately under the null and alternative hypotheses,
and bootstrapped to obtain se(D). The whole procedure is
repeated 2000 times for each combination of parameters
varied (D, power, § and cens), and test statistics calculated

to determine if the number of events e, gives the required
power and type 1 error. A selection of results is given in
Table 2. For (B1), this table shows the results for e; = 750;
the simulations were repeated for e; = 1500 and showed
very similar results but these are not presented here.

Calculations (D1) and (D2)

As for (B1), the first step of the simulation study for (D1)
is to generate a ‘first study’ to provide values of e; and 012
for the calculation of Ag.

For (D2) A, is calculated using Eq. (3). For both (D1)
and (D2), once ey has been calculated, a dataset with the
required number of events and censoring proportion is
simulated and D calculated. This was repeated 2000 times
for each combination of parameters. The proportion of
repetitions for which the estimate of D is within w of the
input D = Bk gives the % CI which has width £w. This
should approximate 1 — «, if the sample size calculation
and estimation of A are correct. A selection of results is
given in Table 3. For (D1), this table shows the results for
e1 = 750; the simulations were repeated for e; = 1500 and
showed very similar results but these are not presented
here.
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