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Abstract 

 

Gamma-aminobutyric acid type A receptors (GABAARs) are the main inhibitory 

neurotransmitter receptors in the central nervous system. As such, they play a pivotal 

role in synchronising neuronal network activity in the brain and their dysregulation has 

been implicated in numerous neuropsychiatric diseases such as depression, anxiety and 

schizophrenia. GABAARs are ligand-gated heteropentamers and can be modulated 

either directly or indirectly by a number of therapeutically-relevant compounds, such as 

the benzodiazepines, or by endogenous neuromodulators, such as the 

neurotransmitters dopamine and serotonin, and by neurosteroids. While much is known 

about the function of GABAARs, their modulation and interaction with neuromodulators 

and other neurotransmitter systems are less well understood. In particular, their role in 

the prefrontal cortex (PFC), a brain area strongly involved in motivation and planning, 

which is often negatively affected in neuropsychiatric disease, remains to be elucidated.  

 

The aims of this research project were to characterise synaptic and tonic inhibition in 

the PFC, explore dopaminergic and neurosteroid modulation of GABA inhibition and to 

examine effects on neuronal excitability. We focused on α2 subunit-containing GABAARs 

because of their role in anxiety and preferred subcellular localisation at the axon initial 

segment (AIS), an area that is critical for regulating neuronal spike output.  

Contrary to previous findings, we could not detect an effect of dopamine D4 receptor 

activation on GABA inhibition. However, using a mouse model expressing neurosteroid-

insensitive GABAAR α2 subunits, we found evidence for a significant differential 

involvement of this subunit and neurosteroid modulation in GABAergic synaptic 

inhibition between various layers of the PFC. We discovered that alterations in phasic 

GABA-mediated inhibition had no significant effects on pyramidal cell excitability, whilst 

increasing tonic inhibition reduced cell firing. Overall, this study demonstrates that tonic 

GABA inhibition has a more important role to play in regulating cortical network function 

than previously thought. 
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1 Introduction 

1.1 GABAergic inhibition in the brain  

Inhibitory neurotransmission is vitally important for regulating neuronal excitability and 

information processing in the central nervous system (CNS). The main mediators of 

inhibition in the brain include γ-aminobutyric acid (GABA) receptors, which can be 

distinguished into two principal types: type A and type B. Type A GABA receptors 

(GABAARs) are members of the Cys-loop containing ligand-gated family of ion channels 

and conduct Cl- and bicarbonate and are now known as the pentameric ligand-gated ion 

channel family (Moss and Smart, 2001; Sieghart, 1995; Sivilotti and Nistri, 1991; Smart 

and Paoletti, 2012). Type B GABA receptors (GABABRs), on the other hand, are G-protein 

coupled receptors (GPCRs). They are mainly found presynaptically, where they couple 

to Ca2+ channels, while postsynaptic GABABRs mostly couple to inwardly-rectifying K+ 

channels or adenylyl cyclase via G proteins (Bettler, 2004). Activation of presynaptic 

GABABRs can thus mediate inhibition by a presynaptic decrease in neurotransmitter 

release or by hyperpolarising the postsynaptic membrane (for reviews on GABABRs, see 

Bowery, 1993; Chalifoux and Carter, 2011). A third type, GABACRs, are sometimes 

distinguished. They are a group of homomeric ionotropic GABARs, comprising 

combinations of ρ subunit isoforms and are highly expressed in the retina (Lukasiewicz 

et al., 2004), though now considered to be a subgroup of the GABAAR. 

While all types of GABA receptors play an important role in the CNS, GABAARs are 

responsible for fast synaptic inhibition in the brain. Since maintaining the delicate 

balance between excitation and inhibition is crucial for normal function of the brain and 

often negatively affected in psychiatric disease (Möhler, 2006a, 2012; Rudolph and 

Möhler, 2014), GABAARs are the focus of this thesis. 

 

1.1.1 Structure and function of GABAA receptors 

GABAARs are ion-conducting channels forming a heteropentamer (Figure 1.1) which 

surrounds a central pore (Moss and Smart, 2001; Smart and Paoletti, 2012). Each subunit 

contains a large N-terminal domain, which contains the agonist binding site, and four 
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transmembrane-spanning domains (TM1-4, see Figure 1.1) with a large intracellular 

domain between TM3 and TM4 (Möhler, 2006b; Moss and Smart, 2001). The M2 

domains of each subunit are thought to form the lining of the pore, while the 

intracellular M3-M4 loop is thought to be a substrate for phosphorylation by protein 

kinases and involved in receptor targeting and clustering (Kittler and Moss, 2003; 

Möhler, 2006b; Moss and Smart, 2001; Smart, 1997).  

 

There are 19 known subunits (six α, three β, three γ, three ρ, as well as δ, ε, π and θ), 

which can be combined to form receptors of varying physiological and pharmacological 

properties (Farrant and Nusser, 2005; Tretter, 2008). Typically, two α and two β subunits 

are assembled together with one γ subunit to form a functional GABAAR (Figure 1.1) that 

is usually found at inhibitory synapses, whereas receptors substituting the γ subunit for 

a δ subunit are commonly extrasynaptic (reviewed in Moss and Smart, 2001; Sieghart 

and Sperk, 2002; Smart and Paoletti, 2012). However, there are exceptions to these 

 

Figure 1.1: Structure of the GABAAR and its subunits 
Schematic model of a typical GABAAR subunit structure (left) and their alignment in the 

pentameric structure of a GABAAR (right). GABAAR subunits typically consist of 4 transmembrane 

spanning domains (TM1-4) with a long extracellular N- and a short extracellular C-terminal 

domain (see text). The intracellular loop between TM3 and TM4 is thought to mediate receptor-

protein interactions (see text). The amino acid sequence interacting with gephyrin on GABAAR α 

subunits is coloured in red (Tretter et al., 2012). TM2, shown in pink, lines the channel-pore, as 

demonstrated in the model on the right. The most common GABAAR heteropentamers consist 

of two α-, two β- and one γ subunit (see text). Modified figure from Tretter et al. (2012). 
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‘rules’, as α1βγ-GABAARs have also been found outside the synapse (Nusser et al., 1998; 

Thomas et al., 2005) and, in fact, up to 60% of α1, α2 and β3 subunit labelling in 

hippocampal CA1 pyramidal cells has been postulated to be extrasynaptic (Kasugai et 

al., 2010). Furthermore, αβ-GABAARs (i.e. without a γ- or δ subunit) have also been 

observed (Brickley et al., 1999; Mortensen and Smart, 2006).  

 

Whilst, in theory, the number of different subunits would allow for a multitude of 

different GABAAR combinations, even when taking into account preferred subunit 

associations, studies have shown less than 20 native receptor combinations to 

commonly occur in vivo, the most prevalent of which are α1β2/3γ2, α2β3γ2, α3β3γ2 

(Fritschy and Möhler, 1995; Möhler, 2006b; Olsen and Sieghart, 2009; Sieghart and 

Sperk, 2002; Whiting et al., 1995). 

 

GABAAR isoforms 

The structural and physiological diversity of GABAARs is paralleled by receptor isoform 

expression patterns varying with brain area, cell type and even subcellular location 

(Fritschy and Möhler, 1995; Laurie et al., 1992a; Mody and Pearce, 2004; Pirker et al., 

2000; Sieghart and Sperk, 2002). Furthermore, receptor composition undergoes 

changes during early postnatal development (Hutcheon et al., 2000; Kobayashi et al., 

2008; Laurie et al., 1992b) and throughout the oestrous cycle (Maguire et al., 2005). For 

example, while α1-containing GABAAR (α1- GABAAR) expression is abundant throughout 

the brain, α5 subunits, which preferably co-assemble with β3 and γ2 subunits, are 

largely found in the hippocampus, where they comprise up to 20% of all diazepam-

sensitive GABAARs (Fritschy and Möhler, 1995; Möhler, 2006b; Sieghart and Sperk, 

2002). By comparison, α6 subunits  are exclusively expressed in the granule cell layer of 

the cerebellum (Nusser et al., 1996a). Furthermore, GABAAR isoforms can be localised 

to specific subcellular compartments. δ-GABAAR, for example, are exclusively found at 

extrasynaptic sites, whereas the incorporation of a γ subunit is necessary, although not 

an absolute determinant, for synaptic localisation (Nusser et al., 1998; Wei et al., 2003). 

In addition, GABAAR isoforms may be specifically localised to synaptic sites in a manner 

that is dependent on the type of presynaptic neuron (Figure 1.2). For example, on 
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hippocampal pyramidal neurons, α2-GABAARs are mainly found at synapses innervated 

by Chandelier cells (Nusser et al., 1996b), while interneurons expressing the calcium 

binding protein (CBP) cholecystokinin (CCK) preferentially contact synapses enriched in 

α2- and α5-GABAARs, and α1-GABAARs are mainly found in synapses with basket cells 

expressing the CBP  parvalbumin (PV) (Ali and Thomson, 2008; Klausberger et al., 2002; 

Nyíri et al., 2001; Thomson et al., 2000). Furthermore, somatic or perisomatic synapses 

mainly contain α1- or α2/3-GABAARs, while α5-GABAARs are found predominantly on 

distal dendrites (Ali and Thomson, 2008; Fritschy and Mohler, 1995; Sperk et al., 1997) 

and α2-GABAARs are enriched at the axon initial segment (AIS) (Nusser et al., 1996b). 

 

 

 

 

 

 

Figure 1.2: GABAAR-subtype specific interneuron innervation at pyramidal cell membrane 
subcompartments 
Schematic drawing of a pyramidal cell and its innervation pattern by different types of 

interneurons. PV-positive Chandelier cells innervate α2-GABAAR-enriched AIS, while PV-positive 

basket cells preferentially contact α1-GABAARs in the perisomatic region. CCK-positive 

interneurons contact α5-GABAARs on distal dendrites as well as perisomatic α2-GABAARs (see 

text). As will be explored in more depth in section 1.4.2, CCK interneurons typically show a 

regular-spiking firing pattern (blue box), while PV-positive interneurons exhibit a fast-spiking 

firing pattern (green box; adapted from Armstrong and Soltesz, 2011). 
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GABAAR pharmacology 

The different GABAAR isoforms also possess varying pharmacological profiles. Presence 

of the γ subunit, for example, is required to convey sensitivity to benzodiazepines, a 

class of psychoactive drugs widely used to treat anxiety and other disorders (Möhler et 

al., 2000; Sieghart, 1995). γ2-GABAARs are the most sensitive, while γ1 and γ3 show 

reduced sensitivity to benzodiazepines. In addition, pharmacological properties of 

GABAARs are influenced to a large extent by the α subunit, which forms part of the 

binding site for the neurotransmitter GABA (β-α interface) as well other well-known 

allosteric modulators, such as the benzodiazepines (α-γ interface; binding sites will be 

explored in more detail in section 1.2)(Möhler, 2006b; Sieghart, 1995). For example, the 

affinity for GABA is most strongly affected by the α subunit isoform, with α3 subunits 

showing the highest sensitivity and α6 the lowest (Farrant and Nusser, 2005; Mortensen 

et al., 2011; Picton and Fisher, 2007). Furthermore, α1 is thought to mediate the 

sedative effects of benzodiazepines (McKernan et al., 2000; Rudolph et al., 1999), while 

α2 and α3 mediate their anxiolytic and antihyperalgesic properties (Crestani et al., 2001; 

Dias et al., 2005; Löw et al., 2000; Zeilhofer et al., 2009). Likewise, the development of 

tolerance to benzodiazepines seems to be dependent on the activity of both α1 and α5-

containing GABAARs (van Rijnsoever et al., 2004). The action of other allosteric ligands 

such as barbiturates, ethanol, anaesthetics and neuroactive steroids are thought to be 

mediated via binding-pockets in the transmembrane region. These lie either within α- 

or β subunits or in an α/β-inter subunit transmembrane pocket, and can therefore also 

be differentially affected by the subunit isoform (Olsen and Sieghart, 2008, 2009).  

 

Furthermore, GABAAR composition influences biophysical receptor properties, varying 

in particular with the α subunit incorporated into the receptor (for a review, see Farrant 

and Nusser, 2005). These properties comprise the affinity for an agonist, as well as the 

efficacy of the agonist in gating the receptor channel. The subunit composition also 

affects the kinetic profile of receptor currents, such as the rise time, the decay time upon 

receptor inactivation and also the desensitisation rate of the receptor (i.e. a non-

conducting  state  in the continued presence of the agonist binding) (Farrant and Nusser, 
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2005). For example, in response to fast applications of high concentrations of GABA, α1-

GABAARs exhibit 2 to 10 times faster decay kinetics compared to α2-GABAARs, whilst rise 

times are twice as fast in α2-GABAARs (Dixon et al., 2014; Lavoie et al., 1997; McClellan 

and Twyman, 1999) and activation, desensitisation and deactivation of α3-GABAARs are 

2  to 4 times slower compared to α1-GABAARs (Gingrich et al., 1995).  

Different α subunit isoforms can also be linked to specific functions. For example, 

deficits in, or inhibition of,  α5-GABAARs have been shown to improve cognition and 

enhance performance in hippocampal-dependent memory tasks (Chambers et al., 2004; 

Crestani et al., 2002).  Given their high expression in midbrain dopaminergic neurons 

(Fritschy and Möhler, 1995; Pirker et al., 2000), α3-GABAARs are thought to be the main 

GABAAR isoform exerting inhibitory control over the dopaminergic system. Evidence for 

this are the sensorimotor deficits observed in α3-knockout mice, which can be rescued 

by administration of haloperidol, a dopamine D2-specific antagonist (Yee et al., 2005). 

 

Tonic vs phasic inhibition 

There are two main forms of inhibitory conductance mediated by GABAARs: tonic and 

phasic inhibition (for a review, see Farrant and Nusser, 2005). GABAARs which mediate 

phasic inhibition are synaptically located and deliver rapid changes in membrane 

conductance in response to synaptic neurotransmitter release. Synaptic GABAARs are 

thus exposed to transiently high quantal GABA concentrations. These receptors usually 

contain the γ subunit and, compared to GABAAR containing the δ subunit, possess a 

lower affinity for GABA (e.g. an EC50 of 2.6 - 11 µM for γ- vs 0.2 – 0.5 µM for δ-GABAARs 

(Brown et al., 2002; Mortensen et al., 2011; Saxena and Macdonald, 1996)), as well as 

faster receptor activation (0.46 ± 0.04 ms for γ- vs. 2.4 ± 0.27 ms for δ-GABAARs) and 

slower deactivation (193 ± 31 ms for γ- vs. 79.7 ± 7.3 ms for δ-GABAARs (Haas and 

Macdonald, 1999)).  

 

Conversely, tonic inhibition is mediated by extrasynaptic receptors, which are activated 

by low, ambient GABA levels and result in a persistent “tonic” conductance. The main 

receptor isoforms mediating tonic inhibition are α5βγ and α4/6βδ-GABAARs (Farrant 

and Nusser, 2005). α4/6βδ-GABAARs possess the highest affinity for GABA (i.e. the 
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lowest EC50 value, see above)  (Brown et al., 2002; Feng and Macdonald, 2004) but a 

much slower receptor activation and desensitisation (Brown et al., 2002; Haas and 

Macdonald, 1999). They provide an underlying inhibitory tone, which is revealed by a 

change in the holding current in the presence of GABAAR blockers (Brickley et al., 1996; 

Kaneda et al., 1995). The source of GABA activating these extrasynaptic receptors is 

thought to result from “spillover” generated from activation of neighbouring synapses 

as well as ambient levels of GABA in the extracellular space (Farrant and Nusser, 2005). 

GABA transporters play a key role in resulting ambient GABA levels since, in addition to 

removing GABA from the extracellular space, the transport of GABA can be reversed, 

dependent upon membrane potential and transmembrane gradient for the substrates 

(GABA, Na+, Cl-) (Bertram et al., 2011; Farrant and Nusser, 2005; Richerson, 2004; 

Semyanov et al., 2004). In the cerebellum, the anion channel Bestrophin 1 is thought to 

be responsible for tonic GABA release from glial cells (Lee et al., 2010). 

 

On a functional level, GABAARs containing the α5 subunit regulate pyramidal excitability 

in the cornu ammonis area 1 (CA1) of the hippocampus (Caraiscos et al., 2004; Semyanov 

et al., 2004) as well as in layer V somatosensory cortex (Yamada et al., 2007). GABAARs 

containing the δ subunit, on the other hand, mediate tonic inhibition in cerebellar 

granule cells (CGCs), denate gyrus granule cells (DGGs), pyramidal cells (PCs) in layer II/III 

neocortex, thalamic relay neurons and medium spiny neurons of the striatum, as 

examples (Brickley and Mody, 2012; Drasbek and Jensen, 2006; Salin and Prince, 1996; 

Stell et al., 2003). 

 

Phasic and tonic inhibition are thought to have different physiological roles, which will 

be explored more thoroughly in chapter 5. Briefly, while phasic inhibition is thought to 

mediate transient changes in excitability and thus shape the neuronal firing pattern as 

well as generate rhythmic network activity, tonic inhibition is thought to set the basic 

threshold for firing as well as affecting the neuronal gain (for a review, see Farrant and 

Nusser, 2005). 
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Physiological role of GABAAR channel gating 

The physiological consequences of GABAAR channel opening can be manifold, 

depending largely on the electrochemical gradient of ions conducted by GABAARs and 

the receptor’s particular subcellular location. GABAAR activation increases the 

membrane conductance for Cl- and, to a lesser extent, HCO3
- (Bormann et al., 1987; 

Kaila, 1994), which usually leads to an influx of Cl- and transient hyperpolarisation of the 

postsynaptic membrane. However, the direction of ion flow (and, therefore, the effect 

on the membrane potential (Vm)) depends on the relationship between the Cl- 

equilibrium potential (ECl, which is determined by the distribution of Cl- across the 

membrane and its Cl- permeability) and the resting membrane potential (Figure 1.3). 

This is regulated by a number of Cl- transporters and varies with cell-type, subcellular 

location and development. Usually, the K+-Cl--cotransporter, KCC2, maintains a chloride 

equilibrium potential more negative than RMP (Figure 1.4; Payne et al., 2003),, e.g. -76 

to -81 mV compared to an RMP of -74 mV in crayfish stretch receptor neurons (Kaila et 

al., 1992). Early in development, however, GABA transmission is thought to be excitatory 

due to the expression of the sodium- and potassium-coupled cotransporter, NKCC1 

(Payne et al., 2003), which leads to an ECl depolarised compared to the RMP (e.g. an ECl 

of −38 ± 4 mV in immature primary cerebellar neurons (Succol et al., 2012)), causing a 

relative efflux of Cl- (Figure 1.4). 

 

Early in postnatal development, the expression of chloride transporters changes to the 

adult form, the chloride-extruding potassium-chloride co-transporter KCC2 (Payne et al., 

2003; Rivera et al., 2005), thus shifting ECl to a more negative potential than the RMP, 

leading to Cl--influx and hyperpolarisation upon receptor activation. But even in the 

mature brain, GABAA may still exert depolarising effects in some cases (Chavas and 

Marty, 2003; Gulledge and Stuart, 2003; Stein and Nicoll, 2003). An interesting example 

of this involves a subtype of GABAergic interneurons, the Chandelier cells, whose axo-

axonic connections at the AIS may be depolarising under certain conditions (Woodruff 

et al., 2009, 2010, 2011). The reversal potential of pyramidal neuron inhibitory 

postsynaptic currents (IPSCs) elicited by Chandelier cells in layer II/III somatosensory 
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cortex, for example, was shown to be more depolarised (–51.1 ± 5.4 mV) compared to 

the RMP (–72 ± 2 mV) (Szabadics et al., 2006).  

 

 

 

 

 

Figure 1.3: Different effects of GABAAR receptor activation on postsynaptic membrane 
potential depends on the chloride reversal potential 
Figure demonstrating the resulting post-synaptic potential (PSP, green) from a concurrent 

GABAergic PSPs (blue) and a glutamatergic excitatory PSP (EPSP, red). A. In most mature 

neurons, ECl (blue dotted line) is more negative than the RMP (black line), while ENa (red dotted 

line), the main conductance of glutamate receptors, lies more positive than the RMP. Opening 

of GABAARs will therefore lead to an influx of Cl- and a hyperpolarising IPSP (blue line), while 

opening of glutamate receptors leads to an influx of Na+ and a depolarising EPSP (red line). The 

sum of coincident glutamatergic and GABAergic inputs in this scenario will be a slightly reduced 

EPSP (green line) possibly falling below threshold for spike generation. B. In immature neurons 

and some mature neurons, ECl can rest more depolarised than the RMP, leading to a depolarising 

GABAergic PSP. The sum of parallel glutamatergic and GABAergic inputs in this scenario will be 

more depolarising than a glutamatergic input alone and may elicit an action potential, if the 

threshold for action potential generation is crossed. C. In some cases, ECl may lie very close to, 

or at the RMP, causing no significant net ion flow upon GABAAR opening. However, a 

simultaneous glutamatergic input may still be reduced due to an overall increase in 

conductance, causing shunting inhibition (see text). 
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Figure 1.4: Chloride transporters determine the direction of chloride flow through GABAARs 
Schematic models demonstrating the effect of different chloride transporters on the direction 

of chloride flow across the membrane. Na+/K+ ATPases maintain the distribution of sodium and 

potassium across the membrane by concomitantly extruding sodium and importing potassium 

against their concentration gradients via the hydrolysis of ATP. This transporter is essential in 

maintaining the RMP in the presence of leak currents and during intense action potential activity 

and is thought to be one of the most energy-consuming processes in the brain (Howarth et al., 

2012). Most adult neurons express the K+/Cl—cotransporter KCC2, which exports K+ along, and 

Cl- against their concentration gradients, creating a chloride reversal potential more negative 

than the RMP, which leads to a hyperpolarising  Cl- current upon opening of GABAARs. In 

immature neurons, however, the Na+/K+/Cl—cotransporter NKCC1 imports Na+ and Cl- along and 

K+ against their concentration gradients, creating a chloride reversal potential more positive 

than the RMP, which leads to a depolarising Cl-  current upon opening of GABAARs. Figure 

adapted from Payne and colleagues (2003). 

 

Often, however, ECl and RMP lie very close together (around -70 mV), in which case 

GABAAR opening has no effect major effect on Vm. The net effect on cellular excitability 

in this case may still be inhibitory, though (Gulledge and Stuart, 2003; Staley and Mody, 

1992). This can be explained by the concomitant increase in membrane conductance 

upon channel opening, which attenuates voltage changes across the membrane. This 

phenomenon is called shunting inhibition and its physiological role will be explored in 

more detail in chapter 5.  
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1.1.2 Modulation of GABAARs 

Varying effects of GABAAR channel opening 

GABAergic transmission can be modulated pre- or postsynaptically. The pattern and 

strength of GABAergic inputs onto a cell depend on the magnitude and the rate with 

which GABA, in the synaptic cleft, occupies and dissociates from receptor binding sites. 

One important factor which dictates this is the quantity and frequency of presynaptic 

GABA release, which is largely modulated through activity of the presynaptic neuron and 

leads to the release of one to several transmitter vesicles (Rudolph et al., 2015). To some 

extent, transmitter release, however, is action potential-independent and is usually the 

result of spontaneous vesicle fusion with the presynaptic membrane (Ropert et al., 

1990). Uptake of GABA through transporters is another factor changing ambient GABA 

levels (Richerson and Wu, 2003). GABA transporters can undergo subcellular 

redistribution (both laterally within the cell membrane and vertically through changes 

in their cell surface expression) and functional modulation by protein kinases and 

phosphatases (Corey et al., 1994; Quick et al., 2004; Scimemi, 2014). 

 

Trafficking, clustering and post-translational modification 

 At the postsynaptic level, the profile of GABAergic inhibition can be modulated by a 

number of different processes affecting receptor composition, subcellular localisation 

and pharmacological properties. GABAARs display rapid lateral diffusion between 

cellular compartments on the cell surface, or can be trafficked from intracellular 

compartments to the cell surface, and vice versa (see Figure 1.5; Comenencia-Ortiz et 

al., 2014; Jacob et al., 2008; Luscher et al., 2011; Muir et al., 2010; Smith et al., 2012; 

Thomas et al., 2005). Interaction of  the intracellular loops of specific subunits with a 

host of regulatory proteins is crucial for GABAAR trafficking and targeting, and these 

interactions can be modulated by post-translational modifications (Arancibia-Cárcamo 

and Kittler, 2009; Comenencia-Ortiz et al., 2014; Kittler et al., 2005; Luscher et al., 2011).  

 

Palmitoylation of the γ subunit by the Golgi-specific DHHC zinc finger protein (GODZ) is 

thought to play an important role in receptor trafficking within the secretory pathway 

and normal assembly of GABAAR at the synapse (Fang et al., 2006; Keller et al., 2004).  
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Figure 1.5: GABAAR trafficking and localisation are regulated by an array of interacting proteins 
Cell surface clustering of synaptic and extrasynaptic GABAARs as well as their dynamic transport 

to and from the cell membrane is regulated by the differential interaction of the receptor 

subunits with membrane-bound or intracellular proteins, such as scaffolding proteins and 

kinases (see main text). Gephyrin, radixin, neurexin and neuroligins (NL) are responsible for 

surface clustering. The interaction between these proteins and GABAAR is modulated by 

phosphorylation via protein kinase A (PKA), PKC and Src, or dephosphorylation by protein 

phosphatases (PP) such as phospholipase C-related catalytically inactive protein (PRIP), PP1α 

and PP2A. Interaction with AP2 facilitates endocytosis and ubiquitinylation targets the receptor 

for degradation. Interaction with HAP1, CAML, the protein that links integrin-associated protein 

with the cytoskeleton-1 (PLIC1), GODZ, GABARAP and KIF5, however, mediate recycling via 

endosomes or delivery to the surface from the endoplasmatic-reticulum (ER) and Golgi 

apparatus (figure has been modified from Arancibia-Cárcamo and Kittler, 2009; Jacob et al., 

2008; Luscher et al., 2011). 

 

Dephosphorylation of β or γ subunits facilitates their interaction with the clathrin-

adaptor protein 2 (AP2) and clathrin-mediated endocytosis, thus allowing dynamic 

removal from the membrane (Kittler et al., 2000, 2005; Figure 1.5). Ubiquitynation of 

the γ subunit tags receptors for lysosomal degradation (Arancibia-Cárcamo et al., 2009), 

while interaction of γ2 subunits with calcium-modulating cyclophilin ligand (CAML) aids 

in receptor recycling to the membrane (Yuan et al., 2008). Receptor recycling is also 

favoured by interaction of β subunits with huntingtin-associated protein 1 (HAP-

1)(Kittler et al., 2004) via a complex with the kinesin superfamily motor protein 5 (KIF5) 

and microtubule directed vesicular transport (Twelvetrees et al., 2010; Figure 1.5). 

Another important protein involved in GABAAR surface delivery is the 17 kDa GABAAR 

associated protein (GABARAP), a microtubule-binding protein which co-localises with 

GABAARs in the Golgi compartment and interacts with the γ subunit to regulate receptor 

trafficking (Kittler and Moss, 2001; Wang et al., 1999). 

 

 On the other hand, interactions with intracellular scaffolding proteins can change 

inhibitory properties by clustering of GABAARs to particular membrane sites. (Renner et 

al., 2012; Tretter et al., 2012; Vithlani et al., 2011).  The γ subunit and its interaction with 

the scaffolding protein gephyrin is thought to be of particular importance to GABAAR 

anchoring at synaptic sites (Tretter et al., 2012). The presence of a γ2 subunit is 

considered the main determining factor for synaptic localisation and clustering of 
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GABAARs, since ablation of γ2 results in concomitant downregulation of gephyrin and 

reduction in miniature-(m)IPSC frequency (Essrich et al., 1998). Yet, synaptic targeting 

of GABAARs is not solely dependent upon the γ subunit, since overexpression of α6 

subunits (Wisden et al., 2002) or the incorporation of α5 subunits can override γ2-

mediated synaptic targeting (Brünig et al., 2002; Crestani et al., 2002) and synaptic IPSCs 

can still be detected in mice lacking the γ2 subunit (Kerti-Szigeti et al., 2014). It has been 

suggested, that while the γ subunit undoubtedly plays a significant role in anchoring 

GABAARs, it does not mediate targeted receptor trafficking to the synapse (Tretter et al., 

2012). Instead, the α subunit was postulated for this role. Variations in receptor isoform 

targeting beyond localisation at synaptic or extrasynaptic sites seem to rely on the 

isoform of the α subunit (evidenced by synapse-specific localisation of α subunits, as 

detailed in section 1.1.1 and Figure 1.2) and direct interactions of gephyrin with α1,2 

and 3 subunits have since been proven (Mukherjee et al., 2011; Tretter et al., 2008, 

2011). Despite an earlier study which failed to show a direct interaction between 

gephyrin and GABAAR β subunits (Meyer et al., 1995), more recent research also 

suggests a role for a phosphorylation-dependent interaction between gephyrin and β3 

subunits in mediating chemically induced inhibitory long-term potentiation (Petrini et 

al., 2014).  

 

Specific interactions between the presynaptic and postsynaptic site may aid in both, 

receptor targeting to specific synapses and in the guided formation of synapses (Fuchs 

et al., 2013; Thomson and Jovanovic, 2010). The mechanisms that govern this distinction 

remain unknown, however, complexes between postsynaptic neuroligins, in particular 

neuroligin 2, which is specific for GABAergic synapses (Graf et al., 2004), and presynaptic 

neurexins, are thought to play a vital role in synapse formation (Craig and Kang, 2007; 

Kang et al., 2008; Figure 1.5). Neurexins may even regulate GABAergic transmission 

through interacting with postsynaptic receptors (Zhang et al., 2010). There is also 

interesting evidence from a recent study documenting the propensity of GABAARs to 

initiate synapse formation. In this study, a co-culture system of neurons and human 

embryonic kidney (HEK) cells expressing α1β2γ2-GABAARs was used, and showed the 

formation of active synaptic contacts between the two cell types (Fuchs et al., 2013). 
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Mechanisms governing the cell surface clustering of extrasynaptic GABAARs are less well 

understood, however, the actin-binding protein radixin has been identified as an 

essential component in the extrasynaptic clustering of α5-GABAARs (Loebrich et al., 

2006; Figure 1.5). 

 

Modulation of GABAARs by protein kinases and phosphatases 

Beyond trafficking and receptor localisation, phosphorylation of GABAARs can have 

wide-ranging implications for receptor properties. The effect can vary with the identity 

of the kinase or phosphatase involved, which target specific amino acid sequences and 

GABAAR subunits (see reviews Arancibia-Cárcamo and Kittler, 2009; Brandon et al., 

2002; Kittler and Moss, 2003; Smart, 1997). Studies using recombinant receptors have 

revealed key residues within the intracellular loop between M3 and M4 of β1-3 and γ2 

subunits as substrates for a range of different kinases, such as PKC, PKA and the receptor 

tyrosine-kinase Src (Brandon et al., 2002). An example demonstrating the subunit 

specificity of protein kinase action is the observation that PKA negatively regulates β1-

GABAARs, but enhances the GABA-response in receptors containing the β3 subunit 

(McDonald et al., 1998). Phosphorylation by PKC is generally thought to reduce GABAAR 

function and PKC has been shown to bind to β3-GABAARs, providing a basal level of 

phosphorylation (Brandon et al., 2000). PKC phosphorylation at β3-GABAARs can also 

disrupt their interaction with AP2 and therefore stabilise the receptor at the synapse 

(Kittler et al., 2005; Smith et al., 2012). Interestingly, a similar function is fulfilled by 

tyrosine kinases at γ2-GABAARs (Kittler et al., 2008). Changes in intracellular Ca2+-levels 

also play a role in regulating GABAAR function via various Ca2+-dependent kinases and 

phosphatases. For example, activation of N-methyl-D-aspartate (NMDA) receptors can 

affect GABAAR lateral mobility via calcineurin mediated dephosphorylation of the γ2 

subunit (Muir et al., 2010). 

 

1.2 Pharmacological modulation of GABAARs  

In addition to their native agonist, GABA, a wide array of pharmacological compounds 

modulate GABAARs at distinct sites (Figure 1.6), some of which commonly find clinical 
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use, such as barbiturates, benzodiazepines and anaesthetics (Korpi et al., 2002; Sieghart, 

1995). Here, only a brief introduction is given to some of the most studied allosteric 

modulators. The role of allosteric modulators on GABAARs have recently been reviewed 

in-depth by Sieghart (2015).  

 

Barbiturates, amongst them pentobarbitone, are positive allosteric modulators of the 

GABAAR, which are anxiolytic and hypnotic. Depending on their concentration, they can 

act either as allosteric modulators, potentiating the action of GABA, as direct activators 

of channel gating or, at very high concentrations, as channel blockers (Thompson et al., 

1996). At concentrations <50 µM, barbiturates allosterically increase the GABA response 

by increasing the average channel opening time, without affecting the channel 

conductance or opening frequency (Akk and Steinbach, 2000; Sieghart, 1995). Their 

binding site has been postulated to lie within the transmembrane region of the α/β- and 

γ/β-interface (Chiara et al., 2013) (Figure 1.6). 

 

Benzodiazepines, such as lorazepam, flunitrazepam and diazepam, act as allosteric 

modulators and do not gate the receptor directly. They have superseded barbiturates in 

clinical use due to their lower risk of overdose (Smith and Rudolph, 2012). They bind at 

the α/γ-interface and potentiate the response to GABA by increasing the frequency of 

receptor opening (Sigel and Buhr, 1997). The affinity of GABAAR isoforms for 

benzodiazepines is dependent on their subunit composition. For example, binding of 

benzodiazepines relies on the presence of a γ subunit, and the absence of α4 and α6 

subunits (Pritchett et al., 1989; Wieland et al., 1992). Introducing a histidine to arginine 

point mutation at position 101 (H101R) in the benzodiazepine binding-site of α-GABAARs 

has been shown to ablate benzodiazepine binding without affecting receptor function 

and has been a vital tool in studying receptor pharmacology (Crestani et al., 2001; Löw 

et al., 2000; Rudolph et al., 1999). In addition to pharmacological compounds, there is 

also evidence for endogenous ligands at the benzodiazepine binding site, so-called 

endozepines, such as the 10 kDa peptide diazepam-binding inhibitor,  which has been 

shown to potentiate GABAergic transmission in the thalamic reticular nucleus (Christian 

et al., 2013; Farzampour et al., 2015). 
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Figure 1.6: Binding sites of specific molecules at the GABAAR 
GABAARs possess several distinct binding sites for different pharmacological compounds (see 

text). GABA and other orthosteric agonists and antagonists, such as muscimol or bicuculline, 

respectively, bind at the β/α-interface in the extracellular domain. Benzodiazepines (BZ) act as 

allosteric modulators at the α/γ-interface. Barbiturates are thought to bind in the 

transmembrane spanning part of the β/γ-interface, while neurosteroids (NS) can either 

allosterically modulate GABAARs through a binding site in the transmembrane region of the α 

subunit, or directly gate channel opening via another site near the agonist binding site at high 

concentrations (>1 µM). 

 

Other modulators of GABAARs are convulsants such as picrotoxin, which non-

competitively blocks GABAARs by binding in or close to the channel pore (Korpi et al., 

2002; Figure 1.6). Non-selective compounds competing for the GABA binding site at 

GABAARs are the agonist muscimol and the competitive antagonist bicuculline, which 

are commonly used as experimental tools in studying GABAAR function (Korpi et al., 

2002). To target specific receptor isoforms, selective compounds have been developed, 

such as the δ-GABAAR-selective agonist, 4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridin-3-ol 

hydrochloride (THIP) (Krogsgaard-Larsen et al., 2004) or the α5-GABAAR-selective 

inverse agonists, 3-(1,1-Dimethylethyl)-7-(5-methyl-3-isoxazolyl)-2-[(1-methyl-1H-
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1,2,4-triazol-5-yl)methoxy]-pyrazolo[1,5-d][1,2,4]triazine (MRK-016) and L-655,708 

(Chambers et al., 2004; Quirk et al., 1996).  

 

Contrary to most of the compounds discussed above, neurosteroids are synthesised de 

novo in the brain and play an important role in modulating GABAergic function. Given 

their important role in psychiatric disorders, their physiology will be explored in more 

detail below. 

 

1.2.1 Neurosteroid physiology 

Neurosteroids are allosteric modulators at GABAARs, enhancing GABAergic transmission 

by increasing the probability of channel opening at low nM concentrations (<100 

nM)(Callachan et al., 1987; Chisari et al., 2010a) or at higher concentrations, directly 

gating the channel pore in a GABA-mimetic fashion, through a site independent from 

the GABA binding site (Hosie et al., 2006; Lambert et al., 1990). At high doses, 

neurosteroids can act as anaesthetics, whereas lower doses produce anxiolytic and 

analgesic effects (Belelli and Lambert, 2005; Lambert et al., 2009; Mitchell et al., 2008; 

Poisbeau et al., 2005; Wang, 2011). Furthermore, neurosteroids can enhance GABAergic 

transmission by increasing IPSC frequency. This presynaptic effect of neurosteroids is 

mediated by changes in presynaptic Ca2+-permeability following activation of 

presynaptic GABAARs (Haage et al., 2002; Poisbeau et al., 1997). Whilst there are reports 

of sulphated neurosteroid derivatives, which possess an inhibitory action at GABAARs 

(Hosie et al., 2007; Paul and Purdy, 1992), these will not be discussed within the scope 

of this thesis. 

 

Amongst the endogenously synthesised positive allosteric steroids are the progesterone 

derivatives, 5α-pregnan-3α-ol-20-one (3α,5α-THPROG or allopregnanolone) and 5β-

pregnan-3α-ol-20-one (3α,5β-THPROG) and the deoxycorticosterone metabolite, 5α-

pregnan-3α,21-diol-20-one (THDOC) (Belelli and Lambert, 2005; Lambert et al., 2009; 

Mitchell et al., 2008; Wang, 2011).  
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An important discovery in the characterisation of neurosteroids was that neurosteroids 

in the brain are not only derived from endocrine glands such as the adrenals and ovaries 

(Paul and Purdy, 1992; Purdy et al., 1991), but can be synthesised de novo by certain 

types of neurons as well as glial cells, and be secreted in a paracrine fashion to modulate 

GABAergic inhibition in the brain (Agís-Balboa et al., 2006; Melcangi et al., 2001; Mellon 

and Vaudry, 2001).  

 

Neurosteroids are involved in physiological as well as pathophysiological processes 

(Mitchell et al., 2008). Concomitant with their role in physiological as well as 

pathophysiological processes, neurosteroid levels in the brain undergo highly dynamic 

changes, fluctuating with stress hormone levels, the ovarian cycle, and development 

(Paul and Purdy, 1992; Purdy et al., 1991). At the hypothalamic-pituitary-adrenal (HPA) 

axis, neurosteroids are part of the stress response (Mody and Maguire, 2011; Purdy et 

al., 1991; Sarkar et al., 2011; Skilbeck et al., 2010). Levels of both allopregnanolone and 

THDOC are increased in response to acute stress. However, chronic stress has been 

shown to reduce neurosteroid levels at rest, while leading to a stronger increase in 

allopregnanolone levels in response to acute stress (Serra et al., 2000). In addition, 

repeated stress exposure can have adverse effects, such as memory impairment (Lupien 

et al., 2005). This may in part be mediated by long-term changes to the GABAergic 

system, since downregulation of GABAARs has been observed to occur in response to 

chronic neurosteroid exposure (Barnes, 1996). Conversely, upregulation of δ-GABAAR in 

response to increases in stress- and sex hormones has been shown to be mediated by 

neurosteroid metabolites in hippocampal dentate gyrus granule cells (DGGCs) (Maguire 

and Mody, 2007). These findings are just some examples for the wide-ranging stress-

induced changes in brain neurosteroid levels that may significantly contribute to 

psychiatric disorders (Gunn et al., 2015; Mody and Maguire, 2011; Skilbeck et al., 2010). 

 

Neurosteroid levels also change in pregnancy. Allopregnanolone, the neurosteroid 

metabolite of progesterone, reaches its highest physiological levels during the later 

stages of pregnancy (Corpéchot et al., 1997), and plays an important role in parturition 

(for a review, see Brunton et al., 2014). The onset of parturition is regulated by oxytocin-
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releasing magnocellular neurons in the supra-optical and paraventricular nuclei. The 

release of oxytocin is sensitive to stressors, such as the interleukins, levels of which 

increase in relation to an immune challenge. To prevent premature parturition, oxytocin 

neurons are quiescent during the later stages of pregnancy, presumably via an increase 

in GABAergic inhibition through raised levels of allopregnanolone (Brunton and Russell, 

2008). Shortly before birth, a sudden reduction in allopregnanolone synthesis has been 

suggested to promote oxytocin release and facilitate parturition (Brunton et al., 2014). 

On a pathophysiological level, neurosteroids have been implicated in mental disorders 

such as anxiety and depression (Eser et al., 2008), mood changes related to the 

menstrual cycle (Wang, 2011) and puberty (Shen et al., 2007), neurodegenerative 

disorders such as Alzheimer’s disease (Luchetti et al., 2011; Marx et al., 2006), as well as 

different forms of epilepsy (Biagini et al., 2010; Reddy and Rogawski, 2012). Abnormal 

levels of neurosteroids have been found in a variety of pathophysiological conditions, 

including schizophrenia and various forms of depression (Lambert et al., 2009). They can 

be influenced by drugs such as alcohol, shown by an increase in allopregnanolone in 

response to acute ethanol administration (Kumar et al., 2004; Sanna et al., 2004),  and 

antidepressants, as evidenced by decreases in THDOC in fluoxetine-treated depressed 

patients (Ströhle et al., 2000). 

 

Mutagenesis studies suggest two discrete binding sites of neurosteroids at GABAARs: 

within the transmembrane domains of the α subunit (allosteric modulation; Figure 1.6) 

and at the β-α-interface (direct activation)(Hosie et al., 2006, 2009). At the allosteric 

site, binding of neurosteroids alters the kinetics of GABAAR ion channel gating, 

prolonging the decay time of IPSCs. The strength of the effect depends on the brain area 

and neuronal subtype, due to differential expression of neurosteroid synthetic enzymes, 

and it varies with the activity of local kinases and phosphatases as well as the  subunit 

composition of GABAAR isoforms (Adams et al., 2014; Belelli and Lambert, 2005; Belelli 

et al., 2002; Lambert et al., 2009). While only subtle differences exist between GABAARs 

incorporating isoforms of α, β and γ subunits, neurosteroids have profound effects on 

extrasynaptic tonic inhibition (Belelli and Lambert, 2005). They are particularly effective 

at enhancing GABA mediated tonic conductance at δ-GABAARs (Belelli et al., 2002; 
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Brown et al., 2002), since GABA only acts as a partial agonist at these receptors 

compared to THIP (a super agonist) (Bianchi and Macdonald, 2003). Sensitivity to 

neurosteroids can be dynamically regulated by receptor phosphorylation (Adams et al., 

2015; Comenencia-Ortiz et al., 2014). For example, in addition to the aforementioned 

drop in neurosteroid synthesis around parturition, the neurosteroid sensitivity of 

GABAARs has also been shown to reduce drastically, which has been linked to PKC 

activation (Koksma et al., 2003). In the hippocampus, on the other hand, 

phosphorylation by PKC has been shown to increase neurosteroid sensitivity of GABAAR-

mediated IPSCs (Harney et al., 2003).  

 

Adding to the heterogeneity of neurosteroid responses is the differential distribution of 

enzymes for the neurosteroid synthetic pathways in the brain (see Figure 1.7; Melcangi 

et al., 2001; Mellon and Vaudry, 2001; Do Rego et al., 2009). The enzyme 5α-reductase 

metabolises progesterone to 5α-dihydroprogesterone (5α-DHPROG), a precursor of 

allopregnanolone, and also deoxycorticosterone into 5 –dihydro-deoxycorticosterone 

(5α-DHDOC), the precursor for THDOC (for a review, see Do Rego et al., 2009). There are 

two isoforms of 5α-reductase enzymes, Type I and II. Type I is the more abundant variant 

and Type II can be hormonally regulated (Torres and Ortega, 2003). Conversion of the 

precursors into the bioactive neurosteroids is catalysed by the enzyme 3α-

hydroxysteroid dehydrogenase (3α-HSD). This enzyme works in both directions, and the 

preferred direction depends on the enzyme isoform. Membrane-bound 3α-HSD 

converts allopregnanolone into its inactive form, while cytosolic 3α-HSD converts the 

precursor to the active form. 

The components of the neurosteroid biosynthesis pathway are highly expressed in PCs 

of various brain regions, amongst them the prefrontal cortex (PFC) (Castelli et al., 2013; 

Grobin et al., 2003; Gunn et al., 2015; Figure 1.7), suggesting the capability of this cell 

type to synthesise neurosteroids de novo to act in a paracrine or autocrine manner. 

However, the translocator protein 18 kDa (TSPO), another component of the 

neurosteroid biosynthesis pathway, which provides the rate-limiting step in 

neurosteroid synthesis preceding 5α-reductase and 3α-HSD (Rupprecht et al., 2010), is 
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more strongly expressed in glial cells (Gunn et al., 2015). This implies an involvement of 

this cell type in endogenous neurosteroid synthesis.  

 

In summary, endogenous neurosteroids can exert strong modulatory effects over 

GABAergic function in a wide array of physiological and pathophysiological processes. 

They are distributed throughout the brain, and their levels, as well as efficacy at 

GABAARs, can be dynamically modulated. Their anxiolytic and analgesic properties place 

them alongside benzodiazepines as potential therapeutic compounds. Elucidating their 

normal function as well as dysregulation in disease are important ongoing areas of 

research. The role of neurosteroids in the PFC is of particular interest for the present 

thesis, given the involvement of both neurosteroids and the PFC in psychiatric disease 

(see section 1.4) and the dearth of knowledge on neurosteroid function in the PFC so 

far. 

 

Figure 1.7: Neurosteroid biosynthesis pathways and the distribution of key enzymes in the 
brain 
Sagittal brain section showing the expression pattern of neurosteroid synthesising enzymes 5α-

reductase (5α-R) and 3α-HSD, as well as the neurosteroid allopregnanolone (coloured dots). The 

box (bottom) shows the molecular structure and biosynthesis pathways for THDOC and 

allopregnanolone (see main text). PVN – paraventricular nucleus; LS – lateral septum; BST –bed 

nucleus of the solitary tract; DRN – dorsal raphe nucleus; LC – locus coeruleus; DG – dentate 

gyrus; NAcc – nucleus accumbens; NTS – nucleus of the solitary tract. Figure adapted from Gunn 

and colleagues (2015).  
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1.3 GABAergic inhibition in psychiatric disease 

Given the central role of GABAARs in mediating inhibition, it is unsurprising that 

abnormal GABAergic function can have dramatic psychological consequences. Even 

small disruptions to the very delicate balance between inhibition and excitation 

necessary for normal function of the nervous system can result in a range of 

neuropsychiatric conditions, amongst them schizophrenia, anxiety, depression and 

addiction (Benes and Berretta, 2001; Beneyto et al., 2011; Möhler, 2006a, 2012; 

Nakazawa et al., 2012; Rudolph and Möhler, 2014; Volk and Lewis, 2005). In line with 

their varying pharmacological profiles and expression patterns in the brain, different 

GABAAR subtypes have been linked to different mental illnesses. Several behavioural 

studies using heterozygous γ2 subunit knockout mice (γ2+/-) showed an anxiogenic 

phenotype in comparison to wild-type littermates, highlighting the involvement of the 

GABAergic system in anxiety (Smith and Rudolph, 2012). However, since γ2 subunits are 

expressed in the majority of GABAARs, these experiments were limited in their 

identification of GABAAR subtypes relevant for specific psychiatric disease. Studies 

involving pharmacological as well as genetic manipulations revealed an important role 

for the α subunit (Smith and Rudolph, 2012). For example, GABAARs containing α2/3 

subunits have been studied as potential treatment targets for anxiety disorders and 

depression (Möhler, 2012). This was prompted by behavioural studies using knock-in 

mouse models carrying the aforementioned H101R point mutation in specific GABAAR α 

subunits, rendering those receptors insensitive to diazepam. These studies showed that 

anxiolytic effects of benzodiazepines are mediated via α2/3 subunits (Dias et al., 2005; 

Löw et al., 2000). Moreover, in support of a role for α2/3-GABAARs in anxiety and 

depression are studies showing the anxiolytic effects of L-838,417, an α2/3/5 subunit-

selective allosteric agonist (McKernan et al., 2000), and studies demonstrating 

depression-like behaviour of knockout mouse models for α2 and α3 subunits (Fiorelli et 

al., 2008; Vollenweider et al., 2011). Likewise, rodent studies have provided promising 

results for anxiolytic effects of eszopiclone, a hypnotic selective for α2/3 and, to a lesser 

extent, α1-GABAARs (Nutt and Stahl, 2010). Additionally, human trials have shown a 

synergistic antidepressant effect between eszopiclone with serotonin reuptake 

inhibitors (SSRIs) but not with zolpidem (an α1 subunit specific agonist) (Fava et al., 
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2011a, 2011b). These results underline the therapeutic potential of targeting of α2/3-

GABAARs for the treatment of anxiety and depression. 

 

Further evidence points to a dysregulation of α2-GABAARs within the fear-response 

pathways in the pathophysiology of anxiety disorders. Gating of the fear response is 

strongly regulated by GABAergic inhibition in the amygdala, which is driven by the PFC 

(Ehrlich et al., 2009). Interestingly, GABAergic interneurons in the central amygdala 

largely act through α2-GABAARs. A reduction in the level of  control of the medial PFC 

(mPFC) over the amygdala is thought to be a common mechanism underlying both 

depression and anxiety disorders (Möhler, 2012). 

 

The α2 subunit is also highly expressed in brain regions involved in learning and reward 

(Pirker et al., 2000; Sieghart and Sperk, 2002), and, as such, has been implicated in 

addiction to alcohol and drugs of abuse (Dixon et al., 2008; Engin et al., 2012; Kareken 

et al., 2010; Morris et al., 2008). For example, a recent human post-mortem study 

comparing mRNA levels of different GABAAR subunits between control subjects and 

alcoholics found a significant reduction in the expression of α2 subunits in the central 

amygdala (Jin et al., 2014). Moreover, polymorphisms of the α2 subunit encoding gene 

have been linked to higher risks of developing alcohol dependence, including a response 

to alcohol and alcohol cues and severity of withdrawal symptoms as well as a predictor 

of treatment outcomes (Engin et al., 2012). 

 

A role for tonic inhibition in the pathophysiology of neuropsychiatric disorders 

GABAARs mediating tonic inhibition have also received a significant amount of attention 

in searching for links between GABAAR subtypes and psychiatric disease. Dysregulation 

of tonic inhibition has been linked to sleep disorders, susceptibility to stress-related 

disorders (e.g. depression), epilepsy and schizophrenia, whilst the potentiation of δ-

GABAARs is thought to be involved in the intoxicating effects of alcohol (reviewed in 

Brickley and Mody, 2012). THIP, which at low concentrations is a selective δ-GABAAR 

agonist, also promotes non-REM sleep (Faulhaber et al., 1997). Since extrasynaptic 

GABAARs containing the δ subunit are highly expressed in the thalamus, they are 
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thought to be involved in modulating cortico-thalamic network oscillations important 

for the perceptive state and non-REM sleep (Wafford and Ebert, 2006). Animal studies 

using δ-/- knockout mice, for example, have also found a potential role for GABAA 

receptors containing this subunit in postpartum depression and anxiety (Maguire and 

Mody, 2008). 

 

An increasing amount of evidence is accruing suggesting that GABAergic dysregulation 

is a potential underlying cause of cognitive deficits in schizophrenia (Benes and Berretta, 

2001; Beneyto et al., 2011; Curley and Lewis, 2012; Lewis, 2011; Nakazawa et al., 2012; 

Stan and Lewis, 2012; Volk and Lewis, 2005). Many studies find alterations in GABAergic 

markers in patients with schizophrenia, as well as laminar alterations in subunit 

expression of GABAARs and changes in GABAergic interneurons (see below). 

 

Levels of the GABA-synthesising enzyme, glutamate decarboxylase (GAD67), as well as 

the GABA membrane transporter, (GAT1), which is responsible for GABA reuptake in 

neurons, are reduced in a subset of interneurons in the PFC of schizophrenic patients 

(reviewed in Volk and Lewis, 2005). The affected interneurons were mainly PV-

expressing interneurons, in particular Chandelier cells, which strongly innervate the AIS 

(Somogyi, 1977) and, therefore, are in an ideal location to modulate neuronal output 

(Cobb et al., 1995). A deficit in Chandelier cell input may underlie the observed deficits 

in γ-oscillations in schizophrenic patients (Lewis, 2011). This may have interesting 

ramifications for GABAergic inhibition at the AIS and its role in schizophrenia (Lewis, 

2011). As mentioned previously, the AIS is enriched in α2-GABAARs, which, while only 

comprising 15% of all neuronal GABAARs (Fritschy and Möhler, 1995), are found in > 95% 

of inhibitory synapses at the AIS (Nusser et al., 1996b; Nyíri et al., 2001), and may, 

therefore, be of particular importance to the modulation of PC output. Interestingly, α2 

subunit immunoreactivity at the AIS of schizophrenic subjects was significantly 

increased compared to control subjects (Volk et al., 2002). This may represent a 

compensatory upregulation of α2 subunits in response to a decrease in inhibitory input 

from Chandelier cells onto the AIS (Volk and Lewis, 2005). 
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In summary, GABAergic inhibition plays a significant role in regulating network activity 

in the brain and its dysregulation is thought to underlie a range of pathological 

conditions. A better understanding of the underlying mechanisms governing GABAergic 

inhibition and their specific alterations in disease is important for the development of 

novel treatments. In particular, elucidating the role of GABAergic inhibition in the PFC, 

a brain area which is often negatively affected in psychiatric disease, remains an ongoing 

challenge. 

1.4 Structure and function of the prefrontal cortex  

The PFC plays a significant role in executive function, which Funahashi defined as “a 

product of the coordinated operation of various processes to accomplish a particular 

goal in a flexible manner” (Funahashi, 2001). This comprises cognitive processes such as 

working memory, task flexibility and planning, which show deficits in studies involving 

PFC lesions (Elliott, 2003). Working memory, i.e. the ability to maintain or recall 

information for a short period of time to regulate behaviour and emotional responses, 

is the most characterised function of the PFC, and is thought to be diminished in 

schizophrenia (Goldman-Rakic, 1995, 1996, 1999; Kesner and Churchwell, 2011). The 

PFC promotes goal-directed behaviour and planning by exacting top-down control over 

processing of aversive and appetitive stimuli from the external and internal environment 

(Aron et al., 2014; Buschman and Miller, 2007). It assesses errors in expectations and 

adjusts them accordingly, in order to flexibly modulate behavioural responses to a 

changing environment (Lee and Seo, 2007). Given the broad spectrum of PFC functions, 

it is not surprising that it has been linked to an array of psychiatric conditions.  For 

example, cognitive deficits in schizophrenia have been linked to altered network 

oscillations in the PFC (Arnsten et al., 2012; Volk and Lewis, 2005) and human brain 

imaging studies have found altered PFC control of the limbic system plays a central role 

in addictive behaviours (Goldstein and Volkow, 2002, 2011). Underlining this is the 

particular vulnerability of the PFC to acute and chronic exposure to stress, the effects of 

which can trigger extensive changes in prefrontal neurochemistry and even 

cytoarchitecture, increasing the chance for the development of psychiatric diseases 

such as depression, anxiety and schizophrenia (Arnsten, 2009, 2011).  
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Since different functions of the PFC are linked to different subregions (Kesner and 

Churchwell, 2011), the cellular and regional composition of the PFC will be explored 

further, with a focus on the mPFC (see below). 

 

1.4.1 Connectivity of prefrontal subregions 

The PFC receives afferents from other cortical as well as subcortical regions (Figure 1.8 

A; Table 1.1) and in turn sends efferents across the brain (Figure 1.9; Table 1.2) to 

regions such as the basolateral amygdala (BLA), a region important for emotional 

stimuli, and the ventral tegmental area (VTA), which is involved in the reward circuitry 

of the brain and is the origin of the main dopaminergic afferents to the cortex (Gabbott 

et al., 2005; Hoover and Vertes, 2007). The PFC is therefore thought to be responsible 

for top down control of emotional responses and motivational behaviour. In certain 

circumstances, such as chronic exposure to stress, however, cortical control can be 

compromised, which can lead to inappropriate behavioural responses and, in the long 

term, to an array of mental disorders (for a review, see Arnsten, 2009). 

 

The PFC denotes the frontal regions of the cortex, anterior to the corpus callosum 

(Bregma + 4.5 to + 2). It can be approximately subdivided into medial (m; further 

subdivided into dorsal (d) and ventral (v) areas) and orbital PFC (further subdivided into 

ventral, lateral (l), dorsolateral (dl) and ventrolateral (vl) areas) (Heidbreder and 

Groenewegen, 2003; Uylings et al., 2003).  The dorsolateral PFC (dlPFC) is connected to 

sensorimotor areas of the cortex and is important for regulating attention, thought and 

behaviour (Goldman-Rakic, 2011). In humans and primates, the mPFC can be further 

divided into ventromedial PFC (vmPFC) and dorsomedial PFC (dmPFC). The vmPFC is 

connected to subcortical structures such as the amygdala, nucleus accumbens (NAcc) 

and hypothalamus and is generally thought to regulate emotional responses (Price et 

al., 1996), while the dmPFC is thought to assess errors (Modirrousta and Fellows, 2008). 
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Figure 1.8: Afferents onto the mPFC originate from many central brain regions 
A. Parasagittal section of the rat brain displaying afferents to the PFC from other cortical and 

subcortical areas. Dashed lines represent indirect afferents from or via the basal ganglia (BG; 

minus the substantia nigra (SN), which is separately labelled in this schematic model). The red 

dotted line marks the approximate location of the coronal slice below (B), which shows the 

mPFC subregions and indicates their laminar structure. ACC – anterior cingulate cortex; PL – 

prelimbic cortex; IL – infralimbic cortex. C.  Lateral view (top) and parasagittal section (bottom) 

of the human brain. Brodman’s areas 24, 32 and 25, which correlate to rat mPFC ACC, PL and IL, 

respectively, are indicated. LH – lateral hypothalamus; BLA – basolateral amygdala; VTA – 

Ventral tegmental area; DRN – dorsal raphe nucleus; TH – thalamus; Hip – hippocampus. 
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mPFC area 

 

 Layer 
Anterior 
cingulate cortex Prelimbic cortex 

Infralimbic 
cortex   

I 
SN (Uylings et al 
2003) 

    
TH**; Hip (Little and 
Carter, 2012) 

II 

SN (Uylings et al 
2003) 

Hip#, TH (Parent 
2010); BLA 
(Orozco-Cabal et 
al 2006) 

BLA (Orozco-
Cabal et al 2006) 

TH***; BLA; Hip (Little 
and Carter, 2012) 

III 
SN (Uylings et al 
2003) 

Hip#, TH (Parent 
2010);  

  
TH***; Hip (Little and 
Carter, 2012) 

V 

VTA (Uylings et 
al 2003) 

Hip###; BLA 
(Orozco-Cabal et 
al 2006) 

BLA (Orozco-
Cabal et al 2006) 

  

VI 
VTA (Uylings et 
al 2003) 

Hip###      

  

TH+++; Hip++; 
VTA+++; BLA++; 
LH++;DRN+++; SN+ 

Hip+++; TH+++; 
BLA+++; LH+; 
VTA+++; SN+; 
DRN+++ 

Hip+++; TH+++; 
BLA+++;LH+; VTA++; 
DRN+++; SN+ 

 

Table 1.1: Subregional and laminar distribution of mPFC afferents 
The table shows a summary of the literature on subregional and laminar distribution of some of 

the afferents in the mPFC. Most studies used retrograde tracers, wherein a region of interest is 

injected with the tracer, which spreads to the presynaptic neuron, labelling monosynaptic 

connections. Where applicable, an approximate quantification of the strength of retrograde 

tracer, i.e. the number of afferents, is represented by the number of signs following the brain 

region (one – weak labelling; two – medium; three – strong labelling). The different signs 

represent the respective studies referenced. +(Hoover and Vertes, 2007); * (Little and Carter, 

2012); #(Parent et al., 2010). Where no information on the strength of innervation was given, 

no sign is used and the respective study is named in parentheses (Little and Carter, 2012; Orozco-

Cabal et al., 2006; Parent et al., 2010; Uylings et al., 2003).  Information on laminar afferent 

distribution, which lacked subregional distinction, is summarized at the end of the rows, while 

information on subregional distribution without laminar distinction is summarised at the base 

of the columns. DS – dorsal striatum; LH – lateral hypothalamus; BLA – basolateral amygdala; 

VTA – Ventral tegmental area; VS – ventral striatum; DRN – dorsal raphe nucleus; TH – thalamus. 
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Figure 1.9: Brain regions targeted by PFC efferents 
Parasagittal model of the rat brain displaying efferents from the PFC to other cortical and 

subcortical areas. See Table 1.1 for disambiguations. 

 

 

 
mPFC area 

 Layer 
Anterior cingulate 
cortex Prelimbic cortex Infralimbic cortex 

II DS*; LH*; BLA* VS**; DS*; LH*;BLA* VS*; DS*; LH*; BLA** 

III DS*; LH* VS*; DS*; LH*;  VS*;  LH*; BLA* 

V 
VS*; VTA*; DS***; 
LH***; BLA*; DRN** 

VS***; VTA**; DS**; 
LH***; BLA*; DRN*** 

VS*; VTA**; DS*; 
LH***; BLA**; DRN* 

VI TH***; DS**; LH** TH*** ; VS*; DS*; LH** TH*** ; VS*; DS*; LH** 

 
Table 1.2: Subregional distribution of mPFC efferents 
Table showing subregional and laminar distribution of efferents in the mPFC as described by 

Gabbott et al., 2005. Asterisks indicate the relative strength of anterograde tracer labelling 

found by Gabbott and colleagues for the respective areas. * - weak labelling; ** - medium; *** 

- strong labelling. Layer I generally showed marginal or no labelling and was therefore omitted.  

For clarification of abbreviations, see Table 1.1. 

 

The rodent PFC, while no doubt less complex in structure than the primate or human 

PFC, is nevertheless capable of exerting similar executive functions and, together with 

their versatility in a wide range of experimental applications, rodents are an 

indispensable tool in dissecting structure-function relationships in the PFC (Kesner and 
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Churchwell, 2011; Uylings et al., 2003). The rodent mPFC can be subdivided into anterior 

cingulate cortex (ACC), prelimbic cortex (PL) and infralimbic cortex (IL), based on 

functional and anatomical differences (Heidbreder and Groenewegen, 2003; Figure 1.8 

B). These regions are functional correlates to areas of the human PFC (Brodman’s areas 

24, 32, 25, respectively, see Figure 1.8 C) and are  linked to disorders such as 

schizophrenia, depression and drug abuse (Heidbreder and Groenewegen, 2003; Kesner 

and Churchwell, 2011; Riga et al., 2014) .  

 

While it is beyond the scope of this thesis to give a full account of the hitherto uncovered 

local cortical pathways as well as existing cortical afferents and efferents with other 

brain regions, the central findings will be summarised here (see Figure 1.8 & Figure 1.9; 

Table 1.1 & Table 1.2 and refer to reviews Gabbott et al., 2005; Hoover and Vertes, 2007; 

Riga et al., 2014; Shepherd, 2009; Uylings et al., 2003). 

 

Afferents and efferent projections of the mPFC 

Cytoarchitecturally, six cellular layers can be distinguished in the PFC. Layer I, 

supragranular layers II-III, and a granular layer IV separating the supragranular layers 

from the infragranular layers V and VI. The rodent PFC varies from the primate PFC in 

the lack of a granular layer IV, however, layers II/III are visually distinguishable from 

layers V/VI by a dark thalamocortical fibre tract band in deep layer III (Dembrow and 

Johnston, 2014; Shepherd, 2009). This has functional consequences for signal 

processing, since in granular cortex, layer IV comprises the main input station, while 

most long-ranging efferents originate from layers V/VI. In the rodent mPFC, both inner 

and outer layers receive cortical and subcortical afferents and send efferents to limbic 

structures (see Figure 1.8 & Figure 1.9, Table 1.1 & Table 1.2 and review Riga et al., 

2014). However, the interconnectivity may be laminar- and subregion specific in some 

cases. Outputs from the cortex to the thalamus, for example, usually originate from 

deep layer VI (Table 1.2), while thalamic inputs into the mPFC are mainly received by 

layer III (Heidbreder and Groenewegen, 2003; Shepherd, 2009; Table 1.1). Dopaminergic 

innervation of the mPFC is strongest in the PL, as evidenced by neuroanatomical as well 

as neurochemical studies (Heidbreder and Groenewegen, 2003). Axons from the SN 
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terminate in the superficial layers of the ACC (Table 1.1), while dopaminergic axons 

originating from the VTA terminate in deeper layers of the PL and IL. Furthermore, levels 

of dopamine are higher in PL and IL areas compared to ACC, while levels of dopamine 

transporter are higher in the ACC, overall suggesting higher concentration of 

extracellular dopamine in the more ventral mPFC regions (Heidbreder and 

Groenewegen, 2003). Serotonergic inputs from the raphe nuclei mostly innervate the 

PL and IL areas of the mPFC, and show differential laminar distribution, with a 

preference for the outer cortical layers.  The hippocampus and the amygdala 

preferentially innervate the PL and IL areas (Table 1.1). However, the amygdala also 

innervates the ACC, albeit to a lesser extent, and while connections from the 

hippocampus to the mPFC are unilateral, amygdala-PFC connectivity is bidirectional 

(Heidbreder and Groenewegen, 2003). Connections between the mPFC and the striatum 

(i.e. the NAcc and the caudate-putamen) are strictly topographically organised, 

following a dorso-ventral pattern as well as laminar differentiation (Table 1.2). The 

ventral PL and IL of the mPFC project to the shell of the NAcc, while the dorsal Acc 

projects to the core of the NAcc and the caudate-putamen. At the same time, the 

superficial layers of the mPFC project to different areas within the caudate-putamen and 

NAcc core (matrix compartment) compared to the deeper layers (patch 

compartment)(Heidbreder and Groenewegen, 2003). 

 

These are just a few examples of the vast and intricate networks that the mPFC forms 

just a part of, and serve to underline its important role in orchestrating normal brain 

function. 

 

1.4.2 Cytoarchitecture of the mPFC and cortical networks 

The mPFC is mainly composed of excitatory PCs (80-90%) and inhibitory GABAergic 

interneurons (10-20%), which can be further distinguished according to morphological, 

functional and biophysical properties (Riga et al., 2014). The cells responsible for the 

main excitatory output, the PCs, are strongly interconnected to form local networks and 

project to both cortical as well as subcortical structures. Their concerted activity is 

tightly regulated by a number of different types of interneurons, which specifically 
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innervate different subcellular compartments of PCs to regulate their activity (Palmer et 

al., 2012; see Figure 1.2). Interneurons, most of which are GABAergic form local 

connections, although recent research has identified long-range GABAergic projections 

from the PFC onto the NAcc (Lee et al., 2014a). They exert strong control over pyramidal 

cell firing and are a crucial component in generating neuronal network oscillations, a 

feature thought to be vital for information processing (Klausberger et al., 2003; Kvitsiani 

et al., 2013; Mann and Paulsen, 2007; Whittington and Traub, 2003; Yee et al., 2005). 

Interneurons possess remarkable morphological diversity in contrast to PCs and are 

more excitable, as evidenced by faster action potential firing frequency and faster 

excitatory synaptic current kinetics (for a review, see Möhler, 2006b).  

 

Both types of neurons can be further subdivided based on morphological and 

electrophysiological properties as well as their laminar localisation and connectivity (see 

below). These subtypes have been shown to be differentially affected by 

neuromodulators such as dopamine and serotonin (Béïque et al., 2007; Dembrow and 

Johnston, 2014) which highlights the complexity and flexibility underlying cortical 

network function. 

 

Pyramidal cells - complexity and diversity 

Several classes of cortical PCs have been defined, which possess unique 

electrophysiological properties and laminar distribution (van Aerde and Feldmeyer, 

2015; Dégenètais et al., 2002; Kawaguchi, 1993; Wang et al., 2006). Kawaguchi and 

colleagues (1993) were amongst the earlier authors who characterised different types 

of PCs. They defined two types of PCs in layer V of the rat PFC based on somatic size and 

input resistance (Kawaguchi, 1993). Small, high input resistance cells showed a similar 

laminar distribution to larger, small input resistance cells, but they varied in their 

dendritic morphology. While both cell types extended dendritic branches in layer I and 

layer V, only the smaller cells also received input from layer II/III. In a later study, Lee 

and colleagues (2014) identified two PC subpopulations in layer V of the PFC, type A and 

type B, which are differentially innervated by presynaptic interneurons. Type A, 

consisting of  thick-tufted, sub-cortical projecting PCs with a strong a hyperpolarisation-
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activated inward current (Ih) that may act as a pacemaker for spontaneous interneuron 

activity (Maccaferri and McBain, 1996)), and type B, which are thin-tufted, project to 

the callosum and do not possess Ih. One observation of this study was that type A PCs 

were preferentially innervated by PV-positive, but not somatostatin (SOM)-expressing 

interneurons, providing stronger feed-forward inhibition on this type of PC (Lee et al., 

2014b). 

  

Further studies have shown that particularly in the mPFC, different types of layer V PCs 

form reciprocal connections and specific subnetworks (Wang et al., 2006). This study 

found interconnections between PCs with accommodating spike patterns to form 

depressing synapses with one another, while another subpopulation with non-

accommodating discharge pattern formed facilitating synapses. These results show that 

the complex modulation of cortical microcircuit behaviour extends beyond the diversity 

of inputs from interneurons. 

 

Recently, van Aerde and colleagues (2015) conducted a thorough electrophysiological 

study in rat mPFC, discovering more than 10 different types of PCs with distinct 

morphologies, laminar distributions and firing properties (see Figure 1.10; van Aerde 

and Feldmeyer, 2015). This study found two classes of PCs in layer V: broad-tufted, 

regular spiking PCs and slender-tufted, accommodating PCs. PCs in layer II exhibited the 

widest apical dendritic field. They showed a variety of responses to current injections, 

from regular-spiking to accommodating, lacking a voltage sag in response to 

hyperpolarising current injections, with a high rheobase and more negative resting 

membrane potential (Figure 1.10). Layer III PCs generally extended an apical dendrite to 

layer one, where it bifurcated, and showed a variety of electrophysiological responses, 

but was the only region with cells exhibiting burst-firing in response to depolarising 

current injections (Figure 1.10). Layer VI PCs, although mostly uniform in displaying a 

regular spiking pattern, comprised the most morphologically diverse group of neurons, 

many of them exhibiting long apical dendrites extending up to layer I.  
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Figure 1.10: Diversity of cortical pyramidal cells 
Figure adapted from van Aerde and Feldmeyer (2015), showing an overview of some of the 

diverse morphologies and electrophysiological firing properties of PCs in different layers of the 

rat mPFC. Top panel, reconstructions of the different morphological subtypes identified are 

shown and their laminar origin indicated. Electrophysiological properties of the respective PC 

subtypes are presented in the bottom panels: Action potential firing patterns in response to a 

current injection (grey line) are shown. The insets show a magnification of the first few spikes. 

The bottom row shows the voltage response to a hyperpolarising current of -50 mV and the RMP 

is indicated.  
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In summary, these studies show a surprising diversity in cortical PCs, which further adds 

to the complexity of cortical networks and poses additional challenges for studying this 

brain region. 

 

Diverse morphology and biochemical markers of cortical interneurons 

Cortical interneurons are mostly GABAergic and are generally characterised by aspiny 

dendrites and by a restriction in their axonal extensions, which are usually vertically 

limited to their own cortical column or laterally limited within their layer (Markram et 

al., 2004). More than ten different types of interneurons can be distinguished in the 

neocortex, based on dendritic and axonic morphology, their expression of biochemical 

markers, as well as their electrophysiological properties and synaptic connectivity with 

specific PC membrane sub-compartments (Markram et al., 2004).  

 

As opposed to the fairly uniform morphology of PCs, interneurons come in a range of 

shapes and sizes (Figure 1.11). Morphologically, they can be categorised into basket cells 

(further divided into large, small and nest basket cells), Chandelier cells, Martinotti cells, 

double-bouquet cells, bipolar cells, bitufted cells, neurogliaform cells and Cajal-Retzius 

cells (Druga, 2009; Markram et al., 2004). Basket cells are large, multipolar, and are the 

most prominent inhibitory interneurons, representing about half of the GABAergic 

interneuron population. Their name stems from the appearance of their axon-terminals, 

which form basket-like structures around the soma and proximal dendrites of the target 

neuron, which can be other interneurons or PCs. Chandelier cells, on the other hand, 

can be multipolar or bi-tufted and innervate the AIS of PCs only. Their name is derived 

from the characteristic structure of their axon terminals, which branch and form vertical 

rows of axonal boutons along the postsynaptic membrane similar to candles in a 

chandelier (Druga, 2009; Markram et al., 2004).  

 

Another distinguishing feature of interneurons is their expression of different types of 

calcium binding proteins (Figure 1.11). Three large subpopulations can be distinguished, 

which express: PV (20-25% of all GABAergic cells), calbindin (CB; 20-25%) or calretinin 

(CR; 45-50%) in a non-overlapping manner (Baimbridge et al., 1992; Druga, 2009; Hof et 
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al., 1999). In addition, the expression of several neuropeptides such as neuropeptide Y 

(NPY), somatostatin (SOM), cholecystokinin (CCK) and vasoactive intestinal peptide (VIP) 

serve as another distinctive marker (Markram et al., 2004). CB- and CR-positive 

interneurons mainly belong to the morphological classes of bipolar, bitufted and double-

bouquet interneurons, while PV-positive interneurons are either basket cells or 

Chandelier cells (DeFelipe, 1997; Defelipe et al., 1999; Druga, 2009). Based on the 

presence of these calcium binding proteins, Gabbott and colleagues (1997) 

characterised the laminar distribution of different types of interneurons in ACC, PL and 

IL of the rat mPFC in an immunocytochemical study (Gabbott et al., 1997). While the 

distribution across mPFC areas was found to be consistent, they observed differences in 

the laminar density between the different subclasses of interneurons. Bipolar CR-

positive cells were most frequently found in upper layer III, multipolar PV-positive cells 

were most dense in layers III and V, and multipolar CB-positive cells were mostly found 

in lower layer III, while some Martinotti and neurogliaform CB-positive cells also 

appeared in layer V/VI (Gabbott et al., 1997).  

 

Inhibitory interneurons can be further distinguished based on their electrophysiological 

properties, such as firing rate, steady-state firing pattern and spike onset response types 

(Markram et al., 2004). Kawaguchi and colleagues (1993), for example, found two 

principal types of interneurons in layer V of the rat PFC. One was defined by its fast 

spiking pattern (FS cells), which showed no adaptation in spike frequency and possessed 

a more negative membrane potential, while the slower spiking cells possessed a low 

firing threshold (LTS) cells and exhibited spike-frequency adaptation and typically 

elicited burst-like discharges after a hyperpolarising pre-pulse (Kawaguchi, 1993). While 

FS cells were multipolar in shape and extended dendrites to layers II/III and V, LTS cells 

were mostly bitufted and their dendrites were restricted to layer V. More recently, 

electrophysiological distinctions have been made and have linked the three main 

subclasses of calcium-binding protein expressing interneurons to different firing 

categories. Thus, CR-positive interneurons usually show an irregular spike discharge 

pattern with an accommodating spike-frequency,  CB-positive interneurons exhibit a 

burst-firing pattern, and PV-positive interneurons have the characteristics of FS cells 

(Markram et al., 2004). 
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Figure 1.11: Diversity of cortical interneurons  
Schematic drawing of the morphology and laminar distribution of 8 different types of cortical 

interneurons (adapted from Markram et al., 2004). The original data stemmed from the 

somatosensory cortex (which, contrary to the PFC, has a granular layer IV) and has been adjusted 

to represent an agranular cortex here. Neurogliaform and Cajal-Retzius cells have been omitted 

for simplicity. The somata of each interneuron subtype are differentially coloured and placed in 

their preferred cortical layer location. Proportional laminar representation of each subtype is 

represented in the pie-charts on the right-hand side, with the colour of each slice corresponding 

to the soma of the respective interneuron. Axons are drawn in blue, axonal terminals are drawn 

as blue circles and dendrites are drawn in orange. Some interneurons possess an apical dendrite, 

which is shown as a thicker orange line. Calcium-binding proteins and neuropeptides typically 

expressed by each interneuron subtype are indicated. Those that are rarely expressed are shown 

in parentheses, while those that are frequently expressed are underlined. 
 

Lastly, different interneuron subtypes preferentially target specific cellular 

compartments, which is of relevance for the type of modulatory influence they can exert 

over the postsynaptic cell (see Figure 1.2). For example, as mentioned in section 1.1.1, 

PV-positive cells are generally fast-spiking and inhibit the perisomatic region, thus 

controlling PC output, while somatostatin (SOM) interneurons, which target the 

dendritic arbour, modulate inputs onto PCs (Klausberger et al., 2002; Möhler, 2006b; 

Nyíri et al., 2001). Amongst PV-positive interneurons, basket cells form somatic or 

perisomatic connections onto mainly α1-GABAAR containing synapses, and Chandelier 

cells innervate the AIS (Somogyi, 1977), which is enriched with α2-GABAARs (Nusser et 

al., 1996b), placing them in a crucial position to regulate sodium-generated APs (Cobb 

et al., 1995). Martinotti cells, on the other hand, which always express SOM and can 

additionally express CB, CR or CCK, are slow-spiking and innervate the apical dendrites, 

where they may inhibit Ca2+-mediated dendritic spikes (Druga, 2009; Higley, 2014; 

Isaacson and Scanziani, 2011; Marlin and Carter, 2014).  

 

In summary, this brief account of cortical connectivity and cortical cellular diversity 

demonstrates the challenges experimental studies on the PFC have to confront when 

trying to interpret results obtained from a non-uniform population of neurons. 
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1.5 Thesis objectives 

The aim of this thesis is to study GABAergic inhibition in the PFC, with a particular focus 

on the mPFC, given that neurodevelopmental and psychiatric disorders (schizophrenia, 

depression, etc) are frequently linked to this part of the brain and dysfunctional GABA 

inhibition. Whilst there have been many studies addressing GABAergic inhibition in the 

hippocampus (Farrant and Nusser, 2005; Klausberger et al., 2003) and cerebellum 

(Marty and Llano, 1995), there is a significant gap in our understanding of such processes 

in the PFC. One of the principal goals, therefore, was to further elucidate the role of 

GABAergic inhibition and understand how key neuromodulators, such as dopamine and 

neurosteroids, in the mPFC, could regulate synaptic and extrasynaptic GABAARs. 

 

Dopamine modulation of inhibition, via the D4 receptor, has previously been shown to 

decrease GABAAR surface expression and IPSCs in the PFC (Graziane et al., 2009; Wang 

et al., 2002). The dopaminergic system is strongly implicated in the pathophysiology of 

schizophrenia (Arnsten et al., 2015; Furth et al., 2013; Lewis and Gonzalez-Burgos, 2006; 

Masana et al., 2012). Alterations to the levels of inhibitory transmission at the 

Chandelier-AIS synapse (Lewis, 2011), including the concomitant increase in α2-

GABAARs in this region (Beneyto et al., 2011), have also been linked to schizophrenia. 

Since the α2-GABAAR is a subtype of GABAAR that is involved in anxiolysis (Dias et al., 

2005; Löw et al., 2000; Vollenweider et al., 2011) and has been linked to some 

psychiatric diseases (Engin et al., 2012; Möhler, 2012), the possibility of a subunit-

specific effect of D4 receptor activation, in particular on α2-GABAARs, was one important 

focus of the study (see Chapter 3). 

 

Neurosteroids are another endogenous family of neuromodulators implicated in 

psychiatric disease and they have been of interest in the development of novel 

psychopharmaca with less severe side-effects than the benzodiazepines.  Their 

modulation of synaptic inhibition has been well studied and previous research using a 

knock-in mouse model expressing the neurosteroid-insensitive α2 subunit has shown 

electrophysiological effects of neurosteroid-modulation at α2-GABAARs in the 

hippocampus and NAcc (Durkin, 2012). The same study has also shown a behavioural 
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effect of ablating endogenous neurosteroid-modulation via this receptor subtype. 

However, whether α2-GABAARs contribute to neurosteroid-modulation in the mPFC has 

not been investigated and was therefore the key aim of this project (chapter 4). 

Furthermore, given their enrichment at the AIS, α2-GABAARs were postulated to exert 

some control over pyramidal cell firing. Here, we made use of the neurosteroid knock-

in mouse model to study the influence of α2-GABAARs on neurosteroid-modulation of 

neuronal excitability and spike output in the mPFC (chapter 5). 

 

In summary, the main objectives are: 

 

 To assess the effect of D4 receptor activation on GABAergic inhibition in primary 

PFC cultures as well as to determine whether these effects are mediated via 

distinctive GABAAR subtypes 

 To  elucidate the contribution of α2-GABAARs  and its modulation by 

neurosteroids to phasic and tonic prefrontal inhibition  

 To investigate the role of neurosteroid-modulation of α2-GABAARs in regulating 

pyramidal cell excitability
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2 Materials & Methods 

2.1 Materials 

2.1.1 Reagents 

For Western Blot (WB) analysis, the chemical reagents Bovine Serum Albumin (BSA) 

and sodium dodecyl sulphate (SDS) were obtained from First Link (UK) Ltd 

(Birmingham, UK) and National diagnostics (Atlanta, Georgia, USA), respectively. SDS-

PAGE Molecular Weight Standards (Broad Range) and Tween20 were obtained from 

Bio-Rad Laboratories (Hemel Hempstead, UK) and NP-40 was obtained from Merck 

KGaA, (Darmstadt, Germany). 

 

All cell culturing reagents were obtained from Invitrogen, except for papain, which was 

supplied by Worthington Biochemical Corporation (Lakewood, New Jersey, USA). 

For electrophysiological experiments, the compounds (2R)-amino-5-phosphonovaleric 

acid (APV), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX),  PD168077 maleate,  

tetrodotoxin (TTX) citrate, L-745870 and SB242084 were obtained from Abcam 

(Cambridge, UK) and MRK 016 was obtained from Tocris Bioscience (Bristol, UK). QX-314 

bromide and leupeptin hemisulfate, which were supplements to the internal recording 

solution, were obtained from Insight Biotechnology (London, UK) and AppliChem GmbH 

(Darmstadt, Germany), respectively. All other chemicals were obtained from Sigma-

Aldrich (Steinheim, Germany), VWR International (Leuven, Belgium) or ThermoFisher 

Scientific Inc. (Rockford, Illinois, USA) unless stated otherwise. 
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2.1.2 Antibodies 

Antibody Working concentration Supplier 

 WB ICC  

Primary Antibodies 

Rabbit anti GABAA α1 

- 1:20,000 

Courtesy of Dr 

Jean-Marc Fritschy 

(University of 

Zurich) 

Rabbit anti GABAA α1 

1:250 -  

Courtesy of Dr 

Jean-Marc Fritschy 

(University of 

Zurich) (2013) 

Guinea-pig anti GABAA α2 

1:200 1:200 

Courtesy of Dr 

Jean-Marc Fritschy 

(University of 

Zurich) 

Chick anti microtubule-associated 

protein 2 (MAP2) 
- 1:5,000 

Abcam 

Mouse anti AnkyrinG - 1:1,000 Neuromab 

Mouse monoclonal anti-β-Tubulin 
1:1,000 - 

SigmaAldrich  

(clone TUB2.1) 

Mouse anti dopamine receptor D4  1:200 1:10 Abcam 

Secondary Antibodies 

Alexa Fluor® 488 conjugated to goat 

anti-guinea pig IgG (H+L) 
- 

1:500 or 

1:1000 

Thermo Fisher 

Scientific. 
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Antibody Working concentration Supplier 

 WB ICC  

Alexa Fluor® 488 conjugated to goat 

anti-rabbit IgG (H+L) - 
1:500 or 

1:1000 

Thermo Fisher 

Scientific 

Alexa Fluor® 488 conjugated to goat 

anti-mouse IgG (H+L) - 
1:500 or 

1:1000 

Thermo Fisher 

Scientific 

Alexa Fluor® 555 conjugated to goat 

anti-mouse IgG (H+L) - 
1:500 or 

1:1000 

Thermo Fisher 

Scientific 

Alexa Fluor® 594 conjugated to goat 

anti-chick IgG (H+L) - 
1:500 or 

1:1000 

Thermo Fisher 

Scientific 

Alexa Fluor® 647 conjugated to goat 

anti-chick IgG (H+L) - 
1:500 or 

1:1000 

Thermo Fisher 

Scientific 

HRP-conjugated goat anti-rb 

IgG(H&L) 1:50,000 - 

Rockland 

Immunochemicals 

for Research  

HRP-conjugated donkey anti-guinea-

pig IgG (H&L) 1:4,000 -  

Jackson 

ImmunoResearch 

Laboratories 

HRP-conjugated goat anti-mouse IgG 

(H&L) 1:10,000 - 

Rockland 

Immunochemicals 

for Research 

2.2 Animals 

All procedures were performed according to the Animals (Scientific Procedures) Act 

(ASPA), 1986 and had obtained ethical approval. For obtaining tissue for 

electrophysiology or Western blotting, young adult male Sprague Dawley rats, α2 

Q241M mutant mice (a knock-in mouse model generated in our lab expressing a 

neurosteroid-insensitive GABAAR α2 subunit, see Durkin, 2012) or C57Bl6/J mice (P28-



Materials & Methods 

 

57 

 

60 for both mouse strains) were decapitated subsequent to isoflurane anaesthesia 

(Abbott, Chicago, Illinois, USA). To avoid neurosteroid fluctuations known to occur 

throughout the oestrous cycle (Corpéchot et al., 1997), only male animals were used for 

the experiments.  

 

Pregnant rats were culled by cervical dislocation and E18 embryonic rats, used for tissue 

culture, were extracted and decapitated under schedule 1 procedures of the Animals 

Act 1986. 

 

2.2.1 Breeding and housing 

For breeding purposes, heterozygous mice (PD > 42) of the N303 strain were kept in 

pairs to allow for comparison of homozygous and wild-type littermates. Breeding pairs 

were maintained for a maximum of 6 litters before being culled by exposure to carbon 

dioxide in a rising concentration in accordance with Schedule 1 of the ASPA. For 

experimental purposes, male animals were housed in cages of up to 5 littermates with 

ad libitum access to water and food. Cages were environmentally enriched and kept in 

a temperature-controlled room under a 12-hr light-dark cycle. Animals not suitable for 

experimental purposes (e.g. heterozygous and female animals) were culled in 

accordance with Schedule 1 of the ASPA. 

 

2.2.2 Genotyping 

The genotype of mice used for experimental purposes was determined using tissue 

obtained from ear clippings. The DNA was extracted by incubating tissue overnight in a 

lysis buffer (100 mM Tris-HCl pH 8.5, 5 mM EDTA, 0.2% w/v SDS, 200 mM NaCl and 0.1 

µg/ml proteinase K (Roche Diagnostics, Mannheim, Germany)) at 37°C. This was 

followed by a centrifugation step (15 min, 13,000 rotations per minute (RPM)) at room 

temperature (RT) to remove debris. The DNA was precipitated in a second centrifugation 

step (10 min at RT and 13,000 RPM) using isopropanol and was washed using 70% 

ethanol in a final centrifugation step (5 min at RT and 13,000 RPM). Lastly, the DNA was 

resuspended in 0.05x TE (10 mM Tris, 1 mM EDTA, pH 8.0) and incubated at 42°C for 1 

hr before storage at 4°C for further use. 
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To distinguish between genotypes, a polymerase chain reaction (PCR) was performed as 

outlined in Figure 2.1 and the product was separated on a 2% w/v agarose gel with 

added ethidium bromide (0.2 µg/ml, VWR international) using gel-electrophoresis. DNA 

bands were visualised under UV light. Mice homozygous for the α2Q241M allele could be 

distinguished from wild-type animals by the presence of a loxP site (see Durkin, 2012). 

The DNA fragment obtained from the PCR described in Figure 2.1 was 100 base pairs 

larger for mice homozygous for the mutant allele compared to wild-type mice, while 

heterozygous animals expressed both fragments. 

PCR protocol    PCR mix (50 µL reaction 

volume) 

Step Temperature Time [min]   Reagent [µL] 

1 – Melt 98°C 30  DNA 1 

2 – Melt 98°C 10  H2O 37 

3 – Anneal 63°C 30 Repeat 35 x GC buffer 10 

4 – Extend 72°C 30  dNTPs 1 

5 - Extend 72°C 5  Forward primer 0.25 

 

 Reverse primer 0.25 

Polymerase 0.5 

  

PCR Primers    

Forward Primer    

5’-GCATAGACTACACAAAGTCTCTAGAAC-3’  

Reverse Primer    

5’-GGAGGTGGTGGTGATATCAAGTATA-3’  

Figure 2.1 PCR protocol used for genotyping Q241M knock-in mice 
PCR protocol and primers from Eurofins MWG Operon (Ebersberg, Germany) used in a standard 

procedure for genotyping. The image in the middle depicts representative DNA fragments and 

their length obtained for the wild-type (Wt) and the neurosteroid-insensitive α2Q241M allele 

(Hom). Animals heterozygous for the allele produced both DNA fragments (Het). The PCR was 

carried out using a G-Storm PCR cycler (G-Storm, Somerton, UK) and the Phusion Hot Start II 

polymerase kit (Thermo Fisher Scientific) using the primers shown in the bottom panel.  
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2.3 Tissue preparation 

2.3.1 Neuronal cell culture  

Primary neuronal cultures of the PFC were obtained from E18 rats. Cortices were 

removed and dissociated by incubating in papain (300 U in CO2-independent medium) 

for 30 min followed by a series of gentle triturations using decreasing Pasteur pipette 

bore diameters. Cells were plated on Poly-D-Lysine (PDL, 100 µg/ml)-coated 22mm glass 

coverslips at a density of 1 - 2.6 x 105 cells/cm2 in serum rich plating medium (DMEM, 

10% heat-inactivated horse serum, 200 units/ml Penicillin and 200 µg/ml Streptomycin). 

Cells were allowed to attach to the surface for 3-4 hrs before exchanging the plating 

medium for a serum-free medium (DMEM with B27 supplement, 200 units/ml Penicillin 

and 200 µg/ml Streptomycin). By volume, 50% of this medium was replaced twice-

weekly with fresh medium. Neurons were maintained in this manner for at least 10 days 

for the purpose of electrophysiological recordings. Some immunocytochemical and 

Western Blot experiments were carried out at earlier ages, as indicated in the Results 

section.   

 

2.3.2 Brain slices 

Coronal slices (300 µm thick) of the PFC were obtained from P22 male rats or male mice 

(P28 – 60). For slices obtained from rats, sections were cut in ice-cold bicarbonate-

buffered solution (85 mM NaCl, 2.5 mM KCl. 1.25 mM NaH2PO4·H2O, 26 mM NaHCO3, 

75 mM Sucrose, 1 mM CaCl2, 4 mM MgCl2, 25 mM Glucose, 2 mM kynurenic acid (KA)) 

using a vibrating blade microtome (VT 1200 S, Leica Microsystems GmBH, Wetzlar, 

Germany) whilst under constant perfusion with 95% O2 / 5% CO2. For slices obtained 

from mice, a HEPES-buffered potassium gluconate solution was used (130 mM K-

Gluconate, 15 mM KCl. 0.05 mM EGTA, 20 mM HEPES, 4 mM Na-pyruvate, 25 mM 

Glucose, 2 mM KA, pH adjusted to 7.4 using 1 M NaOH). Slices were transferred into a 

holding chamber pre-warmed to 37˚C and maintained at this temperature for 1 hr 

during which time the solution was slowly exchanged for sucrose-free artificial 

cerebrospinal fluid (aCSF) containing 125 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4·H2O, 

26 mM NaHCO3, 2 mM CaCl2, 1mM MgCl2 and 25 mM glucose. For voltage-clamp 

experiments, 2 mM KA was added to block ionotropic glutamatergic transmission. Slices 
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were subsequently maintained in this solution at room temperature (RT). All solutions 

were continuously perfused with 95% O2 / 5% CO2 (BOC Healthcare, Manchester, UK). 

 

2.4 Electrophysiology 

2.4.1 Primary culture electrophysiology 

Electrophysiological recordings from pyramidal neurons grown in culture for at least 10 

days were obtained using standard whole-cell patch clamp techniques. Electrodes were 

pulled using thin-walled filamented borosilicate capillaries (10 cm long, 1.5 mm outer 

diameter; World Precision Instruments, Sarasota, Florida, USA) to a resistance of 3-5 MΩ 

when filled with a recording solution containing 140 mM CsCl, 2 mM NaCl, 10 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 5 mM ethylene glycol 

tetraacetic acid (EGTA), 2 mM MgCl2, 0.5 mM CaCl2, 2 mM Na2-ATP, 0.5 mM Na-GTP and 

2 mM QX-314. For recordings examining the activation of G-protein-coupled inwardly-

rectifying potassium channels (GIRKs, see Chapter 3), a high K+, low Cl- recording solution 

was used instead, consisting of: 130 mM K-Gluconate, 10 mM KCl, 10 mM HEPES, 5 mM 

EGTA, 2 mM MgCl2, 0.5 mM CaCl2, 2 mM Na2-ATP and 0.5 mM Na-GTP. The osmolarities 

of the recording solutions ranged between 280-290 mOsm/l and were adjusted to 300-

310 mOsm/l by supplementing with 10-20 mM sucrose. The osmolarity was measured 

using a vapour pressure osmometer (Wescor Inc, Utah, USA). All recording solutions 

were adjusted to pH 7.3. 

 

For recordings from cultured neurons an external solution (Krebs) containing 140 mM 

NaCl, 4.7 mM KCl, 1.2 mM MgCl2, 2.5 mM CaCl2, 11 mM Glucose and 5 mM HEPES was 

used and supplemented with 10 µM CNQX plus 20 µM APV to block ionotropic non-

NMDA and NMDA glutamatergic transmission, respectively. Neurons were visualised 

using an inverted microscope (Nikon Eclipse TE300, Nikon Instruments Europe B.V., 

Surrey, UK) and recordings were carried out at RT using an Axopatch 200B amplifier 

(Molecular Devices, Sunnyvale, California, USA). Membrane currents were digitized 

using a Digidata 1440A (Molecular Devices) and recorded using Clampex software 

(version 8.2, Molecular Devices).  Membrane voltage was clamped at -70 mV. Drugs 
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were kept as concentrated stock solutions in either H2O (GABA, TTX, CNQX, APV, 

pentobarbitone, L-745870, THIP) or dimethyl sulfoxide (DMSO) (PD168077, bicuculline, 

SB242084, Diazepam, RO-60-0175, THDOC, MRK-016) and diluted to working 

concentrations in recording solution prior to use. Applications were carried out using a 

custom-built U-tube controlled by rapid solenoid switching (Thomas and Smart, 2005) 

for 1-2 s with 30 s - 2 min washout periods between applications. For the generation of 

concentration response curves, a series of GABA concentrations (0.1 µM, 0.3 µM, 1 µM, 

3 µM, 10 µM, 30 µM, 100 µM, 300 µM, 1 mM) were randomly applied. Peak GABA-

activated currents were measured and normalised to the maximal response evoked by 

1 mM GABA. Concentration response relationships were fitted with OriginPro (version 

9.1, OriginLab Corporation, Northampton, MA, USA) and half-maximal effective 

concentrations (EC50) as well as the Hill coefficient were determined using a non-linear 

least squares fitting routine based on the Hill equation: 

𝐼

𝐼𝑚𝑎𝑥
=

1

1 +  
𝐸𝐶50

[𝐴]𝑛

 

Where EC50 is the GABA concentration that elicits a half-maximal response, n is the Hill 

coefficient, I is the current measured at concentration of GABA, A, and Imax is the 

maximal GABA current response measured. Mean EC50 values and standard errors of the 

mean (SEM) were determined from the EC50 values obtained from individually fitted 

concentration-response curves. 

 

2.4.2 Brain slice recordings 

Pyramidal neurons in layers II-VI of PFC slices were located using infra-red optics (Nikon 

Eclipse E600FN, Nikon Instruments Europe B.V. Surrey, UK) fitted with a Basler SLA750-

60fm Camera (Basler Vision Technologies, Ahrensburg, Germany). Whole-cell patch 

clamp recordings in voltage-clamp were carried out using the same internal solution and 

recording electrodes as described for cultured neurons, except for supplementation of 

the recording solution with 2 mM Lucifer Yellow CH dipotassium salt in initial 

experiments, to allow post-hoc confocal imaging and identification of the morphology 

for the recorded neurons in fixed (4% PFA) slices. Membrane currents were filtered at 4 
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kHz (Bessel filter), digitised at 50 kHz (Digidata 1322A, Molecular Devices) and 

membrane voltage was clamped at -60mV using a MultiClamp 700A amplifier 

(Molecular Devices). For current clamp recordings a potassium-gluconate based internal 

solution was used consisting of: 130 mM K-Gluconate, 10 mM KCl, 10 mM HEPES, 10 

mM Na2-phosphocreatine, 0.2 mM EGTA, 4 mM Mg-ATP and 0.3 mM Na-GTP. All 

recordings were carried out at RT.  

 

Slices were continuously perfused with aCSF (supplemented with 2 mM KA in voltage-

clamp experiments, and without KA supplementation in the current-clamp experiments) 

and bubbled with 95% O2 / 5% CO2. Drugs were applied to cells via the bath perfusion 

subsequent to a stable period of recording in control solution. An equilibration period 

(1 min for bicuculline, 5 min for RO-60-0175 and 3 min for all other drugs) was allowed 

before acquiring any data. The access resistance, RA, was monitored at regular intervals 

(i.e. every 3 min) and recordings were discarded if it changed by more than 25%. At the 

end of each set of recordings, 20 µM bicuculline was added to the cells to confirm that 

currents recorded were GABAergic and to reveal the extent of GABA-mediated tonic 

currents. For an initial selection of recordings, the electrode was carefully removed after 

the experiment to reduce damage to the cell and surrounding tissue and slices were 

fixed for the purpose of assessing cell morphology and localisation. 

 

 

2.4.3 Data analysis 

Voltage clamp 

Synaptic events were analysed using WinWCP v4.7.6 and WinEDR v3.5.6 software (John 

Dempster, University of Strathclyde, UK). A spontaneous event was detected when the 

membrane current exceeded a threshold of 4-7 pA for 0.6 ms (compared to a baseline 

current averaged over 2 ms prior to the event). Exact parameters were individually 

adjusted for each recording and all detected events were subsequently manually 

screened and validated. For the purpose of kinetic analysis of spontaneous synaptic 

events, only clean, unfiltered events were chosen, i.e. events that had a fast rise-time (< 

1.5 ms), a sharp peak and a steady decay without contamination from secondary events. 
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For each individual event, 10-90 % rise times were determined using WinWCP and decay 

times were calculated as event area divided by peak amplitude. 

 

Tonic currents were measured as the average deflection of baseline (or drug-induced) 

holding current in the presence of 20 µM bicuculline using Clampfit version 10 

(Molecular Devices). Holding currents were measured over 20-30 s of current traces, 

including synaptic events.  

 

Changes in root mean square (RMS) current noise in the presence of bicuculline were 

used as another measure for tonic current. To this end, the RMS current noise was 

obtained using WinEDR v3.5.6 software (John Dempster) and averaged over 100 ms long 

epochs uncontaminated by synaptic events. Contaminated epochs were filtered and 

excluded using an automated process in Microsoft Excel by comparing the RMS noise to 

a user-defined threshold. Epochs exceeding the threshold value were excluded. The 

threshold was defined as a proportion of the median RMS noise over a 5 s epoch and 

adjusted for each cell. 

 

Access resistance (RA), membrane capacitance (Cm) and input resistance (Rin) were 

calculated from the average capacity transients evoked in response to a set of 20 x -10 

mV voltage command steps (100 ms each, Figure 2.2) from holding (-60 mV). RA was 

calculated as the command voltage (-10 mV) divided by the peak current deflection 

(Ipeak). Rin was calculated as  

𝑅𝑖𝑛 =  
−10 𝑚𝑉

𝐼𝑠𝑠
− 𝑅𝐴 

where Iss is the steady-state current deflection due to the voltage step. Cm was calculated 

as 

𝐶𝑚 =
𝜏𝑑𝑒𝑐 ∗ (𝑅𝑖𝑛 +  𝑅𝐴)

𝑅𝑖𝑛 ∗  𝑅𝐴
 

where  dec is the decay time of the capacitance transient (area/Ipeak). 
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Figure 2.2: Capacity transients in response to a -10 mV voltage command step 
Top, current trace showing representative average capacity transients in response to a negative 

voltage command of -10 mV (100 ms), bottom. Ipeak is the peak amplitude of the current 

deflection. Iss is the steady-state current deflection which is maintained for the duration of the 

voltage command. “Area” demarcates the area defined by the peak deflection of the current 

trace and Iss.  

 

Current clamp 

Principal neurons recorded under current-clamp were characterised 

electrophysiologically using a set of constant current injection steps (-200 to +200 pA in 

20 pA increments, with a duration of 200 ms, Figure 2.3). From this, the rheobase was 

defined as the minimal current injection necessary to elicit an AP and Rin was calculated 

as the change in membrane potential in response to a subthreshold current injection 

divided by the magnitude of that current (ie., ∆V/∆I). Since this current step protocol did 

not lead to saturation of the AP firing rate, truncated forms of input-output curves 

(change in the number of spikes fired / change in the injected current) were generated 

from the data using OriginPro (version 9.1, OriginLab). Individual input-output curves 
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were then fitted using linear regression to compare values for the offset (x-axis 

intercept) and slope in the presence of different drugs. Only recordings from neurons 

with a stable membrane potential lower than -60 mV were accepted for analysis.  

 

Neuronal excitability was assessed by depolarising neurons from their resting potential 

with a 1 s current-injection step above threshold (usually 200 pA, though the magnitude 

was adjusted based on the threshold for the first spike during the initial current step 

protocol, Figure 2.3). After this, a 30 s recovery period was allowed between consecutive 

current-injection steps. AP frequency was measured as the average inter-event-interval 

(IEI) between spikes elicited by a current injection step, and this value was averaged 

over at least 5 consecutive repeat recordings (i.e. a period of 2.5 min).  

 

 

 

 

 

Figure 2.3: Current-step protocol used to assess cellular excitability 
Spike threshold was assessed before each recording and after equilibration in each drug by 

applying brief consecutive current injections of 200 ms with increasing amplitude (-200 pA to + 

200 pA). The excitability of cells following each drug exposure was subsequently measured by 

stimulating neurons with a current-injection step above threshold for 1 s (usually 200pA, but the 

magnitude was adjusted based on the first spike threshold during the initial current step 

protocol). The first 5 current injections were measured in aCSF, before applying the drug (in this 

example, THDOC). After 10 current injections in the presence of drug, the spike threshold was 

re-assessed using the same initial incremental current step protocol. Following this, a further 

two current injections were applied before changing to another drug. IEIs in the presence of 

drugs were measured over 5 current injections after an equilibration period appropriate for the 

drug. Each experiment ended with a total of 10 current injections in the presence of bicuculline 

(20 µM). 
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2.5  Immunocytochemistry and imaging 

Neurons grown in culture were washed in warm (37°C) phosphate-buffered saline  (PBS) 

supplemented with 1% bovine serum albumin (BSA) prior to fixation with pre-warmed 

(37°C) paraformaldehyde (PFA; 4% w/v in PBS) for 2 min at  37°C followed by 10 mins at 

RT. The fixative was removed through a series of three washing steps using PBS 

supplemented with 1% BSA. For staining of cell surface receptors, fixed cells were 

incubated for at least 30 min in a blocking solution consisting of 10% v/v normal goat 

serum (NGS) prior to incubating in primary antibody diluted to a working concentration 

(see table section 2.1.2) in 1% BSA in PBS for at least 1 hr. Coverslips were washed 

thoroughly with PBS, followed by an optional permeabilisation step in 0.1% Triton-X in 

PBS supplemented with 1% BSA for 10 min, in order to allow labelling of intracellular 

protein. If cells were permeabilised in this manner, two further washing steps followed 

in PBS before undergoing a second period of 30 min in blocking solution prior to 

incubating in the second primary antibody for at least 1 hr. Following another set of 

three washes in PBS, neurons were incubated in the appropriate combination of 

secondary antibodies diluted to working concentrations in PBS supplemented with 1% 

BSA, for 45 min. After a final set of washes in PBS, coverslips were mounted onto 

microscope slides using glycerol gelatine (Sigma) following another series of washing 

steps in PBS. 

 

Brain slices previously used in electrophysiological recordings were fixed in 4% PFA in 

PBS overnight at 4˚C. Slices were subjected to two 15 min washes with gentle agitation 

in PBS prior to mounting onto microscope slides using Vectashield mounting medium 

(Vector Laboratories, Burlingame, California, USA). 

 

All cells were imaged using a Zeiss Axioskop LSM 510 confocal microscope with either a 

Plan Neofluor 10x (Numerical aperture (NA) 0.3) differential interference contrast (DIC) 

or a 40× (NA 1.3) or 63x (NA 1.4) oil immersion DIC objective. The mid-optical confocal 

slice in the sample was chosen and imaged as a mean of four scans in 8-bit (i.e. 256 

grayscales). For analysing GABAA receptor distribution within the cell, a set of slices was 

acquired as z-stacks spanning the cell body using a pinhole diameter of 1 airy unit (AU), 
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which optimises the signal-to-noise ratio, and optimal section thickness as determined 

by the operating software. Neurons filled with Lucifer yellow were imaged as z-stacks of 

20-60 slices while opening the pinhole to 2-4 AU, to enable the detection of the weaker 

signal of this dye within the tissue of the brain slice. A 543-nm helium-neon laser (560 – 

615 nm band pass filter), a 488-nm argon laser (505 – 530-nm band pass filter) and a 

633-nm argon laser (638-798 nm band pass filter) were used for imaging 

AlexaFluor(AF)555/AF594 (excitation/emission peaks of 555/565 nm and 590/617 nm, 

respectively), AF488 (excitation/emission peaks of 496/516 nm) or neurons filled with 

Lucifer yellow (Sigma, excitation/emission peaks of 428/536 nm) and AF647 

(excitation/emission peaks of 650/665 nm), respectively. 

 

2.5.1 Image analysis 

Images were analysed using Image J (version 1.49; Schneider et al., 2012). In detail, 

image files were imported into Image J and z-stacks were compiled using a maximum 

intensity projection. Green (488 nm, GABAAR α2 subunits), blue (633 nm, MAP2) and red 

(543 nm, AnkyrinG) channels were separated. Individual thresholds were set manually 

in the blue (MAP2) and red channels (AnkyrinG) in areas that matched the regions of 

interest (ROIs) for dendrites and soma, and the AIS, respectively (see Figure 2.4). Both 

area and mean signal intensity levels in the green channel were recorded for these ROIs. 

In addition, for each image an ROI was manually drawn in a cell-free area of the green 

channel to set the background intensity.  

 

To select and analyse α2 subunit puncta, the green channel was processed to reduce 

background noise using a rolling ball background subtraction with a radius of 20 pixels. 

This method calculates the average background for a spherical region of the chosen 

radius around every pixel and subtracts that value from the original image (Sternberg, 

1983). The image was subsequently converted into a binary image using Image J’s “Auto 

Local Threshold” plugin with a Bernsen filter and 20 pixel diameter. The Bernsen filter 

calculates the threshold for each pixel using the local contrast in a circular area of the 

chosen diameter around the pixel. It compares the pixel’s grey value to the midrange 

grey value of the surrounding area (for a review, see Sezgin, 2004). Punctate α2 subunit  
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Figure 2.4: Procedure for image analysis of antibody labelled cultures 
To assess the effects of D4 receptor activation on GABAA subunit localisation, cultured neurons 

were treated and imaged as described in the text and files were imported into Image J for further 

processing. Z-stacks were compiled using a maximum intensity projection. Green (α2 subunits), 

blue (MAP2) and red (AnkyrinG) channels were separated. MAP2 labelling was used to select 

dendrites and soma, and AnkyinG was used to select the AIS. The green channel was processed 

to reduce background noise and punctate α2 structures within each of the ROIs were detected 

and analysed using Image J’s “Particle Analysis” plugin. This data was imported into Excel for 

further analysis and presentation. 
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structures within each ROI (dendrites, soma and AIS) were detected and analysed using 

Image J’s “Particle Analysis” plugin. Particles smaller than 0.01 pixels in diameter were 

regarded to represent ‘salt and pepper’ noise and excluded from the analysis. This cut-

off diameter was chosen arbitrarily. Information obtained in this manner contained the 

number of particles and their mean intensity. Data thus obtained was imported into 

Excel for further analysis and presentation.  The α2 subunit particle density was 

obtained by dividing the number of particles by the area of the ROI and the background 

noise was subtracted from their intensity level. 

 

2.6 Western Blots 

Cultured neurons that were used for cell lysates were grown on PDL-coated 6 cm dishes 

at a density of 3 – 5 x 106 cells per dish. Samples were then placed on ice and washed 

once with cold PBS, before being dissociated from the surface using 300 µl radio-

immunoprecipitation assay (RIPA) lysis buffer (150 mM NaCl, 50 mM Tris pH 8.09, 5 mM 

EDTA, 1% NP40 (v/v), 0.5% DOC (w/v), 0.1% SDS (w/v), 1mM phenylmethylsulfonyl 

fluoride (PMSF), 1x protease inhibitor cocktail) and collected in a clean Eppendorf tube. 

Cells were then incubated at 4oC for 1 hr with mild agitation and subsequently spun 

down at 13,000 RPM at 4 oC for 15 min. The supernatant was transferred into a fresh 

tube and protein concentration was determined spectrophotometrically (Bio-Rad 

SmartSpec Plus, Bio-Rad Laboratories) using a bicinchoninic acid (BCA) assay (Thermo 

Fisher Scientific). 

 

For tissue lysates, the brain structure of interest was dissected and homogenised in RIPA 

buffer using a glass pipette homogeniser. Tissue homogenates were then collected on 

dry ice until frozen, thawed on ice and subsequently spun down at 13,000 RPM at 4 oC 

for 15 min. The supernatant was removed to a clean tube and the freeze-thaw cycle was 

repeated once more before determining protein concentration of the final supernatant 

using a BCA assay.  
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An appropriate amount of 3x sample buffer (150 mM Tris-Cl pH 6.8, 6% SDS (w/v), 0.3% 

bromophenol blue (w/v), 30% glycerol (w/v), 15% β-mercaptoethanol (v/v)) was added 

to the protein extract and heated to 95 oC for 5 min, prior to loading 50 µg onto a 10% 

SDS (w/v) gel and subsequent separation using gel electrophoresis (Mini-Protean Tetra 

Cell, Bio-Rad). The sample was then transferred onto a nitrocellulose membrane 

(Hybond C Extra, Amersham Biosciences, Buckinghamshire, UK) using an XCell SureLock 

electrophoresis cell (Thermo Fisher Scientific) and the presence of protein was 

confirmed using Ponceau staining.  

 

Membranes were blocked using 4% dry milk (w/v) or 6% bovine serum albumin (w/v) in 

PBS with 1% Tween-20 (PBST) for 30 min – 1 hr. Primary antibodies were diluted to their 

working concentrations (see table in section 2.1.2) in the respective blocking buffer and 

membranes were incubated at 4oC with mild agitation overnight. This was followed by 

three 20 min washing steps in blocking buffer and a 2 hr long incubation in secondary 

antibody coupled to horseradish peroxidase (HRP) in blocking buffer. The membranes 

were finally washed 3x for 20 min in PBST. Signals were detected using SuperSignal West 

Pico or West Femto Chemiluminescent Substrate (Thermo Scientific) and developed 

using the ImageQuant LAS 4000 Mini digital imaging system (GE Healthcare Biosciences 

AB, Uppsala, Sweden). 

 

2.7 Statistics 

Statistical analysis was carried out using GraphPad InStat software (Version 3.06, 

GraphPad Software Inc., La Jolla, CA, USA) and SPSS Statistics 22 (IBM, Armonk, New 

York, USA). Data were checked for a normalised distribution using a Kolmogorov-

Smirnov test. If data were not normally distributed, a transformation (i.e. comparing the 

log or reciprocal of the values) was first attempted. Only if transformation was not 

successful in normalising the distribution of data were non-parametric tests used. For 

pairwise comparisons of normally distributed data, two-tailed Student’s t-test was 

applied. Only where a presumption about the direction of the difference between the 

means could rightfully be made and confirmed, were one-tailed t-tests used. In the case 
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of normally distributed data whose standard deviations vary significantly from one 

another (assessed using an F test), the t-test is prone to type I errors, i.e. detecting false 

positives. The reason for this is that it pools the standard deviations of both samples. A 

Welch-corrected t-test avoids this issue by making no assumption about the equality of 

variance of the datasets (Ruxton, 2006), and hence this test was used in those cases. For 

pairwise comparisons of non-normal data, the Mann-Whitney test was used, which, 

rather than comparing means of populations, ranks values in both datasets according to 

their size and compares the means of those ranks (Sheskin, 2007). 

When comparing dependent, i.e. paired variables, a paired t-test was used for normally 

distributed data and the Wilcoxon matched pairs test was used for non-normal data. 

This method computes the difference between each paired set, ranks them and then 

compares the sum of ranks (Sheskin, 2007). 

 

When comparing more than two unpaired datasets, a one-way analysis of variance 

(ANOVA) or Kruskal-Wallis test was used for normally distributed or non-normal data, 

respectively. These test whether the difference between the means (or the sum of ranks 

for the Kruskal-Wallis test) of the datasets can be explained by random sampling. In case 

of a rejection of the null-hypothesis, i.e. a significant difference between the means (or 

sum of ranks) at the 5% margin, post-hoc pairwise comparisons were carried out. To 

correct for type I errors, which are more likely to occur in multiple comparisons, the 

Bonferroni correction was used for pairwise comparisons of more than three datasets. 

The Bonferroni correction uses a family-wise error, i.e. it multiplies the threshold of 

significance by the number of comparisons made, thus reducing the risk of type I errors 

(Sheskin, 2007). However, it should be noted that if the comparisons are not 

independent from one another (e.g. when comparing A to B and A to C), the Bonferroni 

correction is more prone towards type II errors, i.e. false negatives. 
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3 Dopaminergic modulation of GABAergic inhibition in PFC 

3.1 Introduction 

Dopamine (DA) is a powerful modulator of CNS networks and it plays an essential role 

in reward circuits and as such is important in learning (Schultz, 1997) and is involved in 

the addictive properties of drugs of abuse (Di Chiara and Imperato, 1988). In the PFC, 

dopaminergic signalling is a key component of normal cortical function such as working 

memory (Seamans and Yang, 2004; Yang et al., 1999). The modulatory function of 

dopaminergic signalling comprises long-term changes in plasticity by altering gene 

expression, as well as more immediate effects on neuronal communication by changing 

cellular transmission, excitability and sensitivity to neurotransmitter receptors 

(reviewed in Tritsch and Sabatini, 2012). Dopaminergic input into the cortex mainly 

stems from mesocortical dopaminergic neurons based in the VTA. In the rodent brain, 

these mainly project to the cingulate, entorhinal and medial prefrontal cortices (see 

Seamans and Yang, 2004 for a review). The deep layers V-VI receive the most dense 

mesocortical inputs, which have been shown to form symmetric synapses onto somata, 

dendritic shafts and spines of pyramidal neurons (Goldman-Rakic et al., 1989). The 

resulting dopaminergic control over a wide range of synaptic inputs onto prefrontal PCs 

potentially places DA as a powerful regulator of cognitive function. Consequently, 

dysfunction of prefrontal DA signalling has been linked to a plethora of psychological 

conditions, such as schizophrenia, addiction and attention-deficit hyperactivity disorder 

(reviewed in Arnsten et al., 2015). 

 

3.1.1 Dopamine receptor signalling and distribution 

DA receptors are GPCRs. The five currently identified subtypes are classified into two 

families, the D1-like (includes D1 and D5, D1 being the most prominent) and D2-like (D2, 

D3 and D4, D2 being the most prominent; Alexander et al., 2011). D1-like receptors are 

coupled to GS, which activates the cyclic adenosine monophosphate (cAMP)-dependent 

signalling pathway and are generally thought to mediate excitatory transmission. D2-

like receptors, on the other hand, are coupled to Gi, which inhibits the cAMP pathway, 
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and mediate inhibitory neurotransmission (see reviews Girault and Greengard, 2004; 

Tarazi et al., 2004). In addition, D2-like  (and to some extent D1-like) receptors can 

modulate intracellular calcium levels, protein trafficking or ion channel gating either 

directly through the Gβγ-subunit or through activation of phospholipase C (PLC) 

(reviewed in Tritsch and Sabatini, 2012). An example is the coupling of D2-like receptors 

to GIRKs, which has been explored in Xenopus oocyte expression systems (Pillai et al., 

1998) and was also found in dopaminergic midbrain neurons, where it elicits an 

inhibitory postsynaptic current (Beckstead et al., 2004).   

 

D1-like receptors are expressed in structures such as the caudate-putamen, NAcc and 

SN (Wamsley et al., 1992). In the PFC, DA receptors are expressed throughout layers II-

VI, most prominently in the deeper layers, coinciding with the main dopaminergic inputs 

onto the PFC. D1-like receptors are more abundant than D2-like receptors and they are 

expressed on both PCs and GABAergic interneurons. D1 receptors show a 

proportionately stronger expression in interneurons compared to PCs (Santana et al., 

2008), most of which are PV-expressing interneurons (Le Moine and Gaspar, 1998).  

 

D2-like receptors are found throughout the cortex, with the highest concentrations 

detected in the PFC (Lidow et al., 1989). In the mPFC, D2 receptors are most strongly 

expressed on layer V PCs and, to a lesser extent, on layer V GABAergic interneurons as 

well as layer VI PCs and interneurons (Santana et al., 2008). While both, D1 and D2 

receptors, are evenly expressed in the deep layer V, D1 receptors are much more 

prominent in layers II/III and in layer VI compared to D2 receptors (Santana et al., 2008). 

This heterogeneous expression pattern of DA receptor subtypes underlies difficulties in 

delineating specific functions of different dopaminergic inputs and is reflected in the 

multitude of effects DA exerts on PFC function, as described below. 

 

3.1.2 Functional effects of dopamine in the PFC 

On a behavioural level, DA signalling is believed to play a vital role in modulating PFC 

functions. Pioneering work by Goldman-Rakic showed that the impact of dorsolateral 

PFC (dlPFC) depletion of dopamine is almost as severe on delayed-response tasks (a 
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behavioural test where a delay is interposed between cue presentation and response, 

to test working memory processes) as removing the PFC altogether (Brozoski et al., 

1979). Other research has continued to show elevated DA levels during memory 

acquisition and retrieval tasks, and found that disruptions of DA signalling, in particular 

D1-like receptors, decreases working memory task performance (Seamans and Yang, 

2004). 

 

The exact underlying cellular mechanisms behind these observations, however, are 

difficult to define, due to the differential effects on cortical cell excitability mediated by 

DA (Yang et al., 1999). There are a number of key factors determining the net direction 

of DA effects on PCs (reviewed in Seamans and Yang, 2004).  Amongst these are biphasic 

effects of DA (producing an initial reduction in IPSC amplitude, followed by a delayed 

increase; Seamans et al., 2001) as well as the involvement of different signalling 

pathways, which are activated either by different DA receptor subtypes or by the same 

receptor but the signalling effect varying with intracellular Ca2+-states (Seamans and 

Yang, 2004; Tarazi et al., 2004).  

 

The PFC encompasses a range of different types of PCs (Wang et al., 2006), which receive 

different inputs and express different DA receptor subtypes, adding complexity to DA’s 

action. DA can also act in a target specific manner at different synapses from the same 

cell. In layer V of the ferret PFC, for example, DA depresses excitatory transmission 

between PCs (Gao et al., 2001) while enhancing excitation at PC synapses onto fast-

spiking (FS) interneurons (Gao and Goldman-Rakic, 2003). To add to the complexity, DA 

can modulate PC excitability both directly and indirectly through GABAergic 

interneurons (Gorelova et al., 2002; Tseng et al., 2007; Zhou and Hablitz, 1999a). In the 

PFC, D1 and D2 receptors have been shown to decrease GABA release onto FS 

interneurons and PCs (reviewed in Tritsch and Sabatini, 2012). In addition to GABA, DA 

can also modulate the release of other neurotransmitters such as glutamate and 

acetylcholine (Tritsch and Sabatini, 2012). The net effect of DA can furthermore vary 

with development, membrane potential, network activity and the concentration of DA 

(see Seamans and Yang, 2004 for a review).  
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While the evidence presented here is not an exhaustive account of the scope of 

prefrontal dopaminergic function, it gives an impression of its vital role in modulating 

and tuning circuit function and touches upon some of the difficulties ongoing research 

encounters. 

 

3.1.3 Dopaminergic modulation of GABA transmission 

While DA receptors can directly affect pyramidal neuron activity, many of their functions 

are relayed indirectly via GABAergic interneurons. For example, dopaminergic excitation 

of VTA DA neurons is mediated via an inhibition of GABAergic interneurons, called the 

“inhibition gate” (Michaeli and Yaka, 2010). In the PFC, GABAergic inhibition can shape 

the modulatory action of DA, which has been shown by a reversal in DA effect from 

inhibitory to excitatory upon GABAAR blockage (Zhou and Hablitz, 1999a). More 

research elucidating the interplay of DA and GABAergic inhibition in the PFC has been 

conducted over the last decade and continues to be a topic of interest (Gao et al., 2003; 

Gorelova et al., 2002; Graziane et al., 2009; Wang et al., 2002; Zhong and Yan, 2014). 

For example, similar to the reported bidirectional effects on PC excitability, DA has been 

found to both increase and decrease GABAergic inhibition in the PFC, depending on DA 

receptor subtype and the cortical layer (Seamans and Yang, 2004). In addition, 

dopaminergic modulation of inhibition in the PFC has been shown to be dependent on 

the developmental stage of the animal (Gorelova et al., 2002; Paul et al., 2013; Tseng 

and O’Donnell, 2007) and can vary with the stimulating input  (Paul et al., 2013) or 

postsynaptic target (Gao et al., 2003). Furthermore, the effects of DA on GABAergic 

inhibition can be presynaptic (i.e. an increase or decrease in GABA release via a change 

in interneuron excitability, see (Tritsch and Sabatini, 2012; Tseng and O’Donnell, 2007) 

or postsynaptic (via a direct modulation of postsynaptic GABAARs see Graziane et al., 

2009; Li et al., 2012; Wang et al., 2002). Interestingly, DA receptors are mainly 

depolarising on FS interneurons, which innervate the perisomatic region and AIS, while 

having little effect on other interneuron subtypes in rat PFC (Gorelova et al., 2002). This 

may have implications for a network-modulating effect of DA, given the role of FS 

interneurons in synchronising and modulating firing patterns (Cobb et al., 1995; 

Whittington and Traub, 2003).  
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3.1.4 D4 receptors are linked to psychiatric conditions and modulate GABAAR 

expression 

D4 is a member of the D2-type receptor family and is highly expressed in PFC 

interneurons and PCs (Mrzljak et al., 1996) and is enriched in rodent cortical layers III-VI 

(Ariano et al., 1997).  It is widely suggested that D4 plays a role in cognitive function and 

it has been implicated in the pathologies underlying neuropsychiatric disease (Furth et 

al., 2013; Oak et al., 2000; Sanyal and Van Tol, 1997; Tarazi et al., 2004). For example, it 

is targeted in certain treatments for schizophrenia due to its higher sensitivity to the 

antipsychotic drug clozapine (Van Tol et al., 1991), and due to the increased expression 

of D4 found in schizophrenic patients (Seeman et al., 1993 - other studies, however, 

have not confirmed this, see Tarazi et al, 2004). In addition, D4 receptor expression has 

been shown to be upregulated in response to treatment with various antipsychotic 

drugs (Tarazi et al., 2004). Besides schizophrenia, D4 variants have also been linked to 

attention deficit hyperactivity disorder (Li et al., 2006) and D4 receptors have been 

suggested to play an important role in working memory due to impairments observed 

in performance in memory tasks after treatment with the D4 antagonist L-745,870 

(Zhang et al., 2004). More recent research is investigating a possible involvement of D4 

receptors in the regulation of sleep-wake states (Nakazawa et al., 2015) and in 

treatments for the management of cocaine addiction (Bergman and Rheingold, 2015).  

 

Since GABAergic inhibition is one of the main recipients of dopaminergic modulation in 

the PFC, and since there is evidence for its involvement in many of the same pathological 

conditions, studying D4-mediated modulation on GABAergic inhibition is of particular 

interest. It has previously been shown that activation of the D4 receptor reduces 

GABAergic transmission in cortical slice preparations (Graziane et al., 2009; Wang et al., 

2002) and cortical cultures  (Graziane et al., 2009; Li et al., 2012) via a postsynaptic 

mechanism down-regulating GABAAR surface expression (see Figure 3.1 for a schematic 

model). The GABAAR down-regulation induced by D4 receptor activation has been linked 

to activation of the PKA/PPI pathway (Wang et al., 2002) and is mediated via a 

cofilin/actin-dependent mechanism (Graziane et al., 2009). However, it has not been 

elucidated whether D4 preferentially affects specific isoforms of GABAARs. 
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Figure 3.1: Dopaminergic modulation of principal cell output in the PFC 
Model depicting cortical PC innervation by different inputs and indicating differential 

distribution of GABAARs containing the α1 and α2 subunits on the cell’s surface (Fritschy and 

Möhler, 1995; Nusser et al., 1996b). The box on the right highlights a postsynaptic mechanism 

for downregulation of GABAARs via D4 receptors as previous research has shown (Graziane et 

al., 2009; Li et al., 2012; Wang et al., 2002). PCs in the cortex receive inputs regulating their 

excitation, amongst them dopaminergic signals from the VTA. In turn, they send glutamatergic 

projections to the VTA, affecting dopamine release (Carr and Sesack, 2000). GABAergic 

interneurons play a crucial role in balancing this interaction and their impairment has been 

implicated in psychiatric disease (Lewis, 2011). Two types of fast-spiking, PV-positive 

interneurons are displayed here: Basket cells, which mainly synapse onto the PC soma and 

proximal dendrites (Armstrong and Soltesz, 2011), and Chandelier cells, which are known to 

innervate the AIS (Somogyi, 1977). 

 

 

3.1.5 Objectives 

The objective in this chapter was to explore how dopaminergic pathway signalling 

affects surface GABAAR expression in the PFC by studying the underlying mechanisms 

and exploring GABAAR isoform target specificity. In particular, α2-GABAARs have been 

linked to CNS disorders (Engin et al., 2012) and recent research in mouse models has 

shown that disruption of α2 subunit clustering impacts γ-oscillations and induces 

cognitive deficits similar to those seen in schizophrenia (Hines et al., 2013). Due to these 
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findings, as well as their relative enrichment at the AIS, α2 containing GABAARs were the 

main focus of this project. To this end, we focused on pyramidal neurons in PFC cultures 

as well as in layer II/III of acute PFC slices to elucidate the effects of DA on inhibitory 

transmission using a combination of electrophysiological, imaging and biochemical 

techniques.  

 

Primary cortical cultures were established and characterised in terms of expression of 

different GABAAR subtypes as well as their response to neuromodulators, and the 

properties of GABA-mediated inhibition in those cultures were investigated. 

Furthermore, effects of D4 receptor activation on GABAAR subunit surface expression in 

different subcellular compartments have been probed in cell cultures. Simultaneously, 

acute PFC slice preparations have been used to investigate the previously described 

electrophysiological effects of D4 receptor activation on GABAergic transmission 

(Graziane et al., 2009; Li et al., 2012). 
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3.2 Results 

3.2.1 Establishment and characterisation of primary cortical cultures 

Initially, a primary culture of PFC neurons was established from E18 rat embryos as the 

basis for all experimental procedures. PFC neurons were successfully cultured using an 

established lab protocol for hippocampal primary cultures (Hannan et al, 2011). 

 

Presence of tonic and phasic GABAergic transmission.  

To assess whether cultures had indeed formed active networks and to determine the 

properties of their GABAergic transmission, currents were recorded from pyramidal-

shaped neurons of cultures at DIV 10-21 using whole-cell voltage clamp (see Materials 

& Methods). The presence of tonic currents, which are mainly attributable to 

extrasynaptic GABAARs containing αβδ or α5βγ subunits (reviewed in Mody and Pearce, 

2004), was assessed by applying 20 µM bicuculline, which is sufficient to block the 

activity of all cell surface GABAARs. The revealed shift in holding current (29.5 ± 5.5 pA, 

Figure 3.2 A1 & A2) confirmed the presence of a tonic current mediated by extrasynaptic 

GABAARs.  

 

To explore the properties of native GABAARs, a series of GABA concentrations were 

applied (see Materials & Methods) and a half-maximally effective concentration (EC50) 

of 8.9 ± 1.9 µM (n = 3) was determined from the concentration-response curves (Figure 

3.2 C). Next, intrinsic GABAergic synaptic activity was assessed by recording synaptic 

responses to spontaneous GABA release in the presence of 2 mM KA, which non-

specifically blocks ionotropic glutamate receptors (Elmslie and Yoshikami, 1985). 

Neurons received spontaneous inhibitory synaptic inputs (sIPSCs) with a relatively low 

mean frequency of 1.7 ± 0.3 Hz (Figure 3.2 B). In the same population of synaptic events, 

average peak amplitudes measured -96.2 ± 9.7 pA (calculated from >1000 detected 

events in 7 cells), with a mean decay time of 25.4 ± 0.5 ms and mean rise time of 2.4 ± 

0.1 ms (see Figure 3.2 B; both calculated from 264 selected ‘clean’ events from 7 cells).  

In summary, these results show that cortical neurons form active networks and show 

intrinsic GABAergic transmission after 10 days in culture. 
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Figure 3.2 Inhibitory properties of cultured PFC neurons  
 A1. Example of a tonic current revealed by 20 μM bicuculline, applied through a “U-Tube” (see 

Materials & Methods). A2. Average size of tonic currents; n = 6. Error bars represent standard 

error of the mean (SEM). B. representative averaged spontaneous GABAergic event recorded in 

the presence of 2 mM KA, generated from 264 selected ‘clean’ events from one neuron. Table 

presents frequency and amplitude (calculated from all events) and decay and rise times 

(calculated from a subset of events, see Materials & Methods; n = 7 neurons, DIV 11-21). C. Top: 

Representative GABA currents in response to U-tube applications of GABA at varying 

concentrations. Bottom: GABA concentration response curve, n = 3. All recordings carried out in 

cultured primary PFC neurons at DIV 10 – 20 in the presence of 2 mM KA. 
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Developmental change in α1- and α2- GABAARs in PFC cultures and presence at the AIS 

GABAAR subunit expression is known to vary with subcellular localisation (Klausberger 

et al., 2002; Nusser et al., 1996b) and can also change during development (Dunning et 

al., 1999; Möhler et al., 2004; Tarazi and Baldessarini, 2000). Together with evidence 

showing that synapses in cultured neurons only reach maturity after at least two weeks 

in vitro (Kraszewski and Grantyn, 1992), this prompted us to assess the change in 

expression of α1 and α2 subunits over time in culture. In addition to this, we also wished 

to establish whether enrichment of α2 subunits at the AIS (Nusser et al., 1996b) was 

occurring in the primary culture used here.  

  

To verify the presence of the receptor subunits in question and to determine if any 

developmental changes in expression occurred, protein expression was determined 

using Western Blots (WBs). To this end, neurons were cultured for different durations 

(4, 10, 17, 25 DIV) before harvesting. Total protein content was probed for GABAAR α1 

and α2 subunits using standard WB techniques (see Materials & Methods). The WBs 

revealed that GABAAR α1 increased between DIV 4-10 and DIV 17 - 25 (P = 0.05, one-

tailed Welch-corrected t-test), whereas α2 subunits were more or less stably expressed 

over this period (Figure 3.3 A1 & A2). To complement the WB results, neurons were 

grown in culture for 2-4 weeks before fixation and permeabilisation in methanol or 

acetone and subsequent labelling of target proteins using immunocytochemistry (ICC) 

as described in the Materials & Methods section. Both GABAAR α1 and α2 subunits were 

expressed in punctate structures along the soma and dendritic tree (Figure 3.3 B1) and 

total somatic surface labelling appeared to increase between weeks two and four 

(Figure 3.3 B2, P = 0.04, P=0.02, respectively, Mann-Whitney test). This difference in 

ability to detect changes in α2 or α1 subunit expression in WBs or ICC, respectively, may 

stem from a variation in groups of neurons targeted by either technique: while WBs 

probe the entire cellular population of the extracted PFC (including interneurons, PCs 

and astrocytes), ICC allowed more specific targeting of pyramidal shaped neurons.  

 

Co-labelling of cultured neurons for α1 or α2 subunits and ankyrin G (AnkG), a scaffold 

protein that is expressed at the AIS (Kordeli et al., 1995), was used to assess the relative 
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expression of α1 and α2 subunits in this membrane domain (Figure 3.3 C). To compare 

the relative subunit enrichment at the AIS, signal intensities measured in this area were 

normalised to somatic signal strength to account for variations in antibody efficiency 

and total neuronal expression. As previous research suggested (Nusser et al., 1996b), 

normalised α2 subunit labelling was stronger at the AIS compared to α1 labelling (P = 

0.0002, unpaired t-test; Figure 3.3 C). 
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Figure 3.3 Varying expression levels of α1- and α2-GABAARs in cultured PFC neurons of 
different ages  
A1. Sample WBs showing α1 (row 1) and α2 (row 3) protein expression in whole cell lysates of 

primary PFC neurons after different durations in culture. Row 2 and 4 show respective loading 

controls using β-tubulin (β-Tub). A2. Expression of α1 and α2 subunits obtained from 5 (DIV 17-

25) or 8 (DIV 4-10) WBs, normalised to β-tubulin control. Data for weeks one and two as well as 

weeks three and four were pooled into two groups. * - P < 0.05, one-tailed Welch-corrected t-

test. B1. Representative images showing whole-cell expression of GABAAR α1 and GABAAR α2 

relative to the somato-dendritic marker MAP2 in primary PFC neurons at DIV 28.  PFC neurons 

were fixed and permeabilised using methanol and immunolabelled using primary antibodies 

directed against MAP2 and either α1 or α2 subunits. Secondary antibodies used were coupled 

to AlexaFluor594 (red) or AlexaFluor488 (green).  B2. Quantified background-subtracted 

immunolabelling of somatic α1 and α2 in cultured PFC neurons fixed at different ages. * - P < 

0.05, one-tailed t-test.  C. Left: Representative images showing GABAAR α1 and GABAAR α2 

expression relative to the AIS (AnkG) in a primary PFC neuron at DIV 28. Right: Quantified 

immunofluorescent signal strengths at the AIS normalized to somatic signal intensity. *** - P < 

0.001 unpaired t-test. Error bars represent SEM. 

 

Since the PFC cultures prepared in this study were grown in the absence of subcortical 

dopaminergic input, D4 receptor surface expression may have been affected. To 

ascertain if D4 receptors were present in our cell culture, neurons were fixed and 

immunolabelled as described above. Staining of permeabilised cells for D4 receptor 

revealed a punctate distribution throughout the soma and dendrites (Figure 3.4 A).  

Furthermore, WBs of whole cell lysates of rat PFC were positive for D4 receptor and 

showed an increased expression over the first three weeks in culture (Figure 3.4 B). Since 

both these methods did not allow assessment of the surface expression of functional D4 

receptor, whole-cell patch clamp recordings using a high K+ internal solution (140 mM) 

were carried out to detect the activation of GIRKs by D4 receptors (Pillai et al., 1998). 

Under physiological conditions, the resting membrane potential is more positive with 

respect to the equilibrium potential for K+. Activation of D4 receptor should therefore 

lead to the opening of GIRKs, resulting in an efflux of K+ out of the cell, consistent with 

a hyperpolarising effect. Consistent with this, recording from cultured PFC neurons using 

a high K+ internal solution, the application of 30 µM PD168077, a D4 agonist with 400-

fold selectivity over D2 and 300-fold selectivity over D3 receptors (Glase et al., 1997), 

evoked an outward current (Figure 3.4 C), while simple application of external recording 



Dopaminergic modulation of GABAergic inhibition in PFC 

 

84 

 

solution without PD168077 did not elicit this response [data not shown]. This indicates 

the presence of functional D4 receptors on the cell surface that couple to GIRKs.  

 

In summary, these results indicate that GABAA receptor α1 and α2 subunits, and D4 

receptors, are expressed in cultured cortical neurons and that they are functional. 

Furthermore, their expression levels increase significantly for at least the first three 

weeks in culture. 

 

 

Figure 3.4: Primary cortical cultures expression of D4 receptors 
A. Representative labelling of a primary cultured cortical neuron at DIV 19 for the expression of 

D4 receptors. B. Representative WB showing D4 receptor expression in cortical culture lysate 

from DIV 10 onwards. Last lane shows protein expression in rat whole brain lysate as a positive 

control. Bottom row: β-tubulin loading control. C.  Outward current evoked in a DIV 11 neuron 

by the application of the selective D4 receptor agonist, PD168077 (30 µM).  
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3.2.2 Activation of D4 receptors has no effect on postsynaptic GABAergic inhibition 

Next, we sought to expand on previous observations showing a decrease in GABAergic 

inhibition in mPFC PCs in the presence of the D4 receptor agonist, PD168077 (Graziane 

et al., 2009; Wang et al., 2002).  While these studies had shown a reduction in mIPSC 

amplitude as well as reduced surface expression of GABAARs, we wanted to assess 

whether the effect was mediated via specific GABAAR subtypes, with a particular focus 

on α2-containing GABAARs. Initially, we endeavoured to confirm their previous results. 

 

In order to evaluate the effect of D4 receptor activation on GABAergic inhibition, 30 µM 

PD168077 was applied to cultured PFC neurons (DIV 14) in the presence of 2 mM KA 

(Figure 3.5 A & B) to block ionotropic glutamatergic receptors. sIPSC frequency and 

amplitude in PD168077 were measured and compared to a control recording period in 

Krebs. There was no significant effect of PD168077 on either sIPSC frequency or 

amplitude (Figure 3.5 A & B). However, the frequency in those recordings was noticeably 

low. To improve the resolution of the recordings, since there is evidence for an increase 

in GABAergic transmission in CNQX, another blocker of AMPA receptors (Brickley et al., 

2001), the effect of PD168077 was assessed after replacing KA with a combination of 

CNQX and APV (to block NMDARs). 

 

When 30 µM PD168077 was applied to cultured PFC neurons (DIV 12-20) in the presence 

of 10 µM CNQX and 20 µM APV (Figure 3.5 C & D), neurons did indeed show much larger 

sIPSC frequencies. However, as before, the results showed no significant effect of D4 

receptor activation on frequency or peak amplitude of sIPSCs. 

  

Since previous work had examined mIPSCs (Graziane et al., 2009; Wang et al., 2002), we 

reasoned that variability in action potential-driven GABA-release might mask a D4 

receptor effect on sIPSCs. Therefore, action-potential generation was blocked by 

supplementing the bath with 0.5 µM TTX and the effects of D4 receptor activation on 

mIPSCs were reassessed. 
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Figure 3.5: D4 receptor modulation of GABAergic inhibition in cultured neurons  
A. & B. sIPSCs recorded from cultured pyramidal-shaped neurons using 2 mM KA. A standard 

CsCl internal pipette solution was used. A. Representative current traces showing sIPSCs before 

and after exposure to PD168077 (30 µM).  B. sIPSC amplitude and frequency recorded from 

cultured neurons (DIV 14). C. & D. sIPSCs recorded from cultured pyramidal-shaped neurons 

using 10 µM CNQX plus 20 µM APV. A standard CsCl internal solution was used. C. 

Representative current traces showing sIPSCs before and after exposure to PD168077 (30 µM). 

D. sIPSC amplitude and frequency recorded from cultured neurons (DIV 12-20). All pairwise 

comparisons were carried out using the Wilcoxon matched-pairs signed ranks test. 

 

Furthermore, leupeptin and phosphocreatine were added to the internal solution to 

prevent protein degradation and dilution of phosphates, respectively, through the 

intracellular recording solution. This could potentially negatively affect protein kinase 
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function, which is thought to be involved in the D4 receptor modulation of GABAARs 

(Wang et al., 2002). However, while responses of individual cells were more consistent 

under these conditions, recordings did not reveal any significant effects of PD168077 on 

mIPSC frequency or amplitude (Figure 3.6 A & B).  

 

At this point, having been unable to observe an effect of D4 receptor activation on 

GABAAR mediated currents in cultured PFC neurons, it was considered whether the lack 

of dopaminergic inputs during neuronal maturation in culture might have led to an 

alteration in dopaminergic function. Furthermore, the previous studies on which our 

work was based (Graziane et al., 2009; Wang et al., 2002) had used both acutely 

dissociated neurons and acute slices for their experiments, both of which may have 

approximated physiological conditions more closely than primary cultures. Hence, we 

emulated those conditions by recording both sIPSCs and mIPSCs from acute PFC slices 

of 3-week old rats (Figure 3.6 C & D). While previous studies had recorded from neurons 

located in the intermediate to deep layers (III-VI), in the present study, the intermediate 

layer (III) was chosen in order to target an area with higher α2-GABAAR expression, 

which were the intended receptor target for subsequent experiments. 

 

Similar to the results obtained from cultured neurons, in pyramidal neurons from acute 

mPFC slices neither sIPSC nor mIPSC peak amplitudes were affected by PD168077 and 

there was no change in mIPSC frequency. However, there was a significant decrease in 

sIPSC frequency in the presence of PD168077 (P = 0.01, paired t-test), indicative of a 

reduction in action potential-dependent GABA release. This is most likely caused by D4 

receptor activity on presynaptic interneurons leading to a reduction in interneuron 

excitability. 

 

In summary, the potential effects of D4 receptor activation were assessed in both 

primary cultures and acute PFC slices. Overall, while there was a decrease in sIPSC 

frequency in slices, no changes in sIPSC or mIPSC amplitude consistent with a 

postsynaptic effect on GABAAR surface expression were observed. 
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Figure 3.6: D4 receptor modulation of sIPSCs and mIPSCs in cultured neurons and acute PFC 
slices under varying experimental conditions 
A. Representative current traces showing mIPSCs recorded from cultured pyramidal-shaped 

neurons using 10 µM CNQX and 20 µM APV before and after exposure to PD168077 (30 µM). B-

D. Mean peak amplitude and frequency of IPSCs recorded under different conditions. B. mIPSCs 

recorded from cultured neurons (DIV 19-21) in Krebs (+ 10 µM CNQX, 20 µM APV and 0.5 µM 

TTX) using a CsCl internal supplemented with 12 mM phosphocreatine (PCreat) and 0.1 mM 

leupeptin (Leupep). C. sIPSCs recorded from PCs in acute PFC slices (P21-22) in aCSF 

supplemented with 2 mM KA using a CsCl internal. D. mIPSCs recorded from pyramidal neurons 

in aCSF + TTX using a KCl internal to replicate experimental methods used by Graziane et al 

(2009). All pairwise comparisons were carried out using the Wilcoxon matched-pairs signed 

ranks test (B) or paired t-tests (C & D). 
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3.2.3 The D4 receptor agonist PD168077 may affect α2 subunit surface expression 

but does not alter subcellular localisation 

While we could not corroborate previous findings for a reduction in GABAAR-mediated 

IPSC amplitude in response to D4 receptor activation, the inevitable variability in 

experimental conditions also did not allow the dismissal of a potential effect. However, 

in addition to a D4 receptor mediated decrease in synaptic GABA current amplitudes, 

Graziane et al. (2009) also showed a reduction in GABAAR surface expression using ICC.  

To assess whether this could be replicated in our cultures and to further investigate 

differential effects on subcellular location, we used ICC to visualise and quantify changes 

in receptor surface expression in response to PD168077, focusing on α2-GABAAR at the 

soma, dendrites and AIS.  

 

Since our previous characterisation of the cortical cell culture used here had shown that 

expression of α1 and α2 subunit containing GABAARs and D4 receptors increased until 

at least three weeks in culture and because it had previously been shown that GABAAR 

mediated IPSC kinetics change during that same period in culture (Hutcheon et al., 

2000), neurons were maintained for a longer period in culture (at least 19 days) before 

being used for the following experiments. To this end, the cell culture protocol was 

modified to maintain healthy neurons for a longer period of time. After testing a range 

of different protocols, satisfactory results were eventually achieved with the method 

described in the Materials & Methods section. This method was used henceforth. 

Furthermore, the ICC protocol was modified and a non-permeabilising fixative (PFA) was 

used to allow labelling of surface membrane receptors only. 

 

 We initially focused on α2 subunit expression, due to its concentration around the AIS 

(Nusser et al., 1996b), a neuronal compartment that is strongly innervated by a subclass 

of FS interneurons, the Chandelier cells (Somogyi, 1977). Neurons were cultured for 19 

days and were subjected to one of two different treatment protocols (10 min in 30 µM 

of the D4 receptor agonist PD168077 (PD) or 20 min in 30 µM of the D4 receptor 

antagonist L745870 plus a further 10 min in both PD168077 and L745870 (L74)) or a 
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control condition (10 min in fresh maintenance medium). Subsequently, neurons were 

fixed and immunolabelled as described in Materials & Methods. 

 

Images of individual neurons were acquired and analysed as described in Materials & 

Methods – in brief, α2 cluster sizes were measured and their density was calculated by 

counting clusters at the AIS, the soma and dendrites, and dividing them by the size of 

their respective subcellular compartment.  

 

The results revealed an increase in α2 cluster size after exposure to PD (Figure 3.7 A & 

B, P = 0.005, Kruskal-Wallis test; P = 0.03 PD vs control, Mann-Whitney test), which was 

inhibited by the antagonist L74, though there was no effect of PD on cluster density 

compared to control. However, none of the pairwise comparisons between cluster size 

in different subcellular compartments of control and PD-treated cells were significantly 

different, suggesting that the individual effects were relatively small. This suggests a 

weak, general, rather than a membrane compartment-specific effect of D4 receptor 

activation on GABAAR surface expression. Interestingly, co-treatment with the 

antagonist L74 reduced α2 cluster density in all three subcompartments compared to 

control (Figure 3.7 B, P < 0.0001, Kruskal-Wallis test; P < 0.0001, Mann Whitney test, P 

< 0.0007 and P < 0.008 Welch-corrected t-test for soma, dendrites and AIS, respectively), 

possibly indicating constitutive activity of D4 receptors (see Discussion).  

 

In conclusion, we were unable to demonstrate an effect of D4 receptor activation on 

GABAergic transmission in either cultured neurons or in recordings from acute PFC 

slices. However, while the assessment of subunit-specific surface expression suggested 

there was no evidence for a region-specific effect of D4 receptor activation on GABAAR 

α2 subunit expression, the results did suggest an overall increase compared to control, 

whereas a global decrease was seen when D4 receptors where inhibited, possibly 

indicating constitutive activity of D4 receptors. Nevertheless, such a change in surface 

GABAA receptors did not appear to have a functional impact on inhibition in cortical 

neurons. 
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Figure 3.7: Effect of D4 receptor activation on α2 subunit surface expression and subcellular 
localisation  
A. Representative image of a cultured neuron (DIV 19) which was used for the analysis of 

PD168077 effects on α2-GABAAR surface expression and subcellular localisation. Surface α2 

subunit labelling is shown in green, while the somatodendritic marker, MAP2, is shown in red. 

The right-hand image shows a dendrite at higher resolution (yellow box from A). White 

arrowheads mark representative α2 clusters, while the yellow arrowhead marks a fused α2 

cluster. B & C. Bar graphs showing different measurements of α2 surface subunits acquired from 

fixed and immunolabelled cultured PFC neurons, including: comparison of surface expression in 

control medium; + PD168077 (PD; 30µM for 10 min); and PD168077 + L745870 (L74; 10 min in 

30 µM L74 before addition of PD for a further 10 min) for three subcellular compartments (soma, 

dendrites, AIS). For both control and PD treatment, 32 cells were analysed, while 23 cells were 

analysed for L74. B. Comparison of α2 cluster sizes between subcellular compartments of 

control and PD-treated cells. C. Density of α2 clusters (cluster signal intensity divided by the area 

of their origin, i.e. dendrites, soma, or AIS). Error bars represent SEM. *** - P<0.001, * - P<0.05 

treatment vs control, Kruskal-Wallis test between treatment groups; ### - P<0.001, ## - P<0.01 

treatment vs control, Mann-Whitney (soma) or Welch-corrected unpaired t-tests (dendrites and 

AIS) between treatment and control conditions of respective cellular subcompartments . 
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3.3 Discussion 

The objective of this chapter was to investigate the basis for neurotransmitter 

modulation of GABAergic inhibition in the PFC. Here, the main focus was placed on the 

D2-like dopamine receptor, D4, and an in-depth investigation of its potential for 

modulation/down-regulation of GABAARs, specifically at the AIS. 

 

3.3.1  Cortical cultures express functional GABAA and dopamine D4 receptors after 

two weeks in culture 

Cultured neurons grow in an artificial environment and lack most of the synaptic inputs 

they would normally receive from other brain areas (e.g. dopaminergic projections from 

the VTA). Since this can, in turn, influence synapse formation and expression of 

neurotransmitter receptors, it was important to assess whether the receptors of interest 

were indeed present and functional. While this was confirmed for GABAARs, both 

electrophysiologically as well as biochemically, it was also shown that expression levels 

are low in the first two weeks and only stabilise after at least 17 days in culture. 

Furthermore, we showed an increase in the expression of α1 and α2 subunits during the 

first three weeks in culture. In comparison, previous studies report a developmental 

shift in receptor expression in slices and cultured neurons, where embryonic rodent 

cortical GABAARs are mainly composed of α2 and α5 subunits, and α1 subunit expression 

increases shortly before birth and during the first few weeks of postnatal development 

(Dunning et al., 1999; Möhler et al., 1995; Nusser et al., 1996b; Paysan and Fritschy, 

1998). Since only whole-cell receptor expression was assessed here, this may not reflect 

the relative contribution of α1- vs α2-GABAARs on the cell surface.  

 

A developmental shift in α subunit expression is relevant for the biophysical properties 

of sIPSCs recorded in two week-old cultured neurons, since the α subunits in particular 

bestow different kinetic properties onto GABAARs (see Mody and Pearce, 2004 for 

review). This may explain the slow decay time (35 ms compared to ~ 10 ms obtained 

later in acute PFC slices, see chapters 4 & 5) observed in our characterisation of 

inhibition in cultured PFC neurons. Further support for this assumption stems from 
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previous research observing a significant decrease in decay times by comparing neurons 

grown for 2 weeks to those grown for 4 weeks in culture (Dunning et al., 1999).  

 

Similar changes in developmental expression have also been reported in the 

dopaminergic system. For example, cortical pyramidal cell output has been found to be 

differentially modulated by the release of dopamine in an age-dependent manner (Paul 

et al., 2013). Here, the presence of D4 receptors in cortical lysates was shown, and an 

increase in D4 receptor levels was observed over the first three weeks in culture. 

Furthermore, evidence for a functional expression of D4 receptors coupled to GIRKs at 

the cell surface was found in the form of an outward current in response to PD168077 

using a high K+-internal solution.  

 

Hence, this primary cortical culture was considered an appropriate model system to 

elucidate D4 receptor mediated effects on GABAergic inhibition. Due to observed 

changes in receptor expression in cultured neurons, as well as evidence from other 

groups showing that synapses in cultured neurons continue to mature until at least 3 

weeks in culture (see, for example, Kraszewski and Grantyn, 1992), the use of more 

mature neurons (3 - 4 weeks in culture) for the planned experiments was intended. 

However, the increase in experimental suitability with culture age was paralleled by a 

decrease in cell health and viability, despite rigorous attempts to improve dissection and 

maintenance protocols. As a compromise, neurons between DIV 10 – 20 were used for 

most experiments. 

 

3.3.2 Activation of dopamine receptor D4 does not affect GABAergic transmission in 

primary cultures or PFC slices 

Dopaminergic modulation of cortical GABAergic transmission has been shown 

previously in vitro and in vivo (Graziane et al., 2009; O’Donnell, 2010; Paul et al., 2013; 

Tritsch and Sabatini, 2012; Tseng and O’Donnell, 2007; Tseng et al., 2007; Wang et al., 

2002; Yagüe et al., 2013). Here, the effects of D4 receptor activation on GABAergic 

inhibition were to be confirmed using the selective agonist PD168077. Both mIPSCs and 

sIPSCs were assessed, the latter to account for indirect, action-potential driven effects 
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of D4 mediated via GABAergic interneurons. However, a reduction in IPSC amplitude as 

a result of D4 receptor activation, seen previously (Graziane et al., 2009), could not be 

corroborated in cultured PFC neurons. This may, in part, be due to the lack of 

physiological dopaminergic input and hence an alteration in the dopaminergic signalling 

system. Cultures comprise an array of neurons from different subregions and layers of 

the original cortical tissue and may vary morphologically and physiologically from their 

in vivo counterparts. This makes identification of particular neuronal subtypes difficult 

and even though pyramidal-shaped neurons were chosen for study, it cannot be 

ascertained whether these were a physiological equivalent of PCs in the PFC. This is 

especially important since it has been shown that principal cells of different cortical 

layers possess different inhibitory properties  (van Aerde and Feldmeyer, 2015; Nicoll et 

al., 1996) and show lamina-specific alterations in psychiatric diseases such as 

schizophrenia (Beneyto et al., 2011). Furthermore, studies of dopaminergic activity in 

the PFC have shown variability due to different cell types, laminar differences, network 

activity states, to name just a few variables (Seamans and Yang, 2004). In the case of D4 

receptors in particular,  cortical PCs have been found to respond differently to D4 

activation compared to interneurons (Zhong and Yan, 2014). Consequently, the failure 

to reproduce previous data in the cell culture system described here may in part stem 

from a lack of distinction between different cell types. Therefore, the cellular system 

was changed to acute slices. 

 

While PFC slices are more limited in terms of conducting ICC or other imaging-based 

experiments, they are a valuable tool for electrophysiological recordings. Some of their 

most prominent advantages are that neurons have matured in a physiological 

environment, they can be more easily distinguished morphologically and, as opposed to 

cell cultures which contain a mix of all cortical layers, can be targeted in a layer-specific 

manner. However, even in slice preparations and when trying to closely emulate the 

experimental conditions of a previous study (Graziane et al., 2009), no effect was found 

on either mIPSC amplitude or frequency in the presence of D4 receptor activation with 

PD168077. We did, however, observe a significant decrease in sIPSC, but not mIPSC, 

frequency. Since sIPSCs are action potential-driven, a decrease in sIPSC frequency may 
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result from decreased activity of presynaptic GABAergic interneurons. This is consistent 

with an inhibitory action of D4 receptor activation at PFC GABAergic interneurons 

(Acosta-García et al., 2009; Azdad et al., 2003; Gasca-Martinez et al., 2010; Govindaiah 

et al., 2010). It is noteworthy, however, that there is also evidence to the contrary, i.e 

an increase in PFC GABAergic transmission in response to DA (Gorelova et al., 2002; 

Tseng et al., 2007). 

 

Despite a lack of D4-mediated effect on sIPSC amplitudes in the slice preparation, there 

could still be other effects that have not been investigated here, such as changes to 

oscillation states mediated by effects on frequency. For example, Andersson and 

colleagues show that D4 activation increases γ-oscillations, which are linked to working 

memory (Pesaran et al., 2002) and learning (Bauer et al., 2007) in hippocampal PCs, but, 

similar to the present study, did not detect any effects on IPSCs (Andersson et al., 2012). 

In addition, Zhong and colleagues (2014) discovered a significant D4-mediated increase 

of PC excitability in PFC, while they only observed a non-significant trend towards a 

reduction in sIPSC amplitude (Zhong and Yan, 2014). However, they did find the 

reduction in mean amplitude to be mainly caused by a loss of large events. Contrary to 

our findings though, this study continues to show a significant reduction in mIPSC 

amplitude, but not frequency, in PFC pyramidal neurons.  

 

Therefore, the effect of PD168077 appears to be inconsistent between studies and may 

reflect different experimental conditions, though by studying dissociated cultures and 

acute slices, and both mIPSC and sIPSCs, a robust effect of D4 receptor activation should 

have been apparent.  

 

3.3.3 Activation of dopamine receptor D4 increases cell-surface expression of α2-

GABAARs 

The second approach implemented to elucidate D4 effects on GABAARs was to 

investigate possible changes in the expression of specific GABAAR subunits in response 

to PD168077 treatment. We initially focused on α2 subunit surface expression in 

different subcellular compartments. To this end, we analysed ICC labelling of α2-
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GABAARs, which presented itself as punctate structures, henceforth referred to as 

“clusters”. An increase in cluster size can be explained by an increase of α2-GABAARs 

incorporated into postsynaptic sites with a concomitant expansion of the postsynaptic 

area. Another explanation for this acknowledges the limitations of the resolution which 

can be achieved using confocal imaging and the image analysis paradigm described here 

(see Materials & Methods). In that case, an increase in the number of GABAARs present 

at the cell surface can lead to “fusion” of distinct clusters. Thus, an increase in cluster 

area may in fact stem from an increase in cluster number. In this case, using cluster 

density alongside cluster size provides a more accurate representation of receptor 

surface expression. Therefore, both cluster size and density were used as measures for 

receptor surface expression here. 

 

Interestingly, contrary to previous work by Graziane et al showing a down-regulation of 

GABAARs (Graziane et al., 2009), the present study showed an increase in α2 cluster size 

in the presence of D4 agonist and a decrease in cluster density in the presence of the D4 

antagonist. The lack of an effect on cluster density in the presence of the agonist, 

concomitant with a reduction in the antagonist, points to an increase in density in 

response to PD168077 that was probably masked by the fusion of distinct α2 clusters. 

This is reflected by the observed increase in cluster size. The absence of a reduction in 

cluster size in the antagonist L74 could indicate that, while receptor expression was 

reduced, the number of previously fused clusters probably remained unaltered, 

therefore cluster size remained unaffected. Together, this is indicative of an insertion or 

removal of distinct α2-GABAAR populations from the membrane, rather than a lateral 

movement of “free” receptors into more confined clusters. However, and most 

important, concomitant with an increase in α2-GABAAR surface expression, an increase 

in sIPSC amplitude would be expected, which was not observed in this study. It is 

conceivable that an increase in α2-containing GABAARs might be counterbalanced by a 

decrease in other GABAARs, for example containing the α1 subunit, and therefore no net 

change in sIPSC amplitude would be observed. 
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This is particularly interesting in light of the observed increase in α2- and decrease in 

α1-levels in the cortices of schizophrenic patients (Beneyto et al., 2011). Together with 

the fact that the antipsychotic drug clozapine is a more efficient antagonist at D4 

receptors (Van Tol et al., 1991) it may be possible that a clinical improvement seen by 

D4 targeted treatments could in part be mediated by a change in expression of α2-

GABAARs. Nevertheless, there is no functional correlate of the apparent changes in α2 

subunit expression by D4 receptor activation. 

 

Another interesting observation is the reduction in α2 subunit surface expression 

observed in L74 compared to control. Since this compound is highly potent and selective 

for D4 receptors (Kulagowski et al., 1996), this reduction points to intrinsic (constitutive) 

activity of D4 receptors in our primary cortical culture. This could either be due to the 

presence of basally active dopaminergic terminals in the culture, which seems unlikely, 

considering that these processes will have been severed from their somatic origin in the 

midbrain during the culturing process. A second explanation involves constitutive 

activity of D4 receptors in the absence of agonist, which has been evidenced previously 

for D2 and D3 receptors (Malmberg et al., 1998; reviewed in Strange, 1999). Potential 

constitutive activity of GPCRs has been suggested by the “allosteric ternary complex 

model”, wherein the receptor (R) can spontaneously activate (R*G) and form an active 

complex with the G-protein (RG) (Lefkowitz et al., 1993). The presence of constitutively 

active D4 receptors in cultured prefrontal neurons requires further corroboration, 

possibly using a combination of inverse agonists and antagonists.  

 

In conclusion, while the experiments conducted have been unable to corroborate 

previous studies reporting a reduction in IPSC amplitude in response to D4 receptor 

activation, they did show an increase in α2 subunit expression which is congruent with 

upregulation of GABAAR α2 subunits seen in schizophrenic patients (Beneyto et al., 

2011). Nevertheless, since we failed to see an effect of D4 activation on postsynaptic 

inhibition in both cultured neurons and acute slices, this change in GABAAR numbers 

may be below threshold for a functional effect. We therefore investigated other 

potential modulators that may affect GABAAR receptor function in the mPFC. 
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3.4 Conclusions 

 

1. A primary cortical culture was developed that possessed both tonic and phasic 

GABAAR conductances and expressed GABAARs as well as D4 receptors that 

varied over the first three weeks in vitro.  

2. In primary cultures, whole-cell expression of GABAAR α1 and α2 subunits 

increased over the course of the first three weeks in vitro as revealed by both 

WB and ICC. 

3. The α2 subunit is relatively enriched at the AIS of cultured pyramidal-shaped 

neurons compared to α1 subunits. 

4. Contrary to previous reports, activation of D4 receptors had no effect on the 

amplitudes of either action potential-dependent or –independent IPSCs in either 

primary cultures or acute mPFC slices. 

5. D4 receptor activation does appear to decrease action potential-driven release 

of GABA from interneurons, leading to a decrease of sIPSC frequency at 

postsynaptic pyramidal neurons in acute mPFC slices. 

6. D4 receptor activation universally increased cell surface expression of α2 

subunits, but does not appear to have subcompartment-specific effects. 

7. The concomitant down-regulation of α2 subunit surface expression observed 

when blocking D4 receptors is probably indicative of constitutive activity of D4 

receptors in PFC cultures. 
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4 Neurosteroid modulation of GABAergic inhibition in the 

mPFC 

4.1 Introduction 

Neurosteroid modulation of GABAergic inhibition plays a critical role in shaping both 

synaptic and tonic inhibition in the CNS. While neurosteroids are seemingly synthesised 

and released ubiquitously throughout the brain, their effect on inhibition can be very 

specific and vary between brain regions and even different cell types within a certain 

brain area (for reviews, see Belelli and Lambert, 2005; Lambert et al., 2003). This has 

been largely attributed to fluctuations in local neurosteroid concentrations as well as to 

the expression of GABAAR subtypes with varying neurosteroid sensitivities. In addition, 

post-translational modification, such as phosphorylation of GABAARs, can alter their 

neurosteroid sensitivity (Abramian et al., 2014; Adams et al., 2015; Fáncsik et al., 2000; 

Tasker, 2000). The enzymatic pathways for neurosteroid metabolism are differentially 

expressed throughout the brain (Gunn et al., 2015) and steroid levels can change with 

development, oestrous cycle, pregnancy, or in response to external stressors (Gunn et 

al., 2015; Mody and Maguire, 2011; Purdy et al., 1991). Hippocampal DGGCs, for 

instance, show a much larger effect on tonic currents in response to THDOC with only 

minimal effects on phasic inhibition (Farrant and Nusser, 2005; Stell et al., 2003), while 

in CA1 PCs, neurosteroid exposure results in an increase in phasic decay (Harney et al., 

2003) without affecting tonic inhibition (Stell et al., 2003). The particular subunit-

composition of the GABAAR also appears to determine the affinity for neurosteroids and 

their relative efficacy, as well as the type of modulation they exert. For example, the 

affinity of αβγ-containing GABAARs for neurosteroids is in the low nM range and varies 

with the specific α subunit incorporated (Belelli et al., 2002).  By contrast, αβδ-

containing GABAARs, possess a similar affinity for neurosteroids, but show a much higher 

efficacy in neurosteroid modulation (Belelli et al., 2002; Hosie et al., 2009; Lambert et 

al., 2003). In addition, αβγ-GABAARs are mostly located at synaptic sites and 

neurosteroid potentiation leads to an increase in IPSC decay times and prolongation of 

IPSC durations (Belelli and Herd, 2003; Belelli and Lambert, 2005; Harney et al., 2003), 
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while αβδ-GABAARs are mainly found at extrasynaptic sites where neurosteroids 

enhance the level of tonic inhibition (Stell et al., 2003).  

 

Many studies have shown a link between neuroactive steroid levels and psychiatric 

disease, such as anxiety disorders (Eser et al., 2008; Rupprecht et al., 2001; Schüle et al., 

2014; Strous et al., 2006). However, little is known about how neurosteroids modulate 

inhibition in the PFC, an area which is strongly interconnected with subcortical regions 

such as the amygdala and striatum (Berkowitz et al., 2007; Carr and Sesack, 2000). The  

mPFC in particular is thought to exert executive control over fear and reward pathways 

(Riga et al., 2014), and both hypo- and hyperactivity of this region have been implicated 

in different types of anxiety disorders (Arnsten, 2007; Gamo and Arnsten, 2011). 

Furthermore, recent research has demonstrated that enhancing neurosteroid synthesis 

in mouse mPFC increases GABAergic IPSC duration and amplitude and has anxiolytic 

effects in rodent behavioural tests (Rupprecht et al., 2009). There is evidence for 

neurosteroid synthetic pathways in the PFC (Castelli et al., 2013; Gunn et al., 2015) that 

may influence neurodevelopment (Grobin et al., 2006) and could also be crucial for 

providing neuroprotection in Alzheimer’s disease (Luchetti et al., 2011; Marx et al., 

2006). Hence, elucidating how neurosteroids modulate PFC activity could help to 

understand the underlying mechanisms associated with neurological and psychiatric 

disease.  

 

In this chapter, we focus on effects mediated via the α2 subunit-containing GABAARs, 

given their high expression in brain areas linked to mental illness, such as the amygdala 

and NAcc (Fritschy and Möhler, 1995; Möhler, 2002; Pirker et al., 2000) and the strong 

links which have been identified between alterations in α2 subunit function and CNS 

disorders (Engin et al., 2012). One interesting feature of α2-GABAAR is their preferred 

localisation at the AIS in hippocampal PCs (Nusser et al., 1996b), a neuronal region 

crucially involved in action potential generation. Since the synchronised, regular activity 

of PCs generates neuronal network oscillations, which are an important functional 

characteristic of many brain regions (Fries, 2009), an involvement of α2-GABAARs in 

regulating PC output may therefore have profound effects on network activity. Evidence 
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for this has been shown in the hippocampus, where cholinergic oscillations are 

controlled by α2 subunit GABAARs in the CA3 region (Heistek et al., 2013).  It is therefore 

conceivable that GABAARs containing this subunit may play a similar role in modulating 

the concerted activity of neuronal networks in the PFC.  

 

4.1.1 Probing α2-mediated neurosteroid effects in the mPFC using an α2Q241M knock-

in mouse 

There are two distinct neurosteroid binding sites on GABAARs: One is formed entirely by 

the α subunit transmembrane domain and mediates allosteric potentiation by 

neurosteroids, whilst the other is thought to lie at the β-α interface and mediates direct 

receptor activation by neurosteroids (Hosie et al., 2006). Previously, an α2 knock-in 

mouse (henceforth referred to as “hom” or α2M/M to distinguish from wild-type mice, 

α2WT) has been created by exchanging glutamine at position 241 for methionine in the 

allosteric binding site (Durkin, 2012). This mutation of a conserved glutamine residue in 

the first transmembrane domain, has been introduced into different α subunits and 

shown to remove neurosteroid sensitivity without affecting other allosteric sites, such 

as benzodiazepine binding, in heterologous expression models (Hosie et al., 2009). Since 

binding at the potentiating site is also required to facilitate direct receptor activation by 

neurosteroids, this mutation (Q241M) renders the subunit insensitive to both the 

allosteric and direct effects of neurosteroids. 

 

Previous work from our laboratory has used the α2M/M mouse to explore GABA receptor 

subunit-specific effects of neurosteroid modulation. It has been assessed for 

compensatory changes in the expression of other GABAAR α subunits, which were 

unchanged (Durkin, 2012). This study also confirmed the reduced neurosteroid 

sensitivity of GABAAR-mediated inhibition in the NAcc and hippocampus of α2M/M mice 

compared to α2WT littermates. Interestingly, a novel potential involvement of α2 

subunits in mediating tonic inhibition was discovered in addition to a significant 

contribution towards synaptic inhibition. Furthermore, behavioural experiments 

showed a role for α2 subunits in mediating anxiolytic effects of endogenous as well as 

exogenously-administered neurosteroids (Durkin, 2012).  
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4.1.2 Objectives 

The aim of this project was to elucidate and characterise the properties and laminar 

differences of mPFC GABAergic inhibition, and how this is affected by neurosteroids. A 

particular focus was placed on the significance of signalling via α2-GABAARs. To this end, 

acute coronal brain slices from α2WT mice as well as from α2M/M littermates were initially 

probed for functional differences in cortical GABAergic inhibition between the two 

genotypes. Furthermore, since GABAAR receptor expression varies with the cortical layer 

(Pirker et al., 2000; Wisden et al., 1992), differences between superficial (II/III) and 

deeper layers (V/VI) were investigated (note there is no discernible layer IV in the mPFC). 

Using whole-cell patch-clamp recording, sIPSCs were recorded and their properties 

compared. Subsequent to assessing potential differences in baseline inhibitory 

properties between layers or genotypes, the neurosteroid THDOC was used to explore 

the effects of neurosteroids in different layers of the mPFC as well as, more specifically, 

the contribution of α2 subunit-containing GABAARs to prefrontal cortical inhibition.  
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4.2 Results 

In order to investigate neurosteroid modulation of GABAergic inhibition in the mPFC, 

acute coronal slices of murine mPFC were prepared as described in Materials & 

Methods. Only male mice between the ages P28 - P60 were used to avoid oestral cycle 

(Finn and Gee, 1993) and developmental fluctuations known to occur in endogenous 

neurosteroid levels (Grobin and Morrow, 2001). The age range was set to avoid 

inconsistent results due to changes in GABAAR subunit expression levels and, 

consequently, IPSC decay times that occur in early postnatal development (Dunning et 

al., 1999; Kobayashi et al., 2008). All recordings were carried out at room temperature 

in aCSF supplemented with 2 mM KA to block excitatory synaptic activity via glutamate 

receptors. 

 Typically, the first 4-6 slices (300 µm thick) below the olfactory bulb and anterior to the 

corpus callosum, were collected (approximately matching Bregma + 4.5 to + 2, see 

Figure 4.1). Cells were chosen from layer II/III or layer V/VI in the anterior cingulate 

cortex (ACC) or prelimbic cortex (PL) of the mPFC (Figure 4.2 A). The border between 

layer I and layer II/III was identified visually as a dark band approximately 100 µm from 

the midline (Figure 4.2 A), which had a characteristically dense distribution of somata. 

Any cells within approximately 200 µm from the pial surface were classified as layer II/III, 

while neurons located further from the pial surface were classified as layer V/VI.   

 

Figure 4.1: Schematic model of a mouse brain 
Schematic parasagittal view of a mouse brain that includes the segmentation guidelines denoted 

by Bregma. The PFC, from which acute slices were collected for the purpose of the experiments 

carried out here, is colour highlighted. The brain model was based on Barral et al., 2014, Fig. 6 

and Gabbott et al., 2005. 
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Figure 4.2: Localisation and morphologies of neurons typically chosen for electrophysiological 
recordings in acute mPFC brain slices.  
A. Schematic drawing depicting the mPFC with identified subregions (ACC – anterior cingulate 

cortex; PL – prelimbic cortex; IL – infralimbic cortex), and main laminar subdivisions (left). On 

the right of each panel are representative images of patch electrode placement within the slice 

(centre) and morphology of dye-filled neurons that were imaged post hoc (right). B. Selection of 

images showing morphology of neurons used for electrophysiological recordings from the 

different layers of the mPFC.  

 

Pyramidal neurons were identified morphologically by their characteristic large, 

triangular somata and apical dendrite extending towards the midline. This identification 

was verified electrophysiologically by whole-cell capacitance: Due to their size, they 

possess larger membrane capacitances (in layer V/VI, on average 180 ± 7 pF, n = 13) than 

interneurons (here usually < 100 pF). Initial post hoc imaging of neurons, filled with 

Lucifer yellow from the patch pipette (Figure 4.2 B) confirmed that the majority of 

neurons recorded from in the identified cell layers of the mPFC were PCs (pyramidal 

neurons were easily identifiable not just by their typical gross morphology, but also by 

the presence of spines). Hence, post hoc confirmation of cell-type was discontinued in 

later experiments.  

 

For analysing the kinetics of spontaneous IPSCs and for RMS noise analysis, recordings 

were only considered if the RA remained stable (i.e. less than a 25% change) throughout 

the duration of the recording. IPSC decay times were determined as charge transfer 

(IPSC area) divided by the peak IPSC amplitude (Ye et al., 2013). IPSC frequencies were 

calculated as the reciprocal of the average inter-event intervals. Tonic currents were 

measured as absolute shifts in the holding current after bath-application of 20 µM 

bicuculline. For the measurement of tonic currents, recordings were discarded if 

baseline holding currents were unstable (i.e. fluctuating or gradually drifting). 

 

4.2.1 THDOC enhances sIPSC decay times and tonic currents in mPFC of C57Bl6/J 

mice 

The first step was to verify an effect of a physiological concentration of the neurosteroid 

THDOC (100 nM; Paul and Purdy, 1992) on pyramidal neuron sIPSC decay times in 
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superficial layers (i.e. layers II/III) of mPFC in C57Bl6/J mice. This is the animal strain that 

supplied the genetic background for the neurosteroid binding site mutant mouse model. 

THDOC was diluted to a working concentration in aCSF and applied to the slices via the 

bath circulation system. Neuronal currents were measured after an equilibration period 

of 3 min. 

 

Similar to previous findings in other brain regions such as the hippocampus (Belelli and 

Herd, 2003; Cooper et al., 1999), 100 nM THDOC was found to significantly prolong sIPSC 

decay times by about 16% compared to a preceding control period in aCSF (7.6 ± 0.2 ms 

in aCSF vs 8.9 ± 0.4 ms in THDOC, P < 0.001, paired t-test, see Table 4.1). This 

prolongation in sIPSCs was also significantly larger (P < 0.0001, unpaired t-test, Figure 

4.3 A & B)  than the change observed in a “mock” application of aCSF (9 ± 0.3 ms in aCSF 

vs 8.9 ± 0.3 ms in “mock”, see Table 4.1). Furthermore, THDOC appeared to enhance the 

tonic current by more than four-fold as revealed by the subsequent application of 20 

µM bicuculline (5.3 ± 1.4 pA in “mock” vs 24 ± 2.7 pA in THDOC, P < 0.0001 unpaired t-

test, Figure 4.3 C). This is also in agreement with the previously shown effect of 

neurosteroids on GABA-mediated tonic inhibition in the hippocampus (Mody, 2005; 

Stell et al., 2003).  

 

THDOC did not have a significant influence on the sIPSC frequency or rise times  (Table 

4.1) when comparing absolute values to those measured in aCSF (P = 0.4, P = 0.3, 

respectively, paired t-tests). Furthermore, neither sIPSC frequency (P = 0.1, unpaired t-

test) nor rise times (P = 0.3, unpaired t-test), if normalised to measurements taken 

during a control period in aCSF prior to THDOC application, were significantly different 

from a “mock” control recording (see Table 4.1 for absolute values). A small tendency 

for an increase in the peak amplitude was observed in the presence of THDOC (P = 0.04, 

paired t-test; Table 4.1); however, normalised peak amplitudes in THDOC (5.5 ± 2.2 % 

change) were not significantly different from a “mock” control (1.4 ± 4.3 % change, P = 

0.4, unpaired t-test).  
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sIPSC parameters & 

GABA tonic currents 
aCSF THDOC  n 

Frequency [Hz] 10.09 ± 0.86 10.43 ± 0.82 (12) 

Peak amplitude [pA] -29.26 ± 1.38 -30.83 ± 1.55* (12) 

Decay time [ms] 7.59 ± 0.22 8.85 ± 0.37*** (12) 

Rise time [ms] 0.47 ± 0.02 0.48 ± 0.02 (12) 

Tonic current [pA] - 23.97 ± 2.65### (25) 

sIPSC parameters & 

GABA tonic currents 
aCSF “Mock” Control  n 

Frequency [Hz] 7.26 ± 1.12 6.88 ± 1.08 (9) 

Peak amplitude [pA] -30.81 ± 1.53 -31.56 ± 1.70 (9) 

Decay time [ms] 9.02 ± 0.25 8.89 ± 0.33 (9) 

Rise time [ms] 0.5 ± 0.04 0.47 ± 0.02 (9) 

Tonic current [pA] - 5.3 ± 1.39 (11) 

 

Table 4.1: THDOC effects on sIPSC parameters and tonic current in mPFC pyramidal neurons 

Comparison of sIPSC kinetics and tonic currents before (aCSF) and after application of 100 nM 

THDOC or in a “mock” control (application of aCSF) in C57Bl6/J slices. Recordings were obtained 

from layer II/III pyramidal neurons of mPFC. Cell numbers (n) are shown in parentheses. All 

values are given as mean ± SEM. * - P < 0.05, *** - P < 0.001, aCSF vs THDOC/”mock”, paired t-

test. ### - P < 0.001, tonic currents in THDOC vs “mock” control, unpaired t-test. 
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Figure 4.3: THDOC prolongs sIPSC decay times and enhances tonic currents 

A. Representative sIPSCs recorded from a layer II/III pyramidal neuron of C57Bl6/J mPFC in aCSF 

and THDOC.  Shown in the centre is the chemical structure of THDOC. Currents shown on the 

right-hand side represent peak-scaled average sIPSCs observed in either aCSF or THDOC and 

which were obtained from averaging at least 100 events for each condition. B & C. Bar graphs 

of the effects of 100 nM THDOC on decay times and tonic currents, compared between drug 

application and a “mock” control (aCSF). Decay time was normalised to those measured in aCSF 

alone. Error bars represent mean ± SEM. *** - P < 0.001, unpaired t-test. 
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4.2.2 Baseline sIPSC kinetics do not vary between mPFC layers of α2WT mice 

Having established the effects of THDOC on sIPSC decays in C57Bl6/J mouse mPFC 

pyramidal neurons, the mouse model expressing neurosteroid insensitive α2 subunits 

was used henceforth. Initially, baseline cellular parameters and sIPSC kinetics of 

pyramidal neurons from different layers of wild-type (α2WT) mPFC neurons were 

compared in slices taken from wt littermates. With the exception of membrane 

capacitance, most parameters were similar between layers II/III and V/VI (Table 4.2). 

Membrane capacitance, however, was found to be larger for cells located in the deeper 

layers (P < 0.0001, unpaired t-test), which is likely to reflect the typically larger somata 

found in this layer (van Aerde and Feldmeyer, 2015). 

 

 

Pyramidal neuron parameters  Layer II/III Layer V/VI 

Rin [MΩ] 186.65 ± 14.26 (13) 212.15 ± 17.06 (13) 

Cm [pF] 124.3 3± 8.11 (13) 179.75 ± 7.40 (13)*** 

Baseline sIPSC parameters & 

tonic current 
Layer II/III Layer V/VI 

Frequency [Hz] 10.67 ± 1.59 (12) 10.38 ± 0.94 (13) 

Peak amplitude [pA] -28.03 ± 1.95 (12) -25.78 ± 1.02 (13) 

Decay time [ms] 8.55 ± 0.51 (12) 8.49 ± 0.35 (13) 

Rise time [ms] 0.57 ± 0.07 (12) 0.64 ± 0.02 (13) 

Tonic current [pA] 10.28 ± 2.71 (7) 13.97 ± 1.98 (10) 

Table 4.2: Membrane capacitance varies between different layers of α2WT mPFC 

Table comparing electrophysiological parameters of pyramidal neurons in different layers of 

α2WT mouse mPFC. Values for the input resistance (Rin) and membrane capacitance (Cm) were 

calculated from the average hyperpolarising capacity transients recorded by applying 20 x 10 

mV steps (see Materials & Methods section). sIPSC frequency, rise-time, amplitude and decay 

time were obtained by averaging measurements from sIPSCs over a period of at least 2 min 

(>100 events). Cell numbers are shown in parentheses. All values are given as means ± SEM. *** 

- P < 0.001, unpaired t-test.  
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4.2.3 THDOC prolongation of decay times is greater in layers V/VI compared to II/III 

We then compared the effects of THDOC on pyramidal cell GABA-mediated inhibition 

between the superficial mPFC layers (II/III) and deeper layers (V/VI) in α2WT. While initial 

comparisons of baseline parameters and sIPSC kinetics between those regions revealed 

a difference only in cell capacitance (Table 4.2), the differential distribution of GABAAR 

subtypes that is known to occur across different cortical layers (Pirker et al., 2000; 

Sieghart and Sperk, 2002) could nevertheless lead to changes in the response to 

neurosteroids. Indeed, comparing the effect of THDOC (100 nM) on decay times, a 

greater prolongation of sIPSCs was detected in layers V/VI compared to II/III: while 

decay times in the outer layers were prolonged by ~16 %, inner layer sIPSC decay times 

were prolonged in THDOC by 27 % (P = 0.012, unpaired t-test, Table 4.3), equating to an 

approximate 69% larger effect by THDOC. This could be indicative of a larger population 

of neurosteroid-sensitive GABAARs in the deeper layers (see Discussion). None of the 

other parameters examined exhibited a significant laminar difference, which indicates 

that GABA release is likely to be similar across the different layers and also points to an 

overall similar density of synaptic and extrasynaptic GABAARs. Interestingly, sIPSC 

frequency was increased in THDOC in PCs of α2WT, an effect we did not observe before 

in C57Bl6/J (Table 4.1, Table 4.3). While a change in sIPSC frequency was not expected 

after THDOC treatment, there is no consensus on neurosteroid effects on sIPSC 

frequency in the literature (Reith and Sillar, 1997; Stell et al., 2003). Such changes may 

conceivably involve neurosteroid action at presynaptic Ca2+ channels and/or presynaptic 

GABAARs (Haage et al., 2002; Poisbeau et al., 1997). Another difference to the results 

obtained in C57Bl6/J mice is the lack of an effect of THDOC on tonic currents (Table 4.4). 

 

In summary, using electrophysiology, the cellular properties of pyramidal neurons and 

underlying parameters of GABA inhibition in the mPFC were characterised. Most of 

these parameters were found to be largely independent of the cortical layer, with the 

exception of a larger membrane capacitance observed in layers V/VI. Furthermore, 

THDOC significantly prolonged sIPSC decay times in layers II/III and V/VI of α2WT mice, 

and this increased duration of synaptic inhibition was significantly more pronounced in 
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the deeper cortical layers. Finally, there appeared to be an equal increase in sIPSC 

frequency in response to THDOC in both layers of α2WT slices.  

 

 

Normalised sIPSC 

parameters after THDOC 
Layer II/III (12) Layer V/VI (8) 

Frequency  1.14 ± 0.06# 1.13 ± 0.05# 

Peak amplitude 1.05 ± 0.03 1.06 ± 0.06 

Decay time  1.16 ± 0.02 1.27 ± 0.03* 

Rise time  1.16 ± 0.08 1.09 ± 0.06 

 

Table 4.3: Effect of THDOC on sIPSC parameters in layers II/III and V/VI of the mPFC 

Comparison of sIPSC frequency and kinetics after application of 100 nM THDOC normalised to a 

control period (= 1) in aCSF in different layers of the mPFC. Recordings were obtained from 

pyramidal neurons of α2WT mouse mPFC. The numbers of cells are shown in parentheses. All 

values are means ± SEM. * - P < 0.05 layer V/VI vs layer II/III, unpaired t-test. # - P < 0.05, aCSF 

vs THDOC, paired t-test. 

 

 

Tonic currents [pA] Layer II/III (12) Layer V/VI (8) 

aCSF 10.28 ± 2.71 (7) 13.96 ± 1.98 (7) 

THDOC 12.98 ± 1.44 (13) 8.81 ± 1.91 (8) 

 
Table 4.4 Effect of THDOC on tonic currents in layers II/III and V/VI of the mPFC 
Absolute tonic currents in the presence and absence of THDOC. Recordings were obtained from 

pyramidal neurons of α2WT mouse mPFC. The numbers of cells are shown in parentheses. All 

values are means ± SEM. Statistical tests compared tonic currents between layers (unpaired t-

test) and between THDOC and aCSF treatment (paired t-test); both were found to be 

insignificant (P<0.05). 
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4.2.4 Ablating neurosteroid sensitivity of GABAAR α2 subunits in layer II/III PCs 

In order to study the specific effects of neurosteroid modulation of GABAergic inhibition 

via α2-containing GABAARs, a mutant knock-in mouse line has been generated by 

introducing a point mutation in the neurosteroid binding site of the α2 subunit (Durkin, 

2012). Previous work has provided evidence that this residue renders GABAARs 

containing α2 subunits insensitive to allopregnanolone and THDOC, without affecting 

GABA or benzodiazepine binding, or the function of the GABAAR (Hosie et al., 2006, 

2009). Work from our lab has previously characterised this knock-in mouse-model in the 

hippocampus and NAcc with regards to its effect on neurosteroid responses, as well as 

potential compensation resulting from the knock-in. However, the effects of 

neurosteroid modulation and the role of the α2 subunit in the mPFC of the knock-in line 

have not been characterised.  

 

Initially, baseline cellular parameters (Table 4.5) and GABA inhibitory neurotransmission 

(Table 4.6) in layers II/III and V/VI were compared between α2WT animals and α2M/M 

littermates. These data also allowed us to assess the potential presence of any 

endogenous neurosteroid tone on α2-GABAARs. 

 

By comparing sIPSC decay times between neurons from α2WT and α2M/M slices (Table 

4.6), a difference in baseline decay was noted only in layer II/III (P = 0.04, one-tailed 

unpaired t-test). Such a result could be indicative of an endogenous neurosteroid tone 

that is removed by the Q241M mutation in the α2 subunit of slices from homozygote 

mice (see Discussion). There were no differences in other sIPSC parameters or tonic 

inhibition between the genotypes or between the different cell layers (Table 4.6). Similar 

to the results with α2WT, layer V/VI neurons had a larger membrane capacitance than 

their layer II/III counterparts in α2M/M animals (P < 0.001, unpaired t-test; Table 4.5). 

There was no difference in the membrane capacitance between genotypes.  
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Pyramidal neuron  
baseline parameters  

  α2WT(13) α2M/M (12) 

Rin [MΩ] 
Layer II/III 189 ± 14 (13) 197 ± 29 

Layer V/VI 212 ± 17 267 ± 25 

Cm [pF] 
Layer II/III 124 ± 8 139 ± 10 

Layer V/VI 180 ± 7*** 191 ± 9*** 

Table 4.5: Comparison of baseline cellular parameters between α2WT and α2M/M mice 

Comparison of Rin and Cm measured in aCSF at the beginning of an experiment between 

slices from α2WT mice and α2M/M littermates, in layers II/III and V/VI of the mPFC. *** - 

P < 0.001 layer II/III vs layer V/VI, unpaired t-test. 

 

Baseline sIPSC  parameters and GABA 

tonic current 
α2WT α2M/M 

Frequency [Hz] 

Layer II/III 10.67 ± 1.59 (12) 13.70 ± 1.73 (12) 

Layer V/VI 10.38 ± 0.94 (13) 9.24 ± 1.3 (9) 

Peak amplitude 

[pA] 

Layer II/III -28.03 ± 1.95 (12) -25.99 ± 1.16 (12) 

Layer V/VI -25.78 ± 1.02 (13) -27.55 ± 0.73 (9) 

Decay time [ms] 

Layer II/III 8.55 ± 0.51 (12) 7.37 ± 0.31 (12)* 

Layer V/VI 8.49 ± 0.35 (13) 9.19 ± 0.38 (9)## 

Rise time [ms] 

Layer II/III 0.57 ± 0.07 (12) 0.60 ± 0.05 (12) 

Layer V/VI 0.64 ± 0.02 (13) 0.59 ± 0.02 (9) 

Tonic current [pA] 

Layer II/III 10.28 ± 2.71 (7) 10.79 ± 3.18 (8) 

Layer V/VI 13.97 ± 1.98 (10) 9.74 ± 1.59 (6) 

Table 4.6: Comparison of sIPSC parameters and tonic current properties between neurons of 

α2WT and α2M/M mice 

Comparison of absolute baseline values for sIPSC kinetics and tonic currents between neurons 

from α2WT mice and α2M/M littermates, as well as between different layers of the mPFC. Cell 

numbers are shown in parentheses. All values are given as means ± SEM. ## - P < 0.01 layer II/III 

vs layer V/VI unpaired t-test, * - P < 0.05 α2WT vs α2M/M unpaired t-test.  
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While changes in GABA tonic currents overall did not vary significantly between either 

genotype or cell layers (Figure 4.4 A & B, Table 4.6), there was a tendency towards a 

reduced current in layer V/VI neurons of αM/M mutant mice.  Furthermore, since a novel 

involvement of GABAAR α2 subunits in tonic inhibition had previously been suggested 

for DGGCs (Durkin, 2012), and differences in tonic currents have been reported for wt 

cells from different cortical layers of visual and somatosensory cortex (Jang et al., 2013; 

Yamada et al., 2007), the possibility for changes in tonic current were further explored. 

In addition to measuring absolute shifts in the holding current, the tonic current density 

(holding current change normalised to cell capacitance) was determined, to account for 

any effects that different cell sizes might have on the measured GABA currents (Figure 

4.4 C). However, these normalised tonic currents did not vary significantly between 

genotypes or the different cortical layers. As a third check, changes in RMS current noise 

were also analysed (Figure 4.4 D), but, as before, they did not reveal any significant 

differences in the tonic currents.  

 

4.2.5 GABAARs containing δ or α5 subunits contribute to tonic currents in layer V/VI 

pyramidal neurons 

While overall tonic currents appeared unaltered for α2M/M, there may still have been 

alterations in the relative contribution of different populations of GABAAR subtypes to 

tonic inhibition in the mPFC. The two subtypes most commonly implicated in tonic 

inhibition are α5 and δ subunit-containing GABAARs (Brickley and Mody, 2012; Caraiscos 

et al., 2004; Glykys et al., 2008; Lee and Maguire, 2014; Marowsky and Vogt, 2014). 

Overall, δ-GABAARs tend to be more highly expressed in superficial layers of the PFC, 

while α5-GABAARs are found more concentrated in the deeper layers (Pirker et al., 

2000). Since the initial investigation of changes in tonic currents between α2WT and 

α2M/M showed a slight tendency towards a reduction in tonic currents in α2M/M layer 

V/VI PCs (Figure 4.4 B), the presence of functional δ- and α5-GABAARs was elucidated 

further in this area and compared between genotypes.  
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Figure 4.4: GABA tonic currents recorded from mPFC cell layers and different genotypes 

A. Representative tonic currents for layer V/VI PCs of α2WT and α2M/M mice recorded under 

whole-cell voltage clamp. Traces show the current shift in response to bath application of 20 µM 

bicuculline. Cells were held at -60 mV and currents were allowed to equilibrate for at least 1 min 

after drug application before any measurements were taken. B. Comparison of GABA-mediated 

tonic currents between different genotypes and cell layers. C. Tonic current densities calculated 

using the same currents as measured in B, but normalised to cell capacitance. D. Tonic noise 

measured by calculating the RMS noise of current traces in bicuculline (see Material & Methods), 

normalised to a preceding control period in aCSF. Only current traces uncontaminated by 

synaptic events were chosen and averaged over at least 30 s. All datasets were tested using 

pairwise comparisons. Bars represent mean ± SEM. 
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First, the presence of δ subunit-containing GABAARs was explored using THIP, an agonist 

selective for this receptor subtype when used at appropriate concentrations 

(Krogsgaard-Larsen et al., 2004; Mortensen et al., 2010). After establishing a stable 

baseline recording from layers V/VI in aCSF (usually after 3-4 min), 1 µM THIP (a δ-

subunit selective agonist) was applied through the bath perfusion system. As expected 

for THIP, which is a more potent agonist at αβδ receptors compared to the natural 

transmitter (Brown et al., 2002; Krogsgaard-Larsen et al., 2002; Mortensen et al., 2010), 

tonic currents approximately doubled in amplitude (Figure 4.5) in both α2WT and α2M/M 

cells when compared to tonic currents in aCSF (P = 0.002 both, unpaired t-test). 

However, there was no effect of genotype on the THIP-induced tonic currents, 

suggesting that both α2WT and α2M/M neurons are expressing near-equal numbers of δ 

subunit-containing GABAARs in layer V/VI pyramidal neurons.  

 

 

 

Figure 4.5: GABAARs containing δ subunits are present in layer V/VI pyramidal neurons but do 

not vary between genotypes 

A. Representative membrane current trace showing an increase in holding current after bath 

application of 1 µM THIP and a decrease in 20 µM bicuculline. B. Tonic GABA currents in THIP 

and aCSF compared between α2WT and α2M/M neurons. Bars represent mean ± SEM. **-P < 0.01, 

THIP vs aCSF, unpaired t-test. 
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The presence of α5 subunit-containing GABAARs was also probed in layers V/VI using a 

selective inverse agonist, (MRK-016). This compound has previously been shown to 

selectively inhibit α5-containing GABAARs with 50% relative inhibitory efficacy and a high 

potency indicated by the low IC50 of 3 nM (Atack et al., 2009; Chambers et al., 2004). A 

comparison of tonic GABA currents recorded from neurons from the two genotypes, 

exposed to either MRK-016 (100 nM) or just aCSF, showed a significant difference in 

α2M/M only (P = 0.03, one-tailed unpaired t-test; Figure 4.6 A), while α2WT just failed 

significance at the 5% margin (P = 0.06, one-tailed unpaired t-test). However, MRK-016 

induced significant changes to the holding current compared to a null-effect for both 

α2WT (P = 0.006, one-sample t-test, Figure 4.6 C) and α2M/M (P = 0.009; Figure 4.6 C). 

There is no significant difference in holding current shifts by MRK-016 between the 

genotypes (P = 0.06, unpaired t-test). Furthermore, the contribution of MRK-016-

mediated inhibition of α5-GABAAR to tonic currents in layer V/VI PCs, measured as 

current shift relative to total tonic current after bicuculline, is not significantly different 

between genotypes (P = 0.6, unpaired t-test; Figure 4.6 D).  

 

Together, these data suggest that α5-GABAARs do contribute significantly to tonic 

inhibition in layer V/VI PCs in both genotypes. While there may be differences in the 

absolute values for current shifts observed in MRK-016 between α2M/M and α2WT mice, 

their relative contribution towards tonic currents are broadly similar. Therefore, the 

most likely conclusion is that the α5-GABAAR contribution to GABA tonic current is 

unaffected in α2M/M animals.  
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Figure 4.6: α5-GABAARs contribute to tonic current in layer V/VI pyramidal neurons 
A. Representative current trace of a layer V/VI PC showing reductions in the holding current 
after application of 100 nM MRK-016 and 20 µM bicuculline. B. Comparison of tonic currents in 
MRK-016 or aCSF between α2WT and α2M/M neurons. *-P < 0.05, MRK vs aCSF, one-tailed 
unpaired t-test. C. Shifts in holding current upon exposure to MRK-016. ##-P < 0.01, one-sample 
t-test vs null-effect. D. Relative contribution of MRK-016-mediated current shift towards tonic 
currents. Unpaired t-test revealed no difference between genotypes. Bars represent mean ± 
SEM. 
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4.2.6 GABAARs containing the α2 subunit contribute to neurosteroid-mediated 

modulation of prefrontal cortical inhibition 

The aim of using the α2Q241M mutant knock-in was to assess the contribution of GABAARs 

containing the α2 subunit towards synaptic inhibition in pyramidal neurons from 

different layers in the mPFC. To this end, THDOC-induced changes in sIPSC kinetic 

parameters and tonic GABA currents were compared between α2M/M mice and α2WT 

mutant littermates. Furthermore, we also assessed whether the contribution of α2 

subunits towards GABA inhibition differed between cortical layers II/III and V/VI. 

 

For the sIPSC decay times, prolongation was found to be more pronounced in α2WT 

neurons compared to α2M/M counterparts (by approximately 12% in both layers, Figure 

4.7). However, in layer II/III, comparing α2WT with α2M/M neurons, the incremental effect 

of THDOC on sIPSC decay times was 75% smaller (only a 4% increase in decay time in 

α2M/M compared to a 16% increase for α2WT). By comparison, THDOC was more effective 

(only 48% smaller effect) in layer V/VI (14% increase in decay time for α2M/M compared 

to a 27% increase for α2WT). This suggests that α2 subunits do indeed make up a 

significant proportion of GABAAR subunits involved in synaptic inhibition in the mPFC, 

and that their relative contribution is greater in the more superficial cortical layers. This 

would be consistent with a higher expression of α2-GABAARs in those layers compared 

to deep layers V/VI (Pirker et al., 2000). 

 

Furthermore, GABAAR-mediated synaptic currents display a higher sensitivity to THDOC 

in layers V/VI compared to layers II/III, with a relative increase in sensitivity of about 

68% in α2WT (27% prolongation of decay times in layer V/VI against a 16% prolongation 

in layer II/III; Figure 4.7 A). This suggests there is an increased responsiveness of 

GABAARs to THDOC in layers V/VI compared to layers II/III (see Discussion). 
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Figure 4.7: Prolongation of sIPSCs in response to THDOC depends upon cortical cell layer and 

genotype 

A. Bar plot showing changes in sIPSC decay times normalised to aCSF for α2WT and α2M/M 

littermates in different layers of the mPFC following the application of 100 nM THDOC. # - P 

<0.05 layer V/VI vs layer II/III, unpaired t-test, * - P < 0.05, ***-P < 0.01 α2M/M vs α2WT unpaired 

t-test. B. Representative peak-scaled averaged sIPSCs (from > 100 sIPSCs). Note prolonged decay 

times for α2WT compared to α2M/M sIPSCs in layer II/III and layer V/VI. Bars represent mean ± 

SEM. 

 

The sIPSC frequency, while increased in α2WT in the presence of THDOC (Table 4.7), did 

not appear significantly elevated in α2M/M (Table 4.8) and, overall, changes in frequency 

did not differ between genotypes (Table 4.9). This could potentially be due to subtle 

changes in activity of GABAergic interneurons in α2M/M mice. A loss (disinhibition) of 

endogenous neurosteroid-mediated inhibition of interneurons at α2-GABAARs could 

explain an increased release of GABA onto PCs in this case. 
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sIPSC parameters in α2WT aCSF THDOC 

Frequency [Hz] 

Layer II/III 10.67 ± 1.59 (n=12) 11.63 ± 1.42 (n=12)* 

Layer V/VI 10.77 ± 1.27 (n=8) 12.05 ± 1.37 (n=8)* 

Peak amplitude 
[pA] 

Layer II/III  -28.03 ± 1.95 (n=12)  -28.97 ± 1.73 (n=12) 

Layer V/VI  -25.32 ± 0.99 (n=8)  -26.93 ± 1.74 (n=8) 

Decay time 
[ms] 

Layer II/III 8.55 ± 0.51 (n=12) 9.86 ± 0.48 (n=12)*** 

Layer V/VI 8.11 ± 0.35 (n=8) 10.23 ± 0.40 (n=8)*** 

Rise time [ms] 

Layer II/III 0.57 ± 0.07 (n=12) 0.67 ± 0.10 (n=12) 

Layer V/VI 0.62 ± 0.03 (n=8) 0.67 ± 0.03 (n=8) 
 

Table 4.7: Comparison of sIPSC parameters before and after THDOC in α2WT pyramidal neurons 
Comparison of 100 nM THDOC-mediated changes on sIPSC parameters in α2WT PCs across 

different layers of the mPFC. Cell numbers are shown in parentheses. * - P < 0.05; *** - P < 0.001 

THDOC vs aCSF, paired t-test (decay time) or Wilcoxon matched pairs test (frequency). 

 

sIPSC parameters in α2M/M aCSF THDOC 

Frequency [Hz] 

Layer II/III 13.7 ± 1.7 (12) 14.8 ± 2.2 (12) 

Layer V/VI 10.2 ± 1.5 (7) 10.4 ± 1.2 (7) 

Peak 
amplitude [pA] 

Layer II/III  -26.0 ± 1.2 (12)  -27.0 ± 1.1 (12) 

Layer V/VI  -27.8 ± 0.7 (7)  -28.2 ± 0.8 (7) 

Decay time 
[ms] 

Layer II/III 7.4 ± 0.3 (12) 7.6 ± 0.3 (12) 

Layer V/VI 9.7 ± 0.3 (7) 11.0 ± 0.4 (7)** 

Rise time [ms] 
Layer II/III 0.6 ± 0.05 (12) 0.61 ± 0.04 (12) 

Layer V/VI 0.6 ± 0.02 (7) 0.65 ± 0.02 (7) 
 

Table 4.8: Comparison of sIPSC parameters before and after THDOC in α2M/M pyramidal 
neurons 
Comparison of 100 nM THDOC-mediated changes on sIPSC parameters in α2M/M PCs across 

different layers of the mPFC. Cell numbers are shown in parentheses. ** - P < 0.01 THDOC vs 

aCSF, paired t-test. 



Neurosteroid modulation of GABAergic inhibition in the mPFC 

 

122 

 

Normalised sIPSC and tonic 

parameters after THDOC 
α2WT α2M/M 

Frequency  

Layer II/III 1.14 ± 0.06 (12) 1.07 ± 0.04 (12) 

Layer V/VI 1.13 ± 0.05 (8) 1.06 ± 0.06 (7) 

Peak amplitude 

Layer II/III 1.05 ± 0.03 (12) 1.05 ± 0.05 (12) 

Layer V/VI 1.06 ± 0.06 (8) 1.02 ± 0.02 (7) 

Decay time  

Layer II/III 1.16 ± 0.02 (12) 1.04 ± 0.02 (12)** 

Layer V/VI 1.27 ± 0.03 (8)# 1.14 ± 0.03 (7)*# 

Rise time  

Layer II/III 1.16 ± 0.08 (12) 1.04 ± 0.03 (12) 

Layer V/VI 1.09 ± 0.06 (8) 1.09 ± 0.06 (7) 

Table 4.9: Effect of THDOC on sIPSC parameters for α2WT and α2M/M mPFC neurons  

Comparison of 100 nM THDOC-mediated changes in sIPSC kinetics (normalised to values in aCSF) 

between α2WT and α2M/M littermates across different layers of the mPFC. Cell numbers are 

shown in parentheses. # - P < 0.05 layer V/VI vs layer II/III, unpaired t-test. * - P < 0.05, **- P < 

0.01, α2WT vs α2M/M, unpaired t-test.  
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4.3 Discussion 

4.3.1 Pyramidal cell parameters and GABA inhibition varies across mPFC layers 

The rodent mPFC correlates functionally with dorso-lateral regions of the human PFC 

and has a similar responsibility for executive function, i.e. the selection of context-

specific behavioural responses (Uylings et al., 2003). 

  

It is a highly compartmentalised yet interconnected structure. While the superficial 

layers (I-III) are mainly thought to receive and process inputs, layers V-VI of the rodent 

mPFC are thought to provide the main outputs, sending efferents to subcortical brain 

structures such as the striatum, amygdala and thalamus (Riga et al., 2014). It is not 

surprising then, given the distinct functional roles and different structural connectivity 

pertaining to specific cortical layers, that these should vary in their cytoarchitecture all 

the way down to their molecular composition of receptors (Dégenètais et al., 2002; 

Dembrow and Johnston, 2014; Riga et al., 2014).  

 

Previous studies have shown that GABAAR subtype expression profiles vary in different 

cortical layers. For example, α2-GABAARs and αβδ-GABAARs are more strongly 

expressed in superficial layers, while α5-GABAARs are mostly found in the deeper layers 

(Pirker et al., 2000; Sieghart and Sperk, 2002). Morphologically, PCs in superficial layers 

vary from those in deeper layers in that they tend to have smaller somata and shorter 

principal dendrites (van Aerde and Feldmeyer, 2015; Amatrudo et al., 2012; Kawaguchi, 

1993). 

 

In the present study, Lucifer yellow-filled PCs in different layers did not show obvious 

differences in morphology, at a qualitative level; though while most cellular parameters 

(e.g., input resistance) did not vary significantly between the layers, we did resolve a 

larger membrane capacitance in layer V/VI. This would be in accord with the typically 

larger cell soma sizes found in the inner PFC layers (van Aerde and Feldmeyer, 2015).  
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4.3.2 There are no laminar differences in GABAergic tonic inhibition  

Interestingly, previous studies could not detect the presence of a GABA-mediated tonic 

current in either layer II/III  (Hoestgaard-Jensen et al., 2010; Salling and Harrison, 2014) 

or layer V/VI (Drasbek and Jensen, 2006; Weitlauf and Woodward, 2008) by using a 

selection of GABA blockers such as gabazine, picrotoxin and bicuculline. In murine mPFC 

slices in the present study, however, tonic GABA currents of approximately equal 

amplitude across the cortical layers were found. The difference in detection may be due 

to different species (rat vs mouse) and the cortical regions examined - not all of the 

published studies specified which area of the cortex was chosen for recording. This is 

important as electrophysiological properties can vary greatly between cortical regions 

(van Aerde and Feldmeyer, 2015; Kawaguchi, 1993).  

 

Furthermore, tonic currents are by their nature quite small and can vary greatly with 

slightly different experimental recording methodologies (Bright and Smart, 2013). For 

example, different GABAAR blockers, typically used to reveal tonic currents, vary in their 

pharmacological properties (Bright and Smart, 2013; Ueno et al., 1997). Notably, 

whereas bicuculline was used here, some of the aforementioned studies used gabazine 

or picrotoxin. While both bicuculline and gabazine are competitive agonists, they can 

also act as negative allosteric inhibitors but to different extents, with bicuculline being 

considerably more effective in this role and more efficient at blocking tonic GABAAR-

mediated currents (Yeung, 2003) especially if there is a spontaneous component to the 

tonic current. Picrotoxin, on the other hand, has conventionally been described as a non-

competitive blocker, inhibiting ion-flow by binding inside the channel pore (Inoue and 

Akaike, 1988; Sedelnikova et al., 2006). There is, however, contrasting evidence 

suggesting picrotoxin is a mixed / non-competitive inhibitor acting allosterically by 

stabilising a closed or desensitised channel state (Newland and Cull-Candy, 1992; Smart 

and Constanti, 1986). 

 

Laminar differences in tonic GABA currents have been reported for cortical PCs in visual 

and somatosensory cortex (Jang et al., 2013; Yamada et al., 2007). However, no such 

difference was observed here in the mPFC (Table 4.6, Figure 4.4). Despite the differential 
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laminar distribution of α5-GABAARs and αβδ-GABAARs (Pirker et al., 2000; Sieghart and 

Sperk, 2002), the main contributors to tonic GABAergic inhibition (Brickley and Mody, 

2012; Caraiscos et al., 2004; Glykys et al., 2008; Lee and Maguire, 2014; Marowsky and 

Vogt, 2014), results shown here suggest both of them play a role in tonic inhibition in 

layer V/VI of the mPFC.  However, the relative contribution of either receptor subtype 

cannot easily be measured. While the superagonist, THIP, was used to probe the 

presence of αβδ-GABAARs, a partially selective inverse agonist (MRK-016) was used to 

detect the presence of α5-GABAARs. The use of an agonist, while detecting the presence 

of the targeted GABAARs, does not necessarily allow conclusions about whether these 

same receptors contribute to postsynaptic currents under physiological conditions. 

Factors such as the level of released GABA will be important determinants as to which 

extrasynaptic GABAARS are activated, particularly as different GABAARs can exhibit 

different affinities for GABA (Bright and Smart, 2013; Scimemi et al., 2005). 

 

In addition, there is evidence for a considerable fraction of extrasynaptic δ-GABAARs 

existing in a desensitised state (Bright et al., 2011; Mortensen et al., 2010), which would 

tend to decrease their responsiveness to THIP. Furthermore, THIP could be displaced by 

GABA due to the high affinity for GABA of δ-GABAARs (Brown et al., 2002; Houston et 

al., 2012; Mortensen et al., 2011) and it may therefore show reduced efficacy at 

receptors in a physiological context, but this would need quite high levels of GABA. A 

similar caveat presents itself for using MRK-016. The present study suggests a significant 

contribution for α5-GABAARs to tonic inhibition by revealing MRK-016-mediated current 

shifts can account for 50 – 60% of the current shift observed from applying bicuculline. 

However, the inverse agonist only shows an efficacy of ~50% at GABAARs (Chambers et 

al., 2004), suggesting α5-GABAARs to be almost exclusively responsible for tonic 

inhibition in layer V/VI pyramidal neurons. This, despite the larger expression of α5 in 

the inner layers, seems unlikely and may in part stem from non-selective inhibition of 

other GABAARs by MRK-016 at the concentration used (100 nM). Therefore, with the 

current set of pharmacological tools, it is difficult to precisely quantify the contributions 

of different GABAARs to tonic inhibition in mPFC PCs. Nevertheless, it is clear from using 
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THIP and MRK-016 that both α5 and δ subunit-containing GABAARs are contributing to 

tonic inhibition in layer V/VI. 

 

For layer II/III PCs, we might expect extrasynaptic GABAARs composed of αβδ subunits 

to show clear responses to THIP, and these would be expected to be greater in layer II/III 

compared to layer V/VI (as observed by Salling and Harrison, 2014) and the reverse 

should be the case for α5-GABAARs, given their reported laminar distribution (Pirker et 

al., 2000).  

 

4.3.3 α2Q241M mutation reveals laminar differences in neurosteroid modulation of 

GABAergic inhibition  

Of the GABAA α subunit family (α1-α6), the homologous mutation, α1Q241M, has been 

introduced and demonstrated to ablate the potentiation by neurosteroids for all αβγ 

and αβδ GABAARS so far investigated, without affecting the fundamental properties of 

the receptors and their responsivity to GABA, and for α1,2,3 and α5βγ receptors, to 

benzodiazepines (Hosie et al., 2006, 2009). The α2Q241M mutation has been introduced 

into a knock-in mouse model and explored with regards to compensatory changes in 

GABAAR α subunit expression as well as the electrophysiological properties of GABA 

inhibition in the hippocampus and NAcc (Durkin, 2012). 

 

Here, we studied laminar differences in sIPSC kinetics and tonic inhibition of mPFC PC 

between α2WT and α2M/M littermates under baseline conditions and in the presence of 

the neurosteroid THDOC. No differences between α2WT and α2M/M mice were detected 

with regards to the basal level of tonic inhibition, or baseline sIPSC frequency, amplitude 

and rise time. Furthermore, no differences in the expression of δ or α5 subunit 

containing GABAARs were detected by changes in holding current or RMS noise after 

applying the relatively selective ligands, THIP or MRK-016.  

 

With regard to synaptic GABA inhibition, interestingly, there was a difference in basal 

sIPSC decay time in layer II/III between α2WT and α2M/M PC, with faster decay noted for 

sIPSCs recorded from α2M/M neurons. Given that there is no evidence for a difference in 
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subunit expression between α2M/M and α2WT in the cortex, cerebellum, hippocampus 

and NAcc (Durkin, 2012), the difference in decay time observed here is most likely not 

due to varying GABAAR subunit composition. Instead, it is more likely indicative of an 

endogenous neurosteroid tone. Since endogenous neurosteroids prolong the decay 

time for αβγ-GABAARs (Belelli and Herd, 2003), and this effect has been abolished for a 

subset of GABAARs (i.e. those that contain α2 subunits) in α2M/M, the faster decay time 

in α2M/M PCs might reflect the absence of a physiological sIPSC prolongation via 

neurosteroids, under basal conditions (i.e., no exogenous neurosteroids applied). The 

interesting absence of a significant difference basal decay time for sIPSCs in layer V/VI 

may either imply a lack of, or lower levels of, endogenous neurosteroids, or might be a 

reflection of a much lower expression level of α2 subunits in this layer (Pirker et al., 

2000; Sieghart and Sperk, 2002). Furthermore, while expression patterns of GABAAR 

subunits are overall unaltered in α2M/M cortex (Durkin, 2012), the possibility of changes 

pertaining to individual cortical layers cannot be excluded, which will have to be 

ascertained by using immunohistochemical methods.  

 

Another discovery from the present study was a laminar difference in both α2M/M and 

α2WT neurons in their response to THDOC. sIPSCs recorded from deep, inner layers 

showed a significantly larger increase in decay times after applying THDOC than sIPSCs 

recorded from outer, superficial layers. A similar observation was made in human 

cortex, showing an enhanced effect on GABAergic inhibition in response to high doses 

of THDOC in deeper compared to more superficial layers (Nguyen et al., 1995) and is in 

line with known regional differences in the expression of GABAAR subtypes with varying 

pharmacological properties. These results might also suggest that the reason for not 

observing an effect on the sIPSC decay in layer V/VI PCs of α2M/M slices is that steroid 

production is possibly lower in this region. 

 

Independent of the genotype, the laminar difference in sensitivity to THDOC may be a 

result of altered neurosteroid-sensitivity of synaptic GABAARs, either caused by post-

translational modifications or changes in GABAAR expression across those layers. For 

example, phosphorylation has been shown to alter neurosteroid sensitivity of synaptic 
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α1- and extrasynaptic α4-containing GABAARs (Adams et al., 2015). In addition, the 

neurosteroid sensitivity of GABAARs is influenced mainly by the identity of the α subunit 

and whether a γ or δ subunit has been incorporated. Notably, GABAARs containing α2, 

α4 or α5 subunits are less sensitive to THDOC compared to those with α1, α3 and α6 

subunits, while receptors incorporating γ2 subunits show higher sensitivity to 

neurosteroids compared to γ1 subunit counterparts. It is also important to note that δ 

subunit-containing GABAARs show the highest neurosteroid-mediated augmentation of 

GABA currents, as assessed in Xenopus oocyte expression systems (Belelli et al., 2002). 

Presumably this reflects the increased efficacy of neurosteroids at αβδ receptors.  

 

By examining GABAAR subunit expression profiles in rat brain, only α3, α5 and γ2 

subunits are more highly expressed in the inner cortical layers compared to the 

superficial layers (Pirker et al., 2000; Wisden et al., 1992). On this basis, α3βγ2 receptors 

may be the most likely candidates underlying the increased THDOC sensitivity in deeper 

layers. This is supported by our findings showing only 25% of THDOC effect on decay 

time prolongation remains in layer II/III of α2M/M  mPFC, while 52% remains in Layer V/VI, 

suggesting the presence of other GABAARs contributing towards THDOC mediated 

prolongation of sIPSCs in that area. Further studies involving GABAAR selective 

compounds and kinase inhibitors, in conjunction with THDOC, would be necessary to 

explore the implications of these results. 

 

4.3.4 The physiological role of α2-GABAAR in mPFC inhibition 

Generally, from an in vivo viewpoint, GABAARs containing the α2 subunit are of 

importance to an array of processes in the brain. They are thought to mediate the 

anxiolytic effect of the benzodiazepines (Dixon et al., 2008; Löw et al., 2000); they have 

been linked to addiction by being involved in behavioural sensitisation to substances 

such as cocaine (Dixon et al., 2010; Jin et al., 2014; Morris et al., 2008); they are involved 

in neural circuits underpinning fear and are therefore likely to play roles in 

neuropsychiatric disorders such as schizophrenia, anxiety and depression (Engin et al., 

2012; Rudolph and Möhler, 2014; Vollenweider et al., 2011). Overall, α2 subunits are 

the second-most expressed α subunit after α1, being incorporated in about 15-20% of 
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all GABAARs (Möhler, 2002). While α1 is ubiquitously expressed throughout the brain, 

α2 subunits are mostly found in the forebrain, particularly in regions that are generally 

linked to anxiety disorders such as the amygdala and NAcc (Möhler, 2012; Sieghart and 

Sperk, 2002). In the rat mPFC, layers II/III show the highest levels of α2 subunit 

expression (Pirker et al., 2000). The decay kinetics of IPSCs show a slightly slower profile 

when compared to the decays of currents mediated by α1-GABAARs (Lavoie et al., 1997) 

and they are enriched at the AIS of PCs (Nusser et al., 1996b), suggesting a possible role 

in controlling neuronal output activity. An observation supporting this notion of 

controlling neural activity has been made in the hippocampus, where cholinergic 

network oscillations were found to be regulated by α2-GABAARs located in the CA3 

region (Heistek et al., 2013). 

 

Using an α2Q241M mouse model, the electrophysiological consequences of neurosteroid 

insensitivity of this subunit were explored in the hippocampus (DG, CA1) and NAcc 

(Durkin, 2012), brain areas showing a high expression of α2 (Fritschy and Möhler, 1995; 

Pirker et al., 2000; Sieghart and Sperk, 2002). There, introduction of the mutation 

significantly decreased THDOC-mediated potentiation of IPSC decay times in all areas, 

revealing an important contribution of α2 to synaptic GABAergic inhibition. 

Interestingly, inhibiting neurosteroid modulation at the α2 subunit also reduced a tonic 

current in DGGCs, suggesting a novel role for α2 in mediating tonic inhibition. On a 

behavioural level, this study also showed an increased anxiogenic phenotype of α2M/M 

mice compared to α2WT littermates and a lack of response to neurosteroid treatment.  

 

In the present study, a significant contribution of α2 subunits towards synaptic inhibition 

has now been identified across the mPFC cell layers, II/III and V/VI. Neurons expressing 

α2M/M GABAARs showed a reduced prolongation of decay times compared to α2WT (25% 

effect remaining in layer II/III, 52% in layer V/VI), which, in the absence of any evidence 

for compensatory changes, can be attributed to a lack of neurosteroid modulation at α2 

subunit-containing receptors. Interestingly, the difference in sIPSC prolongation across 

mPFC layers between α2M/M and α2WT neurons suggests that the contribution of α2-

GABAARs towards synaptic inhibition also varies and is smaller in the deep, inner layers 
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compared with the superficial, outer layers of the mPFC. This is in accord with their 

higher expression levels noted in layer II/III from ICC studies (Pirker et al., 2000).  

 

In regard to physiological roles, the outer layers of the mPFC are thought to be mostly 

responsible for processing inputs from sensory-motor areas and thalamus (targeting the 

dorsal mPFC and ACC) and inputs from the hippocampus and amygdala (to the ventral 

mPFC) and forwarding them to the deep, inner layers, which are the main efferent 

outputs to subcortical regions such as the thalamus and NAcc (Gabbott et al., 2005; 

Heidbreder and Groenewegen, 2003; Kesner and Churchwell, 2011; Riga et al., 2014; 

Shepherd, 2009). Given this distribution of different functions across cortical layers, this 

suggests α2-GABAARs are most likely to be broadly involved across the spectrum of 

mPFC functions. For example, the previously observed anxiogenic phenotype of α2Q241M 

mutant mice (Durkin, 2012) might, in part, be due to the reduced basal potentiation of 

mPFC GABA-mediated inhibition described in the present study. The results of other 

studies tend to support this notion, having shown links between changes in PFC α2 

subunit expression and psychological conditions. For example, stress exposure of adult 

mice can induce anxiety-like behaviours and increases PFC α2 subunit expression 

(Jacobson-Pick et al., 2012), while an upregulation of α2 subunits has been found in layer 

II dlPFC neurons in schizophrenic patients (Beneyto et al., 2011). Furthermore, certain 

genetic GABAAR α2 subunit polymorphisms have been associated with greater 

sensitivity to alcohol (Haughey et al., 2008) and alcohol dependence (Edenberg et al., 

2004), and fMRI studies have shown that human subjects carrying such polymorphisms 

had a greater mPFC response to odour cues from their preferred alcoholic drinks 

(Kareken et al., 2010). 

 

The α2Q241M mutation had no effect on tonic inhibition in layers II/III or V/VI, which 

indicates that α2-GABAARs are involved exclusively at inhibitory synaptic sites in the 

mPFC. This could have implications for their functional role in cortical networks given 

the distinct physiological effects of tonic and phasic inhibition (Farrant and Nusser, 2005; 

Mody and Pearce, 2004; Semyanov et al., 2004). Consequently, α2-GABAARs are well 

placed to be involved in the dendritic integration and regulation of PC spike patterns as 
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well as generating network oscillations, rather than modulating thresholds for cellular 

and network excitability and adjusting cellular “gain” through an increase in membrane 

conductance. The potential for neurosteroid-mediated influences on PC excitability via 

α2-containing receptors, as well as the effect of tonic and phasic inhibition on mPFC PC 

excitability, is explored in the next chapter. 
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4.4 Conclusions 

 

1. The cellular properties of pyramidal neurons are mostly uniform across layers 

II/III and V/VI, apart from a larger cell membrane capacitance in deep, inner 

layers, reflecting the larger average cell size of PC somata in layers V/VI. 

2. By measuring the basal properties of GABA-mediated synaptic and tonic 

inhibition, there was no evidence for compensatory changes in the α2M/M 

neurons in the mPFC. 

3. In layer II/III, measuring GABA-mediated sIPSC kinetics in α2WT and α2M/M 

neurons revealed that basal sIPSC decay times are shorter for α2M/M, which is 

indicative of an endogenous neurosteroid tone in these neurons. 

4. Neurons in the deep, inner layers of the mPFC exhibited a greater prolongation 

of their sIPSC decays in response to applied THDOC, which most likely reflects 

variations in the laminar expression of synaptic GABAARs subtypes, or changes in 

their post-translational modification. 

5. Examining GABA-mediated tonic inhibition using pharmacological probes 

indicated the presence of both α5 subunit and δ subunit-containing 

extrasynaptic GABAARs in layer V/VI PCs of the mPFC. 

6. No difference was noted for α2WT and α2M/M neurons in the level of tonic 

inhibition suggesting α2 subunits play little or no role in extrasynaptic GABAARs 

in the mPFC. 

7. GABAARs containing α2 subunits contribute significantly to the level of synaptic 

inhibition of mPFC pyramidal cells, and their modulation by neurosteroids. Their 

contribution varies with the cortical layer, amounting to ~75% in layer II/III and 

~48% in layer V/VI neurons. 
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5 The influence of GABAergic inhibition on PC excitability  

5.1 Introduction 

The main function of neurons is to communicate information from the external or 

internal environment and to produce an adequate physiological response. The brain 

serves as the central processing and relay station, selecting and integrating relevant 

information. At a cellular level, this information is coded by the frequency of action 

potentials (APs) travelling along the axon. On a network scale, the interchanging phases 

of excitation and inhibition of many neurons firing together create oscillations in 

electrical activity, a prominent characteristic of cortical networks. These are thought to 

play a role in transmitting information within the cortex by connecting neuronal 

populations that are oscillating in phase (Isaacson and Scanziani, 2011).  

 

5.1.1 What are the factors that govern neuronal excitability? 

Whether a neuron is stimulated to fire an AP depends on the temporal and spatial 

integration of the multitude of inputs it receives along its dendritic tree, somatic and 

perisomatic regions. The impact any given input has on the cell it targets, therefore, not 

only depends on the strength of a single PSP, but also on its location and temporal origin 

relative to other inputs. According to the traditional, linear view of dendritic integration, 

PSPs will travel passively along the dendrite and gradually decay in amplitude (according 

to the cell’s space constant; Rall, 1967, 2006; Rall and Rinzel, 1973) unless they are 

reinforced (or diminished) by further coincident inputs. The sum of inhibitory and 

excitatory inputs onto a single neuron will trigger an AP, only if a threshold 

depolarisation is attained at the AIS. The magnitude and time-course of depolarisation 

is reflected by the varying frequencies of AP trains. In addition to this traditional view of 

AP generation at the AIS, which is dependent on voltage-gated sodium-channels, more 

recent evidence highlights the significance of non-linear dendritic properties wherein 

the dendritic tree possesses the ability to actively process and integrate incoming signals 

(see Branco and Häusser, 2011; Major et al., 2013; Palmer, 2014 for recent reviews). 

Amongst these properties are AP back-propagation (antidromic) into the dendritic tree 
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and dendritic spikes driven by local activation of voltage-gated Ca2+-channels and 

NMDARs, which contribute to modulating synaptic integration and thus cellular 

signalling. 

 

A number of factors can impact on the linear and non-linear integration of inhibitory 

and excitatory inputs a neuron receives and hence how likely it is to generate an AP. For 

example, the ion channel composition of the cell membrane influences its input 

resistance and conductance and thus affects the amplitude of PSPs as well as their 

temporal decay while travelling along the dendritic tree before reaching the AIS or being 

integrated with another input (Rall, 1967, 2006; Rall and Rinzel, 1973). Furthermore, the 

diameter and length of the dendrite a particular PSP has to travel also determine the 

time-course of decay. In addition to the number and type of ion channels present, the 

electrochemical gradient of ions across the membrane determines the driving force and 

direction of current flow, ultimately defining the size and shape of the PSP. As described 

in the introduction, the distribution of ions across the membrane is regulated by a 

number of different ion transporters and hence the type of transporter can significantly 

shape the postsynaptic response to a neurotransmitter. An example is the 

developmental shift from a depolarising to a hyperpolarising effect of GABA mediated 

by GABAARs. In immature neurons,  NKCC1 is responsible for the intracellular 

accumulation of Cl-, depolarising the chloride reversal potential with respect to the 

membrane potential of the cell, thus leading to Cl- efflux and depolarisation upon 

channel opening (Rivera et al., 2005). 

 

Finally, the AIS itself possesses signal-processing capability based on the type and 

localisation of voltage-gated ion-channels and the influence of direct synaptic inputs 

(reviewed in Kole and Stuart, 2012). In cortical pyramidal neurons, for example, the 

inactivation of a subtype of K+-channels at the AIS leads to a broadening of APs and thus 

an increase in transmitter release (Kole et al., 2007). Furthermore, dopaminergic inputs 

onto interneurons in the brainstem have been shown to selectively inhibit Ca2+-channels 

at the AIS, thus modulating AP firing patterns (Bender et al., 2012). 
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 The mechanisms that govern neuronal excitability are very robust, and at the same 

time, can undergo dynamic changes, in particular in response to endogenous 

neuromodulators, which result in a modification of neuronal output (Goldman et al., 

2001).  

 

5.1.2 GABAergic inhibition and cellular excitability 

GABAergic interneurons comprise about 20% of cortical neurons and are an integral part 

of local neural networks, synapsing onto PCs as well as other interneurons, and shaping 

cortical output through feed-forward as well as feed-back inhibition (for a review, see 

Isaacson and Scanziani, 2011). GABAergic inhibition, through GABAARs and GABABRs, 

can impact on the excitability of a postsynaptic cell. GABAARs are the main mediators of 

fast-acting inhibition, while postsynaptic GABABRs provide a slower onset inhibitory 

conductance by coupling to K+ channels (Dutar and Nicoll, 1988; Otis and Mody, 1992). 

The activation of GABAARs reduces neuronal excitability by changing the membrane 

potential to approximate the Cl- reversal potential, which in many mature neurons is 

usually hyperpolarised to the RMP. In addition, GABAARs can decrease neuronal 

excitability by increasing the membrane conductance. In accordance with Ohm’s law, an 

increase in membrane conductance leads to a decrease in input resistance and thus to 

a reduction in the amplitude of a concomitant PSP, a process known as “shunting 

inhibition” (reviewed in Mann and Paulsen, 2007; Staley and Mody, 1992). In most cases, 

this is probably the more dominant form of inhibition, since the Cl- reversal potential 

and RMP tend to be quite close to each other, implying membrane potential shifts will 

generally be small. 

 

GABA can initiate two forms of inhibition, phasic and tonic, which can have different 

effects on neuronal output (Farrant and Nusser, 2005). Phasic inhibition is spatially and 

temporally integrated to produce specific spike firing patterns, and, on a network level, 

synchronises the activity of pyramidal cells to modulate oscillations (Huntsman, 1999; 

Wang and Buzsaki, 1996). Furthermore, it can serve to increase the dynamic range 

through feed-forward inhibition (Pouille et al., 2009). Tonic inhibition, on the other 

hand, sets the threshold for neuronal excitability by increasing the membrane 
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conductance, thereby decreasing amplitude and increasing the temporal decay of PSPs. 

Consequently, this leads to a reduced likelihood for AP generation. Another function of 

tonic inhibition is gain control: in experiments using dynamic clamp, injection of typical 

excitatory conductance waveforms to mimic physiological input (compared to steady-

step current injections), inhibitory tonic conductances reduced the slope of the input-

output curve, i.e. the gain (Chance et al., 2002; Mitchell and Silver, 2003). In this 

situation, a reduced gain equates to a reduced increase in the response of a neuron to 

a given increase in synaptic input. It also means an increase in “resolution”, i.e. the 

number of different inputs that can be distinguished becomes larger. On a network level, 

increasing gain by varying tonic inhibitory input can have a significant effect on network 

oscillations. Since they rely on recurrent excitation, decreasing the sensitivity to 

excitatory inputs in oscillatory networks can result in a reduction of feedback excitation 

(Chance et al., 2002).  

 

In addition to the type of GABAergic inhibition, the impact on excitability can vary with 

the location of the inhibitory input  (Cobb et al., 1995; Mann and Paulsen, 2007; Pouille 

et al., 2013). Somatic and axo-axonic connections formed by basket and Chandelier cells, 

respectively, can exert strong control over PC output (Pouille and Scanziani, 2001). 

Single dendritic inputs, on the other hand, may have less immediate impact on neuronal 

excitability, due to the decay in synaptic potentials along dendritic branches. Instead, 

these inputs appear to be involved in local dendritic computations and in modulating 

the impact of dendritic calcium spikes and AP back-propagation (Higley, 2014; Miles et 

al., 1996; Mody and Pearce, 2004).  

 

Parallel to the difference in biophysical properties of distinct subcellular membrane 

compartments, GABAAR subtypes are differentially distributed throughout the cell 

(Nusser et al., 1996b, 2012), shaping the kinetic profiles of inhibitory inputs and thus 

allowing fine-tuning of cellular excitability. The GABAAR α2 subunit, for example, 

produces longer decay times in GABA synaptic currents compared to the more 

ubiquitous α1 subunit (Lavoie et al., 1997) and has been implicated in alterations to 

GABAergic inhibition in psychiatric disease (Engin et al., 2012; Rudolph and Möhler, 
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2014; Vollenweider et al., 2011). Given its relative enrichment at the AIS (Nusser et al., 

1996b), it may play a significant role in shaping AP generation and controlling cortical PC 

excitability (Heistek et al., 2013).  

 

Finally, while GABAergic transmission is mostly inhibitory, under certain circumstances 

the activation of GABAARs can instead lead to a net depolarisation (Stein and Nicoll, 

2003). This is exemplified by the generation of “rebound” action potentials where an 

initial hyperpolarising potential is followed by a supra-threshold depolarisation. This is 

thought to be mediated through interaction of GABAAR activation with voltage-

dependent conductances such as Ca2+  (Cobb et al., 1995; Mann and Paulsen, 2007). 

Another is due to a depolarising response to GABA itself, which is, as described above, 

dependent on the chloride electrochemical gradient across the membrane (Chavas and 

Marty, 2003; Rivera et al., 2005). Cases of excitatory GABAergic activity can be found in 

early neuronal development (Ben-Ari et al., 2012) and at the AIS (Gulledge and Stuart, 

2003; Kole and Stuart, 2012). While this could potentially lead to an increase in 

excitability via GABAergic transmission, the concomitant increase in membrane 

conductance caused by GABA may still result in a net inhibitory effect, depending on the 

location and timing of excitatory inputs (Lamsa et al., 2000; Staley and Mody, 1992). 

Similarly, inhibitory GABAergic responses can have a net excitatory effect depending on 

their location and timing relative to excitatory inputs: In a study using extracellular and 

gramicidin-perforated patch recordings, Gulledge and Stuart (2003) found cortical 

GABAergic PSPs to be depolarising, but somatic GABAergic PSPs nevertheless had an 

inhibitory effect on temporally or spatially distant excitatory inputs, while the effect on 

coincident excitatory inputs was excitatory (Gulledge and Stuart, 2003). These 

observations further stress the importance of timing of PSPs and localisation of synaptic 

inputs in shaping synaptic integration and ultimately neuronal activity. 
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5.1.3 Objectives 

The goal in this chapter was to investigate the importance of α2-GABAARs on PC 

excitability in the mPFC. Due to their relative concentration at the AIS, these receptors, 

and the extent of any endogenous modulation, were hypothesised to be involved in 

regulating spike firing frequency. To test this, we used the neurosteroid-insensitive 

α2Q241M mutant and compared the effects of THDOC on AP frequency between α2M/M 

and α2WT mice. In addition, the overall significance of changes in tonic and phasic 

inhibition for PC excitability was explored using a range of specific GABAAR modulators.  
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5.2 Results 

In chapter 4, the potential of exogenous application of the neurosteroid THDOC to 

modify synaptic inhibition in mPFC PCs was verified, revealing a significant contribution 

of α2-containing GABAARs to phasic inhibition. Here we assessed, whether α2-GABAARs 

are able to modulate cellular excitability. To this end, a current-clamp protocol was 

employed as described in Materials & Methods. In brief, PCs were identified 

morphologically as before and verified electrophysiologically based on their spiking 

pattern in response to a set of constant current injection steps (-200 to +200 pA in 20 

pA increments, with a duration of 200 ms, see Materials & Methods). The firing 

frequency and the rheobase (the minimum depolarising current injection necessary to 

elicit an AP) of PCs varied between cells, with the rheobase ranging between 60-140 pA 

and frequency between 8-20 Hz. Under control conditions, PCs commonly displayed a 

hyperpolarising voltage ‘sag’ in response to hyperpolarising current injections and long 

after-hyperpolarisations as well as accommodation of AP frequency in response to 

supra-threshold current injections, as has been described previously (van Aerde and 

Feldmeyer, 2015). Only recordings from neurons with a stable membrane potential 

more negative than -60 mV were accepted for analysis. Excitability was initially assessed 

by depolarising neurons with a 1 s current-injection step above threshold (usually 200 

pA, though the magnitude was adjusted based on the threshold of the first spike during 

the initial current step protocol, see Materials & Methods). After this, a 30 s recovery 

period was allowed between consecutive current-injection steps. AP frequency was 

measured as the average inter-event-interval (IEI) between spikes elicited by one 

current injection step, and this value was averaged over at least 5 consecutive 

recordings (i.e. a period of 2.5 min).  

 

5.2.1 Neurosteroids affect PC excitability under conditions of high tonic GABA 

concentrations 

Initially, the effect of THDOC alone on AP IEIs was assessed in layer II/III pyramidal 

neurons of α2WT mice to reflect the conditions used for voltage-clamp experiments 

described in Chapter 4. We anticipated that, due to its enhancing effect on synaptic 
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inhibition, THDOC would reduce PC excitability, whereas a subsequent application of 

bicuculline should reverse this effect and increase excitability. 

 

To this end, normalised IEIs for THDOC (300 nM) and bicuculline (20 µM) were compared 

to those measured in control aCSF (Figure 5.1 A & B – see Table 5.1 for absolute values). 

Despite the significant effect of 100 nM THDOC on sIPSC decay times (Table 4.1, Chapter 

4), no significant reduction in PC firing rate was detected even with a higher 

concentration of 300 nM THDOC (Figure 5.1 A & B). While normalised IEIs in 300 nM 

THDOC were significantly reduced by bicuculline as would be expected (P = 0.04, paired 

t-test), they did not differ from control aCSF (P = 0.27, one-sample t-test vs null-effect 

of 1). Surprisingly, bicuculline did not result in the expected increase in firing rate, either 

(P = 0.73, one-sample t-test).  One reason for this result is that the GABAergic tone might 

be too low in the slice preparation to affect excitability with the protocol used here. 

Therefore, in accord with previous work using these modulators (Jang et al., 2013), the 

concentration of THDOC was increased to 500 nM, and 5 µM GABA was added to the 

bath to increase the basal GABA ‘tone’ without adjusting GABA uptake (Figure 5.1 C & 

D, Table 5.1). Interestingly, under these conditions, neurons had a significantly faster 

basal firing rate (IEI  = 76 ± 6 ms) compared to neurons stimulated in the absence of 

GABA (105 ± 7 ms, P = 0.002, unpaired t-test with Welch-correction). This was 

unexpected, given that GABA is inhibitory. Nevertheless, even under these conditions, 

application of bicuculline did not lead to a significant decrease in IEI compared to a 

preceding control period in aCSF (one-sample t-test vs null-effect of 1). However, it was 

sufficient to resolve a significant increase in the IEIs by THDOC compared to either 

bicuculline (P = 0.0005, paired t-test) or a mock application of aCSF (P = 0.05, one-tailed 

Mann-Whitney test).  

 

 The PC membrane potentials were monitored to determine if any shifts could underlie 

the effects of THDOC in GABA-supplemented slices on the IEIs. No effects on membrane 

potential were observed when applying 500 nM THDOC + 5 µM GABA or bicuculline to 

slices from either α2WT or α2M/M mice (Table 5.2). Although membrane potential 

appeared to be more depolarised in α2M/M mice (-70.4 ± 2 mV in aCSF) compared to 

α2WT (-73 ± 1.6 mV in aCSF), this difference was not statistically significant (unpaired t- 



The influence of GABAergic inhibition on PC excitability 

 

141 

 

 

 

Figure 5.1 THDOC concentration and increasing basal inhibition on PC excitability 
A. Representative traces showing the spike trains elicited in LII/III neurons by a 200 pA 

depolarising current injection step in the presence of aCSF or 300 nM THDOC, for wt slices of 

mPFC. B Excitability of PCs in the presence of THDOC (300 nM) or bicuculline (20 µM) presented 

as average IEIs normalised to a preceding control period in aCSF (= 1). * - P < 0.05, paired t-test. 

Neither of them is significantly different from the control period in aCSF (one-sample t-tests vs 

null-effect of 1). C. Representative traces showing the spike trains elicited in LII/III neurons by a 

200 pA depolarising current injection step in the presence of aCSF or 500 nM THDOC, for wt 

slices of mPFC supplemented with 5 µM GABA in aCSF. D. Excitability of PCs in the presence of 

THDOC (500 nM) or bicuculline (20 µM; same cell as THDOC) or a mock application of aCSF in 

the presence of GABA (5 µM). IEIs were normalised to a preceding control period in aCSF. Kruskal 

Wallis test with subsequent pairwise comparisons: *** - P < 0.001, one-tailed Mann Whitney 

test. * - P < 0.05, paired t-test.  

 



The influence of GABAergic inhibition on PC excitability 

 

142 

 

test, Table 5.2). As expected, the application of bicuculline significantly increased 

membrane resistance compared to aCSF in both genotypes (130.5 ± 22.8 MΩ in α2WT, P 

= 0.004, paired t-test and 116.5 ± 19.7 MΩ in α2M/M, P = 0.02, paired t-test). There was 

no difference in membrane resistance between the two genotypes (unpaired t-tests). 

 

Treatment 
IEI (ms) 

no GABA / 300 nM THDOC 
IEI (ms) 

5 µM GABA / 500 nM THDOC 

aCSF    105 ± 7 (5) 76 ± 6 (11)## 

THDOC 110 ± 4 (5) 109 ± 21 (11)***# 

Bicuculline 100 ± 4 (5) 70 ± 4 (11)### 

Table 5.1: The effect of different drugs, varying concentrations of THDOC and GABA on 
absolute IEIs for layer II/III α2WT mPFC pyramidal neurons  
PCs of acute mPFC slices were excited by suprathreshold current injections in the presence and 

absence of bath applied 5 µM GABA. IEIs of evoked spikes were measured for baseline 

conditions (aCSF with and without GABA), in the presence of THDOC (300 nM or 500 nM) or in 

the presence of bicuculline (20 µM). All values are shown as means ± SEM. Cell numbers are 

shown in parentheses. *** - P < 0.001, THDOC / bicuculline vs aCSF, paired t-test. # - P < 0.05, 

## - P < 0.01, ### - P < 0.001, 5 µM GABA vs no GABA; unpaired t-test with Welch-correction. 

 

Drugs and PC  
membrane parameters  

α2WT α2M/M 

RM   [MΩ]                            

n = 10 (α2WT)                        

n = 9 (α2M/M) 

aCSF 97.0 ± 16.4 92. 5 ± 12.4 

THDOC 105.5 ± 15.3 102.4 ± 19.4 

Bic 130.5 ± 22.8** 116.5 ± 19.7* 

VM [mV]                          

n = 11 (α2WT) 

n = 11 (α2M/M) 

aCSF  -73.0 ± 1.6  -70.4  ± 2.0 

THDOC  -73.7 ± 1.7  -70.8  ± 2.0 

Bic  -73.9 ± 1.7  -70.6  ± 2.2 

Table 5.2: Effect of THDOC and bicuculline on membrane parameters in wild-type and mutant 
α2 mice. 
Effect of 500 nM THDOC or 20 µM bicuculline (in the presence of 5 µM GABA) on input resistance 

(RM) and membrane potential (VM) in layer II/III pyramidal neurons of α2WT and α2M/M mPFC. RM: 

There is a significant effect of bicuculline on RM in both α2WT (P = 0.004, paired t-test vs aCSF) 

and α2M/M (P = 0.02, paired t-test vs aCSF). There is no difference in average RM between 

genotypes (unpaired t-tests). VM: There is no effect of either THDOC or bicuculline on VM 

compared to aCSF in either genotype (paired t-tests). There is no difference in average VM 

between genotypes (unpaired t-tests) ** - P < 0.01, * - P < 0.05, Bic / THDOC vs aCSF paired t-

test. 
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5.2.2 Basal PC excitability and THDOC-mediated reduction in spiking across mPFC 

layers 

Having ascertained the efficacy of 500 nM THDOC plus 5 µM GABA in modulating PC 

excitability in wt slices, we next investigated the effect of THDOC on spike firing in the 

α2M/M mutant. The purpose of this was to examine if α2-GABAARs were involved in 

mediating neurosteroid-effects on neuronal excitability. Furthermore, in light of the 

laminar variations in electrophysiological properties of PCs (van Aerde and Feldmeyer, 

2015), recordings obtained from neurons of different laminar origin were compared.  

 

Firstly, we compared the relative IEI changes in THDOC (500 nM) and GABA (5 µM), 

(Figure 5.2 A) using the standard constant current step protocol (see Materials & 

Methods). This revealed no significant differences in IEI between either genotype or the 

cortical layer (unpaired t-tests). While the absolute basal IEIs (Figure 5.2 B) showed a 

tendency towards increasing in layer V/VI in α2M/M, pairwise comparisons (unpaired t-

test) did not detect a significant laminar difference in either genotype.  

 

However, when comparing the input-output curves (number of spikes (N) evoked per 

step of injected current (I); (Figure 5.2 C1), there was a tendency towards increased 

excitability (i.e., a leftward shift of the input-output curve, which means APs are evoked 

with smaller current steps) in layers V/VI compared to layers II/III for α2WT, but not α2M/M 

neurons. This apparently subtle difference appeared to increase after exposure of 

neurons to 500 nM THDOC (Figure 5.2 C2). Furthermore, the steady-state slopes (δN/δI) 

of the input-output relationship appeared steeper in layers II/III compared to V/VI in 

α2WT, but not in α2M/M neurons (Figure 5.2 C1).  
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Figure 5.2 Effect of THDOC on neuronal excitability in different cortical layers and α2 
genotypes 
A. Effect of 500 nM THDOC and 5 µM GABA on IEIs (normalised to a control-period in aCSF = 1). 
Paired comparisons reveal no difference between layers or genotype (unpaired t-test). B. 
Baseline IEIs pairwise comparisons are not significantly different between α2M/M and α2WT, or 
between layers of the same genotype (unpaired t-test).  C1 & C2. Input-output curves generated 
from the average count of spikes elicited by incrementing (20 pA) current steps. Lower panels: 
Fits of the averaged curves above using linear regression. C1. Comparison of input-output curves 
in aCSF (+ 5 µM GABA) for different cortical layers and α2 genotypes. C2. Comparison of input-
output curves in 500 nM THDOC (+ 5 µM GABA) for different cortical layers and α2 genotypes.  
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It would have been preferable to compare the threshold, slope, and maximum of 

sigmoid curve fitted data, but this was not possible, due to difficulties in maintaining AP 

firing under these conditions, which did not allow for application of sufficient numbers 

of current steps to reach saturation in the firing rate. Therefore, to compare curves, only 

the linear part of individual input-output curves was fitted using a linear regression 

equation. Due to the absence of firing in some cells (13 out of 55 cells, all of which were 

layer II/III cells) within the 200 pA current injection range, not all of the data could be 

fitted. As a consequence of using linear regression, the firing thresholds will be slightly 

underestimated.  

 

Processing the data in this manner revealed a significant difference in basal firing 

threshold between cortical layers of α2WT PCs (Figure 5.3 A, P = 0.01, Mann-Whitney 

test), with a firing threshold in layer II/III (97.4 ± 11.4 pA) twice that in layer V/VI (49.7 ± 

8.3 pA), a distinction that was not observed with α2M/M slices. In addition, the threshold 

for AP firing in layer II/III PCs of α2M/M mice was significantly lower than its wild-type 

counterpart (52.0 ± 17.0 pA  vs 97.4 ± 11.4 pA, P = 0.04, one-tailed t-test) and indicates 

an effect of the Q241M point mutation on intrinsic neuronal excitability in this layer. 

 

Furthermore, there was a significant increase in firing threshold (i.e. a right-ward shift 

of input-output curves) in the presence of THDOC, as expected if THDOC is enhancing 

GABA inhibition (Figure 5.3 B, P = 0.002, Wilcoxon matched-pairs test). However, no 

differences in THDOC-mediated effects on input-output thresholds were observed 

between PCs of different laminar origin or between α2 genotypes (Figure 5.3 C), 

suggesting that the differences in basal thresholds did not stem from a lack of sensitivity 

to endogenous THDOC at α2 containing GABAARs. 
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Figure 5.3: Effect of THDOC on input-output curve offsets 
Input-output curve offsets were calculated by applying a linear regression fit to individual 

curves. To this end, only the linear part of the curves, i.e. the last 4-5 points, were used. Offsets 

were defined as the point of intersection for the fitted line with the x-axis. A. Comparison of 

baseline offsets in aCSF for α2M/M and α2WT pyramidal neurons from layers II/III and V/VI.* - P < 

0.05, Mann-Whitney test. # - P < 0.05, single-tailed unpaired t-test. B. Combined offsets across 

both genotypes and layers compared between aCSF and after exposure to 500 nM THDOC. ** - 

P < 0.01, Wilcoxon matched pairs test.  C. Comparison of offsets in THDOC normalised to aCSF 

for α2M/M and α2WT pyramidal neurons from layers II/III and V/VI. All recordings were carried out 

in the presence of 5 µM GABA. 

 

When comparing input-output curve slopes (δN/δI), however, basal slopes were 

significantly smaller in layer V/VI (0.021 ± 0.001 spikes/pA) compared to layer II/III (0.030 

± 0.002 spikes/pA) for α2WT PCs (Figure 5.4 A, P = 0.01, Mann-Whitney test), pointing to 

a smaller gain for neurons in layer V/VI. Interestingly, slopes were significantly larger in 

layer V/VI PCs of α2M/M mice (Figure 5.4 A, 0.025 ± 0.002 spikes/pA) compared to their 

wild-type counterparts (P = 0.04, Mann-Whitney test), possibly reflecting a reduced 

effect of endogenous THDOC on inhibition. Furthermore, when comparing the 

combined slopes across layers between drug-treatments and genotypes (Figure 5.4 B), 

only α2M/M showed a significantly reduced slope in THDOC (0.021 ± 0.002 spikes/pA) 
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compared to aCSF (0.026 ± 0.002 spikes/pA, P = 0.02, Wilcoxon matched-pairs test), 

which would reflect an increased ability of THDOC to potentiate GABA inhibition in the 

α2M/M slices, but only in layer V/VI neurons. The relative effect of THDOC on slopes, 

however, was only significantly different between α2M/M and α2WT in layer V/VI (Figure 

5.4 C, P = 0.05, unpaired t-test). 

 

Figure 5.4: Effect of THDOC on input-output curve slopes 
Input-output curve slopes were calculated by applying a linear regression fit to individual curves. 

Only the linear parts of the curves were used (last 4-5 points). A. Comparison of baseline slopes 

in aCSF for α2M/M and α2WT pyramidal neurons from layers II/III and V/VI.* - P < 0.05, Mann-

Whitney test (one-tailed for α2M/M vs α2WT). B. Combined slopes across both layer groups 

compared between drug treatments and genotypes. * - P < 0.05, Wilcoxon matched pairs test.  

C. Comparison of slopes in THDOC normalised to aCSF for α2M/M and α2WT pyramidal neurons 

from layers II/III and V/VI. * - P < 0.05, unpaired t-test. All recordings were carried out in the 

presence of 5 µM GABA. 
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In summary, these results indicate a difference in basal threshold and gain between 

layers of the mPFC as well as an effect of THDOC on firing frequency and threshold. 

Furthermore, introduction of the Q241M mutation appeared to have induced intrinsic 

changes in firing threshold in layer II/III and gain in layer V/VI. Interestingly, while 

neurosteroid-modulation of the threshold appears to be independent of genotype and 

layer, gain appears to be differentially affected in mutant layer V/VI, pointing to a role 

for α2 in mediating neurosteroid effects on gain, but not firing frequency and threshold 

(see Discussion). 

 

Using 500 nM THDOC along with 5 µM GABA, however, might change the kinetic profile 

of sIPSCs, assessed in Chapter 4, or even lead to receptor desensitisation. To ascertain 

whether this higher concentration of THDOC, together with a GABA supplement, would 

still result in similar changes to sIPSC decay times between α2WT mice and mutant α2M/M, 

voltage-clamp experiments were performed using the same conditions as those for the 

current-clamp experiments (Table 5.3). Both 100 nM and 500 nM THDOC plus 5 µM 

GABA prolonged sIPSC decay times to a greater extent in α2WT pyramidal neurons 

compared to α2M/M counterparts (P = 0.02 and P = 0.04, respectively, unpaired t-test). 

There was no significant difference between drug application on the increase in sIPSC 

decay time in either genotype (P = 0.4 for α2WT and P = 0.6 for α2M/M, unpaired t-test) 

suggesting that 300 nM THDOC is saturating. 

 

By contrast, tonic currents were differentially affected by the concentration of THDOC 

application and the presence or absence of GABA supplementation in both genotypes 

(P = 0.003 for α2WT and P = 0.01 for α2M/M, unpaired t-test with Welch-correction), with 

larger tonic currents observed in 500 nM THDOC plus 5 µM GABA (Table 5.3) and no 

difference between genotypes (unpaired t-test).  

 

It is worthwhile noting, however, that in the presence of 5 µM GABA, basal sIPSC 

frequency in α2WT PCs (5.4 ± 0.9 Hz) was significantly lower compared to aCSF alone 

(10.4 ± 0.8 Hz, P = 0.009, unpaired t-test), while basal sIPSC decay times were 

significantly longer (Table 5.4, 10.6 ± 0.8 and 8.5 ± 0.3 ms, respectively, P = 0.02, 
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unpaired t-test). No differences in basal inhibitory sIPSC properties were present in 

α2M/M (unpaired t-tests, Table 5.5). However, since the results assessing excitability were 

only compared between experiments carried out under the same conditions, and since 

we could show that the relative synaptic effects of THDOC had been unperturbed by the 

presence of GABA, the effects on basal sIPSC properties in elevated levels of GABA were 

considered to be insignificant for the assessment of neurosteroid-modulation of PC 

excitability. 

Together, these results show that the recording conditions used have not affected 

THDOC-mediated effects on synaptic inhibition, despite the increase in tonic inhibition 

in both genotypes as well as lowered basal sIPSC frequency and prolonged basal decay 

times in wild-type PCs in the presence of 5 µM GABA. 

 

Inhibitory GABA current  
properties in THDOC 

α2WT α2M/M 

Normalised decay 
times  

500 nM THDOC 
+ 5µM GABA 

1.32 ± 0.06 (5) 1.11 ± 0.05 (6)* 

100 nM THDOC 1.27 ± 0.03 (8) 1.14 ± 0.02 (7)* 

Tonic current 
[pA] 

500 nM THDOC 
+ 5µM GABA 

46.1 ± 10.1 (8)## 49.8 ± 10.3 (6)# 

100 nM THDOC 8.8 ± 1.9 (8) 10.6 ± 3.6 (6) 
 

Table 5.3: Effect of THDOC concentration and GABA supplementation on sIPSC decay times 
and tonic currents 
Comparison of sIPSC decay times (top; normalised to values in aCSF) and tonic currents (bottom; 

absolute shifts in holding current) in response to either 500 nM THDOC + 5 µM GABA or 100 nM 

THDOC alone, between α2WT and α2M/M slices in layer V/VI PCs. Cell numbers are shown in 

parentheses. * - P < 0.05 for α2M/M vs α2WT, unpaired t-test. ## - P < 0.01, # - P < 0.05 for 500 nM 

THDOC vs 100 nM THDOC, unpaired t-test with Welch-correction.   
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α2WT basal inhibitory 
GABA current properties 

aCSF (13)  + 5 µM GABA (5) 

Frequency [Hz] 10.4 ± 0.9 5.4 ± 0.8** 

Peak amplitude [pA] -25.8 ± 2.7 -26.5 ± 1.0 

Decay time [ms] 8.5 ± 0.3 10.6 ± 0.8* 

Rise time [ms] 0.64 ± 0.02 0.68 ± 0.06 

 

Table 5.4: Effect of supplementing aCSF with 5 µM GABA on basal sIPSC properties and 
frequency in α2WT layer V/VI PCs 
Comparison of basal sIPSC parameters in control aCSF or aCSF supplemented with 5 µM GABA. 

Recordings were acquired from separate cohorts of layer V/VI PCs of α2WT mice. Cell numbers 

are shown in parentheses. * - P < 0.05, unpaired t-test. . ** - P < 0.01, unpaired t-test.   
 

α2M/M basal inhibitory 
GABA current properties 

aCSF (9)  + 5µM GABA (6) 

Frequency [Hz] 9.2 ± 1.3 7.6 ± 1.3 

Peak amplitude [pA] -27.5 ± 0.7 -28.3 ± 2.1 

Decay time [ms] 9.2 ± 0.4 10 ± 0.6 

Rise time [ms] 0.59 ± 0.02 0.78 ± 0.08 

Table 5.5: Effect of supplementing aCSF with 5 µM GABA on basal sIPSC properties and 
frequency in layer α2M/M V/VI PCs 
Comparison of basal sIPSC parameters in control aCSF or aCSF supplemented with 5 µM GABA. 

Recordings were acquired from separate cohorts of layer V/VI PCs of α2M/M mice. Cell numbers 

are shown in parentheses.  

 

In summary, we verified that the differences in sIPSC decay time prolongation between 

α2 genotypes were unaffected by increasing the concentration of applied THDOC and 

GABA. The results indicate a difference in basal excitability between layers of the mPFC, 

shown by the tendency for smaller offsets and smaller gains in layers V/VI. THDOC 

increased spike thresholds as expected but there was no differential effect on 

excitability between the cell layers or an effect of genotype, with the exception of a 

tendency to differentially modulate gains in α2M/M compared to α2WT animals. This could 

potentially indicate a role for α2-GABAARs in modulating neuronal gain rather than firing 
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threshold. However, in layer II/III, the threshold for AP firing in α2M/M slices was lower 

compared to the wild-type counterpart and this indicates a likely effect of the Q241M 

point mutation on intrinsic neuronal excitability. 

 

5.2.3 Targeting GABA-mediated inhibition at PCs using a 5-HT2C agonist  

The lack of clear genotype-specificity in THDOC-mediated reduction of PC excitability 

questioned the importance of α2-GABAARs in neurosteroid modulation of neuronal 

spike output in these cells. However, one possible confound could be that by bath-

applying GABA to the slice, multiple GABAA receptor sub-populations might be activated 

and thus specific inputs onto the AIS, which would potentially be relevant in regulating 

AP generation under physiological conditions, might be masked. To address this 

potential problem, we sought alternative means to physiologically increase GABAergic 

transmission at this particular inhibitory synapse, as shown in Figure 5.5. 

  

Serotonin type 2C (5-HT2C) receptors are a member of the serotonin 7-transmembrane-

spanning family of GPCRs (see Berg et al., 2008 for a review). They are mainly found 

postsynaptically, where they activate PLC, leading to neuronal depolarisation and 

increased spike firing (Stanford et al., 2005).  In the rat mPFC, 5-HT2CRs are found to be 

enriched in PV-positive interneurons (Liu et al., 2007). A subgroup of these are the 

Chandelier cells, which preferentially form synaptic connections onto the AIS (Somogyi, 

1977). Since activation of 5-HT2CRs leads to depolarisation of the cell, an enhanced 

activity of Chandelier cells and a concomitant increase in GABA release onto the AIS has 

previously been suggested (Liu et al., 2007). Hence, the selective 5-HT2CR agonist, Ro-

60-0175, was used to increase GABA release at AIS synapses, to specifically activate α2-

containing GABAARs and probe the extent of their contribution towards neurosteroid 

modulation of neuronal excitability.  
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Figure 5.5 Increasing GABA release at mPFC axo-axonic synapses by 5-HT2C receptors 
Model of a cortical pyramidal neuron receiving (peri)somatic and axonic inputs from two 

different types of PV interneurons: basket cells and Chandelier cells, respectively (there are 

other types of interneurons synapsing onto PCs, which are omitted for simplicity; for a review, 

see Druga, 2009). While somatic and perisomatic phasic inhibition in PCs is thought to be mostly 

mediated by α1-GABAARs (Nusser et al., 1996b), which is the most prolific GABAAR subtype 

(Möhler, 2002), the AIS is relatively enriched in α2-GABAARs  (Nusser et al., 1996b), positioning 

them in a central location for modulating PC output. Shown on the right is a model of an axo-

axonic synapse, demonstrating how activation of 5-HT2C receptors might affect PC excitability. 

In the mPFC, 5-HT2C receptors are mostly found on PV interneurons in layers V/VI (Liu et al., 

2007) where they are excitatory (Stanford et al., 2005). An increase in interneuron excitation 

should augment GABA release and theoretically reduce excitability of the postsynaptic PC.  

 

To this end, 500 nM Ro-60-0175 was bath-applied after a period of recording sIPSCs 

under baseline conditions (in control aCSF). As a control, the same recording procedure 

was undertaken in the presence of the selective 5-HT2CR antagonist, SB 242084 (250 

nM). These concentrations were chosen to be 5x the EC50 for Ro-60-175 as an agonist, 

and 20x the IC50 for antagonism, at 5-HT2CRs (Alexander et al., 2011).  

 

The effects of Ro-60-0175 (500 nM) on inhibitory synaptic inputs onto PCs in layer II/III 

and layer V/VI in α2WT, as well as in layer VI/VI for α2M/M were examined (Figure 5.6 A & 
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B). The application of Ro-60-0175 increased sIPSC frequency by ~ 50% in layer V/VI 

pyramidal neurons only, regardless of the α2 subunit genotype (P < 0.001, pairwise 

comparisons with Bonferroni correction). The effect was apparent after 5 min and 

saturated within 10 - 15 min. It is noteworthy, however, that 3 out 13 cells did not 

respond to treatment with Ro-60-0175. Those cells were nonetheless included in the 

analysis. 

 

Co-applying the 5-HT2C receptor antagonist, SB 242084 (250 nM), prevented the 

increase in sIPSC frequency by Ro-60-0175, which was therefore most likely 5-HT2C 

receptor-mediated. No significant changes in sIPSC frequency were observed with SB 

242084 in layer II/III, in line with the low expression of 5-HT2C receptors in this region 

(Liu et al., 2007). 

 

Having found a method to specifically increase GABA release for perisomatic and axo-

axonic inputs, we applied this method to test for variations in THDOC-mediated 

reduction of PC excitability between α2WT and α2M/M slices by measuring the action 

potential IEIs (Figure 5.6 C). Co-applying Ro-60-0175 and THDOC (500 nM) increased the 

IEI (normalised to values obtained in aCSF) when compared to just bicuculline (20 µM) 

alone in α2WT slices (P = 0.01, paired t-test). In addition, significant genotypic differences 

in IEIs were evident in Ro-60-0175, and in Ro-60-0175 with THDOC (Figure 5.6 C, P = 

0.03, P = 0.04, respectively, one-tailed unpaired t-test), comparing between α2WT and 

α2M/M slices. However, these treatments did not produce changes in the IEIs that were 

different from aCSF alone (one-sample t-test vs a null-effect of 1; Figure 5.6 C).  

Moreover, co-applying THDOC with Ro-60-0175 did not significantly change the PC firing 

rate any further compared to Ro-60-0175 alone, in either genotype (paired t-test), 

though bicuculline could reverse the reduced excitability in Ro-60-0175 and THDOC but 

only in α2WT slices.  
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Figure 5.6 Effect of 5-HT2C receptor activation and inhibition on sIPSC frequency and PC 
excitability 
A. Average sIPSC frequencies (normalised to the average frequency at the beginning of the 

recording) over the course of a 25 min recording in either aCSF or the 5-HT2C receptor agonist 

Ro-60-0175 (500 nM) with or without co-application of the specific antagonist, SB 242084 (250 

nM). Ro-60-0175 (500 nM) was applied after recording baseline frequencies for 6 min. B. 

Normalised frequencies shown in A averaged over 12 min after the onset of drug effect (4 time-

points between 12-24 min, box in A). *** = P < 0.001, Bonferroni corrected multiple comparisons 

of selected pairs. C. Comparison of average spike IEI (normalised to a control period in aCSF) 

between α2WT and α2M/M layer V/VI PCs in the presence of Ro-60-0175 (500 nM), Ro-60-0157 + 

THDOC (500 nM) or bicuculline (20 µM). * - P < 0.05, paired t-test. # - P < 0.05, unpaired one-

tailed t-test. 
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The observed difference in excitability between α2WT and α2M/M in the presence of Ro-

60-0175 is interesting, since neurons in either genotype both responded with a similar 

increase in presynaptic GABA release (inferred by the changes in sIPSC frequency; Figure 

5.6 A). Since 5-HT2CRs have also been found on mPFC PCs (Liu et al., 2007), this points to 

a possible postsynaptic effect of Ro-60-0175, which may have been affected by 

introducing the Q241M mutation. Comparing membrane potential and input resistance 

confirms a potential postsynaptic action of Ro-60-0175 (Table 5.6): While both RM and 

VM were unaffected by Ro-60-0175 in α2WT layer V/VI PCs, RM increased (from 137 ± 10 

MΩ to 161 ± 17 MΩ, P = 0.04, paired t-test) and VM depolarised significantly in response 

to Ro-60-0175 in α2M/M (from -67.2 ± 1.6 mV to  -66.6 ± 1.5 mV, P  = 0.02, paired t-test). 

 

Hence, at least with regard to a possible role of α2-GABAARs in modulating neurosteroid-

effects on PC excitability, we could not find supporting evidence using our α2M/M knock-

in mouse model. However, the effects mediated by α2-GABAARs may be masked by the 

postsynaptic effects of 5-HT2C receptor activation (see Discussion). 

Drug effect on cellular 
parameters  

α2WT (7) α2M/M (9) 

RM   [MΩ]                             

aCSF 182 ± 17 137 ± 10# 

Ro-60-0175 209 ± 19 161 ± 17* 

Ro-60-0175 
THDOC 

204 ± 25 167 ± 17* 

Bic 179 ± 21 169 ± 17* 

VM [mV]          

aCSF  -67.0 ± 1.2  -67.2 ± 1.6 

Ro-60-0175  -67.0 ± 0.8  -66.6 ± 1.5 * 

Ro-60-0175 
THDOC 

 -66.9 ± 1.0  -65.9 ± 1.6 * 

Bic  -67.8 ± 1.2  -66.1 ± 1.7  

Table 5.6: Effect of a 5-HT2CR agonist and THDOC on Layer V/VI pyramidal cell membrane 
parameters 
Effects of 500 nM Ro-60-0175; 500 nM Ro-60-0175 and 500 nM THDOC; or 20 µM bicuculline 

(all in the presence of 5 µM GABA) on input resistance (RM) and membrane potential (VM) in 

layer V/VI pyramidal neurons of α2WT and α2M/M mPFC neurons.  # - P < 0.05, α2WT vs α2M/M, 

unpaired t-test; * - P < 0.05, paired t-test vs aCSF. 
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5.2.4 Can tonic or phasic GABA inhibition modulate excitability of mPFC neurons? 

The previous experiments raised the question, whether the single step current injection 

protocol is suitable for detecting a change in neuronal excitability caused by the 

manipulation of synaptic inhibition. The following observations are important: First, 

concentrations of THDOC, which have a clear prolongation effect on sIPSC decay times, 

did not change evoked AP firing; second, using higher concentrations of THDOC (300 – 

500 nM) in conjunction with 5 µM GABA, led to increased tonic GABA currents without 

changing the effect of THDOC on sIPSC decays (Table 5.3), but caused a reduction in cell 

excitability; third, increasing a more focused synaptic release of GABA via 5-HT2CR 

activation had no discernible effect on AP firing (Figure 5.6). Fourth, it is possible that 

synaptic and tonic inhibition are playing quite distinct roles in controlling cell excitability.  

 

Consequently, we wanted to explore other means of specifically manipulating 

GABAergic synaptic and tonic inhibition and test their effects on PC firing rate using our 

current injection protocol. To simplify this study to regions where the most profound 

effects had so far been seen, only α2WT layer V/VI neurons were used for comparison. 

 

Initially, pentobarbitone (PB), a barbiturate acting as a non-selective positive modulator 

of GABAARs (Sieghart, 1995), was bath-applied to mPFC slices (Figure 5.7). PB (25 µM) 

increased the holding current (Figure 5.7 A), reflected by the increased tonic current 

revealed by 20 µM bicuculline (Figure 5.7 B & C, P = 0.0002, unpaired t-test). In addition, 

PB also increased the decay times (Figure 5.7 D; P < 0.0001, paired t-test) and the peak 

amplitude of sIPSCs (P = 0.01, paired t-test). Consequently, similar to 500 nM THDOC 

and 5 µM GABA, PB increased tonic as well as synaptic inhibition and would therefore 

be expected to reduce PC excitability. Indeed, when comparing the application of PB to 

either bicuculline (P = 0.03, one-tailed paired t-test) or a null effect of 1 for the 

normalised IEI (P = 0.02, one-sample two-tailed t-test), PB significantly reduced PC firing 

(Figure 5.8). 

Thus by modulating both tonic and synaptic inhibition with a barbiturate, we were able 

to resolve changes to PC excitability, though pentobarbitone is a very efficacious GABAA 

receptor modulator. 
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Figure 5.7: Effect of Pentobarbitone on phasic and tonic GABA inhibition in layer V/VI mPFC 
pyramidal neurons 
A1. Representative current trace displaying the change in holding current and sIPSC amplitude 

and decay time after application of 25 µM PB. A2. Average peak-scaled sIPSC before and after 

application of pentobarbitone. B. Representative shift in holding current observed when 

applying 20 µM bicuculline to the bath after exposure to PB. C. Comparison of tonic GABA 

currents in aCSF and in 25 µM PB (recorded from different cohorts of neurons). Tonic current is 

significantly increased by PB. *** - P < 0.001, unpaired t-test. D. Effect of PB on sIPSC decay time 

and peak amplitude compared to aCSF determined in the same cells. ** - P < 0.01, *** - P < 

0.001, paired t-test.  
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Figure 5.8: Pentobarbitone reduces the firing rate in layer V/VI mPFC pyramidal neurons 
A. Representative traces of APs elicited by a 1 s long 200 pA injected current step in aCSF , 25 

µM PB or 20 µM bicuculline. B. Average IEI (normalised to that determined in aCSF) in PB or 

bicuculline (20 µM). # - P < 0.05, PB vs null-effect of 1 (one-sample t-test); * - P < 0.05, PB vs Bic 

(paired t-test).  
 

 As an alternative test, the effect of the less efficacious diazepam (1 µM), a positive 

modulator selective for α1/2/3/5βγ2-GABAARs (Korpi et al., 2002), was also explored 

(Figure 5.9). This is quite a high concentration for a benzodiazepine to modulate GABAA 

receptors and at this level only a significant increase in the sIPSC decay times (P = 0.03, 

paired t-test), as well as frequency (P = 0.04, paired t-test) was observed (Figure 5.9 D). 

Diazepam appeared to increase the holding current (possibly by potentiating 

extrasynaptic γ2-containing GABAARs; (Figure 5.9 A), resulting in a larger tonic current 

(revealed by 20 µM bicuculline; Figure 5.9 B), however, this was not significant (P = 0.4, 

unpaired t-test; Figure 5.9 C). Hence, diazepam likely exerts a stronger effect on synaptic 

rather than tonic inhibition.  

 

Interestingly, when cell excitability was assessed by evoking spikes in the presence of 1 

µM diazepam (Figure 5.10), there appeared to be no significant effect on the firing rate 

compared to either bicuculline (P = 0.31, paired t-test) or a preceding control period (P 

= 0.2515, one-sample t-test vs null-effect of 1). Thus, a reduction in PC excitability 

caused by an increase in synaptic inhibition following potentiation by diazepam is not 

apparent. The main difference between pentobarbitone and diazepam treatments is the 

large tonic current elicited by the barbiturate, and this may be important since only 

pentobarbitone reduced cell excitability. We therefore next addressed whether tonic 

inhibition was playing a more significant role in cell excitability when using a current-

step protocol. 
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Figure 5.9: Effect of diazepam on pyramidal cell phasic and tonic GABA inhibition 
A1. Representative current trace displaying the change in holding current (orange dotted line) 

and prolonged sIPSCs after application of 1 µM diazepam. A2. Average peak-scaled sIPSC before 

and after application of diazepam. B. Representative shift in the holding current observed when 

applying 20 µM bicuculline after exposure to diazepam. C. Comparison of tonic currents 

revealed by bicuculline (20 µM) in aCSF and diazepam (recorded from different cohorts of 

neurons). Tonic current was not significantly different in diazepam (unpaired t-test). D. Effect of 

diazepam on sIPSC decay time and frequency. * - P < 0.05, paired t-test.  
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Figure 5.10: Effect of diazepam on PC excitability 
A. Representative traces of APs elicited by a 1 s long 200 pA injected current step in aCSF, 1 µM 

diazepam or 20 µM bicuculline. B. Average IEI (normalised to that determined in aCSF) in 

diazepam (1 µM) or bicuculline (20 µM). There was no significant difference in PC excitability 

between diazepam and Bic (paired t-test) or between diazepam and a null-effect of 1 for the 

normalised IEI (one-sample t-test).  

 

To address this question, the δ subunit GABAAR-selective agonist THIP (1 µM, Brown et 

al., 2002) was used to specifically enhance tonic inhibition (see Figure 4.5 in chapter 4), 

which would be expected to rely substantially on extrasynaptic GABAARs composed of 

αβδ subunits. Examining cell excitability by evoking spikes with current injection 

revealed that THIP significantly prolonged the IEIs when compared to bicuculline (Figure 

5.11; P = 0.02, paired t-test) or when compared to a preceding control period (P = 0.02, 

one-sample t-test vs null-effect of 1). At this concentration, 1 µM THIP is selective for 

αβδ receptors (Krogsgaard-Larsen et al., 2004; Mortensen et al., 2010) and thus this 

effect is most likely caused by increased tonic inhibition mediated by THIP, since analysis 

of the phasic effects of 1 µM THIP (in standard aCSF supplemented with 2 mM KA) 

revealed no differences in sIPSC kinetics compared to a preceding control period in aCSF 

(Table 5.7). There was a reduction in sIPSC frequency (7.3 ± 1.2 Hz in aCSF compared to 

5.1 ± 0.9 Hz in THIP, P = 0.02, paired t-test), which might stem from a reduction in 

presynaptic interneuron activity caused by the augmented tonic inhibition. This 

reduction in frequency, however, would presumably lead to increased PC firing rate and 

therefore, at most, reduce the effect of a THIP-mediated decrease in PC excitability. 
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In conclusion, by using the three modulators, changes to synaptic inhibition in the form 

of altered sIPSC decays and/or altered sIPSC amplitudes are not having effects on cell 

excitability that we can detect. By contrast, using the same methods, potentiating tonic 

inhibition does result in reduced cell excitability using two independent modulators, one 

possessing selectivity for extrasynaptic δ subunit-containing GABAA receptors.   

 

 

 
Figure 5.11: Effect of THIP on PC excitability 
A. Representative traces of APs elicited by a 1 s long 200 pA injected current step in aCSF, 1 µM  

THIP or 20 µM bicuculline. B. Average IEI (normalised to aCSF) in THIP (1 µM) or bicuculline (20 

µM). # - P < 0.05, THIP vs 1 (one-sample t-test); * - P < 0.05, THIP vs Bic (paired t-test).  

 

sIPSC parameters aCSF THIP 

Frequency [Hz] 7.3 ± 1.2 5.1 ± 0.9* 

Peak amplitude [pA]  -21.8 ± 1.2  -22.1 ± 2.3 

Decay time [ms] 8.8 ± 0.5 9.7 ± 1.0 

Rise time [ms] 0.77 ± 0.06 0.97 ± 0.11 

Table 5.7: Effect of THIP on sIPSC parameters 
Table presenting the effects of 1 µM THIP on sIPSC parameters. Recordings were obtained from 

layer V/VI pyramidal neurons of acute mPFC slices in standard aCSF supplemented with 2 mM 

KA. N = 6 cells. * - P < 0.05, paired t-test.  
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5.3 Discussion 

In the previous chapter we explored the basic characteristics of GABAergic inhibition in 

mPFC pyramidal neurons. We discovered that there was a stronger effect of the 

neurosteroid THDOC on inhibition of PCs in layers V/VI, as well as a significant 

contribution of α2-GABAARs to phasic inhibition in both, layers II/III and layers V/VI. The 

objective in this chapter was to explore whether endogenous neurosteroid modulation 

of PC excitability via α2-GABAARs could be resolved by ablating α2-mediated 

neurosteroid sensitivity in α2M/M mice. 

 

5.3.1 Selection of a single-step protocol over input-output curves 

In the present study, a current-clamp protocol using single current step injections above 

the threshold for AP firing was applied and IEIs were measured to assess neuronal 

excitability (see Materials & Methods section). Normally, using a current-step protocol 

applying brief consecutive pulses of increasing amplitude would explore a wider range 

of electrophysiological properties, such as rheobase, gain (slope of the input-output 

curve) and the presence of hyperpolarisation sags and after-hyperpolarising rebound 

spikes. Although this was initially attempted, it proved difficult to implement. Due to the 

need to apply multiple drug applications with sometimes long equilibration periods (up 

to 10 min for Ro-60-0175), cells had to be repeatedly stimulated for up to 30 min. Most 

neurons showed “fatigue” after several of current injection trains, i.e. they reduced their 

firing rate and, in some cases, even ceased firing altogether.  

 

This effect may have been caused by dialysis of the cell with the patch-electrode 

solution. Removing intracellular Ca2+ and increasing the concentration of the Ca2+ 

chelator EGTA helped to maintain AP firing over the course of the experiment, but a 

gradual decline in AP frequency was still evident. 

 

Applying a single suprathreshold current step with a duration of 1 s, repeated at an 

interval of 30 s, produced consistent firing in most neurons and the IEI proved to be the 

parameter with the highest sensitivity to drug treatment. Therefore, this method was 
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used to investigate neuronal excitability. To allow a determination of the firing threshold 

and to differentiate between responses to stimuli of different strengths (i.e. neuronal 

gain), a brief current step protocol involving a series of  20 pA, 200 ms long steps was 

employed at the beginning of each recording and after equilibration of each drug to 

determine the rheobase and to obtain an input-output curve. As it was difficult to 

achieve saturation in spike firing, it was not possible to fit the input-output curves with 

a sigmoidal function. Nevertheless, measures of spike threshold and the slope of the 

relationship were obtained by linear regression.  

 

Of course using current injections for examining cell excitability, in relation to the 

influence of specific inputs, is not meant to replicate neuronal excitation in a 

physiological context. The experimental stimulation delivers a depolarising current, 

which is independent of other inhibitory or excitatory inputs. Whereas, in a physiological 

network, the timing and location of different inputs and their integration are crucial for 

shaping neuronal firing and in regulating network oscillations (Isaacson and Scanziani, 

2011; Miles et al., 1996; Pouille et al., 2013). Applying extracellular or loose cell-attached 

recording methods to circumvent the use of current-injection was unsuccessful due to 

the lack of intrinsic activity inherent in PCs of acute mPFC slices. This necessitated the 

use of direct current injections which are a well-established method for assessing drug 

effects on cellular excitability as demonstrated by their use with PB, diazepam and THIP 

for example, and so was considered a valid method of assessing excitability and the 

influence of α2-GABAARs. 

 

5.3.2 THDOC decreases PC excitability when basal GABA levels are elevated  

The present study showed a significant effect of THDOC on sIPSC decay times of mouse 

mPFC PCs. Given the significance of GABAergic inputs in modulating cortical excitability 

(Isaacson and Scanziani, 2011), we hypothesised that THDOC, by potentiating GABAAR 

function and thus synaptic inhibition, should reduce PC excitability. However, similar to 

a previous study conducted in the rat visual cortex (Jang et al., 2013), we did not observe 

an effect of THDOC on PC excitability using concentrations of 100 nM or 300 nM.  The 

study by Jang and colleagues did, however, detect an effect of 500 nM THDOC on both 
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tonic currents and PC excitability in a layer- and cell-type specific manner.  Therefore, 

we increased the concentration of THDOC to 500 nM. However, for THDOC to 

potentiate, GABAAR receptors need to be activated by GABA and it was possible that 

extracellular concentrations of GABA may be significantly reduced in acute slices due to 

washout. We hypothesised that the GABAergic tone in the slice might therefore be too 

low to produce a significant change in conductance in response to THDOC or bicuculline. 

For this reason, 5 µM GABA was added to the bath, a concentration which had previously 

been used to increase tonic currents in cortical neurons (Glykys et al., 2008; Jang et al., 

2013). At the cell membrane level, such a concentration is likely to be much lower than 

5 µM due to the presence of GABA uptake mechanisms and could possibly resemble 

physiological GABA concentrations in vivo (Glykys and Mody, 2006). Similarly, 

endogenous neurosteroids have been shown to reach levels of around 20 nM in 

response to stress (Purdy et al., 1991) and can range up to 100 nM during pregnancy 

(Paul and Purdy, 1992). Therefore, 500 nM THDOC is a higher concentration than can be 

expected to occur physiologically and is close to threshold for directly activating 

GABAARs (Callachan et al., 1987) though these agents will also distribute freely into cell 

membranes and intracellular structures, thus significantly limiting the free 

concentration that is able to bind to GABAARs (Chisari et al., 2010b).  

 

However, in the present study we found a similar increase in decay times when 

comparing 500 nM plus 5 µM GABA (32% increase) and 100 nM THDOC alone (27% 

increase) in layer V/VI pyramidal neurons, without affecting other sIPSC parameters. The 

difference in sIPSC decay prolongation by THDOC, previously described between 

genotypes, was also unaffected by the altered drug concentrations. Tonic currents, 

however, were 5-6 fold larger in the higher concentrations of THDOC and elevated GABA 

in both genotypes. This suggests that the altered experimental conditions have a 

comparable effect on synaptic inhibition, but significantly increase tonic inhibition. 

 

Under these conditions, THDOC did produce a significant reduction in pyramidal cell 

excitability (Figure 5.1), showing that neurosteroids influence PC firing and thus shape 

PC output in the mPFC. Since we are dictating the chloride reversal potential (-66 mV) 
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to be slightly depolarised compared to the resting membrane (-70 to -73 mV) potential 

through the intracellular solution, the net effect of GABAAR activation on membrane 

potential would be presumed to be depolarising. However, our results show no effect 

of GABAAR activation on membrane potential (Table 5.2). Hence, the reduction in 

pyramidal cell firing observed here is most likely due to shunting inhibition. 

 

5.3.3 Basal PC gain and THDOC modulation of excitability across cell layers and 

genotypes 

Judging from the input output relationships (Figure 5.2), there appears to be a difference 

in the slopes and thresholds between layers II/III and V/VI of wild-type PCs under basal 

conditions, with lower thresholds and shallower slopes associated with cells in layers 

V/VI. Since the slope of the input-output curve corresponds to the neuronal gain, this 

might indicate a smaller gain for PCs in the layers V/VI, which increases their dynamic 

range for integrating signals compared to cells from the layers II/III. This could be 

indicative of a stronger requirement to produce distinctive outputs in layer V/VI, which 

is in line with their suggested role as the main output layer projecting to other cortical 

as well as subcortical areas (Shepherd, 2009). Similarly, the higher threshold observed 

in layer II/III neurons equates to a reduced excitability compared to layer V/VI, which is 

congruent with the alleged role of layer II/III as the main recipient of afferents from the 

thalamus and other brain areas (Shepherd, 2009) and hence a requirement to select 

only salient, strong inputs. Interestingly, in the presence of THDOC, the relative increase 

in threshold is similar across cortical layers and α2 genotypes, suggesting that α2-

GABAARs do not play a pivotal role in neurosteroid-modulation of mPFC excitability. 

However, THDOC does appear to increase the gradient of the input-output slopes in 

α2WT cells and decrease similar slopes in α2M/M cells (although this effect was only 

significant in α2M/M cells), while a laminar difference in basal slopes is only present in 

α2WT slices. These observations could point to a potential role for α2-GABAARs in 

modulating neurosteroid-induced gain changes. Since we and others have found that 

α2-GABAARs are enriched at the AIS (Nusser et al., 1996b) and since there is evidence 

for excitatory GABAergic transmission at the AIS (Kole and Stuart, 2012; Stein and Nicoll, 

2003), THDOC might lead to an increase in excitation through α2-GABAARs at the AIS. 
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Due to the ablation of this potential excitatory action of THDOC in α2M/M slices, the 

remaining inhibitory effect of THDOC acting through other non-AIS located GABAARs 

could explain the reduction in slope observed. However, these values were obtained 

from a linear regression of input-output relationships, so would need corroboration.  

 

Furthermore, there was no difference in changes to IEIs caused by THDOC between 

different cortical layers or α2 genotypes. The lack of laminar difference is surprising, 

since THDOC was shown to have a stronger effect on synaptic decay times in the layers 

V/VI (see chapter 4). If the reduction in excitability was being mediated by phasic 

inhibition, then we would have expected to see a stronger reduction in excitability in 

the inner layers. However, as mentioned later, our current step protocol only detected 

excitability changes associated with changes in tonic conductance, which are elevated 

in 500 nM THDOC  plus 5 µM GABA and do not vary across mPFC layers or α2 genotypes. 

As PC excitability was similar between genotypes, an involvement of α2-GABAAR in 

modulating PC firing frequency seems less likely.  

 

5.3.4 Activating 5-HT2C receptors increases GABAergic release in mPFC but does not 

affect PC excitability 

To selectively facilitate GABA release at Chandelier-PC synapses, and thus unmask the 

effect of incoming inhibition directly to the AIS, we turned to 5-HT2C receptors.  Previous 

studies have shown that 5-HT2C receptors are expressed in PV interneurons present in 

the inner layers of mPFC (Liu et al., 2007) and that 5-HT2C receptor activation can both 

increase and decrease GABAergic transmission. For example, whereas activation of 5-

HT2C receptors leads to an increase of GABAergic release in SN (Burke et al., 2014; 

Invernizzi et al., 2007)  and increased mIPSC frequency in VTA dopaminergic neurons 

(Theile et al., 2009), activation in the NAcc inhibits potassium-stimulated GABA-release 

(Kasper et al., 2014). Since 5-HT2C receptors are expressed on a variety of cells, however, 

their net effect depends on the particular interaction of neurons within the network 

investigated (Berg et al., 2008), which may at least in part explain the differences 

observed in those studies. 
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Here, we noted a 50% increase in GABA-induced activity on layer V/VI PCs in response 

to 5-HT2C receptor activation (Figure 5.5), in accord with the predominant expression of 

these receptors on PV-interneurons in the mPFC and their crucial role in regulating PC 

firing. In particular in the case of Chandelier cells, we were expecting to see an influence 

of 5-HT2C receptor activation on PC firing in response to our depolarising current 

injection. While it is debated whether Chandelier cells exert an excitatory or inhibitory 

effect over PC excitability (Woodruff et al., 2010),  the main effect in the present study 

should be a shunting inhibition, since the chloride reversal potential was set close to the 

resting membrane potential. Nevertheless, despite the increase in sIPSC amplitude 

observed, 5-HT2C receptor activation had no effect on spike IEIs, either alone or in 

conjunction with THDOC, compared to aCSF. This observation therefore does not 

strongly support a role for α2-GABAARs in mediating neurosteroid-induced changes in 

excitability. However, previous studies have observed both excitatory and inhibitory 

effects of 5-HT2C receptor activation, despite an overall increase in extracellular GABA 

concentration (Invernizzi et al., 2007). In line with this, sIPSC frequencies in the present 

study, while increased on average, were unaffected by 5-HT2C receptor activation in 

some cells (3/13 cells). Due to the complex connectivity in the mPFC, the net response 

of an individual PC is determined by the interplay of both PCs and interneurons 

participating in the local circuit. To complicate matters further, 5-HT2C receptors are also 

present on PCs themselves, albeit to a lesser extent than PV interneurons (Liu et al., 

2007), where they could potentially increase excitability directly, significantly 

counteracting any presynaptic increase in inhibitory transmission. Indeed, we did find 

evidence for a postsynaptic effect of 5-HT2C receptor activation on PC membrane 

potential and input resistance. 

 

Therefore, while these results fail to show a contribution of α2-GABAARs towards 

neurosteroid-mediated changes in excitability, they also cannot completely discount a 

role for α2-GABAARs in modulating excitability in vivo.  

 

Interestingly, it was notable that the IEIs after 5-HT2CR activation in α2WT slices were 

longer than those measured in α2M/M slices in layer V/VI, which presented itself as a 
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reduced effect on excitability in the mutant compared to the wild-type. An explanation 

for this difference could be due to the previously described differential effects of 

activation of Chandelier cells (Woodruff et al., 2011). This study found that Chandelier 

cells could be excitatory or inhibitory depending on the postsynaptic membrane 

potential, being excitatory on cells held at the resting membrane potential and 

inhibitory on cells held at a membrane potential depolarised beyond ECl. Furthermore, 

difficulties in assessing effects of 5-HT2C receptor agonism could lie in the non-GABAergic 

effects of 5-HT2C receptor agonists. For example, in the spinal cord, Ro-60-0175, the 5-

HT2CR agonist used here has been shown to increase NMDA-mediated depolarisation 

(Bigford et al., 2012) and this could have been altered in the mutant model used in this 

study.  

 

5.3.5 Increases in tonic GABA inhibition reduce PC excitability  

As changes to synaptic inhibition had seemingly little effect on PC excitability, we used 

a number of modulators that are known to affect synaptic and extrasynaptic GABAAR 

activity, to assess whether changes in synaptic inhibition have any influence on spike 

intervals. Firstly, using 100 nM THDOC alone, which affected sIPSC decay times (i.e. 

synaptic inhibition), but not tonic inhibition, we were unable to alter PC firing. However, 

applying 5 µM GABA and increasing THDOC to 500 nM, which increased tonic currents 

5-6 fold, but did not further prolong sIPSC decay times, did reduce PC excitability. 

Secondly, we detected no laminar difference in PC excitability in response to THDOC 

despite our previous evidence for an increased synaptic effect of THDOC in layer V/VI 

cells. Thirdly, the 5-HT2C receptor agonist, Ro-60-0175 (which increased sIPSC frequency 

in layer V/VI PCs), did not influence spike IEIs. Fourthly, pentobarbitone, which robustly 

increased sIPSC amplitudes, prolonged their decay times and increased tonic currents, 

significantly reduced PC excitability. Fifthly, diazepam, which increased sIPSC frequency 

and prolonged sIPSC decay times, though not as efficaciously as pentobarbitone, had a 

negligible effect on tonic currents, and did not affect PC excitability. Finally, the δ-

GABAAR selective agonist, THIP, used at 1 µM, enhanced tonic inhibition (as 

demonstrated in chapter 4) without affecting postsynaptic phasic inhibition and 

significantly reduced PC excitability. Both the effect on tonic inhibition and reduction in 
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excitability were more pronounced when a non-selective concentration of 5 µM THIP 

was used [data not shown].  

 

Together, these data strongly suggest that the current step protocol used here is 

sufficiently sensitive to detect changes in GABAergic inhibition, and the effects of 

GABAAR modulators on cell excitability. The sensitivity of the protocol has alluded to an 

effect of tonic rather than phasic inhibition in modulating PC firing. The observed effects 

support a strong role of tonic GABAergic inhibition in modulating mPFC output and thus 

mPFC function, with its dysregulation possibly being important in psychiatric disease. 

Consistent with this, previous research has reported a schizophrenia-like phenotype in 

a mouse-model which elevates basal GABAergic tone in PFC (Yu et al., 2013), and a more 

recent study has found an increase in tonic GABAergic inhibition in response to 

neurosteroids in the amygdala, suggestive of a role in anxiety (Romo-Parra et al., 2015). 
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5.4 Conclusions 

 

1. Under conditions of elevated extracellular GABA, THDOC reduces mPFC 

pyramidal cell AP firing frequency in α2WT and α2M/M neurons. 

2. Baseline excitability and changes in excitability (measured as IEIs) mediated by 

THDOC are independent of α2-containing GABAARs and of the mPFC cell layer. 

3. Basal spike firing threshold (measured as input-output curve offset) varies across 

mPFC layers, but increased thresholds mediated by the neurosteroid THDOC are 

independent of the mPFC layer and GABAAR α2 genotype. 

4. Basal neuronal gain in the mPFC is larger in layers II/III in α2WT only. THDOC 

differentially modulates the gain depending on α2 genotype. This points towards 

a potential role for α2-GABAARs in mediating neurosteroid effects on gain but 

not on threshold or excitability of mPFC PCs. 

5. The 5-HT2C receptor agonist Ro-60-0175 increases GABAergic release onto layer 

V/VI pyramidal neurons without affecting excitability. 

6. If co-applied with Ro-60-0175, THDOC (500 nM) does not alter spiking frequency 

compared to Ro-60-0175 alone, but IEIs are significantly longer in the presence 

of Ro-60-0175 in α2WT compared to α2M/M mice, possibly resulting from a 

postsynaptic effect of 5-HT2C receptors. There is no evidence supporting a 

contribution of α2-GABAAR towards the regulation of PC firing frequency by 

neurosteroids at the AIS. 

7. Using our current step protocol, increases in tonic GABAergic inhibition have a 

stronger effect over PC firing rates than increases in synaptic inhibition, as 

demonstrated by the effects of PB, THIP and THDOC plus GABA. These 

modulators significantly increase tonic inhibition and reduce cell excitability. 

Moreover, the lack of an effect on cell spike firing when applying THDOC alone, 

Ro-60-0175 or diazepam to modulate just phasic GABAergic transmission, 

supports a significant role for tonic currents in regulating PC excitability. 
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6 General discussion  

 

6.1 Modulation of prefrontal cortical inhibition 

GABAergic inhibition can be modulated by a variety of endogenous compounds 

(neurosteroids, endocannabinoids, dopamine etc.) as well as by pharmacological agents 

(barbiturates, benzodiazepines, anaesthetics etc.). Given the important role of 

GABAergic inhibition for effective CNS function, and given the specific distribution and 

pharmacological properties of different GABAAR subtypes (Pirker et al., 2000; Sieghart, 

1995), understanding how these subtypes are modulated in a physiological context can 

help in the design of novel drugs with a more targeted, narrow functional profile. Since 

the mPFC serves a central role in executive function and receives modulatory afferents 

from a number of central brain regions involved in motivation, reward, learning and 

emotion (Hoover and Vertes, 2007), it is important to study the effects of some of those 

neuromodulators and endogenous neurosteroids on prefrontal GABAergic inhibition, 

which was the motivation behind this thesis. 

 

6.1.1 Activation of D4 receptors has no apparent functional effect on postsynaptic 

GABAARs 

Previous studies had assessed the effect of activating D4 receptors on GABAergic 

inhibition in the PFC and found a reduction in synaptic inhibition via a downregulation 

of surface postsynaptic GABAARs (Graziane et al., 2009; Wang et al., 2002). The aim of 

the present study was to identify whether these effects were mediated via specific 

GABAAR isoforms, given their preference for specific presynaptic inputs and their distinct 

subcellular distribution (Klausberger et al., 2002; Nusser et al., 1996b). Using a primary 

cortical culture, we found a global reduction in α2-GABAAR cell surface expression after 

exposure to the D4 agonist PD168077. Furthermore, we observed an upregulation of 

α2-GABAARs in the presence of the D4 antagonist L-745,870, revealing a potential 

constitutive activity of D4 receptors in cultured neurons. However, there were no 

significant differences in the D4 receptor mediated effect between subcellular 
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compartments (AIS, dendrites and soma), suggesting that there are no preferred 

dopaminergic input sites for these cultured neurons. This may stem from a lack of 

dopaminergic afferents in this culture system, since an interaction between presynaptic 

terminals and postsynaptic sites can trigger receptor accumulation, as has previously 

been shown for GABAARs (Jacob et al., 2005) as well as glutamate receptors (Broadie, 

1994; Featherstone et al., 2002; Mi et al., 2002; Rao et al., 2000). However, the previous 

studies reporting an effect of DA on GABAARs also used similar PFC cultures (Graziane et 

al., 2009). Nevertheless, the use of a VTA-PFC co-culture system may prove useful in this 

context by providing dopaminergic inputs to pyramidal neurons in vitro.  

 

Contrary to the previous studies, we were unable to find any functional effects of D4 

receptor activation on postsynaptic inhibition in either cultures or acute slice 

preparations of the PFC. While we cannot conclusively explain why this might be, it 

seems reasonable to propose that the causes lie in methodological variations, especially 

given the complexity of the dopaminergic system and resulting inconsistency between 

different studies (reviewed in Seamans and Yang, 2004). 

 

6.1.2 Neurosteroids modulate GABAergic inhibition in the mPFC 

Neurosteroids are potent endogenous allosteric modulators of GABAARs and are 

involved in a range of physiological (stress response, oestrous cycle, etc) as well as 

pathophysiological processes (anxiety, depression, etc). Previous work from our group 

had used a Q241M knock-in mouse model, which expresses neurosteroid-insensitive 

GABAAR α2 subunits, to probe the potential anxiolytic and antidepressant function of 

neurosteroid-modulation at α2-GABAARs (Durkin, 2012). In the present study we 

assessed the contribution of α2-GABAARs to synaptic and tonic inhibition within 

different layers of the mPFC, and investigated the potential for endogenous 

neurosteroid-modulation via α2-GABAARs in this brain region.   

 

We found a significant contribution of α2-GABAARs towards synaptic inhibition across 

the mPFC. In line with its distinctive laminar distribution, the α2-GABAAR component of 

neurosteroid-modulation of synaptic sIPSCs was larger in layers II/III, where the α2 
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subunit is more strongly expressed (Pirker et al., 2000; Sieghart and Sperk, 2002; Wisden 

et al., 1992), than in layer V/VI. This was supported by the discovery of an endogenous 

neurosteroid tone at α2-GABAARs in layer II/III only, which, in addition to varying α2 

subunit levels, may be mediated by differences in endogenous neurosteroid levels 

across cortical layers. Interestingly, while a previous study using combined in situ 

hybridisation and immunohistochemistry labelling showed increased presence of 3α-

HSD and 5α-reductase in layer II/III of the somatosensory cortex (Agís-Balboa et al., 

2006), a later study by the same group suggested similar levels of 3α-HSD across layers 

in frontal cortex and higher levels of 5α-reductase in layer V/VI (Agís-Balboa et al., 2007). 

However, the magnitude of enzymatic labelling does not necessarily allow conclusions 

about the levels of protein expression (their end-product). Hence, in the absence of any 

studies investigating cortical neurosteroid levels, our findings provide new evidence for 

a differential distribution of neurosteroids within the mPFC.  

 

Furthermore, we resolved a larger exogenous neurosteroid-mediated enhancement of 

sIPSC duration in layer V/VI compared to layer II/III. This is in accord with the regional 

distribution of GABAAR isoforms (Pirker et al., 2000; Sieghart and Sperk, 2002; Wisden 

et al., 1992) and expression of subtypes with higher neurosteroid-sensitivity, such as α3-

GABAARs, which show greater expression in layer V/VI and higher sensitivity to 

exogenous neurosteroids (Belelli et al., 2002). 

 

Lastly, despite the distinct distribution of GABAAR subunits contributing to extrasynaptic 

receptors across mPFC layers (Pirker et al., 2000; Sieghart and Sperk, 2002; Wisden et 

al., 1992), we did not observe laminar differences in the magnitude of GABA-mediated 

tonic currents in the mPFC. If, despite the presence of different isoforms of extrasynaptic 

GABAARs, the observed tonic current under baseline conditions is the same across mPFC 

layers, then instead of mediating different absolute tonic currents, these receptors may 

play a role in differentially modulating tonic current under certain physiological or 

pharmacologically-induced situations. For example, δ-GABAARs, which are more 

strongly expressed in layers II/III compared to α5-GABAARs, are more sensitive to 

neurosteroids, but insensitive to benzodiazepines; while α5-GABAARs are more strongly 
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expressed in layers V/VI, and are sensitive to benzodiazepines, with GABA being a high 

efficacy agonist (Sieghart, 1995). Hence, despite the absence of laminar differences in 

baseline tonic inhibition, it may still be differentially modulated depending on the 

cortical layer. 

6.2 Effect of modulating different forms of GABAergic inhibition on PC 

excitability 

6.2.1 Activating 5-HT2CRs increases GABAergic release onto PCs 

Given the preferred localisation of α2-GABAARs to the AIS, they are in a strong position 

to modulate PC firing and hence, cortical network activity (Nusser et al., 1996b; Veres 

et al., 2014). We therefore assessed the contribution of α2-GABAAR mediated synaptic 

inhibition towards PC excitability using a single-step current injection protocol. In order 

to increase synaptic release of GABA onto the pyramidal neuron AIS, we used the 5-

HT2CR-agonist, Ro-60-0175, to stimulate 5-HT2CRs on presynaptic PV-positive 

interneurons in the mPFC (Liu et al., 2007). Moreover,  5-HT2CR agonists have previously 

been shown to increase extracellular GABA (Abi-Saab et al., 1999; Invernizzi et al., 2007). 

However, it is important to note that the effect on GABA levels appears to be dependent 

on brain region, since a different study in the NAcc found a decrease in GABA levels upon 

5-HT2CR-activation (Kasper et al., 2014). 

 

Targeting serotonergic receptors revealed some novel findings showing a Ro 60-0175-

mediated increase in GABA presynaptic release onto mPFC PCs. This increase was 

completely blocked by a 5-HT2CR-antagonist, which is compelling evidence for a 5-

HT2CR–mediated effect. This effect on GABA release was only manifest in layers V/VI, in 

accord with the laminar distribution of this receptor subtype (Liu et al., 2007). Given the 

important role of fast-spiking PV-positive interneurons in shaping PC output, and given 

their prolific axonal extensions contacting a large number of PCs, these results suggest 

a strong modulatory role for serotonergic inputs in regulating networks of pyramidal 

neurons (Puig and Gulledge, 2011). This may in turn affect the activity of other 

subcortical regions contacted by the mPFC, such as the VTA. Interestingly, previous 

studies found a serotonin-mediated increase in PC excitability and a concomitant 
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increase in excitatory transmission from the mPFC to the VTA via 5-HT2AR expressing PCs 

(Bortolozzi et al., 2005; Puig et al., 2003). This could counteract the decrease in 

excitability of PCs via 5-HT2CR-expressing interneurons, as shown here, and the net 

effect of serotonin would therefore depend on the balance of its excitatory and 

inhibitory actions. Since it has been shown in monkey brain that most serotonergic 

inputs onto PFC contact interneurons, the inhibitory pathway may be more favoured 

(Smiley and Goldman-Rakic, 1996).  Changes in cortical serotonin levels and associated 

receptor activity may therefore have wide-ranging implications for prefrontal top-down 

control in pathways involved in reward, learning and planning. Such a key modulatory 

function of serotonin is in agreement with its central role in the treatment of 

neuropsychiatric conditions, such as depression. 

 

6.2.2 The influence of tonic and phasic inhibition on mPFC pyramidal cell output 

Despite the observed increase in GABAergic transmission onto PCs in the presence of Ro 

60-0175, we could not detect a specific contribution of α2-GABAARs to the reduction in 

PC excitability caused by applying the neurosteroid THDOC, although it may play a role 

in modulating neuronal gain. In addition, measuring IEIs using a current injection 

protocol to quantify neuronal excitability, we could not detect any significant changes 

to PC excitability mediated by phasic inhibition alone. In a series of experiments using 

relatively-selective GABAAR modulators which increased or inhibited either tonic or 

phasic inhibition, or a combination of both, we discovered that while we were able to 

resolve changes in PC excitability when tonic inhibition, or a combination of tonic and 

phasic inhibition, were manipulated, we did not observe changes in excitability due to 

modulation of synaptic inhibition alone. This suggested a more important role for tonic 

inhibition in modulating mPFC pyramidal cell activity than previously thought. 

However, an alternative possibility is that the method used to gauge PC excitability may 

be less sensitive to changes in phasic compared to tonic inhibition, since it is not 

expected to replicate the precise and complex computational integration, which 

dictates PC activity in an in vivo physiological context. Furthermore, it is usual when 

recording GABA inhibition to set the internal chloride concentration high. This will 

change the size and direction of currents flowing across the membrane upon GABAAR 
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activation, though synaptic inhibition should also be more prolonged, thus having a 

greater effect (Houston et al., 2009). Nevertheless, whether internal Cl- levels are 

important could be solved by using gramicidin-perforated patch recordings, which 

would allow recording under near physiological internal Cl- concentrations. 

Furthermore, in order to specifically target synaptic inhibition, conducting paired 

recordings from fluorophore-labelled (GFP) Chandelier cells and PCs, to assess the effect 

of direct Chandelier excitation on PC spike firing, would be helpful. In a similar manner, 

a previous study has used paired perforated-patch as well as cell-attached recordings to 

study the effect of GFP-labelled Chandelier neurons in the somatosensory cortex 

(Woodruff et al., 2009) and found both depolarising as well as hyperpolarising effects of 

GABA that are dependent on the postsynaptic membrane potential (Woodruff et al., 

2011). Therefore the physiological situation with regard to the effectors of synaptic 

inhibition may not be easily predictable. In conjunction with neurosteroids in our mouse 

model, paired recordings could be another powerful method to assess the contribution 

of α2-GABAARs towards PC excitability. 

 

Overall, we did find a significant contribution of GABA tonic inhibition towards PC 

excitability in the mPFC. The strength of this effect on excitability appeared to be similar 

across different mPFC layers and was proportionate to the magnitude of the tonic 

current. We also found that in layer V/VI PCs, changes in excitability involved, at least to 

some extent, δ subunit GABAARs. Together, these results point to an important role for 

tonic inhibition via αβδ GABAARs in shaping mPFC output, which may be linked to the 

emerging implication that dysfunctional tonic inhibition is an important component of 

some neuropsychiatric disorders (Brickley and Mody, 2012). 

 

6.3 Future directions 

6.3.1 Differences in GABAAR modulation in mPFC subregions or between classes of 

interneurons 

While the focus of the present study has been to assess modulation of GABAergic 

inhibition in mPFC PCs, this perspective could be widened to include the role of the 
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different classes of GABAergic interneurons in future experiments. Given their 

multifaceted nature (Druga, 2009; Markram et al., 2004), with more than 10 different 

types of interneurons synapsing onto subsets of other interneurons or PCs, often 

restricted to their own layer or cortical column, a detailed analysis and classification of 

distinctive modulation of different types of interneurons would be an ambitious project 

beyond the scope of this thesis. It may be worthwhile to focus initially on one group of 

interneurons of particular interest, the Chandelier cells. They have received an 

increasing amount of attention due to their prominent role at the AIS and have been 

associated with deficits in network oscillations which are a characteristic of 

schizophrenia (Lewis, 2011). A challenge will be the unequivocal identification of 

interneuron cell types. While a lot of evidence has accrued over the years to allow 

categorisation of interneurons based on a number of features, to date no reliable single 

marker exists. Instead, one would have to employ a combination of morphological, 

electrophysiological and biochemical markers for identification purposes. The use of a 

transgenic mouse-lines selectively expressing GFP in PV-positive interneurons could 

help in this endeavour (Meyer et al., 2002). 

 

6.3.2 Modulation of GABAergic inhibition by the serotonergic system 

Besides dopamine, serotonin is another major neuromodulator in the CNS. It is involved 

in the regulation of mood, impulse control and cognition and can increase the release 

of several neurotransmitters as well as alter the neurotransmitter response 

postsynaptically (Celada et al., 2013). Given the density of its innervation, the 

serotoninergic system is thought to play a crucial role in modulating PFC function. The 

main serotonergic afferents to the mPFC originate from the DRN and are mostly 

uniformly spread across the mPFC (Hoover and Vertes, 2007). There is significant 

interaction between the serotonergic and GABAergic system (Yan, 2002). For example, 

GABAARs have been shown to be involved in stress-mediated down-regulation of 5-HT 

in the hippocampus by 5-HT2CRs (Martin et al., 2014), and, as mentioned previously and 

shown in the present study, activation of 5-HT2CRs can lead to changes in GABA levels 

depending on the brain region (Abi-Saab et al., 1999; Invernizzi et al., 2007; Kasper et 

al., 2014). Previous research has shown direct interactions between 5-HT receptor 
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activation and postsynaptic GABAARs. Activation of 5-HT2ARs in the rat cerebral cortex 

was shown to induce a significant enhancement of interneuron and PC sIPSC frequency 

and amplitude (Zhou and Hablitz, 1999b), while activation of 5-HT2CR was shown to 

reduce GABAAR current when both receptors were co-expressed in Xenopus  oocytes 

(Huidobro-Toro et al., 1996). In line with these results, a later study showed a decrease 

in sIPSCs of PFC pyramidal neurons after exposure to 5-HT, most likely mediated by 

phosphorylation of GABAAR γ2 subunits via PKC (Feng et al., 2001). 

 

Together these results show an important role for the serotoninergic system in 

modulating PFC function, some of which may be mediated via changes in GABAergic 

transmission. The molecular mechanisms underlying serotonergic modulation of 

GABAARs, however, are so far not fully understood, nor are the roles of different 

receptor subtypes in this interaction known.  In line with the present study, future 

experiments could therefore assess the effect of different 5-HT receptor ligands on PC 

GABAergic transmission as well as the potential effects on GABAAR isoform localisation. 

6.4 Concluding remarks 

The mPFC is a vital part of processes involved in reward, action-planning and cognitive 

control. Its complex network of inhibitory and excitatory circuits is tightly regulated to 

produce network oscillations in association with normal neural circuit function. The 

modulation of pyramidal neuron firing, the main output neurons of the mPFC, is 

orchestrated by a network of interneurons whose temporally and spatially 

differentiated inhibitory inputs shape network activity. The aim of the present study was 

to elucidate the modulation of the main inhibitory neurotransmitter receptors, 

GABAARs, by dopamine and neurosteroids and assess the downstream effects of 

changes in GABAergic transmission on PC firing.  

 

Contrary to previous research (Graziane et al., 2009; Wang et al., 2002), we did not find 

a significant effect of dopaminergic activity via D4 receptors on GABAAR-mediated 

postsynaptic currents. We did, however, observe a reduction in presynaptic GABA 

release in acute slices as well as an overall increase in α2-GABAAR surface expression in 
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cultured pyramidal-shaped neurons exposed to a D4 receptor agonist. This may mimic 

pathophysiological changes associated with schizophrenia (Beneyto et al., 2011; Lewis, 

2011). 

 

We have also demonstrated a significant contribution of α2-GABAARs towards synaptic 

inhibition in pyramidal neurons of the mPFC. This GABAAR isoform was of particular 

interest due to their preferred localisation at the AIS (Nusser et al., 1996b) and their 

involvement in neural circuits associated with anxiety (Löw et al., 2000). Their 

contribution to cortical pyramidal cell inhibition exhibited laminar variation, being more 

influential in layers II/III, in agreement with higher expression of GABAAR α2 subunits in 

this area (Pirker et al., 2000; Sieghart and Sperk, 2002; Wisden et al., 1992). We also 

uncovered the presence of an endogenous neurosteroid tone in layers II/III, while 

pyramidal neurons of the deeper layers V/VI respond more strongly to exogenously-

applied THDOC, suggesting a difference in neurosteroid sensitivity of the GABAA 

receptor population in the respective cortical layers. 

 

Lastly, while we could not resolve a specific contribution of α2-GABAARs towards 

neurosteroid-mediated changes in PC excitability, we were able to resolve an effect of 

tonic inhibition on PC excitability, and also provide evidence for a novel selective 

increase in presynaptic GABA-release, onto PCs, in response to 5-HT2CR activation. 

 

In summary, this study underlines the complexity of prefrontal GABAergic inhibition by 

demonstrating differential effects of specific agonists of physiologically relevant 

neuromodulatory pathways, which are dependent on the GABAAR subtype and also on 

the cortical layer. 
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