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1 Foreword

This graduation project report is an attempt to catch in a few words and formulae my
learning experience of the past few months on some specialized subject. Unfortunately, the
time spent on and the skills developed in reading the more general literature (like Pilkuhn [1],
Halzen & Martin [2], Mulders [3, 4]), using the necessary computer software, and above all
communicating with the scientists in the theory group of NIKHEF-K, cannot be adequately
conveyed in a report like this.

The project mainly consisted of the actual calculation of the neutrino scattering cross
sections. Also some preliminary work was done on the hypothesis of “simulating neutrinos
with polarized electrons” using the density matrix formalism. I will not discuss the last
subject in this report. Still I have added a small appendix on the density matrix formalism.

2 Introduction

The area of physics I am concerned with here is the scattering of neutrinos off bound hadrons,
i.e. strongly interacting particles. Neutrinos are massless particles (to be more correct: at
present the experimental upper limit on the mass is about 10 eV). Hadrons are the massive
particles our world’s mass mainly consists of: this category includes baryons (e.g. protons and
neutrons) and mesons (e.g. pions). Nuclei are composed of hadrons. Hadrons are considered
to be composed of quarks, which come in six different “flavors”: up, down, charm, strange,
bottom, and top. Only the last flavor (top) has not yet been “seen” experimentally, but
positive results are expected soon. The neutrino, on the other hand, belongs to the family
of leptons, of which the electron is the most well-known example. Leptons interact only via
electromagnetic and weak interaction, and not via strong interaction. Analogous to the one-
photon exchange approximation for electron-hadron scattering, we describe neutrino-hadron
scattering as the exchange of a massive vector boson (if both the in- and outgoing leptons are
neutrinos, this vector boson is the Z° boson).

In Section 3 I will introduce neutrino scattering as an example of the more general class
of weak neutral-current reactions. Section 4 will focus on the effects of the quarks inside
the nucleons probed by neutrinos. Then, in Sections 5 and 6 I calculate the elastic and
quasi-elastic cross sections, respectively. And finally, in Section 7 the subject of final state
interactions is briefly touched upon.

The appendices summarize the conventions of three papers relevant for this report and
introduce the density matrix formalism.

3 Weak neutral-current reactions

Weak neutral-current reactions have been studied for several reasons. For example, to test
the standard model, to investigate the axial structure of hadrons, or to test the conserved
vector current hypothesis. In this report the reason for investigating the weak neutral-current
is the possibility to probe for s-quarks in nucleons.



The simplest possible neutral-current reactions are the purely leptonic reactions like elastic
scattering of neutrinos off electrons:

v,em — e,

Also very simple are the semi-leptonic elastic reactions, like

Vpp — Vup,
Vyp — Vub,
vyl = vn,

v,n — Vun.
The first experimental results on neutrino-proton scattering were obtained in 1976 at Brook-
haven. The most recent and more accurate measurements, done using a 170-ton high-
resolution target detector at Brookhaven, were published in 1986 and 1987 [5].
Because in this report the energy of the neutrino is low compared to the vector boson
masses, the current-current lagrangian

v Af2 — gt
Lint = _%J’?lw*(ﬂg QA:ZIVX;Z g sz/w:l:(m) (1)
2 + + Y
/W
reduces to the effective lagrangian
4G
Linteff = — ;Julei(I)J;ZIWi(x)' @)

In these equations the J}: is the charge-lowering weak current. Since the weak neutral-current

is hermitian, we will use J}: = J, from now on. The relevant interaction term when studying
neutrino-hadron scattering, is

Lo = —V2Ge7(z) L E 1), () 112 ), Q

where H denotes “hadronic”. For conventional reasons the hadronic current used in equation
(3)—and in the rest of this report—differs a factor two from the currents occuring in equations
(1) and (2) (i.e. we have defined J}'2 = 2J1%). The minus-sign (plus-sign) corresponds to
neutrino (antineutrino) scattering.

For weak neutral-current reactions the standard model gives the hadronic current

JRE) = ) (V=) + 25 A=), (4)
2=0,3,8
where o 1 0 -1
v - /] A — 2
7y = 1-2sin*0w 3 = -1 (5)
f = 715(1— 25in? 8y 2 = —715.
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The zs are determined by the weak quantum numbers of the quarks in the standard model.
Small correction terms for z§ (< 10~4) and 29 (= —0.02) have been calculated (see [7] for the
details. The definitions of [7] are used in this report). The vector and axial vector currents
occuring in equation (4) can be written in terms of the quark fields,

a - ]'d.
Vi(z) = qz)ru(5A%a(z) (6)
1,a
Au=) = F=)urs(52%)e(2), (7
with 1 < a < 8 and A* the eight Gell-Mann matrices
(010 (0 —i 0) (1 00
M=|100 M=|i 00 B=lo0o -10
\0 00 \0 0 0 \0 00
[0 0 1 [0 0 —i ) {0 0 0
M=1000 AM=100 0 M=|001 (8)
\1 0 0 \i 0 0) \0 10
(00 0 10 0
A= 0 0 —i M=2L101 0
\0 i 0 4 0 -2

Assuming flavor SU(3) symmetry all components of the vector current are conserved. Fur-
thermore, it will be useful to define the U(1) vector and axial vector currents

Vo) = Aem(3Da@) ©)
A=) = WehnszDaz). (10)
In all these currents ¢(z) is defined as
)
a@)= | de) | (1)
s(z)

In fact also charmed quark fields should be included, because of quark mixing effects. However,
at the scale applicable to this report all matrix elements involving charmed quarks are assumed
to vanish.

In electromagnetic scattering we can write the invariant amplitude as

M=- (;—;) J#(z)TH(z). (12)



In the hadronic current Ji¥ we only deal with V3(z) and V,3(z), in the following combination:

JH(2) = V3(z)+ —=V¥(z)

V3
2/3 0 0
= Gzhu| 0 -1/3 0 |qg(z), (13)
0 0 -1/3

where the matrix is the representation of the charge operator. This current is conserved, even
if the SU(3) symmetry is not exact, i.e. if the masses of the u, d and s quarks are not equal.

4 Strange (and other) quark matrix elements

To see why we can “observe” the effects of the strange quarks, notice that from I and Ag we
can construct

(14)

[ I ==
oo o
| ol = ==

The quantities that can be measured in experiments are linear combinations of the matrix
elements

PVO0)P) = T(H,S) (FQ + Q@I Vups), (1)
FVO)IP) = TG,<) (F@+ FQISEL ) up,s) (19)
(P1ASRO)IP) = T(,s") (GTH(Q%)vurs) Ulp,s), (17)
(PILAO)P) = T, ) (GHQ)1urs) Ulp,s), (18)

where P stands for the proton. If isospin SU(2) symmetry would be exact, then the matrix
elements for the neutron would be the same, except that (N’|V3|N) and (N’|A3|N) have the
opposite sign compared to the corresponding proton matrix elements. We have used the
invariant Q* = —gq,¢*. Note that we have omitted the second axial form factor Hy, since
inserting Hag,7s terms in equations (17) and (18) would not give contributions to the cross
section (see Section 5).

From the static electromagnetic properties of the nucleon we can deduce

33
FE(O) = %("p — Kn) Fg(O) = %\/5("‘9 + &n),

in which &, = 1.793 and k, = —1.913 are the anomalous magnetic moments of the proton
and neutron, repectively. Furthermore we know that FP(0) = 1, because it is the baryon

F3(0) =

(S

F¥0)
(19)



number of the nucleon, and from weak charged-current processes it is possible to determine

GH0) = %gA(O) ~ 0.63 (20)
and
0.28
G1(0) ~ A (21)

As we show in Section 5, where the neutrino scattering cross section is expressed in terms of all
forementioned form factors, the quantities F§(0) and G9(0) can be determined by doing this
weak neutral-current experiment. These two form factors enable one to obtain information
on the s-quark matrix elements

(P'[3(z)7u8(<)|P) = (N'[5(z)y,s(=)|N) =

U@',s) (F' (@*)yu + F’(Q2)w"yq )U(P,s)e“’", (22)
(P'[3(2)7,758(x)|P) = (N[3(2)1,755(2)IN) =
A, ") (G3(@)1u1s ) U(p, )", (23)
where
@) = F?(Q*)-%FE(Q’), (24)
Q%) = G?(Q%—%G?(Qﬂ). (25)

In equation (22) for the first matrix element we will assume F§(Q?) to be zero, which is true
only at Q% = 0. Evaluated at Q2 = 0 equations (24) and (25) give

F3(0) = F3(0)~(sp +&n), (26)
10) = G- = (21)
We adopt the following dipole forms for the form fa.ctors (see [7]):
FoR8(QYy = 2 () N (28)
1+ ) 1+ %)
8
BAey = A0, @ e, (29)

AM{

(o)

GOR8(Q?) = _Gm (30)

(8]
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We will use My = 840 MeV and M, = 1030 MeV.
It is also possible to single out other than strange quark matrix elements. For completeness
we will write for the u and d quarks, using expressions analogous to equations (22) and (23),

QY = F?(Q2)+F?(Q2)+-—\;—§R-8(Q2), (31)
GH@Y = G?(Qz)+Gi‘(Q2)+%Gi’(Q2), (32)
o) = 2, (33)
F0) = F2(0)+ ks (34)
GI(0) = G30)+5aa(0)+ 5, (35)
and
FQY = F?(Qz)-F.-‘"'(QZH%ES(Q”), (36)
GHQ?) = G‘;(Qﬂ)—ci*(ca?)+\/igcﬁ(@2), @37
Fo)y = 1, (38)
F§(0) = F(0)+ sn, (39)
q oy 1 0.28
Gi(0) = Gl(o)—am(o)‘i‘ 3 (40)

This shows the importance of obtaining F(0) and G(0) for measuring nonstrange quark
matrix elements too.

5 Elastic neutrino scattering

In order to obtain information about the form factors G§ and Fj relevant for the strange
quark content of the nucleon we express the neutrino scattering cross section in terms of
these. First we calculate the unpolarized differential cross section for the elastic scattering of
neutrinos and antineutrinos off nucleons using the one boson exchange diagram of Figure 1.
The cross section can be written as

1
do = F|M|2d‘R (41)
with flux factor F = 4MnE, and final state phase space

d3kf d:!I:';q

R = (27)32E, (27 )32E},

(27)18%(k + pn — &' = piy)- (42)
The invariant amplitude squared for this process can be written as

M(N = V'NYM* (VN — o'N’) = 2GE L, (ko kL) H™ (PN, PR, (43)

6



v \M \4
k =(E, k) k' = (Ey, k')

'l qg = (0,9)

Py = M, 0) P, (mass M)

Figure 1: Feynman diagram for neutrino scattering off (fixed) nucleon.

where the hadronic tensor H,,, is
Hy =
1
3 (P S1Ju(0)lpn, s) (o, sl Ik, o) =

1,8

1 —
5 T 2 [Uohe, o'V (ple, Tl + MivroT o] =

(% - 0.) @* [(Fs + P2+ 7] - 49,0 M3 +

452+ -2

2
_2F22 + G%) + 4ifpupaﬁpanI(Fl + F2)-
4MZ

(44)

In the last step the quantity p* = py — Bg,‘lq# has been introduced. In the calculation of the

hadronic tensor the following relations have been used:

10, 4"
I',=Fy,+A»R2L 4G ,
7 17n 2 My 17u7s

Tivo = F g’
YoI'lvo = Py, — P2 My + G177,

A =R(Q") =4+ 4R + 4,
F = F(Q%) = AF + {Fr° + 41,

G1= Gi(Q%) = 6 + AGH + A%,

(45)
(46)
(47)
(48)

(49)



— 1+
U(oh, (B, o) = (s + M) 5L (50)
In the last relation n denotes the polarization vector, boosted from the rest-frame; it obeys
n-ply = 0 and = is spacelike. The plus-sign corresponds to the spin +1 state and the minus-sign
to the spin —} state. The factor 73 equals +1 for protons and -1 for neutrons.

The leptonic tensor is (without initial spin averaging!)

Ly = Tr [#:W(IZ:F 'rs)ﬁ'r»(l;F ‘rs)]

(1
= o [ E 2] (51)
= kK, + 2Lk, — QX0 T 2ieu 0 kPR

Here the minus-sign (plus-sign) corresponds again to the neutrino (antineutrino).

As we already remarked in Section 4, we have omitted the term Hag,7s in equation (45),
since all terms in the hadronic tensor proportional to g,¢, give zero when they are contracted
with the leptonic tensor. However, in order to obtain a gauge invariant hadronic tensor it is
necessary to take into account H,.

The outgoing neutrino is not observed; its phase space is integrated over and the three-fold
differential cross section becomes

2
do _ j 3k’ 1 En'* — MPZJ _A_A__r (21[')464(’3 —q- kl) (52)
dQYdEy (2x)32E! 47 Mn E, 4r '
The integration over k' can be performed using
1 43k’

—_— - - g4t _ o LY =
o7 | rprE TV (k- a—F)

5 ((k - 9)?)
= 6(2k-q+Q%
-5 (213,,(131{, — My)— 2B,\JEn" — M3 costl, — (Efy — Mu)* + B’ - M;;’,)

§ (213,,1';, — 2B,/ T? 4 2T My cos 0, + 2T1{,MN)

! 3
s ! 6 TnEy + TnMy_ _ cosé, |, (53)
2ENJT? +2TMn \ Eo\JTY® + 2T My

where T = E{; — My is the kinetic energy of the detected nucleon. The z-axis has here been
chosen parallel to g. Suppose F, = 200 MeV. Then for #, = 0, T{; = 0 or T =~ 60 MeV.
The latter value for the kinetic energy of the outgoing nucleon is also the maximum kinetic
energy over all angles. The angles are not measured and after integration over (}|; we have

de  2r-2r |\MP_ = MPE_ M (54)
dEf, ~ 4n-2E2My |4x| T 2E2My [4x| — 32rE2Mn’
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When we alternatively choose to integrate over the total phase space of the nucleon and
all energies of the outgoing neutrino—this does not give an experimentally useful quantity
since in practice we cannot measure the angle of the outgoing neutrino: this neutrino is not

detected at all—we get
do _ Q? |M|?
Q) - (1 - 2MNE,,) 64m2ME’ (55)

One can write down for @? the following relation

= —(k - k')2 = 4E, (E,, - %) sinz(%). (56)

Using equation (56) as a relation between @ and #, and assuming that there is no ¢
dependence in M, we can write down the cross section
d 2
o - _MP (57)
d@?  64rE2ZME

Because E{; = Mn + !%!E we would indeed expect that equations (54) and (57) are related
by

do do
aE, = 2MN@ (58)
Using the relation
2
k-g=-k-.q = -%, (59)
and (in the laboratory frame) the relations
My Ej
bp=kp = My (B+ -, (60)
- - Ef — Mn)?
FF = M§(1+(—NQ2—)), (61)
El; = My + -22— (62)
N 2MN T
we finally obtain for the elastic cross section
do _ 2GE L, H* G'2 6?2 Q2 L F? Q2
dQ? ~ 16r 4EIMZ 27 4}33 1\" " 4E2
- [£6um + By + J62+ Ff)] - (63)
1 Q1

F2

1 2 2
+8 [(F1+F2:|:G1) —2F2 Est 3 EM

ing]
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Figure 2: Elastic scattering cross sections for neutrino-nucleon scattering. The initial nucleon
is fixed. For this plot we have taken F§(0) = —0.42 and G5(0) = —0.19. The neutrino energy
used is 200 MeV.

This result is identical to the cross section given in [5] (be aware about their conventions, see
Appendix!). In Figure 2 these cross sections are plotted.

In the analysis of experiments with relatively low neutrino energies, such as the one
proposed at LAMPF (see Section 6), equation (63) is often approximated to first order in

E,/My and Q/My by
do _ GZ . Q2 . Q".’
sz 2T [ L (1 4EE 1 4E3

_ [:I:Gl(Fl + )+ %(Gf + Ff)] E?;N] . (64)

In the rest of this report, however, we will use equation (63) for the cross section.

6 Quasi-elastic neutrino scattering

At LAMPT an experiment is planned with the new LSND (Liquid Scintillator Neutrino De-
tector). This detector contains 200 tons of mineral oil (CH,). The presence of carbon nuclei
gives a possibility to measure proton to neutron ratios quite accurately and also enhances
the cross sections compared to single proton (or neutron) scattering. A neutrino beam, orig-
inating from a decaying pion beam, goes through this detector. The quantity that will be
measured is the energy deposition of recoiling neutrons and protons, which have been hit by
a neutrino. The maximum energy of the neutrino beam will be slightly more than 200 MeV,
and hence the maximum kinetic energy of elastically hit hydrogen nuclei will be about 60

10



12 11
v+ CoVvV+N+ X

Figure 3: Definition of scattering planes and variables.

MeV (see Section 5). The idea now is to keep only those events that have T > 60 MeV;
these must come from the 12C(y, 'N)X or *C(7,7N)X reactions. In the laboratory frame
we have a fixed 2C target and an incoming neutrino-beam. A Z° boson is exchanged and
a nucleon is knocked out of the nucleus. We can describe this process in the formalism for
semi-inclusive experiments (see [3] for more details on the formalism). The neutrino and
nucleon variables are defined in Figure 3. We work in impulse approzimation, in which the
total hadronic current is the sum of the currents of the individual nucleons treated as free
particles (see Figure 4).
The final state phase space is now

d3ki (131);\I daph

— 4e4 R 2 A
R = Gry2Ey, (anyaby @ryeby om) O F+Pr =K =Py —7R). (65)
Using
El dEl’ d2 )
&py = |pn[*dlpyldQy = |pi| Epd EydQy = =R Ip?qulpm
|P{q|||
and
B3k = |k'|2d|k’|dQL = EdeELdQ‘,',, (67)
we have for the six-fold differential cross section
do _
dQ,dELdQdEY -

11



k"

Figure 4: The impulse approximation.

1 __E__Inl
4MTE, 2(27)3 2(27)3

< | (2d Ph IR am )6k — K + 1 — ph — 7h)

(2GF)

P2E,
2G2 E! Y
= |PME‘J (m%) (E )L,,,,W“ (68)
where
HIZRNY = (pr]TH0)IpR, P} (PR PRI (0 IpT).- (69)

We integrate over the residual nucleus states since the residual nucleus remains unobserved.
The tensor W# is defined by equation (68) as

w’-‘y = —
(2r) 4Mr By (2::)32}3'

HI-RNYry4(k — K + pr - py—pR)-  (70)

Since the outgoing neutrino is also unobserved and we do not measure the angles of the
outgoing nucleon we will calculate

' ! |pNJ.| 2<:;'[2-" (EI) py
w = [am, [ao fas | d"’”*'[leul (1611'2 5. ) bW (71)

As already mentioned we work in impulse approximation; furthermore we neglect the
ambiguities arising from the off-shellness of the nucleons. For an unpolarized target the

12



hadronic tensor W,,, factorizes into a spectral function and the hadronic tensor for unpolarized
spin % constituents. We have then

3 H;(;?)(Pc, ‘I) 4 ’ '
W,, = /dWRd P.S(p, Wn)4—E&—5 (rr—Pr—Pn+ ), (72)
[

where the spectral function S(p., WRr) gives the chance that the knocked out nucleon has an
initial momentum p, and leaves behind a nuclear state of invariant mass Wg, and H ,(‘f,)(pc, q)
is the hadronic tensor for the constituent nucleon. This tensor is given in equation (44).
Assuming that the wave function of the target nucleus can be written as a relative wave
function ¢(p,,) between the residual nucleus and the knocked out constituent, it can be
shown that

S(Prel) = |¢(prcl)|2' (73)

Assuming a gaussian form for the relative wave functions one obtains

3/2 Nad 2
S(pc) =N¢o® ((TI—VT)?T) eﬁ_n!glL. (74)

In this formula N is the number of constituents—in the case of 12C, N = 6 : proton and
neutron knock-out are described separately. We could have added an isospin index to the
tensor Wy, of equation (72). The total hadronic tensor is then written as a summation over
both proton and neutron hadronic tensors—and « is a parameter related to the width of the
momentum distribution. The normalization factor is chosen in such a way that

[&@psy=N. (75)

The Wg dependence of S(p., Wr) is kept as simple as possible: only the ground state of
the residual nucleus is accounted for in the description, so

S(pe, Wr) = 5(pc)é(Wr — Mp). (76)

If the integral over p_ is performed we get

W, = | dWss W%Q&M —EL - E! 77
By = R (pC? R) 4E{qE ( T+w R N)' ( )

Note that because of the performed integration, p, is now only used as a notation for pp — pj
and therefore is not an independent variable anymore. Integration over WR gives

H)(pe,q)
Waw = 50 DB D0ty + 0 - M3 + 10 - ). (78
Since we are going to integrate this expression analytically over [p}y,| we have to rewrite
the argument of the delta function as a function of |p}, |. The only |p}, |-dependence is via

13



Ip.|? = |pjy — q|?. So we write, using the explicit expressions from [3]:
Pk — al* = Ip)? + (Ipiyl — 1g1)? = Ioal® + 1a1? - 2lpyy llal
= E*-MZ+E*+E-2E,FE cosb,
1/2
~2 [(BK? - M} — Ipiy, P)E2 + EL* — 2B, Bl cost)| ", (79)

in which only our independent variables EY, |pj. |, E,, and cos#, have been used—note that
lphy 1* = E4? — M3 — \pjy, 1. The quantity |p}y — g| is independent of the azimuthal angle
¢}y The delta function, taking only positive values for ‘p’N 1], can now be rewritten as

é(lpnel —a),  (80)

J(MT+‘-‘-’_ V Mﬁ+|Pc|2-E1’\]) Ib@

J|P1u.|‘ll
where a stands for the positive root of the argument of the delta function. The derivative

M +p?) 1 dlp.J?
lp, 2\/Mﬁ + |p.|2 dlp .|

(81)

can be calculated from equation (79):

8lp.|? _2\/}_7,‘2 + E!2 ~2E,E! cos 8!, E2 4+ E!? - 2E,E! cos@,

~(—2lpi.l) = 2|PNJ.|\]

Ol 2\/E' P M3 - |pm_|2 E{® — M{ - Ipjy.?
(82}
From
Mr+w—ME+|p|*-Ey=0 (83)
we get, after squaring,
lpk — gl = (Mt + E, - E}, - E})* - M&. (84)
Using again the explicit expression for |py — g} in terms of |p} | it follows that
VB - Mz~ Ipiy, I? =
[M3 — M2 — M + 2MryE} — 2(E, — E})(Mr — E{) + 2E,E}(1 - cos 8.}] (85)
2y/E2 + EL? - 2E,E!, cos ), ’
and
ol = | ER" - MR
3 [ME — M3 — M% + 2M1E} — 2(E, — E.)(Mt — E{) + 2E,E/(1 — cos #, )] (86)

4(E2+ E!? - 2E,E! cos¥.,)

14



The scalar function L#*H ,(‘f,)(p.:, q) appearing in our calculation is expressed in terms of the
invariants Q2 and k - pc, which read

Q*=2E,E!(1 —cos®)) (87)
and
kpe=k-pyn—k-q=
E,E4+ E,E!, - E E, cos#, (88)
E,E\\/T— cos? O |ply, | cos ¢fy + (E2 ~ E,E} cos 1/ Ey* — MG — Iply, )2
- VE% + EL? - 2E,E} cos8, '

The allowed kinematical region for |py, | is

0< |piyl € VER — MR (89)

The condition for the maximum value of |p}y, | will be automatically fulfilled in our numerical
integration procedure, since we take Mt + E, — Mg — My as an upper limit for the integration
over E!. Thus E! < E, and

EX4+ E!? —2E,E cosf, > (E, — E.)* > 0. (90)

However, we have to adjust the integration boundaries of cos#, in such a way that the
argument of the square root in equation (86) cannot become negative. In order to do this we
express the equation

lpnel =0 (91)

as a second-order polynomial in cosé]:
0= 4(EN* - M) (B2 + E.* - 2E,E. cos¥.,)
— [M& - ME - MR + 207 B}y — 2(E, - E,)(Mx - E)+ 2B, E(1 ~ cosé))] .(92)
The discriminant of this equation is
D = E|? [64E2 { BY' — Ei*(MF + MB) + MAME, — 2E4° Mr + 2B M Mz
+EL MR — MEME} + 64E3 { ~2EL® + 2B M}, + 2B4” Mr — 2M M}
+64E4 { By” - M7 }] (93)
E,® [128E2 { B}’ - EAME — B Mr + MEMr} + 128E3 {- B} + M} }]
B [64E2{EL® - MR )]

Since the coefficient of the cos? #/, term is negative, the lhs of equation (92) is positiveif D > 0
and
(cos8); < cos, < (casfl)s, (94)

15



keeping in mind that the domain for cos#), is [-1,1). The boundaries are given by

AxVD
(CDS 0’1})1,2 = —BW, (95)
in which
A =d4E,E'(2E,E' +2E,E\—2E" El - 2E4* + M{ + M —2E, My +2E, My +2E} Mt — M3).

(96)

We now have obtained the integration boundaries of cos #, explicitly as a function of EJ.

If for some E! there is no physical region of 8, at all, then the integrand in the numerical
integration procedure will be set to zero.

Finally we write down the full expression for the quasi-elastic cross section

do fM-r+Eu-Ma—MN . jmin{l.(cosamz}
0

2w
— ! F
dE — d cost, -[0 don

v max{-1,{cosd} ), }

I Al

2 —_ N v
T [dQ2(Q k- Pc)] S(pc) f——— MN |ka_|2 Eu

y 1 (M3 + lply — al)(E* - MF — |, [?)
4EN(EL - E, + E!) E24+ E!? - 2E,E! cosd!, '

where we substituted E,MN = k- p. in equation (63). Equation (97) equals

l / 2
dEN de fdcosa jd¢N dQZ(Q k- p,;)]c]mt
2(k - pe)*S(p ) Ey (Mt + B\ — N
E,(Ey - E, + E\)\JE2 + E}> - 213,,13;, cos

(98)

The quantity Garvey et al. [6] propose to determine from the LAMPF experiment is the

integrated ratio
TNmu: d”z
T 9T dT’
R= Fhein T8 T (99)
Nmaz O0g i
f lfirm'n d ltl'dT

This ratio depends on G} (0) and F§(0). Since :T' = dE' , the ratio R is easy to calculate

once one has calculated -5 HE" from equation (98). We will do the integration of equation (98)
numerically. Our results are given in Figures 5 to 8. Note that the curves for the cross sections
are a factor 4 to 6 higher than those in [6). The cause of this difference is still unclear. The
conventions used for the currents have been checked thoroughly. A possible explanation could
be a difference in the normalization of the spectral function that has been used. Fortunately,
this factor cancels when we take proton to neutron ratios.

As can be seen in Figures 7 and 8, it is possible to use a measurement of the ratio to
contrain the values of G5(0) and F3(0).
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Figure 5: Quasi-elastic scattering cross sections on 12C. For the parameter a we have used
0.009 MeV-1. Furthermore, we have again taken F3{0) = —0.42, G5(0) = —0.19, and a fixed
neutrino energy of 200 MeV.
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Figure 6: Ratios of proton to neutron cross sections.
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Figure 8: Variation of neutrino scattering p/n-ratio with form factors.
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7 Final state interactions

The description should not stop at this simple level, however. Recently, final state interactions
are calculated in the model of [8] to be responsible for an increase of both proton and neutron
cross sections of about 15% at T = 80 MeV and 40% at T = 100 MeV. So these final
state interactions seem to be things to worry about. However, in (8] also calculations are
presented which are based on models that include both nuclear structure effects and final
state interactions. They find that the cross section becomes essentially independent of details
of nuclear structure at energies above Tj; = 30 MeV, corresponding to a nuclear excitation
energy of about 45 MeV. And, most important of all, it appears that the p/n-ratio is virtually
independent of final state interactions.

A possible means of getting an experimental indication on these final state interactions is
by performing a similar kind of experiment with electrons. It will be useful to have electron
scattering data in the same kinematical region and with roughly the same kind of spin density
matrix for the knocked out nucleons. In this way one can be sure that one is measuring
the same contributions of final state interactions as in the neutrino case. It may well be
that it is possible by taking combinations of different electron polarizations that the density
matrix elements become comparable. For an introduction to the density matrix formalism
see Appendix B.

A Conventions

In this Appendix we relate the conventions used in Kaplan [7] (used in this report) to the
conventions used in Garvey [6] and in Ahrens [5].

Kaplan (and this report) | Garvey | Ahrens
F; 2F; F;
‘F'S F}T:l
‘F‘_B \/EF"_T=O
_F'_s 2}.“‘8
V. 2V,
s s —7s
Gl Gl _GA
G} = 194 3Ga
i Gs
Ay Ay

B Density matrix formalism

The density matrix formalism is briefly described in relation to the problem of final state
interactions of Section 7. We assume that the S-matrix of the total process (‘production’ and
final state interactions) factorizes into one matrix for production (y*N — N’ or ZO°N — N')

19



and another for the final state interactions (N — N”), If we assume the initial nucleon (N)
and the detected nucleon (N") to be unpolarized we can write the invariant amplitude squared
for the total process:

Ml = Tr[R(prod) B*(fsi)], (100)
with
R(prod)Y , = M(y*N = N, )M (y"N = N.,..), (101)
R(prod)Z", = M(Z¥'N = N.) M*(Z°"N = N.,.), (102)
R(ls)mm: = M(N,, — N") M*(N},, — N"). (103)

Note that we have ignored here isospin changing final state interactions. We will now define
the production density matrix as

_ R(prod)m m
Gl Tr[R(prod)] (104)

For example, the production matrix for the weak neutral-current reaction can be written as
R(prod)Z’., = M(Z"N — N YM*(Z°N - N,,) =
(26G) - ¢ [T, mITW(B+ My)raThyold (¢, m')] " = (105)

+(2G2) - Tr [U(p!, m'YA(p, m)Tu(b + MxYroTh70] ¢,

=Rl T

where the factor 1/2 is the spin-averaging over the initial spin of the nucleon. Note that we
use the normalization U(p, s)U(p,s) = 2MNn, so that the completeness relation is

Y Ulp,s(p,s)=p+ M. (106)

=11 1
s=tae-z
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