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Abstract 

School closure is often considered as an influenza control measure, but its effects on 

transmission are poorly understood. We used two approaches to estimate how school 

holidays affect the contact parameter (per capita rate of contact sufficient for infection 

transmission) for influenza using primary care data (England and Wales, 1967-2000). Firstly, 

an age-structured susceptible-infectious-recovered model was fitted to each year’s data to 

estimate the proportional change in the contact parameter during school holidays compared to 

termtime. Secondly, we calculated the percentage difference in the contact parameter 

between holidays and termtime from weekly values of the contact parameter, estimated 

directly from simple mass action models. Estimates were combined using random effects 

meta-analysis, where appropriate. From fitting to the data, the difference in the contact 

parameter amongst 5-14 year-olds during holidays compared to termtime ranged from a 36% 

reduction to a 17% increase; estimates were too heterogeneous for meta-analysis. Based on 

the simple mass action model, the contact parameter was 17% (95% confidence interval 9-

25%) lower during holidays than termtime. Results were robust to the assumed proportions of 

infections that are reported and individuals who were susceptible when the influenza season 

starts. School closure may reduce transmission during influenza outbreaks. 
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Influenza-like illness (ILI) causes an estimated 420,000 excess general practitioner (GP) 

consultations in England and Wales annually (1); pandemic influenza can cause extensive 

morbidity and disruption. School closure may reduce cumulative and peak influenza attack 

rates (2, 3). However, its effects on transmission remain unclear (2, 3), partly because data on 

how it affects contact patterns are limited (4-7). Mathematical models can provide estimates 

of how contact rates vary during the year, including during school holidays (8-10).  

 

A modelling study of French surveillance data concluded that holidays reduce the rate of 

influenza transmission to children by 20-29% compared to termtime but do not affect 

transmission to adults (8). Other modelling studies considering hospitalisation data from The 

Netherlands and France (10) or French primary care data (9) also suggested that contact rates 

were lowest during school holidays. In this paper, we estimate weekly effective contact rates 

from primary care data from England and Wales, providing estimates suggesting how school 

closure during a pandemic might affect contact patterns. 

 

METHODS 

Datasets 

Weekly age-stratified GP consultation rates per 100,000 for ILI, 1967-2008, and weekly case 

numbers and population denominators, were provided by the Royal College of General 

Practitioners (RCGP) (Web Figures 1.1 and 1.2). However, consultation rates in all seasons 

after 1999 were low (see below) so were excluded. 

 

We defined an influenza year to run from week 40 (early October) to week 39. We used 

standard definitions of “normal seasonal activity” of influenza (11, 12) to restrict analysis to 

epidemic weeks (those with an overall consultation rate ≥50/100,000/week before 2003/04 or 
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≥30/100,000/week thereafter). We excluded seasons after 1999/2000 as, in each of these 

years, the epidemic threshold was never exceeded or was exceeded in only one week of 

holiday and/or one week of termtime. We distinguish between years in which one influenza 

subtype dominated and other years, identified from published reports (Web Table 1.1). 

 

Web Appendix 1 summarises how school holidays are organised in England and Wales. We 

assumed that holidays fell in the same weeks each year. 

 

Assessing the relationship between school holidays and influenza transmission: overview 

We quantified influenza transmission using the contact parameter: the per capita rate of 

effective contact (contact sufficient to cause transmission, should it occur between a 

susceptible and an infectious individual (13)). We used two modelling approaches to estimate 

the effects of school holidays on the contact parameter. Firstly, we fitted a susceptible-

infectious-recovered (SIR) model to the reported incidence data for each influenza year to 

estimate the relative difference between the contact parameter during termtime and school 

holidays. Secondly, we used the method adopted by Fine and Clarkson to analyse measles 

and pertussis data (14, 15), whereby the contact parameter is calculated from the estimated 

numbers of susceptible and infectious individuals. In both methods (described below), we 

analysed each influenza year individually without considering births, deaths or migration. 

 

 

Estimating the difference in the contact parameter between termtime and holidays by fitting 

to the data 

Model description. The model population was stratified into susceptible, infectious and 

immune individuals in two age strata, 0-14 and ≥15 years. The infectious period was assumed 
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to be 3.5 days (16) (2 or 4 days in sensitivity analyses). The age-specific proportions of 

infectious people which were reported (the reporting fraction) and both the number of 

infectious people and the proportion of individuals who were immune to the circulating 

influenza strains when the epidemic threshold was reached were estimated by fitting model 

predictions to the reported data (see below).   

 

Contact between individuals was assumed to differ between the age groups, according to the 

following matrix of “Who Acquires Infection From Whom”: 










32

21

ββ

ββ
 

whereby 0-14 year-olds effectively contact each other at a rate ß1, the rate at which ≥15 year-

olds and 0-14 year-olds effectively contact each other equals ß2  and the rate at which ≥15 

year-olds contact each other equals ß3. ß1 was assumed to differ between termtime and school 

holidays. ß1, ß2, ß3 were calculated from the corresponding elements of the Next Generation 

Matrix (NGM), Rij, defined as the average number of secondary infectious people in age 

group i generated by an infectious person of age group j in a totally susceptible population 

(Web Appendix 2). These elements, the relative difference in the contact parameter between 

termtime and holidays among children, and the other unknown model parameters were 

estimated by fitting model predictions to the data. The basic reproduction number (R0) was 

calculated as the dominant eigenvalue of the NGM (17). Web Appendix 2 provides further 

details of the model, including equations and parameter definitions (Web Table 2.4). 

 

Fitting the model. The unknown parameters (elements of the NGM, used to calculate the age-

dependent contact parameters, the percentage difference in ß1 during termtime compared to 

holidays, the age-specific reporting fractions and both the number of infectious people and 
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the proportion of individuals who were immune when the epidemic threshold was reached), 

were estimated by fitting model predictions of the weekly number of reported cases to the 

data by maximum likelihood. The best-fit estimates were those which produced the smallest 

value of the log-likelihood deviance (Web Appendix 2). 

 

The model was fitted to the data for the continuous period during which the overall 

consultation rate exceeded the epidemic threshold (allowing additional single weeks below 

the threshold during the epidemic period). The fitting was conducted separately for each year 

in which the number of weeks in this period exceeded the number of parameters estimated. 

95% confidence intervals (CIs) for the percentage difference in the contact parameter during 

holidays compared to termtime (and the other estimated parameters) were calculated by 

bootstrapping (18). For each influenza year, 1000 bootstrap incidence curves were generated 

with weekly case numbers sampled from a Poisson distribution with mean equal to the 

reported number for that week. The 95% CI for each estimated parameter was taken as the 

central 95% of the distribution of estimates from the bootstrapped datasets. 

 

In sensitivity analyses, we fitted a model without age-structure (Web Appendix 2). This 

model had fewer unknown parameters than the age-structured model, allowing inclusion of 

more years (33 versus 27) in the analyses. 

 

Estimates of the contact parameters using simple mass action models 

We also estimated the contact parameter (t) for each week t in each influenza year directly 

from the data using simple mass action models (14, 15). Weekly values of t were estimated 

using Equation 1 (Web Appendix 3): 
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𝛽𝑡 =  
𝐼𝑡+1

𝐼𝑡𝑆𝑡
 

(Equation 1) 

 

St and It are the number of susceptible and infectious individuals, respectively, in week t, and 

were estimated from the data. It was estimated by dividing the weekly reported ILI 

consultation rate by the reporting fraction (see below). We used data for 5-14 year-olds only.  

In sensitivity analyses, we used data for all ages combined. 

 

Assumptions about the number of susceptible individuals at the start of each influenza year. 

The proportion of individuals who were assumed to be susceptible to influenza at the start of 

each season in the simple mass action model was based on published seroprevalence data 

from England or the UK, for 19 influenza seasons (Figure 1, Web Table 1.1). Typically, 

~30% of individuals were susceptible at the beginning of each season (Figure 1); therefore, 

for years for which we did not identify serological data, we assumed that 30% of individuals 

were susceptible. In sensitivity analyses, we assumed that 70% of individuals were 

susceptible at the start of each season (8, 19). Vaccination is assumed to have scarcely 

affected the proportion susceptible as, until 2000, it was offered in England and Wales only 

to individuals at high risk of complications (20).  

 

 

Assumptions about the reporting fraction. We used the relationship between R0 and the 

cumulative attack rate (21) to estimate the reporting fraction for each season, for all ages 

(Web Appendix 4, Web Figure 4.3). Based on these results, we assumed a reporting fraction 

of 50% for 5-14 year-olds and 30% for all ages combined (70% for both groups in sensitivity 

analyses). 
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Relationship between contact parameters and school holidays. For each influenza year, the 

mean value of the estimated contact parameter was calculated, separately for weeks during 

school holidays and termtime, for 5-14 year-olds and all ages combined. The percentage 

difference comparing the mean during holidays (𝛽̅holiday) to termtime (𝛽̅term) each year was 

calculated as (100×((𝛽̅term-𝛽̅holiday)/𝛽̅term)), utilising only estimates from weeks during which 

the epidemic threshold was exceeded. 95% CIs were calculated using the bias-corrected and 

accelerated bootstrapping method (22), randomly sampling with replacement 1000 estimates 

of t from weeks within strata of termtime and holidays and calculating the percentage 

difference as above.  

 

 

Summary measures of the relationship between school closures and influenza transmission 

from both approaches 

We summarised the relationship between school holidays and influenza transmission using 

random effects meta-analysis of the estimated percentage difference in the contact parameter, 

separately for the estimates from fitting to the data and the simple mass action model. We 

used the metan command in Stata (23), which uses the method of DerSimonian and Laird 

(24). Heterogeneity was assessed using the I2 statistic (25).  

 

For the simple mass action model, influenza years were included in the meta-analysis if the 

estimate of the percentage difference in the contact parameter was based on at least two 

estimates of the contact parameter for each of termtime and holidays; we excluded years 

during which the contact parameter systematically increased over the year (based on visual 
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inspection). We analysed all years together and stratified by the number of circulating 

influenza strains. 

 

Comparison of the two methods 

We compared estimates from the simple mass action model to those obtained by fitting to the 

data using the correlation coefficient, r. We estimated the correlation between a) estimates of 

the difference in the contact parameter comparing termtime to holidays obtained from the 

simple mass action model for 5-14 year-olds and the age-structured model fitted to the data 

and b) estimates from the simple mass action model for all ages combined and the fitted 

model without age structure. 

 

We also used the kappa statistic to assess the agreement between the two methods in whether 

the value of the contact parameter was higher or lower during school holidays than termtime. 

 

We calculated the absolute difference between the estimates of the change in the contact 

parameter during holidays from the age-structured model fitted to the data and those from the 

simple mass action model for 5-14 year-olds, for each year, as the absolute value of (∆𝛽𝑠𝑚 −

∆𝛽𝑓𝑖𝑡), where ∆𝛽𝑠𝑚 and ∆𝛽𝑓𝑖𝑡 represent the percentage changes in the contact parameter 

during holidays from the simple mass action model and the fitted model, respectively. We 

converted this to a percentage difference by dividing the absolute difference by 𝛽𝑠𝑚 and 

multiplying by 100.  

 

Statistical analyses were carried out using Stata 14. 
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RESULTS 

Estimates from fitting the age-structured model to the RCGP data 

The estimated percentage difference in the contact parameter during holidays compared to 

termtime ranged from a reduction of 36% (95% CI 31, 41%) to an increase of 17% (95% CI 

15% decrease to 21% increase) (Figure 2). In 18/27 (67%) influenza years that we fitted to, 

the estimated contact parameter was lower during holidays than termtime, with a 95% CI 

excluding zero. In one year, the contact parameter was estimated to increase during holidays 

with a 95% CI for the change which excluded zero. Model fits are shown in Web Figure 5.4; 

Web Table 5.5 summarizes the best-fitting parameter estimates.  Estimates were reasonably 

similar if the infectious period was assumed to be 2 or 4 days (Web Figure 5.5). Estimates 

obtained by fitting the model without age structure are presented in Web Appendix 5 (Web 

Figure 5.6, Web Table 5.6). 

 

There was substantial heterogeneity between estimates (I2>85% for both the age-structured 

and unstructured models). We therefore do not report summary estimates. 

 

 

Estimates of the contact parameter using the simple mass action model 

Weekly estimates of the contact parameter from the simple mass action model are shown in 

Web Figures 5.7 and 5.8.  

 

Point estimates of the percentage difference in the contact parameter amongst 5-14 year-olds 

ranged from a 47% reduction to a 29% increase during holidays compared to termtime 

(Figure 3). In 10/33 years, the estimate was negative with a 95% CI excluding zero; in these 

years the estimated reduction ranged from 18% (95% CI: 7, 28%) to 47% (95% CI: 30, 58%). 
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The contact parameter was lower during holidays than termtime (with 95% CIs for the 

difference excluding zero) in 4/16 (25%) years with one dominant strain, and in 6/15 (40%) 

years when >1 strain circulated.  

 

Results were robust to changing assumptions about the reporting fraction (Web Figure 5.9) 

and the percentage of the population that was susceptible at the start of each season (Web 

Figure 5.10). Results based on data for all ages combined are presented in Web Appendix 5 

(Web Figure 5.11).  

 

Excluding two years during which the estimated contact parameter increased systematically 

(1967/68 and 1970/71), meta-analysis suggested that the contact parameter for 5-14 year-olds 

was 16-17% lower during holidays than termtime (Table 1). Estimates were heterogeneous 

when considering all years together (I2=49%) or years when >1 influenza strain circulated 

(I2=72%), but not when restricted to years with one dominant strain (I2=0%). Based on the 

latter, the contact parameter between 5-14 year-olds was 17% (95% CI: 9, 25%) lower during 

holidays than termtime. The estimate using data for all years was similar (17%, 95% CI: 9, 

24%), despite the heterogeneity. Meta-analysis found no strong evidence of a difference in 

the contact parameter for all ages combined during holidays compared to termtime (Table 1), 

although estimates were moderately heterogeneous (25). Results were similar when 

restricting meta-analysis to years for which the assumed proportion of the population that was 

initially susceptible was based on serological data (Web Table 5.7). 

 

Comparison of results from the different methods 

The correlation coefficient (r) between the estimated difference in the contact parameter 

during holidays compared to termtime from the age-structured model and that for 5-14 year-
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olds from the simple mass action model was 0.52 (95% CI 0.17, 0.75). The kappa statistic for 

the agreement between the signs of the estimates was 0.30 (p=0.05).  

 

The estimates from fitting the model without age structure to the data were reasonably well 

correlated with those from the simple mass action model for all ages (r=0.67, 95% CI 0.43, 

0.83). The kappa statistic for these estimates was 0.15 (p=0.20) (Table 3). 

 

The absolute value of the percentage difference in the estimates for 5-14 year-olds for each 

year ranged from 3 to 50 (median 14) percentage points, corresponding to percentage 

differences of 16-830% (median 90%). 

 

 

DISCUSSION 

These analyses of GP consultation data for ILI indicate that, in some years, the contact 

parameter was lower during school holidays than during termtime, especially for school-aged 

children. Estimates of the contact parameter for 5-14 year-olds from the simple mass action 

model were 17% (95% CI: 9, 25%) lower during holidays than termtime when a single viral 

strain circulated. Our results represent changes in contact estimated directly from consultation 

data, complementing estimates of the effects of school closures on incidence from models 

which make assumptions about such changes in contact patterns (26-28). 

 

It is reassuring that the assumed reporting fraction and proportion of the population that was 

susceptible at the beginning of each season did not strongly influence the estimates of the 

relationship between school holidays and the contact parameter. There are limited data on 

how the proportion of cases consulting a GP varies between seasons. A household cohort 
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study (“FluWatch”) in England (2006-2011) found that 17% (95% CI 10, 26%) of 

participants with PCR-confirmed influenza and 21% (95% CI 17, 25%) of those with ILI 

consulted a GP (29). By making assumptions about R0, we estimated that the reporting 

fraction varied between seasons, but was often around 30%; this difference compared to the 

FluWatch estimate may reflect changes in healthcare-seeking behaviour. However, any 

temporal changes in consultation behaviour (or physician reporting practices) are unlikely to 

affect our results, given the lack of sensitivity to assumptions about the reporting fraction. 

 

The simple mass action model assumes that the time step (one week) equals, or is a multiple 

of, the serial interval. Some estimates of the serial interval for influenza are approximately 

consistent with this, e.g. 2-3 days (30, 31), 3-4 days (32) or 5 days (33). Variation in the serial 

interval means that the cases recorded at each time step are not discrete generations of 

infection; therefore the contact parameter estimated for a given week does not exclusively 

reflect transmission from individuals infected in the previous week. This simplification could 

cause us to underestimate the change in the contact parameter associated with holidays as the 

timing of some transmission events would be misclassified. Geographic and temporal 

variation in holiday dates could also have caused underestimation of changes in the contact 

parameter; however, such variation was found to be limited. 

 

Our approach involving fitting to the data required fewer assumptions than the simple mass 

action model, as several parameters were estimated rather than assumed and no assumptions 

were required about the serial interval. Sensitivity analyses found the estimates of several 

parameters were sensitive to model assumptions and some estimates appeared implausible 

(e.g. reporting fractions close to 100%). However, the estimates of the main parameter of 
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interest (the relative difference in the contact parameter during holidays compared to 

termtime) were fairly insensitive to varying the assumptions. 

 

Unlike some influenza models (28, 34), our model did not incorporate a pre-infectious period. 

This is unlikely to be a major source of error in our results, given the short duration of the 

pre-infectious period (e.g. an incubation period of ~1.6 days (35)) and the limited viral 

shedding before symptoms appear (36). Similar to some other models (8), we included only 

two age groups in the model, to capture the influence of school holidays on contact in the age 

group most likely to be affected (children aged <15 years) whilst minimising computational 

burden and the number of parameters to be estimated (maximising the number of years which 

could be used in the fitting). 

 

The estimates of the difference in the contact parameter during holidays compared to 

termtime from the two methods were moderately correlated. The differences between the 

estimates for children obtained from the two methods may result from the fact that the fitted 

model was explicitly structured into two age groups and fitted to consultation data for both 

groups, whilst the simple mass action model utilised only data for 5-14 year-olds. The latter 

therefore assumed that 5-14 year-olds only transmit to others in the same age group, 

overestimating the amount of transmission occurring between 5-14 year-olds. Conversely, the 

simple mass action model applied to data for 5-14 year-olds does not consider transmission 

from 5-14 year-olds to other age groups, so some infections which might be prevented by 

school holidays are not considered.  

 

Other studies have reported some variation in the effects of school holidays on influenza 

transmission, although previous results appear more consistent between years than are ours. 
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School holidays in France were estimated to reduce transmission between children by 20-

29% (8), whilst holidays were estimated to reduce R0 by 17% in Great Britain (37) (although 

estimates for other countries varied), consistent with our summary estimate. A modelling 

study of pandemic influenza data from regions of India with different holiday timings 

suggested that school holidays reduced the effective reproduction number (Rn) by 14-27% 

(38). Other studies from France and The Netherlands also show reductions in the contact 

parameter during holidays compared to termtime (9, 10). However, estimates of Rn from 

Dutch ILI consultation data were more strongly related to absolute humidity than to 

Christmas holidays, although the authors noted that holidays rarely coincided with epidemics 

(34). This demonstrates that factors besides changes in contact patterns affect influenza 

transmission and may contribute to reductions in the contact parameter during holidays. 

Seasonal variation in transmissibility is not considered in our models, e.g. if factors such as 

low absolute humidity increase transmission during winter (39), then we would underestimate 

the change in the contact parameter during holidays.  

 

The differences in our estimates between years in the changes in the contact parameter could 

be related to variation in factors such as viral transmissibility, patterns of age-specific attack 

rates, and weather. They may also be related to co-circulation of other pathogens causing ILI. 

In the 2005/06 to 2008/09 seasons, 27-33% of patients consulting with ILI in RCGP practices 

have had laboratory confirmation of influenza infection (40-45). This percentage is highest 

(~40%) during the peak weeks for ILI consultations (45). The effects of this relatively low 

specificity on the estimates of the contact parameter, and their relationship with school 

holidays, are difficult to predict, but will depend upon the timing and size of the outbreaks 

caused by the co-circulating pathogens.  
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School holidays were associated with a reduction in the contact parameter for influenza in 

some years, particularly in school-aged children. Overall, the contact parameter for 5-14 

year-olds was estimated to be approximately 17% lower during school holidays than 

termtime. The results suggest that school closure may reduce transmission during influenza 

outbreaks. 
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FIGURES AND TABLES 

Figure 1. Proportion of the population susceptible to infection at the start of each influenza 

year, 1967/68 to 2007/08, based on season-specific serological data where available (where 

data were not available, 30% of individuals were assumed to be susceptible at the start of 

each season). Error bars show 95% confidence intervals for datasets which provided 

denominators. 
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Figure 2: Estimated percentage difference in the contact parameter (amongst 0-14 year-olds) 

for influenza during holidays compared to termtime based on fitting the age-structured model 

to ILI consultation data. Crosses: single dominant subtype; Circles: more than one subtype 

circulating. Error bars show 95% confidence intervals.  
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Figure 3. Estimated percentage changes in the value of the contact parameter for influenza 

during school holidays based on the simple mass action model applied to ILI consultation 

data for 5-14 year-olds (reporting fraction assumed to be 50%). Crosses: single dominant 

subtype; Circles: more than one subtype circulating; Squares: unknown number of subtypes 

circulating. Error bars show 95% confidence intervals; dotted lines indicate years in which 

there were ≤2 estimates of the contact parameter during termtime and / or holidays.  
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Table 1. Estimates of the Percentage Difference in the Contact Parameter Comparing School 

Holidays to Termtime, by Age Group and Number of Circulating Influenza Strains, Based on 

Random Effects Meta-Analysis of Estimates Obtained From the Simple Mass Action Model. 

In Two Eligible Years, the Number of Circulating Subtypes was Unknown. 

 

 

Change in contact 

parameter during 

holidays (%) 

95% CI 

Number of 

years included 

in estimate 

I2 (%) 

5-14 year-olds 

All years -17  -24, -9 29 49 

Years with a single 

circulating subtype 

-17  -25, -9 14 0 

Years with >1 

circulating subtype 

-16  -29, -3 13 72 

All ages 

All years -5  -10, 0.1 29 39 

Years with a single 

circulating subtype 

-6  -13, 0.8 14 25 

Years with >1 

circulating subtype 

-5  -12, 3 13 50 
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Table 2: Number of influenza years during which the contact parameter for 5-14 year-olds 

was estimated to decrease or increase during holidays, based on the age-structured model 

fitted to the data and the simple mass action model for 5-14 year-olds. 

  Estimate from simple mass action model 

  Decrease during 

holidays 

Increase during 

holidays 

Estimate from 

fitting to data 

Decrease during 

holidays 

17 5 

Increase during holidays 2 3 

 

 

Table 3: Number of influenza years during which the contact parameter for all ages 

combined was estimated to decrease or increase during holidays, based on the homogeneous 

mixing model fitted to the data and the simple mass action model for all ages combined. 

  Estimate from simple mass action model 

  Decrease during 

holidays 

Increase during 

holidays 

Estimate from 

fitting to data 

Decrease during 

holidays 

11 6 

Increase during holidays 8 8 

 


