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Abstract

We will develop three new Bayesian nonparametric models for genetic variation. These
models are all dynamic-clustering approximations of the ancestral recombination graph
(or ARG), a structure that fully describes the genetic history of a population. Due
to its complexity, efficient inference for the ARG is not possible. However, different
aspects of the ARG can be captured by the approximations discussed in our work. The
ARG can be described by a tree valued HMM where the trees vary along the genetic
sequence. Many modern models of genetic variation proceed by approximating these
trees with (often finite) clusterings. We will consider Bayesian nonparametric priors
for the clustering, thereby providing nonparametric generalizations of these models and

avoiding problems with model selection and label switching.

Further, we will compare the performance of these models on a wide selection of infer-
ence problems in genetics such as phasing, imputation, genome wide association and
admixture or bottleneck discovery. These experiments should provide a common test-
ing ground on which the different approximations inherent in modern genetic models
can be compared. The results of these experiments should shed light on the nature of

the approximations and guide future application of these models.
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Chapter 1

Introduction

The cost per basepair of DNA sequencing is rapidly decreasing (Wetterstrand, 2014)
allowing large volumes of genetic sequence data to be collected by academic consor-
tiums, corporations and hospitals. Along with this increase in the availability of genetic
sequence data is a need for modern machine learning methods tailored to specific prob-
lems in genetics. Such problems include disease association, inference of demographic
history and inference of properties such as recombination rates and mutation rates. The
scientific, economic and health benefits that could be derived from effective solutions to
these problems are clear. But the effectiveness of any solution to such problems relies
on the accuracy of the underlying statistical models used to describe genetic sequence
data. Bayesian nonparametric methods are modern machine learning methods which,
due to their flexibility, provide efficient and accurate statistical models with many prop-
erties that are well suited for describing genetic sequence data (Teh et al., 2006; Xing
et al., 2006, 2007; Sohn and Xing, 2007; Airoldi et al., 2006; Xing and Sohn, 2007b;
Sohn and Xing, 2007).

All genetic material arises through inheritance and mutation. Random processes can
be used to describe both of these phenomena: inherited material is governed by recom-
bination and natural selection, whereas mutated material is governed by a variety of
random processes such as single nucleotide variations (SNVs), copy number variation
and other processes (Hein et al., 2005). However, two main concerns prevent us from
fully characterizing the joint distribution of a set of genetic sequences. First, although
we know the form of most of the random processes required to describe inheritance and
mutation, we remain uncertain about many of the parameters involved in the processes
such as their rates. Second, even if the parameters were known, the complexity of the
latent objects involved (such as the taxons or the ancestral recombination graphs) often
precludes efficient inference. Because of this, researchers in statistical genetics often
make simplifying assumptions about the latent objects and parameters of the genetic

processes and provide approximate models so that tractable inference can proceed.

Bayesian nonparametric models allow prior distributions to be specified in which the
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complexity of the latent objects is arbitrary and learned along with the model parame-
ters during inference (Hjort et al. 2010, Orbanz and Teh 2010, Teh 2010). These prior
distributions are attractive choices for approximate models of genetic processes because
efficient and accurate inference can be conducted while still providing complex latent
objects. Further, many aspects of genetic processes, such as allele or species sampling

formula (Ewens, 1972) naturally arise from these priors.

In this thesis, we will present three new closely related dynamic-clustering models for
sequence data based on Bayesian nonparametric methods and explore their application
to problems in genetics through a series of experiments. In these models, the genetic
sequences are clustered separately into genetically similar clusters at each location of
interest on the chromosome according to a Bayesian nonparametric joint distribution
on partitions. Our approach extends other traditional methods in dependent Dirichlet

processes in Bayesian nonparametrics such as those based on MacEachern (1999).

Dynamic-clustering models have many diverse applications beyond genetics. In ma-
chine learning, these models have been used as topic models for documents and also to
describe social networks, geopolitical organization and the formation of political blocs
in affairs of state (examples of such applications can be found for example in Blei and
Lafferty 2007, Kemp et al. 2006 and Friggeri 2012). The models developed in this
thesis can also be applied to these diverse domains. In a short departure from the main
application of this thesis, in order to show the versatility of these methods, we will use
one of the Bayesian dynamic-clustering models presented in this thesis to describe the
voting behavior of Members of Parliament in the Canadian House of Commons (this is
done in Chapter 5). We apply our model model to detect when Members of Parliament
cross the floor (i.e., switch parties) and also to predict the voting behavior of Members

of Parliament.

In the remainder of Chapter 1, we will summarize the contributions of this thesis
and then provide a review of relevant background and related methods in statistical
genetics. In section 1.1, we will provide a description of the sources of data that
are relevant for Bayesian nonparametric haplotype models (haplotypes are patterns of
mutations that are inherited together). In section 1.2 we will review the coalescent with
recombination and the genetic basis for its assumptions and approximations. Further,
we will describe other popular hidden Markov models for dynamic-clustering in genetics
and their relation to the three new methods presented in this thesis and we will provide a
new unified view of these models through the classification of their transition matrices.
In section 1.3 we will introduce Bayesian nonparametrics and then we will provide
intuition for the three new dynamic-clustering models presented in this thesis, and we
will preview the experiments and baselines that we will use in later Chapters to explore

these models.

In Chapter 2, we review dynamic-clustering models and Bayesian nonparametric meth-

ods and provide a unified framework for this theory using random partitions and
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hierarchical Dirichlet processes. In Chapters 3 and 4, we present BNPPHASE (Elliott
and Teh, 2015), the Bayesian nonparametric version of the fastPHASE (Scheet and
Stephens, 2006) model, and the discrete fragmentation-coagulation process (or DFCP El-
liott and Teh 2012). In Chapter 5, we present the Wright-Fisher partition valued pro-
cess. These three models constitute our three new Bayesian nonparametric models of
genetic sequence data (and other sorts of data, such as voting data) based on dynamic-
clustering. We compare these three models with some established parametric models
such as BEAGLE (Browning and Browning, 2009), fastPHASE (Scheet and Stephens,
2006), IMPUTE/IMPUTE2 (Marchini et al., 2007; Howie et al., 2009) and a method based
on collaborative filtering (Salakhutdinov and Mnih, 2007). We explore the posterior
distributions of these models, develop some of their asymptotic properties, and high-
light their advantages through a series of experiments in which data from The 1000
Genomes Project Consortium (2010), The International HapMap Consortium (2003)
and data from simulations are considered. Finally, in Chapter 6 we conclude and

outline programs for future work.

1.1 Data types and problems in statistical genetics

In this section, we review the types and sources of data that we will use in the experi-

ments described in later Chapters.

1.1.1 Phased data

Humans are diploid organisms and therefore if a biallelic marker (i.e. location on the
chromosome at which genetic material can occur in two forms) is observed then the
minor allele (i.e. the less common form) would occur 0, 1 or 2 times in each individual.
These values correspond to genotypes consisting of a homozygous major allele, a het-
erozygous allele or a homozygous minor allele, respectively. An example of a biallelic
marker is a single nucleotide polymorphism (SNP): a location at which a mutation
occurring in the ancestry of the population has resulted in two possible DNA basepairs
that can be observed at the location. When multiple SNPs are observed, it is often
important to know from which of the two copies of the chromosome the minor alleles
originates. This information is essential for a description of the haplotype structure of
the population (Daly et al., 2001). If an individual is found to be heterozygous at two

SNPs at locations A and B, then the minor alleles can be ordered in two ways:

1. One chromosome could have the minor allele at SNPs A and B and the other
chromosome could have the major allele at SNPs A and B (the chromosomes are
‘11" and “00").

2. One chromosome could have the minor allele at SNP A and the major allele at
SNP B and the other chromosome could have the major allele at SNP B (the
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chromosomes are ‘01’ and ‘10’).

Genetic sequence data which includes the ordering of the heterozygous alleles is referred
to as phased data. For the experiments conducted in this thesis, we will consider three

sources of phased data:

1. Phased trio data. If a diploid individual is sequenced and both of the individual’s
parents are also sequenced, then the chromosome from which an allele originates
for that individual can be determined for every location at which the three in-
dividuals are not all heterozygous. Thus, trio data provides a source of phased
data. The proportion of sites that can be phased this way for a trio depends
on the expected minor allele frequency of the sample. Assuming Mendelian in-
heritance and Hardy-Weinberg equilibrium (we refer to Hein et al. 2005 for an
explanation of these conditions), this proportion is simply p where p is the minor

allele frequency at that site.

2. Male X chromosome data. In humans, males have one copy of the X chromosome.
Although some of the X chromosome is homologous to the Y chromosome (the
pseudoautosomal regions), by omitting these regions phased data can be formed.
Since the X chromosome undergoes meiotic recombination in females, the male
X chromosome is a good model for the other 22 chromosome. An example of
male X chromosome data from The 1000 Genomes Project Consortium (2010) is

presented in Figure 1.1.

3. Simulated data. Data simulated from the ARG provides phased information, as

all aspects of the process can be recorded during simulation.

Presently most DNA sequencing methods are unable to determine the ordering of the
minor alleles. These data are unphased data and are prevalent due to the currently
prohibitive cost of DNA sequencing methods based on chromosome sorting (Yang et al.,
2011) or imaging (Payne et al., 2013). In unphased data, the observation of the two
copies of a chromosome for a diploid individual are represented by a sequence of un-
ordered pairs of alleles. Phasing is the process of ordering the alleles within each pair
so that the pattern of alleles for one chromosome is given by the first coordinate of
the pairs and the pattern of alleles for the other chromosome is given by the second

coordinate of the pairs.

We will often focus on phased rather than unphased data in this thesis for two reasons.
Firstly, phased data is simpler to model. As Bayesian nonparametric models are already
quite complicated, we will focus on their detailed description for phased data. Their
extension to unphased data will often be clear. Secondly, we expect that in the future
the cost of sequencing methods that provide phased data will decrease and in silico

phasing will become obsolete.

We have found that the accuracy of imputation tasks performed on phased data is highly

correlated with the accuracy of similar tasks on unphased data. Therefore, analysis of
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Figure 1.1: Representation of data from The 1000 Genomes Project Consortium
(2010). =x-axis indicates chromosome position, y-axis indicates sequence identity.
Rows (which are exchangeable) sorted lexigraphically from left according to allele
pattern: each row corresponds to an individuals haplotype and each column cor-
responds to a marker. White indicates major allele, black indicates minor allele.
The ordering of the rows is chosen by a left-aligned lexographical sorting (i.e.,
individuals with minor alleles in the first marker are ordered first, and if the first
¢ markers of two individuals match, the individual with a minor allele at marker
¢+ 1 is ordered first).

phased data provides a simple framework for comparison; this analysis carries over to

other more complicated models.

1.1.2 Imputation

Assume we are given IV phased chromosomes observed at L possible locations. Assume
further that the L locations are biallelic markers (i.e., the L locations correspond to
mutations that occur in only two forms such as SNPs or SNVs). Imputation tasks
involve predicting the alleles on each chromosome that are unobserved at some subset
of the L locations. Imputation is required in study/reference paradigms (explained
below) and situations in which the observation of genetic material is noisy. Imputation
is also useful to assess the accuracy of a model. In this last case, often a hold out
condition will be considered. This hold out condition can be designed to emulate

a study/reference paradigm or uniform or location-biased noise. After imputation,
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models can be assessed by comparing the imputation accuracy of each model on the
held out data.

We will denote by x;; the allele of the i-th individual at the ¢-th marker. Since the
markers are biallelic, z is a 0/1 matrix (i.e., each entry is either zero or one). Thus,
z;¢ = 1 means that the i-th individual has the minor allele at location ¢ whereas x;y = 0
means that the i-th individual has the minor allele at location ¢. Furthermore, we will
indicate the case where the /-th marker is not observed for individual ¢ by the notation
zie = ‘7. We will refer to the set of unobserved entries of x by xyp and the set of
observed entries by Tops. S0, Ty = {(4,€) : e = 7'} and zops = {(4,£€) : g = 0 or 1}.

Thus, the goal of imputation is to describe Pr(zyp|zops)-

In study/reference paradigms, study chromosomes are typed at a small number of lo-
cations and reference chromosomes are typed at all L locations. This situation occurs
frequently as a preprocessing step in genome wide association studies in which limited
resources lead to sparse observations of the genetic sequences of study participants.
Study power can be gained by registering these study individuals against publicly avail-
able reference panels (The Wellcome Trust Case Control Consortium, 2007; Marchini
and Howie, 2010). In this case, if we have Ng study individuals and Npg reference
individuals, and the study individuals are observed only at {¢1,...,¢r} C {1,...,L}
then zyp = {(4,¢) : 1 <i < Ng,l € {l1,...,4r}}. We refer to Browning and Browning
(2011) for a review of imputation methods and their application to association studies

and study /reference paradigms.

In uniform noise conditions, inclusion of (4, ¢) in xyp occurs independently with proba-
bility p for each pair (7, ¢). Finally, in biased noise conditions, inclusion of (i, ¢) occurs
independently with a probability that is a function of the minor allele frequency at
location £. Usually, alleles with small minor allele frequency exhibit more uncertainty
in observation. In this thesis, we will mainly consider imputation tasks with uniform

noise conditions.

1.2 Review of statistical genetics and related work

Suppose that N genetic sequences from a population are observed. Most of the genetic
material at a fixed chromosome location will be identical across all of N sequences.
This is due to the shared ancestry of the population. Differences in the material will
only be present at locations for which a mutation has occurred more recently than the
most recent common ancestor of the sample. In the remainder of this Chapter, we
will give an overview of the statistics governing the joint distribution of the pattern of

mutations in the sample of N genetic sequences.
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Figure 1.2: Example of a draw from Kingman’s coalescent with N =5 sequences.
The z-axis indicates sequence identity and the y-axis indicates time in generations
(with most recent lineages below and most ancient lineages above). All sequences
coalesce in N —1=4 events. Sequences 1 and 5 have a have a common ancestor
at time tp. Sequences 1, 5 and 2 have a common ancestor at time tg, and so
it continues in this fashion until all sequences coalesce. The intensity of this
genealogy is found using Kingman’s coalescent as follows: in step A, coalescence
is found at time t5 and between times 0 and t5 the coalescent rate is (g) =10, and
so intensity of first step is 10 - exp(—10tA). In step B, coalescence is found at time
tg and between times tp and tg the coalescent rate is (3) =6, and so intensity of
second step is 6 exp(—6(tp —ta)). Intensity of the entire process is the product of
intensities for each step, yielding 180 - exp(—4ta — 3tg — 2tc — tp).
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1.2.1 The coalescent and the ancestral recombination graph

Under mild genetic assumptions (which are briefly discussed in the next subsection),
the ancestry of a haploid population (i.e., a population of organisms in which there is
only one copy of each chromosome per cell and no recombination) is given by Kingman’s
coalescent (Kingman, 1982). This process is a prior on genealogies formed by tracing
the lineage of the N sequences backwards in time and placing coalescent events with
rate N%(k(;)) where k(t) is the number of distinct lineages existing at time ¢, and N, is
the effective population size (which is proportional to the total number of individuals
in the population). At each coalescent event, two lineages chosen uniformly among all
pairs of lineages are combined into one lineage. This continues until all the lineages have
coalesced into the most recent common ancestor. A worked example of this process
is given in Figure 1.2. The parameter N, governs the total rate of coalescence and is
defined to be twice the expected time until two given lineages coalesce. Thus, as the
effective population size increases, the rate at which the lineages coalesce decreases.
This can be seen intuitively because the probability that two individuals share a recent

ancestor increases as the size of the total population decreases.

To account for recombination events occurring in the ancestry of a diploid population
(i.e., a population of organisms that undergoes meiotic recombination and has two
copies of most chromosomes per cell), Kingman’s coalescent can be extended to form
a model known as the coalescent with recombination (Hudson, 1983). In this extended
model, the ancestry can be completely described by an ancestral recombination graph
(abbreviated as ARG). In an ARG, a recombination process in which recombination
events occur with rate pk(t)/2 is superimposed on Kingman’s coalescent. Here, p is a
scaled recombination rate. At each recombination event, a lineage is chosen uniformly
among all lineages and that lineage is split at a random point along the sequence to
form two new ancestors for the lineage. All material to the left of the splitting point is
inherited from one of the ancestors and all material to the right of the splitting point
is inherited from the other ancestor. In this way, the coalescent with recombination
can be simulated by tracing lineages backwards in time until a most recent common

ancestor for the entire sample is reached.

In addition to this view of the coalescent with recombination as a process simulated
backwards in time (i.e., a Markov process whose axis is time), the coalescent with
recombination can also be viewed as a spatially defined non-Markovian process that
takes values in an augmented space of genealogies (Wiuf and Hein, 1999). In this spatial
representation (which we will refer to as the spatial construction of the coalescent
with recombination), the axis of the process is the chromosome location. Given a
population of chromosomes, this process defines a genealogy at the first chromosome
position, and then moves from left to right along the chromosome and updates the
genealogy at ancestral recombination points. By superimposing the genealogies from

each chromosome location, a structure is formed that is identical in interpretation to
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the ancestral recombination graph. Further, generating an ARG by simulating lineages
backwards in time yields the same distribution over graphs as does the superposition
of the genealogies from the spatial construction of the coalescent with recombination.
We refer to (Wiuf and Hein, 1999) for the details of the non-Markovian nature of the

spatial construction.

1.2.2 Mutation models

Conditioned on the ancestral recombination graph, mutations can be modelled by spec-
ifying the ancestral time, lineage and chromosome location at which each mutation
occurs. Then, the mutated lineage can be traced forward in time to arrive at observed
genetic material. All observed genetic material that coalesces with the mutated lineage

more recently than the time of the mutation will inherit the mutation.

Many models have been proposed for the joint distribution over the time, lineage,
location and nature of mutations. The most simple and general model is the infinite
sites model (Kimura and Crow, 1964). In this model, chromosome locations are indexed
by the unit interval. The time, lineage and location of the mutations are modelled
by a Poisson process with intensity given by 0k(t)dtd¢, where 6 is a mutation rate
parameter, ¢ is the time of the mutation, k(t) is the number of lineages at time ¢, and
£ is the chromosome location of the mutation: a mutation occurring at time ¢ is placed
at the chromosome location ¢ ~ Uniform(0, 1) on a lineage chosen uniformly at random
from all lineages existing at time ¢. Due to the nature of the uniform distribution,
with probability 1 all mutations will occur at distinct locations. This model eliminates
much of the complexity that arises from recurrent mutations, polyallelic sites, structure
in mutation rates and natural selection. The assumptions underlying this model are

further discussed in the next subsection.

In the posterior inference for genetic sequences considered in this thesis, we will always
condition on a set of observed mutations. Therefore, although much work has been
done to extend the infinite sites model to capture more aspects of the genetic process,
the results of our inference procedures are agnostic about many aspects of the mutation
model such as the joint distribution over the location, time and precise nature of the
mutation. For example, in SNP data in humans it is known that the relative rate of
mutation between the purine and pyrimidine classes (i.e., the mutations A <> T, and G
<> C between basepairs) are larger than the relative rate of mutation within the two
classes (Felsenstein, 1981). However, in a study/reference genome wide association
study, the bases for the alleles for each SNP are given, and so these relative rates do

not affect posterior inference.
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1.2.3 Assumptions for the coalescent with recombination

In order to derive Kingman’s coalescent we must adopt a neutral mutation model (i.e.,
we assume that mutations do not affect fitness), and we must also assume that the ef-
fective population size is constant. In order to extend Kingman’s coalescent to ARGs,
we must further adopt the assumptions of random mating (i.e., we must assume that
each pair of individuals is equally likely to have offspring) and uniform recombina-
tion rates along the chromosome. We will adopt all of these assumptions throughout
this thesis with some exceptions. Firstly, instead of assuming uniform recombination,
we will often consider location-varying recombination rates with arbitrary functional
form. Secondly, we will sometimes consider inference in situations wherein the effective
population size varies throughout the ancestry of the population (this is done with

population bottlenecks in Chapter 3).

The extent to which these assumptions bias studies is controversial. For example,
it has been argued that most mutations are either deleterious or have no affect on
fitness (Kimura, 1983) and so the neutral mutation model could be accurate for the
vast majority of observed mutations (according to Kimura 1983, if a mutation can
be observed in a postfoetal organism, it was not deleterious). Also, random mating
seems like a reasonable assumption to adopt for studies in which the data arise from
a small number of unrelated individuals sampled from a large population. However,
studies adopting the random mating assumption can be confounded if they involve large
numbers of unrelated individuals, or individuals sampled from a small population, or if
they involve chromosome regions which experience significant selective pressure. This
is due to cryptic relatedness, a phenomenon which can lead to inflated false discovery
rates in association studies (Voight and Pritchard, 2005). For more discussion about

these assumptions we refer to Hein et al. (2005).

1.2.4 Inference and approximations

Inference based on ARGs and Kingman’s coalescent is difficult due to the combina-
torial size of the latent spaces involved, the complicated dependence structures in-
duced by recombination events and the lack of analytic forms for many of the poste-
rior statistics involved in ARGs and coalescents (such as the recombination rates and
effective population sizes). Despite these difficulties, inexact methods such as approxi-
mate Bayesian computation (Huelsenbeck and Ronquist, 2001), sequential Monte Carlo
methods (Goriir and Teh, 2009) and methods based on discretization of ARGs (Ras-
mussen et al., 2013) have been used. It is, however, unlikely that these methods could
scale to large datasets consisting of thousands of genomes. For example, in Rasmussen
et al. (2013) the authors apply their argweaver model to phase a dataset consisting of
only 54 genomes provided by Complete Genomics and note that they could not scale

their model to larger datasets. The computational complexity of argweaver and related
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methods is O(N?L), where N is the sample size and L is the number of markers.

Because of the difficulty inherent in conducting inference directly on ARGs, ARGs are
often approximated by simpler processes and then inference is conducted using these
simpler, approximate processes. One of the most successful approximations of the ARG
is the sequentially Markov coalescent (McVean and Cardin, 2005). The sequentially
Markov coalescent (abbreviated as SMC) takes as its starting point the spatial con-
struction of the coalescent with recombination (Wiuf and Hein, 1999) described earlier
in this section. The SMC relaxes the non-Markovian nature of the spatial construction
by providing a Markovian version of the transition rules of the latent genealogy-valued
process from (Wiuf and Hein, 1999). So, whereas the spatial statistics of the genetic
process are not Markov along the chromosome, the SMC provides the ‘closest’” Markov
version the genetic process. In McVean and Cardin (2005), the authors argue that
not much is actually lost by the SMC approximation. In an experiment in which two
sequences with 20 markers were simulated from either the SMC or the full spatial con-
struction from Wiuf and Hein (1999), the pairwise correlation among the markers was
found to be essentially the same for both cases. In other work, the estimates of the
time to the most recent common ancestor of a marker found using the SMC was found
to be quite accurate (Li and Durbin, 2011).

In the SMC, the genealogy of the observed genetic material is assumed to be governed
by the following genealogy-valued Markov jump process (MJP). As before, we assume
that we are constructing a genealogy of N genetic sequences. For the SMC, first, the
latent genealogy of the IV sequences at the left-most location of the chromosome is
sampled from Kingman’s coalescent. Next, the MJP is simulated from left to right
such that jump events occur with rate pT'(¢)/2 where T'({) is the total branch length
of the latent genealogy at location £. If a jump event occurs at location ¢, the latent
genealogy is modified by drawing a point uniformly on the genealogy at ¢ — ¢ and
then removing the edge that the point lies on. This partitions the genealogy into two
sub-genealogies: a floating genealogy and a main genealogy. (The main genealogy is
the sub-genealogy that coalesced more anciently.) The floating genealogy and the main
genealogy are then coalesced to form the new genealogy at location ¢. This is done
by extending the lineage of the floating genealogy backwards in time and coalescing
it with a lineage chosen uniformly from the lineages of the main genealogy with rate
k(t)p/2 where, as for the definition of Kingman’s coalescent above, k(t) is the number
of distinct lineages existing at time ¢ in the main genealogy. (The new coalescent time
of the two genealogies may be more ancient than the TMRCA of the main genealogy).
A worked example of the intensity of a sample from the SMC is given in Figure 1.3.
For a more detailed description of the SMC, we refer to Wiuf and Hein 1999.

Even though its definition is simple, inference based directly on the SMC, such as the
genealogy-valued hidden Markov model (HMM) from Webb et al. (2009), is still unlikely
to scale to large datasets. (In Webb et al. 2009 the authors applied their model to phase
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Figure 1.3: Worked example of a sample from the sequentially Markov coalescent.
Suppose that the SMC is simulated with N = 6 sequences and the tree at the first
location (A), the location of the first event (B), and the tree at the first event are
all given as above. From section 1.2.1, the intensity of drawing the tree at A under
Kingman’s coalescent is 2700 - exp(—5t1 — 4ty — 3t3 — 2to — t1) where t1, ..., t5 are
the times of the coalescent events. The total size of the tree at A is 6¢1 + 5(¢2 —
t1)+...+2(ts —t4)=T. The event rate of the MJP for the SMC after location A
is pT'/2 and so the intensity of the first event is pT/2 exp(—pT/2¢p) where (g is
the distance from A to B. At B, a point is chosen on the edge connecting sequence
3 to its coalesce with sequence 4. Since the point is chosen uniformly, the intensity
of that event is 1/T. Finally, the floating genealogy consisting of the lineage of
sequence 3 is coalesced with the main genealogy (this is the gray image between
locations A and B in the plot). Since the floating genealogy coalesces before the
first event of the main genealogy, this event occurs with intensity 5exp(—btg)
where tg is the time to coalescence of sequence 3 at B. Thus, the intensity of
the sample from the SMC shown in the plot is the product of these intensities:
13500 - exp(—5t1 — 4t2 — 3t32t2 — tl — 57fB)/T.
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15 mouse genomes sequenced by Perlegen Sciences.) Instead, many recent models use
the Markov assumption of the SMC and further simplify the latent space by considering
partition-valued processes and HMMs instead of the genealogy-valued process. These

models are discussed in the next subsection.

1.2.5 Approximating the SMC with dynamic-clustering

As we saw earlier in this section, the joint distribution governing genetic sequences
sampled from a population can be approximated by a genealogy-valued Markov process
that varies along the chromosome (this is known as the SMC approximation). Each
sequence in the sample corresponds to a leaf in the genealogies (i.e., a vertex at the
bottom of the tree). At each location on the chromosome, the genetic similarity between
each pair of sequences can be measured by taking the time until the material from the
two sequences at that location coalesce, implied by the genealogy (i.e., the hypermetric
induced by the genealogy viewed as a tree). All sequences that are genetically similar
with respect to the genealogy at a chromosome location have similar mutation patterns

around that location.

Genealogies can be well approximated by partitions. A partition of a finite set S is a
set of disjoint subsets (called blocks) of that set such that the blocks are nonempty and
their union is all of S. For a given genealogy, we can induce a partition by choosing
a time ¢ and placing all elements that coalesce earlier than that time into the same
block. In a similar way, a genealogy-valued process induces a dynamic-clustering (i.e.,
a partition-valued process) by repeating this procedure at every location of the process.
Note that the models we will discuss in this thesis do not operate by firstly inferring a
genealogy and then forming the partitions induced by choosing a time ¢ and partitioning
the sequences based on their coalescence classes. Instead, this view of induced partitions
serves as intuition about how approximating genealogy-valued processes by dynamic-

clustering works.

1.2.6 The product of approximate conditionals

The SMC approximation, combined with this intuitive link between dynamic-clustering
and genealogy-valued processes, has lead to much research based on HMM approx-
imations of the genetic process. The first such model proposed was the product of
approximate conditionals (PAC) model (Li and Stephens, 2003). In the PAC model,
each sequence is modelled as a composition of noisy copies of segments from the other
sequences. The boundaries between the segments is governed by a transition rate c,
which can depend on the chromosome location. In the construction of the PAC model,
the sequences are indexed and each sequence is modelled in order, conditioned only on

sequences with smaller indices.
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The PAC model approximates the SMC by providing a simple HMM defined along the
chromosome in which the genetic similarity between sequences is a function of chromo-
some location. Inference based on the PAC model has an O(N2L) complexity, which is
relatively tractable when compared to the complexity of models based directly on the
SMC or ARG. In addition, unlike the models which were developed before it (such as
the composite likelihood model from Fearnhead and Donnelly 2002), the PAC model
achieves this relatively tractable complexity while considering the joint distribution
over all locations rather than just considering the joint distributions between pairs of

locations.

Conditioned on the allele patterns of the N sequences, this generative process induces
a posterior distribution on the rates ¢, and the mutation rate 6. Posterior inference
about ¢, and 6 can be done using MCMC and the forwards-backwards algorithm. The
conditional distribution of ¢, and # can thus be represented by samples, or the MAP

of these parameters can be estimated (Li and Stephens, 2003).

Unfortunately, the construction of the PAC model does not lead to an exchangeable
distribution—the distribution of the rates depends on the order in which the individuals
are presented in the study. Furthermore, while tractable relative to inference based on
the SMC or ARG, the O(N?L) complexity for inference based on the PAC model still

precludes scalability to large studies.

The PAC model induces a dynamic-clustering on a collection of sequences. The PAC
model requires that the order of these sequences be specified. The clustering is provided
in a sequential scheme in which one individual is considered at a time (i = 1,2,...).
There are ¢ — 1 possible clusters for each location of each sequence i > 1. For i = 2,
each location is assigned to the first cluster. For i > 2, the first location of sequence i
is assigned to cluster j < ¢ with probability 1/(i — 1). Then, for each location ¢ > 1,
with probability ¢, the cluster assignment of sequence i at location £ is copied from the
cluster assignment of sequence 7 at location £ — 1, and with probability 1 —c, the cluster
assignment of sequence 7 at location £ is again assigned to cluster j < ¢ with probability
1/(i — 1). Here, ¢y captures the probability of breaks in the haplotype mosaic induced

by ancestral recombination events.

This model, and the likelihood that relates it to the observed SNPs, is given formally

by the generative process presented in the following enumeration:

1. The alleles for the biallelic locations on the first sequence are drawn uniformly

from all 2% possible haplotypes.
2. For each sequence ¢ such that 1 <i < N:

(a) A Markov chain is drawn with i—1 states corresponding to the first i —1
sequences. The initial distribution of the Markov chain is uniform over
the 7 —1 states. Then, between each consecutive pair of locations, with

probability c,/(i—1) the Markov chain transitions to one of the other states
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drawn uniformly from all ¢ —2 other states. With probability 1—cs, the

Markov chain has a self transition (and the state stays the same).
(b) For each location ¢ such that 1 < L:

i. With probability 6: the allele at location ¢ for sequence i is set to be the
same as the allele of the sequence corresponding to the Markov chain

state at location /.

ii. Otherwise: the allele at location ¢ for sequence ¢ is set to 0 with proba-
bility 1/2 and to 1 with probability 1/2.

This dynamic-clustering has a couple counter-intuitive properties. Firstly, because
the clusters available to each sequence depends on the ordering of the sequences, the
resulting dynamic-clustering is not an exchangeable distribution (this can be seen for
example because sequence i > 1 can only join clusters 1,...,i—1). Secondly, the cluster
assignment of the first sequence is undefined (instead of assigning the first sequence to
clusters and then generating the alleles for the first sequence as an imperfect mosaic
formed by those clusters, instead the alleles for the first sequence are drawn uniformly

from all 2F possible haplotypes).

In Li and Stephens 2003, the authors propose averaging over many random orderings of
the sequences in order to overcome the limitations listed above. Many methods based
on Li and Stephens 2003 (such as the three methods we will present in this thesis) are

designed to be exchangeable, mitigating the need for averaging over random orderings.

1.2.7 Classification of HMMs in statistical genetics

The limitations and counter intuitive properties of the PAC model have been addressed
extensively by the HMM methods for genetic sequences developed over the past decade.
In addition, these models have been extended to capture more advanced aspects of the

genetic process such as population structure and relatedness.

We can classify all HMMs based on the PAC model broadly into three classes according
to the nature of the transition matrices that their generative processes induce on the
conditional state assignment of each sequence. Many of these models use a version
of the transition rate ¢ of the PAC model to regulate self-transitions (as in ‘sticky’
HMMs Fox et al. 2011) and haplotype lengths: in the prior, a sequence will transition
with rate ¢ and if a transition occurs, a new state is chosen with a probability specified
by the model. If a transition does not occur, the next state of the item is a copy of
the old state. The parameterization of that probability can involve latent parameters
associated with the sequence identity (i), or the chromosome location (¢), or both, or

neither of these two indices.

1. Location dependent models. The first class of HMMs includes models for which the
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transition matrices of the conditional state assignment of each sequence depend
only on the chromosome location. This class contains fastPHASE (Scheet and
Stephens, 2006), which builds on the PAC model by supposing that, rather than
copying one of the i—1 sequences that appear before it, the i-th sequence copies
one of K latent, unobserved haplotypes. The prior probability in the fastPHASE
model of copying the k-th latent haplotype given that a transition occurs is g,
where 7y is the latent proportion of haplotype k at location £. The allele emis-
sion probabilities for each haplotype and the proportions 7y are learned during
inference. The fastPHASE model is exchangeable and the K latent haplotypes
(rather than the observed sequences) provide centroids for the clusters. Other
models in this class include IMPUTE/IMPUTE2 (Marchini et al., 2007; Howie et al.,
2009) and SHAPEIT/SHAPEIT2 (Delaneau et al., 2012, 2013). In these models,
the transitions at each location are parameterized by their location index within

latent haplotype structures.

The prior transition and emission matrices (respectively) induced on the condi-

tional state assignment of the i-th sequence under the fastPHASE model are as

follows:
1—cotcomn CoT2 e TR
Cema L—cotcomep - COTR 0 - Ok
. . . . ) 1_961 . 1_0£K .
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(1.1)

From (1.1), we see that the off-diagonal elements of the transition matrix depend
only on the location ¢ and not the sequence index i. The BNPPHASE model that

we will present in Chapter 3 is also contained in this first class of HMMs.

2. Sequence dependent models. For the second class of HMMs, the transition ma-
trices depend only on the sequence identity (or, the sequence index). The most
popular model in this class is the admixture model STRUCTURE (Pritchard et al.,
2000; Falush et al., 2003), which, in its multilocus form has the following condi-

tional transition and emission matrices:

1—cp+cpmi CeTi1 e CpTi1
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(1.2)

When the off-diagonal entries of the transition matrix in (1.2) are normalized
(i.e., when we condition on the event that a transition occurs) we see that the

transition does not depend on the chromosome location ¢ and instead depends on
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only the sequence identity . In admixtures, each individual inherits alleles from
the admixed populations, but the proportion of alleles from each population in
the admixture can vary from one individual to another due to genetic drift. This
variance is captured by the STRUCTURE model and other models with sequence
dependence. Recently, a Bayesian nonparametric version of STRUCTURE has been
developed (De Iorio et al., 2015). In that work, the transition matrix (1.2) is
extended to an HMM with infinitely many states.

3. Models with neither location nor sequence dependence. In this third class of
HMMs, all of the structure in the genetic process is encoded directly in the state
transition probabilities rather than in latent variables associated with individual
sequences or chromosome locations. In the priors induced by HMMSs from the first
two classes, when transitions occur, the previous state of a sequence is ‘forgotten’
and a new state is chosen with either a location-specific or an individual-specific

distribution.

This class includes homogeneous HMMs in which the transition matrix is a
stochastic matrix (i.e., there are no restrictions on the transition matrix other
than that its columns sum to one). The HDP-HMM from Xing et al. (2006);
Xing and Sohn (2007a) is of this form. Other models in this class include
BEAGLE (Browning and Browning, 2009). The DFCP that we will present in Chap-
ter 4 is also an example of this class. The BEAGLE software, like the DFCP, infers
latent haplotype graphs that parsimoniously describe a population genetic se-
quence data. However, the BEAGLE model does this in an ad-hoc, non-Bayesian

way. As a result, the BEAGLE model is not reversible or exchangeable.

4. Location and sequence dependent models. In the final class of HMMSs, the nor-
malized off-diagonal elements of the transition matrices depend on both the chro-
mosome location and the sequence identity. These models can arise when the
definitions of the first two classes of models are combined. For example, in Scheet
and Stephens (2006), an extension to the fastPHASE model is considered for data
collected from several subpopulations. The authors assume that each sequence
is drawn from one of the subpopulation, and they allow the proportions 7w, to
vary among the subpopulations. In this case, (1.1) is extended by replacing g
with 7, ¢, where s; is the subpopulation assignment of individual 4 (thus adding

sequence dependence through s;).

1.3 Contributions of this thesis

Due to recombination events occurring in the ancestry of a population, similarity among
genetic sequences in individuals is a function of chromosome location. Therefore, if at

one end of a chromosome two sequences have identical patterns of mutations, at the
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Sequence l CTACGATTA .-+ TAATCGTAG

Sequence 2 CTACGATTA --+ TAATTGTAG

Figure 1.4: Genetic similarity is a function of chromosome location. Sequences
of material are from two different individuals. Sections from each end of Chro-
mosome 1 are displayed (Karchin et al., 2005). Sections are neighborhoods of
the first and last SNP on Chromosome 1 as reported in data from The Interna-
tional HapMap Consortium (2003). Red and blue indicate alleles. Grey indicates
homologous material (i.e., basepairs that are the same for all humans). At loca-
tion rs13441248, the two sequences have the same alleles whereas at rs1665289
the two sequences have different alleles. Genetic processes leading to this sort of
structure are explained in section 1.2.

other end of the chromosome the mutation patterns of the two sequences could be
different from each other. See Figure 1.4 for an example involving single nucleotide
polymorphism, or SNP, data (SNPs are defined in section 1.1). Hidden Markov mod-
els (HMMs) and chromosome painting models are commonly used to approximate this
location dependent genetic similarity (Scheet and Stephens, 2006; Browning, 2006; Mar-
chini et al., 2007; Delaneau et al., 2012, 2013). In such models, each genetic sequence
is associated with a sequence of latent states. The states are clusters of locally-similar
sequences: two sequences that share the same state at a given location have similar

patterns of mutations around that location.

This work contributes two new HMMs for genetic similarity based on Bayesian non-
parametric priors. In section 1.3.1 we provide the intuition behind Bayesian statistics
and Bayesian nonparametrics. Then, in section 1.3.2 we preview the three models that

constitute the contribution of this thesis.

In addition to the presentation and exploration of these models, we also contribute a
derivation of the conditional distributions for random coagulation and fragmentation
of partitions (Elliott and Teh, 2012). These conditionals are required for inference in
the DFCP model.

1.3.1 Introduction to Bayesian nonparametrics

In Bayesian statistics, inference is performed by first placing a prior distribution on
a model’s parameter space. Then, after some data are observed, the posterior distri-
bution of the parameters conditioned on the observed data is computed using Bayes
rule. This can be done through Monte Carlo Markov chain simulation or in some cases
through analytic calculation (i.e., by solving the integral appearing in the denominator

of Bayes rule). Alternatively, this can be done through sequential Monte Carlo (SMC)
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or approximately through variational inference. Finally, using the posterior distribu-
tion, the model parameters can be estimated. For genetic data, this can provide insight
into the processes governing the data such as recombination rates, mutation rates or
time to most recent common ancestor (TMRCA). Estimation of missing data can also
be provided by this framework, allowing imputation of noisy or missing genotype data
in assays. Bayesian methods are standard in statistics and confer many benefits such
as quantification of uncertainty and shrinkage (for a review of Bayesian methods see
Gelman and Meng 2004 or Hjort et al. 2010).

Bayesian nonparametric statistics were originally designed to provide priors with both
large support and tractable posterior distributions (Hjort et al., 2010; Ferguson, 1973).
The bedrock of Bayesian nonparametric statistics is the Dirichlet process (DP). The
DP can be thought of as a prior on the component weights of a mixture model with an
infinite number of components. As such, the DP can be thought of as a generalization
of the Dirichlet distribution to an infinite simplex wherein each simplex dimension
represents the location of an atomic mass (i.e., a draw from a DP is a weighted sum of
countably many atomic masses, whose weights sum to one). Inference in mixture models
based on the DP prior simultaneously infer both the number of mixture components
and the likelihood parameters of the components (parameters such as the minor allele
frequencies in our genetic applications). The DP provides a particularly useful prior for
HMMs. Marginally, finite HMMs define a mixture model over the space of emissions
and transitions. In this formulation, the states of the HMM correspond to mixture
components, and marginally the coefficient of each mixture component is given by the
stationary distribution over the HMM states (Teh et al., 2006). By using a DP priors
on the transition matrix, the DP can allow the number of latent HMM states to be
inferred and to be unbounded (Beal et al., 2002) (although, if the true number of latent
HMM states is finite, the DP will be inconsistent Ghosal 2010).

There are three main advantages for inference conferred by DP priors for HMMs:

1. In many parametric HMMs (i.e., HMMs with a fixed and finite number of states),
the HMM states are labelled with parameter values or indices. These models are
invariant to permutations of the labels. The symmetries arising from each of the
permutations of the labels therefore create an abundance of posterior modes in
the model. Because modes are attractive, these symmetries tend to make MCMC
inference algorithms converge more slowly. The intuition behind this can be
understood as follows: if an MCMC state is the same ‘distance’ from two of the
modes then the state is ‘pulled’ towards both of the modes with an ‘equal force’
and so the state will not move as quickly towards any given mode as it would if
there were fewer modes. This is known as the label switching problem (Celeux,
1998; Jasra et al., 2005). DP priors can avoid this problem by integrating out
the label of the underlying mixture models, which results in distributions defined

directly on the space of partitions of the data items. This is illustrated in Teh



Contributions of this thesis 31

et al. (2011).

2. Typically, the number of clusters used in HMMs for genetic variation is chosen
using model selection, or reversible jump MCMC (RJMCMC). Model selection
requires either training the model separately for each proposed number of states
(the model classes) and evaluating Bayes factors and information criterion, or
ad-hoc methods for each model class. With DP priors, the number of clusters is
automatically inferred along with the other model parameters. Inference using
DP priors is often simpler than RJIMCMC and the prior specified by DPs are
often more naturally connected with the assumptions about the data than the
prior specified by RIMCMC (this is due to the connection between the Dirichlet
process and allele sampling, which is explained in Chapter 2). DP priors can
therefore reduce the amount of computation time required to conduct inference

on data for which the number of clusters is not known.

3. DP priors add flexibility to models by increasing their expressiveness (i.e., their
priors have a larger support). This can lead to higher imputation accuracy and
faster inference (Hjort et al., 2010).

The three models we contribute in this thesis allow these benefits to be realized: in all
three models we provide DP priors for HMMs of genetic variation and we integrate out

the labels and parameters of the HMM states to avoid the label switching problem.

1.3.2 Bayesian nonparametric models of genetic variation: a preview

With these benefits of Bayesian nonparametrics listed above in mind, in the remainder
of this section, we will preview the three new models contributed in this thesis, giving

a brief overview of their natures.

1.3.2.1 The Bayesian nonparametric version of fastPHASE

The first model we will present in this thesis (the BNPPHASE model) is based on a
hierarchical Dirichlet process (Teh et al., 2006) in which the latent states correspond
to genetic founders or admixture components of a population. In previous research,
hierarchical Dirichlet process HMMs (HDP-HMMs) with arbitrary transition matrices
have been applied to genetic data (Xing et al., 2006; Xing and Sohn, 2007a). As we saw
in section 1.2, genetic data is highly structured. By ignoring this structure, arbitrary
transition matrices can over-fit when trained on genetic data. Furthermore, genetic
processes often have a nonhomogeneous component, and in Xing et al. (2006) and Xing
and Sohn (2007a), the authors assumed that the transition matrices were homogeneous

(i.e., the same transition matrix was used at each location on the chromosome).

The BNPPHASE model extends Xing et al. 2006 and Xing and Sohn 2007a by forming a
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Figure 1.5: Haplotype structure of the Utah residents with ancestry from north-
ern and western Europe (CEU) and Yoruba in Ibadan, Nigeria (YRI) populations
from HapMap (The International HapMap Consortium, 2003) found by the DFCP
model. Data consists of SNPs from a region near the TAP2 gene from the HapMap
project. z-axis indicates SNP location and label. y-axis represents clusters from
last sample of an MCMC chain converging to DFCP posterior. Letters inside clus-
ters indicate base identity. Lines between haplotypes indicate transitions between
contiguous haplotypes.

nonhomogeneous HMM and adding additional structure to the transition matrix such as
emphasized self transitions (Fox et al., 2011). This additional structure is informed by
approximations of the genetic process such as those developed in Scheet and Stephens
(2006). The resulting structure in the transition matrix of the BNPPHASE model implies
that BNPPHASE has fewer free parameters than an HDP-HMM with arbitrary transition
matrices. This leads to more efficient learning in the BNPPHASE model and also less

over-fitting.

As in Xing et al. (2006) and Xing and Sohn (2007a), the BNPPHASE model is nonpara-
metric and the number of states is learned during inference simultaneously with the
other model parameters. The finite truncation of the BNPPHASE model onto the first K
states is similar to a version of the fastPHASE model Scheet and Stephens (2006) with
K latent states, hence its name (this will be explored further in Chapter 3).

In Chapter 3, we derive the BNPPHASE model and show how it approximates the genetic
processes that will be described in section 1.2. We develop inference for the BNPPHASE
model based on MCMC and we apply it to genotype imputation and to estimation of

the time to the most recent common ancestor of a sample.

1.3.2.2 The discrete fragmentation-coagulation process

The second model that we will present in this thesis is the discrete fragmentation and
coagulation process (DFCP). The DFCP is a partition-valued HMM wherein the latent
partition transitions from one location to the next by the splitting and merging of
its clusters. As a model of genetic data, the DFCP provides a dynamic-clustering for
the observed genetic sequences. At each location of interest on the chromosome, a
latent partition of all of the genetic sequences is proposed. The transitions between

partitions at adjacent locations are given by random fragmentation and coagulation
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operators (Pitman, 2006). The parameterization of the operators is chosen in a way
such that the resulting marginal prior distribution on the partition structure at each
location of interest is induced by a DP, and has other desirable statistical properties

(these properties are discussed in more detail in Chapters 2 and 4).

The DFCP is informed by the fine-scale haplotype structure of genetic variation (Daly
et al., 2001). A haplotype is a pattern of mutations on a chromosome that all tend to
be inherited together by virtue of their proximity to each other on the chromosome.
Genetic variation of a population can often be described by piecing together a haplotype
mosaic using the haplotypes that recur in the population. The end points of these
blocks correspond to recombination hotspots (Jeffreys et al., 2001), or to locations
of recombination in the ancestry of the population. This phenomenon was explained

further in section 1.2.

The DFCP is a discrete analogue of the continuous fragmentation-coagulation process
(CFCP) which was previously proposed for modelling local mosaic structure in genetic
sequences (Teh et al., 2011). Inference algorithms derived for the CFCP also scale linearly
in the number and length of the sequences (Teh et al., 2011). However, since the CFCP
is a Markov jump process the computational overhead needed to model the arbitrary
number of latent events located between two consecutive observations might preclude
scalability to large datasets. The DFCP provides the advantages of the CFCP whilst being
more scalable. The CFCP can also be derived as the limit of the DFCP achieved as the

sampling frequency of the chromosome goes to infinity.

In Chapter 4, we will fully describe the DFCP model. We will present inference for the
DFCP based on a forwards-filtering/backwards-sampling MCMC algorithm. In a series
of experiments, we compared the scalability, MCMC mixing and imputation accuracy
of the DFCP and the CFCP models. The experiments were done using SNP data from the
Thousand Genomes project (The 1000 Genomes Project Consortium, 2010) and data
simulated from the coalescent with recombination model (Hudson, 2002). An example
of a draw from an MCMC chain with the DFCP posterior is given in Figure 1.5. In
that figure, a dynamic-clustering of sequences of mutations around the TAP2 gene in
a dataset from the HapMap project (The International HapMap Consortium, 2003) is

shown.

1.3.2.3 The Wright-Fisher partition valued process

The third and final model that we will present in this thesis is the Wright-Fisher
partition valued process (WFP). Like the DFCP and the CFCP, the WFP defines a process
directly on the set of partitions of a set of data items. In the WFP, the latent partitions
transition through the shrinking and growing of their clusters according to simple rates.
The WFP model has much similarity to the BNPPHASE model: in both models, HMM

states correspond to population proportions that vary ‘smoothly’ over the duration of
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the process. As a result, the WFP is useful for the same sort of imputation problems
that we will apply the BNPPHASE model to. However, because the WFP is not based
on a hierarchy, its construction is simpler. Further, the WFP model is reversible (i.e.,
it assigns the same probability to observed genetic data regardless of which end of
the chromosome is at the first HMM location). In contrast, BNPPHASE model and the
fastPHASE model from Scheet and Stephens (2006) are not reversible.

We provide inference for the WFP model using particle MCMC methods. This is ex-
plained in more detail in Chapter 5. Also in Chapter 5, in a short departure from
the main application of this thesis, we apply the WFP model to voting data from the

Canadian House of Commons.



Chapter 2

Bayesian nonparametrics and

dynamic-clustering

2.1 Introduction

Bayesian nonparametrics were first applied as a model for the prior distribution of
nonparametric parameter spaces (Ferguson, 1973). In this classical application, the
Dirichlet processes were used to associate a latent parameter with each observed data
item. A draw from the DP posterior induces a clustering of the data items through the
equivalence classes formed by the identity of the latent parameters: all data items with

the same latent parameter are placed in the same cluster.

The DP enjoys many statistical properties that make it a versatile and tractable prior.
For example, it is exchangeable: given a DP prior, the posterior distribution on the data
items does not depend on the order in which the data items are observed. Exchange-
ability is a desirable property for distributions designed to model studies in which the
inclusion of data items into the study is an independent, random procedure (examples
of such studies include surveys in which respondents are polled). However, for studies in
which covariates are also collected, the joint distribution of the data items conditioned

on the covariates is no longer exchangeable.

We will illustrate this conditional non-exchangeability by considering latent Dirichlet
allocation (LDA) for topic models of documents (Blei et al., 2002), which is a typical
example application. We will think of documents as collections of words. In a topic
model, each document is associated with a latent distribution over topics. Further, we
will associate to each topic a latent distribution over all of the words in a vocabulary.
Under the LDA model, each word in a document is assumed to be generated by the
following process: first, a topic is chosen according to the document-specific distribution
over topics. Second, the word is chosen according to the topic-specific distribution over

words given by the topic chosen in the first step. A description of the LDA model is
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Figure 2.1: Plate diagram for the LDA model. z;4 is the d-th word of the i-
th document. y; is the distribution over topics for the i-th document. z, is the
distribution over words of the ¢-th topic. 8 and ¢ are priors on y and z respectively.

given more precisely by the graphical model in Figure 2.1.

The formulation of the LDA in the above paragraph is exchangeable. But suppose that
the documents are papers published in the proceedings of some annual conference. If
we also observe as a covariate the year in which each of the documents was published,
then due to trends in the keywords, and the popularity of various topics discussed in the
conference, we would not expect the documents to be exchangeable conditioned on the
publication year. We would, however, still expect the documents to be exchangeable
within a given year (i.e., the joint distribution induced on the subset of documents that

were all published in a given year is exchangeable).

To deal with covariates and conditional non-exchangeability, dependent Dirichlet pro-
cesses have been developed that incorporate covariates into the model through a de-
pendency structure (MacEachern, 1999). This has given rise to the field of dependent
random processes (DRPs), which generally augment exchangeable random processes

with covariates.

Like the Dirichlet process, DRPs can also be used to induce clusterings on data. There
are two main ways in which such clusterings can be realized by DRPs. In the first way, a
latent random process is parameterized by a covariate ¢ (here, ¢ could be the observation
time or location of the item). Each data item ¢ is associated with a single covariate
value t;, and a single clustering is produced for the items (this clustering is ‘static’
in the sense that each item is in a single block of the clustering, and the clustering
is not parameterized by t). This is the classical way in which DRPs were introduced
in MacEachern (1999), and is used for example in dynamic LDA models (Rao and
Teh, 2009), function estimation (Dunson, 2006) and in relational models (Miller et al.,
2009; Ho et al., 2010).
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In the second way, both the latent random process and the data items are parameterized
by t. In this case, each data item 7 is associated with a series of observations. The items
are clustered jointly at each value of the covariate ¢, producing a dynamic-clustering.
This second way is more relevant for models of genetic variation: The chromosome is a
linear structure and genetic sequence data typically samples genetic material from many
chromosome locations. The models that we will present in this paper are examples of
this second way of clustering data through DRPs. Other examples include (Palla et al.,
2014), (Ahmed and Xing, 2008), (Beal et al., 2002) and (Blei and Frazier, 2011).

In this Chapter, we will give a formal development of the Dirichlet process and the
hierarchical Dirichlet process (Teh et al., 2006). In sections 2.2 and 2.3 we develop the
theory and notation required to derive inference for the three dynamic-clustering models
presented in this thesis. In section 2.4 we describe the fragmentation and coagulation
operators, which are ways of introducing dependencies between clusterings through the
splitting and merging of their clusters. We will discuss the duality of the fragmentation
and coagulation operators. As a novel contribution of this Chapter, we derive the
conditional distributions of fragmentation and coagulation. These conditionals will be
used in Chapter 4 to derive Gibbs updates for the DFCP.

2.2 The Dirichlet process through measures, partitions

and sequential schemes

In finite mixture models, data items are assumed to be generated by a process in which
first, the latent component assignment of each data item is drawn from a distribution
over K mixture components and second, each data item is drawn from a distribution
parameterized by its component assignment. This is illustrated in equation (2.1) below.
To provide a conjugate posterior distribution, often the Dirichlet distribution is used
as a prior on the distribution of the data items over the mixture components. Because
the Dirichlet distribution is supported on the K-simplex, a draw from the Dirichlet
distribution can be thought of as a random probability distribution function over the
K mixture components. This is illustrated in the following generative process for a

mixture model of some data items x;:

(wi,...,wk) ~ Dirichlet(ay, ..., ax), (2.1)
iid
1/}17"'7le’; /’L7
21y ,zn|wi'fi\ldw, (so Pr(z; = k) = wy),
:L‘i‘zi ~ f(djzz)
Here (w1, ...,wg) ~ Dirichlet(ay,...,ax) means that the random vector (w1, ...,wg)

CLK—I

is governed by the density T'(a; + ...+ ax)/T(a1) - T(ag)w - -wiX ™" supported



The Dirichlet process through measures, partitions and sequential schemes 38

on the set (wi,...,wk) such that Zszl wr = 1 and wp > 0. The vector ay,...,ax
are hyperparameters (a; > 0) and z; are the latent component assignments for the
data items. The symbol f is a law governing the likelihood of the data for each mix-
ture component, under the parameters of the mixture component (¢). The law f is

parameterized by ¥ € X, and the probability measure u is a prior on .

The Dirichlet process extends this Bayesian theory to infinite mixture models. Rather
than providing a random distribution function on the K-simplex as in equation (2.1),
the Dirichlet process provides a random probability measure G supported on the param-
eter space X (the space X must be a Polish space, more detail is given in Ghosal 2010).
The Dirichlet process is defined through its joint distribution on finite collections of dis-

joint measurable subsets of X.

Definition 1. Let p be a probability measure on X and let o > 0 be a concentration
parameter. A random probability measure G on X is a Dirichlet process if for every

partition of X into a collection of disjoint measurable subsets By, ..., Bg:

(G(By),...,G(Bx)) ~ Dirichlet(au(By), .. ., au(Bx)). (2.2)

For each a@ > 0 and probability measure p there exists a unique random probability
measure G satisfying (2.2). The existence and uniqueness of G can be proven using the
normalization of Lévy processes (Ferguson, 1973). We will denote this Dirichlet process
by G ~ DP(«, ). With probability one, G is a discrete probability measure and as
long as p does not have finite support, GG is a sum of a countably infinite number of
atoms (Ghosal, 2010).

By using the countability of the support of the Dirichlet process, with probability 1 we
can also construct it through the following stick breaking scheme, which makes explicit
the joint distribution among the atom weights and atom locations:

iid

00 k—1
G = Zwkéwk, Vkl'fl\'deeta(l, a), W = Vg H (1 — l/kr), 1bk ~ M. (2.3)
k=1 k'=1

Here the ds in the definition of G are the atoms (they are Dirac delta functions). We can
define a random variable ¢ with range 1,2, ... induced by w through Pr(¢ = k) = wy.
We will denoted this by ¢|w ~ w. Through this definition, w can be thought of as a
specification of a prior on the masses of the components of the mixture model: each
k =1,2...is a component of the mixture model, and the random variable ¢ selects
a component of the mixture by sampling from the distribution given by the masses of
the components. The distribution of the infinite random vector w is referred to as the
Griffiths-Engen-McCloskey (GEM) distribution, and is denoted by w ~ GEM(«).

As in (2.1), 9y is the parameter of the k-th mixture component. The component

assignments (¢;);er induce a partition R on R through the equivalence relation given
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Figure 2.2: Example clustering R of the set R = {1,...,7} into 4 blocks. #R =
4, and R = {{1},{2,3,7},{4,5},{6}}. Block assignment of item 1 is ¢ = {1},
block assignment of item 2 is w2 = {2,3,7}, block assignment of item 3 is p3 =
{2,3,7} and so on (i.e., block assignment of n is the unique a € R such that
n € a).

by i = j if ¢; = ;. (A partition of a finite set R is a set of nonempty disjoint subsets
of R, which we will refer to as blocks, whose union is all of R.) The distribution
on partitions of R formed by marginalizing w is called the CRP (Chinese restaurant
process) distribution and it is denoted by R ~ CRP(R,«). The law of the CRP

distribution is given by the following equation (we refer to Aldous 1985 for a derivation):

AT (a)
Pr(R = Ala) = ————= T . 2.4
Here, A is a partition of R and #A is the cardinality of A as a set (i.e., #R is the
number of blocks in the partition R).

2.2.1 Ewens’ sampling formula and random partitions

We will now consider the distribution on partitions (i.e., clusterings) of the set R =
{1,...,n} defined through Ewens’ sampling formula (Ewens, 1972; Fisher et al., 1943).
This formula arises under mild genetic assumptions as the distribution on the pattern
of alleles observed at a locus. Under Ewens’ sampling formula, if we observe alleles of n
individuals and if ¢; denotes the allele of individual 4, and if s; is the number of alleles

that appear j times in the sample (i.e., s1 + 282 + ... + ns, = n), then:

S5

n! I'(«) ﬁ e

2.5
[(a+mn) 7 5% s;! 29

Pr(s1,...,snla) =
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Here v > 0 is a concentration parameter. As in the case of the CRP defined in the
previous section, the allele assignments ¢; induce a partition (or clustering) on the set
R ={1,...,n}. This distribution on partitions is given by (i, ..., (, and each block of
the partition is formed by taking blocks of R for each equivalence class of the relation
in which i = j if they have the same allele (i.e., if ; = (;). We will denote this partition
by R. We can use Ewens’ sampling formula to assign a probability to R and thereby
define a random partition. In order to do this, we must multiply equation (2.5) by
the number of partitions of R that yield the sequence (si,...,s,) to correct for the
multiplicity of the sequence. This number is n!_ll_[?:1 Jlsjl. After this multiplication
and the change of variables s, = #{a € R : #a = m}, we find the probability of R is
given by the CRP probabilities in equation (2.4).

2.2.2 The CRP through a sequential scheme

A sample from a CRP can be realized through the following sequential scheme. In this

scheme, R can be enumerated in any fixed order (Blackwell and MacQueen, 1973):
1. The first element of R joins a block by itself.

2. For ¢ > 1, the i-th element of R joins a block by itself with probability (w.p.)
a/(i 4+ a — 1) or an existing block a w.p. #a/(i + «a — 1).

The probability of arriving at a given partition R through this scheme is also given
by equation (2.4), which shows that this scheme does not depend on the fixed order
in which the items of R are enumerated. The invariance of the probability of R to
permutations of R means that the CRP distribution is exchangeable. As an example,
consider the partition of {1,...,7} given in Figure 2.2. In that figure, for Ewens’
sampling formula, s1 = 2,59 = 1,83 = 1,84 =0, ..., s7 = 0 and so the probability of this
partition as given by equation (2.5) is 7!T'(a) /T (a+7)-a2/(12-2!)-al /(2! -2!)-a! /(3-1!)
multiplied by 1!2! - 2!1! - 311!1/7!, the number of partitions with the same values of
(s1,...,87). Under the CRP, equation (2.4) defines the probability of the partition given
in Figure 2.2 to be o*T'(a) /T (a+7)-21.0!-0!. Finally, under the above sequential scheme,
assuming that the items are enumerated in increasing order, the probability of arriving
at the given partition is 1-a/(a+1)-1/(a+2)-a/(a+3)-1/(a+4)-a/(a+5)-2/(a+6).
These three probabilities are equal. They are equal to 2a2/(a+1)-1/(a+2) - - - 1/(a+6).

2.3 The hierarchical Dirichlet process

Suppose that we have sets Ry,..., R;, and we wish to form partitions of these sets and
then link the blocks of all of the partitions together to form a dynamic-clustering. One
of the simplest and most standard ways of doing this is through a hierarchical Dirichlet

process (HDP), which we now describe. Let ap > 0 and a > 0 be concentration
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parameters and let u be a probability measure on a space X. Let Gy ~ DP(ag, i), so
Go = > 52  wkdy,, as in equation (2.3). Since Gy is a probability measure, it can be
used as the mean measure of other Dirichlet processes. We will define G1,...,G L]Goi'izd
DP(a, Gp). For each 1 < ¢ < L, by equation (2.3), we have that G = > "7 | wekdg,,

where ¢g,|Go' %Gy for k=1,2, ...

Since Gy is a discrete measure and ¢g|Go ~ Gy, for every fixed k there will be infinitely
many indices &k’ such that ¢y = 1. If € ~ Gy, then in order to find the law of the index
of £ in 1,19, ..., we must first sum together all of the weights wyr of Gy such that
dorr = V.. We will denote this summation by Ry = ZZ?:(%/:,C werr. Then, if £|Gy ~ Gy,
the unique index k of & in v1,19,... has the law Pr(k) = Ry. From equation (2.3)
and from the properties of the Dirichlet distribution, we have the following conditional
stick breaking construction for Ry, (this construction is given in section 4.1 of Teh
et al. 2006, and the construction is conditioned on w and the concentration parameter

Q):

k—1 k—1
ngl'@dBeta (awk, a <1 — Z wk/>> , ok = Vek H (1 — vppr ). (2.6)

k=1 k=1

We will refer to the distribution on 7|w,a induced by equation (2.6) as the coagu-
lated version of the GEM distribution. To realize a dynamic-clustering of Ry, ..., Ry,
we draw component assignments z;; for each element ¢ € R, using the distribution
Pr(z; = k) = mg. Then, we will suppose that items in blocks that share the same
component assignment are in same cluster under the HDP (even if the indices of the
Rs are different). The dynamic-clustering of Ry, ..., Ry is then formed according to
the following equivalence relation: elements i € Ry and i’ € Ry are in the same cluster
if zjy = zyp. Here, 1 and 7' can be equal or unequal as can ¢ and ¢'. This provides
a link between the clustering of a single item at two different values of ¢, as well as a
link between the clustering of two different items at a single value of ¢. In this way,
the dynamic-clustering induces partitions R, of Ry (two elements i,¢ are in the same

cluster if and only if z;y = z;¢).

2.4 Fragmentation and coagulation operators

Another way to realize dynamic-clustering on partitions is through the joint distribu-
tions on partitions defined by fragmentation and coagulation operators. These opera-
tors are random partition valued functions of partitions. In Chapter 4, we will describe
the DFCP through a latent Markov chain of partitions such that the joint distribution
of each pair of adjacent partitions is defined through the splitting and merging of their
clusters according to the fragmentation and coagulation operators. We will define these
operators in this section and we will examine their conditional distributions, which are
required to derive effective Gibbs updates for the DFCP. We will also show that the frag-
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mentation and coagulation operators are dual: if the parameters of the fragmentation
and coagulation operators are chosen correctly, then their composition will leave the
CRP distribution invariant (i.e., if we draw a partition from a CRP, and then apply the
fragmentation operator and then the coagulation operator, then the resulting distribu-
tion will be marginally CRP distributed). The conditionals for the fragmentation and
coagulation operators were used to derive message passing in Elliott and Teh (2012),
but the precise equation for the conditional distributions are presented for the first time

in this thesis.

Before defining these operators, we will first extend the definition of the CRP distribu-
tion on partitions by adding a discount parameter. The two parameter version of the
CRP distribution is given as follows:

#R—1

Pr(CRP(R,a,d) = R) = % [T —ag (2.7)
[a + 1]1 a€ER

Here the number of elements #R is N and [z]] = (z)(z +d)...(z + (n — 1)d) is
Kramp’s symbol and a > —d,d € [0, 1) are the concentration and discount parameters
respectively (Pitman, 2006). This definition agrees with the one parameter version
(d = 0) of the CRP defined in equation (2.4). An equivalent sequential scheme is given

as follows:
1. The first element of R joins a block by itself.

2. For i > 1, the i-th element of R joins a block by itself w.p. (a+dK)/(i+a—1)
or an existing block a w.p (#a—d)/(i+«a—1), where K is the number of blocks.

From the sequential scheme, we can see that the discount parameter encourages new
items to join new blocks, and the extent of this encouragement increases to balance
the tendency of blocks to join large blocks that already exist. This balance leads to a
power-law in the number of blocks in the partition: if d < 0 < 1 then #R = O(n%)
whereas if d = 0, R follows the law (2.4) and #R = O(«alog(n)) (Pitman, 2002).

As mentioned earlier, the fragmentation and coagulation operators are random par-
tition valued functions of partitions. The fragmentation FRAG(R, a,d) of a partition
R is formed by independently partitioning further each cluster a of R according to
CRP(a, a,d) and then taking the union of the resulting partitions, yielding a partition
of R that is finer than R. Conversely, the coagulation COAG(R, «, d) of R is formed by
partitioning the set of clusters of R (i.e., the set R itself) according to CRP(R, «, d)
and then replacing each cluster with the union of its elements, yielding a partition that
is coarser than R. (If every cluster of a partition A is contained in at least one of the
clusters of a partition B then A is said to be finer than B and B is said to be coarser
than A. Note that this is not a strict relationship and so a partition is always finer and
coarser than itself.) The fragmentation and coagulation operators are linked through

the following theorem from Pitman (1999).
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Theorem 1. Let R be a set, let Ay, B1, A2, By be random partitions of R such that:

./41 ~ CRP(R, OédQ, dldQ), Bl‘Al ~ FRAG(.Al, —dldg, dz),
82 ~ CRP(R, OédQ, dg), A2|82 ~ COAG(BQ, «, dl).

Then, for all partitions A and B of the set R such that B is finer than A:

Pr(A; =A, By =B) = Pr(Ay= A, B, =B). (2.8)

This theorem is implied by Pitman (1999). In that work, the duality is presented
in terms of a 2-parameter version of the Dirichlet process known as the Pitman-Yor
process (Pitman and Yor, 1997). A purely algebraic version of this duality theorem for
partitions was given in Gasthaus and Teh (2010).

2.4.1 Conditionals for fragmentation and coagulation operators

Suppose that R and Q are partitions of R = {1,...,n} such that Q@ ~ FRAG(R,0,d).
Then, by the definition of the fragmentation operator, the distribution of Q conditioned
on R is only supported on pairs of partitions such that Q is finer than R. Thus, for
each block a € R there is a unique set of blocks in Q that are contained in a. These
are the blocks into which a fragments. We will denote these blocks in Q by F,: so
F,={be Q:bCa} and a = Upep,b. The conditional distribution of Q given R is as

follows:

H#Fy—1
Pr(Q|R,d) = H (#(jF )d HF#b d),

d#Q #R
= Ao (Hr #b—d ) ( 7% ) (2.9)

beQ

For coagulation, suppose that the partitions Q and R are such that COAG(Q, «/d,0) =
R. Asin fragmentation, the coagulation operator only gives support to the distribution
of R conditioned on Q if Q is finer than R and we will denote the blocks in Q that
coagulate to form a block a € R by C,. Thus, for each a € R, Cp ={be€ Q:b C a}.

The conditional distribution of R given Q is as follows:

(a/d)"RT(a/d)
[(a/d+#Q)

Pr(R|(Q,a,d) = R) = H D(#C,). (2.10)

Equations (2.9) and (2.10) both assume that Q is finer than R. If Q is not finer than
R then both the joint probabilities (2.9) and (2.10) are zero.
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2.4.2 Conditionals for clustering a single item

To derive Gibbs updates for the location-varying cluster assignment of a single item
in the DFCP in Chapter 4, we will need the distribution of the cluster assignment of a
single item in a fragmented or coagulated partition conditioned on the partition of all
the other elements. In particular, if R is a partition of R then by R~ we will refer
to the projection of the partition R onto R — {i}, here — denotes set difference. (The
projection of R onto S C R is formed by removing all elements of R — S from each
block of R and also removing any resulting empty sets from R.) In this section, we
will derive R\R‘i, Q% and Q\Q‘i, R~ where R and Q are related as before through

random fragmentation and coagulation.

Let a; (respectively b;) be the cluster assignment of i € R in R (respectively Q). We
will consider the distribution over a; and b; conditioned on R~ and Q~* respectively. If
the i-th item is placed in a new cluster by itself in R (i.e., if it forms a singleton cluster)
we will denote this event by a; = @. For Q¢ we will denote the respective event by
b; = @. Otherwise, the i-th item is placed in an existing cluster in R~* (respectively
Q%) and we will denote this event by a; € R™" (respectively b € Q). Thus the
support of the random objects a; and b; are respectively R™* U {@} and Q~¢ U {a}.
In particular, the event a; = & means that R = R~* U {{i}} and the event a; € R~
means that R = (R™" — a;) U{{i} Ua;} (the same is true for b; and Q™).

If R ~ CRP(«,0), then the distribution of a; conditioned on R~ is given by the
sequential scheme for the CRP distribution:

Pr(a; = a|R) = #a/(n—14+a) faecR™, (2.11)
a/in—14+a) ifa=2.

To find the conditional distribution of b; given a; under the fragmentation and coagula-
tion operators, we use their definition as combinations of independent CRP partitions of
the clusters in R and Q. First, we will consider the fragmentation FRAG(R,0,d) = Q.
If a; = @, then the i-th data item is in a cluster by itself in R and so it will remain
in a cluster by itself after the fragmentation operator is applied. Thus, b; = @ with
probability 1. On the other hand, if a; = a € R~ then b; must be one of the clusters
in Q into which a; fragments. This can be a singleton cluster, in which case b; = &,
or it can be one of the clusters b € Q% in which case b € F,. Since a is fragmented
according to CRP(a, 0, d), when the i-th data item is added to this CRP it is placed in
a cluster b € F;, with probability proportional to (#b— d) and it is placed in a singleton
cluster with probability proportional to d#F,. Normalizing these probabilities yields
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the following joint distribution:

(#b—d)/#a ifac R beF,,
d#F,/#a ifaec R b=0g,
1 ifa=0b= @,

0 otherwise.

Pr(b; = bla; = a,R™%, Q") = (2.12)

Next, we will consider the coagulation COAG(Q, «/d,0) = R. To find the conditional
distribution of a; given b; = b, we will use the definition of the coagulation operation.
If b # @, then the i-th data item could not have been in a singleton cluster in Q% and
so it must follow the rest of the data items in b to the unique a € R~* such that b C a
(i.e., b coagulates with other clusters to form a). If b = & then the i-th data item is in
a singleton cluster in Q7% and so we can imagine it being the last item added to the
coagulating CRP(Q, a/d,0) of the clusters of Q. Hence the probability that i-th data
item is placed in a cluster a € R~ is proportional to #C, while the probability that it

forms a cluster by itself in R is proportional to «/d. After normalization, this yields

the following joint probability:

1 ifac R beCy,
d#Cy/(a+d#Q7%) ifac R b=0g,
a/(a+ d#Q™%) ifa=b=0g,
0 otherwise.

Pr(a; = alb; = b,R™", Q%) = (2.13)

2.5 Summary

In this Chapter, we have outlined the history of dynamic-clustering and distance de-
pendent random processes and their use as priors in Bayesian nonparametric statistics.
We have shown a connection between the Dirichlet process and Ewen’s sampling for-
mula, a distribution on partitions that arises naturally in allele sampling. We have
shown two ways to realize dynamic-clustering through the Dirichlet process, firstly
through sequences of dependent random processes (the hierarchical Dirichlet process)
and secondly, through the fragmentation and coagulation operators. We have derived
the conditional distributions for the cluster assignment of a single item in partitions
defined through fragmentation and coagulation operators. These conditional distribu-
tions appear for the first time in this thesis and they will be used in Chapter 4 to
derive Gibbs updates for the conditional cluster assignment of sequences in the discrete
fragmentation and coagulation process. The mathematics developed in this Chapter
will be used throughout the remainder of this thesis in the application of the three new

dynamic-clustering methods presented in this thesis.



Chapter 3

The Bayesian nonparametric
version of fastPHASE

3.1 Introduction

We will now present a Bayesian nonparametric HMM for dynamic-clustering of genetic
sequences based on the hierarchical Dirichlet process (Elliott and Teh, 2015). This
model allows tractable inference and it captures properties important for the genetic
process such as haplotypes and nonhomogeneous structure (these are reviewed in sec-
tion 1.2.1). The popular fastPHASE model (Scheet and Stephens, 2006) can be seen as
a finite truncation of this model. We will refer to this model as the BNPPHASE model
(for the Bayesian nonparametric version of fastPHASE). The Bayesian nature of the
BNPPHASE model allows the statistical properties of the genetic process to directly in-
form the structures found by BNPPHASE during inference. This leads to high accuracy for
genotype imputation and also to interpretability of the model parameters. Further, by
defining distributions directly on the space of partitions, the BNPPHASE model avoids
the label switching problem (Jasra et al., 2005). The advantages of using Bayesian

nonparametrics in this situation are reviewed in more detail in section 1.3.1.

The nonhomogeneous structure of the BNPPHASE model makes it particularly well suited
for modelling data from population bottlenecks. Population bottlenecks are events
occurring in the ancestry of a population in which the number of individuals in the
population shrinks suddenly due to external factors such as environmental or ecological
changes, migration or changes in human behavior. For example, in the 19th century,
the northern elephant seal was hunted into near extinction, and shrunk to a population
of fewer than 30 animals. After hunting ceased, the population expanded (Hoelzel et al.,
1993). The genetics of populations which have experienced bottlenecks display founder
effects in which all genetic material of the post-bottleneck individuals originates from

a small number of founders. In such data, genetic variation of an observed sample
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is predominantly explained by the original variation between the founders and also
the recombination events occurring in the post-bottleneck genealogies. Such data is
modelled well by HMMs in which each population founder corresponds to an HMM

state.

We conducted three experiments using the BNPPHASE model involving sequences of bial-
lelic markers in phased genetic data. In our first three experiments, we examined the
imputation accuracy of the BNPPHASE model and compared it to that of fastPHASE
and also other baselines. We found that the BNPPHASE model performed competitively
with the state-of-the-art in the imputation of missing data. In our first experiment,
we examined imputation accuracy on a ‘toy’ dataset generated from the ARG with
an identity-by-descent rule wherein all mutations were assumed to have occurred more
anciently than the bottleneck. This simulated a very recent bottleneck from a small
number of founders. In our second experiment, we performed genotype imputation on
male X chromosome data from the Thousand Genomes Project (The 1000 Genomes
Project Consortium, 2010). As explained in section 1.1, the phase of male X chromo-
some data is known, and so a ground-truth for the imputation of held out data can be

established, providing valid accuracies.

In our third experiment we examined the correlation between the time to the most
recent common ancestor (TMRCA) and the number of clusters used by the BNPPHASE
model (i.e., the latent dimensionality of the nonparametric HMM). For the data, we
generated sequences from a population bottleneck data designed to model the out-
of-Africa population bottleneck in humans. We found a strong negative correlation
between these values in both the BNPPHASE and fastPHASE models. After regressing
the TMRCA against the number of clusters, residual error of the BNPPHASE model was

smaller than that of other methods.

Markov models based on the HDP have been used previously to describe genetic vari-
ation. In Xing et al. (2006), an HDP-HMM was used to model genetic sequences. The
HDP-HMM places an HDP prior on the full transition matrix of an infinite HMM (Beal
et al., 2002), resulting in a homogeneous process. In contrast, the BNPPHASE model in-
troduces nonhomogeneity into the HMM prior. This allows the BNPPHASE model to
capture genetic structure in which the proportions for genetic founders or admixture
components varies along the chromosome. We refer to section 1.2.7 for more detail
about the relation of the BNPPHASE model to other HDP-HMMs.

In the remainder of this section, we discuss the statistical properties of genetic sequence
data arising from population bottlenecks. Then, we provide some intuition for the
BNPPHASE model and the likelihood of phased genotype data given by the BNPPHASE
model. We also give intuition as to why the BNPPHASE model is a good model for
population bottleneck data. In section 3.2, we provide the details for the generative
process of the BNPPHASE model, and derive inference for the BNPPHASE model based on

MCMC using Gibbs updates for the latent state assignments of a sequence and slice
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sampling for updating the parameters. In section 3.4 we describe the experimental
paradigms for the three experiments that we conducted involving the BNPPHASE model.
In sections 3.5, 3.6 and 3.7 we provide the results of these experiments, some discussion

and then we conclude.

Open source code implementing MCMC inference for the BNPPHASE model is provided
at the website http://www.github.com/lell/BNPPhase. This code is written in a

combination of java and scala and is published under the BSD 2-clause license.

3.1.1 Population bottlenecks and genetic sequence data

In Kingman’s coalescent for genealogies, the coalescent rate of the lineages in the geneal-
ogy is twice the inverse effective population size N% (this is explained in section 1.2.1).
To simulate from a version of Kingman’s coalescent in which the population size changes
during the ancestry, we can parameterize N, by time and then sample a nonhomoge-
neous Poisson process with intensity %(t) At the times given by the points in the
Poisson process, we can then coalesce a pair of lineages chosen uniformly from all
pairs extant at that time. In a similar way, the coalescent with recombination can be
simulated for varying effective population size by superimposing the nonhomogeneous
version of Kingman’s coalescent and a nonhomogeneous recombination process with

rate %’(’t) (we refer to Hein et al. 2005 for more detail).

Population bottlenecks can be defined through the shape of the effective population size
Nc(t) as a function of time—any sudden shrinking of N (t) specifies a bottleneck. Data
from a population bottleneck can therefore be simulated by sampling from the time-
varying version of the coalescent with recombination with such an N¢(t) (an example
is given in Figure 3.1). Since N(t) is proportional to the inverse of the coalescence
rate, we see that if a large bottleneck occurs recently in the ancestry of a population,
most of the coalescence should occur during the bottleneck. However, coalescence that

occurs more anciently than the bottleneck will tend to occur at a much slower rate.

This remark implies that for such a population, the TMRCA as a function of chro-
mosome location will tend to be drawn either at a time during the bottleneck, or at
a time governed by a heavy-tailed distribution centered much more anciently than the
population bottleneck. This leads to nonhomogeneous structure, as the TMRCA will
transition along the chromosome between intervals of coalescence during the bottleneck

and coalescence much more anciently than the bottleneck.

3.1.2 Intuition for the BNPPHASE model

The BNPPHASE model is an HMM approximation of the coalescent with recombination.
Suppose that N phased genetic sequences from a population are typed at L biallelic

markers. The BNPPHASE model associates a latent cluster assignment to each sequence
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Location

Figure 3.1: Genealogy of 6 homologous sequences with simulated ancestry. y-
axis indicates time to coalescence. z-axis indicates chromosome position, with A
labelling a location near one end of chromosome and B labelling a location near
other end. Simulation conducted with parameters from (Li and Durbin, 2011)
designed to model out-of-Africa bottleneck in humans. This illustrates location-
dependent nature of genetic similarity: sequences 1 and 6 would be quite similar
at location A, but quite different at location B.
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Figure 3.2: Top: Genealogy of 5 genetic sequences with simulated ancestry from
a population bottleneck. y-axis indicates time to coalescence. z-axis indicates
chromosome location, with marker A labelling one end of chromosome, marker
B labelling the middle of chromosome and marker B labelling the other end.
Coalescence of lineage indicates arrival at common ancestor. Note that TMRCA
is a function of chromosome location. Bottom: Hlustration of reasonable latent
sample found by BNPPHASE model. Color indicates sequence identity (with red
being sequence 1, blue being sequence 2 and so on). Dotted lines indicate cluster
transitions. y-axis indicates cluster assignment (sequences close to each other on
the y-axis are in the same cluster). Cluster assignment ‘matches’ genealogical
structure of top. Sequences remain in the same cluster from one marker to the
next with probability 1—r,_; or transit to cluster k with probability ry_jwe .
Factors describing conditional probability of the green sequence (sequence 3) are
shown by the terms in green.
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and location. Between each pair of consecutive locations, a given sequence either re-
mains in the same cluster, or with some probability proportional to a rate ry (which
depends on chromosome location ¢) is reassigned to one of the clusters with a locus-

dependent probability.

The latent rate r, governs the dependence among the clusterings: if r, =0 then the
clusterings at each location are the same and if r, = 1 then the clusterings are all
independent. Intuitively, we want to infer small values of r, on regions of the ge-
netic sequence for which the underlying genealogy structure from the coalescent does
not change much, and larger values of r; for locations where recombination events in
the ancestry of the population have lead to substantial changes in the latent geneal-
ogy structure. (For example, for the recombination hotspots described in S. Myers

et al. 2005 ry should be relatively large compared to the background regions.)

We introduce latent variables z;y denoting the cluster assignment of the i-th sequence
at the /-th location and auxiliary variables y;, indicating if the i-th sequence has a
transition event after the ¢-th location. We also introduce cluster weights wy for the
k-th cluster at locus ¢ (such that wg, > 0 and Y ,wp, = 1). If y; .4 = 1, then the
cluster assignment of the i-th sequence at position £ is a priori drawn from a discrete
distribution with the probability of z;; = k being wy. Otherwise (if y; -1 = 0) the
cluster assignment of the i-th sequence at position ¢ is copied from z; o ;. For the first
position (¢=1) the prior distribution on the cluster assignment of the i-th individual

is given by wig.

The number of clusters at each location, and the prior distribution over the local
cluster weights wyi, are given by a a hierarchical Dirichlet process. In order to make
this distribution well defined, we will have to identify the clusters at each location ¢
with global clusters that persist across the whole process. The hierarchical Dirichlet
process is the simplest method for identifying the clusters at each location such that
the number of clusters is unbounded and the induced prior distribution on the cluster
assignments does not depend on the order in which the individuals are observed or
the size of the population from which the study individuals were selected (i.e., it is

exchangeable and projective).

An illustration of the BNPPHASE model is provided in Figure 3.2. If we assume that the
number of clusters is fixed at K, then we get a finite truncation of BNPPHASE which
is described later in section 3.3.1. This finite truncation is similar to the fastPHASE

model (Scheet and Stephens, 2006), but with a Bayesian prior on the parameters.

In Figure 3.2(bottom), we imagine that our data consist of five phased genetic sequences
typed at three biallelic markers (labelled as A, B and C). The sequences are labelled by
color: red, blue, green, magenta and teal. The latent cluster assignment for BNPPHASE
has represented the data using four latent clusters (corresponding to the y-level of
the sequences in Figure 3.2(bottom). At the first marker, BNPPHASE has clustered the
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data into two clusters: with the red and blue sequences in cluster 1 (contributing w12471
to the probability), and remaining sequences in cluster 3 (contributing wi?) to the
probability). Between marker A and marker B, the green, magenta and teal sequences
transit to new clusters contributing (1—74)%r% to the probability (the fact that the
red and blue sequences do not transit contributes an additional (1—74)?). Between
marker A and B, the green, magenta and teal sequences have transitioned to clusters 1,
1 and 4 respectively contributing w%71w374 respectively to the prior. The probabilities
for the transitioning and clustering between markers B and C can similarly be read off
of Figure 3.2 resulting in a total probability (conditioned on w and r) of the illustration

in Figure 3.2:

(1=ra)*ri(1=rp)*rpwl ,w) swh 1 wB4WC 3.

3.1.3 Likelihood of phased data under the BNPPHASE model

We will assume that the observed genetic sequences are phased and typed at biallelic
markers, they can be summarized by the matrix x = ((:Eig)ngl)gl where z;p=1 indicates
that sequence 7 has the minor allele at location £ and x;, =0 indicates that sequence i has
the major allele at location ¢ (this is the form of phased data described in section 1.1).
Given a fixed setting of the latent variables and parameters of the BNPPHASE model,
the matrix x is a matrix of independent Bernoulli random variables. The distribution
of each entry x;; depends only on the cluster assignment (z;7) of the i-th sequence at
location ¢. In particular, if the i-th sequence is in cluster k£ at location ¢, then the
probability that z;y =1 is 6y, and the probability that x;; =0 is 1—6y. Here, Oy, € [0, 1]

is a parameter associated with the k-th cluster and the /-th location.

In the BNPPHASE model, we place a hierarchical prior on 6y as follows: 6y is drawn
from a beta distribution with local mean and mass which both depend on ¢, so 0y ~
Beta(v¢8e, ve(1—05¢)). The local mean (3, is drawn from the beta distribution Beta(b, b)
where b is a global parameter controlling the variance of the allele frequencies. We

placed exponential priors with rate 1 on b and on each of the local masses ~,.

3.1.4 Inference for the BNPPHASE model

We use MCMC to conduct inference on the posterior distribution of the BNPPHASE model
conditioned on observed data. In the experiments described in this Chapter, we will be
interested in the conditional distribution of missing alleles. We will also be interested
in the posterior distribution over the number of clusters found by the BNPPHASE model.
These statistics are estimated by averaging the marginal distributions of all MCMC

iterations produced after a number of burn-in iterations have been completed.

For a fixed sequence ¢, we update the latent cluster assignments z;; and transitions y;,
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for £=1,..., L by using the forwards filtering /backwards sampling algorithm (Friiwirth-
Schnatter, 1994) along with a bespoke auxiliary variable method to efficiently handle
the infinite state space of the hierarchical Dirichlet process. The rates r, and the
parameters of the likelihood b,~y, and Sy are updated using slice sampling (Neal, 2003).
The likelihood parameters 6y, are integrated out. These updates are all derived in

section 3.2.

3.2 Methods

In this section, we will formulate the full distribution of the BNPPHASE model using the
stick breaking representation of hierarchical Dirichlet processes. We will then develop
the MCMC inference methods required to provide tractable updates for the BNPPHASE
posterior distribution. In sections 3.2.1 and 3.2.2, we will provide two equivalent gen-
erative processes for the BNPPHASE model. The first generative process will make use
of the stick breaking construction of the HDP. For the second generative process, we
will marginalize some aspects of the stick breaking construction for the hierarchical
Dirichlet process. This will allow us to define the BNPPHASE HMM directly on the space
of partitions of the sequence identities. We will describe the marginalized version of the
HDP in 3.2.3. The second generative process provides a representation of the BNPPHASE

for which tractable inference can be derived, which is done in section 3.2.5.

3.2.1 Generative process for the BNPPHASE model from stick breaking

The BNPPHASE model can be described by the following generative process. We will
suppose that the concentration parameters ag > 0,a > 0 as well as the likelihood

parameters b > 0, 5, > 0 and ~, > 0 are fixed.
1. Draw w|ag according to the GEM distribution from equation (2.3):

k—1
l/kl'rl\ldBeta(l, ap), Wk = Vg H (1 — ).
k=1

2. For each 1 < /¢ < L: draw 7y|a, w according to the coagulated version of the GEM

distribution from equation (2.6):

k-1 k—1
ii.d
Mok ~ Beta <awk,a (1 - Z Wk’)) y ek = Tlek H (1 — newr)-

k=1 k=1

3. For each 1 < ¢ < L: draw ry ~ LogUniform(rmin,1) (i.e. logry is uniformly
distributed).

4. For each 1 <17 <n:
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Figure 3.3: Plate diagram for entire BNPPHASE model. For brevity, the hierarchi-
cal Dirichlet process parameters ag and « and the hyperparameters for 6 are not
shown. T denotes number of markers.
(a) Draw z;|m ~ 7.
(b) For each 1 < ¢ < L: draw y;¢|ry ~ Bernoulli(r,) and:
i If yip = 1t draw z; g41|meq1 ~ Toga.
ii. Otherwise if y;0 = 0: set z; 41 to 2.
5. For each 1 < ¢ < L: draw f3;|b ~ Beta(b, b).
6. Foreach 1 </ < L,k=1,2,...: draw Op|ve, Be ~ Beta(veBe, ve(1 — 5e)).
7. For each 1 < /¢ < L,1 <i<n: draw z; ~ Bernoulli(6 ,,, ).

A plate diagram showing the independence relations among the variables and parame-

ters of the BNPPHASE model implied by this generative process is provided in Figures 3.3
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H@<k rest

V1<t<T

Figure 3.4: Plate diagram for hierarchical likelihood used by BNPPHASE model.
Node ‘rest’ indicates prior from BNPPHASE model. Variables 6y will be integrated
out in MCMC inference.

and 3.4. Here, 7y~ LogUniform(u, v) means that r, is a random variable such that log r,
is uniformly distributed on the interval [logu,logv]. We chose this weakly informative
heavy tailed prior on r, so that haplotypes can extend over large chromosome regions
(over which 7, has small values) while still allowing recombination hotspots (S. Myers

et al., 2005) to occur (these are locations for which 7, is close to 1).

3.2.2 Generative process for the BNPPHASE model from partitions

We found that inference based on equations (2.3) and (2.6) was hard to specify because
message passing algorithms for the generative process enumerated in the above section
do not have finite support (the messages would be parameterized by the support of z,
which is infinite). To overcome this problem, we derive inference for a marginalized
version of the HDP. In this version of the HDP, we marginalize the GEM propor-
tions 7, and define messages directly on the space of the partitions of the sequences.
Marginalizing latent variables in Bayesian nonparametric models also tends to improve
the efficiency of inference (this can be seen for example in the collapsed LDA sampler

from Kurihara et al. 2007), which further recommends this approach.

3.2.3 The hierarchical Dirichlet process through partitions

The marginalized version of the HDP works by replacing m, by a sequence of partitions
Re. Each block of the partition is assigned to a component of the ‘upstairs’ Dirichlet
process Go. Then, blocks that are assigned to the same component are identified
(in essence, this construction combines the CRP distribution with the stick breaking

construction through marginalizing 7).

The marginalized version of the HDP is constructed as follows. Let Ri,...,Rp be
random i.i.d. partitions such that Ry|la ~ CRP(Ry,«a) for 1 < ¢ < L (here, a > 0
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Figure 3.5: Stick breaking construction for Dirichlet process with K = 3. Unit
interval divided into @y, ws, w3 and Wy = 1 —w1 —ws —w3. Component assignments
©Oay - - - s pe are sampled from Pr(k|w) = wy.

is the concentration parameter of the ‘downstairs’ Dirichlet processes). We will now
assign the blocks of R, to atoms (or, components) of the DP Gy. For each ¢ and for
each block a of the partition R, we will draw the component assignment g, associated

with the block a by sampling ¢g,|Go ~ Go i.i.d. as in section 2.2.

As before, let z;y be the component assignment of the i-th sequence at location ¢, and
let y;; be a binary variable indicating if the i-th sequence has a ‘jump’ event after
location ¢. We will denote the set of all individuals that ‘jump’ after location ¢ by Ry.
Thus, Ry ={i:1<1i<n,y;—1 =1} for £ > 1 and we will define R; to be {1,...,n}.
Finally, if y; -1 = 1, then we will denote by ;¢ the block in R, containing ¢ (i.e., the
block that sequence i ‘jumps’ to after ¢). If y; .—; = 0, we will set (; to 0.

Since the set of all blocks a € Ry is finite, there will be a finite number of distinct
components among the draws (@u¢)eer,. We will refer to this number of distinct
components from the set {¢,}aer, =1, by K and we will assume that the masses of
these K components are given by @1,...,wx. Further, we will refer to the remaining
components of w by Wy = 1—2?21 @p. This is the sum of the weights of the components
that are not among the K unique components appearing in (¢g¢)s=1,.. 1. An example
of this construction, with K = 3 is given in Figure 3.5. Note that the subscripts
of &n,...,0k do not correspond to the order in which the masses wi,ws,... that are
sampled through stick breaking in equation (2.3) (hence the tilde distinction). Instead,

the order of the subscripts is arbitrary, and chosen for convenience.

If y; 01 = 1, then the distribution of (; ¢ is given by the conditional CRP probabilities
from equation (2.11). On the other hand, if y; ,—1 = 0, then we will set (; = 0 and set
zi¢ = zi¢—1. In this case, the cluster assignment of individual ¢ at location ¢ is copied
from the assignment at location ¢ — 1 and we can ignore the block for individual 4 at

location ¢ because the cluster was not found by examining the component assignment
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of a block, (recall that this is denoted by setting (;¢ to zero). Thus, for the rest of this

methods section we have:
Ce=0%&y;0-1=0for £ >1. (3.1)

Due to equation (3.1), the value of y; s can be inferred by (; for all 1 < ¢ < L.
Therefore, we will drop the variable y;, from the rest of this methods section, and just
write (;v = 0 if sequence i does not ‘jump’ before ¢ and (;y # 0 if sequence i ‘jumps’
before ¢ (and in this latter case (;y will be the block of Ry individual ¢ ‘jumps’ to after

location £).

Suppose that ag > 0 and « > 0 are fixed concentration parameters, and the hyperpa-
rameters b and -, and Sy of the likelihood model are also fixed. Then, the BNPPHASE

model is given by the following generative process:
1. Draw Ry ~ CRP({1,...,n},a) (2.4).
2. Foreach1 < /¢ < L:
(a) Draw Ry C {1,...,n} according to Pr(R,) = r#_]?(l — g )V R,
(b) Draw R; ~ CRP(Ry, o).
3. Draw w ~ GEM(ay) (2.3).

4. For each 1 < ¢ < L,a € Ry: draw g, according to the probability density
function Pr(pg, = k) = wy

5. Foreach 1 </ < L,1 <k < K: draw Hgki’ri\'»dBeta(*ygﬁg,w(l — Br)).

6. Foreach 1 </<L,1<i<N:
(a) If i € Ry: set (jy + the unique a € Ry s.t. i € a and set zy < Piq-
(b) Otherwise: set (j <= 0 and set 2z < 2 o—1.

7. Foreach 1 </ < L,1<i< N: draw xigi'fideernoulli(Q&ZM).

The generative process presented in this section is equivalent to the enumeration in
section 3.2.1. The joint density of z,z, R,w,p and the parameters is given by the

following equation:

PI‘(CL’, Z, Ra w, ¥, g, &, ba ﬁa s 97 T)
L
= Pr(w|ag) Pr(plw) Pr(Rala) [ [ Pr(Rel Re, o)rfft (1—ro ) N #5 T Alwiel 200, O0.:)
=2 @0
L

L-1
‘Pr(a) Pr(ag) Pr(b) HPr(ﬁglb) Pr(’yg)HPr(Gak\w,m) HPT(W)- (3.2)
{=1

(=1 0.k
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Figure 3.6: Plate diagram for marginalized version of BNPPHASE model. Support
of ¢ is blocks (subsets of {1,...,N}) appearing in partition induced by . ».
Parameters «, ag, 74, Ve, Bex, b. As in 3.3 HDP parameters and hyperparameters
not shown for brevity. 7" denotes number of markers.
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Clustering (z2)

Cluster le °

Cluster 2

Cluster 3

Figure 3.7: Relationship between partition structure (bottom) and dynamic clus-
tering (top). z-axis indicates marker position and y-axis indicates cluster or block
identity. Colors indicate sequence identity. At £ = 1, Ry = {a,b,c} where
a = {red,blue},b = {green} and ¢ = {magenta}. Since ¢, = . = 2, blocks
b and c are in the same cluster (Zgreen,1 = Zmagenta,1)-

Here A(zio|zie, 0,:) = Gzijie(l —0p.,.,) 7% is the likelihood of the observed allele from
sequence 7 at location ¢ conditioned on its cluster assignment (this likelihood is further
discussed in section 3.1.3). Here, and for the remainder of the text, we adopt the
MATLAB notation Ap. = (Apc)cea, where A is the support of the second index of A (and

equivalently for A ).

The variables ( and R are determined by R (and vice versa) and although we have
written equation (3.2) in terms of R, the equivalent equations for ¢ should be clear.
The dependence relationships of equation (3.2) are illustrated in the graphical model

shown in Figure 3.6. A summary of all of the distributions on the parameters of the
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prior is as follows:

ap ~ LogNormal(log agmean, Qovar), (3.3)

a ~ LogNormal(log ttmean, Qvar ) (3.4)

forall 1 < ¢ < L, ~; ~ Exponential(1), (3.5)

for all 1 < £ < L, By|b ~ Beta(b, b), (3.6)

b ~ Exponential(1), (3.7)

forall z € Z,1 <l <L, 0|V, Be ~ Beta(veSe, ve(1 — 5e)), (3.8)
(3.9)

forall 1 < ¢ < L, 7¢|rmin ~ LogUniform(rmyin, 1).

The constants rmin < 1, Ggmeans ®0vars ¥mean aNd Qs are all positive fixed real valued

hyperparameters.

An example dynamic clustering demonstrating this view of the BNPPHASE model as a
hierarchy with partitions at the bottom level and a Dirichlet process at the top level is
given in Figure 3.7. Note that in this example, multiple different partition structures
could have given rise to the dynamic clustering at the top of the figure given the right
settings of . For example, if Ry = {a,V'} where a = {red, blue} as in the figure, and

b = {green, magenta} and @y = 2 then dynamic clustering would have been the same.

3.2.4 Marginalizing the allele emission variables 6

For a fixed location ¢, we consider the conditional probability Pr(xy|zs, ve, B¢) with the
allele emission variables 6y, marginalized. Due to the conjugacy of the hierarchical
likelihood, the conditional distribution of the observed alleles = can be expressed in
terms of the allele counts of the sequences assigned to each cluster at location ¢. Let
Nk = #9{i : ziw=k,x;p=1} and nog, = #{i : ziyy =k, z;y =0} denote the counts of the
number of times each allele is observed among the sequences assigned to each cluster.

Then the conditional distribution for x is given as follows:

K
T'(veBe + nlék)r(’)%(l — Be) + noek)

Pr(x. 4|20, 70, Be) x . 3.10

(@.elz.,7 ,};[1 I'(ve + nier + noek) (3.10)

3.2.5 MCMC for inference and imputation

We will provide a bespoke Gibbs update for sampling the latent cluster assignment
variables for a sequence (i.e., the vectors z;. and (;.) conditioned on z, 2 . and (; . for
i’ # i and ©,p and B and  (we will refer to these variables as ‘rest’). Following this,
we will provide Gibbs updates and slice sampling updates for the HDP variables and
likelihood parameters. The concatenation of all of these updates provides an MCMC

kernel which leaves the posterior distribution of the BNPPHASE model invariant. Note
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that in these procedures, 0 (and my) will always be integrated out.

3.2.5.1 Gibbs update for latent cluster assignment of sequence i

The sequences z; ., ¢;,. will be resampled using message passing specified by a two-step
scheme. In the first step, z; ., (;. will be updated using a forwards-filtering/backwards-
sampling (Friwirth-Schnatter, 1994) method wherein the supports for the messages for
zy¢ and ( are augmented with the symbol @ which represents events in which new
blocks are created in the partitions Ry. In the second step, all of the newly created
blocks are assigned to components of the DP Gg. We note that this two-step scheme
obviates a problem that would have arisen if we had marginalized (;y (namely, that
new messages would have had to have been introduced for each partition of the set
of locations ¢ such that z;y = @, leading to an exponentially sized support for the

messages).

To find the distribution of the sequences z; ., (;. conditioned on the rest of the variables,
we will use the notation from section 2.4.1 to refer to the partitions induced by removing
i from Ry for ¢ = 1,..., L and also removing any resulting empty components from
@1, ... wk (recall that these are the unique elements among the assignments ¢y, ). By the
exchangeability of the CRP, we can then assume that individual ¢ is the last individual
observed, and use the sequential scheme for the CRP and the definition of the DP to

find the joint conditional distribution of the variables ¢; . and z; ..

Suppose that we are given a fixed setting of all of the BNPPHASE latent variables and pa-
rameters including the dynamic clustering of the n individuals. This induces a dynamic
clustering on the set of all of the individuals except for the i-th individual through the
‘forgetting’ of the assignments of the i-th individual. Adopting the notation from sec-
tion 2.4.1, will denote the induced dynamic clustering as follows: by Ré_i we will refer
to the set consisting of Ry but with ¢ removed. So, if (; # 0 then the i-th sequence
‘jumps’ before ¢ and thus ¢ € Ry and in this case R, = R, — {i}. If alternatively
Cie = 0 then 7 is not in R, and R," = Ry.

Recall that @ refers to the weights of the top-level Dirichlet process corresponding to
atoms that exist among the assignments of blocks a € Ry to to atoms (this is defined
i

in section 2.3). By @~ ¢ we will refer to the components of & that the blocks of R

are assigned to (i.e., @ is formed from & by removing components that appear only
among the component assignments of singleton blocks {i} — blocks that were removed

from Ry to form Rgi, for any ¢).

By K~ we will denote the number of distinct component assignments ¢y, among the
blocks of the restricted partitions: K~ = #{¢y, : a € Rzi, 1<¢<L}. So, K" <K,

and K% = K if and only if sequence i is never in a cluster by itself among R4, ..., Rr.

Note that if a component @ with k < K is such that the only assignments of blocks
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to k involve the block {i}, then & does not appear in @~*. In this case, the indices

of @~% are not consecutive. To avoid excessive notation, without loss of generality
we will suppose that @ is actually ordered such that the indices are consecutive and

o7 = (@7 @)

We will now consider the possible events that could occur when sequences z;., (;. are
sampled. We will augment the state space of z;.,(;. with the symbol @ and we will
denote the event that sequence i joins a singleton block at location ¢ by (;y = @. In
that case, the component assignment for that block will be a component that already
exists in @, (the k-th component, say) which we will denote by z;; = k > 1, or that
sequence is in cluster by itself which we will denote by z; = &. Conditioning on the set
‘rest’ = {z, R, (Gr.)ipi, @', g, 0, b, B, 7., 0., 7.}, the distribution of z;., (. is given
in the following display. Note that since R, and ( are are completely determined by z
and y (and vise versa), conditioning on R, (¢y.)iz; is equivalent to conditioning on
all of the variables R% and (Cir:)ir£i-

L re—1Je(zie, Ge) if o # 0, 00¢,, = zie,

Pr(zi:, Gi:| rest’) =J1 (21, Ga) H L—rea if Gie=0,1<zy <K,
=2 0 otherwise.
L
T Aielzie, 2, R ). (3.11)
=1

#C Cu=CeR,,
1 Oé(.:JZ, Ci€:®>zi€:'zezii7
#Rg_l—i_a a(:}g, Cif:zif:®7

0 otherwise.

Where Jy(zie, Gio) = (3.12)

Here Jy(z,() it is the prior distribution over (z;, (;¢) given that sequence i ‘jumps’
immediately before location ¢. The marginalized likelihood A(a:,-g]zig,x,RE_i) is found
by restricting equation (3.10) to 4: let ”171@ =#{i' : zpy=k,i" # i,xy0 =1} and let
n&ik =#{i' : zppy=k,i # i,z =0} denote the counts of the number of times each
allele is observed for the cluster k at location ¢ among sequences other than the i-th
sequence. If x;; is unobserved (i.e., z;p = ‘?7°) then A(x|zi = k,x,RZi) =1 for all k.
If x # ‘7 (i.e., z € {1,0}) and 1 < k < K then:

A(xip|zie = k,x,Re_i) =

1 YeBe 4 1y, if wyp =1, (3.13)
Ye(

Yo+ nig, + nog 1—Bg) +ngg. if @ig = 0.
Finally, if z;y = @ and = € {1,0} then A(zy = x|z = @,x,RZi) =Br(1 — Bo)le.

We now present a Gibbs update for the i-th sequence based on the distribution in
equation (3.11) for z;.,(;. conditioned on the variables ‘rest’. First, in Step 1 we will
conduct forwards-filtering /backwards-sampling on z;, (; with the augmented state space

described in this section. Then, in Step 2, for all £ with z;y = @ or (;y = @, we assign
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new clusters through a retrospective stick breaking construction.

Step 1: forwards-filtering/backwards-sampling

The forwards messages will be used in the forwards-filtering /backwards-sampling algo-
rithm and the backwards messages will be used to compute marginal probabilities of
an allele for imputation of missing data. Since i is fixed, for the rest of the specification
of Step 1 the subscript ¢ will be suppressed to make the notation more compact (so
for example, by z, we will mean z;7). A glossary of symbols for the BNPPHASE model is
provided at the end of this Chapter.

The messages are defined as follows:

m{ (21, G) = Pr(z1, 21, 1 [‘rest’),
For1 < (<L, mz(%,@

For1</{< L, mg(zg,@

Pr(zy ...z, 2z, (| ‘Test’),
Pr(l’g+1 xL’zéa Cfa ‘rest’),

1. (3.14)

) =
)
) =
m} (21, (L)

Here the set of variables referred to as ‘rest’ is the same as that given in the paragraph
before equation (3.11). For each of these messages, if ¢ > 1 the support of (z¢, () is

given by the union of the following three sets:

{(2,0):z€{1,...,K " @}, =0}, (3.15)
{(,0): CeR 2 = puc} (3.16)
{(,): ¢C=2,z€{1,..., K" a}}. (3.17)

These three sets describe the three possible types of allowable cluster assignments
described in section 3.2.5.1. These three sets represent the events that (3.15): individual
i does not ‘jump’, (3.16): individual i ‘jumps’ to a cluster in R %, and (3.17): individual
i ‘jumps’ to a new cluster by itself. The probabilities of settings of (z, () that lie outside
of this support are zero. We will refer to the union of these three sets by sup(¢). Note
that if £ = 1, sup(¥) is given by the union of sets (3.16) and (3.17) only.

For the backwards messages, if we condition on z; then (y and xpy1,..., 21 are inde-
pendent, and so for a fixed z the messages mZ(z, ¢) all have the same value for each
¢ : (2,¢) € sup(f) and therefore we will refer to this value by mj(z). Further, we

will often find it useful to sum the forwards messages over the possible values of their
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parameters and so we will introduce the following shorthand notation:

m = Y mf(z), (3.18)
(z,¢)€sup(¢)

and for a fixed z with 0 < z < K_i,mg(z) = Z mg(z’,C). (3.19)
(Z’,(;/Esip(l)»

The forwards messages in display (3.14) can be computed recursively as follows:

m{ (21, (1) = L(z1|21) Pi(21,C1),

(1—re)-m)_ () if¢ =0,
To_q - m{_l - Py(z¢,(¢) otherwise.
(3.20)

and for 1 < ¢ < L, m{(z&@) = L(w¢|z0) - {

The probability Py(zg, () is Pr(zg, (o|‘rest’, {y # 0) as in equation (3.12). In a similar

way, the backwards messages can also be computed recursively as follows:

m}(20) = (1—r¢) L(zps1]2e)mb,  (20)+7s Z L(zp41|2) Prsa (2, )mb 4 (2). (3.21)
(2,0)Esup(¥+1)

After computing the forwards messages, the cluster assignments for the i-th sequence
can be sampled through a backwards-sampling algorithm. By Bayes rule, the Markov
property of the cluster assignments and the definition of the forwards messages, the

probabilities are as follows:

Pr(z, 21, p |‘rest’) oc m (21, ¢p)

PI‘(CC, 20, <€|Z€+17 CZ—FI) ‘rest’) X PI‘(.’ITl, s Ly 24, C€|‘reSt,) PI'(Z@_’_l, C€+1|Z€7 Céa ‘rest’),
0(z¢ = ze41)  if 41 =0,
cmf (4, ) (3.22)
1 otherwise.

In equation (3.22), the domain of z, (; is always restricted to sup(¢). Step 1 of the
Gibbs update for z;, (; is thus given by sampling zy, (s, recursively in descending order

(¢ =L,...,1) using the probabilities given in equation (3.22).

Step 2: retrospective stick breaking

We now provide a retrospective stick breaking scheme to select the components for the
singleton blocks which were sampled in Step 1 but whose assigned components were
not in @~*. That is, we will now sample the values z; for all of the locations ¢ such
that after Step 1, z;y = @. We will refer to such ¢ by the set Sy ={¢: z;y=2}. For a
given setting of z; ., (; . sampled using the backwards-sampling from Step 1, Sy is found

deterministically. Applying Step 1 followed by Step 2 yields a full Gibbs update for

2y Ci,:-
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By the definition of the symbol & from section 3.2.5.1, the variables z;; : £ € Sy
should only be assigned to components of the DP w that none of the other block in
R% are assigned to. It is, however, possible for more than one zy : £ € Sy to be
assigned to the same component. For each ¢ € Sy, z;y marginally follows the law
Pr(zi|‘rest’, zjy € w™"). Since i is fixed, for a fixed location ¢ there is at most one
z;¢ that needs to be sampled for ¢, and so the allele counts nl_t’k, n&’k are conditionally
independent (given ‘rest’) of the random variables z;;s : £/ # ¢. Further, because (;y # 0
forall £ € Sy, the z;p : £ € Sy are independent conditioned on the weights . Combining
these two observations, it is clear that the variables z; : £ € Sy are sampled i.7.d.
directly from the prior, but conditioned on the event that z; ¢ R~. This can be done
by using the stick breaking construction in equation (2.3) to instantiate components
of w that are not in @ (we will refer to these components by @g1,Wg2,...) and then
sampling z;p : £ € Sy from the GEM distribution w restricted to these new components.
This can be done efficiently by sampling a uniform variate u, i..d. for each ¢ € Sz and

then setting z;; to the smallest k£ such that:

k ~
11 Wok!
LYok (3.23)
Wy
With this scheme, ©g1, Wz, ... can be sampled in sequence, stopping as soon as equa-

tion (3.23) is satisfied for all £ € Sg. Step 2 is made explicit in the following algorithm,
which should be performed immediately after sampling z; ., (; . according to Step 1. The

Algorithm 3.1 Retrospective stick breaking for the BNPPHASE model
1. Set Sz + {{: zyp = O}.
2. Set wy . + () and set K7, 0.
3. For each ¢ € Sy:
(a) Set Ry + R, U {{i}} and set (; + {i}.
(b) Draw u ~ Uniform(0, 1).
(¢) While k* = min{1 < k < K[, : ZZ/:l Wy > u} does not exist:
i, Set Kl « Ky + 1.
ii. Draw v ~ Beta(l, a).
iii. Set w%’Ké —v (1 - Zkal ! wék>.
(d) Set zp + k*.
4. Set Wy, + () and set Ky < 0.
5. For k' =1 to K[
(a) If there exists ¢ € Sy such that z;; = k'
(b) Set S« {f € Sz :zy=F}.
(c) If #5 > 0:
i. Set Kg + Kg + 1.
ii. Set zj < K~%+ K for each £ € S.
iii. Set Wy K, + Wg - W/@,k"
iv. Set Sy < Sz \ S.
6. Set @ (@) (@or)r?)) and set K + K~ 4 K.
Set K + K+ Ky
8. Set &g 1 — 38 @y

=
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concatenation of Step 1 and Step 2 provides a full Gibbs update for the latent cluster
assignment of the i-th sequence. The details of Step 2 are provided in Algorithm 3.1.

If, for a fixed 7, the allele x; is unobserved at some fixed location ¢ (i.e., z;; = ‘7°), then
we can use the messages defined in this section to compute the marginal probability
E[Pr(xie) = x, (xye )i £it| Test’] where z = 0 or 1. Here, we will use both the forward
and backward messages calculated in Step 1 to marginalize over all possible latent
state assignments of sequence i at location ¢. Using the definition of the messages, the
Markov property for the sequences z;., (;: and the likelihood from equation (3.13) we

have:

E..c[Pr(zie = @, (e )ippi] Test’]

X Z Pr($i€:$|2ifzz’ ﬁreSt’)PI‘(.’Ew::E, (xi/zl)ilfl?éit,ﬁ'ﬁﬁvZiZ:Z,CiZZCVI'eSt’)
(2,¢)Esup(¥)
‘Pr((zye)esi|lzie=2z, Ge=C(, ‘rest’),

= Y. Llzu=ulzm](z, Omi(z,0). (3.24)

(z,0)esup(f)

This expression can be used to impute missing alleles in a set of partially observed

genetic sequences.

3.2.5.2 Gibbs updates for HDP parameters & and ¢

We will now derive MCMC updates for the component weights w of the K distinct
components appearing in (¢gq)qer,) and Og. We will use a Gibbs sampling scheme
based on the definition of the Dirichlet process in definition (2.2). Conditioned on ¢,
for all £, Ry and g (which we will refer to as ‘rest’) the distribution of @1, ..., 0K, Oy

is given by the Dirichlet distribution which can be readily sampled.

(@), @0) ¢, ap~Dirichlet (#{(¢,a) : 1 < £ < L,a € Ry, pta=k})j; » a0)-
(3.25)

We update the component assignment of a block a € R, using Gibbs sampling by
examining equation (3.2). We find that the entries that depend on the assignment ¢,
for 1 < ¢ < L and a € Ry are given for each sequence i such that ¢ € a by examining the
extent of that sequence. In particular, for each 4, and for each ¢/ > ¢, the component
assignment ¢y, only depends on (, z;¢ and x;y if sequence ¢ does not jump between ¢
and ¢. We define this set to be E = {(i,¢') : ¢/ > l,i € a,(; =0V ¢ > 7 > (}. With
this definition, conditioned on the variables z, Ry, ©, 7,8, ¢ for a’ # a (which we

will refer to as ‘rest’) the joint distribution of ¢y, is as follows:

Pr(pia = 2|‘rest’) oc @, A(x|z;p = 2V (i,0') € E). (3.26)
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The likelihood term in equation (3.26) is found through (3.10). Note that equation
(3.26) does not factorize over E because 6 is marginalized. This likelihood term, for a

fixed £ and a € Ry is as follows:

L E -E
F 4 / F 1 —_ , ,
A@|zp =2 ¥ (i,0) € E)ocH (eBe + n7; +n¥]§) (7e(1 = Be) +”0t +n0tk)
0=/ F(’)/Zﬁf + nlt’z)]‘_‘( (1 — ﬁe) + nOt, )
(3.27)

Here nf}, = #{(i,{) € E : zjy = 1} and nf,, = #{(i,¢') € E : z;y = 0} are the allele
counts for the sequences in a that do not jump between ¢ and ¢. Similarly, nl_fz =
#{Z : (2’6,) g E,zip = 2z, = 1} and nfti = #{Z : (7’76/) ¢ E zip = z,xip = 1} are

the allele counts for the sequences in cluster z € {1,..., K, &} at ¢ that are not in a
or that jump between ¢ and ¢'. Note that if 2 = &, nﬂ% = nOt, =0 for all ¢, E

With these definitions, (3.26) can be computed for each ¢ and a € R, providing Gibbs
updates for ¢4,. In this update, if z = & is sampled then a new component is added
to @ and alternatively if (;, was the only component assignment with ¢, = 2z and @y,

is sampled such that z # @ then a component is removed from @.

3.2.5.3 Slice sampling for parameters oy, o, v, 8¢, b and 1,

Slice sampling provides efficient updates for random variables with distributions known
only up to a normalizing constant without requiring a choice of proposal distribution or
step size. We will update the latent variables a, aq, ¢, B¢, b and ry using slice sampling.
The unnormalized probability density functions of these variables are given in this
section. In order to specify a slice sampler, we only need to know the target conditional
distribution up to a normalizing constant. In this section, we provide such unnormalized
conditional distributions for these latent variables. For more detail on slice sampling,
we refer to Neal (2003).

Conditional distributions for oy and «

These distributions follow from the priors in equations (3.4), (3.3) and the CRP
marginals for Ry and the definition of the DP (Pitman, 2006).

Pr(ap|R, ¢, K) Pr(ao)aé(F(ao)/F ap + Z #{aeRy:pa =k} |, (3.28)
L,k
L #RZF
o T (a)
R) o Pr( 3.29

E 1
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Conditional distributions for ~,, 5,,b and r;

By Bayes’ rule the unnormalized conditional distributions for +,, 8; and b can be read off
from the conditional likelihood in equation (3.10) and the priors (3.5), (3.6), (3.7) thus
providing slice sampling updates. Finally, a slice sampling update for r; is provided by

the following conditional distribution:
For 1 < £ < L, Pr(re|Ry) o< Pr(r)r] "+ (1 — rg) N-#Rer1, (3.30)

Here Pr(ry) is the prior on r, from equation (3.9).

3.2.6 Summary

The methodology developed in this section is similar to that of the beam sampling
for HDP-HMMs (Van Gael et al., 2008). Both of these procedures use forwards-
filtering/backwards-sampling to provide updates for entire rows of state assignments.
However, in the beam sampler, an additional auxiliary variable (u) is introduced rep-
resenting a lower bound on the cluster weights. The beam sampler then provides an
auxiliary scheme in which the cluster weights (which are denoted here by @), the clus-
ter assignments (denoted here by (, z) and the lower bound on the cluster weights (u)
are alternately resampled. Unlike the general homogeneous situation examined by the
beam sampler, the structure of the dependence in the BNPPHASE model allows exact
Gibbs updates without introducing the lower bound u. This provides better mixing for
the MCMC algorithm.

These inference methods also strictly improve upon the sticky-HMM methods originally
proposed in Fox et al. (2011) wherein only Gibbs updates for the state assignments
at a single location were considered. In other work, split/merge updates have been
derived for sticky-HMMs and related models (Michael et al., 2012). It is likely that
incorporation of that type of update for the BNPPHASE model would be beneficial.

To conclude this section, in summary we have provided a full MCMC algorithm for
BNPPHASE through an auxiliary Gibbs update for the latent cluster assignment of a fixed
sequence along with slice sampling updates for the parameters. The MCMC algorithm
we have provided is a collapsed sampler that operates directly on the dynamic-clustering
of the sequences. Imputation of missing data from partially observed genetic sequence
data can be done by simulating the posterior distribution of the BNPPHASE model using

this MCMC algorithm, and marginalizing the allele emissions at the missing entries.
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3.3 Relationship to the FastPHASE model

3.3.1 Finite truncations of the BNPPHASE model

Suppose that there are at most K clusters at each location. Then, the prior induced

by BNPPHASE on clustering reduces to the following finite form:

Te—1We,z; Yip—1 = 1,
Pr(x,y,z,wl,... 7wK) = PI'(CU1,... 7wK)Hw1,Z¢1 H 1 —Te—1 yiffl:oazif:'zi,ffla
‘ wf>1 0 otherwise.

This is a Bayesian version of fastPHASE (Scheet and Stephens, 2006) with a Bayesian
prior Pr(w,...,wg) on wi,...,wr. The BNPPHASE model is an extension of this equa-

tion in which K — oo.

3.3.2 Non-reversibility of fastPHASE and related models

The fastPHASE and BNPPHASE models involve latent location-dependent parameters.
Conditioned on these parameters, the models are not reversible. In particular, if we
reverse the order of both the parameters and the data (by the transformation ¢ — L—/),
then the posterior distribution of the data will be different. Furthermore, the marginal
distribution of the partition of the items of the BNPPHASE model for £ > 1 is not given
by the CRP. Both of these remarks originate from ‘sticky’ nature of the process wherein

sequences only leave the cluster they are in independently with rate 7.

These remarks can be illustrated through the following example. Suppose that L = 2,
and that the atomic weights of the Dirichlet processes G # G4 are given by my; and
o and the locations of the atoms for both processes given by 1,%s,.... Then, as
r — 0, the probability that a sequence is assigned to the k-th cluster at location ¢ = 2
(i.e., that z;o = k) converges to 7. On the other hand, this probability converges to
o as 1 — 1. We see from this illustration that the prior for the cluster assignment of
the i-th sequence at the ¢-th location is affected by the parameters to the left of ¢ (but
not to the right), yielding non-reversibility.

The particular form for the marginal probability that the i-th sequence is in cluster k at
location £ is given by a mixture of the Dirichlet processes G, ..., Gy. The weight of Gy
in this mixture for ¢ < / is given by the probability that the i-th sequence transitions
at £’ but does not transition at any of the steps between ¢/ and ¢. Thus, the mixture
is (1 —7)'Gy + 22,12(1 — r)~¥rGy. Since Dirichlet processes are not closed under
mixtures, these mixtures are not Dirichlet processes and so the induced clustering of

the sequences at £ is not a CRP.
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Figure 3.8: Simulated ‘toy’ data using the identity-by-descent paradigm. The
first 5 datasets from the 100 simulated datasets with K = 9 are shown. x-axis
indicates marker position on the chromosome and y-axis indicates the sequence
identity. The sequences are sorted in lexigraphical order (black indicates the major
allele). Since mutations are placed on the K = 9 founders, ancestral recombination
can be seen clearly from the patterns in the data.

3.4 Experiments

We conducted three experiments in which we compared the BNPPHASE model (pre-
sented in this Chapter), fastPHASE and various other baselines. In our first experi-
ment, we examined the performance of the fastPHASE model on simulated data. We
conducted imputation on held out data from simulated population bottlenecks. We
simulated 700 datasets using an identity by descent paradigm. In this paradigm, we
simulated the ARG backwards in time for 500 lineages until the lineages coalesced into
a fixed number K lineages. We assumed that the time of coalescence at K lineages
was the bottleneck time. We varied K from 4 to 10 (for a total of 7 different con-
ditions for K) and generated 100 datasets for each setting of K. Then, rather than
placing mutations according to the infinite sites model described in section 1.2.2 (i.e.,
by placing mutations at points chosen with intensity given by the total tree length of
the genealogies) we instead placed L =100 mutations at the time of coalescence into
K lineages. In this way, we constructed ‘toy’ datasets in which the founder effect was
amplified through an identity-by-descent. This paradigm creates a characteristic form
of structure in the data in which the dynamic-clustering is obvious. Examples of this
data are given in Figure 3.8. For each dataset, we held out 50% of entries uniformly at
random from all pairs of individuals and locations and then imputed the held out data
using BNPPHASE and fastPHASE.
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In another examination of simulated data, we generated data from the prior of the
BNPPHASE model, and recorded the runtime of posterior simulation conditioned on
this data. The parameters used for generating the data were as follows: Qomean =
10.0, agvar = 1.0, amean = 1.0, owar = 1.0 and rmin = 107°. In this runtime ex-
periment, we varied the number of individuals between 100 and 900 and varied the
number of sites between 100 and 900. For the trials in which the number of individuals
were varied, we fixed the number of sites at 200 (and visa versa for the trials in which
the number of sites were varied). For each combination of sites and individuals, we
conducted 10 trials of 200 MCMC iterations each, and recorded the runtime of each

trial.

In our second experiment, we used parameters from Li and Durbin (2011) to simulate
data designed to model the out-of-Africa bottleneck in humans. We simulated 500
phased genetic sequences on 20 independent chromosome regions. Each region was on
average 3.0 x 10° base pairs long. There were on average 2099.3 biallelic markers in
each region. We recorded the time to most recent common ancestor (TMRCA) of each
biallelic marker under the simulation and conducted inference of the latent clustering
structure of the fully observed bottleneck data using fastPHASE and BNPPHASE. We
then regressed the TMRCA against the number of clusters that each model used per
marker. The number of clusters used by the fastPHASE model was computed by taking
the maximum likelihood (ML) cluster assignments for each genetic sequence using the
approximate posterior found by the EM algorithm for fastPHASE (Scheet and Stephens,
2006).

In our third and final experiment, we examined a collection of datasets consisting
of 20 intervals chosen randomly from the non-pseudoautosomal region of the male X
chromosome. Each dataset consisted of 500 consecutive SNPs (an average length of
around 10° basepairs) from 524 male X chromosomes from the Thousand Genomes
Project (The 1000 Genomes Project Consortium, 2010). Due to limitations in the
fastPHASE software, only 524 of the 525 male X chromosomes could be used, and so
we randomly removed one of the chromosomes for each interval. We held out nested
sets of between 10% and 90% of the entries uniformly at random and we examined
the accuracy of predicting those entries using imputation based on fastPHASE and
BNPPHASE. In order to avoid degeneracy, in cases where all minor alleles were held

out for a single marker, that marker was discarded from analysis.

3.4.1 MCMUC initialization, burn-in, iteration, restarts and schedules

The procedure we used for simulating the posterior of the BNPPHASE model with MCMC
were the same in all three experiment, except for the runtime experiment, and were
as follows. First, we initialized the chain using a scheme in which one sequence of the

chain was initialized at a time conditioned on previously initialized sequences. This
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initialization method was similar to the product of approximate conditionals method
in Li and Stephens (2003). Next, we performed 10 initial iterations in which only the
parameters (but not the latent state assignments and jump indicators) were resampled.
Subsequently, 50 MCMC iterations were performed consisting of full sweeps over the
parameters and Gibbs updates for the latent state assignments and jump indicators
of each sequence. In these iterations, the parameters were updated 10 times for each
single update of the latent state assignments and jump indicators. The first 20 of these
iterations were discarded as burn-in. This procedure was repeated 25 times, each time
with an independent initialization (random restarts), yielding 750 iterations which were

averaged to produce posterior predictions.

We chose the number of iterations to use by looking at trace plots of the likelihood
and accuracy. These traces plateaued at 50 iterations, after which a reasonable mode
was found. Other methods in genotype imputation use similar numbers of iterations.
Default parameters for IMPUTE2, SHAPEIT and BEAGLE are 40, 35 and 10 iterations
respectively (including burn-in). SHAPEIT has been run with this small number of
iterations to produce reference haplotypes for the Thousand Genomes Project. The
small number of iterations required for HMM methods in genetic imputation suggest

that for haplotype models the posterior is quite peaked over its’ mode.

For the second imputation experiment on male X chromosome data, in addition to
conducting the MCMC procedure described above, we also did a grid-search over the
latent parameters. For the grid-search, the MCMC procedure was modified by replac-
ing the step wherein the parameter are updated with a step that only updated the
parameters that were not involved in the grid-search. The grid-search was done over

the parameters «q, o, b and 7.

3.5 Results

In this section we report the results of the three experiments described above. For the
first and last experiments, we show imputation results and we explore the posterior
distributions of the BNPPHASE model for the X chromosome data. For the second ex-

periment, we show the results of regressing the TMRCA against the number of clusters.

3.5.1 Results I: simulated data
3.5.1.1 Imputation of bottleneck with identity-by-descent

In Figure 3.9, we show the results of BNPPHASE on the simulated population bottleneck
data from the first experiment. Figure 3.9(left) shows the imputation accuracy of
BNPPHASE compared to fastPHASE with the number of components fixed at K = 5,7

or 9. As the number of components in the fastPHASE model increases, the capacity
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Figure 3.9: Imputation on simulated identity-by-descent data. Left: imputation
accuracy versus number of genetic founders for simulated population bottleneck
data. Right: expected number of states under posterior of BNPPHASE model.

of the model increases. Since large capacity is not required to model a small number
of genetic founders, all models with enough capacity perform roughly the same for
for K =4 genetic founders. When the number of genetic founders increases beyond
the number of components in the fastPHASE model, the accuracy decreases by an
amount roughly proportional to the difference between the number of genetic founders
and the number of components of fastPHASE. The baseline accuracy on the genetic
imputation task for the simulated data (found by predicting the major allele at all held
out locations) was 84.35%. While the ability of BNPPHASE to recover of the true number
of components is unsurprising, this experiment gives strong evidence that our inference

method is correctly specified.

Figure 3.9(right) shows the expected number of latent clusters found as a function
of the number of genetic founders in the simulated bottleneck data. We see a direct
correlation (1:1) between the number of latent clusters and the number of genetic
founders. Note that for real datasets we would not necessarily expect these numbers to
coincide directly because in some cases the prior induced by BNPPHASE might prefer
to model contiguous haplotype blocks as a single longer haplotype.

3.5.1.2 Examination of runtime

In Figure 3.10 we show the runtime of the BNPPHASE model on simulated data drawn
from the BNPPHASE prior. The linear dependence of runtime on both the number of
individuals (Figure 3.10 left) and the number of sites (Figure 3.10 right) is clear from
this figure.

3.5.2 Results II: TMRCA regression on the out-of-Africa bottleneck

We found a strong negative correlation between the number of clusters used per marker
and the TMRCA for both the BNPPHASE model and fastPHASE. In Figure 3.11 (top,
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Figure 3.10: Scalability of BNPPHASE. Runtime required for 200 iterations of
BNPPHASE as Left: number of individuals or Right: number of sites is varied.
Red dotted line indicates linear fit, solid blue line indicates mean over 10 trials,
blue dotted line indicates standard deviation (shaded region is within one standard
deviation of mean). Linear trend in both the number of individuals and the number
of sites is clear.

Method | BNPPHASE FP FP200 | MAF
RMSE | 0.2724 | 0.2855 | 0.3063 | 0.3215

Table 3.1: RMSE for regression of TMRCA against # of clusters for BNPPHASE model,
fastPHASE with default parameters (FP) or K =200 clusters (FP200), and also against
the minor allele frequency (MAF).

bottom) we regress the TMRCA against the number of clusters used per marker. When
we ran fastPHASE with default settings, fastPHASE would almost always choose to use
20 clusters in the ML cluster assignment. When we increased the number of clusters to
200 (but otherwise left the parameters of fastPHASE with their default settings) large
numbers of clusters were still used (as can be seen in Figure 3.11). BNPPHASE often
used fewer clusters than fastPHASE. Visual inspection of the data suggests that fewer
clusters (on the order of the numbers used by BNPPHASE) are often more reasonable
representations of the data. As a control, we regressed the TMRCA against the minor
allele frequency and in this case we also found a negative correlation. The residual root

mean squared errors of the regression were smallest in the BNPPHASE model (Table 3.1).

3.5.3 Results III: imputation of male X chromosome data

In Figure 3.12 we show an example region of the male X chromosome used in the
imputation experiment on data from the Thousand Genomes Project. Figure 3.12
(top left) shows the pattern of minor alleles in this example region. In Figure 3.12 (top
right), a single sample from an MCMC chain for the BNPPHASE posterior is displayed. By
comparing this sample with Figure 3.12 (top left), it is clear that the clustering structure
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Figure 3.11: Regression of TMRCA against number of clusters. Points indicate
number of clusters used at marker (x-axis) vs TMRCA of marker (y-axis). Con-
tours show level lines of Gaussian kernel density estimation. Dotted line shows
regression. Top: clusters found by fastPHASE with 200 components (FP200).
Bottom: clusters found by BNPPHASE model.
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found by BNPPHASE is capturing the haplotype structure of the data. Figures 3.12
(bottom left, right) show the posterior distribution of the jump rate and the number
of states, respectively. The spikes in the posterior of the jump rate are aligned with
change points in the haplotype structure, indicating that recombination hot spots are
accurately recovered by the BNPPHASE model.

Imputation results for the 20 regions of the male X chromosomes from the Thousand
Genomes Project is shown in Figure 3.13. The BNPPHASE model consistently outper-
formed fastPHASE run with 10 components (the FP10 condition).! For 30%, 50% and
90% hold out conditions, the performance of BNPPHASE and FP20 is quite similar. The
BNPPHASE model tended to do better than other methods in the larger hold out condi-
tions. BEAGLE performed well on small hold out conditions, but poorly on large hold

out conditions.

We considered two conditions for sampling the parameters of the BNPPHASE model:
a fixed condition in which the parameters were fixed to set values, and an unfixed
condition in which hyperpriors were placed on the parameters. To find the parameter
values in the fixed condition, we perform a grid-search over «, g, and 7 and ran
MCMC chains without updating these parameters. We chose the parameters that
maximize the imputation accuracy for a fixed dataset, and used those parameters for all
other datasets. In the second condition (unfixed), MCMC was done for the full model,
with slice sampling for a, ag, 8 and . The average accuracy of the fixed condition for
the parameter values that maximized the grid-search was 0.99167 whereas the average
accuracy of the unfixed condition was 0.99187. Although small, this difference was
found to be significant under a sign test (p = 0.04). Since imputation is used as a
preprocessing technique in genome wide association studies, even small differences in

imputation accuracy could improve the quality of GWAS results.

3.6 Discussion

We found that the specifics of the hierarchical likelihood used in the BNPPHASE model
were quite important. In experiments which are not shown in this paper we looked
at two other likelihoods in addition to the one described in equation (3.10). The two
additional likelihoods were a uniform Bernoulli likelihoods and a discrete likelihood.
For the uniform Bernoulli likelihood we placed a uniform prior on 64 and for the
hierarchical deterministic likelihood we replaced the beta prior on 6;; with a Bernoulli
prior with mean §; (so that at a given marker, each cluster always emitted either the
major or the minor allele for every genetic sequence in that cluster). When experiment
II was repeated with each of these two additional priors, the BNPPHASE model yielded

! fastPHASE was run with the default number of iterations and restarts, along with the ‘~.1m’ com-
mand line flag, which prevented fastPHASE from throwing out sites in the conditions with more than
half the observations missing.
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Figure 3.12: Top left: Example region of male X chromosomes from the Thou-
sand Genomes Project. z-axis indicates chromosome position, y-axis indicates in-
dividual identity. Black pixels indicate minor alleles. Individuals are presented in
sorted order to emphasize haplotype structure (all models we discuss are exchange-
able and invariant to order of individuals). Top right: Latent cluster assignment of
sample from BNPPHASE model posterior. Color indicates cluster identity. Bottom
left, right: Posterior distributions for jump rate r and number of states averaged
over 20 MCMC samples, shaded region indicates sample standard deviation.
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Figure 3.13: Imputation accuracy for X chromosomes from the Thousand
Genomes Project (The 1000 Genomes Project Consortium, 2010). Data from
Phase I release v3, acquired on 17/5/2012. Beagle’s performance for large held
out conditions is low, thus y-axis is truncated to emphasize differences between
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Figure 3.14: Number of unique haplotypes and TMRCA along chromosome.
Red plot indicates number of unique haplotypes appearing in sample in window
extending 50 markers to both sides of each marker. Blue plot indicates TMRCA
in units of 4Nj.

worse imputation performance and sometimes failed to capture much of the haplotype

structure, especially in datasets with low minor allele frequencies.

3.6.1 Intuition for TMRCA regression results

We were surprised to see that the correlation between the number of clusters used by
fastPHASE or BNPPHASE and the TMRCA was negative. This could be explained by
the nature of population bottlenecks. When mutation rate is low, genetic variation is
influenced more strongly by genetic drift. In this case, as TMRCA increases the number
of fixed alleles increases, leading to fewer observed haplotypes in the modern population.
Bottlenecks involve exponentially expanding populations and so the total number of
new mutations in the ancient population is low relative to the modern population. In
Figure 3.14, we explored this hypothesis by counting the number of unique patterns of
alleles in a simulated bottleneck from experiment I. We found that this empirical count
was also negatively correlated with TMRCA (the Pearson correlation coefficient was
—0.7274).

3.7 Conclusion

We presented a new Bayesian nonparametric model for genetic sequence data
(BNPPHASE). This model is based on a Bayesian nonparametric generalization of the
fastPHASE model, and captures similar aspects of the genetic process such as non-
homogeneous structures. These nonhomogeneous structures often occur in population
bottleneck data. The BNPPHASE model defines distributions directly on the space of par-
titions and avoids the label switching problem. We showed that the BNPPHASE model
provides imputation performance competitive with the state-of-the-art. For simulated

population bottleneck data, we showed that it provides better regression against the
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TMRCA than the related fastPHASE model and also regression based on minor allele

frequencies.
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Glossary of symbols for BNPPHASE model

a Block of partition Ry
b Prior mean of the mass of the allele emission probability for location £
I57) Mean allele emission probability for location ¢
Yo Mass of allele emission probability for location ¢
Gie Block assignment of i-th individual at ¢-th location
e Allele emission probability for component k at location £
K Number of unique components among (¢4 )ea, @ € Re
K Number of unique components among (¢4 )¢a, @ € Rzi
o Concentration parameter for DP
Q Concentration parameter for CRP
mg (z, Forwards message
mb(z,¢) | Backwards message
N Number of individuals
Ty Probability of a sequence ‘jumping’ after location ¢
Re_i Partition of Re_i induced by Ry
Re Partition of Ry
Rzi Set R, with ¢ removed
Ry Set of individuals that ‘jump’ after location ¢
So Set of locations where an individual ‘jumps’ to a singleton cluster
T Number of markers
Tip Allele observed for individual i at location ¢
Yie Indicates if individual ¢ ‘jumps’ after location £
Zis Cluster assignment of i-th individual at ¢-th location
Pra Component assignment of a block a of a partition Ry
w™t Unique elements among {w.,,, : 4" #4,1 <{ < L}
W Mass of DP components other than wy,...,wg (wg =1 — Zle W)
w Mass of Dirichlet process components
%] Symbol representing new block or cluster




Chapter 4

The discrete
fragmentation-coagulation

processes

4.1 Introduction

We will now present the discrete fragmentation-coagulation process (DFCP) for genetic
sequence data (Elliott and Teh, 2012). This model uses the fragmentation and coag-
ulation operators defined in section 2.4 to form a dynamic-partition of the observed
genetic sequences. The DFCP model is defined through a discrete Markov chain as fol-
lows: starting with the partition R, of the set of sequences at the ¢-th chromosome
location, we first fragment each cluster in R, into smaller clusters, forming a finer par-
tition Q. Then we coagulate the clusters in Q, to form a coarser partition R4q1 of
the sequences at the £+ 1-st chromosome location. This process is repeated at every

chromosome location to produce a dynamic-clustering.

Through fragmentation and coagulation events, the DFCP models the block-like, mosaic
structure of haplotypes in genetic sequence data (Daly et al., 2001). This structure
arises due to recombination and gene conversion occurring in the ancestry of the ob-
served genetic sequences (we refer to section 1.2.1 for more detail). Locally, these
prototypical haplotype segments are shared by a cluster of sequences: each sequence in
the cluster is described well by a haplotype that is specific to the cluster’s location on
the chromosome. An example of such a structure found by a fragmentation-coagulation

process is shown in Figure 4.1.

As mentioned in section 1.3.2.2, the DFCP is related to the continuous fragmentation-
coagulation process (CFCP) which we also derived as a model for genetic sequence data
(Teh et al., 2011). In the CFCP, the dynamic-clustering is defined through a latent

partition valued Markov jump process in which the blocks of the partition transition
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Figure 4.1: Mosaic structure found by the fragmentation-coagulation process.
Sequences are obtained from phased trios in the CEU population in HapMap,
from base pair positions 32790152 to 32795548 on Chromosome 6 (NCBI Build 36
coordinates). Each SNP sequence corresponds to a trajectory, from left to right,
through the structure, passing through a number of segments. Each segment con-
sists of a sequence of alleles, while dotted lines correspond to transitions between
segments

through fragmentation events (in which one block splits into two) and coagulation
events (in which two blocks merge into one). The CFCP is an infinite limit of the DFCP:
as the rate of the DFCP and the distance on the chromosome between chromosome
locations ¢ and ¢+1 both go to zero, the DFCP converges to the CFCP.

Although inference algorithms for both the DFCP and CFCP scale linearly in the number
of sequences and the number of genetic markers, since the CFCP is a Markov jump
process, the computational overhead needed to model the arbitrary number of latent
events located between two consecutive markers might preclude scalability to large
datasets. Further, because the fragmentation and coagulation events in the CFCP are
binary (one block splits in two, or two blocks merge to one), the CFCP must use more

events than the DFCP in order to model complex latent structures.

We conducted two experiments in which we compared the DFCP and the CFCP to other
methods and demonstrated their state-of-the-art imputation accuracy. Our experi-
ments also suggest that the DFCP is more scalable than the CFCP and that MCMC
based on the DFCP mixes faster than the uniformization derived for the CFCP. In our
first experiment, we compared the imputation accuracy of the CFCP and DFCP and sev-
eral other methods on the same X chromosome data that we used in Chapter 3 (these
data are from The 1000 Genomes Project Consortium, 2010). In our second experiment,
we generated simulated data from the coalescent with recombination. To examine the
scalability of the DFCP and CFCP methods, we varied the number of simulated sequences

in the population. We found that the DFCP was more scalable.
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In the remainder of this section, we will give some intuition about how the DFCP ap-
proximates the genetic process and then we will describe the relationship of the DFCP to
other popular models in genetics such as IMPUTE and SHAPEIT (Marchini et al., 2007;
Delaneau et al., 2012). Then, we will give a mathematical formulation of the DFCP
through a generative process. We conclude this section with a formal construction of
the CFCP as a limit of the DFCP.

In section 4.2, we derive inference for the DFCP based on forwards-filtering/backwards-
sampling and slice sampling. We will also provide inference algorithms for unphased
genotype imputation and suggest several approaches for phasing data using the DFCP.
We will derive asymptotics related to the expected length of haplotypes in the DFCP
model. In sections 4.3 and 4.4 we describe in more detail the experiments we conducted
and discuss the results of those experiments. Finally, in section 4.6 we give some

concluding remarks about the advantages of the DFCP model.

4.1.1 Relation to the genetic process

The DFCP is an approximation of the sequentially Markov coalescent (McVean and
Cardin, 2005) described in section 1.2.1. A complete description of the ancestry of
a set of homologous genetic sequences can be approximated by a genealogy-valued
Markov process (McVean and Cardin, 2005). The DFCP further approximates these
genealogies with a dynamic-clustering in which individuals that are close together in

the tree distance implied by the genealogies are in the same cluster.

As noted in section 1.2.1, many models in statistical genetics are based on this Markov
dynamic-clustering approximation of the ancestry. By inducing a latent haplotype
chart, the DFCP model is quite similar in style to the SHAPEIT/SHAPEIT2 algorithms (De-
laneau et al., 2012, 2013). Being both efficient and accurate, the SHAPEIT2 model is

currently viewed as the cutting edge of genotype phasing algorithms.

The SHAPEIT2 algorithm is a discrete HMM method in which the forwards/backwards
algorithm is used to update the latent state assignments of two unphased diploid se-
quences (say, sequence i). The clusters are formed by examining all of the sequences
other than sequence ¢ and forming a chart similar to the diagram in Figure 4.1. The
chart in SHAPEIT2 is formed by dividing the chromosome into segments such that in
every segment, there are exactly K distinct haplotypes appearing among the sequences
(here, K is a user defined parameter). These segments are used as the the state as-
signment of the i-th sequence (i.e., these segments are the states of the HMM). At the
interface between adjacent segments, the HMM transition rule is found by an empir-
ical count. For each pair of segments at the interface, the probability of transiting is
proportional to the number of sequences other than i-th sequence that have made the

same transition between the pair of segments at that interface.

The DFCP model also forms charts wherein the segments in the charts are clusters in
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the CRP, and through the nature of the ‘rich-gets-richer’ property of the CRP, the
probability of a transition between segments is correlated with the number of other
sequences that have made the same transition. However, instead of dividing the chro-
mosome and forming segments between all the points in the division, the DFCP allows
the boundaries of segments to overlap. Further, rather than being fixed at K, the
number of segments at a given location is learned by the DFCP. These features of the

DFCP are made mathematically explicit in the next sections.

4.1.2 Definition of the DFCP through fragmentation and coagulation

Let R = {1,..., N} be the indices of N phased genetic sequences typed at L biallelic
locations (we refer to section 1.1 for more information about this sort of data type).
We will now define the DFCP as a dynamic-clustering on R. The DFCP is parameterized
by a concentration a > 0 and rates (dg)fz_ll with d; € [0,1). Under the DFCP, the
marginal distribution of the partition Ry is CRP(R, «,0) and so « controls the number
of clusters that are found at each location (with the expected number of clusters in
the prior being O(alog N). The rate parameter dy controls the strength of dependence
between Ry and Ryy1, with dy = 0 implying that Ry = Ry11, and dy — 1 implying

independence.

Given o and (dg)eLz_ll, the DFCP is described by the following Markov chain. First we
draw a partition R; ~ CRP(R, a,0). This CRP describes the clustering of R at loca-
tion £ = 1. Subsequently, we draw Qy|Ry from FRAG(Ry, 0, dy), which fragments each of
the clusters in R, into smaller clusters in Qp, and then Ry11|Qy from COAG(Qy, a/dy, 0),

which coagulates clusters in Qy into larger clusters in Ry1.

Each Ry has CRP(R,«,0) as its invariant marginal distribution and each Qy is
marginally distributed as CRP(R, a,dy). This can be seen by applying Theorem 1
from Chapter 2. (The following substitution of notation must be made to see the result
from Theorem 1: dy <0, dy<dy, a<a/dy.)

Fragmentation and coagulation operators are defined in section 2.4 in terms of CRPs
which are projective and exchangeable, and so the latent Markov chain for the DFCP is
projective and exchangeable in R as well. Projectivity and exchangeability are desirable
properties for Bayesian nonparametric models because they imply that the marginal
distribution of a given data item does not depend on the total number of other data
items or on the order in which the other data items are indexed. In genetics, this

captures the fact that usually only a small subset of a population is observed.

Theorem 1 also shows that conditioned on Ryy1, Q¢ has the distribution
FRAG(Ry41,0,dy) while Ry|Q, has the distribution COAG(Qy, a/dy,0). This means
that the Markov chain defining the DFCP is reversible (in contrast, fastPHASE, BNPPHASE
and IMPUTE2 are all non-reversible, as is explored in section 3.3.2). Chromosome repli-

cation is directional and so statistics for genetic processes along the chromosome are not
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reversible. But the strength of this effect on SNP data is not currently known and many
genetic models such as the coalescent with recombination (Hudson, 2002) assume re-
versibility for simplicity. The non-reversibility displayed by models such as fastPHASE
is an artifact of their construction rather than an attempt to capture non-reversible

aspects of genetic sequences.

4.1.3 Relation to the CFCP

The continuous version of the fragmentation-coagulation process (Teh et al., 2011),
which we refer to as the CFCP, is a partition valued Markov jump process (MJP). (The
‘time’ variable for this MJP is the chromosome location, viewed as a continuous vari-
able.) The CFCP is a pure jump process and can be defined in terms of its rates for
various jump events. There are two types of events in the CFCP: binary fragmenta-
tion events, in which a single cluster a is split into two clusters b and c at a rate of
dl'(#c)T'(#b) /T (#a), and binary coagulation events in which two clusters b and ¢ merge
to form one cluster a at a rate of d/a. (The coagulation probability is independent of

the sizes of a,b and c.)

As was shown in (Teh et al., 2011) the CFCP can be realized as a continuous limit of the
DFCP. Consider a DFCP with concentration o and constant rate parameter d.. Then as
€ — 0 the probability that the coagulation and fragmentation operations at a specific
time step ¢ induce no change in the partition structure R, approaches 1. Conversely,
the probability that these operations are the binary events given above scales as O(¢),
while all other events scale as larger powers of . If we rescale the time steps by £ +— &/,
then d — ed and the expected number of binary events over a finite interval approaches
€ times the rates given above and the expected number of all other events goes to zero,
yielding the CFCP. This is shown by taking the following limits. For fragmentation, we

have from equation (2.9):

Pr(FRAG(R 0, ad) = Q|72) (4.1)
#Q #R
00 H HF #b — ed) (4.2)
beQ
1+ O(e2) if 9 =R,
200 ed" QI L O?) if #Q - #R=1and Q=R - cU{a,b}, (4.3)
O(e2) if #Q — #R > 1.

In this limit, to arrive at equation (4.3) we have used that I'(X + ed) = I'(X) + O(¢)
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for X > 0 as ¢ — 0. For coagulation, we have from equation (2.10):

Pr(Coac(Q,a/(ed),0) = R|Q) (4.4)
_ (a/(ed))*RT(a/ (d))
T D(a/(ed) + #9Q) i%r#c (4.5)
- (sd/a)#Q #R
1-(14ed/a)-...- (1 +ed/a(F#Q — gzr (#Ca) (4.6)
1+0(@E%) ifQ=R,
20 cd/a+0(2) HH#Q-#R=1and Q=R —cU{a,b}, (4.7)

O(2) if #0 — #R > 1.

To derive equation (4.6) we have used that I'(X)/INX +J) =1/X - 1/(X +1)-...-
1/(X+J—1) for X >0 and J € N and we have multiplied the top and bottom of the
fraction by (ed/a)#<

In the CFCP fragmentation and coagulation events are binary: they involve either one
cluster fragmenting into two new clusters, or two clusters coagulating into one new clus-
ter. However, for the DFCP the fragmentation and coagulation operators can describe
more complicated haplotype structures without introducing more latent events. For
example one cluster splitting into three clusters (as happens to the second haplotype
from the top of Figure 4.1 after the 10th SNP) can be described by the DFCP using just
one fragmentation operator. The order of the latent events introduced by the CFCP

required does not matter, adding unnecessary local modes to its posterior.

4.2 Methods

We will now derive a Gibbs sampler for posterior simulation in the DFCP by making use
of the exchangeability of the process. Each iteration of the sampler updates the trajec-
tory of cluster assignments of one sequence i through the partition structure. To arrive
at the updates, we will consider the conditional distribution of the i-th trajectory given
all of the others, which can be shown to be a Markov chain. Coupled with the determin-
istic likelihood terms, we then use a backwards-filtering/forwards-sampling algorithm
to obtain a new trajectory for sequence 7. In this section, we derive the conditional
distribution of trajectory ¢ using the definition of fragmentation and coagulation and
also the posterior distributions of the parameters dy, & which we will update using slice
sampling (Neal, 2003).

4.2.1 Likelihood model and parameter priors

We used a discrete likelihood in which the same observation is emitted for each se-

quence in a cluster. The likelihood model was specified as follows. Given the sequence
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of partitions (Rg)szl, we model the observations in each cluster at each location ¢ in-
dependently. For each cluster a € R, at location ¢ and for each sequence i, let a;p € Ry
be the cluster in Ry containing i. Let 6, be the emission of cluster a at location /.
Since SNP data has binary labels, 6, € {0,1} is a Bernoulli random variable. Let the
mean of 6y, be By (this is the latent allele frequency at location ¢). We assume that
conditioned on the partitions and the parameters, the observations x;; are independent,
and determined by the cluster parameter 6;,. Thus the probability Pr(6y, = 1|5,) = B¢
and the probability Pr(z|a; = a,0p,) = d(xi¢ = 0y,) where § is an indicator function

(i.e., it is one if x;; = 0y, and zero otherwise).

We place a beta prior on 5y with mean parameter 1/2 and mass parameter ;. The
mass parameters are themselves marginally independent and we place on them an
uninformative log-uniform prior over a range: p(ye) o 7, 1 4 > ~min. Since this
distribution is heavy tailed, the B, variables will have more mass near 0 and 1 than
they would have if v, were fixed, adding sparsity to the latent allele frequencies. This
phenomenon is empirically observed in SNP data. The parameters 8y will be integrated

out during inference.

We also place an uninformative log-uniform prior on the rates dy over a range: p(dy)
d[l, dp > dmin- Note that the prior gives more mass to values of dy close to dmi, which
we set close to zero; we expect the partitions of consecutive locations to be relatively
similar so that the mosaic haplotype structure can be formed. Finally, we place a log-
normal prior on « with mean m and variance v: loga ~ N (m,v),a > 0. The graphical
model for this generative process is shown in Figure 4.2(Top), and it is summarized in

equation (4.8).
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Yaé€em \Y

5

Ri ~ CRP(R, a,0),
Q|Ry ~ FRAG(Ry, 0,dy),
Ro11|Qp ~ COAG(Qy, a/dy, 0),
log o ~ N (m,v),
log dy ~ Uniform(log Ruin, 0),
Tielaie = Ota;y, Ora|Be ~ Bernoulli(By),

v v
Bulye ~ Beta( £, 14,

272
log v¢ ~ Uniform(log ymin, 0). (4.8)

Vi<i<n

()
e
()

/
a € mo

<
IS
m
3
3 ~

Figure 4.2: Top: Plate diagram for the discrete fragmentation-coagulation pro-
cess. For brevity hyperparameters are not shown. T denotes number of markers.
Bottom: Generative process for genetic sequences (xz'z)fv:l.
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4.2.2 Joint probability distribution for DFCP

The full probability for the dynamic-clustering prior on the partitions Rq,..., Rz,
Q1,...,91_1 induced by the DFCP is given by the following equation:

Pr(R, Qo d) = H (#a)
a€R1
Llj dffédj:; Z ag{ze PF((# bg T(#b — dy)
[—[ ‘“/diffiigjd‘ EIF 4 |
m f[ 11 )# & IR

- Oz/dg d#Qi #Rer1—#Re
] ri#c) H Fa/de + #RoT( — dgFar L] TG0 =)

a€ER, =1 beQyp

(4.9)

In the first equality listed in (4.9), the bracketed expressions correspond to the prob-
abilities arising from the initial CRP, the L — 1 fragmentation operations and the L
coagulation operations respectively. The exchangeability and reversibility of the pro-
cess follows from this equation. Also, from this equation, we can derive the posterior

probabilities for o and d; conditioned on R and Q using Bayes’ rule.

0425:1 T L-1 o
Pr(a|R, Q,d) x PR )H (r< Jdy)

a4+ N) - T(o/dy + #Qp)
D(a/de)d; ™~ R
T(o/de + #Q0)T (1 — dy)#2 H L(#b — do)-

Pr(de|R, Q, ) (4.10)

4.2.3 Gibbs update for latent block assignment of sequence ¢

We will use the same notation that we used in Chapter 3 to define projections of
partitions and events involving the cluster assignment of an individual sequence. In
particular, we will fix sequence i and for a partition R of [N] we will denote by R~*
the partition of [N] — {i} (i.e., the set 1,2,...,i—1,i+1,..., N) induced by R. That
is, we remove sequence ¢ from the block of R in which it resides, and if removing
sequence ¢ from that block yields the empty set then we also remove the empty set
and thereby form a partition of [N] — {i}. By exchangeability, we imagine that the
partition structure were built sequentially and that sequence ¢ was the last sequence to

be added to it. Thus, we need notation to describe which blocks sequence i joins as it
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is added to the partition structure. We will denote by a; the assignment of sequence i
at location £. If sequence i joins a cluster a that already exists in R~ we will denote
this event by ay = a. But if a new cluster is created for sequence i (i.e., if sequence 4
will be in the block {i} in R) then we denote this event by a; = @. Similarly, for Q we
will denote the assignment of sequence i in Qy by b, and write by = b or by = @ for the
cases where b, joins a cluster b € Qe_i or a new cluster being created for sequence ¢ in
Q. We now use the conditional distributions derived in section 2.4.2 to arrive at the

following conditional equations:

#a/(N —1+4+a) ifacR{,

Pr(a1:a|R1—i)={ a/(N-1+a) ifa=02.

(#b—dp)/#a ifa€ R, be Fya),
. de#Fi(a)/#a faeR;" b=2,
Pr(by = blag = a, R, %, Q%) =
r(be = blae =, R;", Q") 1 fa=b=0o,
{ 0 otherwise.
de#Co(a)/(a+ d#Q;") ifa€ R b=,
i i of (o + de#0Q, ") ifa=b=02,
Pr(ag_H = a|bg = b,ReJrl, Qé ) = 1 ¢ i R_Z. b C
ifa€eR, /b€ Cla),
0 otherwise.

(4.11)

Here, Fy(a) is the set of blocks b € Qp into which the block a € R, fragments, and
Cy(a) is the set of blocks in Qp that coagulate to form the block a € Ryy;. As in Elliott
and Teh (2012) we define the following messages for £ =1,...,L — 1:

me(a) = Pr(x; (g1ynlae = a, Ry}, QZ?L_l)),

m(b) = Pr(z; (pp1y.2lbe = b, Ry}, Qin 1))

These messages can be computed recursively as follows:

m(b) = Z mé“(a) A(z; (041)la) Pr(agr1 = alby = b, we_jl,pzi) . (4.12)
aer, ' U{a} Likelihood.  Coagulation probabilities from (2.13).

mé(a) = Z mb(b)  Pr(by = blag = a, 7, %, p; ") . (4.13)
bep, ‘U{z} Fragmentation probabilities from (2.12).

Here A(z|a) is the likelihood term induced by the discrete likelihood defined in Sec-
tion 4.2.2. In particular, in the event that a # &, the i-th sequence joins a nonempty
cluster a € Ry. Since this cluster will emit the same allele for every sequence in it,
the allele emitted by sequence i at ¢ is determined and A(x|a) = §(zj = O4¢), where
9 is the Dirac delta function. On the other hand, if a = @, then A(x|a) is found by
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marginalizing the 3, parameter in the beta/Bernoulli hierarchy for 6 at ¢, and:

2 2
Ye/2 + nig Ay = 0|2) = Ye/2 + nog

ANy =19) = ———— —_— =
Ye + n1e + noe Ye + n1e + nog

(4.14)

Here n1y = #{a € R;"|0a¢} is the number of clusters in R, * that emit the major allele

and ngy is the number of clusters in Rg_i that emit the minor allele.

As the fragmentation and coagulation conditional probabilities are only supported for
clusters a, b such that b C a, these sums can be expanded so that only non-zero terms
are summed over. Noting this restriction on the support and substituting (4.11) into
(4.12) and (4.13) yields the following. For £ =¢,..., L — 1:

m%(b) = Pr(xi,(€+1):L|bé = b7 Rzzv QZ:(iL—l))’
= Z PI'( i,(£+2):L’ae+1 =a, R(_fil):[ﬂ Q(_Zkl):(Lfl)) (415)
aERz_‘_lU{@}
“Pr(w; (041 ’a£+1: a) Pr(agi1=albe=b,R; !\, 9;"),

Z mf—}—l 7(£+1)’CL£ = a) Pr<a€+1 = a‘bg =b R[__ilv QZ_Z)7

a€R, U{o}

[-&-1

m(méﬂ(@)[\( (+1)| D)+ Z me (a (a)A(z; (e41)la)de#Co(a)) if b=2,

= aeR[ﬁl
mtgl(a)A(azi’(Hl)]a), where a € Rﬁ—s—l unique, s.t. b € Cy(a) ifbe Q"

mé(a) :Pr(xi,(€+1):L|af = a, RZE» QZ(iL_l))v
> Pr(wieqayrlbe = b, Ry}, QZ?L,U) Pr(by = bla; = a,R;*, Q;"),
beQ; 'u{o}

= > mp(b) Pr(by = blag = a, R, ", Q;),
beQ; 'u{o}

2 | mE(@)de#Fu(a) + Y mp®)(#b—do) | ifae R,
bEFg(a)
m5 () if a = 2.

(4.16)

To sample from the posterior distribution of the trajectory for sequence i conditioned

on the other trajectories and the data, we use the Markov property for the chain
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ai,bi,...,br_1,ar and the definition of the messages. Starting at location 1, we have:

Pl“(a1 = a|$i,ﬂﬂi,P;2L,1))
x Pr(a; = a|7rl_i) Pr(zii|a1 = a) Pr(z;2.r]la1 = a,W;iL, p;éL_l)),
= Pr(a; = a|n]") A(z1|ar) me(a). (4.17)
—_—— —

——
CRP probabilities (2.11). Likelihood from (4.14).
For subsequent by and ag4q for locations £ =1,..., L —1,
_ _ - —i
Pr(by = blay = a, mi?ﬂ-l:L7p1:(L—1))

OCPI'(Z)@ = b’a’f =a, ﬂ_g_i7 pé_z) Pr(xi,(f-i-l):[/’bf = b7 ﬂ_f_jﬂ p[_;gLfl)%

= Pr(by=blag=a,m," p;") m%(b). (4.18)

Fragmentation probabilities from (2.12).
Pr(ag = alby_1 = b, xi,ﬂii, pil('L_l))
o Pr(ag = albe—y = b, 7, ", p; 1) Pr(zilar = a) Pr(x; (p41).1]ae = a,WZE,PZfL,l)%
=Pr(a; = albe_1 = b, 7, ", p;",) A(zig|a) mé(a). (4.19)
———

Coagulation probability from (2.13). Likelihood from (4.14).

The complexity of this update is O(KT') where K is the expected number of clusters in
the posterior. This complexity class is the same as for the CFCP and other related HMM
methods such as fastPHASE. But there is no exact Gibbs update for the trajectories in
the CFCP. Instead the CFCP sampler relies on uniformization (Rao and Teh, 2011).

4.2.4 Slice sampling for parameters «, dy, and ~,

We use slice sampling (Neal, 2003) to update the a and dy parameters conditioned on
the partition structure and also the likelihood parameters. To this end, we must derive
unnormalized versions of the parameters. We use Bayes’ rule, equation (4.9) and the
identity [a]¥ = b™T'(a/b+ N)/T'(a/b), and then the posterior probabilities of o and dy

given the partitions Ry.7, and Qy,(;,_1) are as follows:

Pr(a|R, Q,d) x Pr(a) Pr(Ri|a, di) Pr(Q1|R1, e, dy) - - Pr(RL|Qr—1,0,dr—1),

D) pist yr 17 Dla/dy)
x Pr(a)ma L3 #R H T(a/ds + #00)" (4.20)

Pr(d|R, Q, @) o< Pr(dy) Pr(Qe|Ry, v, dp) Pr(Re41|Qe, v, de),

_ —#9
x Pr(dg)df & #Re- #Ro+11(a/de)T(1 — dy) I] r#

T(#Qp + /dy) bea,

(4.21)
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The conditional distribution for v, is given by the definition of the likelihood in sec-
tion 4.2.2. We we can derive this update for v, with 8, marginalized, using the following

equation:

C(ve)T(v/2 + )T (/2 + noe)

Pr(velz, Re) = Pr(ve) T(v/2)20(y + nie + noe)

(4.22)

Here Pr(v) is the log uniform prior from equation (4.8) and nys, nge are the number
of clusters at location £ that emit the major or minor allele respectively, as in equa-
tion (4.14).

This concludes the specification of MCMC simulation of the DFCP posterior for phased

genetic sequence data.

4.2.5 Genotype imputation for unphased data

We will now derive an MCMC algorithm for genetic imputation for unphased data
using the DFCP model. As in the case considered in the previous section, we use mes-
sage passing to specify a Gibbs update for the latent clustering of the diploid pair
of chromosomes for each individual conditioned on the dynamic clusterings of all the
other individuals. The allele emission at a missing location can then be predicted by
collecting MCMC samples and then marginalizing the cluster assignments of the pair

of cluster assignments for the diploid sequence of an individual.

A genotype is a sequence of unordered alleles and so the Gibbs steps we will derive
update the latent cluster assignments of both of the sequences representing the pair of
haplotypes comprising a given chromosome for a given diploid individual. Consequently,
we also produce an update for the relative ordering (i.e., the phase) of alleles at each

pair of consecutive locations for which that individual is heterozygous.

As in Chapter 2, we denote the cluster assignments of the coagulated states of a se-
quence by ay € Ry and of the fragmented states by by € Qp. So, Ry is the partition
induced by the clustering of the sequences at location ¢ and Oy is the clustering at
location ¢ found by fragmenting R,. Since we are considering diploid sequences here,

we will write a;p = (a,gl}), az(.g)) for the clustering assignment of the two sequences that

comprise the i-th diploid individual. Thus al(.l}) and ag) are blocks of the partition
R, representing the cluster assignments of the first two sequences comprising the i-th

diploid pair at location ¢. The notation (bl%), bg)) is defined in an analogous way.

Because we are considering a Gibbs update for the two sequences comprising the i-
th diploid individual, by ’R,Zl (and likewise by Qzl) we mean the partition of all of
the sequences except the two sequences comprising the i-th diploid individual. So, if
there are N individuals, then Ry will be a partition of 2n sequences and ’Rzi will be a
partition of 2n — 2 sequences. Finally, the notation for the cases where the sequences

are in clusters by themselves are handled as follows. If a(!) is in a cluster by itself, we
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will write o) = @) (likewise for a® = @@ p(1) = g1 and b?) = @), If ¢V and
a?) are both in the same cluster, but no other sequence is in that cluster, we will write
M) = a? = . Thus, by (aV,a?) = (&M, (@) we mean that o) and a(? are in
separate clusters, each of size 1 and by (a(V),a®) = (&, @) we mean that a(!) and a?

are in the same cluster, a cluster of size 2 (i.e., one that is not in R™).

(2)

The joint distributions for the cluster assignment of bz('l}) and b;,” under fragmentation

and the joint distribution for the cluster assignment of aﬁ ), ag) under coagulation are
given in the following display. For brevity, we suppress the location subscripts (¢ or

¢+ 1) on the right hand side of the equations.
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Pr (o) =00, b7 =10 = o™, af) = a®, Ry, Q;)

#a+1
d#F(a) 1-d

#a a+1
o #ﬁj;) ,a® e R.q 7e a® b<1 € Fla <1>) b<2> € F(a<2>),

d#ia(g(;)) . d#ia(é@) if a(l),a@) IS R_i ;é a(? b(l) = Q(l) b(2) = ®(2)

7 %.% ifa(l)_a(Q)_aefR l7b(1)_b(2)—b€F()
i}ﬁ(aj ' }Z&TIZ ! aV=a?=ae R b 2 b2, and 8, b2 € F(a),
e ifa® =@ =ger ’,b(l) _ Q(I),b(z) € Fla),
d#F( ) dF#E(@)+D) e (1) _ 42 = ¢ R b0 — g1 @) — 52,
(1)
(1)

Y

dféf) if o € R71,a® = 5@ s ¢ F(aM), 2 = @),

;—(cll) it a® € R, a® = z@ p(1) = (V) p2) = 5@,
1 ifa® = g ¢ = 5@ p1) = () p2) = F@),

1—d ifa® =a® =g (M) =p2 = gz,
d it a® =@ = g p1) = g p@ = 5
0 otherwise.

(4.23)
1  _ 2 _ @) _ i i
Pr <ai,£+1 = a(1)7ai,€+1 = al |bw = by = b(2),7€£+1, 9 )

d#C(a)  _d(#C(a)+1) if b1 = (1) p(2) = x(2) (1) — 4(2) = ~i
a+d#%%’ a+d(#Q,<2)+1) if b o b o\ a a CLGRK_H,
d#C@) = d#C(a®) if 51 = (M) p@ = @ 1) 4@
atd#e, ardpo ) L0 =@ EE=a et e Rityal? =2,

o d(#ﬁ—i 5 i b = () p2) = @) (1) = ¢ = g,
a+ » o+ e, T
a . a it () = () @ = 5@ 41 = (1) 42 — x2)
T ardROTD) if b b a'%) a g\ a a'\e)
= a o p) = @ = g () = @ —
T if b b g, a a a,

d#C(a) e (D) p(2) 1) = 4@ = R,
a+d#Q2i ot =0 =0,0" =a “c £+17
« s (1) — ( ) p(2)
a+d#Q," itb 0 € C(a

(2) )
d#C(aM) if (M =g p2 ¢ C(a(2 ), where aV =g @R
C(

, Where a®) =g a(Q)GRZ_Jil’

at+d#9;" +10
1 if oM e CaM), b

0 otherwise.

a®), where a,a® ¢ R£+17

(4.24)

In the above piecewise functions, for the cases that the conditions are symmetric in
a® and a® or b®) and b, only one of the possible identical conditions are listed for
brevity. For example, the condition b)) = g p2) ¢ C’(a(2)), where o) = g ¢ ¢
R;ﬁl is identical to the condition () € C'(aM), b2 = &®) where a(V) € szl, a® =

2@ except with a(P) and a? reversed and b(!) and b2 reversed. This second condition
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does not appear in the piecewise function as it can be inferred by the probability listed
for the first condition. (Here, as before C(a) is the set of blocks that coagulate to form
a and F(a) is the set of blocks that a fragments into).

In order to link the genotype of an individual to a likelihood, we must define an ordering
of the alleles at heterozygous locations. We do this by introducing a latent variable
1;s- The value 1;5 is defined for each heterozygous location s for individual ¢ and it

indicates whether the minor allele is emitted from the cluster agl) or from the cluster

a?). The prior on 7;s by symmetry is Pr(n;s = 1) = 1/2.

The likelihood is based on a Bernoulli model with deterministic output. So:

e _ (D _ .2
1 ifp=1and 967%(? =z, ,9&(153) =z,
) (2 .
A(xi€|0£, agf)’ (Igg)vn) - 1 if n= 0 and 0£7a£;) = 1’53), 9£7a(§) Z(e), (425)

0 otherwise.

Thus, the messages for genotype imputation with unphased data are defined as follows:

mé(aM),a®)) = PT(%ALLWS) =al, (2) =al® ),R[i, 9,1) (4.26)
m& (W, b3 ) = PT($i,£+1:L\b§;) =, bE/ =@ =0, RyL, Q1) (4.27)

The domain of (a™,a®) is (R," U {oW} x R, U {2®}) U {(2,2)}. There are
two possibilities for the domain of (b™"),5®3), 7). First, if z; is heterozygous, then the
domain of (61,62, n) is ((Q," U {aW} x 9,7 U{a®}) U {(2,9)}) x {0,1} if x4
is heterozygous. Otherwise, if x; is homozygous then the domain of (b(l),b@),n) is
(Q"u{zW} x 9" U{e@}) U {2,o}. Note that 1 only appears in the messages
for mzf and not mé because the phase only affects the probability of the data through
the clustering Ry (and not through C;). By their definition, these messages can be

computed recursively as follows:

Likelihood from (4.25).

1
m%(b(l)vb(2)7n) =35 Zmé(a(l)7a(2)) A(wi,ZJrl ‘9@+1,CL(1),CL(2),T]),
(a(l)ﬂ@))

2 1 2 —q —q
PI“( 1(53‘1 _a(l)’agﬂll :a(2) |b§£) :b(l)’bgg) = b(2)aRg+p Qg ) (4.28)
Coagulation probabilities from (4.24).
(@)= 3 e (b0 ) Pr(e) =60 = 43[aD a0 2 = O R 07
(b(l)b<2 7) Fragmentation prol;:;bilities from (4.23).

(4.29)

These messages can be further expanded over their support using equations (4.23)
and (4.24). By using the fact that the fragmentation and coagulation probabilities
in equations (4.23) and (4.24) are zero over much of the support, the summations

in (4.29) can be restricted to a subset of the support, adding efficiency to the message
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computations. Due to their complexity, the expanded forms are not provided here.

4.2.6 Phasing

Phasing algorithms are often designed to minimize the switch error of the proposed
phasing of the sequence of genotypes (Scheet and Stephens, 2006). The switch error
of a proposed phasing is defined to be the minimum number of crossovers required to
map the proposed phasing onto the true pair of sequences. Each state in the chain
of MCMC states in a posterior simulation of the DFCP induces a proposed phasing.
In Scheet and Stephens (2006), the authors propose a phasing by taking each pair of
consecutive heterozygous sites and choosing the phase between those two sites based
on the most frequent phase occurring in the chain of MCMC states. We can adopt this

method by using the messages derived in section 4.2.5.

We note that this method of choosing the most frequent phase from the MCMC corre-
sponds to choosing the estimate for the phase that minimizes the Bayes risk. Suppose
that 7 is a random object with density p(n), and L(n,n’) is a loss function. The Bayes
risk (Lehmann and Casella, 1998) of the estimate 1’ is the expected loss E,(L(n,7)).
In our case, L(n,n') is the switch error between the true phasing (1) and the proposed
phasing (n'). The switch error, L(n,n’) is defined as the sum of Kronecker delta func-
tions, one for each pair of consecutive heterozygous sites, which measures whether or
not the minor alleles for consecutive heterozygous sites are on the same chromosomes
in the phasings n and 7’. Since expected value is linear, E,(L(n,n’)) splits over each
of the Kronecker delta functions. Minimizing E,(L(n, 7)) thus reduces to minimizing
the Kronecker delta functions at each pair, which is equivalent to setting the phase of
7’ to the empirical median estimate of 1 from the samples produced by the MCMC.
This means that to phase genetic sequence data using equations (4.28) and (4.29),
we can run MCMC using those messages, and then after discarding burn-in, we set
ne = argmax, #{t : nét) = 1n'}, where nét) are the values of the phase over MCMC
samples indexed by t.

4.2.7 The length of a haplotype

In this section, we study the expected length of haplotypes in the DFCP model. Under
the genetic assumptions from section 1.2.1, we expect the recombination rate and the
mutation rate to both affect the length of haplotypes. As we increase the number of
individuals observed we would also expect the length of the haplotypes in the sample to
decrease. This is because of the following phenomenon: as we observe more individuals
we will tend to observe more mutations that occur with low frequency; these are known
as rare variants. For the mutation models discussed in section 1.2.2, the amount of
variation is proportional to the total tree size of the genealogies (this is discussed in
section 1.2.2).
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In order to understand the distribution of the length of haplotypes in the DFCP model,
we will study the probability that a haplotype extends for just one more site (call this
probability p). We will find that this probability p can be computed exactly. If the
extension of a haplotype for just one more site were independent of the length of the
haplotype, then haplotype lengths would be distributed as a negative binomial with
rate p and 1 failure. However, due to statistical dependence between the partition
structure and the haplotype length, the haplotype length is not simply the number of
independent successful extensions before the first failure to extend (i.e., the mean of a
negative binomial). Despite this, we will provide empirical estimates of this quantity
and compare them to an approximation of the haplotype length in which we assume

that the haplotype length is distributed as a negative binomial.

A haplotype in the DFCP is defined as latent block a of the partitions R,, Qy that
does not fragment into other blocks and does not coagulates with other blocks for
some number of steps. The length of the haplotype is simply the number of steps
in which no fragmentation nor coagulation events involving the block a occur. We
will now compute the probability p(a) that a the block a € Ry does not experience
fragmentation or coagulation in the transitions Ry — Qp — Ry+1. This quantity is a
function of the DFCP parameters o and d (we will assume dy = d is constant). We will

also find that we must marginalize the partition Qy in order to arrive at p(a).

Let a be a block in a partition Ry for a DFCP on the index set R = {1,..., N}. Suppose

that the size of a is m (so, #a = m). The value of p(a) is found as follows:

1. We will first consider fragmentation. Since Q|R,d ~ FRAG(R,O0,d), the proba-
bility that a does not fragment is given by:

I'(m —d)

T = a0 (4.30)

This is found by considering the CRP(a,0,d) for the fragmentation applied to
block a of R. For no fragmentation to occur, each item of @ must be added to the
same block of that CRP. The first item must create a new block (an event that
occurs with probability 1). The second item has two choices: start a new block
with probability d, or join the same block as the first item with probability 1 —d.
Suppose that all previous items joined the same block as the first item. In this
case, a subsequent item ¢ > 2 would have the same two choices: start a new block
with probability d, or join the same block as the first item with probability ¢ — d.
Thus, the probability that the i-th item joins the same block as the first item is
(t—1—d)/(i —1). The product of these probabilities yields the equation (4.30)

which is listed above.

2. For coagulation, suppose that R|Q, a,d ~ COAG(Q,«/d,0). By exchangeability
of the CRP we suppose that the block a is the last item to be added to the process
CRP(Q,a/d,0) that describes the coagulation. By the sequential construction
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of the CRP, the probability that block a is placed in a cluster by itself is given
by:

a/d
—_—. 4.31
a/d+#9 -1 ( )
The value of p(a) conditioned on Q is given by the product of equations (4.30) and (4.31)
(this is therefore the probability that no fragmentation occurs and that no coagulation

occurs):

al'(m —d)
(a+d(#Q—1))I'(1—d)I'(m)

p(a, Q) = (4.32)
We will now marginalize over #Q to find the expected value of p(a). By the definition
of the DFCP, in the prior Q is distributed as CRP(R, a, d). But since the block a does
not fragment in the fragmentation step R — Q, we must condition on the event that
Q has a block of size m (i.e., we need the distribution of Qla € Q). According to the
sequential scheme for the two parameter version of the CRP given after equation (2.7),
the induced distribution of the random partition Q \ {a} on the set R\ a has law
CRP(R\ a,a+d,d). (Here ‘\’ denotes the set minus operation.) The addition of d to
the concentration parameter can be seen by normalizing the events of the sequential
scheme conditioned on the event that no subsequent items join the first cluster of the

CRP (this is similar to the concept of exponential tilting for Dirichlet processes).

The distribution of the number of blocks in the two parameter version of the CRP is
given in (Pitman, 2006) as follows. If A ~ CRP({1,..., N}, «,d), then:

+ d k—ls—l,—d
Pr(#A— k)= . klu JIVNl”“ . (4.33)

Here [z]" = z(x + 1) ...(x +m — 1) is Kramp’s symbol (for m € N) and S;]},;_d is a

generalized Stirling number of the first kind (Toscano, 1939). In particular:

k
. N [ & 187
SN}]; 4 — the coefficient of ¢V in o Z[l - d]]_dlé— . (4.34)
P\
Thus, after making the substitution into equation (4.33) for the concentration param-
eter a + d, discount parameter d and size #(R —a) = N —m, the value of p(a) is given

by the following equation:
NZ ol (m — d)d*'T(a +d + ) (a/d + k + 1)Sy 4
pla) = Zl (a+d(k—1)T'1—-d)T(m)(a/d+2)(a+d+ N)’
(4.35)

Here we have used the following identity for Kramp’s symbol: [z]} = d"T(z/d +
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N)/T(z/d), when d > 0, and N € Z;. We compute the numerical value of (4.35) for
various settings of a,d and N and also simulate from the DFCP prior with the same
settings, in order to provide an empirical estimate of this distribution. The computation
of the numerical values was done using MATHEMATICA 10 and the code used is provided
in Algorithm 4.1. To find the empirical estimate, we simulate from the DFCP prior for
one step and fix a cluster with a given size and record whether or not it experiences
a fragmentation or coagulation event for that step. The results of these computations

and simulations are given in Figure 4.3.

Algorithm 4.1 Computation of expected haplotype lengths for the DFCP model,
MATHEMATICA 10 code. Input: Concentration parameter a, rate parameter d, size n.
Output: Enumeration of expected lengths of haplotypes of sizes m = 1,...,n for DFCP
prior with concentration o and discount d on n individuals.
GeneralizedStirlingS1[A_, B_, N_, K_] :=
Sum [
StirlingS1[N, j] *
StirlingS2[j, K] *

AN - ) *
BA(J - K),
{j, K, N}];

PADK[A_, D_, K_, N_] :=
D"(K - 1)*Gammal[A + 1]/Gammal[A/D + 1]
Gamma[A/D + K]/Gammal[A + NJ*
GeneralizedStirlingS1[-1, -D, N, X];

NOEVENT[A_, D_, K_, N_, M_] :=
AxGamma[M - D]/(
(A + Dx(K - 1))«*
Gamma[1l - D]*
Gamma [M] ) ;

PMQ[A_, D_, K_, N_, M_] :=
NOEVENT[A, D, K, N, M]*PADK[A + D, D, K, N - M];

PM[A_, D_, N_, M_] :=
Sum[PMQ[Ax Ds k’ N: M]’ {ks 1’ N - M}];
LM[A_, D_, N_, M_] := PM[A, D, N, M]/(1 - PM[A, D, N, MI]);

# Modify these lines to specify input

a := 1.0;
d :=0.1;
n := 10;

# Output stored in ‘Result’
Result := Table[{m, LM[a, d, n, m]}, {m, 1, n - 1}];

If we condition on the event that a haplotype of size m extends one step to the right
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Figure 4.3: Probability of extending a haplotype. y-axis indicates probability
of haplotypes extending and x-axis indicates number of individuals sharing the
haplotype. Blue line indicates the actual probability. Green line indicates mean
empirical estimate from DFCP prior simulation. Error bars indicate the standard
error of the mean. Conditions are listed in plot titles.
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Figure 4.4: Approximation for haplotype lengths. y-axis indicates length of hap-
lotypes and z-axis indicates number of individuals sharing the haplotype. Blue
line indicates approximation of haplotype length. Green line indicates mean em-
pirical estimate from DFCP prior simulation. Error bars indicate the standard error
of the mean. Conditions are listed in the title. y-axis indicates number of sites a
haplotype extends beyond the first site, so an expected value of 0.65 indicates a
haplotype length of 1.65.

of a location ¢ without fragmenting or coagulating, then through equation (4.31), we
get information about Q. To compute the probability that the haplotype will extend
one more step to the right (i.e., a total of two steps from the first position in which the
haplotype is observed), we must form a summation over all possible values of m. Rather
than carrying though with that analysis here, we will instead make the assumption
that the extension events are independent. Under this assumption, the number of
extensions to the right of £ is given by a negative binomial random variable with rate
p(a) (and one failure) and so the expected haplotype length is approximated by £!(a) =
p(a)/(1 —p(a)). In Figure 4.4, we compute this quantity and plot it against empirical
estimates for the haplotype lengths found through simulating the DFCP posterior. From
Figure 4.3 and Figure 4.4, we see that for low values of the concentration parameter «,
the expected haplotype length for haplotypes shared by relatively large and relatively
small numbers of individuals tend to be longer. The expected haplotype lengths for



Methods 103

haplotypes shared by roughly half the population tend to be shorter. We also see that
the qualitative behavior is mostly captured: under the assumption of independence
for the haplotype extension probabilities and approximating these probabilities with
L'(a), the haplotype lengths are correctly estimated within an order of a magnitude
(i.e., roughly within 1/10).

In Figure 4.3 and Figure 4.4, we simulated 1,000 draws from the DFCP, and computed
the empirical probability of a haplotype extending just one more site, conditioned on
the size of the haplotype. In these figures, the green lines correspond to the empirical
probabilities of each haplotype extending just one more site. We computed these em-
pirical probabilities by conditioning on each of the 1,000 draws. Therefore, since large
haplotypes with many individuals are rarer, in our simulations we observed fewer sam-
ples with large haplotypes. This lead to a larger standard error for the right hand sides
of Figure 4.3 (upper right, lower right) and also Figure 4.4 (upper right, lower right):
fewer samples were observed for large haplotype sizes in these conditions, and therefore
the variance in the simulation is larger. In fact, for Figure 4.3 (upper right), only one
sample was observed for N = 10 among the 1,000 simulated samples. We note that
the effect of simulation variance for these estimates could be made uniform over N
by running more simulations, and discarding simulations until 100 samples remain for
each setting of N. We leave such extensive exploration of these simulations for future

work.

We note that for many conditions in these simulations, the probability of a haplotype
extending to a particular length exhibits a ‘u’-type shape (this is observed for Figure 4.3
upper right and Figure 4.4 upper left, lower left). This is related to two competing
pressures on the haplotype length. On one hand, haplotypes lengths are encouraged
to be short because many events cause them to end. On the other hand, (since long
haplotypes include more sites), haplotype lengths are more likely to be observed among
the haplotypes that we simulate. Therefore, many haplotypes are exhibited with either
short or long lengths, explaining the ‘u’-type shape. The increased probability of large
haplotypes is related to the waiting paradox: because more individuals are involved in

large haplotypes, they are more likely to be observed.

In the above analyses, we note that the way in which we define haplotypes for the DFCP
model is perhaps too conservative. Suppose a partition R, experiences a nontrivial
fragmentation into the finer partition Q,, and then Q, coagulates into a partition
Res1, with the same configuration as the partition Ry (i.e., Ry = Ryy1). Under the
above analysis, the position ¢ would be considered as the right-most endpoint of a
haplotype containing fragmented blocks of Ry. However, as can be seen by the plate
diagram (4.8), the likelihood of observed data is not affected by fragmentations that
are immediately reversed by coagulations, and so it is not necessarily correct to include
them in the computations of haplotype lengths. In future work, we will extend this

analysis to a setting in which Qp is marginalized, and so haplotype endpoints are only
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reported for Ry # Ryy1.

4.3 Experiments

To examine the accuracy and scalability of the DFCP we conducted an allele imputation
experiment on SNP data from the Thousand Genomes project! (The 1000 Genomes
Project Consortium, 2010). We also compared the runtime of the samplers for the DFCP
and CFCP on data simulated from the coalescent with recombination model (Hudson,
2002). In this section, we describe the setup of these experiments and in section 4.4 we

present the results.

For the allele imputation experiment, we considered SNPs from 524 male X chromo-
somes. We chose 20 intervals uniformly at random, each containing 500 consecutive
SNPs. In five conditions we held out nested sets of between 10% and 90% of the alle-
les uniformly over all pairs of sites and individuals, and used fastPHASE (Scheet and
Stephens, 2006), BEAGLE (Browning and Browning, 2009), CFCP (Teh et al., 2011) and
the DFCP to predict the held out alleles. For these datasets the mean at-chance accuracy
which would be found by always predicting the major alleles was 93.44%. We note that
this missing-at-random is not a realistic assumption for genetic data, which often has
a structured missingness induced by a study/reference paradigm. Missing-at-random

is however a good measure for model fit.

We used the most recent versions of BEAGLE and fastPHASE software available to us.
We implemented the DFCP with many of the same libraries and programming techniques
as the CFCP and both versions were optimized. In each missing data condition, the CFCP
and DFCP were run with five random restarts and 46 MCMC iterations per restart (26 of
which were discarded for burn-in and thinning). We computed accuracies for the DFCP
and CFCP by thresholding the empirical marginal probabilities of the held out alleles at
0.5. We matched the priors on the hyper parameters and the likelihood specification of
the two models and we initialized the samplers using a sequential Monte Carlo method
in which one sequence was added to the model at a time, conditioned on all other

previously added sequences.

The posterior distributions of the concentration parameter p for the two methods are
different. In order to match the expected number of clusters in the posterior, we also
conducted allele imputation in the 50% missing data condition with u fixed at 10.0
for both models. We simulated 500 MCMC iterations with no random restarts. We
then computed the accuracy of the samples by predicting held out alleles based on the

cluster assignments of the sample.

In our second experiment we simulated datasets from the coalescent with recombi-

nation model consisting of between 10,000 and 50,000 sequences using the software

March 2012 v3 release of the Thousand Genomes Project.



Experiments

105

1.00

0.99F

0.98

0.96

accuracy (proportion correct)
o
©o
S

accuracy (proportion correct)

0.990

0.989f

EEm DFCP e DFCP
o0.95/ | CFCP N * CFCP

Em fastPHASE .

BN BEAGLE

T
0.1

. . . .
0.3 0.5 0.7 0.9
proportion missing data

500

1000

1500 2000
runtime (seconds)

2500 3000

3500

Figure 4.5: Allele imputation for X chromosomes from the Thousand Genomes
project. Left: Accuracy for prediction of held out alleles for continuous (CFCP)
and discrete (DFCP) versions of fragmentation-coagulation process and for popular
methods BEAGLE and fastPHASE. 90% missing data condition truncates BEAGLE
accuracies to emphasize other conditions. Right: Runtime versus accuracy for 500
MCMC iterations for DFCP and CFCP in 50% missing data condition. Points are
averaged over 20 datasets and 25 consecutive samples.

ms (Hudson, 2002). We conducted posterior MCMC simulation in both models and
compared the computation time required per iteration. We performed all MCMC simu-
lations using the same computer system and without computing unnecessary marginal
statistics.

In our third experiment, we explored the accuracy of the CFCP model in a
The first source of data was
unphased data from the SeattleSNPs Project (National Heart, Lung, and Blood Insti-
tute Program for Genomic Applications, 2011). This project provides unphased SNP

study /reference paradigm using two sources of data.

sequences for 320 genes from 47 individuals. The genes had between 13 and 416 SNPs.
There were 47 individuals in the study. The second source of data was the phased male
X chromosomes from the Thousand Genomes Project in a study/reference paradigm.
We examined the same 20 intervals that were used in the first experiment. For both
of the data sources, we chose ¢% of the sequences chosen to be in the study panel,
We held out

p% of the sites in the ¢% study sequences. This setup mimics the common situation

and p% of the sites chosen to be typed only in the reference panel.

in which experimenters have access to a densely typed reference panel. More detail
about study/reference paradigms is given in section 1.1. We varied p% in the range
10%, ..

inference we used for the CFCP is based on uniformization for MJPs (Rao and Teh,

.,50% and we also varied ¢% in the same range, leading to 25 conditions. The

2011). Details of the inference and the parameter settings we used for the MCMC in

these experiments are explained further in Teh et al. (2011).
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Figure 4.6: Runtimes per iteration per sequence of DFCP and CFCP on simulated
datasets consisting of large numbers of sequences. Lines indicate mean. Shaded
region indicates standard deviation.

4.4 Results

The accuracy of the DFCP in the first allele imputation experiment was comparable
to that of the CFCP and fastPHASE in all missing data conditions Figure 4.5(left).
For the 70% and 90% missing data conditions, BEAGLE performed poorly (its median
accuracy for this condition was 93.90% and mean at chance accuracy for all conditions
was 93.44%). In Figure 4.5(right) we compare the accuracy and runtime for the 50%
missing data condition. This figure shows that the runtime required for each iteration
is lower for the DFCP than for the CFCP, and the sequential Monte Carlo initialization
is better (i.e., closer to a posterior mode) for the DFCP. No difference in mixing time is
suggested by the figure. As an aside, we estimated the Shannon entropy in these samples
and found that the DFCP had slightly more entropy per sample than the CFCP. (The
difference was small but statistically significant under a sign test.) This could indicate
that the DFCP has better mixing. Improved mixing in the DFCP is also suggested by the

observation that the accuracy for the DFCP plateaus after fewer iterations.

For the second experiment, we plotted the runtime per iteration of both models against
the number of sequences in the simulated dataset (Figure 4.6). The DFCP was approx-
imately 2.5 times faster than the CFCP for the condition with 50,000 sequences. In
both models, most of the computation time was spent calculating the messages in the
backwards-filtering step. The CFCP has an arbitrary number of latent events between

consecutive observations and it is likely that the runtime improvement shown by the
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DFCP is due to the reduction in the number of required message calculations in the
DFCP.

4.5 Discussion

The DFCP and CFCP induce different joint distributions on the partitions at adjacent
locations. The CFCP is a Markov jump process with an arbitrary number of latent
binary events wherein a single cluster is split into two clusters, or two clusters are
merged into one. The DFCP however can model any partition structure with one pair of
fragmentation and coagulation operations. Exact Gibbs updates for the partitions are
possible in the DFCP whereas sampling in the CFCP uses uniformization (Rao and Teh,
2011).

In future work we will explore better calling and calibration methods to improve im-
putation accuracies. Another avenue of future research is to understand how other
genetic processes can be incorporated into the fragmentation-coagulation framework,
including population admixture and gene conversion. Although haplotype structure
is a local property, the Markov assumption does not hold in real genetic data. This
could be reflected through hierarchical FCP models or adaptation of other dependent
nonparametric models such as the spatially normalized Gamma process (Rao and Teh,
2009).

4.6 Conclusion

In this Chapter we have presented a discrete fragmentation-coagulation process. The
DFCP is a partition-valued Markov chain, where partitions change along the chromosome
by a fragmentation operation followed by a coagulation operation. The DFCP is designed

to model the mosaic haplotype structure observed in genetic sequences.

We derived message passing for the DFCP based on the conditional distributions for
the fragmentation and coagulation operators defined in Chapter 2. Through message
passing, efficient forwards-filtering/backwards-sampling updates can be derived for the
block assignment of each sequence in the DFCP. We also extended the message passing
to handle unphased genotypes and we showed that the method of minimizing switch
error in phasing from Scheet and Stephens (2006) is equivalent to minimizing Bayes

risk.

We applied the DFCP to an allele prediction task on data from the Thousand Genomes
Project yielding accuracies comparable to state-of-the-art methods and runtime require-
ments that were shorter than the runtime requirements of the continuous fragmentation-

coagulation process (Teh et al., 2011). Although the asymptotic computation cost of



Conclusion 108

inference in the DFCP is the same as for the CFCP, we have found that the runtime

requirements were shorter for the DFCP than for the CFCP.



Chapter 5

The Wright-Fisher partition

valued processes

5.1 Introduction

In this Chapter, we present a new Bayesian nonparametric model for dynamic partitions
in which the clusters of the partitions shrink and grow according to balanced rates.
The model is Markov, exchangeable, and reversible and its marginals are given by the
CRP distribution on partitions. Our model is based on a continuous version of the
Wright-Fisher diffusion for a countable set of species (Donnelly and Kurtz, 1996). We
use our model as a prior on dynamic partitions and we conduct posterior inference
using the particle Gibbs (PG) variant of particle MCMC (Andrieu et al., 2010). The
PG is implemented through a probabilistic program (Wood et al., 2014; Paige and
Wood, 2014). Particle Gibbs is applicable to our model even though the conditional
distributions of the cluster assignments in our model are not Markov (this is shown
in section 5.2). In previous Chapters, we have applied models of dynamic-clustering
to genetic data. To demonstrate the versatility of these models and illustrate their
application in a problem domain other than genetics, in this Chapter we will apply our

model to voting data from the Canadian House of Commons.

Our model, which we refer to as the WFP (for Wright-Fisher partition valued diffusion
process) is described by a Markov jump process (MJP) that takes values in the set of
partitions of N items. MJPs are characterized by their initial distribution and their
transition rates. The initial partition of the WFP is drawn from the CRP (Pitman, 2006)
distribution with concentration parameter ce. With constant rate rN(N — 1 + «), the
process transitions by choosing an element at random, removing it from the partition,
and then adding it back again according to the CRP marginal probabilities. A sample

from the WFP prior is shown in Figure 5.1.

To model data with an WFP prior, we assume that covariates and observations associated
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with the N data items are available at points along a one dimensional axis. The WFP
specifies a latent clustering structure R; at each point ¢t. For each observation, if the
observation occurs at the point ¢/, then the clustering structure Ry parameterizes the
likelihood function of that observation. In particular, we assume that there is a latent
parameter 6y, associated with each cluster a € Ry. Further, we assume that the
observation for the i-th data item at the point ¢’ is drawn from fo,, where a is the
cluster that 7 belongs to at ¢/, and fy is a distribution function parameterized by 0,

representing the likelihood of the data.

In our experiments, we will be interested in modelling votes. Suppose that N members
of parliament (MPs) vote on motions. The clusters of R, represent similarity in voting
patterns (i.e., political parties or political blocs within parties). We apply this model

to predicting the votes of MPs and also to discovering political blocs.

In the remainder of this section we discuss the relation of the WFP to the Wright-
Fisher model and other models in genetics. We describe the WFP and the likelihood
models we will use in our experiments through a generative process. We describe the
relation of the WFP to other recent work in Bayesian nonparametrics and survey the
relationship between dynamic partitions and distant dependent processes. In section 5.2
we describe the construction of the WFP through a sequential process and we prove its
statistical properties. In section 5.3 we apply this inference method to model voting
data from the Canadian House of Commons. We show that the WFP, using only data
from voting behavior, can be used to detect changes in the party allegiances of members

of parliament. We also show that it can be used to predict voting behavior.

5.1.1 Relation to work in genetics

The Wright-Fisher model is usually thought of as a discrete coalescent model for a
constant population of N individuals (Fisher, 1930; Wright, 1931). In the Wright-
Fisher model, each successive generation chooses one individual (or two individual
sequences, in the case of a diploid model) from the previous generation and inherits
all material from that individual. The Wright-Fisher model has been extended to
continuous diffusion models with mutations (Dawson and Hochberg, 1982), and we use

this extension as a basis for the inference defined directly on the space of partitions.

In genetics the Wright-Fisher model is used as a model for K species (for example, to
model the proportions of the population sizes of K species in an ecosystem). The WFP
can be viewed as a version of the Wright-Fisher model defined directly on the space of
partitions of a set. The resulting dynamic-clustering can be used as a clustering of ge-
netic sequences along the chromosome. Like the fastPHASE and BNPPHASE models, the
WFP provides a location varying clustering in which the proportions of the clusters, and
the tendency of individuals to join each of the clusters, is a function of the chromosome
location. Unlike the fastPHASE and BNPPHASE models, the WFP is a reversible process.
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Figure 5.1: A sample from the WFP prior with N =100 items and concentration
a = 2.0. z-axis represents time. Clusters are identified by color and random
(uniform [0,1]) y-axis position. Size of clusters (i.e., number of elements in the
cluster) indicated by extent of cluster on y-axis. (Extent of the cluster along the
y-axis is proportional to the number of elements in the cluster.) Reversibility and
stationarity can be seen through the balanced nature of this plot.

Diffusion models based on the Wright-Fisher model have been extended to the case of
infinite species (K = 00). This has been done through the Fleming-Viot process (Flem-
ing and Viot, 1979), and the Moral model (Moran, 1962) which are diffusions defined
on the infinite simplex. A construction of the Fleming-Viot process based on finite
Wright-Fisher models has also been developed (Donnelly and Kurtz, 1996) and the

relation of the WFP to this work is a subject for future research.

5.2 Methods

In this section, we will provide a generative process for the WFP model and describe
its properties (including exchangeability and reversibility). We will then explain how
to model voting data using the WFP. Finally, we will describe the particle Gibbs and

probabilistic programming methods we used to do posterior inference on the WFP.

5.2.1 Generative process for the Wright-Fisher partition valued dif-

fusion

The CRP (see Chapter 2) with concentration parameter a can be described by the
following sequential scheme, in which the items R = {1,..., N} are enumerated in any

fixed order:
1. The first item joins a cluster by itself.

2. For each ¢ > 1, the i-th item joins a cluster by itself with probability /(i — 14 «)
or for each 1 < j < i, joins the cluster containing j with probability 1/(i — 1+ «).
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The formulation of the CRP given above is equivalent to the sequential scheme from
Chapter 2: the probability of arriving at a partition R through the sequential scheme is
the same as the probability of drawing R from the set of all partitions of R according to
the law given in equation (2.4). Consequently, the CRP is exchangeable: its distribution

is invariant to the order in which the items are added to the partition.

We will now present a hierarchical generative process for the WFP based on the CRP
distribution on partitions from Chapter 2 and its marginals. We assume that a scaling

parameter r > 0 and a concentration parameter « are fixed.

1. Draw event times t1,t9,... from a Poisson process with rate rN(N — 1 + «) on

the positive real line.
2. For each event k =1,2,...:

(a) Draw Ej, i.i.d. from the set {(i,7) : 1 <i < j < N} with probability:

o YIN(N=1+a)) i,
PI‘(E,Ig—(%]))_{ a/(N(N—1+a)) ifi:j.

3. Draw Ro ~ CRP({1,...,N}, o).
4. Let R; be constant on the interval [0, ;)
5. For each event £k =1,2,...:

(a) Let (ik, jx) = E.

(b) Form the induced distribution R;, ",

i. If i), = ji then form R;, by adding i) to its own cluster in Rgff.

k

ii. Otherwise, form R;, by adding i) to the cluster in R;jﬁ containing j.

(c) Let Ry be constant on the interval [tg, tx11).

Here R;_ denotes the value limy_,;_ R;. Because the transitions of R; occur on a
discrete set with probability 1, R;_ exists for all ¢ > 0.

Intuitively, this process transitions by choosing an element ¢ € R;_ at a constant
rate and removing it to form the induced partition R;* on {1,...,N}\ {i} and then
adding 7 back into R, ¢ according to the probabilities of the sequential CRP scheme
in equation (2.4), forming R;. We note that in order to model situations in which
more than one item changes clusters between observations occurring at times ¢; and

to, multiple events (one for each item) must occur between times ¢; and to.

Theorem 2. The partition valued process R; is a) a Markov jump process, b) ex-

changeable, c) stationary with CRP marginals, and d) reversible.
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Proof. a) The transitions of Ry can only occur at the event times ¢1,to, . ... Since these
are the points of a Poisson process with bounded rate, with probability 1 the set of
event times intersecting any bounded set is finite. Therefore, R; is a Markov jump

process.

b) Ry is exchangeable and Pr(Ey = (i,7)) = Pr(Ey = (0i,07)) for all permutations o
and all £>1. Therefore, R; is exchangeable.

c) We prove stationarity by using induction on k. Suppose that R, is marginally
CRP distributed for all ¢ € [0,t;). By the induction hypothesis, Ry, - is marginally
CRP distributed. Suppose that the t; — th event is given by Ejy = (i,7). By the
projectivity of the CRP, and because R, L= R;}j, Ry, ' is also marginally CRP
distributed on {1,..., N} \ {i}. According to step 2 and step 5 of the generative
process above, item ¢ joins its own cluster in ’R;j with probability a/(N —1+«a) and
joins the cluster containing j with probability 1/(N — 1+ «). This is the conditional
probability of the CRP, and so Ry, is CRP distributed.

d) Let R; be restricted to t € [0,T]. Define R{™ = Rr_; and E; = (j,4) for each
Ej = (i,j). By c), Ry is marginally CRP distributed. Further, Ej and E;~ have
the same law. Therefore, the law of R;~ is given by the above enumeration, and

this proves reversibility.

O]

Not all of the events produced by this generative process lead to transitions in the
partition valued process R;. If item i is in its own cluster in Ry, and if Ey = (4,4),
then Ry, — = R;. Similarly, if item ¢ and j are in cluster a € Ry, — and Ej = (i,5)
for i # j, then Ry, — = R;. Further, more than one event can lead to the same
transition in Ry: if ¢ and j are both in their own cluster in R;, — then both events
Ey = (i,j) and Ej = (j,4) would lead to the same partition R, . (Namely, the partition
(Ree— \{{7,5}}) U{{i},{s}}.) We will denote the transition kernel of the MJP R; by
7(+,+). The values of this kernel are provided in Figure 5.3. This description of 7 will

marginalize these redundant events.

5.2.2 Likelihoods for voting data

In the above subsection, we described the WFP as a prior for dynamic partitions. We will
now present a model for voting data wherein the WFP is used as a prior on the political
similarity for N members of parliament voting on motions occurring during a session
of parliament. Each member of parliament is identified with an integer in {1,...,N}.
An WFP R; is assumed to be drawn for the duration of the parliament [0, 7] where T is
the time of dissolution of the parliament. For a motion occurring at time v € [0, T, for
each cluster a € R,, all of the members of parliament identified with the elements of

a vote in a similar way. The WFP R; thus describes the changes in political similarity
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among the N members of parliament. Let y;, € {0,1} be the vote of the i-th member
of parliament on the g-th motion (0 means ‘nay’ and 1 means ‘yea’). We will place a
beta/Bernoulli prior on the votes, and so the model (which we will refer to as the WFP

for voting or WFPV) is described by the following hierarchical generative process:
1. Draw R; from a WFP on N members of parliament for ¢ € [0, T].
2. Draw the motion times vy, . .., vg from a Poisson process on [0, 7] with rate 8 > 0.
3. For each motion g =1,...,G:
(a) For each cluster a € R,,, draw 0,,4|mg ~ Beta(mg, m,).

i. For each member of parliament i € a, draw her or his vote y;¢|0s. ~
Bernoulli(6y,,).

Here my is a mass parameter describing how polarizing the g-th motion is (i.e., if mg is
large members of a bloc will tend to vote together). In our experiments, we will fix my
at a value close to the empirical estimate (i.e., the value that gives the empirical voting
frequencies the highest probability). This is done to simplify the MCMC inference. We
note that in order to take a more Bayesian approach, we could instead place a prior on

myg as is done in Chapter 3.

5.2.3 Relation to time-varying generalized urn schemes

The WFP is related to generalized Polya urn schemes for time varying Dirichlet process
mixtures (Caron et al., 2007). In Caron et al. (2007), a discrete sequence of partitions
of a collection of data items are considered. As in the WFP, the partitions are modified
by removing some of the items at random at each step of the sequence, and then adding
new items according to a CRP. However, unlike the WFP, the items in Caron et al. (2007)
are not identified between partitions. In Caron et al. (2007), the items removed from
the partitions at a given are not added again to the process, and instead new items that
have not yet been considered are added to the partition at each step. This difference
allows the WFP to describe a truly dynamic partitioning: at each point ¢, the same NV
items are clustered. For distinct points ¢1, t9, the resulting partitions could differ (the
dependence between the partitions at ¢; and t3 decreases with the scaling parameter r,
with 7 > 0 implying that the two partitions are equal). The WFP formulation is useful
for describing situations in which clustering changes in time, for example with changes

in the political allegiances of members of parliament.

The WFP is also similar to the continuous fragmentation-coagulation process (CFCP)
from Teh et al. (2011). Both the WFP and the CFCP define partition valued Markov
processes. The partitions of the CFCP transition through the splitting and merging of
clusters (according to the fragmentation and coagulation operators defined in Chap-

ter 2), whereas the partitions of the WFP transition through the shrinking and growing
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of clusters. Generally, the CFCP provides stronger constraints on the transitions of the
clusters and so the WFP provides more efficient inference for noisy data or gradually

changing data.

5.2.4 Probabilistic programming and inference

It is hard to specify the conditional distribution of the trajectory of a single item 4
through the dynamic clustering defined by the WFP. This is because an event Ej that
involves an item j ‘jumping’ to the cluster containing ¢ can result in complicated changes
to the partition structure at times ¢’ > t: the changes to the clustering caused by an
event occurring at t’ > t for which an item j’ # 7 ‘jumps’ to i are determined in part by
Ex(j,1). Consequently, inference based on a conditional forwards-filtering/backwards-
sampling (Friiwirth-Schnatter, 1994) algorithm (such as those we derived in Chapters 3
and 4) cannot be derived without including the large space of all possible partitions in
the support of the messages. We will therefore use a particle Gibbs (Andrieu et al.,
2010) based method for inference. We will implement this through an efficient proba-

bilistic program.

Probabilistic programming languages provide inference for Bayesian models based on
their generative processes (Mansinghka et al., 2014; Wood et al., 2014; Goodman et al.,
2012; Wingate et al., 2011). By providing general methods for MCMC inference, prob-
abilistic programming languages are similar to frameworks such as BUGS (Thomas et al.,
1992) and Infer.NET (Minka et al., 2014). But unlike probabilistic programming lan-
guages, BUGS and Infer.NET have strong parametric requirements on the form of the
generative process (for example, they cannot provide Dirichlet process priors). On
the other hand, by operating on the stack-trace of a program (i.e., the list of ma-
chine instructions that specify the output of the program), probabilistic programming
languages can provide inference for any model for which a generative process can be

implemented in code, regardless of the parametric form.

We will use the Anglican probabilistic programming language (Wood et al., 2014),
which implements particle MCMC (PMCMC) inference through particle Gibbs (PG).
In PG, a particle filter is run with an inexact proposal, targeting the desired posterior.
The lineages of the particles and the retained particle sets are then treated as random
variables. A Gibbs sampler is run, targeting the distribution induced by the lineages
of the particles and the retained particle sets. Viewed as an auxiliary Gibbs method,
the restriction of this chain to the particles arriving at the last step of the filter form

an MCMC chain targeting the desired posterior.

More formally, imagine we have a target distribution p(xg.;) and a factorization

L .
p(xO:L) = p($0:0) HK:l pf(xﬁ:de:é—l) and proposal distributions q0 ($0:0)> -5 qL (xL:L)'
In particle Gibbs, S particles mgzg, e ,xggg are drawn ¢.i.d. according to the distri-

bution ¢o(-). Then, the weights w§ = p(:ngzg)/q(:ng;g) are computed and normalized
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(w = w§/ Xo—gwh)-

Subsequently, for each 0 < ¢ < L, the indices of the parents of the next generation of
particles Aj_; are drawn from the distribution Aj_; ~ Zf’:o wjl_lét(-). (Here 04(+) is
the Dirac delta function centered at s.) Given these indices, the next generation of par-
ticles is described as follows: Xf:’f ~q(), Xg;j_l — Xg;i’f‘ i1 and the weights are com-
puted and normalized as follows: wj = p(Xg:’Z|X§j_1)/q(X£:’;), wj — wy/ fo:o ws.

After arriving at the particles X{; and the weights w7, the distribution Zg widx, ()
is a sequential Monte Carlo (SMC) approximation for Xg.;,. In PG, the weights and
ancestor indicators (w; and Aj_,) are now treated as latent variables and resampled
using Gibbs updates. PG confers benefits over SMC such as faster mixing and reduced

estimator variance (Andrieu et al., 2010).

In the Anglican probabilistic programming language, the distributions py and gy, and
the Gibbs updates for A, are automatically formed given a generative process such as
the generative process for the WFP in section 5.2.1. The proposals gy are given by the
prior distribution. While this update is not efficient on big data, it is reasonable for the
sizes of data used in this Chapter. We will assume that the concentration parameter o
is fixed.

In our application, X¢.0 = Ry is the partition Ry at time zero (the third step of the
generative process in section 5.2.1) and Xy.y = (Ey(ig, j¢), t¢) describes the draws ¢ and
E; (¢ = k) from the first and second step, respectively, of the generative process in
section 5.2.1. The partition R; is thus induced by the particle Xg., for all values of ¢
such that 0 <t < T" = Y%_, ty. In particular, for t = 0, Rg = Xo.0. For 0 < t < T’,
let £ = ming{¢ : t1 4+ ... 4+ ty > t}. Then, form R; by taking Ry and performing the
‘copying’ operations Ej (i1, j1), ..., Ev(ig, je).

The proposals q(-) are formed from the prior distribution (i.e., proposals from the
prior): qo(Xo.0) is the density of the CRP partition with concentration a: go(Xo.0) =
CRP(Xo.0|e). The proposals g¢(Xs.) for £ > 0 are such that the probability density of

(Ee(ie, je), te) is:

1/(N(N =1+4a)) ifig # jo,

q(Xee) = Exp(te|rN(N =1+ a)) - { a/(N(N —1+a)) ifig=jp.

Here Exp(-|A) is the density of the exponential distribution with rate A\. The proba-
bilities for the weight computation incorporate the joint distribution of the dynamic

partition and the observed voting data, and are given as follows:

po(Xo:0) = ¢(Xo0), (5.1)
Pe(Xo:| Xo:—1) = a(Xew) - I1 A(y:g|Ro,, mg) (5.2)

£—1 '
gzze,zo t£/<vg§ZZ/:0 tyr
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Figure 5.2: Probability for partitions sampled according to the partition valued
process R;. Events occur at times ¢1,...,t5. The probabilities for the events and
holding times are given by the cases shown in Figure 5.3

Here, as in the generative process for the voting data in section 5.2.2, v, is the time
of the g-th motion and y., is an N-dimensional 0/1-vector describing the votes of the
N MPs for the g-th motion. The partition R,, is the partition induced by the particle
Xo.¢ at the time of the g-th vote (vy). The product in (5.2) includes all votes that occur
between the time of the /-th and £+ 1-th change in the partition structure of the MPs.
The likelihood A(y.4|R.,,my) describes the probability of observing the votes of the

MPs for the g-th motion, given the partition structure at the time of that motion:

A(y:g|Rvg’ mg) = H L(mg + n1ga)T(my + n0ga) /T (2mg + n1ga + noga) (5.3)
aERvg

Here ny4, and ngg are the numbers of MPs in block a of the partition R; that vote
‘yea’ or respectively ‘nay’ for the g-th motion. This likelihood integrates out the
vote-emission probabilities 6,.. For more detail on probabilistic programming in the
Anglican language, and inference in PG, we refer to to Wood et al. (2014) and Andrieu
et al. (2010).

5.2.5 Describing R; as a partition valued process

The hierarchical generative construction in section 5.2.1 describes R; through a two
step process. First, transition times and the events Ej are drawn. Second, R is drawn
and conditioned on Ej and R, the partitions R; are determined for ¢ > 0. As noted
in section 5.2.1, the events Fj could be redundant. For every pair of distinct partitions
R—, and R, we will now consider all events F that could lead to a transition from
Ri— = R— to Ry = R. We sum the rates of those events to find the transition rate
T(R—,R). In this way, R; can be described as an MJP with transition rate matrix
7(+,+). (The columns and rows of this matrix correspond to each possible partition
of {1,...,N}.) There are 5 possible cases for the partitions R—, R. The function 7
assigns zero rate to all pairs of distinct partitions R—, R that are not covered by these
cases (i.e., for such pairs there is no single event E from the generative process that can

realize that transition). The cases are listed in Figure 5.3, and a diagram showing an
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example of the WFP model viewed as partition valued transitions is given in Figure 5.2.

The cases and rates in Figure 5.3 are found by considering the rates of the events
E4, Es, ... from the hierarchical generative process for R; from section 5.2.1. We will
verify case 1 of this derivation. Suppose that {i,5} € Ry (i # j). There are two
possibilities for E} that could both lead to the transition described in case 1: Ey = (i,1)
and Fy = (j,j). Therefore, the rate 7(R—, R;) for the pairs of partitions described by

case 1 is 2ra. The 4 other cases can be verified in a similar way.

If R; = R, then the total rate of transition from R is found by summing the rates for

all the cases:

T(R—,) =ra(N — #{i: {i} € R—}) +2r Y #a#b. (5.4)

{a,b}CR—

Here, N — #{i : {i} € R—} is the number of singleton clusters in R— and the sum

> {apycr— is over all distinct (unordered) pairs of clusters a,b in R—.

5.3 Experiments

5.3.1 Experiment I: bloc discovery

We conducted an experiment on voting data from the 38th parliament of the Canadian
House of Commons'. This parliament lasted from October 2004 until November 2005
and involved 307 members of parliament. A total of 190 motions were voted on by
the members of parliament. In May 2005 (around the 34th week of the parliament)
Belinda Stronach, the member of parliament from the Newmarket—Aurora riding, left
the Conservative party and joined the Liberal party. We simulated the posterior dis-
tribution of the WFPV process conditioned on the voting data. We examine the cluster

assignment of Belinda Stronach over the duration of the process.

5.3.2 Experiment II: vote prediction

We considered votes for which there was more than 20% disagreement among members
of parliament and split that voting data evenly into a testing set and a training set (a
missing-at-random condition). We filtered votes with less than 20% disagreement as
these votes were often on procedural motions which did not contain much information
about party affiliation. We simulated the WFPV posterior conditioned on the training
set and looked at the accuracy of the WFPV’s predictive likelihood on testing set. We
simulated the WFPV process conditioned on the votes in the training set, and predicted
the held out votes in the testing set using the WFPV likelihood.

'Retrieved from http://www.parl.gc.ca/HouseChamberBusiness/ on June 1st, 2014.
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N~
Case 1:  Let a = {i,j} € R—. If R is formed from R— by removing a and from
R— and adding the singleton clusters {i} and {j} then 7,,(R—,R) = 2ra.

I

Case 2: Let a #b € R— be distinct singleton clusters a = {i},b= {j}. If R is
formed from R— by removing a,b from R— and adding aUb = {i,j} then
Th(R—,R) = 2r.

Case 3: Let a,b € R— be such that #a > 1. For each i € a, if R is formed from
R— by removing a and b from R— and adding a \ {7} and bU {i} then
Tn(R—, R) = r#b.

Case 4: Let a,b € R— be such that a is the singleton cluster a={i}, and #b>1.
If R is formed from R— by removing a, b from R— and adding aUb then
Tn(R—, R)=r#b.

| S—

Case 5: Let a € R— be such that #a > 2. For each i € a, if R is formed from
R— by removing a from R— and adding clusters a — {i} and {i} then
Th(R—,R) = ra.

Figure 5.3: Cases for transitions arising from the description of R; as a partition
valued-MJP with transition kernel 7(-, ).

We compared the accuracy of the predictions of the WFPV with a baseline given by
probabilistic matrix factorization (Salakhutdinov and Mnih, 2007), a popular model in
collaborate filtering. The probabilistic matrix factorization model is as follows: each
member of parliament 7, is associated with a D x 1 dimensional latent random vector u;.
Each motion is also associated with a D x 1 dimensional latent random vector v;. The

probability that the i-th member of parliament votes ‘yea’ for the j-th motion is given
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by the inner product uZij, passed through a link function. A Bayesian prior is placed
on u; and v;: in the prior, each of the u; vectors are drawn éid from a Gaussian with
mean 0 and variance A\, and each of the v; vectors are drawn iid from a Gaussian with
mean 0 and variance A,. We conducted MAP inference for this probabilistic matrix
factorization using alternating least squares (Zhou et al., 2008). The implementation

we used was provided by the GraphLab software package (Wu et al., 2011).

In both experiments, we performed inference using particle Gibbs. We used 200 par-
ticles and 100 sweeps per iteration. The parameter settings we used for the WFPV
likelihood were r = 20.0 (in units of weeks™!), o = 1.5 and m, = 0.005. These settings
were chosen to match our intuition about how large the political caucuses found by the
WFPV should be, and the empirical frequency of agreement found within the votes of a

political caucus.

5.4 Results

In Figure 5.4, we show the results of the first experiment. The bands indicate the
clusters found by the WFPV for Belinda Stronach, Stephen Harper (the leader of the
Conservative party) and Paul Martin (the leader of the Liberal party and the Prime
Minister of Canada at the time of the 38th parliament). From this figure, we can see
that the WFPV discovers the changed party allegiance of Belinda Stronach around the
34th week of parliament. In contrast, the cluster containing Stephen Harper remains

exclusively Conservative throughout the course of the process.

To better visualize the voting data and understand the WFPV, in Figure 5.5 we show
the proportion of each party among the members of parliament that voted in the same
way as Belinda Stronach. In this visualization, for each motion, we examine all MPs
that voted in the same way as Belinda Stronach. The y-axis indicates which week the
motion occurred in. The z-axis indicates the ratio of MPs from each party that voted
the same way as Belinda Stronach. For example, in the first motions of week 0, all of
the MPs that voted the same way as Belinda Stronach were Liberal. In contrast, in the
motions in the last week, almost all of the MPs that voted the same way as Belinda
Stronach were Conservative. In this visualization (which depends on knowing the party
memberships of all of the members), we can clearly see Belinda Stronach changing party
allegiance. The white strip indicates a period where Belinda Stronach did not vote on
any motions. We note that the WFPV was not confounded by this effect: the time
at which most MPs voting the same way as Belinda Stronach switches from Liberal
to Conservative roughly corresponds to the time at which Belinda Stronach changes
clusters in 5.4. Further, to the right of this figure we see that the Bloc Québécois, the
NDP and the Liberals all voted together. This explains the mixed party allegiances of

the members of Paul Martin’s cluster in Figure 5.4.
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Method CF5 | PARTY | CF1 | WFPV | baseline
Accuracy (%) | 98.0 96.7 90.6 | 81.9 62.5

Table 5.1: Percent correct for vote predictions. CF5 and CF1 indicate collaborative
filtering with 5 and 1 dimensions,respectively. PARTY indicates predicting votes based
on party allegiances of training set data.

Stronach Harper

Martin

o

10 20 30 40 50
time (weeks)

Figure 5.4: Composition of the clusters found by WFP model. Each band gives
proportion of each party among the allegiances of all members of the cluster con-
taining the member of interest (indicated by the y-label) over the course of the
parliament. From top to bottom, members of interest are Stephen Harper, Belinda
Stronach and Paul Martin. Colors indicate the four main political parties (blue
for Conservatives, red for Liberals, orange for NDP/NPD and light blue for Bloc
Québécois).
We show the accuracies for vote prediction in the second experiment in Table 5.1. The
accuracy of the WFPV model was 81.9%, which was below the accuracies of collaborative
filtering (CF) with 5 latent components. The baseline accuracy found by predicting

the most common vote in the training set for each motion was 62.5%.

We found that a collaborative filtering (Salakhutdinov and Mnih, 2007) provided the
best accuracy, which is unsurprising consider the success of spatial models in predicting
role call votes (Poole and Rosenthal, 1985). By examining Figure 5.4 we see that the
WFPV finds large-scale blocks which cross party lines. (The Liberals, NDP/NPD and
Bloc Québécois were not a coalition, but they did vote similarly on many motions.)
Based on the data in Figure 5.5 it is clear that the accuracies of the WFPV could be
improved if it were to find exact party lines. (The clusters found by the WFPV cannot

model the jagged structures in the real data presented in Figure 5.5.)

It is possible that hyperpriors on the concentrations, rates and emission model would
improve the accuracy. To that end, particle Gibbs ancestral sampling would be appro-

priate and would be an interesting direction of future work (Lindsten et al., 2012).

5.5 Discussion

The accuracy of the WFP model in the vote imputation task was much lower than that
of collaborative filtering (CF) based methods. Further, we found that the clustering

found by the WFP model was not sensitive to the hyperparameters of the model. In many
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Figure 5.5: Band for the bipartition found by clustering members of parliament
into two clusters: those who vote in the same way as Belinda Stronach and those
who vote in the opposite way. White indicates periods for which Belinda Stronach
did not cast votes. Columns and colors are the same as those defined in previous
figure.

cases, the PG produced degenerate particles (i.e., the retained set often contained only
one particle). We could possibly solve these problems by using ancestral resampling for
particle Gibbs. Another possible solution could be the use of Metropolis Hastings with
a proposal induced by a Markov assumption for the conditional cluster assignment of

a sequence.

The possible non-mixing of the WFP notwithstanding, it is unlikely that any HMM
model will do better in vote prediction than CF. But CF does not depend on temporal
ordering and combines information from past and future times to predict a vote at a
specific time. On the other hand, the only information from past and future times that
an HMM uses is conveyed through the HMM state, which is relatively low-dimensional.
So, while WFPV did not display significant imputation accuracy, that does not mean
that it is a bad model for these time series data. If a clustering were defined based on

the CF, it would only capture global effects.

For example, if an MP votes against the party line consistently 10% of the time, the
WFPV might still place it in the party’s cluster. But, if an MP votes against the party line
only for the last 10% of the duration of the process, the WFPV would be more inclined to
reflect this in the clustering (i.e., the MP would switch clusters). By ignoring temporal
ordering, the CF makes no distinction at all between these two cases. Thus, the WFPV
confers additional insight by capturing this temporal structure. In future work, we will
consider combining the WFPV with a CF model, in a similar way to how the CRP is
combined with a CF in Sutskever et al. (2009).

Inference based on Markov approximations of the conditional sequence are also possible.
Leaving probabilistic programming, we could instead derive an MH update for the state
assignment of a sequence in which the proposal distribution is defined using a Markov

approximation (this MCMCM kernel would target the true posterior distribution).

5.6 Conclusions

We have presented inference for a new partition valued Markov jump process (the WFP)
based on a countable version of the Wright-Fisher diffusion model. It is exchangeable,
reversible and its marginals are given by the CRP. The WFP does not have Markovian

marginals, and therefore cannot be approached by inference based on dynamic program-
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ming. Instead, we used particle Gibbs to simulate the WFP posterior. We implemented

the particle Gibbs using the Anglican probabilistic programming language.

We attached a likelihood to the WFP model to describe voting behavior of members of
parliament (yielding the WFPV). We applied the WFPV to data from the 38th Canadian
parliament and found that the posterior clusters found could be used to detect the
change in party allegiances of one of the members of parliament. This was done without
using any covariates associated with the members of parliament (such as their parties)

or the votes (such as the texts of bills).



Chapter 6

Conclusions and future work

6.1 Conclusions

Bayesian nonparametric statistics were first developed in the late 70s to provide prior
distributions which have both arbitrarily large support and also tractable posteriors.
Recently, the development of the nonparametric hierarchical Dirichlet process (Teh
et al., 2006) has allowed a wide variety of classical statistical tools (such as HMMs) to
make use of Bayesian nonparametric priors. This has lead to a resurgence of interest in
Bayesian nonparametric models, and much insight into the latent structure of the data
to which these models have been applied. Methodologically, the models presented in
this thesis are some of the most sophisticated applications of Bayesian nonparametrics
to genetics that has been derived to date. Further, we have made available the code for
the BNPPHASE model, and have provided a detailed description of these methods which

are of interest to the broader bioinformatics and population genetics community.

We have presented three new Bayesian nonparametric clustering models (BNPPHASE,
DFCP and WFP). The BNPPHASE and DFCP models are motivated by the genetic process
and have similarities to many popular models currently used in statistical genetics. We
explored these models through applications to various sources of data such as simulated
bottlenecks, X chromosomes from The Thousand Genomes Project, SNP data from the
HapMap Project and also SNP data from the SeattleSNPs project. We showed that
genotype imputation accuracy for our nonparametric models was often better than that
of the related parametric models, and we were able to interpret the latent variables of
the BNPPHASE model as founders in population bottlenecks or as rescaled versions of
the time to most recent common ancestor. To illustrate the versatility of Bayesian
nonparametric models, we also applied the WFP model to predict votes and to uncover

political blocs in data from the Canadian House of Parliament.

We also discussed theoretical properties of these models: we derived expected values

for the lengths of haplotypes under the DFCP model and we computed the conditional
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distributions of fragmentation and coagulation operators.

6.2 Future work

The experiments and analysis discussed in this thesis present several avenues for future
work. We derived equations for phasing using the DFCP, but these equations can be
simplified using a study /reference paradigm. The reference panels could be used as a
source of phased data to build a ‘scaffold’ of haplotypes. This could be done by running
the DFCP model on the reference paradigm, and choosing a representative sample from
the MCMC. Unphased data could then be registered to this scaffold by assuming that
the unphased diploid sequences are independent conditioned on the scaffold, and also
supposing that the diploid sequences never form new haplotypes, and instead must
always join the haplotypes that already exist in the scaffold. The resulting messages
would be quite simple, and the phasing of all the diploid sequences could be done in

parallel.

For the WFP model, we found that the imputation accuracy was lower than that of linear
methods such as collaborate filtering. However, collaborative filtering cannot capture
changes to the block structure of sequences over time (or over chromosome location).
To that end, we plan to examine a mixture between a collaborative filter and the WFP
model in order to model changes in block structure and also produce high-accuracy

predictions (as was done in Sutskever et al. 2009 for static clustering).
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