
1

Rapid on-line reconstruction of
non-Cartesian Magnetic Resonance

images using commodity graphics cards

𝐺𝑟𝑧𝑒𝑔𝑜𝑟𝑧 𝑇𝑜𝑚𝑎𝑠𝑧 𝐾𝑜𝑤𝑎𝑙𝑖𝑘

Institute of Cardiovascular Science,

University College London

Research Degree: Cardiovascular Science

2

3

I, Grzegorz Tomasz Kowalik confirm that the work presented in

this thesis is my own. Where information has been derived from other

sources, I confirm that this has been indicated in the thesis.

This work grew from a tinny ‘I'll show you all!’ into a bellowing ‘take

it off me!’; from no more than 4 hours a day tapping on a keyboard into 20-

hour marathons; from sunny rays coming through a big bright window into

a 16°C sterile and fluorescent-lit environment; from little toy projects into

crying orphans …

This work is dedicated to all volunteers that endured all the ‘new

inventions of mine’ …

To all proof-readers for suffering a version-after-version of this text

and their invaluable comments and suggestions that made this work so

much richer …

To all ‘circle drawers’, especially having in mind Bejal Pandya; that

‘gobbled’ hundreds of thousands of images bringing my projects to their

conclusions …

To radiographers: Rod Jones and Wendy Norman for their help in

running the examinations and all the useful insights into the clinical MR

world …

To Vivek Muthurangu for his continuous guidance and practical,

sober drive to stay concentrated on the bigger picture, but most of all, for

being positive, resilient and forbearing in the face of my many flaws …

To Jennifer Steeden for being an amazing colleague, friend and

teacher without whom I would not be able to finish; whose patience

withstood my many attempts; for keeping me focused and on track …

… for all the help, goodwill and kindness; for all the jokes and

talking-to that brought me to the conclusion of this work; for helping and

pushing me to put this work together,

 Thank you

4

5

Abstract

In Magnetic Resonance Imaging, energy of electromagnetic waves is

used to excite protons placed in a static magnetic field. This generates a signal,

which is further spatially encoded with linear magnetic field gradients. The

signal exists in frequency domain called k-space. Traditionally, the signal is

sampled in lines stored on a Cartesian grid. Next, Fast Fourier Transform is

applied to generate images. However, the consecutive manner (line-by-line) of

this strategy makes it very slow. Faster sampling strategies exist, but

acquisitions with them require a more complex image reconstruction process.

There is an obvious trade-off between acquisition time and complexity of image

reconstruction. Real-time assessment protocols for day-to-day clinical work

demand both data acquisition with rapid sampling trajectories and fast, robust

image reconstructions.

Computational solutions in form of parallel architectures can be used to

aid image reconstruction, which has been proven to significantly speed-up

reconstruction process. Regrettably, this is often done in off-line mode, where

the data need to be downloaded from the scanner and reconstructed

elsewhere. This process hinders the clinical workflow substantially.

This work describes challenges entailed with translation of advanced

imaging protocols into the clinical environment; (i) use of the advanced

sequences is limited by their reconstruction time, and (ii) fast implementations

exist but they still run in off-line mode. These were addressed and resolved with

development of a novel online, heterogeneous image reconstruction system for

Magnetic Resonance Imaging. The external platform was designed to support

fast implementation of advanced reconstruction algorithms. An external

computer equipped with a Graphic Processing Unit card was integrated into the

scanner’s image reconstruction pipeline. This allowed direct access to high

performance parallel hardware on which the rapid data reconstruction can be

realised. Also, the automation of data transmission and reconstruction

execution has preserved the non-interrupted assessment workflow.

6

7

Table of Contents

Abstract ... 5

Table of Contents .. 7

List of Equations ... 11

List of Figures ... 15

List of Tables... 19

1. Introduction .. 21

1.1 Magnetic Resonance physics fundamentals 21

1.1.1 Signal generation ... 21

1.1.2 Spatial encoding .. 25

1.2 Fourier Transform and its properties .. 27

1.3 Image reconstruction ... 29

1.3.1 𝑘-spac++e sampling .. 29

1.3.2 Cartesian trajectory ... 30

1.3.3 Partial Fourier .. 31

1.3.4 Non-uniform sampling trajectories ... 31

1.3.5 Under-sampling ... 33

1.4 Advanced MRI ... 35

1.4.1 Simplified reconstruction by Sensitivity Encoding 36

1.4.2 Sensitivity Encoding algorithm ... 42

1.4.3 Temporal encoding .. 47

1.5 General Purpose computing on Graphic Processing Units 49

1.6 CUDA programming model .. 53

2. Motivation .. 57

3. Distributed image reconstruction system ... 61

3.1 Introduction .. 62

8

3.2 Client-server architecture ... 62

3.2.1 Networking layer .. 63

3.2.2 Server-reconstruction layer .. 64

3.2.3 Client-reconstruction layer ... 65

3.3 Application life cycle .. 66

3.3.1 The system set-up state ... 66

3.3.2 The reconstruction state .. 66

3.4 The implemented system specifics .. 67

3.4.1 Networking and communication interfaces ... 68

3.4.2 Execution and data transmission management 69

3.4.3 Reconstruction management ... 71

3.5 Data transmission test ... 72

4. GPU reconstruction implementation .. 77

4.1 Introduction .. 78

4.2 Conjugate gradient linear solver algorithm for the SENSE

reconstruction .. 78

4.3 Existing GPU gridding implementations ... 80

4.4 The gridding operation as matrix multiplications 83

4.5 Batched gridding strategy for the repetitive trajectories 84

4.6 Implementation specifics.. 85

4.7 Reconstruction tests .. 86

5. Real-time reconstruction for continuous acquisitions 89

5.1 Introduction .. 90

5.2 Methods ... 91

5.2.1 Study Population .. 91

5.2.2 Data acquisition and processing .. 91

9

5.2.3 In-vivo validation of GPU reconstruction .. 92

5.2.4 Vascular response to exercise ... 92

5.2.5 Image analysis... 93

5.2.6 Statistical Analysis ... 93

5.3 Results ... 95

5.3.1 Reconstruction validation ... 95

5.3.2 Reconstruction times ... 96

5.3.3 Continuous cardiac output monitoring .. 97

5.4 Discussion ... 99

6. High temporal resolution real-time acquisitions with temporal

encoding ... 101

6.1 Introduction .. 102

6.2 Methods ... 104

6.2.1 Data acquisition and processing .. 104

6.2.2 In-Silico simulation ... 111

6.2.3 In-vitro validation study .. 113

6.2.4 In-vivo validation study .. 113

6.2.5 Exercise study ... 114

6.2.6 Image analysis... 115

6.2.7 Statistical analysis ... 116

6.3 Results ... 117

6.3.1 In-silico tests .. 117

6.3.2 In-vitro validation ... 118

6.3.3 In-vivo study .. 118

6.3.4 Exercise study ... 123

6.4 Discussion ... 123

10

7. GPU reconstruction generalisation .. 129

7.1 Introduction .. 130

7.2 Gridding optimisation steps .. 132

7.2.1 Initial assessment .. 132

7.2.2 Sequential approach .. 134

7.2.3 Threaded approach ... 137

7.3 Hybrid CPU/GPU implementation .. 139

7.4 System workload tests ... 143

8. Discussion ... 149

9. Future work .. 153

9.1 Retrospectively gated reconstruction ... 153

9.2 Fast reconstruction of image based self-navigator 156

9.3 Modified spiral acquisition for self-navigating................................. 157

9.4 MRI as a web service .. 158

10. References .. 161

11. Appendices .. 173

11.1 Network communication module .. 173

11.2 Reconstruction module interface ... 173

11.3 The pseudo code of the conjugate gradient linear solver algorithm for

the SENSE reconstruction ... 174

11.4 The template of element-wise matrix-vector operations on GPU ... 175

11.5 The gridding optimisation tests and results 176

11.5.1 Gridding tests .. 176

11.5.2 Sequential approach .. 179

11.5.3 Threaded approach ... 182

11

List of Equations

Equation 1-1 Magnitude of a magnetic moment. .. 21

Equation 1-2 Possible spin quantum states under an external magnetic field.

 .. 21

Equation 1-3 Quantum state energy formulations. 22

Equation 1-4 Precession frequency ... 22

Equation 1-5 Ratio of the low to high energy spins. 23

Equation 1-6 Simplified MR signal formulation. .. 24

Equation 1-7 Larmor frequency as a function of linearly varying magnetic

gradient. ... 25

Equation 1-8 Impact of linearly varying gradients on the total magnetization

vector. .. 25

Equation 1-9 𝑘 – spatially varying phase of magnetic vectors. 26

Equation 1-10 Proportional relation between MR signal and total magnetic

vector. .. 27

Equation 1-11 Fourier Transform and its inverse formulations....................... 27

Equation 1-12 Fourier Transform of a sampling function. 28

Equation 1-13 Fourier Transform of a shifted function. 28

Equation 1-14 Fourier Transform of a modulated function. 28

Equation 1-15 Fourier Transform of multiplication of functions. 28

Equation 1-16 Fourier Transform of convolution of two functions. 28

Equation 1-17 Generalised comb function – sampling function. 30

Equation 1-18 𝑚-dimensional comb function. .. 30

Equation 1-19 Discrete version of MR signal. .. 30

Equation 1-20 Formulation of convolution onto rectilinear grid. 32

Equation 1-21 Inverse FT of convolved MR signal. .. 32

12

Equation 1-22 MR reconstruction by gridding. ... 32

Equation 1-23 1D Cartesian sampling. .. 33

Equation 1-24 Discrete nuclei density representation from 1D Cartesian

sampling... 34

Equation 1-25 Two times under-sampling of 1D Cartesian sampling............. 34

Equation 1-26 Simplified description of 1D aliasing for two times under-

sampling... 37

Equation 1-27 Simplified description of 1D aliasing including receiver coil

weighting. ... 38

Equation 1-28 Simple 1D SENSE matrix notation. .. 38

Equation 1-29 Simple estimation of the coil sensitivities for the SENSE

algorithm. ... 39

Equation 1-30 Simplified sum-of-squares technique for combination of images

from multiple phased array coils. ... 39

Equation 1-31 MR signal formulation including spatial distribution of a receiver

coil. ... 42

Equation 1-32 Matrix notation of discrete signals. ... 42

Equation 1-33 MRI experiment described as a system of linear equations (I). ..

 ... 42

Equation 1-34 Identity condition for the SENSE algorithm. 43

Equation 1-35 Encoding matrix definition. .. 43

Equation 1-36 Encoding matrix rows definition. ... 43

Equation 1-37 Encoding matrix columns definition. 43

Equation 1-38 MRI experiment described as a system of linear equations (II). .

 ... 43

Equation 1-39 Regularisation formulation. ... 43

Equation 1-40 Intensity and density corrections. ... 44

13

Equation 1-41 Compact formulation of the linear encoding system. 45

Equation 1-42 Solution to the linear encoding system. 45

Equation 1-43 The final linear equations system solved by the SENSE

algorithm. ... 45

Equation 1-44 Spatial domain to k-space domain transformation steps. 46

Equation 1-45 k-space domain to spatial domain transformation steps. 46

Equation 1-46 Linearity property of integration. ... 47

Equation 1-47 Linearity property of Fourier Transform. 47

Equation 1-48 Result of reconstruction of data on a shifted under-sampled

trajectory. ... 48

Equation 1-49 General formulation of the impact of trajectory shift on aliases

due to under-sampling. .. 48

Equation 1-50 Temporally varying oscillations in under-sampled real space. 49

Equation 1-51 Achievable speed-up with parallelization according to the

Amdahl’s law. ... 51

Equation 4-1 The gridding in form of matrix-vector multiplication. 84

Equation 4-2 Batched version of the gridding in form of matrix-matrix

multiplication. ... 85

Equation 6-1 Filter reciprocity condition ... 105

Equation 6-2 Definition of normalised root mean square error used in the in-

silico test. ... 116

14

15

List of Figures

Fig. 1-1 Schematic visualization of a magnetic vector precessing around an

external field. .. 22

Fig. 1-2 Example of changes induced with a linear magnetic gradient in spatial

oscillations (k-space position) with time. .. 26

Fig. 1-3 Schematic visualization of1D signal under-sampling. 35

Fig. 1-4 Simple SENSE for uniform Cartesian under-sampling. 41

Fig. 1-5 Comparison of CPU and GPU architectures (44). 52

Fig. 1-6 Thread hierarchy (44). ... 54

Fig. 3-1 Layered framework for the client-server architecture of the distributed

image reconstruction system. .. 64

Fig. 3-2 The system set-up state. .. 66

Fig. 3-3 The reconstruction state. ... 67

Fig. 3-4 The buffered transmission and remote execution management. 70

Fig. 3-5 Network transmission speed as a function of transmitted data size. 74

Fig. 3-6 Total transmission time test results. ... 75

Fig. 4-1 Simplified block chart of the iterative SENSE algorithm. 80

Fig. 4-2 Problem specific GPU gridding implementations (59). 83

Fig. 4-3 Creation of the gridding matrix. .. 84

Fig. 4-4 Continuous real-time data processing with the distributed system. 86

Fig. 5-1 Multi-threaded segmentation plug-in. ... 94

Fig. 5-2 Flow analyse plug-in. ... 94

Fig. 5-3 Image quality comparison. ... 95

Fig. 5-4 Flow quantification validation ... 96

Fig. 5-5 System workload during the continuous flow assessment. 96

file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257076
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257076
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257077
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257077
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257078
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257079
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257080
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257081
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257082
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257082
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257083
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257084
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257085
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257086
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257087
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257088
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257089
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257090
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257091
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257092
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257093
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257094
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257095
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257096

16

Fig. 5-6 An example of flow data acquired with continuous real-time PCMR

during exercise. .. 98

Fig. 5-7 Exercise data results. .. 98

Fig. 6-1 Sampling trajectory pattern used in the 10x accelerated UNFOLDed-

SENSE reconstruction. .. 105

Fig. 6-2 Schematic visualisation of the temporal encoding used in the

UNFOLDed-SENSE. .. 106

Fig. 6-3 UNFOLDed-SENSE reconstruction process. 108

Fig. 6-4 Modified continuous real-time data processing for UNFOLDed-SENSE.

 ... 109

Fig. 6-5 Two sliding window reconstructions used in validation. 110

Fig. 6-6 In-silico model design. ... 111

Fig. 6-7 Data processing plug-in for calculation of cardiac time intervals. 115

Fig. 6-8 Example of k-space temporal filtering for accelerated spiral read-out 117

Fig. 6-9 In-silico results. .. 118

Fig. 6-10 In-vitro validation results. ... 119

Fig. 6-11 In-vivo imaging results. .. 120

Fig. 6-12 In-vivo validation results. ... 122

Fig. 7-1 Sequential approach to gridding of data from non-repeating trajectories.

 ... 135

Fig. 7-2 Threaded approach to gridding of data from non-repeating trajectories.

 ... 138

Fig. 7-3 Examples of system workload charts. .. 146

Fig. 9-1 Modified continuous data processing for accelerated gated PCMR data.

 ... 154

Fig. 9-2 Initial results for accelerated gated PCMR sequence with on-line GPU

reconstruction. ... 155

file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257097
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257097
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257098
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257099
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257099
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257100
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257100
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257101
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257102
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257102
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257103
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257104
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257105
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257106
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257107
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257108
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257109
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257110
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257111
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257111
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257112
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257112
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257113
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257114
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257114
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257115
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257115

17

Fig. 9-3 An example of modified spiral trajectory including additional navigator

read-outs. ... 157

file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257116
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257116

18

19

List of Tables

Tab. 4-1 SENSE reconstruction time comparison. .. 88

Tab. 5-1 Continuous flow assessment reconstruction time comparison. 97

Tab. 6-1 Combined in-vitro and in-vivo results of Bland–Altman and correlation

analyses. .. 121

Tab. 6-2 In-vivo exercise results. .. 123

Tab. 7-1 Tested hardware specification. ... 132

Tab. 7-2 GPU memory requirement of the gridding operation. 134

Tab. 7-3 Iterative SENSE GPU reconstruction test results. 142

Tab. 7-4 Work-load timing results. .. 147

Tab. 11-1 Estimation of the gridding optimisation limits. 177

Tab. 11-2 Results - Sequential (pre-calculated & pre-stored). 178

Tab. 11-3 Results - Sequential (naive). ... 179

Tab. 11-4 Results - Sequential (overlapping). ... 180

Tab. 11-5 Results - Average timings from the sequential approach tests. 181

Tab. 11-6 Results - Sequential (pre-calculated). ... 182

Tab. 11-7 Results - Threaded ... 183

Tab. 11-8 Results - Threaded (pre-calculated). .. 185

file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257117
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257118
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257119
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257119
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257120
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257121
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257122
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257123
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257124
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257125
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257126
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257127
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257128
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257129
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257130
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257131
file:///C:/Users/Public/Documents/doc/PhD%20thesis/doc/thesisFinalCorrections.docx%23_Toc443257132

20

21

1. Introduction

1.1 Magnetic Resonance physics fundamentals

1.1.1 Signal generation

Atomic nuclei with odd atomic weight and/or odd atomic number have

angular momentum (𝐽) referred to as a spin (1-4). Nuclei with non-zero spin

have an associated magnetic moment (𝜇⃗ = 𝛾𝐽), where 𝛾 is the gyromagnetic

ratio which is a property of specific nuclei. The magnetic moment magnitude is

given by the following equation;

Where 𝐼 is the nuclear spin quantum number, which relates to nuclei

atomic mass and charge number and ℎ is Planck’s constant. For a nucleus to

be MR active 𝐼 must be non-zero, therefore generating a non-zero magnetic

moment. However, in thermal equilibrium and absence of a strong external

magnetic field the direction of 𝜇⃗ is random. In consequence there is no net

magnetic field from a population of spins.

When placed in an external magnetic field (𝐵0⃗⃗⃗⃗⃗) the spins undergo

several changes. Primarily, the spins are separated (quantized) into (2𝐼 + 1)

quantum states (Zeeman splitting) (4, 5), as shown in Equation 1-2.

Therefore, nuclei where 𝐼 =
1

2
 (i.e. 1H, 13C, 19F etc.) have two possible

quantum states −
1

2
 and

1

2
. Importantly, these quantum states have discrete

energy levels directly associated with them (Equation 1-3).

|𝜇⃗| =
𝛾ℎ

2𝜋
√𝐼(𝐼 + 1) 1-1

Equation 1-1 Magnitude of a magnetic moment.

𝑚𝐼 ∈ −𝐼,−𝐼 + 1, … , 𝐼 1-2

Equation 1-2 Possible spin quantum states under an external magnetic field.

22

These energy states are important in determining the magnetic

properties of the spin population. In an external magnetic field the magnetic

moments associated with individual spins precess around the magnetic field

axis as shown in Fig. 1-1. In this state the magnetic moment can be defined in

terms of its component along the external field (𝜇𝑧), an orthogonal component

(𝜇𝑥,𝑦), an angle (𝜃) and the precession frequency.

The orientation of these precessing magnetic moments (either parallel

or anti-parallel to the external field) is determined by the energy levels of the

spins. Spins aligned with parallel directionality are in the low energy state (𝐸↑)

and those in anti-parallel alignment are in the high energy state (𝐸↓).

𝐸 = −𝜇⃗ ∙ 𝐵0⃗⃗⃗⃗⃗ = −𝜇𝑧𝐵0 = −𝑚𝐼
𝛾ℎ

2𝜋
𝐵0

𝐸↑ = −
𝛾ℎ

4𝜋
𝐵0

𝐸↓ =
𝛾ℎ

4𝜋
𝐵0

𝛥𝐸 = 𝐸↓ − 𝐸↑ =
𝛾ℎ

2𝜋
𝐵0

1-3

Equation 1-3 Quantum state energy formulations.

𝜔0 = 𝛾𝐵0 1-4

Equation 1-4 Precession frequency

Fig. 1-1 Schematic visualization of a magnetic vector precessing around an external field.

23

In a given spin population the proportion of the low to high energy spins

is governed by the Boltzmann distribution;

The ratio of spins in the lower energy state (𝑁𝑙𝑜𝑤) to those in the higher

energy state (𝑁ℎ𝑖𝑔ℎ) is a function of the energy difference between the states

(Equation 1-3) and the temperature of the system (𝑇𝑠), 𝐾 - the Boltzmann

constant. Consequently, the ratio increases with the strength of the external

field and falling system temperatures. There is always a small excess of nuclei

in the low energy state. For the room temperature (25oC) and 𝐵0=1.5T there are

~10 in a million protons (1H – Hydrogen molecules) in the low energy state. This

excess is substantial enough to create a nonzero net magnetisation vector

parallel to the external magnetic field.

As was mentioned an important property of the magnetic moment under

the external field is its precession around it. However, the net magnetic vector

does not exhibit the precession around the external field. This is a result of the

random distribution of the traversal magnetisation (𝜇𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗) from each nucleus.

Nevertheless, an aligned magnetic vector can be tipped or nutated into the x-y

plane by means of an external magnetic wave. The wave must have the same

frequency as the precessional frequency (Larmor frequency). In classical

description, the magnetic wave is seen as a force of torque, which is applied

orthogonally to the torque of magnetic moment, oscillates as it precesses. In the

quantum description, the electro-magnetic energy of the external impulse is

used to force spins to change quantum state (Planck’s law – absorption). The

energy of the external radiation (𝐸𝑒𝑥𝑡 =
ℎ𝜔𝑒𝑥𝑡

2𝜋
) must match the energy difference

between the states (𝛥𝐸 - Equation 1-3). Thus, the electro-magnetic wave must

propagate with the Larmor frequency. The matching frequency is called

resonance frequency and the whole process is known as magnetic resonance

(MR).

MR static magnetic fields for clinical applications are typically in range

of 0.1 to 7 Tesla (T), therefore the resonance frequency of Hydrogen nucleus

𝑁𝑙𝑜𝑤
𝑁ℎ𝑖𝑔ℎ

= 𝑒
𝛥𝐸
𝐾𝑇𝑠 1-5

Equation 1-5 Ratio of the low to high energy spins.

24

(the most abundant element in the human body, as up to ~65 % of it consists of

water - H2O) is in range of radio frequencies and the external impulse is

referred to as a radio frequency pulse (RF-pulse).

RF excitation is used to reorient the net magnetisation from alignment

with the external magnetic field. After excitation, the tipped magnetisation has a

non-zero component in a plane that is orthogonal to the external field.

Consequently, magnetic resonance generates the signal through the net

alignment and synchronisation of the magnetic moments with each other. In this

way they do not cancel each other out and the resultant signal can be detected.

These net magnetic field changes (𝑚⃗⃗⃗(𝑡)) can be measured as an

induced electric current in an antenna (more commonly called a coil) placed

next to the sample of interest. The signal generated in the receiver coil dies out

with time, which is referred to as Free Induction Decay (FID). The signal

disappearance is caused by inhomogeneity of the external magnetic field and

the spin-spin relaxation (destructive interaction of spins in close spatial

proximity). Both factors force magnetic moments to get out of synchronisation

and have a destructive effect on strength of the generated signal. This process

is dictated by 𝑇2
∗ time, or the transverse relaxation time (5).

𝑚⃗⃗⃗(𝑡) ∝ 𝜌𝑒−𝑖𝛾𝐵0𝑡

𝑆(𝑡) ∝ 𝑚⃗⃗⃗(𝑡)𝑒
−
𝑡
𝑇2
∗

1-6

Equation 1-6 Simplified MR signal formulation.

Equation 1-6 describes (in a simplified form) a generated MR signal (𝑆)

as a function of initial net magnetisation vector in the orthogonal plane (𝑚⃗⃗⃗) that

is reduced in time with the exponential rate (𝑇2
∗). Strength of the initial

magnetisation (𝑚⃗⃗⃗) vector is directly proportional to the density of nuclei in a

sample (𝜌) that took part in MR, while its oscillations are dictated by Larmor

frequency.

The tipped spins also realign with the external field and recover

magnetisation in that direction. This process is called the longitudinal relaxation

described with 𝑇1 time. In every multiple of 𝑇1 second magnetic momentum

25

recovers ~63% of its magnetisation along the direction of the external magnetic

field.

The signal described forms the bases of the MR imaging and in the next

section I describe how the spatial information is encoded into it.

1.1.2 Spatial encoding

MR experiments allow measurement of nuclei density by measuring FID

signal that originated from an examined sample. Although the signal does not

carry any spatial information this can be introduced using magnetic field

gradients linearly varying through space. Larmor frequency depends on

strength of an external magnetic field, which can be modified so it varies across

space according to a vector field (gradient) 𝐺⃗ = 𝛻𝐵 – a linear gradient of

magnetic field 𝐵. In this case, precession frequency (𝜔) depends on spatial

position vector (𝑟);

𝜔(𝑟) = 𝛾(𝐵0 + 𝐺⃗ ∙ 𝑟) 1-7

Equation 1-7 Larmor frequency as a function of linearly varying magnetic gradient.

The magnetisation can be now described by the following formula;

𝑚⃗⃗⃗(𝑡) ∝ 𝑒−𝑖𝛾𝐵0𝑡∫𝜌(𝑟)𝑒−𝑖𝛾𝐺⃗̇∙𝑟𝑡𝑑𝑟 1-8

Equation 1-8 Impact of linearly varying gradients on the total magnetization vector.

Equation 1-8 dictates how net magnetic vector changes with strength of

𝐺⃗ and the time this magnetic gradient is applied.

Consequently, the simplest relation between position and precession

frequency is obtained by applying a linearly varying magnetic gradient through

space. This results in magnetic vectors from different spatial positions rotating

with different frequencies. The constant 𝑒−𝑖𝛾𝐵0𝑡 can be demodulated, which is

often referred to as moving to rotating reference frames, as a thought exercise

to simplify the understanding of the processes. In this domain magnetic vectors

of spins under no additional external magnetisation (i.e. 𝐺⃗ ∙ 𝑟 = 0) are seen as if

having no angular momentum. However, magnetic vectors of spins under

external magnetic field that deviates from 𝐵0 acquire different phases over time.

26

These are proportional to a difference in the external magnetic field (𝐺⃗ ∙ 𝑟) and

the length of time of its application (𝑡).

This difference in phase across space can be seen as a wave. Unlike

oscillations through time these are oscillations through space. We have a wave

of changing phases as we move from one position to another (Fig. 1-2). This

can be described as a wave vector. This is traditionally denoted with a letter 𝑘,

and as every wave it has its own spatial frequency, and wave length 𝜆;

𝑘 =
1

𝜆

𝑘⃗⃗ =
𝛾

2𝜋
𝐺⃗𝑡

1-9

Equation 1-9 𝑘⃗⃗ – spatially varying phase of magnetic vectors.

Fig. 1-2 Example of changes induced with a linear magnetic gradient in spatial oscillations (k-
space position) with time.

The arrows represent spatially distributed spins presented in the rotating frame of reference.
Equivalent continuous complex representation of the k-space is represented with the black (real
component) and grey (imaginary component) plots.

Time [s]

0 Space[m]

…

27

Now, the superposition of all magnetic vectors can be seen as existing

in a new domain, 𝑘-space domain;

𝑆(𝑘⃗⃗) ∝ 𝑚⃗⃗⃗(𝑘⃗⃗) ∝ ∫𝜌(𝑟)𝑒−2𝜋𝑖𝑘⃗⃗∙𝑟𝑑𝑟 1-10

Equation 1-10 Proportional relation between MR signal and total magnetic vector.

Equation 1-10 is derived from equations 1-6 and 1-9, and describes the

acquired MR signal, depending on a position in 𝑘-space. The position in 𝑘-

space can be changed with accumulation of time in a direction and strength of

applied magnetic field gradient (Equation 1-9).

More importantly, the acquired MR signal in 𝑘-space is a Fourier

Transformation (FT) of nuclei density 𝜌(𝑟). Therefore, inverse Fourier

Transformation (iFT) can be applied to get the nuclei density distribution. In the

case of spatial encoding with 2D magnetic field gradients, this can be visualised

in a form of an image.

1.2 Fourier Transform and its properties

The Fourier Transform (ℱ) and its inverse (ℱ−1) for unitary frequencies

are formulated as follows;

ℱ𝜁[𝑓(𝑥)] = 𝑭(𝜁) = ∫𝑓(𝑥)𝑒
−2𝜋𝑖𝜁𝑥𝑑𝑥

ℱ𝑥
−1[𝑭(𝜁)] = 𝑓(𝑥) = ∫𝑭(𝜁)𝑒2𝜋𝑖𝜁𝑥𝑑𝜁

1-11

Equation 1-11 Fourier Transform and its inverse formulations.

The first equation expresses transformation (ℱ𝜁) of function 𝑓 from 𝑥

domain into its equivalent form 𝑭 in the reciprocal domain, 𝜁. Conversely, the

second equation expresses inverse transformation (ℱ𝑥
−1) of 𝑭(𝜁) into 𝑓(𝑥).

The following are properties of the transform that are used in this work.

The properties are given without proofs as these can be found in other works;

28

ℱ𝜁 ∑ 𝛿(𝑥 − 𝑗𝑀) =
1

𝑀
∑ 𝛿 (𝜁 − 𝑗

1

𝑀
)

∞

𝑗=−∞

∞

𝑗=−∞

ℱ𝑥
−1 ∑ 𝛿(𝜁 − 𝑗𝑀) =

1

𝑀
∑ 𝛿 (𝑥 − 𝑗

1

𝑀
)

∞

𝑗=−∞

∞

𝑗=−∞

1-12

Equation 1-12 Fourier Transform of a sampling function.

𝛿 represents Dirac delta function, which is used to represent

discretisation of continuous functions through a sampling process. Fourier

Transformation of a sampling function results in a different sampling function.

ℱ𝜁[𝑓(𝑥 − 𝑎)] = 𝑒
−2𝜋𝑖𝑎𝜁𝑭(𝜁)

ℱ𝑥
−1[𝑭(𝜁 − 𝑎)] = 𝑒2𝜋𝑖𝑎𝑥𝑓(𝑥)

1-13

Equation 1-13 Fourier Transform of a shifted function.

A shift of a transformed function results in modulation, phase shift in the

reciprocal domain.

ℱ𝜁[𝑒
2𝜋𝑖𝑎𝑥𝑓(𝑥)] = 𝑭(𝜁 − 𝑎)

ℱ𝑥
−1[𝑒2𝜋𝑖𝑎𝜁𝑭(𝜁)] = 𝑓(𝑥 + 𝑎)

1-14

Equation 1-14 Fourier Transform of a modulated function.

A modulation, phase shift of a transformed function results in a shift in

the reciprocal domain.

ℱ𝜁[𝑓(𝑥)𝑔(𝑥)] = 𝑭(𝜁) ∗ 𝑮(𝜁)
ℱ𝑥
−1[𝑭(𝜁)𝑮(𝜁)] = 𝑓(𝑥) ∗ 𝑔(𝑥)

1-15

Equation 1-15 Fourier Transform of multiplication of functions.

Fourier Transformation of a multiplication of functions results in

convolution of their representations in the reciprocal domain.

ℱ𝜁[𝑓(𝑥) ∗ 𝑔(𝑥)] = 𝑭(𝜁)𝑮(𝜁)

ℱ𝑥
−1[𝑭(𝜁) ∗ 𝑮(𝜁)] = 𝑓(𝑥)𝑔(𝑥)

1-16

Equation 1-16 Fourier Transform of convolution of two functions.

Fourier Transformation of a convolution of functions results in

multiplication of their representations in the reciprocal domain.

29

1.3 Image reconstruction

Equations 1-6 and 1-10 give us an insight into the relationship between

underlying nuclei density and the generated MR signal. From equation 1-10 we

know that the underlying density function can be reproduced accurately,

providing we have sufficient knowledge about the signal. The signal was

expressed in terms of a new spatial frequency domain (k-space). The signal

cannot be acquired instantly as k-space position is time dependent (Equation

1-9). However, the k-space can be navigated through using linear magnetic

gradients. A sequence of changing magnetic gradients can be visualised in form

of a path or trajectory of k-space positions. The signal is sampled while the

series of gradients is being played out. Therefore a k-space path drawn by a

predefined series of magnetic gradients is referred to as a sampling trajectory.

From equation 1-6 we know that the k-space signal dies out and

sampling trajectories cannot be infinitely long. It is impractical to cover the

whole k-space with single trajectory, as it may happen that by the end of it there

is no signal to acquire. Instead a series of MR excitations and sampling on

different, complementary trajectories is preferred. The selected trajectory

defines how quickly k-space can be sampled. Ultimately, the trajectory and

sampling strategy should be selected depending on the application, as well as

the desired resolution of the reconstructed data.

1.3.1 𝑘-space sampling

The previous section revealed that acquired 𝑘-space signal, 𝑆(𝑘⃗⃗) is a

Fourier Transformation of nuclei density function, 𝜌(𝑟). As mentioned, an

inverse Fourier Transform operation can be used to find 𝜌(𝑟). Although 𝑘-space

can be seen as a continuous function it is not feasible to acquire data in

continuous fashion. The signal can be sampled as its discrete representation.

This can be represented with a sampling function (generalised comb function);

30

Ш𝑎⃗⃗∈𝐴(𝑥⃗) = ∑𝛿(𝑥⃗ − 𝑎⃗)

𝑎⃗⃗∈𝐴

 1-17

Equation 1-17 Generalised comb function – sampling function.

𝑎⃗ is the position of a sample from a set of sampling trajectory positions

(𝐴).

An 𝑚-dimensional comb function is defined as

Ш𝑁⃗⃗⃗(𝑥⃗) =∑∑…∑ 𝑚𝛿(𝑥0 − 𝑖0𝑁0, 𝑥1 − 𝑖1𝑁1…𝑥𝑚−1 − 𝑖𝑚−1𝑁𝑚−1)

𝑖𝑚−1𝑖1𝑖0

= ∑𝛿(𝑥⃗ − 𝑖𝑁⃗⃗⃗)

𝑖

1-18

Equation 1-18 𝑚-dimensional comb function.

𝑁⃗⃗⃗ represents a vector of distances between 𝛿 functions positions.

The discrete MR signal can be formulated in the following way;

𝑆⃗̇(𝑘⃗⃗) = (𝑆(𝑘⃗⃗)Ш𝑎⃗⃗∈𝐴(𝑘⃗⃗)) ∗ Ш𝑁⃗⃗⃗(𝑘⃗⃗) 1-19

Equation 1-19 Discrete version of MR signal.

The convolution with Ш𝑁⃗⃗⃗(𝑘⃗⃗) is used to simulate signal’s periodicity.

Substituting Equation 1-10 into Equation 1-19 yields the definition of Discrete

Fourier Transform (DFT) assuming 𝑁⃗⃗⃗ represents support bandwidth of k-space

signal (𝑆(𝑘⃗⃗)) and trajectory samples (𝐴) are on equidistant positions from 𝑁⃗⃗⃗.

1.3.2 Cartesian trajectory

The traditional way of acquiring data is to read-out data samples on a

uniformly spaced Cartesian grid. This means intervals between samples of each

of acquisition dimensions are constant. This property allows use of Fast Fourier

Transformation (FFT) algorithm to generate images, which is a very robust way

of performing DFT(6). Although this simplifies image reconstruction, the data

acquisition is very slow, as each trajectory line requires separate RF-pulse

excitation.

31

1.3.3 Partial Fourier

One of the common ways of speeding up Cartesian acquisitions is by

applying Partial Fourier technique(7). The Partial Fourier technique exploits

redundancy in the acquired signal, assuming it is of real values (a quantity of

nuclei density), in order to reduce the amount of data needed to be sampled.

The Fourier Transform of a real function is symmetric. The frequency space is

centrosymmetric with respect to its origin. If that was true for MR signals only

half of k-space would need to be sampled, while the other can be calculated

based on the read-out signal. Unfortunately, variations in the resonance

frequencies, flow and motion may cause phase errors, thus make the frequency

signal asymmetric and invalidate this assumption. Different techniques can be

applied to correct for slowly varying phase errors (i.e. Conjugate Synthesis(8),

Margosian(9), Homodyne(10), Cuppen(11), Projection onto Convex Sets(12)

and techniques based on Finite Impulse Response filters(7)). These require

calculation of a phase estimate map that is used in a correction step. This is

done by fully sampling the central part of the k-space. For example, sampling

may be limited to ~62 % of one of the encoding dimensions. The middle lines

are used to estimate phase changes. Additionally, some techniques use filtering

to reduce Gibbs’(5) ringing and/or reorder steps of reconstruction to reduce

artefacts due to imperfections in the phase map estimation.

Partial Fourier techniques are limited to structural imaging that may

exhibit slowly varying phase errors, as information encoded in a phase of signal

is lost with these techniques. Also, it usually does not provide more than ~1.66x

speed-up in acquisition time (data reduction: 40 %). Also, it is an undersampling

technique and as such it results in loss of signal-to-noise ratio (SNR).

1.3.4 Non-uniform sampling trajectories

A faster way of data sampling is to use a different, more time efficient

trajectory than Cartesian (i.e. multi-planar imaging(13)), spiral imaging(14, 15),

radial imaging(16). One of the fastest sampling trajectories is spiral

trajectory(17), as these cover a large proportion of 𝑘-space in one read-out, and

make efficient use of the gradient hardware. Regrettably, DFT cannot be

directly applied to data acquired on a spiral trajectory, as it is no longer placed

on a uniformly spaced grid. To solve this problem a technique, originating from

32

astronomy(18), called gridding(19, 20) is applied. This re-samples data onto a

rectilinear grid by convolving it with a kernel function;

𝑆𝑐̇
⃗⃗ ⃗⃗ (𝑘⃗⃗) = (𝑆⃗̇(𝑘⃗⃗) ∗ 𝑾(𝑘⃗⃗))Ш𝑁⃗⃗⃗(𝑘⃗⃗) 1-20

Equation 1-20 Formulation of convolution onto rectilinear grid.

This allows use of DFT and the convolution operation is followed by

FFT;

ℱ𝑟
−1 [𝑆𝑐̇
⃗⃗ ⃗⃗ (𝑘⃗⃗)] = ℱ𝑟

−1 [(𝑆⃗̇(𝑘⃗⃗) ∗ 𝑾(𝑘⃗⃗))Ш𝑁⃗⃗⃗(𝑘⃗⃗) ∗ Ш𝑁𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑘⃗⃗)]

=
1

(𝑁2𝑀)𝑚
ℱ𝑟
−1 [𝑆⃗̇(𝑘⃗⃗)]𝑤(𝑟)Ш 1

𝑁𝑀
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑟) ∗ Ш1

𝑁
⃗⃗⃗ ⃗(𝑟)

1-21

Equation 1-21 Inverse FT of convolved MR signal.

𝑚 is the number of dimensions. The final step is to remove weighting

(ℱ𝑟
−1[𝑾(𝑘⃗⃗)] = 𝑤(𝑟)) introduced by the convolution (Equation 1-16);

(𝑁2𝑀)𝑚

𝑤(𝑟)
ℱ𝑟
−1 [𝑆𝑐̇
⃗⃗ ⃗⃗ (𝑘⃗⃗)] = ℱ𝑟

−1 [𝑆⃗̇(𝑘⃗⃗)]Ш 1
𝑁𝑀
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑟) ∗ Ш1

𝑁
⃗⃗⃗ ⃗(𝑟) 1-22

Equation 1-22 MR reconstruction by gridding.

The final result has no aliasing resultant from DFT of the gridded signal

(𝑆𝑐̇
⃗⃗ ⃗⃗ (𝑘⃗⃗)). However, it is important to note that gridding does not remove potential

artefacts due to the selected trajectory imperfections (i.e. under-sampling). Also,

if the selected trajectory function has a varying density of sampling points, this

has to be corrected with an additional k-space samples weighting (21).

The sinc function is the optimal convolution kernel(19) as the resultant

weighting due to convolution process has a form of scaling of the final result.

However, gridding using sinc function is impractical as it is too computationally

intensive. A number of other kernels with their reciprocal window functions have

been studied and are commonly used in MRI(19, 21). These are functions of

Finite Impulse Response (FIR), which rapidly decay outside of the selected

kernel width, allowing its truncation and fast convolution process. In this work

the Kaiser-Bessel function was selected and used for the gridding operations,

33

due to its characteristics, performance and simplicity in computation of

discretized values.

1.3.5 Under-sampling

Some applications (i.e. Cardiac MRI) require a very high data

acquisition rate to reduce blurring due to dynamic behaviour of the imaged

object. In many cases this cannot be achieved with efficient sampling

trajectories alone, and for which data reduction techniques like Partial Fourier

are not applicable (i.e. Phase-Contrast MR) or would not make significant

difference. The reduction in acquisition time can be realised with under-

sampling. This means only a selected subset of trajectory read-out lines are

acquired. This is a more general case than Partial Fourier acquisition, which is

not limited to continuous sets of Cartesian lines. Any subset of trajectory

positions can be selected. This operation is described in terms of under-

sampling factor or data reduction factor, which is defined as a ratio of acquired

trajectory positions to their total number. Alternatively, it can be described in

terms of acceleration factor defined as a reciprocal of data reduction factor. For

example, acquisition of only even or odd lines halves the sampling time (data

reduction factor of 0.5 or 2x acceleration).

Unfortunately, with under-sampling some information about the signal is

lost, which causes artefacts in the form of aliasing (Fig. 1-4). Consider a one

dimensional signal 𝑆(𝑘) (the same principal applies to multi-dimensional

signals). The signal is fully sampled with intervals of 𝑀 [
1

𝑚
] and 𝑆(𝑘) ≠ 0 ∀𝑘 ∈

[−
𝑁𝑀

2
;
𝑁𝑀

2
];

𝑆⃗̇(𝑘) = [𝑆(𝑘)Ш𝑀(𝑘)] ∗ Ш𝑁𝑀(𝑘) 1-23

Equation 1-23 1D Cartesian sampling.

Now, inverse Fourier Transform of 𝑆⃗̇(𝑘) is described as follows;

34

𝜌̇(𝑟) =
1

𝑁𝑀2
[𝜌(𝑟)Ш 1

𝑁𝑀

(𝑟)] ∗ Ш1
𝑀

(𝑟) 1-24

Equation 1-24 Discrete nuclei density representation from 1D Cartesian sampling.

The sampling function Ш𝑀(𝑘) gives rise to periodicity of 𝜌(𝑟), which is

sampled with intervals of
1

𝑁𝑀
[𝑚].

This explains aliasing for signals sampled with intervals wider than 𝑀.

For example, acquisition of every other sample gives the following outcome;

𝜌̇(𝑟) =
1

2𝑁𝑀2
[𝜌(𝑟)Ш 1

𝑁𝑀

(𝑟)] ∗ Ш 1
2𝑀

(𝑟) 1-25

Equation 1-25 Two times under-sampling of 1D Cartesian sampling.

This means distances between centres of repeated 𝜌(𝑟) are halved,

and result in aliasing (Fig. 1-3 and Fig. 1-4).

Fast imaging requires a compromise between data acquisition reduction

that can be applied and visible artefacts in reconstructed images. This directly

depends on the application and used sampling trajectory. For example, two

times under-sampling of Cartesian trajectory in anterior to posterior direction for

cardiac imaging may require no additional steps to remove incurred aliasing.

This is because the elliptical shape of imaged cross-section leaves enough

space for the alias. Although the outer parts of the body may alias, they do not

wrap into the area of interest in the cardiac examination. An imaging plane can

be positioned to place a heart’s cross-section in the centre leaving it

unobstructed by the alias. However, even two times sped-up Cartesian read-out

is too slow for many MR applications. These include all real-time cardiac

assessments for which data sampling need to be on the level of ~40 ms or

faster. Of course, higher acceleration factors can be used, but then the aliasing

may start to corrupt the whole imaging space.

35

In practice this is not an undersampling technique as the region of

interest (support region) is rectangular. Consequently, to preserve the spatial

resolution an extent of sampled k-space is preserved, while a step between

read-out lines is increased to reduce the field-of-view (FOV) in this direction.

Nevertheless, implications of acquiring the rectangular FOV are the same as

with equivalent undersampling (i.e. loss of SNR).

1.4 Advanced MRI

Under-sampling can be combined with efficient sampling trajectories

(i.e. spiral trajectory) to achieve even lower acquisition times. Direct use of

gridding, as a reconstruction technique, fails in this case. This would result in

artefacts in the form of aliasing.

Fig. 1-3 Schematic visualization of1D signal under-sampling.

a) the k-space signal and the underlying object; b) discrete representation equivalent to fully
sampled reconstruction; (c-d) progressive undersapling of the signal and its impact on the
reconstructed object by inverse Fourier transform.

a)

b)

c)

d)

36

The artefacts can be removed with additional reconstruction steps. For

example, reconstruction of under-sampled data through combination of

simultaneously acquired data using spatially distributed receiver coils is a well-

studied technique with multiple variants(22-25). Alternatively, a temporal

domain of data acquired as a series of frames or volumes can be used to

encode information about the acquired signal(26). In such case a single

receiver coil is sufficient to reconstruct the data. However, it is possible to

combine both techniques(27-29), which results in improved image quality or

increase in possible data acquisition rate.

In this work, the Sensitivity Encoding (SENSE)(24) algorithm for

arbitrary sampling trajectories was selected for implementation. Furthermore,

the implemented algorithm was combined with the temporal encoding technique

(UNFOLD) to double possible temporal resolution of acquired data. Both

implementations were used in further described studies. For completion, the

following describes the SENSE algorithm based on the original work(24, 27, 30)

and its further studies(31), and the UNFOLD technique based on the original

articles(26, 32, 33).

1.4.1 Simplified reconstruction by Sensitivity Encoding

To introduce basic concepts the simple case of under-sampled one

dimensional signal is considered as introduced in section 1.3.5. This can be

seen as an equivalent of under-sampling of the phase encoding dimension in

Cartesian sequences (Fig. 1-4).

Deriving from equation 1-25, we can represent the discrete aliased

function (𝜌̇(𝑟)) as a sum of the underlying nuclei density (𝜌(𝑟)) from specific

spatial locations;

37

𝜌𝑖
+ = 𝜌 (

𝑖

𝑀𝑁
) ; ∀

𝑖∈[−
𝑁
2
;0)∩ℕ

𝜌𝑖
− = 𝜌 (

𝑖

𝑀𝑁
) ; ∀

𝑖∈[0;
𝑁
2
)∩ℕ

𝜌̇ (
𝑖

𝑀𝑁
) =

{

𝜌̇𝑖
− =

𝜌 (
𝑖
𝑀𝑁) + 𝜌 (

𝑖
𝑀𝑁 +

1
2𝑀)

2𝑁𝑀2
=
𝜌𝑖
− + 𝜌𝑖

+

2𝑁𝑀2
; ∀
𝑖∈[−

𝑁
2
;0)∩ℕ

𝜌̇𝑖
+ =

𝜌 (
𝑖
𝑀𝑁) + 𝜌 (

𝑖
𝑀𝑁 −

1
2𝑀)

2𝑁𝑀2
=
𝜌𝑖
+ + 𝜌𝑖

−

2𝑁𝑀2
; ∀
𝑖∈[0;

𝑁
2
)∩ℕ

1-26

Equation 1-26 Simplified description of 1D aliasing for two times under-sampling.

This formulation is for two times under-sampling. Of course, the formula

can be adapted to higher acceleration factors, as long as the number of

samples (𝑁) is divisible by the acceleration factor. Also, this simple method is

limited to acceleration factors from the set of natural numbers. Both conditions

are imposed to guarantee that no gridding operations are necessary and all

points are on the same Cartesian grid.

A direct result of two times under-sampling is reduction of a support

region or periodicity of 𝜌̇(𝑟) from every
1

𝑀
[𝑚] intervals to

1

2𝑀
[𝑚]. In 2D

reconstructions, this is referred to as reduction in field of view (FOV).

Consequently, both halves of the original function are overlaid on top of each

other in each half of the function resulting from the under-sampling (Fig. 1-4). In

this form the original signal cannot be determined as the linear equation is

under-determined (there are more unknowns than equations).

SENSE(24) compensates for loss of information, due to the under-

sampling process, using information about spatial signal weighting, introduced

through each of acquisition coils. In principal, the closer a precessing magnetic

momentum is to a receiver, the stronger the induced signal is (Fig. 1-4). In this

understanding a receiver has spatially varying signal sensitivity dependent on

its design. Commonly, these are represented by coil sensitivity maps (sensitivity

profiles). The coil sensitivity directly translates into weighting of acquired

signals. This additional information can be used to solve the under-sampling

problem. A new system of linear equations can be written;

38

𝐶𝑗,𝑖
+ = 𝐶𝑗 (

𝑖

𝑀𝑁
) ; ∀

𝑖∈[−
𝑁
2
;0)∩ℕ

; ∀𝑗∈[0,𝐽−1]∩ℕ

𝐶𝑗,𝑖
− = 𝐶𝑗 (

𝑖

𝑀𝑁
) ; ∀

𝑖∈[0;
𝑁
2
)∩ℕ
; ∀𝑗∈[0,𝐽−1]∩ℕ

𝜌̇𝑗,𝑖
− = 𝜌̇𝑗,𝑖

+ =
𝐶𝑗,𝑖
−𝜌𝑖

− + 𝐶𝑗,𝑖
+𝜌𝑖

+

2𝑁𝑀2
; ∀𝑗∈[0,𝐽−1]∩ℕ

1-27

Equation 1-27 Simplified description of 1D aliasing including receiver coil weighting.

Here 𝐶𝑗 and 𝜌̇𝑗 represent the spatial weighting introduced with the 𝑗th

coil and the reconstructed nuclei distribution on a basis of the acquired signal,

respectively.

This can be represented in matrix notation;

[

𝐶0,𝑖
− 𝐶0,𝑖

+

𝐶1,𝑖
− 𝐶1,𝑖

+

⋮ ⋮
𝐶𝐽−1,𝑖
− 𝐶𝐽−1,𝑖

+
]

[
𝜌𝑖
−

𝜌𝑖
+] =

[

𝜌̇0,𝑖
−

𝜌̇1,𝑖
−

⋮
𝜌̇𝐽−1,𝑖
−

]

=

[

𝜌̇0,𝑖
+

𝜌̇1,𝑖
+

⋮
𝜌̇𝐽−1,𝑖
+

]

[
𝜌𝑖
−

𝜌𝑖
+] =

[

𝐶0,𝑖
− 𝐶0,𝑖

+

𝐶1,𝑖
− 𝐶1,𝑖

+

⋮ ⋮
𝐶𝐽−1,𝑖
− 𝐶𝐽−1,𝑖

+
]

−1

[

𝜌̇0,𝑖
−

𝜌̇1,𝑖
−

⋮
𝜌̇𝐽−1,𝑖
−

]

=

[

𝐶0,𝑖
− 𝐶0,𝑖

+

𝐶1,𝑖
− 𝐶1,𝑖

+

⋮ ⋮
𝐶𝐽−1,𝑖
− 𝐶𝐽−1,𝑖

+
]

−1

[

𝜌̇0,𝑖
+

𝜌̇1,𝑖
+

⋮
𝜌̇𝐽−1,𝑖
+

]

1-28

Equation 1-28 Simple 1D SENSE matrix notation.

This system of linear equations can be created and solved for each of

the special positions (𝑖 ∈ [−
𝑁

2
;
𝑁

2
) ∩ ℕ). The systems are solvable providing the

special weights introduced with each coil are not correlated and each imaged

spatial position (𝑖) is seen by a number of receivers equal or greater to the used

acceleration factor.

The SENSE technique works well providing each of the used

acquisition coils contributes unique information about the whole imaged object.

For this reason phased array coils (or surface coils) are used. These are arrays

of smaller coils that can acquire signal simultaneously and independently of

each other(34). They provide higher signal-to-noise ratio (SNR), although their

signal sensitivity is more localised to close surrounding of the coil and quickly

decays with distance. This is opposite to bigger volume coils (i.e. the body coil).

39

Pre-determination of coil sensitivities is not a trivial task as these can

vary depending on experiment conditions. Additionally, the exact position of a

coil with respect to an imaged object coordinates is needed. Instead, the coil

sensitivities can be estimated on the basis of acquired images themselves(24);

𝐶𝑗(𝑟) =
𝜌̇𝑗(𝑟)

𝑃(𝑟)
 1-29

Equation 1-29 Simple estimation of the coil sensitivities for the SENSE algorithm.

The estimation requires a reference image (𝑃(𝑟)). Optimally, the

reference should be perfectly homogeneous; meaning it should not introduce

any spatially varying weight to the underlying nuclei density (𝑃(𝑟) = 𝑏(𝑟)𝜌(𝑟));

for example a body coil image. However, it is not possible to simultaneously

acquire data with both body and surface coils. Sequential acquisition may result

in artefacts due to imaged object motion. Alternatively, the combination of

acquired images from multiple surface coils with the sum-of-squares(34) can be

used as a reference for the estimation;

𝑠𝑜𝑠 = √∑𝜌̇𝑗(𝑟)𝜌̇𝑗
∗(𝑟)

𝑗

 1-30

Equation 1-30 Simplified sum-of-squares technique for combination of images from multiple
phased array coils.

This can be done during a pre-scan for non-dynamic imaging. A fully

sampled data set can be acquired for the calculation of the coil sensitivities.

These are then used in following accelerated acquisitions. For dynamic objects,

for which the profiles can change with time, they can be calculated from the

accelerated data themselves. Assuming the sensitivity profiles are slowly

varying in space, fully sampling of the central portion of 𝑘-space should be

sufficient for the calculations. However, this is with an expense of the total

acceleration and consequently limits the temporal resolution of the acquired

data.

Alternatively, a sliding window(27) approach can be applied in

acquisitions of series of frames. Rotating between supplementary trajectories,

while acquiring data, allows combination of the data into a fully sampled set.

40

The new combined data can serve as a fully sampled reference for calculation

of the coil sensitivities, although it has a lower temporal resolution. Also, in long

continuous real-time scans the sliding window approach can be used to make

the reconstruction resistant to motion.

41

Fig. 1-4 Simple SENSE for uniform Cartesian under-sampling.

Fully sampled, two times under-sampled and sensitivity maps for data acquired with four
surface coils are presented in the first four rows. The under-sampled data was created
artificially out of the fully sampled data by zero-filling of every other read-out line. The sensitivity
maps were calculated according to equation 1-29 using the fully sampled data with the sum-of-
squares (Equation 1-30) as a reference image. The last row presents combined images (the
sum-of-squares) for the fully- and under-sampled data sets, and the result of the simple SENSE
reconstruction (Equation 1-28).

Fully sampled Under-sampled Sensitivity maps

Coil 1

Coil 2

Coil 3

Coil 4

Combined

Fully sampled Under-sampled Simple SENSE

42

1.4.2 Sensitivity Encoding algorithm

The formulation of the SENSE algorithm for the under-sampled arbitrary

trajectories has a more complex formulation(24, 30). Consequently, it is a more

difficult problem to solve, due to the non-uniform sampling pattern of the

trajectories.

k-space signal function is reformulated to take in account multiple coils

acquisition;

𝑆𝑗(𝑘⃗⃗) ∝ ∫𝜌(𝑟)𝐶𝑗(𝑟)𝑒
−𝑖2𝜋𝑘⃗⃗∙𝑟𝑑𝑟 1-31

Equation 1-31 MR signal formulation including spatial distribution of a receiver coil.

𝐶𝑗(𝑟) - represents spatial weighting introduced by 𝑗th receiver coil. The

signal is acquired on a sampling trajectory as a discrete function (𝑆⃗̇(𝑘⃗⃗)), which

can be seen in a form of the matrix. For purpose of this discussion the following

matrix notation is adopted to represent discrete functions;

𝑣̇(𝑎⃗); 𝑎⃗ ∈ 𝑨 = [𝑎⃗0 𝑎⃗1 ⋯ 𝑎⃗𝑁−1]
𝑚𝑎𝑡𝑟𝑖𝑥
𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛
→ 𝑣𝑁 = [

𝑣̇(𝑎⃗0)

𝑣̇(𝑎⃗1)
⋮

𝑣̇(𝑎⃗𝑁−1)

] ; 𝑣𝑛 = 𝑣̇(𝑎⃗𝑛) 1-32

Equation 1-32 Matrix notation of discrete signals.

Following this notation a set of 𝑆⃗̇𝑗(𝑘⃗⃗) can be seen as 𝑆𝐽𝑀. It represents

𝑘-space data acquired for a set of [0; 𝐽 − 1] ∩ ℕ coils on

𝑘⃗⃗ ∈ [𝑘⃗⃗0 𝑘⃗⃗1 ⋯ 𝑘⃗⃗𝑀−1] trajectory samples. 𝐽 and 𝑀 are numbers of elements

in the set of receiver coils and trajectory points respectively.

The MR imaging can be expressed in the form of matrix notation as a

system of linear equations;

𝜌𝑁 = 𝐹𝑁,(𝐽𝑀)𝑆(𝐽𝑀) 1-33

Equation 1-33 MRI experiment described as a system of linear equations (I).

Here, 𝜌𝑁 is a vector of 𝑁 pixels/voxels representing the final

image/volume. As described by (24), the reconstruction matrix 𝐹 has to meet

the following condition;

43

𝐹𝐸 = 𝐼𝑑 1-34

Equation 1-34 Identity condition for the SENSE algorithm.

Where 𝐼𝑑 is identity matrix and 𝐸 denotes encoding matrix defined as;

𝐸(𝑗,𝑚),𝑛 = 𝐶𝑗(𝑟𝑛)𝑒
2𝜋𝑖𝑘⃗⃗𝑚∙𝑟𝑛 1-35

Equation 1-35 Encoding matrix definition.

This can be seen in two forms of continuous functions, which were

sampled onto columns or rows of the matrix;

𝐸𝐽,𝑁(𝑘⃗⃗); 𝐸𝑗,𝑛(𝑘⃗⃗) = ∫𝐶𝑗(𝑟)𝑒
2𝜋𝑖𝑘⃗⃗∙𝑟𝛿(𝑟 − 𝑟𝑛)𝑑𝑟 1-36

Equation 1-36 Encoding matrix rows definition.

𝐸𝐽,𝑀(𝑟); 𝐸𝑗,𝑚(𝑟) = 𝐶𝑗(𝑟)∫ 𝑒
2𝜋𝑖𝑘⃗⃗∙𝑟𝛿(𝑘⃗⃗ − 𝑘⃗⃗𝑚)𝑑𝑘⃗⃗ 1-37

Equation 1-37 Encoding matrix columns definition.

The system of linear equations can be now formulated as;

𝐸(𝐽𝑀),𝑁𝜌𝑁 = 𝑆(𝐽𝑀) 1-38

Equation 1-38 MRI experiment described as a system of linear equations (II).

Direct matrix inversion of 𝐸 is not preferable, as the matrix is very large

(order of ~109 elements). Instead, a solution is found with an iterative process of

conjugate-gradient linear solver algorithm (30).

To prevent noise amplification with higher number of iterations, a

regularisation formulation is added(35-37);

[
𝐸𝜌

𝜆𝐿(𝜌 − 𝜌0)
] = [𝑆

0
]

[
𝐸
𝜆𝐿
] 𝑏 = [𝑆 − 𝐸𝜌

0

0
] ⟺ 𝑏 = 𝜌 − 𝜌0

1-39

Equation 1-39 Regularisation formulation.

Here 𝜌0, 𝐿 and 𝜆 are prior-information about the solution, linear

transformation matrix and regularisation factor respectively. In simple words,

44

regularisation is a way of constraining a solution and is used to prevent noise

amplifications with a higher number of solver’s iterations. 𝜆𝐿(𝜌 − 𝜌0) = 0 is a set

of constraining equations that when added as a part of the linear equation

system force the solution to be a trade-off between the prior knowledge (𝜌0) and

the solution to 𝐸𝜌 = 𝑆 equations. The regularisation can itself be a source of

artefacts and the regularisation factor (𝜆) is used to control the constraint

strength. Optimal selection of the regularisation factor depends on the problem.

Commonly an empirical approach is used to find a suitable value for a certain

group of problems. The 𝐿 matrix can be seen as a selection filter that

determines which parts of the solution and in what ratio should take part in the

regularisation. The simplest regularisation uses 𝐿 = 𝐼𝑑 and is known as

Tikhonov regularisation(36). In this form the regularisation is equally applied to

all of the reconstructed image points with no correlation between them.

Although the 𝐿 matrix can be selected arbitrarily, the optimal selection has to

minimise sensitivity to noise. This can be expressed as an inverse of the

expected signal intensity on a diagonal; as compared to Tikhonov

regularisation. This way assigning higher regularisation strength to regions with

no signal and reducing it in regions where an imaged object is expected.

To speed up the convergence process, preconditioning in the form of

intensity (𝐼) and density (𝐷) correction (Section 1.3.4) matrices are added;

[𝐷𝐸𝐼𝐼
−1

𝜆𝐷𝐿𝐼𝐼−1
] 𝑏 = [𝐷(𝑆 − 𝐸𝜌

0)

0
]

[
𝐷𝐸𝐼
𝜆𝐷𝐿𝐼

] 𝑔 = [𝐷(𝑆 − 𝐸𝜌
0)

0
] ⟺ 𝑔 = 𝐼−1𝑏

1-40

Equation 1-40 Intensity and density corrections.

Simplifying, preconditioning is a way of restricting a solution process to

concentrate only on selected regions. Excluding regions of low SNR, by

assigning a smaller coefficient to them, improves the iterative process. As

opposed to the regularisation matrix the preconditioning matrix (𝐼) should reflect

the expected signal intensity.

45

This can be represented in matrix notation;

𝐴𝑔 = 𝐵 ⟺ 𝐴 = [
𝐷𝐸𝐼
𝜆𝐷𝐿𝐼

] ; 𝐵 = [𝐷(𝑆 − 𝐸𝜌
0)

0
] 1-41

Equation 1-41 Compact formulation of the linear encoding system.

To ensure convergence for a conjugate-gradient linear solver, a system

of equations has to be described by a positive-semidefinite matrix. Left

multiplication by conjugate-transpose of 𝐴 guarantees this criterion;

𝐴𝑔 = 𝐵

𝐴𝐻𝐴𝑔 = 𝐴𝐻𝐵

𝑔 = (𝐴𝐻𝐴)−1𝐴𝐻𝐵

1-42

Equation 1-42 Solution to the linear encoding system.

The final formulation has the following form;

𝐼−1(𝜌 − 𝜌0) = ([
𝐷𝐸𝐼
𝜆𝐷𝐿𝐼

]
𝐻

[
𝐷𝐸𝐼
𝜆𝐷𝐿𝐼

])
−1

[
𝐷𝐸𝐼
𝜆𝐷𝐿𝐼

]
𝐻

[𝐷(𝑆 − 𝐸𝜌
0)

0
]

𝐼−1(𝜌 − 𝜌0) = (𝐼𝐸𝐻𝐷2𝐸𝐼 + 𝜆2𝐼𝐿𝐻𝐷2𝐿𝐼)−1𝐼𝐸𝐻𝐷2(𝑆 − 𝐸𝜌0)

𝐼−1𝜌 = (𝐼𝐸𝐻𝐷2𝐸𝐼 + 𝜆2𝐼𝜃−1𝐼)−1𝐼𝐸𝐻𝐷2𝑆 ⟺ 𝜌0 = 0; 𝜃−1 = 𝐿𝐻𝐷2𝐿

1-43

Equation 1-43 The final linear equations system solved by the SENSE algorithm.

Matrices 𝐷, 𝐼 and 𝐿 are diagonal of real values. Therefore, their

conjugate-transpose is equal to themselves.

Equation 1-43 describes how every step of the iteration process is

carried out. Regrettably, even in this form it requires multiplications of the

encoding matrix (𝐸(𝐽𝑀),𝑁) and its conjugate-transpose with some vectors 𝑥𝑁 and

𝑦𝐽𝑀 respectively. Again, the size of the encoding matrix and vectors makes it a

very computationally challenging task. Closer look reveals that each of these

operations can be replaced with Fourier Transformation and FFT algorithm can

be applied for acceleration. Using equation 1-36 the first operation can be

broken down in a following way;

46

𝐸(𝑗,𝑀),𝑁𝑥𝑁 = 𝐸𝑗,𝑁(𝑘⃗⃗)𝑥𝑛

(𝐸𝑥)𝑗(𝑘⃗⃗) = ∑ 𝑥𝑛∫𝐶𝑗(𝑟)𝑒
2𝜋𝑖𝑘⃗⃗∙𝑟𝛿(𝑟 − 𝑟𝑛)𝑑𝑟

𝑁−1

𝑛=0

(𝐸𝑥)𝑗(𝑘⃗⃗) = ∫∑ (𝑥𝑛𝐶𝑗(𝑟)𝛿(𝑟 − 𝑟𝑛))

𝑁−1

𝑛=0

𝑒2𝜋𝑖𝑘⃗⃗∙𝑟𝑑𝑟

(𝐸𝑥)𝑗(𝑘⃗⃗) = ∫𝑋𝑗(𝑟)𝑒
2𝜋𝑖𝑘⃗⃗∙𝑟𝑑𝑟

(𝐸𝑥)𝑗(𝑘⃗⃗) = ℱ𝑘⃗⃗
−1[𝑋𝑗(𝑟)]

1-44

Equation 1-44 Spatial domain to k-space domain transformation steps.

The 𝐸(𝐽𝑀),𝑁 matrix transforms 𝑋𝑗(𝑟) - weighted with 𝐶𝑗 coil signal 𝑥

sampled on 𝑟𝑁 positions; into k-space domain, by taking its inverse FT.

Similarly, the equation 1-37 is used to break down the second multiplication;

𝐸𝐻𝑁,(𝐽𝑀)𝑦𝐽𝑀 = 𝐸
𝐻
𝐽,𝑀(𝑟)𝑦𝐽𝑀

(𝐸𝐻𝑦)(𝑟) =∑∑ 𝐶𝑗
𝐻(𝑟)𝑦(𝑗,𝑚)∫𝑒

−2𝜋𝑖𝑘⃗⃗∙𝑟𝛿(𝑘⃗⃗ − 𝑘⃗⃗𝑚)𝑑𝑘⃗⃗

𝑀−1

𝑚=0

𝐽−1

𝑗=0

(𝐸𝐻𝑦)(𝑟) =∑𝐶𝑗
𝐻(𝑟)∫ ∑ 𝑦(𝑗,𝑚)𝛿(𝑘⃗⃗ − 𝑘⃗⃗𝑚)

𝑀−1

𝑚=0

𝑒−2𝜋𝑖𝑘⃗⃗∙𝑟𝑑𝑘⃗⃗

𝐽−1

𝑗=0

(𝐸𝐻𝑦)(𝑟) =∑𝐶𝑗
𝐻(𝑟)∫𝑌𝑗(𝑘⃗⃗)𝑒

−2𝜋𝑖𝑘⃗⃗∙𝑟𝑑𝑘⃗⃗

𝐽−1

𝑗=0

(𝐸𝐻𝑦)(𝑟) =∑𝐶𝑗
𝐻(𝑟)ℱ𝑟[𝑌𝑗(𝑘⃗⃗)]

𝐽−1

𝑗=0

1-45

Equation 1-45 k-space domain to spatial domain transformation steps.

The 𝐸𝐻𝑁,(𝐽𝑀) matrix transforms 𝑌𝑗(𝑘⃗⃗) - 𝑘-space signals 𝑦 sampled on 𝑘⃗⃗𝑀

trajectory positions from 𝐽 coils; into spatial domain. The 𝑘-space signals are

Fourier Transformed and multiplied with 𝐶𝑗
𝐻(𝑟). The resultant products are

added-up to create the final result of the operation.

The results are presented as continuous functions, but in practice FFT

is used to perform FT and inverse-FT. Voxel/pixel positions 𝑟𝑁 are located on

uniformly spaced grid, which directly allows use of FFT. Conversely, positions of

47

k-space samples (𝑘⃗⃗𝑀) are on an arbitrary trajectory (i.e. spiral, radial), thus they

do not have to meet this condition. Therefore, additional gridding operations are

needed; these follow and precede inverse-FT and FT respectively.

Described here is the SENSE technique for arbitrary trajectories, which

removes aliasing, caused by data under-sampling. A conjugate gradient linear

solver is used, which in an iterative way finds an artefact free solution. The

iterative nature of this reconstruction process makes it a time consuming

procedure, which requires significant computational power. This is a simplified

description of the SENSE algorithm for under-sampled arbitrary trajectories. A

comprehensive description can be found in the original papers(24, 27, 30) as

well as in descriptions of further work on the technique(31).

1.4.3 Temporal encoding

It is a common practice in cardiac MR assessments to acquire a series

of the same volume or slice data. This is an occasion to encode temporal

information into acquired signal, which can be used to improve image quality

and/or remove artefacts arising from under-sampling.

One such technique is Unaliasing by Fourier-Encoding the Overlaps

Using the Temporal Dimension (UNFOLD)(26). This method is based on

linearity of integration;

∫ (𝑚𝑓(𝑥) + 𝑛𝑔(𝑥))𝑑𝑥 = 𝑚∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

+ 𝑛∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎

 1-46

Equation 1-46 Linearity property of integration.

Integral of a sum of functions can be replaced with a sum of integrals of

these functions. Consequently, this property also applies to Fourier

Transformation;

ℱ𝑦[𝑚𝑓(𝑥) + 𝑛𝑔(𝑥)] = 𝑚ℱ𝑦[𝑓(𝑥)] + 𝑛ℱ𝑦[𝑔(𝑥)] 1-47

Equation 1-47 Linearity property of Fourier Transform.

This is a very useful property, as it means that adding together

reconstructed signals is equivalent to the reconstruction of sum of these signals.

𝑇 frames of the same signal acquired separately with 𝑇 complementary

48

sampling trajectories can be combined to create a single, alias free frame.

Although it is far from being the optimal solution to aliasing caused by under-

sampling, it shows that temporal domain can be used to encode information.

Again, consider a one dimensional example (Section 1.3.5) of 𝑘-space

signal 𝑆(𝑘) (Equation 1-23 and Equation 1-24) and its two times under-sampled

case (Equation 1-25). The under-sampling caused reduction (
1

𝑀
→

1

2𝑀
) in

distance between centres of repeated 𝜌̇(𝑟) resulting in potential overlap. To

create a complementary trajectory to the under-sampled trajectory, the

previously used one is shifted by one sampling interval (𝑀). This results in swap

from acquiring even samples to odd samples. It can be formulated as follows;

𝑆⃗̇(𝑘) = [𝑆(𝑘)Ш2𝑀(𝑘 − 𝑀)] ∗ Ш𝑁𝑀(𝑘)

𝜌̇(𝑟) =
1

2𝑁𝑀2
[𝜌(𝑟)Ш 1

𝑁𝑀

(𝑟)] ∗ 𝑒2𝜋𝑖𝑀𝑟Ш 1
2𝑀

(𝑟)

𝜌̇(𝑟) =
1

2𝑁𝑀2
[𝜌(𝑟)Ш 1

𝑁𝑀

(𝑟)] ∗∑(𝑐𝑜𝑠(𝑗𝜋) + 𝑖𝑠𝑖𝑛(𝑗𝜋))

𝑗∈𝕫

∀𝑗∈𝕫[𝑐𝑜𝑠(𝑗𝜋) + 𝑖𝑠𝑖𝑛(𝑗𝜋)] ∈ {−1, 1}

1-48

Equation 1-48 Result of reconstruction of data on a shifted under-sampled trajectory.

The shift causes every other alias to change its sign from + to -.

Consequently, acquiring a series of frames with alternating trajectories results in

oscillations of 𝜌̇(𝑟) through the time domain (t-space). The overlaps are

encoded into temporal domain in form of oscillations, as long as the used

trajectories are complementary. A general case can be formulated as follow;

𝜌̇(𝑟) =
1

𝐻𝑁𝑀2
[𝜌(𝑟)Ш 1

𝑁𝑀

(𝑟)] ∗ 𝑒2𝜋𝑖𝐿𝑀𝑟Ш 1
𝐻𝑀

(𝑟) 1-49

Equation 1-49 General formulation of the impact of trajectory shift on aliases due to under-
sampling.

𝐻 represents acceleration factor and determines the distance between

samples on an under-sampled trajectory. Also, it defines a number of overlaps

in each 𝑟 position. 𝐿 is the position of the first sample or a shift’s distance in

number of samples. Both coefficients can be of real positive values, but in this

49

case a gridding operation must be used to allow use of DFT. The oscillating

signal in each 𝑟 can be represented as;

𝜌̇(𝑟𝑎, 𝑡) = ∑ 𝜌̇ (𝑟𝑎 − 𝑗
𝑀

𝐻
, 𝑡) 𝑒2𝜋𝑖𝑡

𝑗
𝐻

⌈𝐻⌉−1

𝑗=0

 1-50

Equation 1-50 Temporally varying oscillations in under-sampled real space.

𝜌̇(𝑟𝑎, 𝑡) represents the desired, alias-free signal at a position 𝑟𝑎 for a

𝑡 ∈ ℕ acquisition frame. Modulated with 𝑒
2𝜋𝑖𝑡𝑗

𝐻 ∀𝑗∈{0,1,…,𝐻−1} signals are

accumulated across 𝑟 positions. As it is a periodic function, 𝐿 (assuming 𝐿 ∈ ℕ

and 𝐻 ∈ ℕ) was replaced with 𝑡 - the index of an acquired frame. Fourier

Transformed through time 𝜌̇(𝑟, 𝑡) has 𝐻 peaks at 2𝜋
𝑗

𝐻
∀𝑗∈{0,1,…,𝐻−1} temporal

frequencies, including a DC component related to the true signal (similarly as in

Fig. 1-3). The components can be removed with application of low-pass filter.

Positions of each peak are defined by 𝑇
𝑗

𝐻
∀𝑗∈{0,1,…,𝐻−1}, where 𝑇 is the number of

frames used in Fourier Transformation.

Although this technique can be used for dynamic objects, it is limited to

slowly varying, continuous signals. Wide temporal frequency bandwidth of

desired alias-free signal can result in overlap between temporal frequency

peaks and prevent or impair artefact removal process(32, 38, 39).

Temporal encoding can be used in conjunction with SENSE algorithm

(29, 33, 40). It provides a way of creating coil sensitivity maps from acquired

data itself (T-SENSE) (27). If incorporated as an additional reconstruction step,

it could allow even higher accelerations (29).

1.5 General Purpose computing on Graphic Processing Units

The following sections (Section 1.5 and 1.6) are based on the publicly

available on-line material as well as the documentation provided by NVIDIA,

Santa Clara, CA, USA. This is a brief description to familiarise the reader with

basic terms and concepts. More comprehensive description is available at the

original sources (41-43).Permission to reproduce Fig. 1-5, Fig. 1-6 from the

original sources (as indicated) has been granted by NVIDIA.

50

Graphic Processing Units (GPU) as dedicated vector processors can

easily achieve a much higher processing speed than Central Processing Units

(CPU) for applications that are based on matrix/vector operations (i.e.

signal/video processing, statistics, computer simulations and modelling). The

term vector processor, describes processing units dedicated for simultaneous

execution of the same operation across multiple data sets (single instruction

multiple data architecture, SIMD). A core of these processors is an array of

multiple, tightly coupled arithmetic units (also called cores). These are usually

less specialised than presently available CPU cores, but their strength lies in

their number. Presently, desktop high-end GPU cards have up to 2880 cores

(i.e. NVIDIA GeForce GTX TITAN Black), whilst the newest desktop CPUs

expose scalability of 6 cores (12 simultaneously executed threads) per

processor (i.e. Intel Core i7-4960X).

Rapid growth of the computer game industry, has forced hardware

producers to create faster, more sophisticated and easier to program GPUs.

With time, they have reached a level of performance exciding one of CPUs. The

term General Purpose computing on Graphic Processing Units (GPGPU) was

coined by Mark Harris in 2002(41), and relates to the use of GPU cards for

general calculations. The idea is simple; identify parts of algorithm that can be

executed in parallel and run them on a GPU. Unfortunately, early GPUs with

their roots deep in computer graphics and fixed processing pipe-line were not

easy to use for other applications. Growing interests in GPGPU and demands

for a simple, more general way of programing resulted in transformation of

GPUs from dedicated chips for graphics into freely programmable co-

processors.

While CPUs have not shown much improvement in floating point

arithmetic performance over the last few years, GPUs have kept continuously

improving. Recently, the peak computational performance excided 4.5 and 1.3

TFlops (1012 floating-point operations per second) for single and double

precision operations respectively (NVIDIA GeForce GTX TITAN Black). This left

a huge gap between GPU and CPU, which only recently started to close up with

commercialisation of Intel’s Many Integrated Core (MIC) architecture with Xeon

Phi series. The newest Intel Xeon Phi 7120P/D/X (44) has 61 physical cores

51

capable of running at theoretical peak speed of 2.4 TFlops single and 1.2

TFlops double precision (45).

The peak computational power of GPUs is not always fully achievable,

but porting computationally intense parts of algorithms onto the GPU has the

potential to greatly increase the speed in comparison to serial code. While

developing code for any parallel system, one has to bear in mind the conclusion

from the Amdahl's law,

𝑆(𝑛) =
1

(1 − 𝑃) +
𝑃
𝑛

𝑙𝑖𝑚
𝑛→∞

1

(1 − 𝑃) +
𝑃
𝑛

=
1

(1 − 𝑃)

⟺ ∀𝑛∈ℕ;𝑃∈[0,1] 1-51

Equation 1-51 Achievable speed-up with parallelization according to the Amdahl’s law.

The Equaition 1-51 describes how much speed-up (𝑆) can be achieved

using 𝑛 processing units. It is impossible to have code that can be infinitely

parallelized. There is always a part that has to be executed in serial manner.

This ratio is represented with 𝑃 which is the proportion of execution that can be

run in parallel. The direct conclusion from the equation is that the maximum

achievable speed-up is not determined solely by the number of used processing

units (𝑛). It is rather an intrinsic property of the algorithm. As 𝑛 increases to

infinity the speed-up saturates at the inverse of (1 − 𝑃). Only algorithms that

exhibit very low values of (1 − 𝑃) can fully benefit from constantly increasing

number of processing units. These are referred to as embarrassingly parallel

problems in parallel computing. These are computational problems that need no

or very little effort to split the problem into multiple of parallel tasks. This

happens when there is no dependency between the tasks, and hence no

communications and/or synchronisations are required between them.

GPUs were designed with these embarrassingly parallel problems in

mind. Their increasing number of cores executing the same operation on

different data guarantees achieving the maximum possible speed-up dictated

with the Amdahl’s law. However, often it means that a fast CPU version of an

algorithm (designed for this architecture) performs very poorly on the GPU.

52

Consequently, the most effort needs to be concentrated on exposing as much

of parallelism of the algorithm while porting onto the GPU platform.

CPU and GPU were developed for different tasks (Fig. 1-5). CPU can

quickly cope with purely serial code, since most of its architecture is dedicated

to control unit blocks. On the other hand GPU can be seen as a computing

engine, since most of its architecture consists of arithmetic unit blocks. It is clear

that CPU and GPU do not cope with some tasks as well as their counterpart,

and to achieve high performance they should be used in conjunction with each

other. However, to achieve this access to the GPUs computational potential

needed to be simplified. Namely, the necessary execution scheduling and

control flow overweight must be reduced to its absolute minimum as it reduces

the 𝑃 parameter (Equation 1-51). With the release of the NVIDIA’s Compute

Unified Device Architecture (CUDA), the whole structure of GPU (of this

manufacturer) was redesigned to create a new programming interface through

which developers could easily access and utilise its computing power. It was a

step to create a heterogeneous system in connection with a CPU as execution

control unit.

The CUDA technology is not the only existing GPU enabled

programming platform. For example, OpenCL (Open Computing Language,

Khronos Group) is a programming platform for software run across

heterogeneous systems. As a non-vendor specific platform it simplifies

development of code for different hardware architectures. These mostly include

mobile devices but are not limited to them.

Fig. 1-5 Comparison of CPU and GPU architectures (44).

53

I chose the CUDA technology as a programing platform, as it provides a

very rich and mature code development ecosystem. Also, the technology is

continuously developed and improved with the simplicity of programming in

mind. The CUDA toolkit comes with the compiler, dedicated debugger, profiler

and other tools. A growing community of users ensures continuity in support

from other developers and variety of shared code examples. Additionally, the

toolkit comes with a set of libraries dedicated to speed-up the most commonly

used scientific operations (linear algebra, Fourier Transformations, digital image

and signal processing). These are continuously maintained by NVIDIA to

ensure their constant optimisation and adoption to new hardware releases.

1.6 CUDA programming model

CUDA introduced the heterogeneous programming model in which

code is executed on the host - a system equipped with one or more CPUs; and

a device connected to it – a CUDA enabled GPU card. A CUDA program is

written in C/C++ language with some language extensions to introduce GPU

specific data types and functions called kernels. This way the whole program

can be written as a single source code. The code is separated automatically

during the compilation process. The GPU specific instructions are extracted and

compiled by the CUDA compiler, while the rest is processed by a C/C++

compiler. The final version is then linked together into a single executable file.

Most commonly the CUDA programs adhere to the following execution

pattern. First the host organises data in a way in which most of the data-

parallelism is exposed and partitions it between threads. Next, device memory

is allocated for kernel arguments. The data are sent to the device and kernels

necessary for the algorithm executions are launched. Kernel executions are

always asynchronous. This means that after scheduling kernel calls, the host is

free to run other calculations. The state of scheduled work can be checked

through synchronisation functions. Also, the host’s execution can be halted until

the device has finished. This allows simultaneous execution of work on the host

and device. An adopted strategy depends on the application. The successful

execution is usually followed with transferring the results into host’s memory for

54

analysis and potential further processing. All of the steps are repeated until the

whole algorithm has been finished.

To achieve high computational throughput, the kernel runs must use

thousands of threads. Threads are organised in blocks, which then are

arranged into a grid (Fig. 1-6). All kernel launches are supplied with a

declaration of the size of a block of threads and how many blocks in a grid must

be run to complete processing. Blocks and threads are indexed to allow

identification of the part of data the thread has to work on.

Each device contains one or more multiprocessors. Blocks of threads

are mapped to the multiprocessors. To facilitate scheduling and management of

thousands of threads that run concurrently, the threads are executed in groups

of 32 called warps. GPU threads are very lightweight in comparison to a CPU

one; there is a very little creation and no switching overhead. Each thread has

its own set of resources, and once started the warp is executed until its work is

finished. How many concurrent warps are run on a multiprocessor depends on

the kernel's demands on resources. All threads of a warp execute the same

instruction, which is referred to as Single Instruction Multiple Threads (SIMT)

execution. In the case of conditional branches, if threads of a warp do not agree

Fig. 1-6 Thread hierarchy (44).

55

on a path, the execution is serialised by the multiprocessor. This scheduling

simplicity is required to achieve high performance by devoting more clock

cycles to actual computation (43).

In the CUDA programming model the most important performance

consideration is to make sure that all global memory accesses are coalesced,

or as many as possible. Namely, the global memory is accessible to all threads

that run on a device. The global memory as an off-chip memory is relatively

slow. Access to it introduces 400 to 600 clock cycles latency (42). If a sufficient

number of warps run on a multiprocessor the latency can be hidden by

executing the warps that are ready while the others are waiting for the data.

Accesses to the global memory are done in transactions of 32-, 64- or 128-byte

length segments (42). How many transactions are issued depends on the

access pattern used by the requesting warp. The requirements vary depending

on the type of device. In general accessed memory has to be a continuous

array of elements aligned to the size of the segment. If these requirements are

not met the access is performed in sequential manner one for each requested

memory element.

The secondary performance consideration is the minimisation of global

memory access through efficient use of the shared on-chip memory. This

memory is divided between thread blocks that presently run on the

multiprocessor. Access to this memory is very fast and allows rapid exchange of

data between threads of one block. If all threads of a block have to access the

same part of global memory it is much more efficient to first load the data to the

shared memory and then allow the threads to work on it from there. In this way

the shared memory becomes a software managed cache saving the global

memory bandwidth. Cache is a term used in programming referring to low

latency memory that is used as a buffer to speed-up access to data, by

preserving most recently used data for potential further access.

One more important performance issue is connected to the adopted

SIMT execution model. Divergence within a warp is highly undesirable. As

mentioned every branching path will increase time of execution. Consequently,

condition statements should be based on thread indices to avoid execution

serialisation.

56

57

2. Motivation

The work presented here was developed for the vascular imaging and

physics group at the UCL Institute of Cardiovascular Science. The institute aims

to be a world class centre for advancing the field of cardiovascular medicine.

The work concentrates on improvement of detection and management of

cardiac diseases through the use and development of multimodality imaging

techniques. The vascular imaging and physics group’s role is to provide state-

of-art MR techniques for clinical cardiac MR and improve patient assessment by

translation of these advanced methods into the clinical environment.

Cardiac MR is challenging as it requires high temporal resolutions to

provide accurate information (uncorrupted with motion blurring images) about

the highly dynamic behaviour of the cardiovascular system. This work focuses

on flow quantifications (i.e. assessments of blood flow velocities) using phase-

contrast MR (PCMR) (46). These types of assessments require repeated k-

space read-outs for each of the encoded velocity directions, which have a direct

impact on the temporal resolution of acquired data. In these cases efficient

sampling trajectories (Section 1.3.4) and data under-sampling (Section 1.3.5)

have to be combined to allow very high data sampling rate. A good example is a

fast real-time spiral PCMR sequence designed and developed by our group (17,

47, 48).

However, as previously indicated the high acquisition rate comes with

the expense of reconstruction algorithm complexity. Complex MRI

reconstruction algorithms like the SENSE reconstruction (Section 1.4.2) require

substantial amount of computational power to keep the processing time within

acceptable limits. Secondary to the trade-off between fast acquisition and

complexity of reconstruction, is an increase in number of receiver coils. For

sufficient artefact suppression it is required to have more independent coils than

an acceleration factor, which is especially true for very high accelerations.

Higher number of coils increases spatial information of an imaged object which

is used to compensate for the under-sampling, although at the same time it

increases the size of data that needs to be processed.

In the case of progressive under-sampling, small gains in temporal

resolution are quickly outmatched by increasingly longer reconstruction times.

58

All of these shift the bottleneck of the MR examinations from data acquisitions

to their reconstructions and limit the utility of these complex MR techniques

within the clinical environment. One extreme example is continuous real-time

cardiac MR assessment.

High-performance implementations are required to remove the

reconstruction time limitation. This can be realised by exploiting intrinsic

parallelisms of the algorithms. As discussed (Section 1.4.2), the MRI

reconstruction algorithms are based on solving the set of linear equations

(Equations 1-33, 1-38) that represent the process of imaging. Consequently, the

whole process can be broken down into matrix operations. Matrix operations

are highly parallelisable as there is no data dependency. Algorithms with very

little or no data dependency scale well and significantly improve performance

when run on higher number of processing units. Theoretically, knowing the size

of a problem means that the processing time can be made as short as it is

needed, by increasing the number of processing units. This is assuming the

time required for the parallel execution preparation (partitioning, scheduling and

result collection times) is negligible and only if a problem can be infinitely

partitioned into smaller ones. Practically, this is never attainable as there are no

problems that can be infinitely partitioned, nor is it possible to have an infinite

number of processing units. Consequently, concurrent versions of MR

algorithms are limited in implementation and performance by the hardware they

are run on.

A common way of providing a multitude of processing units is by

organising computers (processors) into clusters. A cluster is a set of computing

units connected together by one or multiple communication channels capable of

working together on a specific problem. As clusters of sufficient number of

computers may not be easily attainable for all clinical, research facilities another

more commonly available solution is needed.

Graphic Processing Units (GPU) as vector processors were designed to

leverage applications relying on matrix operations. They consist of multiple

arithmetic units (cores) tightly packed on a single die and capable of

simultaneously executing the same instruction on a vector of data elements.

The growing computer games industry demands constant improvements of

59

GPUs and their further development as capable co-processors. In consequence

the GPUs are increasingly inexpensive while simultaneously becoming more

powerful and simpler to use for general purpose programming.

Fast GPU implementations of MRI reconstructions do exist and a

significant improvement in performance as compared to the CPU

reconstructions has been previously reported (49-51). However, GPU

reconstructions are mostly done in an off-line mode. This means data are

downloaded from the scanner and are reconstructed elsewhere, which

constitutes a serious drawback to the clinical workflow. To truly facilitate use of

the advanced MRI reconstructions, such developments must be incorporated

into an online scanner reconstruction pipeline. This is vital in order to improve

the overall efficiency of the clinical workflow and enable rapid viewing of the

images to check for data integrity prior to finishing the MR examination. In this

paradigm, proper data transmission management can be as important as

reconstruction’s efficient implementation. Time improvements gained on the

reconstruction side can be easily counterbalanced with slow transmission

processes or lost on unnecessary synchronizations.

The work presented here was not only motivated with the need to

provide fast, flexible image reconstruction for computationally intensive

reconstructions, but most of all to make them feasible within a busy clinical

service. This can be summarised in form of two challenges that needed to be

addressed; i) use of advanced MR sequences is limited by their reconstruction

time, and ii) GPU implementations exist but run in off-line mode. One possible

solution is to create a dedicated exchange protocol over a network that

connects the scanner and the external machine. However, this fixed solution is

limiting as it would need to be redone for each new application. Thus to not be

tied to a fixed configuration, the new image reconstruction system was defined

as a distributed system. Active components of a distributed system (i.e.

applications running on a scanner or external computer) can be flexibly

changed and rearranged. This meant additional system components like new

clients for different types of scanners or different reconstructions could be

quickly introduced. This way the defined system, not only serves as a leverage

providing the fast seamless reconstruction process, but also becomes a

60

scalable platform for translation of advanced MRI algorithms into the clinical

environment.

Integration and scalability were key aspects of succeeding in the

project. They had to provide the basic building blocks for development of future

MR applications hosted in the heterogeneous distributed image reconstruction

system. Thus the implementation was divided into two steps; i) networking with

remote execution, and ii) implementation of the reconstruction algorithm. In the

course of this work I:

- networked an external computer equipped with a GPU card into the

scanner's native image reconstruction system;

- designed and developed the data transmission and remote execution

protocol for efficient management of continuous streams of real-time MR

data;

- implemented and optimized a GPU based SENSE reconstruction for data

acquired on arbitrary trajectories;

- demonstrated the impact and improvement in the type of assessment

protocols that can be enabled for patient management with the new

reconstruction system;

- presented flexibility of the created system by re-using the created

components to combine the SENSE reconstruction with temporal encoding

technique (UNFOLDed-SENSE) and adapt the remote reconstruction to

accelerated retrospective gating sequences. Both were done without

changes to previously implemented data transmission and execution

management steps;

61

3. Distributed image reconstruction system

In the chapter, I describe my work on development of the novel on-

line image reconstruction system for clinical/research MRI. The work resulted

in creation of the processing framework allowing the transparent integration

of the external hardware into the scanner system. The work was published in

the following article:

Implementation of a generalized heterogeneous image

reconstruction system for clinical magnetic resonance,

GT Kowalik, JA Steeden and V Muthurangu; Concurrency and

Computation: Practice and Experience (Special Issue) Volume 27,

Issue 6, pages 1603–1611, 25 April 2015

(DOI: 10.1002/cpe.3349);

Appendix 11.6

and the proceeding of 10th International Conference, PPAM 2013, Warsaw,

Poland, September 8-11, 2013;

Implementation of a Heterogeneous Image Reconstruction System

for Clinical Magnetic Resonance, GT Kowalik, JA Steeden,

D Atkinson, A Taylor, V Muthurangu; Parallel Processing and

Applied Mathematics, Lecture Notes in Computer Science

Volume 8384, 2014, pp 469-479;

Appendix 11.7

62

3.1 Introduction

To develop an implementation of a networking framework, its underlying

components and functionalities need to be clearly stated and defined. The

desired system at its core must provide bidirectional data exchange between

the scanner’s application and an external application. However, only the

scanner’s side was expected to make remote execution requests. In this

simplistic form, a fixed architecture with a single remote application, a dedicated

link and a predefined communication protocol might serve well for the purpose

of a single project. However, as much as it benefits from simplicity, this

arrangement lacks in flexibility and scalability. It would require re-

implementations with each new image reconstruction algorithm or scanning

protocol. To avoid this, additional requirements were made; the framework must

provide flexibility in extending the system with more scanners and include

multiple remote reconstructions. Additionally, asynchronous remote execution

calls are needed to allow overlapping of local and remote processes.

I adopted the distributed system architecture in order to fulfil all of the

requirements. I distinguished two system components; servers – the processes

providing image reconstruction functionality, and clients – the processes that

control connection, data exchange and remote calls. These by definition, are

not linked to any specific physical location, but are meant to be a virtual pool of

resources not limited to a single connection or arrangement. The distributed

system promotes flexible organisation of clients and servers into separate

reconstruction systems. Each system can contain multiple servers residing on

the same/different machines, as well as clients making requests to the

same/different servers. This way the built system was defined to be a

distributed image reconstruction system, based on client-server architecture.

3.2 Client-server architecture

Portability across different hardware and programming technologies is

crucial to the envisaged system, as it must allow independent development of

each side of the system. Developments of different client side implementations

for each MR system cannot have an impact on the server or networking side of

63

the application. Similarly, technology providing data transmission, remote

execution and the way in which the server manages the reconstruction process,

need to expose the same modularity. This allows substitution of these

components without affecting the rest of the system. For this reason the system

framework (Fig. 3-1) was organised into three layers; the Networking layer,

Server-reconstruction layer and Client-reconstruction layer.

3.2.1 Networking layer

System integration is achieved by separating the clients and servers

with the networking layer. The networking layer provides a single type of

networking object. This defines a set of data transmission and remote execution

interfaces for the client-server architecture. These must allow bidirectional

exchange of data, parameters and identification of connected objects. Allowing

only a single generic type of communication simplifies communication between

server and client objects. Also, it ensures compatibility when replacing

networked objects with different or newer versions.

To reduce the development time the networking layer was based on the

Common Object Request Broker Architecture (CORBA) technology. CORBA is

a specification of interoperable, multi-platform network based and language

independent objects. The specification is managed by the Object Management

Group (OMG, Needham, MA, USA). It uses Independent Definition Language

(IDL (52)) to define network object interfaces, which can be mapped to different

programing languages (i.e. C/C++, Java, Python, etc.). Also, CORBA provides a

naming server; this can be seen as an equivalent of Domain Name System

(DNS) in the internet. With its help, the physical address of distributed objects is

mapped onto easily memorable names. These are publicly available through

the naming service. This allows objects to move between different physical

locations without making an impact on the system configuration.

The networking layer does not depend on any specific implementation

of CORBA. Multiple implementations of CORBA can be used as long as they

comply with the standard. Nevertheless, CORBA could be replaced with other

technology (i.e. DCOM/COM+), providing that the necessary interfaces and

functionalities are supplied.

64

3.2.2 Server-reconstruction layer

The server-reconstruction layer implements a specific functionality to

the interfaces provided by the networking layer. Within this layer, different

reconstruction algorithms can be implemented. In a simple form these can be

realised as a dedicated server object providing a single functionality. However,

this would force a one-to-one relationship between a client and a server,

rendering it inefficient. It is more desirable to have servers capable of facilitating

multiple reconstructions for the same or different clients. In this case, the

server’s main role is to ensure data consistency and control flow management.

To realise this, the reconstructions are defined as objects of specific types.

These are defined and stored in the form of modules or libraries. The modules

are accessible through a module interface built into the server layer (Fig. 3-1).

This approach allows a single server to consist of multiple different processing

modules that can be loaded on the client's request. Again, to promote simplicity

a single module interface per server is preferred. Of course, different servers

can be prepared to access different types of reconstruction modules.

By encapsulating reconstructions, a server can create separate

reconstruction objects for each client. This way it is freed to concentrate on

Fig. 3-1 Layered framework for the client-server architecture of the distributed image
reconstruction system.

Client Client Client

C O R B A

Module
interface

Module
interface

Client-reconstruction Layer

Schedules, organises and controls data
exchange and remote execution processes

Server-reconstruction Layer

Management of incoming client calls

Ensure data consistency

Network Layer

Ensures system integrity Single network Module

Implementation

IDL C++ Java Python

Reference

R
e
g
is

te
r

D
ir

e
c
t
c
o
m

m
u
n
ic

a
ti
o
n

L
o
o
k
 u

p

Naming
Service

ServerServer

65

management of incoming calls, which in distributed computing are not

guaranteed to come in a serial manner. Networking interface client IDs can be

assigned to identify objects which should be used to execute a remote request.

This ensures data consistency in the case of connection with multiple clients.

However, a single client can make multiple simultaneous requests through

different interfaces. In some cases this may be desirable (i.e. transmission of

new data may overlap with retrieval of previous results). Thus it was decided

that it is best to leave the decision about the synchronisation of access to

client’s objects, up to the particular server specification.

3.2.3 Client-reconstruction layer

The client-reconstruction layer schedules, organises and controls data

exchange and remote execution processes, employing interfaces provided by

the networking layer. In the most trivial case only a single remote execution is

needed. Sequential calls to the server layer can be encapsulated in a single

execution unit (thread). In this case an overlap between stages constituting the

reconstruction is undesired and synchronous remote execution is sufficient.

This occurs when the required remote execution constitutes a whole

undividable step of an algorithm and the next steps are dependent on its result.

In a more general case, it is desirable to allow simultaneous work on

local, as well as remote data. Additionally, asynchronous remote calls may be

needed to allow overlap between remote execution calls. Unfortunately, in

CORBA all remote calls are synchronous and are treated as if they were

standard local function calls. This can be seen as a limitation of the technology.

However, it promotes the developer discretion in selecting an execution

parallelization technique. Also, it makes the potential replacement of CORBA

with a different networking middleware easier, as it is only responsible for

providing correct data transmission and remote execution, rather than additional

local control flow management which may vary from application to application.

66

3.3 Application life cycle

The new image reconstruction as a distributed application, based on the

described client-server architecture was determined to have two system states:

the system set-up (Fig. 3-2) and the reconstruction state (Fig. 3-3).

3.3.1 The system set-up state

The system set-up state is maintained by the naming server. This

naming service contains a record of servers that registered themselves as

available to clients. A desired system instantiation is created ad hoc by a client

searching for, and connecting to, servers providing the required functionality.

The system is destroyed by the client disconnecting from the servers, however,

the servers’ applications remain awaiting new connections.

3.3.2 The reconstruction state

The reconstruction state contains four stages (Fig. 3-3); initialization,

data transmission, remote execution and result collection. In the initialization

stage a client sends the required parameters to the server in order for it to

create the necessary data structures. This process is normally done once per

reconstruction, since different repetitions usually have the same conditions.

Fig. 3-2 The system set-up state.

An overview of tasks necessary for setting-up an instantiation of the system.

C O R B A

Se
rv

e
r

La
ye

r
N

e
tw

o
rk

La

ye
r

C
lie

n
t

La
ye

r

Register
Service

Look up

I. System Setup State

b. Client connectinga. Service registration

Register
Service

Connect

Client

ServerServer Server

Naming
Service

Naming
Service

67

After initialisation, the client invokes the remaining reconstruction stages in a

desired order until the whole reconstruction task is done.

3.4 The implemented system specifics

The proposed client-server architecture does not force a specific order

of the aforementioned reconstruction stages. However, for real-time

applications proper data transmission management can be as important as

efficient implementation of the image reconstruction algorithm. Time

improvements gained by efficient reconstruction can be counterbalanced by a

slow transmission process or lost on unnecessary synchronizations. For optimal

processing of continuous and arbitrary length streams of real-time data, an

overlap between data transmission and reconstruction is desired. This can be

achieved by buffering of the incoming data and assigning different processing

threads to each of the communication and execution stages. The optimal

situation is when the reconstruction time is equal or shorter than data

transmission. In this case only one additional storage space is required to allow

a constant stream of data between computers. However, in the case of

Fig. 3-3 The reconstruction state.

An overview of tasks assigned to each of the independent stages of the application state.

M
o

d
u

le

In
te

rf
ac

e

Prepare Parameters

Initialize
Reconstruction

Load Modules

St
at

u
s

P
ar

am
et

er
s

Initialize
modules

Create Recon.
objects

Process Header
Store Data

Prepare Data

Attach Data
Headers

St
at

u
s

D
at

a
+

H
ea

d
er

s
Call

Module

Select
Buffer

Process &
Prepare Results

Schedule
Processing

St
at

u
s

P
ar

am
et

er
s

Select
Results

Attach
Result Headers

St
at

u
s

+
D

at
a

R
es

u
lt

 ID

Se
rv

e
r

La
ye

r
C

lie
n

t
La

ye
r

N
e

tw
o

rk

La
ye

r

II. Reconstruction State

a. Initialization b. Data Transmission c. Remote Executiond. Result Collection

Select
Buffer

Select
Buffer Call

Module

Retrieve
Results

Call
Module

Client

Server

68

reconstruction being slower than data transmission, it may be beneficial to have

more than two buffers.

The same idea behind the encapsulation into different reconstruction

module objects is used to facilitate the buffering. A client may order that more

than one object of a specific reconstruction type is created for its needs. On the

server’s side, the buffers assigned to each of the clients may be explicitly

separated from each other using an additional indexing structure. This is not

necessary as it is the client’s role to identify a reconstruction object upon which

each action should be carried out; through a unique identifier. Nevertheless, the

distinction between objects representing buffers and those for different clients is

made. Namely, there is no need to allow communication between

reconstructions’ objects unless they constitute a part of a bigger coherent

reconstruction process, as represented with buffers. The reconstruction of

continuous stream of real-time data may require data to be shared between

consecutive buffered reconstructions (i.e. to allow a sliding window

reconstruction approach or to share coil sensitivity profiles). To enable this, the

implemented module interface was extended to take in account possible

communication between objects of the same type.

A more detailed description of each aspect of the implemented data

transmission and remote execution management for the continuous real-time

MR assessments with the described distributed imager reconstruction system is

presented in the following sub-sections.

3.4.1 Networking and communication interfaces

C++ implementation of CORBA technology (omniORB, Apasphere Ltd,

Cambridge, United Kingdom (53)) was used to implement the networking layer.

A definition of the network communication module in IDL is presented in

Appendix 11.1. This was used to generate C++ version of the interfaces. The

single type of networking object was defined with five networking interfaces.

Four directly relating to each of the reconstruction stages described above (Fig.

3-3) and one enabling the system set-up state (Fig. 3-2). Each interface

provides the client with a set of input parameters that can be used by a client to

identify a remote reconstruction object (data structures, buffers) as well as to

69

specify a variant of operation, if necessary. Other parameters are used to

transmit an arbitrary length of data. All of the interfaces return the status of a

requested operation. This is returned after an external execution has finished

and it depends on the server’s implementation.

3.4.2 Execution and data transmission management

The scanner's native reconstruction system provided a C/C++ based,

multi-threaded programming environment for the implementation of the client

side of the system. Fig. 3-4 presents the implementation of a client for an

incoming stream of real-time data. The whole task of maintaining the

reconstruction process was left to the client. That means, the server side does

not actively process the data. Each separate step (data transmissions and

executions) must be implicitly scheduled and overlooked by the client side. The

whole process is controlled by three cross-network groups of threads; Send

threads, Process threads and Get threads. Each group of threads controls the

processing of different aspects of the reconstruction state, enabling overlapping

of data transmission and execution. On the client, these are represented by

three control blocks, which work independently from one another,

communicating only by passing messages about the completion of the previous

stage. The stream of constantly acquired data is divided into sets, which can fit

into buffers organised on the external machine. The buffers integrity is protected

by a set of locks shared between the control blocks. This mechanism was

adopted to prevent overwriting of data currently being reconstructed with newly

incoming data. The number of buffers is an arbitrary parameter that is set during

the reconstruction initialization stage.

Send threads control the preparation of data for reconstruction. The

client separates, labels the data and initiates the sending process. Equivalent

threads on the server side store the transferred data in an appropriate format for

reconstruction, within a selected buffer. The incoming data is first pre-stored by

the client's send control block to avoid transmission of small chunks of data.

The transmission takes place if the storage limits are reached or when the last

line of data in a set was received. The send control block is responsible to

check the status of the buffer's lock, and only transmit data if the buffer is

unlocked. When the buffer is filled-up, the send control block locks the buffer

70

and changes the index of the receiving buffer. This way transmission can

continue using a different buffer.

Process threads are responsible for overlooking each side of the

remote execution. The client signals readiness for processing by passing an

index for the newly filled buffer, to the server. Corresponding threads on the

server start the reconstruction and return its status upon completion. If the

reconstruction is successful the process control block passes the index of the

buffer to the collect control block.

Get threads maintain the process of collecting results. The client sends

the index of a result to the server for translation into its specific data storage

system. A result is returned if processing for the selected buffer has finished.

Next, the client marks the buffer as unlocked and the retrieved data are sent

further down the scanner's system for processing, storing or presentation.

This organization of overlapping transmission and remote execution can

work smoothly with no interruptions or breaks, providing transmission and

reconstruction are faster than the data acquisition.

Fig. 3-4 The buffered transmission and remote execution management.

71

3.4.3 Reconstruction management

A single reconstruction module interface (as presented in appendix

11.2) was designed independently of the server application. This declares entry

points through which the server application controls each created reconstruction

object. A new reconstruction module must provide a single reconstruction class

definition that derives from the declared interface (abstract class

IReconstruction - Appendix 11.2). This class represents a processing algorithm

implemented with the module. As no prior knowledge could be assumed, the

module implementation must provide adequate functionality to each of the

global functions through which the module is initialised after being loaded

(StartLibrary), de-initialised prior to being un-loaded (StopLibrary) and each new

object of the reconstruction is created (GetIReconstruction). Although, the

module interfaces are declared with continuous real-time data processing in

mind, they are not restricted to them. Apart from the necessary functionalities;

setting up a new reconstruction (ReadHeader), copying data into an object

(SetData), running reconstruction steps (PreProcess, Process, PostProcess)

and retrieving results (GetResSize, GetResultData), it provides entry points for

duplicating of already initialised objects (CopyBuffer) and general

communication between a group of objects (ManageBuffers).

The server application constitutes an execution controller whose main

role is to protect data consistency of each of the reconstruction objects. The

implemented version was based on a modular approach dedicated for buffered

reconstruction. Specifically, it was prepared to handle only a single

reconstruction module that was used to generate multiple reconstruction buffer

objects. This implementation is limiting in situations where multiple scanners are

connected into a system, but perfectly sufficient for the MR hardware, which is

presently available to us (a single scanner connected with an external

computer).

The server was prepared to efficiently handle continuous real-time data

acquisitions. However, it is not limited to this type of acquisitions. On connection

and initialisation, the server loads the requested reconstruction module. Next, a

single reconstruction object is created and initialised using the incoming

reconstruction parameters. The initialised object is then replicated to form the

72

number of requested buffers. These are identified with an index sent by the

client with each request. Also, a set of semaphores and mutex objects (these

are special types of variables through which an access to a resource can be

managed between multiple concurrently running threads) were created to

control access to the buffers. Simultaneous data transmission and processing

requests on the same object were forbidden as it would make no sense to allow

retrieving of results (or updating in-put data) before processing finished.

Additionally, the server implementation enabled data exchange

between buffers. This was done to facilitate potential sliding window type

reconstructions. On the reconstruction request, the server first calls the

communication interface and passes to it all of the buffers and then calls the

processing interface of the selected buffer.

3.5 Data transmission test

The described system was developed and implemented within

research/clinical environment (UCL Centre for Cardiovascular Imaging, Institute

of Cardiovascular Science, London, United Kingdom). The original installation

connected a native reconstruction hardware (2x Intel Xeon E5440 2.8 GHz, 16

GB DDR3) of 1.5 Tesla (T) MR scanner (Avanto, Siemens Medical Solutions,

Erlangen, Germany) using a half-duplex Ethernet with an external computer

(DELL Alienware Aurora, Intel i7-920 2.7 GHz, 9 GB DDR3) equipped with a

GPU card (NVIDIA GeForce, GTX 480 1.4 GHz, 1.5 GB DDR5). The original

system was replicated on another 1.5 T Siemens scanner at our institution.

Also, the distributed image reconstruction system was installed at collaborating

institutions. These include mirror installations at the Heart Hospital, London,

United Kingdom, University Hospital Southampton, Southampton, United

Kingdom and Yale Magnetic Resonance Research Center, New Haven, United

States of America.

As mentioned in the motivation (Chapter 2), in the clinical/research

cardiac MR environment there is a high demand for rapid assessment of the

cardiovascular system by MRI. The PCMR spiral sequence combined with

parallel imaging (SENSE), developed in the unit allows a very fast acquisition of

data (17). This allows real-time assessment of biomarkers during active

73

exercise (17, 54), as well as the response to mental stress (55). In addition, this

created and validated sequence constituted a base for more advanced imaging

techniques (i.e. prospectively cardiac gated PCMR (48), retrospectively cardiac

gated PCMR (56) and high resolution Fourier Velocity Encoding (57)). However

the original reconstruction proved very time consuming. This limited its use for

research/clinical studies to short acquisitions (3-7 s) due to resulting long

reconstruction times (up to 3-5 minutes). The new system was designed to

remove this limitation and enable continuous real-time data acquisitions which

are unconstrained by the reconstruction time.

For optimal processing of a stream of real-time data an overlap

between data acquisition and its reconstruction is required. One of

consequences of the external processing is the requirement for data to be

transferred onto the external machine. In this case the optimal processing

requires both; the reconstruction and transmission times, to be faster than the

acquisition. Consequently, it was essential to ensure the data transmission and

the new reconstructions would not constitute bottlenecks for the future

assessment protocols.

The most important, for this part of the work, was to find the maximum

network transmission bandwidth which consequently is the maximum

acquisition bandwidth supported by the system. First the optimal size of

transmission packets that would fully utilise the network capacity was estimated.

To determine the network transmission performance depending on the

size of transferred data, a simple application was implemented within the

distributed system. The client generated data sets with increasing size, which

were then transferred onto the external machine. The server’s role was to

receive the data and store it in its memory. The time necessary for each

transmission, calculated as the time spent to execute the network transmission

interface call (SetRawData), was measured on the client side. The transmitted

data size ranged from 2048 bytes (B) to 2.1 MB (Fig. 3-5). The tests allowed

assessment of the impact of data fragmentation on the transmission

performance. The maximum network bandwidth was found to be ~43.4 MB/s. It

was estimated all transmissions of ~500 kB or more were achieving 90-100 %

efficiency.

74

The acquisition throughput depends on the acquisition trajectory and

the number of receiver coils. The Cartesian and radial trajectories can be seen

as the least demanding, since only a single 𝑘-space line is acquired with each

RF-excitation. Assuming a high resolution data; 256x256 matrix twice

oversampled in the read-out direction acquired with repetition time (TR): 2.5-5

ms and 12 receiver coils would produce 9.8-19.7 MB/s. More efficient

trajectories can produce significantly more data. Typical spiral acquisition;

128x128 matrix would need TR: ~6.92 ms and generate ~32 MB/s (assuming

12 spiral interleaves to fully sample 𝑘-space with 2300 read-out points per

interleave). These spiral acquisition parameters were used in the following

tests.

To validate the initial transmission results the final transmission protocol

for the continuous real-time acquisitions (Section 3.4.2) was tested. A set of 60

flow frames (total of 120 data frames) were acquired with four times

acceleration. This resulted in total acquisition time: ~2.49 s and data size: ~79.5

MB. The results are presented in Fig. 3-6. The transmission time was measured

from the beginning of the transmission until the last of the frames was fully

transferred on the external computer. The optimal transmission protocol,

defined as the one introducing the shortest latency and providing faster total

transmission time than acquisition time, was found for the transmission package

size of 12 acquisition read-outs that were sent together as a single network

transmission (the transmission package); latency: ~76 ms and total

Fig. 3-5 Network transmission speed as a function of transmitted data size.

The results are from the half-duplex Ethernet connection between the native scanner image
reconstructor and the external computer.

75

transmission time: ∼2.41 s resulting in ~35 MB/s. The lower throughput, as

compared to the simple application’s results, was caused by measuring the total

time rather than the individual package transmissions. This included collection

time of packages, which was dictated by the acquisition speed.

Experimentally, I looked into data compression as some imaging

protocols may produce more data per frame. For example, higher resolution

spiral read-outs; 192x192 matrix, TR: ~8.28 ms, would generate: ~44 MB/s

(assuming 16 spiral interleaves with 3812 read-out points per interleave and 12

receiver coils). This already exceeds the limits of the implemented system and

needed to be addressed. The tests were repeated, this time applying data

compression prior to a transmission. In the scope of this work, only one

compression algorithm was tested; BLOSC - A blocking, shuffling and lossless

compression library (58). Unfortunately, the tests showed that the achievable

compression rate (~93 %) was not sufficient and better alternatives have to be

sought. Low compression rate made it insufficient to make up for time required

to run the compression, which added-up to the total transmission time. Possibly,

reorganization of transmission stages to hide this extra time may mitigate this

problem. However, more data intensive applications (i.e. 3D imaging) may

require much higher compression rates to keep a transmission time below an

acquisition time.

Fig. 3-6 Total transmission time test results.

76

77

4. GPU reconstruction implementation

In this chapter, I present the initial implementation of the GPU based

SENSE algorithm. This implementation was further improved and adopted in

the further described projects. The work presented in the chapter was

published in the following article:

Real-time flow with fast GPU reconstruction for continuous

assessment of cardiac output, GT Kowalik, JA Steeden,

B Pandya, F Odille, D Atkinson, A Taylor and V Muthurangu;

Journal of Magnetic Resonance Imaging, Volume 36, Issue 6,

pages 1477–1482, December 2012 (DOI: 10.1002/jmri.23736).

Appendix 11.8

78

4.1 Introduction

The networking framework described above enables fast transmission

of data onto an external computer. In this chapter I will describe a GPU

implementation of the SENSE algorithm. This implementation was meant to

counterbalance the reconstruction time limitations incurred with the use of

highly accelerated fast acquisition trajectories.

In cardiac MRI, cine data frames are acquired using either real-time or

segmented 𝑘-space acquisitions. The segmented approach differs only in the

organisation of data rather than the reconstruction process. This work

concentrates on analysis of the real-time case, as this represents the more

general example and is more demanding with respects to the time limitations.

A simple real-time imaging sequence constantly repeats the same

trajectory. As it will be shown, the repetitive sampling strategy is very favourable

for the GPU implementation, as groups of frames could be processed in parallel

using the same data structures.

In this chapter, I will; i) present the profiling results of the original CPU

implementation, which were calculated and used to identify the bottlenecks of

the algorithm when run on the multi-core CPU; ii) discuss the GPU

implementation for the repetitive real-time acquisition; and iii) present the GPU

reconstruction for continuous real-time data, which was implemented within the

previously described distributed reconstruction system (Chapter 3). The

continuous assessment of cardiac output during exercise was used as an

example of real-time acquisitions requiring prohibitively long reconstructions.

4.2 Conjugate gradient linear solver algorithm for the SENSE
reconstruction

The SENSE reconstruction for data acquired on arbitrary trajectories

uses the conjugate-gradient solver algorithm (Section 1.4.2). The algorithm is

an iterative method for solving sparse systems of linear equations, which in this

case is a very computationally intensive process. The appendix 11.3 presents a

pseudo code of the solver, adapted to the reconstruction needs, based on the

79

equations 1-41, 1-42 and 1-43. On the basis of the equations and pseudo code

the reconstruction can be divided into repeated matrix operations and dot-

product calculations. The major difficulty of an implementation are

multiplications with the 𝐸 and 𝐸𝐻 matrices. However, the multiplications can be

broken down to three operations (see Section 1.4.2; equations 1-44 and 1-45);

FFT, gridding and linear matrix combinations with coil sensitivity maps (Fig.

4-1).

The reformulation of the SENSE reconstruction in the form of matrix

multiplications and additions makes it a perfect candidate for implementation on

the GPU platform. GPUs as vector processors were designed to support matrix

operations (Section 1.5). For example, the 𝐼, 𝐷 and 𝜃 (i.e. Equation 1-43) are

diagonal matrices and the left-multiplication with them simplifies to element-wise

multiplication (scaling operations). This operation can be very efficiently

implemented as a dedicated kernel (Appendix 11.4). Also, many basic linear

algebra operations (i.e. dot-product) and more commonly used signal

processing functions (i.e. FFT) are readily provided in different libraries.

The new GPU implementation was based on a previous (original) multi-

core CPU implementation for arbitrary trajectories. When profiled (Tab. 4-1), it

revealed that the gridding operations were the major bottleneck, accounting to

over 80 % of each iteration time. It is obvious that these operations needed to

be significantly sped-up to improve the overall performance of the

reconstruction.

Gridding is the process by which a non-Cartesian signal is resampled

onto a rectilinear grid, by use of convolution (Section 1.3.4). Intrinsically the

operation has no data dependency. However the irregular data addressing

pattern complicates a GPU implementation. A process of porting onto the GPU

platform requires careful analyses and design of an algorithm that complements

the GPU specific hardware (59). There has been a significant work in this area,

which I summarise below.

80

4.3 Existing GPU gridding implementations

Conceptually, gridding is a very simple operation of combining the input

data elements through the convolution operation. Convolution can be found in

applications that need to process or analyse data resulting from some linear

combination of another signal (sample data or, in general terms, functions). It is

ubiquitous in digital signal processing, as it constitutes the basic step of many

operations. Also, it is widely used in digital image processing (i.e. edge

detection and calculation of image derivatives), digital data processing (i.e.

Savitzky–Golay smoothing filters), physics (i.e. spectroscopy) and many other

fields of science. The most common example is an image blurring or down-

sampling (a convolution of an image with a Gaussian kernel).

A consequence of the widespread use of convolution is that it is crucial

to optimise the operation in terms of speed and efficiency. Optimisation steps

may depend on a targeted hardware. The procedure is intrinsically

parallelisable, as in principle there are no dependencies between operations.

Namely, each output result is not dependent on the other results.

For most applications convolution can be very efficiently implemented

on the GPU (60-62), as most commonly the input and output are on rectilinear

grids of the same or proportional sizes. This simplifies the implementation, as

Fig. 4-1 Simplified block chart of the iterative SENSE algorithm.

81

each separate accumulation step does the same operation, but on a different

subset of elements. The necessary kernel values are limited in number and can

be pre-calculated or even predefined for specific applications. Nevertheless, the

optimised implementation needs to take in account the specifics of GPU

hardware. Most importantly these include coalesced memory read and write

operations, as well as use of the shared on-chip memory, as software managed

cache (43). Neglecting these features during the implementation process will

have significant impact on the final performance.

A dedicated implementation for the transformation from an arbitrary

trajectory onto a rectilinear grid is more difficult than the cases mentioned

above. The input (or output in case of the inverse operation) may be of random

(although always known) structure. This adds an additional step of calculating

the kernel values, which can be very computationally intensive. Commonly, a

table of kernel values is prepared only once in order to reduce a number of

calculations. Next, the coefficients necessary for each convolution step are

created through interpolation of the closest values from the table.

The lack of symmetry between input and output data has resulted in a

few potential implementation strategies (50, 59) (Fig. 4-2). These can be

categorised on the basis of how the work was assigned to executing thread or

threads. The starting point is to evaluate the Fine-grained input-driven

assignment (Fig. 4-2) in which the input trajectory points are assigned to a

thread on a one-to-one basis. A thread’s role is to identify output positions on a

basis of a convolution kernel size. Next, kernel coefficients are calculated based

on distances from the input point to the output points, and multiplied with the

input value. The final step is to add the scaled values to values associated with

each of the output positions.

This is a straight forward multi-threaded implementation for CPU like

architectures. The implementation benefits architectures where threads are

loosely coupled and which provide hardware managed cache. However, the

GPU architecture does not allow loose execution of its treads. It is a direct result

of the GPU design in which processing cores are tightly interconnected. This

means that only the same operation can be executed by all of the cores

(Section 1.6).

82

A modified Coarse-grained version (Fig. 4-2) can be designed to

support this feature. This strategy has the optimal number of memory reads and

has full benefit of coalesced memory read operations. However, the input-driven

assignment entails a serious drawback for the GPU implementations, as the

output regions are irregular causing non-coalesced memory access.

Additionally, they can overlap each other. In consequence, the implementation

requires atomic operations on the global memory. An operation (or set of

operations) is atomic if its execution cannot be interrupted. Atomicity

guarantees isolation from concurrent processes. This does not constitute a

problem for CPU versions as the atomic operations, if not provided by the

compiler, can be provided with specialised libraries or self-implemented.

These implementation challenges can be remedied with the output-

driven assignment (Fig. 4-2). In this approach the output is split between

threads. The algorithm assigns each of the output elements to a thread (Fig. 4-2

the fine-grained variant) or their group in a form of a region to individual block of

threads (Fig. 4-2 the coarse-grained variant).

The coarse-grained output-driven assignment (Fig. 4-2) is preferable for

GPU implementations, as the regular output area allows coalesced memory

writes. However, in this case, the potentially irregular input structure poses a

difficulty. Of course, the trajectory on which data was acquired is known. Hence,

the data can be pre-sorted on the basis of the assignment to the output regions,

allowing coalesced memory reads. However the input data must be shared

between different output regions. This can be resolved by replicating the shared

input data or padding of the output regions. Again the latter requires atomic

operations on the global memory or some sort of post processing that combines

all of the separate results into the final one. Additionally, a block of threads need

to share the input data. For maximum efficiency the on-chip shared memory

must be used as a programmatically controlled cache to avoid repeated read-

outs from the global memory.

The analysis of the implementations of gridding for the GPU platform

demonstrates it as not a simple task. To guarantee the maximum performance,

the implementation would require long and tedious code development, problem

specific data structures, tests and incremental optimisations. Additionally, the

83

final version would be a problem specific solution for a targeted hardware,

which can be outdated in a short course of time.

4.4 The gridding operation as matrix multiplications

My work did not aim to create the fastest GPU implementation of the

gridding operation; however the solution is proposed to avoid future re-

implementations with new GPU architectures.

Gridding can be thought of as the weighted sum of all acquired 𝑘-space

samples. However, since the kernel function is usually rapidly decaying, only a

small fraction of 𝑘-space points have non-zero weights and a truncation can be

applied. The specific points involved in the separate convolutions are thus

determined by the sampling trajectory and size of the kernel. The weights for

convolutions on each Cartesian coordinate can be organized as vectors, with

the position in the vector referring to a different sampling trajectory position.

Next, a matrix can be created by stacking the vectors in the form of rows, in an

order relating to the index of Cartesian grid positions (Fig. 4-3). Now, gridding of

Fig. 4-2 Problem specific GPU gridding implementations (59).

Input-driven assignment

Output-driven assignment

Fine-grained Coarse-grained

Fine-grained Coarse-grained

84

non-uniformly spaced data can be performed by multiplying the vector of

acquired data with the matrix of weights.

𝐺𝑁,𝑀𝑆𝑀
𝑡 = 𝑆𝑁

𝑐 4-1

Equation 4-1 The gridding in form of matrix-vector multiplication.

This operation transforms a vector of 𝑀 𝑘-space data (𝑆𝑡) samples onto

a Cartesian grid (𝑆𝑐) stored in a vector form of 𝑁 points. Importantly, an inverse

operation can be done by multiplying 𝑆𝑐 with the conjugate-transpose of the

gridding matrix (𝐺𝑀,𝑁
𝐻) yielding data on the acquisition trajectory (𝑆𝑡).

4.5 Batched gridding strategy for the repetitive trajectories

Further optimization of this strategy is possible when one considers the

structure of raw multi-time frame MRI data. Firstly, 𝑘-space read-outs usually

contain the same number of samples and therefore, the whole data can be kept

in a single allocation organized in column-major matrix. In addition, where

trajectories are repeated over consecutive frames, clustering of same trajectory

into consecutive columns (𝑆𝑀,𝑇
𝑡 ; 𝑇 a number of read-outs) is possible. This

Fig. 4-3 Creation of the gridding matrix.

The arrows point storage positions of the kernel coefficients in the relevant row vector.

85

allows multiple simultaneous gridding operations in the form of matrix-matrix

multiplication to be performed;

𝐺𝑁,𝑀𝑆𝑀,𝑇
𝑡 = 𝑆𝑁,𝑇

𝑐 4-2

Equation 4-2 Batched version of the gridding in form of matrix-matrix multiplication.

This operation produces a new matrix (𝑆𝑐) of 𝑇 data sets with 𝑁

samples on a Cartesian grid. An additional step required by this approach is the

calculation of a gridding matrix for each trajectory. In the case when only a

single or very few matrices are necessary this step is trivial as they can be pre-

calculated, stored as a sparse representation to minimize necessary memory

usage, and reused when needed.

This method of optimization by batching (simultaneous execution of the

same operation on multiple data) is one of the most widely used on GPU

platforms. Launching a kernel requires preparation of parameters, their

transmission onto a device and scheduling of the execution. The execution of

the kernel happens asynchronously with respect to the scheduling thread but

the preparation process needs to be repeated for each individual kernel call.

Batching keeps the number of necessary kernel launches to absolute minimum.

4.6 Implementation specifics

This reformulation of gridding operations allowed me to leverage

already existing and optimized libraries for linear algebra that are widely used in

multiple scientific applications. The entire SENSE algorithm was ported onto the

GPU, whilst keeping the number of CPU to GPU communications to the

absolute minimum. The implementation used NVIDIA's CUDA 5.5 toolkit, which

provided necessary libraries for sparse-dense matrix operations (cusparse), for

simple linear vector, matrix operations, reduction and dot product calculations

(cublas) and for 2D Fourier Transformations (cufft). Most importantly, all of them

provide a batched version of their functions. Use of these libraries significantly

reduced the time required for development. Moreover, the implementation

benefits from continuous optimization with new releases of the toolkit, as well as

their adoption to new GPU architectures. Some minor operators were not

provided with the libraries (i.e. element-wise multiplications). These were

86

implemented in the form of in-house built kernels for execution on GPU. The

implementation took full advantage of the continuous allocation and the batched

approach was applied to them as well.

The implemented reconstruction was integrated into the distributed

reconstruction system, as discussed in Section 3.4. The simplified data flow in

the system for this reconstruction is presented on Fig. 4-4. The coil sensitivity

maps, as well as the necessary preconditioning and regularisation maps, are

calculated for each buffer (Section 3.4) prior to the SENSE reconstruction. After

completion of the iterative SENSE reconstruction algorithm, Maxwell correction

(63) and then standard PCMR subtraction are performed on the GPU.

Execution of these steps on the external machine halves the size of result that

need to be sent back; this way saving the network bandwidth. Upon completion

of the external reconstruction, the resultant images are sent back into the

scanner based reconstruction pipeline, for final conversion to the DICOM format

and image viewing on the scanner console.

4.7 Reconstruction tests

For optimal processing of a stream of real-time data an overlap

between data acquisition and its reconstruction is required, as discussed in

Section 3.4. The data transmission tests determined the maximum acquisition

throughput supported by the system, as based on the maximum network

Fig. 4-4 Continuous real-time data processing with the distributed system.

Flow chart for the real-time PCMR data reconstruction process using a heterogeneous system
incorporating an external computer equipped with a GPU card into the native image
reconstruction system of a commercially available MR scanner.

87

transmission speed. Correspondingly it was essential to ensure the processing

of data would not be constrained by the external reconstruction time.

The reconstruction tests concentrated on the new gridding operation

and tests of the final version of the GPU based SENSE reconstruction. The

tests were run on the same system as presented in the networking tests

(Section 3.5), using four separate data acquisition channels. The same uniform-

density spiral PCMR sequence was used to acquire 60 flow frames; this was a

size of reconstruction buffer. The imaging parameters were modified to match

the desirable parameters in future assessments; FOV: 500x500 mm, matrix:

128x128, voxel size: 3.9x3.9x6 mm, TR/TE: 7.3/1.9 ms, flip angle: 25°, velocity

encoding (VENC): 280 cm/s, complete 𝑘-space sampling: 12 interleaves. Data

were acquired with four times acceleration, resulting in temporal resolution: ~44

ms. Neither water-only excitation, nor fat suppression pulses were used to

minimize TR. The spiral interleaves were rotated with each frame to enable

calculation of coil sensitivity maps. Under-sampled PCMR data was

reconstructed using the new GPU SENSE reconstruction. Gridding was

performed using a Kaiser-Bessel window function (19) (full-width: 8,

oversampling factor: 1.25). This window size was chosen as a compromise

between image quality and speed of reconstruction.

The Tab. 4-1 presents comparison of the reconstruction times between

the CPU and GPU implementations. The gridding operations were found to be

the major bottleneck per iteration, for the CPU implementation. They constituted

over 80 % of each reconstruction iteration time. Each step in the iterative

SENSE algorithm was faster on the GPU compared to the CPU. However, as

expected, it was the reduction in the time taken for gridding (~46x quicker) that

had the greatest effect on the total reconstruction time. Although, per iteration,

the GPU was ~23x faster than the multithreaded CPU implementation,

additional computational overheads (coil sensitivities, preconditioning,

regularisation and other calculations) reduced the total speed-up to ~15x. Both

CPU and GPU implementation required 8-9 iterations to converge. Most

importantly the GPU reconstruction time for 60 frames (~1.6 s) was shorter than

the acquisition time (~2.6 s). This meant that during online reconstruction of

larger data sets, the processing would be fully overlapped with the acquisition.

88

The presented tests showed that the data transmission (Section 3.5)

and reconstruction (Section 4.7) can be done faster than the acquisition. More

in-depth system reconstruction tests required a more comprehensive test case.

The next chapter describes online tests of the system to assess its suitability for

the clinical use.

 CPU [ms] GPU [ms] CPU / GPU

Per iteration FFT 287.67 73.95 4
Gridding 2674.75 58.48 46
Matrix combination 245.69 4.24 58
Preconditioning 52.95 1.00 53
Total 3288.32 144.83 23

Per 60 frames Total 24115.24 1581.67 15

Tab. 4-1 SENSE reconstruction time comparison.

Times of per iteration steps comprise total time required for both forward- and back-
transformations between k-space and real domains.

89

5. Real-time reconstruction for continuous acquisitions

In the chapter, an application of the developed system is presented

on the example of continuous real-time assessment of blood flow. The work

presented in the chapter was published in the article:

Real-time flow with fast GPU reconstruction for continuous

assessment of cardiac output, GT Kowalik, JA Steeden,

B Pandya, F Odille, D Atkinson, A Taylor and V Muthurangu;

Journal of Magnetic Resonance Imaging, Volume 36, Issue 6,

pages 1477–1482, December 2012 (DOI: 10.1002/jmri.23736).

Appendix 11.8

90

5.1 Introduction

The continuous assessment of cardiac output during exercise may

allow better understanding of the relationship between cardiac disease and

exercise intolerance. Current clinical methods of continuous cardiac output

assessment include; Doppler ultrasound, impedance cardiography and invasive

measurements. However, they are impractical in the clinical environment and/or

have been shown to have limited accuracy(64, 65). Flow quantification with

PCMR sequences may provide a more suitable and accurate alternative (64-

66). However, a high temporal resolution real-time PCMR sequence is needed

to assess dynamic changes in cardiac output during an exercise. One possible

implementation is spiral real-time PCMR (17). Unfortunately as discussed

(Chapter 2) the reconstruction of under-sampled spiral data is very

computationally intensive. Consequently, to truly make the assessment feasible

the reconstruction of acquired data must be fast enough to enable multiple

assessments and to not impede the clinical workflow. In this chapter it will be

shown that our original online (CPU) reconstruction would take over one hour to

reconstruct 10 minutes of continuously acquired real-time data. These long

reconstruction times made continuous assessment of cardiac output with PCMR

impractical in the clinical environment.

The purpose of this chapter was to demonstrate the potential of the

described reconstruction system. This work aimed to; i) provide a quantitative

validation of data provided with the new GPU reconstruction against the original

CPU reconstruction, ii) demonstrate the significant improvement in

reconstruction time on a demanding real-life application example; and most

importantly, iii) present translation of this clinically important assessment

protocol into an everyday examination tool, which was otherwise impractical.

Therefore, the continuous cardiac output assessment during active exercise

was selected as the test case. The study supplements the test results from the

previous chapters by stress-testing the system with a 10 minutes real-time

scanning protocol.

91

5.2 Methods

5.2.1 Study Population

Twenty healthy volunteers (9 Male: 11 Female) were recruited between

August and September 2011. The median age was 31.5 years (range 25-51

years). Exclusion criteria were: i) Cardiovascular disease (assessed by clinical

history); ii) Illness that prevented exercise (i.e. joint disease); iii)

Contraindications for MR such as MR-incompatible implants, or pregnancy. The

local research ethics committee approved the study and written consent was

obtained from all volunteers.

5.2.2 Data acquisition and processing

All imaging was performed on a 1.5 Tesla (T) MR scanner (Avanto,

Siemens Medical Solutions, Erlangen, Germany) using two six-element body-

matrix coils. To reduce amount of acquired data the coils were set to combine

mode. This is a feature of the scanner in which clusters of three coils are

behaving as a circularly polarised coil read out through a single receiver. This

resulted in four separate data acquisition channels.

The uniform density spiral PCMR sequence previously developed in our

unit (17) was used to acquire the flow data. The imaging parameters were the

same as in the reconstruction tests (Section 4.7); FOV: 500x500 mm, matrix:

128x128, voxel size: 3.9x3.9x6 mm, TR/TE: 7.3/1.9 ms, flip angle: 25°, velocity

encoding (VENC): 280 cm/s, complete 𝑘-space sampling: 12 interleaves. Data

were acquired with four times acceleration, resulting in temporal resolution: ~44

ms. To minimize TR, neither water-only excitation nor fat suppression pulses

were used. To enable calculation of coil sensitivity maps the spiral interleaves

were rotated with each frame. The described networking framework (Chapter 3)

was used to enable the overlapping data transmission and external

reconstruction. The raw 𝑘-space lines were sent using the client application

implemented on the scanner side to the reconstruction server on the external

workstation for processing (Section 3.4). The tests were run on the same

hardware as presented in the networking tests (Section 3.5). The data

processing was done as described in Section 4.7. Importantly, incoming data

were buffered on CPU memory and only sent to GPU memory when a whole

92

packet had been collected. Data were processed in packets of 60 flow frames to

ensure sufficient SNR for the coil sensitivity calculations and reduce motion

within a packet.

Under-sampled PCMR data were reconstructed using the new GPU

SENSE reconstruction (Chapter 4). Gridding was performed using a Kaiser-

Bessel window function (19) (full-width: 8, oversampling factor: 1.25). This

window size was chosen as a compromise between image quality and speed of

reconstruction.

5.2.3 In-vivo validation of GPU reconstruction

As the reconstruction of the exercise data was not possible without

major changes to our existing multicore CPU implementation (due to the data

size), a smaller data set was used for validation and comparison of GPU and

CPU reconstructions. Similarly to the reconstruction tests (Section 4.7), the

SENSE reconstruction was run on a data set of 60 frames; equivalent to a

single reconstruction buffer or the length of one packet in the continuous

acquisition. This small set was reconstructed offline using both the GPU

reconstruction and the original CPU implementation.

5.2.4 Vascular response to exercise

The exercise was performed with an MR-compatible ergometer (Lode,

Groningen. Netherlands), the participants were placed supine in the MR

scanner, with their feet strapped into the pedals and the upper leg strapped to

supports of the ergometer, prior to the scan. The exercise consisted of an up-

and downward motion of the pedals. This type of exercise is designed to

minimize motion artefacts as motion is restricted to the lower legs. The 10

minute exercise protocol consisted of 1 minute of rest, 8 minutes of ramped

exercise (starting at 2W and increasing by 2W every minute) and 1 minute of

recovery. During the entirety of the exercise protocol, real-time flow data was

acquired using the described sequence resulting in 13980 frames (~612 s) of

PCMR data.

93

5.2.5 Image analysis

All images were processed using in-house plug-ins for the open-source

software OsiriX (the OsiriX Foundation, Geneva, Switzerland) (67) performed

on a multicore workstation (12 core, Mac Pro, Apple, CA, USA). The magnitude

flow images were segmented semi-automatically using a registration based

algorithm (68). This requires the user to select and segment the aorta in one

reference frame, and the plug-in performs subsequent propagation of this

region of interest (ROI). For the CPU/GPU comparison the CPU magnitude

images were segmented and the same ROIs were used to quantify flow in both

the CPU and GPU phase images.

The original segmentation plan had to be modified for the exercise data

set due to its size. The original algorithm registers a single frame from a set to

all of the others. In the case of long exercise data sets this was not desired and

slow. Thus, I implemented a new split segmentation approach. The task was

parallelized across multiple-cores by automatically dividing the full data set

(13980 frames) into 12-15 equally sized subsets, each processed by a separate

CPU thread. Subsets were presented within separate windows (Fig. 5-1)

allowing the initial segmentation of the aorta in each of them. Next, a CPU

thread was assigned to each subset and the original registration algorithm was

run in parallel on each of them. Resultant ROIs were visually assessed and if

necessary subsets were individually re-segmented to improve accuracy. The

final ROIs were copied onto the phase data for flow quantification (Fig. 5-2).

5.2.6 Statistical Analysis

All aortic flow results were expressed as the mean ± standard deviation

(SD). Measurements of agreement between the CPU and the GPU

reconstruction were performed using Bland-Altman analysis, as well as

calculation of correlation coefficients.

94

Fig. 5-1 Multi-threaded segmentation plug-in.

A series of magnitude images was split into 12 sub-sections that were processed separately.
Each window allowed visualisation of a sub-section to enable selection of a reference frame to
which the rest of images were registered. After finished segmentation the plug-in enables
combination of all sub-sets back into the single series in the original order. The prepared ROIs
were preserved and propagated on the series for visualisation and further processing.

Fig. 5-2 Flow analyse plug-in.

Flow data were extracted on the basis of ROIs and were presented in the top plot. The peak
detection algorithm was used to detect individual R-R intervals. These were used to calculate
heart-rate, stroke volume, cardiac output, forward and backward flows. The averaged numerical
values were presented in the table on the right hand side. The plug-in allowed exporting the
results for further processing.

95

5.3 Results

5.3.1 Reconstruction validation

There was no observable difference in image quality between the CPU

and GPU reconstructions (Fig. 5-3).

Bland-Altman and correlation analysis (Fig. 5-4) demonstrated a

negligible bias (~0.4 ml) and excellent agreement (limits of agreement: -1.9 to

1.2 ml, r = 0.998, P < 0.05) in aortic stroke volumes measured using the CPU

and GPU reconstructions of the 60 frames data set.

Fig. 5-3 Image quality comparison.

The first column – CPU reconstruction results: a) magnitude and b) phase images. The second
column – GPU reconstruction results: c) magnitude and d) phase images. The third column –
difference images of e) the magnitude and f) phase images. Images (a, c, e) and (b, d, f) are
presented with the same window width. The phase images (b, d, f) were masked to remove the
low SNR pixels.

96

5.3.2 Reconstruction times

The reconstruction times of a single data packet (Tab. 4-1) were

presented in the previous chapter (Section 4.7). The same results were found in

this study with data acquired over much longer time period. Consequently, the

external reconstruction times of each data packet were shorter than the

acquisition and transmission times of the packet (Fig. 5-5).

As mentioned, the complete exercise studies were not run through the

CPU implementation. Consequently, an estimated CPU reconstruction time was

calculated (mean reconstruction time for 60 frames multiplied by the total

Fig. 5-4 Flow quantification validation

The figure presents plots of Bland-Altman and correlation analysis for the set of aortic flow data
from 20 volunteers, reconstructed with the CPU and the new GPU reconstructions.

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

33 53 73

D
if

fe
re

n
ce

 [
m

l]

Average [ml]

Bland-Altman

33

43

53

63

73

83

33 53 73

G
P

U
 [

m
l]

CPU [ml]

Correlation

Fig. 5-5 System workload during the continuous flow assessment.

The alternating colours identify rotating processing between two buffers.

97

number of packets), which equalled to ~93 minutes. Thus, data would

theoretically be available ~83 minutes after the acquisition finished.

The estimated speed ups related to performing the reconstruction on

the GPU for this application are shown in Tab. 5-1. On average, total

reconstruction time with the external GPU reconstruction for the exercise data

was ~629 s (data length: 13980 frames, acquisition time ~620 s). This included

external reconstruction, data transmission/buffering to and from the external

computer and results storage on the scanner, and resulted in all the data being

available ~9 s after the scan finished. This represents a ~556x speed-up if

measured from the end of acquisition. Of course, this is not a practical

comparison, as the speed up value depends on a size of the problem. A better

way of classifying algorithms is by big-O notation (Landau's symbol). 𝑂(𝜙) can

be used to classify an algorithm’s processing time (𝑓) by specifying it’s limiting

behaviour (𝜙) with respect to an input size (𝑛); 𝑓(𝑛) < 𝐴𝜙(𝑛). 𝐴 is a constant.

Applying this notation to the waiting period after the acquisition finishing as a

metric of improvement yields 𝑂(𝑛) (linear complexity) for the CPU and 𝑂(1)

(constant complexity) for the GPU reconstructions. This shift in the algorithm’s

classification was the crucial improvement that removed the reconstruction time

as a restricting factor and enabled the real-time assessment studies.

Also, the reconstructed data were collected throughout the acquisition

time, which made it possible to view images during acquisition (with a slight

delay).

5.3.3 Continuous cardiac output monitoring

All participants successfully completed the exercise protocol and MR

flow data were measured successfully on all subjects. Flow curves collected

during a whole exercise study and selected portions are shown in Fig. 5-6.

 CPU [s] GPU [s] CPU / GPU

Per 13980 frames Total 5618.85* 629.24 9
(buffered recon.) From acquisition end 4998.61* 9.00 556

Tab. 5-1 Continuous flow assessment reconstruction time comparison.

* CPU times for the entire dataset of 13980 frames were estimated from the CPU reconstruction
time required for a subset of 60 frames.

98

Increased heart rate during exercise is observable in this raw flow curve

data. Fig. 5-7 shows the average measured responses to exercise, which

demonstrate the expected behaviour (17). Cardiac output increased throughout

the exercise protocol, particularly in the first minute of exercise. This was

assigned to the increase in heart rate as stroke volume slightly declined during

the 10 minutes of exercise. During recovery, heart rate fell dramatically although

not to baseline, while stroke volume increased back to baseline. This led to a

greater cardiac output in the first minute of recovery compared to baseline.

Fig. 5-6 An example of flow data acquired with continuous real-time PCMR during exercise.

Bottom graphs show 20 s sections of the total data taken at rest, mid exercise and recovery.

Fig. 5-7 Exercise data results.

The figure presents average and standard deviations of heart rate, aortic stroke volume and
cardiac output based on flow data from the population of 20 volunteers.

99

5.4 Discussion

The study showed the continuous MR assessment to be impractical

with the CPU reconstruction. The CPU reconstruction was estimated to take

over 80 minutes to reconstruct ~10 minutes of real-time data. The gridding was

the bottleneck of the CPU reconstruction accounting for majority of its time.

However, as described (Section 4.3) the gridding problem was well studied and

the new developed GPU version (Section 4.4) was shown to provide significant

speed-up for the iterative SENSE algorithm (Section 4.7).

The GPU implementation made the reconstruction faster than the

acquisition. This when combined with efficient data transmission (Section 3.5)

enabled the buffered reconstruction process. Consequently, a single packet of

continuous data was reconstructed and transmitted back to the scanner before

the next packet was fully acquired. This allowed monitoring of the results and

potential re-starting of the scan if necessary (i.e. if a patient moves) without

waiting till the end of the acquisition. More importantly, the time between the

acquisition finishing and the whole data set being available for viewing was

independent of the scan length (~9 s in this study). This means that much

longer acquisitions can be acquired without a significant effect on the clinical

workflow. Furthermore, the described distributed reconstruction system

preserved the existing clinical workflow; for example the simple transfer of final

image data (including patient biometrics stored in the DICOM headers) to

processing and storage nodes stayed unchanged. This was essential for the

assessment protocols to be effectively translated into the clinical environment.

The main objective of this study was to enable and validate the cardiac

output measurement during exercise. First, the validation tests proved the new

reconstruction equivalent to the original one and consequently it can be used

instead. Next, the exercise results were in keeping with the type of supine

exercise performed (69). To make the continuous real-time assessments

feasible in the busy clinical environment the bottleneck in the form of

prohibitively slow reconstructions was removed. However, a new bottleneck

was uncovered; slow post-processing of the reconstructed data. Although

segmentation was parallelised over the multiple CPU cores, the requirement for

some manual correction led to relatively long post processing times (~1 hour).

100

Thus, more accurate segmentation algorithms better suited to such large data

sets are required. Nevertheless, the study as a proof of principle opened up

many novel areas in diagnostic and research cardiovascular MR that are

currently impeded by long reconstruction times. For instance, cardiac output

data could be combined with oxygen consumption to fully assess the cardio-

respiratory response to exercise (70). Furthermore, long-term beat-to-beat

analysis could be performed (similar to beat-to-beat heart rate analysis)

providing new insight into cardiovascular control mechanisms in health and

disease (71).

101

6. High temporal resolution real-time acquisitions with
temporal encoding

In the chapter, I demonstrate the flexibility of the system to

accommodate multiple of reconstruction algorithms. The UFOLD technique

was developed and introduced to improve acquisition speed and/or image

quality. The work presented in the chapter was published in the following

article:

Assessment of cardiac time intervals using high temporal

resolution real-time spiral phase contrast with UNFOLDed-

SENSE, GT Kowalik, DS Knight, JA Steeden, O Tann, F Odille,

D Atkinson, A Taylor and V Muthurangu; Magnetic Resonance in

Medicine, Volume 73, Issue 2, pages 749–756, February 2015

(DOI: 10.1002/mrm.25183).

Appendix 11.9

102

6.1 Introduction

One of principal goals of my work was to promote flexibility through

development of robust building blocks and preparation of a computationally

efficient translation environment. The first steps (Chapters 3) presented the

distributed architecture as a scalable framework capable of accommodating the

demanding acquisition sequences and reconstructions. Next, the GPU version

of the SENSE algorithm was shown to very significantly boost the

reconstruction’s performance, which elevated the algorithm’s utility in the clinical

environment (Chapter 4). These components, in combination with the previously

developed spiral PCMR sequence, were shown to have a sufficient impact to

open new research paths (Chapter 5).

This section describes the next step, which was to illustrate that the

framework was not limited in the range of MR techniques which can be built

within it. Other existing MR components can be integrated into the system and

benefit from its seamless and robust reconstruction process. The combination

of the temporal encoding technique (UNFOLD) with SENSE was selected as

the first example. The presentation of the system’s expandability was not the

only reason behind this choice. More importantly it provided an incremental

improvement in the range of available assessment protocols. The temporal

encoding technique is used to double the acquisition speed. However this can

be exploited in two ways; improving image quality through higher spatial

resolution or better artefact suppression, while preserving a temporal resolution,

or doubling the temporal resolution, while sustaining the image quality. Of

course the choice depends on the application.

The problem of assessing cardiac time intervals with PCMR was used

as the target application. This allowed me to present; i) the scalability of system,

ii) the incremental improvement in quality of assessments; and iii) actual real-life

applicability. Cardiac time intervals (i.e. isovolumic times and ejection time) can

aid the assessment of integrated myocardial function (72). Usually the time

intervals are assessed by Doppler echocardiographic measurement of

ventricular in- and out-flow patterns, but they could also be assessed with

PCMR. However, PCMR is conventionally cardiac-gated and this introduces two

103

major problems. Firstly, flow patterns produced by gated PCMR may be

distorted by inter-beat variation in stroke volume and heart rate. This has little

effect on quantification of velocity, but may affect the reliability of time interval

measurement. Secondly, acquiring gated data with sufficiently high temporal

resolution takes several minutes, limiting its utility in the clinical environment. An

alternative option is to use real-time PCMR, which additionally can be used

during an exercise. Unfortunately, assessment of cardiac time intervals requires

very high temporal resolution, as the time intervals can be as short as ~30 ms.

This is significantly lower than the sampling rate enabled by the combination of

efficient 𝑘-space filling (i.e. spiral acquisition trajectory) and parallel imaging (i.e.

SENSE), which typically results in 40-50 ms sampling rate.

In the case of multiple frame acquisitions the temporal domain can be

utilised for further acceleration. Previous work has shown development of k-t

BLAST and k-t SENSE (28) techniques, which allow higher acceleration factors

for multi frame imaging (73). These techniques require acquisition of low spatial

and high temporal resolution training data. These data are intrinsically present

in under-sampled radial data due to the oversampling of the central portion of k-

space. This is in contrast with spiral acquisitions. The rapid data sampling of the

trajectory would need to be compromised to enable the simultaneous

acquisition of the training data with the variable density spirals. Consequently, it

would reduce the achievable sampling rate and increase imaging artefacts (due

to longer read outs). A better approach for spiral imaging may be the previously

described temporal encoding/filtering technique – UNFOLD (Section 1.4.3),

which in combination with SENSE (27, 29) should allow the acquisition of real-

time data with high enough temporal resolution to assess cardiac time intervals.

Therefore, the high temporal resolution real-time spiral PCMR

sequence that combined UNFOLD and SENSE reconstructions (UNFOLDed-

SENSE) was implemented within the distributed image reconstruction system.

The implementation process fully reused the previously developed accelerated

real-time spiral PCMR sequence (17), overlapping data transmission-execution

framework (Section 3.4), and GPU based SENSE reconstruction (Chapter 4). A

new trajectory ordering pattern was applied to allow the temporal encoding for

UNFOLD and self-referencing for creation of coil sensitivity maps. The major

104

implementation work concentrated on adding a new reconstruction step in the

form of a filter designed to remove the temporal under-sampling. The new

technique was validated in-silico, in-vitro and in-vivo to assess its suitability for

the measurement of time intervals. Experimentally, the method was used to

evaluate the changes in cardiac time intervals with exercise.

6.2 Methods

6.2.1 Data acquisition and processing

All imaging was performed on a 1.5 Tesla MR scanner (Avanto,

Siemens Medical Solutions, Erlangen, Germany) using six-element spine and

body-matrix coils (total of twelve elements used in acquisition).

The same type of real-time uniform density spiral PCMR sequence as in

the continuous cardiac output assessment was used (Chapter 5). The imaging

parameters were; FOV: 450x450 mm, matrix: 128x128, voxel size: 3.5x3.5x7

mm, TR/TE: 7.4/2.0 ms, flip angle: 20° and VENC: 150 cm/s, complete 𝑘-space

sampling: 10 interleaves. In order to minimize TR, neither water-only excitation

nor fat suppression pulses were used. The trajectory acquisition patterns had to

be modified to achieve high sampling resolution (<15 ms) and allow

combination of the UNFOLD and SENSE reconstructions. The data acceleration

factor was split into spatial (𝑆𝐸𝑁𝑆𝐸) and temporal accelerations (temporal

encoding). The temporal acceleration for the UNFOLD technique was fixed: 2x,

leaving the spatial acceleration to be determined depending on the desired

temporal resolution. In this study we optimised the parameters for imaging of

cardiac time intervals. A single interleave was acquired per flow frame, this

resulted in 10x under-sampling (𝑆𝐸𝑁𝑆𝐸 = 5). The novel acquisition pattern was

implemented to fulfil the temporal encoding criteria (Section 1.4.3) and enable

the self-referencing SENSE approach for the calculation of coil sensitivity maps

(27). The UNFOLD reconstruction was accommodated by acquiring alternate

lines in consecutive frames, while the full coverage of 𝑘-space was enabled by

rotating this pair of alternating lines every 𝑁 frames; referred to as an

acquisition block (Fig. 6-1). In this study 𝑁 was set to 20. This allowed the maps

used in the reconstruction (Section 1.4.2) to be calculated by combining data

from 𝑁 ∗ 𝑆𝐸𝑁𝑆𝐸 = 100 frames, with the resultant maps having 𝑁/2 = 10 signal

105

averages (Fig. 6-1). This data acquisition plan required the total number of

frames to be divisible by a multiple of the size of acquisition block and the

spatial acceleration (𝑁 ∗ 𝑆𝐸𝑁𝑆𝐸), which equalled to 100 for the presented

parameters. In the validation studies a total of 700 frames were acquired

resulting in ~10.37 s of scanning time.

The temporal filtering (Section 1.4.3) can be done in either image space

or 𝑘-space (74) providing the following condition is met;

𝜌(𝑟, 𝑡) = ℱ𝑡
−1[𝜌(𝑟, 𝜔)]

𝑆(𝑘, 𝑡) = ℱ𝑡
−1[𝑆(𝑘, 𝜔)]

𝑆(𝑘, 𝜔)𝑓(𝜔) = 𝜌(𝑟, 𝜔)𝑓(𝜔) ⇔ ∀𝜔𝑎∈ℝ𝑆(𝑘, 𝜔𝑎)
𝜘
↔𝜌(𝑟, 𝜔𝑎)

 ℱ𝑟
−1[𝑆(𝑘, 𝜔)𝑓(𝜔)] = 𝜌(𝑟, 𝜔)𝑓(𝜔)

6-1

Equation 6-1 Filter reciprocity condition

In this implementation UNFOLD was performed before the SENSE

reconstruction. Primarily, the reason was to improve the initial conditions and

consequently the convergence rate of the subsequent iterative SENSE solving

process. This assumption was based on the fact that the UNFOLD filtering

Fig. 6-1 Sampling trajectory pattern used in the 10x accelerated UNFOLDed-SENSE
reconstruction.

A batch of 100 frames is organised into five blocks of 20 frames (3 blocks are shown in the
figure). Each row shows the alternating acquisition pattern within a block, with the acquired
interleave in each frame (numbered) in continuous line. Each block uses a different pair of
interleaves, thus data acquired in five adjacent blocks fully covers the whole 𝑘-space and can
be used to calculate the coil sensitivity maps.

106

process, besides reducing the initial under-sampling (Fig. 6-2), removes high

frequency noise and in this way improve SNR (33).

In equation 6-1, 𝜘 denotes a transformation between image space and

𝑘-space that does not depend on any temporal information about the imaged

object. As demonstrated Fourier transform is such an operation. However, it can

be only directly applied to Cartesian trajectories. For non-uniformly spaced

accelerated trajectories, reconstructions like SENSE play the role of the

transformation operator. Unfortunately, these reconstructions do not always

conform to this condition. For instance, regularisation used to constrain the

noise amplification, can alter the solution and have a negative impact on the

oscillations in image space. Also, if coil sensitivity maps are not calculated

correctly for each frame the accuracy of the result can vary through time

introducing a temporal component. Presumably, these have negligible effect on

the performance of UNFOLD post transformation into image space, as

conducting temporal filtering in image space is the most common approach (29,

33, 40).

Fig. 6-2 Schematic visualisation of the temporal encoding used in the UNFOLDed-SENSE.

The figure presents reduction in acceleration/under-sampling/aliasing with the UNFOLD
technique applied directly to 𝑘-space data. On the left, a series of 20 frames acquired with
alternating 10x accelerated trajectories has 10 spatial aliases (the top left image). Also, each
acquired position is two times under-sampled through time (the bottom left plot). This results in
aliasing in the temporal frequency space (the middle plot) which can be removed with an
adequate filter. On the right, resultant data of the filtering process is fully sampled through time
(the bottom right plot). This is equivalent to halving of the number of spatial aliases (the top right
image).

Acceleration 10x Acceleration 5x

k-t

k-f

k-t

UNFOLD
Frames 1-20

107

A schematic visualisation of the UNFOLDed-SENSE reconstruction

steps are presented in Fig. 6-3. UNFOLD was performed separately on each

acquisition block. As each 𝑘-space position in the acquired interleaves, was 2x

under-sampled in time (Fig. 6-2), Fourier transformation along time resulted in

aliasing at the Nyquist temporal frequency. The aliases were removed using a

low-pass temporal frequency filter and after inverse Fourier transformation,

every 𝑘-space position in the processed interleave was fully sampled in time

(Fig. 6-2).

This resulted in each 𝑘-space frame containing two interleaves, a

reduction in under-sampling from 10x to 5x. The reconstructed signal may suffer

from ringing artefacts (38). This can happen when a temporal filter is too abrupt

and/or a jump discontinuity is present between the beginning and end of a

filtered signal – similarly to Gibbs artefacts. To address this problem, prior to

UNFOLD, each acquisition block was extended by four frames in either

direction (by replicating the first and last two frames) (Fig. 6-8). Therefore,

potential ringing introduced by the filtering process was pushed into these

additional frames, which were then discarded prior to the SENSE

reconstruction.

108

F
ig

. 6
-3

 U
N

F
O

L
D

e
d
-S

E
N

S
E

 re
c
o
n
s
tru

c
tio

n
 p

ro
c
e
s
s
.

109

The implementation of UNFOLDed-SENSE made full use of the

previously described distributed reconstruction system (Fig. 6-4). All real-time

reconstructions were performed online. The networking framework (Chapter 3)

was used to enable the overlapping data transmission and external

reconstruction of the acquired real-time data. A new temporal filtering step was

added to the reconstruction process prior the SENSE reconstruction. This step

allowed flexible definition of the filter parameters required for the optimisation

tests. The resultant PCMR data, after temporal filtering (still 5x under-sampled

in the spatial domain), were next reconstructed using the implemented SENSE

reconstruction (Chapter 4) on the external machine (Workstation Specialists,

Two Intel Xeon E5645 2.4 GHz, 24 GB DDR3) equipped with the GPU (NVIDIA

Tesla C2075 1.2 GHz, 6 GB DDR5). Gridding was performed using a Kaiser-

Bessel window function (19); full-width: 5, oversampling factor: 1.25. The

parameters were chosen to maximise reconstruction speed. Coil sensitivity

maps were calculated by combining the original velocity compensated

interleaves from 100 consecutive frames (the minimum number of frames

required to ensure complete 𝑘-space filling). These coil sensitivity maps were

used in the iterative non-Cartesian SENSE reconstruction on the same 100

frames after they have undergone the UNFOLD reconstruction.

Intrinsically, UNFOLD is a temporal filtering technique that can

introduce blurring and reduce the temporal resolution of data. The optimal

Fig. 6-4 Modified continuous real-time data processing for UNFOLDed-SENSE.

The processing flow chart was extended with the temporal filtering step prior to the SENSE
reconstruction.

110

selection of the filter is crucial for good performance of the technique. This

depends on the temporal frequency spectrum of the imaged object. To find

optimal filter parameters for flow data acquired in the assessment of cardiac

time intervals, an in-silico experiment was designed as described below.

To validate the necessity of the combination of UNFOLD with SENSE in

the assessment of cardiac time intervals two additional reconstructions were run

retrospectively on the acquired real-time data. Both can be seen as a form of

sliding window reconstruction (Fig. 6-5). Firstly, the data was treated as if no

temporal encoding was applied. This meant twice lower sampling resolution

(~30 ms) (Sliding Windows with Low Temporal Resolution - SW-LTR). This

reconstruction can be seen as an equivalent of the previously presented

continuous real-time PCMR assessment. It was used to evaluate potential

improvements with the higher temporal resolution acquisitions. Secondly, the

data from adjacent frames were used to create combined frames with halved

under-sampling. This is an equivalent of convolving the data with a box kernel

of width of two. Consequently, it is a temporal filter of fixed broad window

characteristic. This combination of 𝑘-space data produced the same sampling

resolution as UNFOLDed-SENSE (Sliding Windows with High Temporal

Resolution - SW-HTR) and was used to assess how the simpler form of

temporal filtering compares with the tailored approach in UNFOLD. Similarly to

UNFOLDed-SENSE, both sliding windows reconstructions reduced the

Fig. 6-5 Two sliding window reconstructions used in validation.

Sliding Window

Overlapping

High-resolution

1 2 3 19 204 18

1-2 2-3 18-19 19-203-4

Sliding Window

Non-overlapping

Low-resolution

1 2 3 19 204 18

1-2 19-203-4

111

acceleration from 10x to 5x, and required the secondary step in form of SENSE.

However, none of them needed the newly added temporal filtering step which

was omitted or replaced with the necessary data exchange between 𝑘-space

frames. The rest of the reconstruction was done as presented on Fig. 6-4.

6.2.2 In-Silico simulation

An in-silico simulation was used to determine the optimal filter

characteristics for the UNFOLD reconstruction. A high resolution (matrix:

256x256) 2D in-silico model was developed, consisting of a high intensity

border representing subcutaneous fat, and an internal medium intensity ellipse

representing the ventricular short axis at the mitral valve level (Fig. 6-6 c).

Respiratory motion (Fig. 6-6 e) was modelled using a function consisting of

expansion (inhalation), a brief pause and contraction (exhalation). The

respiratory rate was ~0.22 Hz, with the outer border increasing by ~11 % of its

original size. Blood flow velocity at the mitral valve orifice was based on a real

mitral valve inflow (MVI) trace acquired using high temporal resolution Doppler

echocardiography (Fig. 6-6 a) (SC2000 cardiac ultrasound system, Siemens

Healthcare, Erlangen, Germany, pulsed-wave Doppler frequency 1.75 MHz,

Fig. 6-6 In-silico model design.

a) The captured Doppler echocardiography result of MVI acquisition was used to synthesize b)
the new flow curve. The model’s simulated mitral valve orifice phase (d) was varied
proportionally to this curve. Visual representations of the in silico model; c) a magnitude, d) a
phase and e) a cross-section time representation to display motion are presented.

112

sweep speed: 100–150 mm/s). Next, a temporal frequency spectrum (up to ~76

Hz) of the curve was extracted and used to synthesize a new flow curve of 2 ms

temporal resolution (Fig. 6-6 b). The phase and magnitude of the simulated

mitral valve orifice varied proportionally to the synthesized flow trace with a

maximum phase of ±0.9 𝜋 rad (Fig. 6-6 d). Cardiac motion was simulated by

sinusoidal translation of the internal ellipse along a diagonal trajectory. The

simulated heart rate was matched with the extracted curve period (~1 Hz) and

the amplitude of translation was of ~30 % of the internal ellipse size.

This high resolution model (matrix: 256x256, sampling resolution: 2 ms)

was used to simulate 𝑘-space data acquisitions. The model was down sampled

to match the MR acquisition resolution (14.8 ms) and spatial frequency data

were extracted on 10 spiral interleaves with a matrix of 128x128 points. The

extracted fully sampled data, reconstructed by gridding and inverse Fourier

transformation, were used as the reference standard. For the temporal filtering

tests, the simulated 𝑘-space data were two times under-sampled, rotating

between even and odd interleaves. I choose not to simulate the total under-

sampling in the sequence as the in-silico model was designed to select the

optimal UNFOLD filter. As mentioned, the subsequent SENSE reconstruction’s

performance may vary depending on the initial conditions. This might have led

to sub-optimal filter choice; for example due to imperfections of coil sensitivity

simulations.

The under-sampled 𝑘-space data underwent the UNFOLD

reconstruction with a wide range of temporal filters, along with the sliding

window reconstructions for comparison. The filters were defined using a

modified version of Tukey filter, which allowed control of the beginning of the

cosine lobe as well as its end point. Two filter characteristics were varied: the

passband (20-100 % of temporal frequency, in increments of 5 %) and the

position of the stopband corners (passband edge – Nyquist frequency, in

increments of 5 %). The resultant data were reconstructed by gridding and

Fourier transformed into image space. The average phase in the simulated

mitral valve orifice for each filter was compared to the equivalent phase data

extracted from the reference data. The optimal filter was the one with the lowest

normalised root-mean-square error (NRMSE). Also, to assess the level of

113

temporal blurring introduced by each technique, the up-slop starting points of

the two highest flow peaks were calculated and compared.

6.2.3 In-vitro validation study

The in-vitro phantom consisted of a PVC pipe (length: ~12.5 m, internal

diameter: 2 cm) surrounded by water and oil bottles (width 400 mm; height 200

mm; Fig. 6-10). Fifteen experiments were performed with different stroke

volumes (range: 25 to 45 ml) and heart rates (range: 60 to 130 beats-per-

minute) using a pulsatile flow pump (Harvard Apparatus, Holliston, USA). These

values were chosen to produce peak mean velocities and ejection times in the

normal range seen in humans. Ejection times were compared to simultaneously

acquired pressure curves (the reference standard) measured at the same

position as the imaging planes using MR compatible pressure transducers

(Datex-Ohmeda, GE healthcare, Helsinki, Finland) with 1 kHz sampling

frequency. Peak mean velocities measured using the three real-time

reconstructions were compared to a reference standard Cartesian PCMR

sequence (FOV: 400x300 mm, matrix: 192x144, voxel size: 2.1x2.1x5 mm,

TR/TE: 10.7/2.5 ms, temporal resolution: ~10.7 ms, flip angle: 20°). The peak

mean velocity and ejection time of the flow curve produced by the pump were

analysed in the same way as described below.

6.2.4 In-vivo validation study

Fifteen healthy volunteers (6 male and 9 female) were recruited for this

study. The median age was 43 (range 27–66 years). Exclusion criteria were: i)

Cardiovascular disease (assessed by clinical history), ii) Contraindications to

MR, iii) Cardiac rhythm abnormalities including heart block. The local research

ethics committee approved the study and written consent was obtained from all

volunteers.

An image plane at the base of the heart was selected so that both the

MVI and left ventricular outflow tract (LVOT) were imaged in the short axis. Flow

data in this plane were collected using the real-time UNFOLDed-SENSE PCMR

(which was also reconstructed using the sliding window reconstructions), and a

high-resolution Cartesian gated scan (same parameters as for the in-vitro

114

study). The optimal temporal filter found in the in-silico tests was used in the

UNFOLD step.

For comparison (the reference standard) transthoracic

echocardiography was performed immediately prior to or after MR examination

(same system as for the in-silico experiment). Pulsed-wave Doppler recordings

were acquired separately in the LVOT (apical 5-chamber view) and at the MVI

in the apical 4-chamber view.

6.2.5 Exercise study

The imaging protocol was altered to increase the data sampling rate for

the exercise study. The imaging parameters were; FOV: 500x500 mm, matrix:

128x128, voxel size: 3.9x3.9x7 mm, TR/TE: 6.58/1.97 ms, flip angle: 15°,

complete 𝑘-space sampling: 12 interleaves. Consequently, to keep the

acquisition rate high with a single interleave per frame, the total acceleration

factor was increased to 12x resulting in the sampling rate of ~13 ms. The

acquisition block size was kept at 20 frames with six blocks constituting the full

𝑘-space coverage needed for the self-referencing SENSE reconstruction. In this

case the total number of frames needed to be a multiple of 120 and hence, 480

frames were acquired in ~6.32 s. The same type of temporal filter was used as

in the in-vivo validation study.

Ten healthy volunteers (all male) were recruited for this study. The

median age was 31.5 (range 21–44 years). Exclusion criteria were: i)

Cardiovascular disease (assessed by clinical history); ii) Illness that prevented

exercise; iii) Contraindications to MR. The local research ethics committee

approved the study and written consent was obtained from all volunteers.

Subjects were scanned prone to facilitate the alternating weighted knee

flexion exercise (bilateral 500 g ankle weights) used in this study. Real-time flow

data were acquired using the UNFOLDed-SENSE spiral PCMR sequence at

rest and during active exercise as soon as the heart rate increased by more

than 20 % (as measured using plethysmography). The imaging plane was

placed at the base of the heart such that both the MVI and LVOT were imaged

in the short axis.

115

6.2.6 Image analysis

All PCMR data (in-vitro and in-vivo) were segmented using a

registration-based algorithm (68) with manual user correction. Mean velocity

curves were extracted using in-house plug-ins that I developed, for the OsiriX

software (the OsiriX Foundation, Geneva, Switzerland (67)). The velocity curves

were sinc interpolated to ~1 ms temporal resolution. MVI mean velocity curves

contained early (E wave) and late diastolic waves (A wave), while LVOT velocity

curves contained systolic ejection wave (S wave). To calculate the timing

intervals the start and end of each wave had to be found. For this task I

designed and implemented an automated peak-detection algorithm as a part of

the image processing plug-ins (Fig. 6-7). An example of the velocity curves

processing is shown on Fig. 6-11. The start and end of each wave were defined

by tangent lines calculated at the inflection points of ascending and descending

slopes of the wave. The S wave peak was used to divide the trace into separate

R-R intervals, which were processed independently. The following cardiac time

intervals were measured; ejection time (ET) was the length of the S wave,

isovolumic contraction time (ICT) was the time between the end of the A wave

and the start of the S wave, isovolumic relaxation time (IRT) was the time

between the end of the S wave and the start of the E wave. E and A wave peak

Fig. 6-7 Data processing plug-in for calculation of cardiac time intervals.

The two upper plots allow visualisation of LVOT and MVI extracted from images and used in
processing. The bottom plot presents the results; the velocity curves with markers placed at the
start, end and peaks of each wave form used in calculations. Numerical values are gathered in
the table on the right hand side.

116

mean-velocities were measured using the automated peak detection and E/A

ratio was calculated from these data. Additionally, Tei index (index of

myocardial performance; (IRT + ICT)/ET) was calculated.

Doppler echocardiographic data were manually processed and the time

intervals were calculated as previously described (75) using both the LVOT and

MVI Doppler traces and the concurrently acquired ECG (76).

Estimation of SNR and velocity-to-noise ratio (VNR) in the in-vivo

validation data was performed as previously described (56, 77). A region-of-

interest (ROI) was drawn in stationary tissue, and estimated noise was

calculated as the average standard-deviation of the pixel intensity or velocity

through all time frames. Final estimates of SNR were made from the mean

signal intensity, and VNR from the mean velocity, within a ROI drawn in the

vessel during peak systole, divided by their noise estimates.

6.2.7 Statistical analysis

Results of in-silico tests were compared using the normalised root

mean square error (NRMSE – Equation 6-2) metric normalised with respect to

the reference data. This allowed a direct comparison and selection of the

optimal filter.

𝑅𝑀𝑆𝐸 = √
∑ (𝑎𝑖 − 𝑏𝑖)2
𝑁
𝑖=1

𝑁
: 𝑎𝑖 ∈ 𝐴, 𝑏𝑖 ∈ 𝐵

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛
∗ 100[%]

6-2

Equation 6-2 Definition of normalised root mean square error used in the in-silico test.

For real-time data, each cardiac cycle was analysed separately and

then averaged to produce the final result that was compared to the Cartesian

gated PCMR, both in-vivo and in-vitro. Time intervals, peak mean velocities,

SNR and VNR were expressed as mean ± standard deviation. Measurements

of agreement were performed using Bland–Altman and correlation analysis and

differences between means was tested using ANOVA with post-hoc Bonferroni

testing. The significance of changes in time intervals and peak mean velocities

in response to exercise were tested using paired Student’s t-test.

117

6.3 Results

6.3.1 In-silico tests

The filter comparison results varied from 3.1 maximum to 0.33 %

minimum NRMSE. The optimal temporal filter had a passband of 48 % and

stopband corners at the Nyquist frequency ~33.7 Hz (–3 dB cut-off frequency at

~25 Hz resulting in ~20 ms temporal resolution) (Fig. 6-8). The NRMSE of this

optimal filter was 0.33 %, compared to the SW-HTR NRMSE of 0.66 % and

SW-LFR NRMSE of 1.22 %. Fig. 6-9 shows the velocity curves generated by

the three reconstructions with the SW-HTR and SW-LTR curves exhibiting

temporal blurring that affected their ability to accurately reproduce the starting

point of the simulated E waves.

Fig. 6-8 Example of k-space temporal filtering for accelerated spiral read-out

A) plot of the magnitude of a k-space sample through time (note the two-fold under-sampling);
B) temporal frequency of the sample before and after filtering; C) plot of the magnitude of the k-
space sample through time after the UNFOLD filtering (note that the data is now fully sampled
through time). Grey area indicates extrapolated data, which were discarded after UNFOLD to
suppress possible ringing artefact.

118

6.3.2 In-vitro validation

The results for in-vitro experiments are shown in Tab. 6-1 and Fig. 6-10.

The ejection times calculated using the UNFOLDed-SENSE and SW-HTR data

were similar to the reference standard pressure measurement, with negligible

biases, narrow limits of agreement and excellent correlations. Both the SW-LTR

and the gated Cartesian data overestimated the ejection time (positive bias)

with wider limits of agreement and poorer correlation. Peak mean velocities

from three real-time reconstructions agreed well with the reference standard

gated Cartesian PCMR sequence. Nevertheless, UNFOLDed-SENSE

performed marginally better. A residual spiral artefact can be seen on the

phantom image (Fig. 6-10 a) possibly due to sub-optimal distribution of receiver

coils. These spatial artefacts seemed to have no or very little effect on

quantitative assessment of flow or time intervals.

6.3.3 In-vivo study

The imaging results are presented in Fig. 6-11, whilst the numerical

results are collected in Tab. 6-1 and summarised in Fig. 6-12. There was good

agreement for all time intervals (including Tei index) between the UNFOLDed-

SENSE results and Doppler echocardiography with negligible biases,

Fig. 6-9 In-silico results.

The average phase curves extracted from simulated mitral valve orifice for all real-time
reconstructions. On the right the close-up of the ascending slope of the simulated E wave
showing displacement of its starting point at 0.188 s (calculated as the x-intercept of a tangent
line through the inflection point) in the SW-HTR (0.186 s) and SW-LTR reconstructions
(0.185 s) due to temporal blurring.

Fully sampled

UNFOLD

SW-HTR

SW-LTR

119

reasonable limits of agreement and good correlations. The SW-LTR and SW-

HTR reconstructions performed less well, with increasing biases, and generally

wider limits of agreement. Cartesian PCMR performed worst of all with clinically

significant biases, wide limits of agreement and poor correlation compared to

echocardiography. For assessment of E/A ratio, all the real-time reconstruction

performed reasonably well with similar biases, limits of agreement and

correlations. However, Cartesian PCMR performed better with negligible bias

and narrower limits of agreement and better correlation.

There was no statistically significant (P > 0.6) difference between the

UNFOLDed-SENSE, SW-HTR or SW-LTR reconstructions in terms of SNR

(27.4 ± 7.3, 26.8 ± 8.4 and 28.5 ± 7.6 respectively) or VNR (21.7 ± 5.7, 23.9 ±

6.5 and 23.2 ± 6.0 respectively). SNR and VNR were highest for the Cartesian

gated sequence (40.4 ± 8.5 and 32.0 ± 11.8 respectively) and were significantly

different from the real-time reconstructions (P < 0.05).

Fig. 6-10 In-vitro validation results.

a) In vitro phantom reconstructed with the UNFOLDed-SENSE reconstruction. The phantom
consisted of three doped water bottles, a bottle of oil, and a nondistensible polyvinyl chloride
(PVC) pipe placed in middle. b) Bland–Altman and c) scatter plots of UNFOLDed-SENSE mean
velocity measurements against the reference standard Cartesian gated results. d) Bland–
Altman and e) scatter plots of UNFOLDed-SENSE measured time intervals against the
reference standard pressure measurements.

120

Fig. 6-11 In-vivo imaging results.

a) Examples from two volunteers of magnitude and phase images reconstructed with the
UNFOLDed-SENSE reconstruction, at systole, diastole and represented as a cross section (as
shown by red line) against time image. The red dotted lines represent transitions between
blocks that underwent UNFOLD and the green dotted lines represent the transition between
100 frame sets that underwent SENSE. b) Plot of left ventricular outflow tract (LVOT - blue line)
and mitral valve inflow (MVI - pink line) velocity curves. The start and end of the S, E and A
waves are delineated by the horizontal axis intercepts of tangent lines drawn on the ascending
and descending slopes of the respective waves. These are then used to calculate: isovolumic
relaxation time (IRT), isovolumic contraction time (ICT) and ejection time (ET) as shown.

a)

b)

121

Mean velocity Mean [cm/s] Bias[cm/s] Limits [cm/s] Correlation

Cartesian Gated 40.86±9.07 --------- --------- ---------
UNFOLDed-SENSE 40.73±8.96 -0.13±0.84 -1.79 : 1.52 r=0.996
SW-HTR 40.44±8.78 -0.42±0.89 -2.16 : 1.32 r=0.996
SW-LTR 40.37±8.51 -0.49±1.46 -3.34 : 2.36 r=0.988

Time intervals Mean [ms] Bias [ms] Limits [ms] Correlation

Pressure curves 412.59±73.55 --------- --------- ---------
Cartesian Gated† 404.94±68.22 7.65±11.15* -14.22 : 29.51 r=0.990
UNFOLDed-SENSE 411.83±72.98 0.76±3.51 -6.12 : 7.64 r=0.999
SW-HTR 411.90±74.39 0.69±6.83 -12.69 : 14.08 r=0.996
SW-LTR 410.24±69.07 2.35±10.58 -18.38 : 23.09 r=0.991

ICT Mean [ms] Bias [ms] Limits [ms] Correlation

Echo 46.42±12.64 --------- --------- ---------
Cartesian Gated† 39.58±12.28 -6.84±8.96* -24.39 : 10.71 r=0.759
UNFOLDed-SENSE 45.02±11.57 -1.40±5.55 -12.67 : 9.87 r=0.898
SW-HTR 42.45±11.63 -3.97±6.94* -17.58 : 9.63 r=0.850
SW-LTR 41.82±13.24 -4.60±8.62 -21.49 : 12.29 r=0.794

IRT Mean [ms] Bias [ms] Limits [ms] Correlation

Echo 73.80±14.71 --------- --------- ---------
Cartesian Gated† 56.73±12.54 -17.06±13.76* -44.03 : 9.09 r=0.534
UNFOLDed-SENSE 74.13±9.26 0.33±9.61 -18.51 : 19.17 r=0.793
SW-HTR 71.53±9.33 -2.26±10.58 -23.00 : 18.47 r=0.724
SW-LTR 70.48±9.20 -3.32±11.44 -25.74 : 19.11 r=0.661

Ejection Time Mean [ms] Bias [ms] Limits [ms] Correlation

Echo 301.09±21.43 --------- --------- ---------
Cartesian Gated† 310.33±20.89 9.24±17.81 -25.67 : 44.16 r=0.669
UNFOLDed-SENSE 305.99±19.02 4.90±11.73 -18.10 : 27.90 r=0.849
SW-HTR 308.07±19.13 6.98±10.77* -14.12 : 28.08 r=0.875
SW-LTR† 309.49±19.24 8.40±11.35* -13.86 : 30.65 r=0.860

Tei Mean Bias Limits Correlation

Echo 0.40±0.06 --------- --------- ---------
Cartesian Gated† 0.31±0.05 -0.088±0.069* -0.226 : 0.047 r=0.378*
UNFOLDed-SENSE 0.39±0.04 -0.010±0.046 -0.099 : 0.080 r=0.721
SW-HTR 0.37±0.05 -0.029±0.053 -0.133 : 0.075 r=0.610
SW-LTR† 0.36±0.05 -0.036±0.058* -0.150 : 0.077 r=0.523

E/A Mean Bias Limits Correlation

Echo 1.42±0.29 --------- --------- ---------
Cartesian Gated 1.47±0.35 0.047±0.245 -0.433 : 0.528 r=0.745
UNFOLDed-SENSE 1.55±0.39 0.128±0.288 -0.435 : 0.692 r=0.698
SW-HTR† 1.57±0.38 0.145±0.283 -0.410 : 0.699 r=0.697
SW-LTR 1.55±0.39 0.127±0.299 -0.459 : 0.713 r=0.681

Tab. 6-1 Combined in-vitro and in-vivo results of Bland–Altman and correlation analyses.

* –fixed bias or insignificant correlation (95 % confidence).
† - significant difference in Bonferroni's Multiple Comparison Test (95 % confidence) against the
reference standard measurement.

122

Fig. 6-12 In-vivo validation results.

Bland-Altman and scatter plots of UNFOLDed-SENSE against Doppler echocardiography. All of
the measured ventricular function parameters had a good agreement with all negligible biases
and acceptable limits of agreement, as well as strong correlations.

123

6.3.4 Exercise study

All of the volunteers successfully finished the exercise protocol with a

mean increase in heart rate of approximately 30 %. MVI and LVOT mean

velocity curves allowed calculation of cardiac time intervals in all subjects. All

time intervals were significantly lower (P < 0.05) during the exercise (Tab. 6-2).

However, Tei index was also lower during exercise, demonstrating that cardiac

time intervals do not fall proportionally with exercise. Both E and A wave

velocities significantly increased (P < 0.05) during exercise, although E/A ratio

fell (P < 0.05) demonstrating an increased reliance on A wave filling.

6.4 Discussion

Currently cardiac time intervals are not routinely assessed using MRI.

This is because of the lack of robust and reliable measurement technique. For

instance, commonly used cardiac gated PCMR sequences with sufficient

temporal resolution would be too time consuming. This study showed that a

more suitable approach is to measure the cardiac time intervals using real-time

PCMR, and that this approach is superior to gated PCMR. Namely, gated

PCMR data is produced by averaging over multiple heartbeats, consequently

inter-beat variability results in temporal blurring of flow data and errors during

processing. Using real-time PCMR, each heartbeat is processed separately and

therefore the raw measurements are unaffected by inter-beat variability. In

contrast to processing of the gated PCMR data the averaging of resulting timing

intervals from individual R-R waves is advantageous as it strengthens

confidence in the result. Also, by using real-time imaging it was possible to

acquire data within a few seconds. This strongly limits variation in the results

due to the beat-to-beat variability. This was confirmed with the strong

HR [bpm] IRT [ms] ICT [ms] ET [ms] E/A Tei Index

Rest 66.9±11.3 66.8±8.1 55.9±21.3 276.8±20.1 2.61±0.87 0.45±0.08
Stress 87.6±11.3 57.9±9.5 42.6±19.5 264.8±21.4 1.95±0.58 0.38±0.09

P 2.8E-05 0.0213 0.0307 0.0067 0.0017 0.0339

Tab. 6-2 In-vivo exercise results.

Results (mean ± standard deviation and P values of paired two-tailed t-test) of the cardiac time
intervals assessment measured before and during the exercise in population of 10 male
volunteers: HR – heart rate, IRT – isovolumic relaxation time, ICT – isovolumic contraction time,
ET – ejection time, E/A – ratio of E- to A-wave maximum mean-velocity and Tei index.

124

agreement between the UNFOLDed-SENSE and Doppler echocardiography

results.

Further benefits of the real-time approach are the ability to use it during

physiological interventions such as exercise or forced respiratory manoeuvres,

and possibility of extending the assessment time to analyse the beat-to-beat

variability due to different physiological processes.

Accurate measurement of cardiac time intervals requires high temporal

resolution data. Real-time PCMR imaging with sufficient resolution requires

significant acceleration, beyond the level at which SENSE can produce artefact

free images. This was the rationale behind expanding the acceleration to the

temporal domain. Specifically, the temporal encoding doubles the achievable

acceleration, which increased the sampling rate to 13-15 ms (67-77

frames/sec). This is a significantly higher resolution than previously described

for real-time PCMR (47, 78, 79) and is a prerequisite for assessment of cardiac

time intervals during rest and exercise. Of course this required additional

reconstruction steps to combat the temporal under-sampling.

In this study, I designed the comparative experiment to demonstrate the

necessity for the high temporal resolution data and increased accuracy with the

optimised temporal filtering technique (UNFOLD) in the measurement of cardiac

timing intervals. The importance of high temporal resolution can be appreciated

by evaluating the results of SW-LTR reconstruction, which was the equivalent of

acquiring data with no temporal acceleration (2x lower sampling resolution). The

velocity curve from the in-silico test reconstructed with SW-LTR exhibited

notable blurring and had the worst NRMSE score from all the tested

reconstructions. This translated into blurring of velocity curves and lengthening

of ejection times in the in-vitro experiment. Correspondingly, velocity curves

extracted in the in-vivo validation using this reconstruction demonstrated

significant temporal blurring of the E, A and S waves; resulting in shorter ICT’s

and IRT’s and longer ET’s. These results suggested that a higher temporal

resolution is required, which could be achieved with the sliding window

reconstruction (SW-HTR), which doubled the sampling rate (number of frames)

through convolution with the predefined narrow kernel. The simplicity of the

operation was its biggest advantage; however its temporal frequency

125

characteristic of the equivalent filter was inadequate to the frequency spectrum

of the imaged object. Consequently, it resulted in temporal blurring visible in the

in-silico experiment. Nevertheless, SW-HTR did perform better than the SW-

LTR reconstruction. However the best results and closest match with the

reference curve were achieved with the optimised temporal filter characteristic

enabled with the UNFOLD technique.

The next steps were to robustly combine the optimised UNFOLD

technique with the SENSE reconstruction and validate its performance.

Although UNFOLD had previously been combined with both SENSE and spiral

imaging, I developed a novel implementation that was optimized for the specific

needs of real-time acquisitions. Namely, the batched acquisition/reconstruction

scheme was applied to enable the coil sensitivity maps to be created from the

data itself, while still allowing the temporal encoding. A simpler acquisition plan

could be used if the coil sensitivity maps were acquired separately. However,

due to possible patient movement and respiratory motion, separate acquisitions

are not optimal. Specifically this feature of the acquisition pattern meant

UNFOLD was performed independently on consecutive blocks of data. This had

two important benefits. Firstly, data undergoing UNFOLD were acquired over a

short period of time (263-296 ms) compared to the respiratory period (4–6 s).

This limited potential impact of the respiratory motion (39). Secondly, it allowed

different interleaves to be acquired in each block and enabled the coil sensitivity

maps to be created by combining frames from adjacent blocks. Consequently,

the coil sensitivity maps were updated every ~1.5 s (every five blocks) resulting

in adaptation and some resistance to patient motion.

It should be noted that the abrupt transitions between the blocks

undergoing UNFOLD or the adjacent blocks undergoing SENSE could lead to

temporal discontinuities. Although neither was seen in the study, methods could

be employed to reduce the impact of these transitions. For instance, the coil

sensitivity maps could be continuously updated using a sliding window

approach (this would have an impact on reconstruction time).

A less conventional aspect of the reconstruction was performing

temporal filtering on the raw 𝑘-space data, prior to the SENSE reconstruction.

The main reason for this was to better condition the iterative SENSE

126

reconstruction by removing high frequency noise and improving SNR (33).

However, it should be noted that this does require formal testing. The main

drawback is that it is not possible to use the support region technique to further

improve image quality in static areas of an image (32). Nevertheless, aliasing

introduced with 10x under-sampling would cover the whole image space,

invalidating the support region technique.

The final reconstruction (UNFOLDed-SENSE) had the highest

resolution (sampling resolution: ~14.8 ms, effective resolution due to filtering:

~20 ms) of all the tested reconstructions, which translated into accurate

assessment of in-vivo and in-vitro timing intervals with negligible temporal

blurring. One of the main limitations of this technique was the lack of fat

suppression or water selective excitations, which can lead to image blurring at

the tissue interfaces. This was not obvious in the acquired data. A further

limitation was the significant reduction in SNR due to high levels of under-

sampling, although this did not affect the accuracy of time interval assessment.

Potentially, the technique could be improved by using an algebraic

reconstruction (80) rather than temporal filtering. This could further improve

artefact suppression, particularly potential ghosting due to respiratory motion.

Importantly, I showed that this sequence can accurately quantify

cardiac time intervals and peak velocity in phantom models and in-vivo. The in-

vivo validation results were in keeping with previously published literature (81,

82). Furthermore, the experimental study showed that it is possible to measure

the change in these parameters in response to exercise. However, more work is

needed to design a better exercise protocol for the evaluation of changes in

timing intervals. Nevertheless, the developed imaging technique was a valuable

precedence and future protocols can be built on its example.

In conclusion, the modular approach (to the development of

reconstructions) allowed reuse of the optimised GPU SENSE implementation in

all three tested reconstructions. The incremental development concentrated

solely on the pre-processing of 𝑘-space data in different forms of temporal

filtering. The subsequent handling of data stayed the same. The project

demonstrated the scalability of the system with the pioneering example of

calculating cardiac time intervals with PCMR, for the first time using MRI.

127

Moreover, the technique allowed performing the comparative exercise study,

which laid out the basis for more complex assessment studies. Also, it could

provide a valuable tool of assessment of ventricular walls stiffness in elderly

patients.

128

129

7. GPU reconstruction generalisation

In the chapter, I describe the further development of the GPU

implementation of SENSE algorithm. The work resulted in the new version

capable to support a wider variety of MR sequences. The work was

published in the article:

Implementation of a generalized heterogeneous image

reconstruction system for clinical magnetic resonance,

GT Kowalik, JA Steeden and V Muthurangu; Concurrency and

Computation: Practice and Experience (Special Issue) Volume 27,

Issue 6, pages 1603–1611, 25 April 2015

(DOI: 10.1002/cpe.3349);

Appendix 11.6

and the proceeding of 10th International Conference, PPAM 2013, Warsaw,

Poland, September 8-11, 2013;

Implementation of a Heterogeneous Image Reconstruction System

for Clinical Magnetic Resonance, GT Kowalik, JA Steeden,

D Atkinson, A Taylor, V Muthurangu; Parallel Processing and

Applied Mathematics, Lecture Notes in Computer Science Volume

8384, 2014, pp 469-479.

Appendix 11.7

130

7.1 Introduction

My previous developments, projects and tests (Chapters 3-5) aimed to

remove limitations connected with the fast real-time data acquisition for cardiac

MR, for which the long reconstruction times were the most severe. In Chapter 4

the fast GPU based reconstruction of MR data was introduced. Next, its positive

impact on the type of protocols available in the clinical and research settings

was presented, and evaluated (Chapter 5 and 6).

The developed distributed image reconstruction system proved to

enable continuous real-time data reconstructions for data acquired with

repeating trajectories. The significant reduction in reconstruction time was

achieved by executing the computationally intensive parts of the reconstruction

on a GPU. As it was shown, the repetitive nature of the used k-space

acquisition strategy enabled processing of multiple frames in a single run. This

feature of the used sequences was greatly beneficial for the adoption to GPU

architecture. However, some applications may require non-repeating sampling

strategies. A good example is multi-frame golden angle (137.5°) spiral imaging

(56). This acquisition pattern is attractive as it allows reconstruction from the

same data with different temporal resolutions. Unfortunately, as no two

trajectories are the same, the data structures necessary for reconstruction

cannot be reused. This complicates a GPU implementation of these

reconstructions. Specifically, the optimisation steps that were used in the initial

implementation are rendered inadequate if applied to this more general case of

acquisitions with non-repeating trajectories.

It was clear that the developed GPU reconstruction cannot be efficiently

applied to all data acquisition patterns without some degree of alterations. An

important question was to determine if the benefits of the implementation (most

importantly the batched processing and the use of optimised libraries) can be

preserved.

In this chapter, I answer this question by evaluating different

implementation approaches to solve the problem. In consequence, it led to

development of a generalized GPU reconstruction suitable for repetitive and

non-repetitive trajectories. I present; i) the further evaluation of the

131

implementation of SENSE algorithm on a GPU, ii) the necessary modifications

to the GPU reconstruction required to support repetitive and non-repetitive

trajectories, and iii) the profiling of the final optimized GPU reconstruction, which

was implemented within the previously described distributed reconstruction

system. The original implementation (Chapter 4) for the repetitive real-time data

acquisition was used as the starting point in the optimisation process. Also, the

golden angle spiral SENSE reconstruction was selected as a test case, as it

represents one of the most challenging examples.

The tests were run on the previously described system (Section 3.4 and

4.6). The same spiral PCMR sequence, as in the transmission tests (Section

3.5), was used to acquire multiple data sets (28, 44, 60, 76 and 92 frame sets).

These were used in the tests to assess scalability of different approaches.

The final optimised version of the GPU based SENSE reconstruction

was re-evaluated to assess its usability. For this purpose the continuous online

reconstruction of accelerated golden angle spiral PCMR sequence was

implemented and assessed.

Experimentally, the tests were repeated on different GPU enabled

machines to assess performance across different hardware. The computers

specifications are presented in Tab. 7-1. The Laptop was used as the

development machine, while the Desktop and Work-station machines were also

used as production machines in different projects.

132

7.2 Gridding optimisation steps

The major implementation difference, entailed with the transition from

repeating to non-repeating trajectories, is in the organisation and preparation of

gridding operations. Specifically, the batched optimization (Section 4.5) of

gridding is not applicable in situations where the trajectories are non-repeating.

Thus, to create a generalised GPU implementation of the iterative SENSE

reconstruction, it was foremost necessary to optimize gridding for non-repeating

trajectories. In order to do this, a series of tests was run on data acquired with

the golden angle acquisition pattern. This acquisition strategy prevented

gridding operations from being scheduled as a single batched call across

multiple frames. Additionally, the gridding tests were done with the equivalent

repeating trajectories for comparison.

This section concentrates on the description of the optimisation steps

that led to the final gridding implementation, and were based on results from the

production computer (Tab. 7-1 Work-station). The results from all tested

machines and comparisons are presented in the Appendix 11.5.

7.2.1 Initial assessment

An important step of the process was to define the acceptable

execution time boundaries and resulting from them, the maximum achievable

 Laptop Desktop Work-station Native

Name
Apple

MacBookPro10,1
DELL Alienware

Aurora
Workstation
Specialists

1.5 T Siemens
Avanto

CPU Intel i7-3820QM Intel i7-920
Two Intel Xeon

E5645
2x Intel Xeon E5440

 ---- Clock 3.7 GHz 2.7 GHz 2.4 GHz 2.8 GHz
 ---- Cores 4 4 2 x 6 2 x 4
 ---- Threads 8 8 2 x 12 2 x 4
 ---- Cache 8 MB 8 MB 2 x 12 MB 2 x 12 MB
Memory 16 GB DDR3 9 GB DDR3 24 GB DDR3 16 GB DDR3

GPU (NVIDIA)
GeForce
GT 650M

GeForce
GTX 480

Tesla C2075 –

 ---- Processor Clock 0.9 GHz 1.4 GHz 1.2 GHz –
 ---- Memory 1 GB DDR5 1.5 GB DDR5 6 GB DDR5 –
 ---- CUDA cores 384 480 448 –

Tab. 7-1 Tested hardware specification.

Specifications of computers used during different stages of development and tests of the
system, and ones used as image reconstructors during data acquisition.

133

speed-up with the GPU gridding. This laid out a context within which the new

implementations were assessed. The maximum time (Upper-limit) was defined

as the time it took for the native scanner multi-core CPU to grid frames acquired

using the non-repeating trajectory. The minimum time (the Lower-limit) was

defined as the time needed for the GPU to grid the same amount of data, but

acquired on a repetitive trajectory (the initial batched implementation of

gridding). I considered these were valid assumptions, as it was unlikely that the

implementation for non-repetitive trajectories would be quicker than the

previously described GPU implementation. Also, execution times longer than

the existing on-scanner implementation would be unacceptable.

The measured boundaries were found to be linearly related to the

number of frames within the tested range. This allowed calculation of the

averaged time (boundaries) per data frame. On the scanner, a single gridding

operation for the non-repeating trajectories (the Upper-limit) took approximately

17.76±1.06 ms. The external GPU implementation needed 0.95±0.00 ms to grid

a single frame from the repeating set of trajectories (the Lower-limit).

Consequently, the maximum attainable speed-up for the gridding of the non-

repeating trajectories on the GPU was estimated as ~19x, as compared to the

Upper-limit. Alternatively, when compared to the Acquisition time (the time

needed to acquire the whole set of frames) the achievable speed-up was

estimated as ~43x.

The Acquisition time and the Upper-limit were the same in all tests, as

they are related to the sequence and scanner reconstructor performance.

The initial timing tests showed that the sequential scheduling of

individual gridding operations yields the same results (0.96±0.00 ms to grid a

frame) as the batched gridding (the Lower-limit), providing the whole data

structures were already available in the GPU memory.

Tab. 7-2 presents GPU memory requirements for the gridding

operation. ~11 MB was needed to accommodate a single gridding operation,

from which ~32 % was needed for a gridding matrix. However, in the worst case

of non-repeating trajectories the matrix cannot be re-used and the ~32 %

overhead quickly becomes problematic. This is especially important when

134

considering buffered real-time reconstruction, as a service for multiple incoming

requests.

This initial assessment confirmed the original GPU implementation as

applicable to the non-repeating trajectories, but impractical due to excessive

GPU memory use. Consequently, a better data structures management was

needed to reduce memory usage without performance loss.

7.2.2 Sequential approach

My first step was to evaluate a simple sequential strategy where a

single CPU control thread creates gridding matrices and then calls the multi-

threaded gridding in form of matrix-matrix multiplications on the GPU (Fig. 7-1).

In this naive implementation no parallelism on the CPU side is exposed and the

control thread waits for the gridding operation to finish. To reduce the memory

consumption, the sequential approaches allowed only a single gridding matrix to

be stored on the GPU. The algorithm sequentially created a matrix in CPU

memory related to each frame, which then was used to replace the one in GPU

memory.

A possible optimization of this naive approach is to allow the creation of

the next gridding matrix to occur while gridding of the current data is being

executed. Additionally, declaring more than one gridding matrix object and

rotating between them allows an overlap between creation and execution. Of

course, execution on the GPU is always asynchronous and the CPU needs only

Receiver Coils 12
 Acceleration 4
 Matrix

128x128

 Read-out samples 2300
 PCMR encodings 2
 Frames

1 28 44 60 76 92

Spiral Trajectory [MB] 1.33 37.16 58.39 79.63 100.86 122.09
Cartesian Grid [MB] 5.90 165.15 259.52 353.89 448.27 542.64
Gridding Matrix [MB] 3.40 95.24 149.66 204.08 258.51 312.93
Total [MB] 10.63 297.55 467.58 637.61 807.63 977.66

Tab. 7-2 GPU memory requirement of the gridding operation.

The table presents how much GPU memory is needed to enable the gridding operation. The
results were calculated for spiral PCMR data acquired with the presented parameters. The total
value is a sum of space needed to store the data on the spiral trajectory, the result in form of
Cartesian grid and the gridding matrix stored in the sparse format.

135

to wait until the gridding matrix is transferred before starting calculation of the

next one. In this case, the overlap can be used to hide the transmission time.

These simplistic implementations did not perform well; however, it

allowed assessment of the average times of the basic operations constituting

the GPU gridding. These times were fixed across the test sets (linear relation to

a number of frames), as only the number of frames varied rather than the type

of a trajectory. These operations are; Creation of a matrix (32.05±0.81 ms),

single frame Gridding operation as a matrix multiplication on GPU (1.03±0.00

ms) and Copy – transfer of data structures on a GPU (0.71±0.05 ms). The

average times were calculated from all the sequential gridding tests results.

The tests revealed a noticeable difference between these estimated

gridding times of a single frame (~1.03 ms) and those from the initial

assessment (~0.96 ms). It suggests that the adjacent gridding operations (as in

contrast to ones interleaved with data transmissions – the sequential gridding

tests) were able to achieve some degree of overlap, which levelled the

cumulative time with the Lower-limit. After correction for these gridding times

the maximum achievable speed-up changed to ~17x.

Fig. 7-1 Sequential approach to gridding of data from non-repeating trajectories.

The single CPU control thread in sequential fashion goes through all of the data frames (𝑆𝑗)

repeating the creation of a gridding matrix for that data set (𝐺𝑖) and scheduling of multiplication.
The algorithm rotates between available gridding objects to allow the overlap between the
creation of a matrix for the presently processed data and the multiplication with the previous
data.

136

The overlapping approach is most efficient if both stages take the same

amount of time. Specifically, unless creation of the gridding matrix is faster or

equal to data transmission onto the GPU, there will be a delay between

consecutive matrix multiplications. For the overlapping version to make a

difference the ratio between the creation and transmission times would need to

be very close to one. Unfortunately, the creation was up to ~45x slower in the

tests.

The naive strategy showed very poor results which were ~33x slower

than expected (as compared with the Lower-limit). The overlapping version was

only marginally better. The improvement was connected to a slight shift in the

creation of matrix times with which the final timing results were driven. In all

cases the serial matrix creation took >98 % of the total time.

Consequently, the total processing time was reduced to the time

needed to create all of the matrices in serial fashion. In fact, my tests showed

that optimization by overlapping had no or negligible impact on the sequential

version of the GPU gridding. This was because the data transmission time was

short enough to be hidden with an overhead introduced with scheduling of the

consecutive GPU matrix multiplication calls.

In order to gain more insight into the performance of the sequential

scheduling of operations onto a GPU the tests were repeated using pre-

calculated matrices stored in the CPU memory. The goal was to find out if the

data transfer could be overlapped with the longer matrix multiplications on GPU.

To facilitate the overlapping execution I made use of CUDA streams. These can

be seen as processing pipelines within which tasks are run sequentially.

However, tasks across different streams can overlap providing a GPU has

enough hardware resources. The process involved four tasks; three data

transmissions and one matrix multiplication for each gridding. This was because

in this version the non-zero values and their row, column indices for sparse

matrices were stored separately.

The timing results were ~0.4 ms/frame longer than the batched gridding

(the Lower-limit) resulting in ~1.4x slow-down. Comparison of the results with

the transmission times (~0.7 ms) revealed that only a portion of the

transmission time was overlapped with the matrix multiplication operation. This

137

could be caused by an overhead time due to the GPU kernel launch scheduling

or the partitioned transmission of each gridding matrix. The former cause would

be connected with the CPU time needed to arrange consecutive operations.

This can be an issue if a GPU kernel call takes longer than its execution on a

GPU. The latter would suggest only the adjacent operations could be

overlapped, as the total transmission time was shorter than the gridding

operation. Further addressing of this issue and a consequent removal of the

time difference would level the total time with the Lower-limit. However, the time

necessary for the pre-calculation of matrices would need to be added to the

final result, which would make it longer than the previously discussed

overlapping version.

These tests revealed that creation of matrices is the major limitation of

the new gridding approach for data on non-repeating trajectories. The execution

times were dictated by the speed of CPU, as the GPU execution was short

enough to be hidden by it. In fact, the sequential gridding was only marginally

(~1.3x) quicker than the acquisition of data and significantly (~1.8x) slower than

the Upper-limit.

7.2.3 Threaded approach

Creation of a gridding matrix requires preparation of weights assigned

to each 𝑘-space sample and connected with them indices describing the matrix

in sparse format. Preparation of the indices is done in a serial fashion, as they

depend on the number of points included in each convolution, which vary

depending on the position of the sample. However, creations of individual

matrices are independent of each other and can be run in parallel.

Consequently, a straightforward optimization is to spread gridding matrix

creations between 𝑁 threads, so that each thread performs the two stages

considered on a different frame, thus allowing the parallel processing of 𝑁

frames (Fig. 7-2). The speed-up would be equivalent to the number of

concurrently running calculations. This is strictly hardware dependent, as there

may be not enough resources for each thread to run without interruptions.

138

For this implementation, the optimal number of concurrent matrix

creations is equal to the ratio of the time needed to create a matrix to the time

needed to execute gridding on the GPU (~31x). Providing enough computing

resources were available the number of concurrently created matrices could be

brought to the level sufficing to fully occupy the GPU with work. This way a set

of matrices would be prepared while the previous one was used. Consequently,

both the CPU and GPU would be fully utilized and the final processing time

would equal the total GPU time plus initial creation of the first set of matrices.

However this condition was impossible to meet as the tested hardware (Tab.

7-1) was limited to 12 physical processors.

In the tests, apart from using different number of frames, the number of

CPU threads was varied as well. This was done to find the optimal partitioning

of the task for the tested hardware.

The tested CPU was capable of hyper-threading (mapping of two virtual

processors into one physical); however the tests showed the achieved speed up

(~9x) was significantly lower than expected and would not exceed the number

of physical processors. Also, this was reflected in an increase of the average

matrix creation time (~45.1 ms). Collected log files showed that some runs were

able to achieve the creation times similar to those found in the sequential

approach, but the rest required significantly longer time (about double the time).

This behaviour was observed regardless of the number of concurrently

scheduled threads and increased with total number of matrix creations.

Presumably, execution of some threads assigned to the same physical

processor caused an interrupted execution due to insufficient computing

Fig. 7-2 Threaded approach to gridding of data from non-repeating trajectories.

A single CPU control thread splits the work between 𝑁 sequential gridding tasks that are run in
parallel.

139

resources. Consequently, the total time needed to create all of the matrices was

greater than expected based on the total number of threads involved in the task.

Finally, I assessed if concurrent scheduling of gridding on the GPU with

pre-calculated matrices would perform better than the equivalent sequential

approach. As before, the tests were repeated using pre-calculated matrices and

the resultant times were in perfect agreement with the estimated total time of

gridding (difference: 0.00±0.03 ms, ratio: ~1.0x). The average gridding times

(found in the sequential gridding test) were used as a reference to estimate the

expected processing time (the single gridding operation time on GPU multiplied

by a number of repetitions) in this test.

The threaded results suggested that all the data transmission

operations were almost completely hidden with the longer matrix multiplication

operations, as in contrast to the sequential test. Presumably, the multithreaded

scheduling of GPU operations gave rise to more beneficial ordering, resulting in

better utilisation of the GPU.

However, comparing with the batched execution (the Lower-limit) the

difference in time was 0.09±0.02 ms resulting in ~1.1x slow down. This can be

related to the difference between the gridding times per frame found for the

batched gridding (~0.95 ms) and one acquired in the sequential gridding tests

(~1.03 ms).

For non-repeating trajectories the gridding operations on the GPU had

to be interleaved with the data transmissions, as in contrast to the batched

gridding or the initial assessment from the sequential tests – where the data

structures were pre-stored on the GPU. Consequently, even if fully overlapped

with the data transmission operations, the total gridding time could not achieve

its minimum. Assuming the data structures were available in the CPU memory

(neglecting the creation time), the threaded approach would achieve almost the

maximum desirable speed-up (~17x).

7.3 Hybrid CPU/GPU implementation

For the threaded optimization strategy the limiting factor was the

hardware on which the algorithm runs. Providing a sufficient number of CPU

140

cores capable of uninterrupted work (31 in the tests) were available, full overlap

between the creation of matrices and execution of gridding could be achieved.

In the tests this was not possible and resulted in suboptimal processing time. As

shown, providing the gridding matrices were readily available the processing

time would be the closest to the batched execution. Gridding matrices (gridding

kernel coefficients) can be hard coded into the application if the sampling

trajectory type and order of acquired lines were known; removing the need of

their calculation. However, to build a tool for generalized reconstruction, no prior

knowledge of the application can be assumed. Effectively, the necessity of re-

creating the gridding matrices must be assumed. Nevertheless, the image

reconstruction works in an iterative way in which the gridding operations are

repeated multiple times for a set of reconstructed images. Thus, matrices

created during the first iteration can be stored and reused in following iterations,

assuming there is sufficient space. Consequently, I decided to build both

versions of the threaded approach into the new iterative SENSE reconstruction.

The new version differed only in the way gridding operations were organised.

Depending on the iteration index the control thread launched a set of worker

threads that carried out the gridding operations in parallel by creating the

necessary gridding matrices or reusing the one stored in CPU’s memory. The

rest of the SENSE reconstruction stayed as previously described (Section 4.6).

The new algorithm forces partitioning of reconstructions for which data

structures cannot fit into memory. Separate reconstruction of sets of frames

could extend the reconstruction time even if the reconstruction time per frame

stayed unchanged. Consequently, the set size (number of reconstructed

frames) needed to be optimised to keep the reconstruction time below the

acquisition time. The new implementation was tested with different set sizes to

find out if the reconstruction times were faster than the frames acquisition and

to assess the relation of the reconstruction time to the set size.

Tab. 7-3 presents the comparison of the new GPU reconstruction with

the original CPU version run on the native scanner reconstructor. The table

comprises timing results of different steps of the iterative algorithm; Fast Fourier

Transformations (FFT), combination with coil sensitivity maps (CSM), gridding

and other (it refers to element-wise operations, preconditioning and

regularisation) were distinguished. Also, the averaged total reconstruction and

141

iteration times are presented. The results were divided into timings per set of

frames and the average per frame. The Ratio marks the achieved speed-up as

compared to the native image reconstructor. The Laptop machine was unable to

run tests with 76 and 92 frames due to an insufficient amount of memory.

All tests showed a linear relation with the size of the reconstructed data.

Proportions between the reconstruction steps were preserved across all of the

data sets. As presented, the combination with coil sensitivity maps and gridding

operations were the bottlenecks of the original CPU reconstruction. These

accounted to ~81 % of each iteration time.

Not surprisingly, of the external reconstructors, the Laptop performed

the worst achieving a total ~5x speed up. This was more than two times slower

than the Desktop (~12x speed up) and almost three times slower than the

Work-station machine (~15x speed up).

The reconstruction times, calculated per frame, were compared with the

acquisition rate. For the Work-station and Desktop machines, the very high

acceleration meant the reconstruction time constituted only ~55 % and ~68 % of

the acquisition time, respectively.

The time balance between the reconstruction stages was shifted with

the GPU reconstructions, as compared to the CPU reconstruction. All of them

were significantly sped up, with the most visible improvement in the CSM

operations (~52x, ~55x and ~8x for the Work-station, the Desktop and the

Laptop respectively) which clearly demonstrates GPU’s efficiency in running

multiple simple arithmetic operations. The gridding was also significantly sped

up ~15x, ~12x and ~5x for the Work-station, the Desktop and the Laptop

respectively. However this was not sufficient to reduce its impact on the total

time, which similarly to CPU’s was 36-42 %. Nevertheless, the aggregate ratio

of the CSM and gridding was reduced to ~50 %, ~53 % and ~67 % for the

Work-station, the Desktop and the Laptop respectively.

142

To
ta

l[m
s]/

Fra
m

e[m
s]/

[%
] R

a
tio

[%

]

To
ta

l[m
s]/

Fra
m

e[m
s]/

[%
] R

a
tio

[%

]

To
ta

l[m
s]/

Fra
m

e[m
s]/

[%
] R

a
tio

[%

]

To
ta

l[m
s]/

Fra
m

e[m
s]/

[%
] R

a
tio

[%

]

To
ta

l[m
s]/

Fra
m

e[m
s]/

[%
] R

a
tio

[%

] A
verage

N
u

m
b

e
r o

f fram
e

s
 2

8

4

4

6

0

7

6

9

2

Fra

m
e[m

s]/[%
] R

a
tio

 [%
]

C
SM

N

ative

6

4
7

.6
/2

3
.1

/4
4

 1

0
0

4
.8

/2
2

.8
/4

6

- 1
3

5
7

.6
/2

2
.6

/4
6

- 1

7
1

2
.2

/2
2

.5
/4

6

- 2
0

6
5

.1
/2

2
.4

/4
6

- 2

2
.7

±
0

.2
 / 4

5
.6

±0
.9

-

W

o
rk-statio

n

1
2

.3
/0

.4
/1

3

5
2

1

9
.3

/0
.4

/1
3

5

2

2
6

.3
/0

.4
/1

3

5
2

3

3
.3

/0
.4

/1
3

5

1

4
0

.3
/0

.4
/1

3

5
1

0

.4
±0

.0
 / 1

3
.3

±0
.1

 5
1

.8
±

0
.4

D

eskto
p

1
1

.6
/0

.4
/1

2

5
6

1

8
.1

/0
.4

/1
2

5

5

2
4

.7
/0

.4
/1

1

5
5

3

1
.2

/0
.4

/1
1

5

5

3
7

.7
/0

.4
/1

1

5
5

0

.4
±0

.0
 / 1

1
.1

±0
.4

 5
5

.2
±

0
.4

Lap
to

p

7

9
.6

/2
.8

/2
9

8

1

2
4

.0
/2

.8
/2

9

8

1
6

8
.5

/2
.8

/2
9

8

-/-/-

-
-/-/-

-
2

.8
±0

.0
 / 2

9
.5

±0
.1

8

.1
±0

.0

FFT

N
ative

2
0

0
.1

/7
.1

/1
4

2
9

5
.3

/6
.7

/1
4

-

4
1

0
.0

/6
.8

/1
4

-

4
9

6
.1

/6
.5

/1
3

-

5
9

7
.6

/6
.5

/1
3

6
.7

±0
.2

 / 1
3

.5
±0

.2

-

W

o
rk-statio

n

3
2

.7
/1

.2
/3

5

6

5
1

.5
/1

.2
/3

5

6

7
0

.5
/1

.2
/3

6

6

8
9

.7
/1

.2
/3

6

6

1
0

9
.1

/1
.2

/3
6

5

1

.2
±0

.0
 / 3

5
.6

±0
.5

5

.7
±0

.2

D

eskto
p

1
9

.3
/0

.7
/1

9

1
0

3

0
.4

/0
.7

/1
9

1

0

4
1

.4
/0

.7
/1

8

1
0

5

3
.1

/0
.7

/1
9

9

6

4
.6

/0
.7

/1
8

9

0

.7
±0

.0
 / 1

8
.7

±0
.6

9

.7
±0

.4

Lap

to
p

5
2

.2
/1

.9
/1

9

4

8
1

.6
/1

.9
/1

9

4

1
1

1
.3

/1
.9

/1
9

4

-/-/-

-
-/-/-

-
1

.9
±0

.0
 / 1

9
.4

±0
.1

3

.7
±0

.1

G
rid

d
in

g
N

ative

5

5
5

.1
/1

9
.8

/3
8

7
4

4
.4

/1
6

.9
/3

4

- 1
0

4
0

.9
/1

7
.3

/3
5

- 1

3
0

0
.9

/1
7

.1
/3

5

- 1
6

1
6

.4
/1

7
.6

/3
6

- 1

7
.8

±
1

.1
 / 3

5
.6

±1
.1

-

W

o
rk-statio

n

3
3

.5
/1

.2
/3

6

1
7

5

2
.9

/1
.2

/3
6

1

4

7
1

.4
/1

.2
/3

6

1
5

9

2
.8

/1
.2

/3
8

1

4

1
1

2
.7

/1
.2

/3
7

1

4

1
.2

±0
.0

 / 3
6

.6
±0

.6
 1

4
.7

±
1

.0

D

eskto
p

4
2

.2
/1

.5
/4

3

1
3

6

7
.0

/1
.5

/4
2

1

1

9
1

.3
/1

.5
/4

0

1
1

1

1
7

.2
/1

.5
/4

1

1
1

1

4
4

.3
/1

.6
/4

1

1
1

1

.5
±0

.0
 / 4

1
.4

±1
.1

 1
1

.6
±

0
.8

Lap
to

p

1

0
3

.0
/3

.7
/3

8

5

1
6

2
.0

/3
.7

/3
8

5

2

2
1

.0
/3

.7
/3

9

5

-/-/-
-

-/-/-
-

3
.7

±0
.0

 / 3
8

.4
±0

.2

4
.9

±0
.3

O
th

e
r

N
ative

4
8

.9
/1

.7
/3

7
7

.0
/1

.8
/4

-

1
0

4
.8

/1
.7

/4

-
1

3
3

.0
/1

.7
/4

-

1
6

0
.9

/1
.7

/4

-
1

.7
±0

.0
 / 3

.5
±

0
.1

-

W

o
rk-statio

n

2
.7

/0
.1

/3

1
8

4

.3
/0

.1
/3

1

8

5
.8

/0
.1

/3

1
8

7

.4
/0

.1
/3

1

8

8
.9

/0
.1

/3

1
8

0

.1
±0

.0
 / 2

.9
±

0
.0

 1
8

.0
±

0
.0

D

eskto
p

3
.9

/0
.1

/4

1
3

7

.0
/0

.2
/4

1

1

1
0

.6
/0

.2
/5

1

0

1
4

.5
/0

.2
/5

9

1

9
.7

/0
.2

/6

8

0
.2

±0
.0

 / 4
.7

±
0

.6
 1

0
.2

±
1

.5

Lap

to
p

7
.1

/0
.3

/3

7

1
1

.1
/0

.3
/3

7

1

5
.4

/0
.3

/3

7

-/-/-
-

-/-/-
-

0
.3

±0
.0

 / 2
.6

±
0

.0

6
.9

±0
.0

Ite
ratio

n

N
ative

1
4

7
5

.7
/5

2
.7

/-

2
1

6
2

.8
/4

9
.2

/-
-

2
9

6
7

.4
/4

9
.5

/-
-

3
7

0
9

.9
/4

8
.8

/-
-

4
5

2
0

.2
/4

9
.1

/-
-

4
9

.9
±

1
.4

 / -
-

W

o
rk-statio

n

9
3

.6
/3

.3
/-

1
6

1

4
5

.6
/3

.3
/-

1
5

1

9
7

.6
/3

.3
/-

1
5

2

4
7

.0
/3

.3
/-

1
5

3

0
4

.2
/3

.3
/-

1
5

3

.3
±0

.0
 / - 1

5
.1

±
0

.3

D

eskto
p

9
9

.1
/3

.5
/-

1
5

1

5
7

.6
/3

.6
/-

1
4

2

3
0

.4
/3

.8
/-

1
3

2

8
3

.3
/3

.7
/-

1
3

3

5
3

.6
/3

.8
/-

1
3

3

.7
±0

.1
 / - 1

3
.5

±
0

.8

Lap

to
p

2
7

0
.0

/9
.6

/-
5

4

2
2

.0
/9

.6
/-

5

5
7

1
.5

/9
.5

/-
5

-/-/-

-
-/-/-

-
9

.6
±0

.0
 / -

5
.3

±0
.1

To
tal tim

e
 N

ative

 1
0

3
3

5
.8

/3
6

9
.1

/-
 1

5
1

4
8

.9
/3

4
4

.3
/-

- 2
0

7
8

2
.9

/3
4

6
.4

/-
- 2

5
9

8
3

.3
/3

4
1

.9
/-

- 3
1

6
5

7
.7

/3
4

4
.1

/-
-

3
4

9
.2

±1
0

.1
 / -

-

W

o
rk-statio

n

6
3

9
.6

/2
2

.8
/-

1
6

1

0
2

9
.6

/2
3

.4
/-

1
5

1

3
7

2
.8

/2
2

.9
/-

1
5

1

7
1

6
.0

/2
2

.6
/-

1
5

2

0
9

0
.4

/2
2

.7
/-

1
5

2

2
.9

±
0

.3
 / - 1

5
.3

±
0

.5

D

eskto
p

8
0

6
.2

/2
8

.8
/-

1
3

1

1
7

0
.2

/2
6

.6
/-

1
3

1

7
0

2
.5

/2
8

.4
/-

1
2

2

0
7

9
.5

/2
7

.4
/-

1
2

2

7
4

5
.6

/2
9

.8
/-

1
2

2

8
.2

±
1

.1
 / - 1

2
.4

±
0

.5

Lap

to
p

1
9

3
2

.6
/6

9
.0

/-
5

2

8
0

3
.1

/6
3

.7
/-

5

3
8

0
1

.2
/6

3
.4

/-
5

-/-/-

-
-/-/-

-
6

5
.4

±
2

.6
 / -

5
.4

±0
.0

T
a
b
. 7

-3
 Ite

ra
tiv

e
 S

E
N

S
E

 G
P

U
 re

c
o
n
s
tru

c
tio

n
 te

s
t re

s
u
lts

.

L
a
p
to

p
 w

a
s
 u

n
a

b
le

 to
 ru

n
 te

s
ts

 w
ith

 s
e

t o
f 7

6
 a

n
d
 9

2
 fra

m
e
s
 d

u
e
 to

 n
o
t s

u
ffic

ie
n
t m

e
m

o
ry s

p
a
c
e
.

143

7.4 System workload tests

The early tests (Section 3.5 and 4.7) showed that the data transmission

and reconstruction can be done faster than data acquisition. This was confirmed

with the online continuous assessment reconstruction tests (Section 5.3.2). As

stated, the use of the batched gridding strategy was highly dependent on the

application, as it can be only used if all, or the majority of read-outs, are on

repeating trajectories. Also, these are ideal situations and to test the system in a

more general, demanding condition, a continuous acquisition with all non-

repeating trajectories needed to be assessed.

The new set of tests for the generalised reconstruction (Section 7.2 and

7.3) showed the same dependency between the reconstruction and acquisition

times. The last test was to assess suitability of the new online GPU

reconstruction for the use in clinical/research setting. As in the previous tests,

the real-time spiral PCMR sequence was used to acquire data using a trajectory

continuously rotated by the golden angle. The new reconstruction was installed

in the distributed reconstruction system. All three external reconstructors (Tab.

7-1) were connected with the scanner and tested using the same

implementation (Section 3.4) of the GPU based SENSE reconstruction (Chapter

4) service. The simplified data flow in the system was presented in Fig. 4-4 and

was discussed in Section 4.6. The processing of the continuous stream of data

did not change and was done as presented in Section 5.2.2. To allow the

overlapping acquisition and reconstruction, the incoming stream of continuous

data was divided into blocks that can be transferred and processed separately.

The aim was to find out if the waiting time after the acquisition finishes and data

being available on the scanner would increase with the length of acquisition or

stay constant as in the previous test (Section 5.3.2). In the latter case, as long

as the transmission and reconstruction time of a block were faster than its

acquisition, it would not matter how many blocks needed to be processed. On

the other hand, if they proved slower, the tests with small number of blocks

would suffice to ascertain it. Consequently, the number of continuously acquired

frames was set to five times the size of a block (reconstruction buffer), in each

test.

144

As in the previous tests, five sizes (28, 44, 60, 76 and 92) of data blocks

were used in tests to determine the impact on performance. The timing results

are presented in Tab. 7-4. As in the conjugate gradient tests (Section 7.3), the

size of data proved problematic not only to the Laptop but also to the Desktop

computer. Reconstructions for blocks of 76 and 92 failed to run on the Laptop

due to in-sufficient memory for all the necessary data structures. The 60 frames

block test for the Laptop and the 76 and 92 frame block tests for the Desktop

did run, but did not allow fully unimpeded buffered reconstruction. One or both

buffers were limited in available space for temporal processing structures,

restricting some operations. Most notably the FFT on the GPU was forced to

switch from batched to serial processing resulting in unacceptable extension of

the reconstruction time.

Timing results were collected in the form of time-stamps, recorded on

the client side. These were used in assessment of the system work-load across

different block sizes and external reconstructors (Fig. 7-3). In all cases, external

reconstructions of the first two blocks proved to be significantly longer than the

last three. This is explained with the necessary initialisation and memory

allocations that must be done once per each reconstruction buffer. These are

time consuming operations that caused ~1.3x to ~3.6x increase in the expected

reconstruction time (as calculated in Tab. 7-3). Fortunately, the subsequent

runs with the initialised buffers showed to be more reliable in execution time.

This can be observed in the time plots (Fig. 7-3) and numerical values (Tab.

7-4). However, even then the measured external reconstruction time was on

average ~31 % longer for the Work-station and Desktop machines, and ~13 %

for the Laptop, as compared to the time needed to run the SENSE

reconstruction (Tab. 7-3). This additional time on top of the SENSE

reconstruction, is spent on the preparation of coil sensitivity, preconditioning

and regularisation maps, as well as organisation of data. This is not an

insignificant amount of time which may become a bottleneck of the

reconstruction for more demanding applications. The Laptop’s performance was

already shown insufficient to allow full overlap with the acquisition, which can be

seen in the plots (Fig. 7-3). Even with the additional overhead, the Work-station

and Desktop’s averaged reconstruction times were still faster than the

acquisition time.

145

For tests with the Work-station and Desktop machines, the transmission

speed exceeded the acquisition speed (~32 MB/s) as expected, which resulted

in a block transmission time being faster than or equal to the corresponding

data acquisition. For the Laptop tests, the transmission time measurements

showed poorer than expected performance. This was secondary to the slow

reconstruction consuming the processing time.

Overall, it can be seen that the continuous assessments, which are un-

restricted by acquisition time, would be possible with the described GPU

reconstruction within the online distributed system using either the Work-station

or Desktop computers. The initial delay, due to the initialisations, would resolve

over time as both the transmission and external reconstructions were much

faster than the acquisition. This would result in the waiting period measured

from the end of acquisition to become constant and depend solely on the image

resolution parameters and the block size.

Based on these final test conclusions, I showed that the assessment of

strategies for generalised gridding (Section 7.2) resulted in the implementation

that had the least impact on the original implementation and connected with it

performance benefits (Section 7.3).

146

–

Fig. 7-3 Examples of system workload charts.

Timing results were brought together in Gantt chart like representations of work flow in the
distributed system. The alternating colours identify the rotating processing with two buffers. The
upper charts compare performance between all the three external reconstructors; the Tesla,
Desktop and Laptop, for the buffer size of 44. The lower charts present only comparison
between the Laptop and Desktop for the buffer size of 60, as the Laptop had not enough
resources for this reconstruction.

La
p

to
p

D
es

kt
o

p

W
o

rk
-s

ta
ti

o
n

Buffer size - 44

Buffer size - 60

D
es

kt
o

p

W
o

rk
-s

ta
ti

o
n

147

Receiver Coils 12 Flow encodings 2
 Acceleration 4

 Matrix

128x128
 Frames 28 44 60 76 92

Work-station
 Send

[s] (MB/s) 1.03±0.05(35) 1.79±0.13(32) 2.26±0.12(34) 3.01±0.11(33) 3.71±0.09(32)
Get

[s] (MB/s) 0.17±0.06(44) 0.25±0.04(47) 0.36±0.14(44) 0.58±0.39(34) 0.57±0.18(42)

Process 1st [s] 3.13 3.87 4.66 5.24 5.98

2nd [s] 1.35 2.13 2.79 3.48 4.35

Rest [s] 0.90±0.06 1.33±0.02 1.81±0.05 2.19±0.05 2.68±0.05

Overhead [%] 40 29 32 27 28

Desktop
 Send

[s] (MB/s) 1.09±0.11(33) 1.78±0.13(32) 2.42±0.12(32) - -
Get

[s] (MB/s) 0.19±0.05(40) 0.31±0.14(37) 0.54±0.16(29) - -

Process 1st [s] 3.08 3.44 4.25 - -

2nd [s] 1.26 2.49 3.39 - -

Rest [s] 1.05±0.10 1.57±0.07 2.18±0.11 - -

Overhead [%] 30 34 28 - -

Laptop
 Send

[s] (MB/s) 1.17±0.22(31) 2.15±0.51(27) - - -
Get

[s] (MB/s) 0.36±0.20(21) 0.69±0.36(17) - - -

Process 1st [s] 5.06 4.58 - - -

2nd [s] 2.19 4.20 - - -

Rest [s] 2.14±0.15 3.25±0.09 - - -

Overhead [%] 11 16 - - -

Tab. 7-4 Work-load timing results.

The continuous acquisition was split into five reconstruction packets and run for different sizes
of the packet (28, 44, 60, 76 and 92). Lack of sufficient memory prevented the buffered
reconstruction to be run for a packet size larger than 60 for the Desktop and 44 for the Laptop.
The measurements were done on the client side (scanner). The averaged transmission time of
the whole packet and transmission time of image results (with the achieved transmission speed)
are presented. The processing time was divided into time needed to run the first initial
reconstruction on each of two reconstruction buffers and the average of the subsequent
reconstruction times. The overhead was calculated as a ratio of the averaged measured time to
the averaged SENSE reconstruction time (Tab. 7-3) minus one.

148

149

8. Discussion

In this work I describe some of the challenges underlying translation of

advanced MRI protocols into the clinical environment. These were addressed

with the development and implementation of an external, heterogeneous image

reconstructor integrated into the scanner system. In this implementation,

distributed client-server architecture was applied to create the flexible, modular

platform that can span multiple different MRI systems and reconstruction

hardware.

Throughout this work the iterative SENSE reconstruction implemented

for GPU was optimised. The generalized GPU implementation reduced the

main bottlenecks, the element-wise matrix operations and the gridding steps.

However, it was only by speeding up each part of the iterative SENSE

reconstruction using the GPU that make it possible to perform reconstruction

quicker than acquisition.

Nevertheless, the GPU implementation must be integrated into the

scanner’s reconstruction pipeline to make the external reconstruction invisible to

the end user, which is essential for clinical translation. This introduced a middle

step in the form of data transmission that could become the new bottleneck of

the reconstruction. Therefore, I implemented a data management scheme that

allowed overlap between all three parts of the reconstruction; acquisition,

transmission and execution. Also, the reconstruction was optimised to

accommodate arbitrary data acquisition patterns, which ensured its suitability

for a wide range of applications.

Next, I showed that this reconstruction methodology can be used to

translate advanced MR sequences into clinical environment. The tests and

validations concentrated on challenging examples of real-time PCMR data

acquisitions. One of which was the continuous acquisition with the non-

repeating trajectories (the golden angle acquisition). In which a separate

gridding matrix had to be created for each trajectory. This prevented

optimisation of GPU execution with the batched gridding on GPU. Importantly, it

was a valuable example presenting the importance of proper organisation of

execution of CPU and GPU tasks. The key step was to keep both CPU and

GPU utilised to maximise the time gains from parallel execution.

150

The presented work not only validated the developed online image

reconstruction process, but showed that it is possible to run continuous, real-

time acquisitions in an unrestricted by reconstruction time fashion.

Of course, the system has its limitations. The tests identified the weak

spots that need to be considered in future developments. The reconstruction

algorithm was shown to be very memory intensive. This was limiting for

workstations with low available memory. This would be particularly important in

bigger systems encompassing multiple clients. Also, the network transmission

capacity would need to be carefully considered; including potential data

compression as an additional speed up. However, the presented data

compression tests were unsatisfactory. Presumably, the MR data exhibits too

high entropy and more advanced, algorithms are needed which may be

dedicated for real signals.

The devised networking framework allowed flexible organisation of the

system, which can be extended with new processing nodes (or replaced)

without impacting on applications that run within it. A typical MR system has

only a single scanner (client), as scanner systems are not designed to be

interconnected by network. To reduce development time the client and server

applications implemented only the basic functionalities necessary for them to

run in the system. Nevertheless, they could be modified and expanded to allow

multiple simultaneous reconstructions for different requesting clients (as

discussed in Section 3.4.3)

Also, in systems encompassing multiple active nodes, the adopted

distinction into clients and servers could prove limiting. Specifically when

considering the active supervision and management of tasks within the

distributed system. Presently, task assignment is fixed to a single coupling

between server and client. For dynamic load-balancing, a more flexible

approach, similar to peer-to-peer (P2P) networks, may be needed. For

example, a class of network objects could be capable of identifying themselves

and dynamically sharing the processing load within the network.

Similar works toward offloading image reconstruction from the scanner

have previously been described (83). These works concentrated on

interventional MRI where resultant images were presented on a separate

151

viewing station. Also, worth of mentioning is a recent work toward an open

source platform for implementing and sharing online medical image

reconstruction algorithms (84).

In conclusion, all of the project goals were achieved by integrating a

GPU-based image reconstructor into the scanner system. I developed and

described the novel distributed image reconstruction system dedicated for the

clinical MRI. The system allowed integration of existing MR components for the

seamless reconstruction process necessary to make a difference in a busy

clinical service. Also, it provided a scalable platform for the translation of

advanced MRI algorithms. The presented work laid out bases for further

developments and improvements, which in consequence has the potential to

revolutionize the type of sequences that can be performed on patients.

152

153

9. Future work

My work succeeded in creating a flexible system that can be used to

translate multiple MRI sequences into the clinical environment. In this final

chapter I discuss MRI techniques that I would like to investigate in the near

future; i) implementing retrospectively gated sequences with fast GPU

reconstructions, ii) image and non-image based navigators for the retrospective

gating, iii) researching modified spiral trajectories for non-image based

respiration navigators, and iv) expanding and testing the developed system to

multiple acquisition and reconstruction nodes.

9.1 Retrospectively gated reconstruction

Chapter 6 presented the modularity of the reconstruction system.

However, the system design provides the same flexibility on the client side. The

client (or scanner side) is not fixed to purely real-time protocols and the

developed gateway between computers can be used to provide the fast

reconstruction for other types of acquisitions. In keeping with the projects

described in this thesis, the real-life example of retrospective cardiac gating will

be considered. Cardiac gated PCMR sequences are one of the most often used

in clinical cardiac MR. They provide a very high quality and reliable imaging

technique. However, they are very time consuming. Alternatively, the spiral

sequence could be used (48, 56) providing rapid data acquisition that can be

performed within a very short breath-hold.

To date, I have modified the spiral PCMR sequence used in chapter 5

and 6 to support cardiac gated acquisitions. The real-time acquisition pattern

used in chapter 6 (Fig. 6-1) was adapted for segmented, retrospectively gated

acquisitions. The sequence was prepared to acquire a set of alternating

interleaves per heartbeat (read out spiral interleaves per heartbeat). The set of

interleaves was changed with each new heartbeat, covering the whole k-space

over time. The acquisition finished when the last spiral interleave (segment) was

acquired. To speed-up the acquisition process, parallel imaging (SENSE) was

introduced, which reduces the number of acquired interleaves. Also, temporal

encoding (UNFOLD) was implemented to allow two times under-sampling

through time.

154

This acquisition pattern is exactly the same as the one presented on

Fig. 6-1, with the exception of the number of read-out lines within each

acquisition block. In the real-time approach the number of lines was predefined

and equal in each of acquisition blocks. In retrospective acquisitions the number

of lines that fits into a heartbeat is unknown and varies between heartbeats. A

physiological signal (i.e. electrocardiogram - ECG) was used as a trigger to

change an acquisition block (sub-set of interleaves).

The self-referencing approach to creation of coil sensitivity maps is

impractical for cardiac gated spiral acquisitions, thus a fully sampled set of k-

space data was acquired at the end of each acquisition.

On the reconstruction side, the whole networking framework and

remote reconstruction were left unchanged, as in the real-time assessments.

However, an additional functionality was built into the scanner reconstruction

pipeline, prior to the data transmission step (Fig. 9-1). Namely, resampling

along the time domain of the acquired data was introduced. In retrospective

fashion, using the ECG signal for synchronization, the data were divided into

separate sections – cardiac intervals. Next, each interval was divided into equal

number of cardiac phases. The data from all intervals were realigned with each

other by resampling to the beginning of each phase. The Lanczos resampling

algorithm was implemented for this purpose. If the acquired data was temporally

encoded, the resampling step was preceded with the UNFOLD filtering of

Fig. 9-1 Modified continuous data processing for accelerated gated PCMR data.

The processing flow chart was extended with the resampling step prior to the collection,
transmission and remote execution blocks.

155

the k-space data (the same technique as in Chapter 6).

The resampled k-space data were then treated as if they originated

from a single packet in the continuous real-time acquisition (Chapter 5). The

external reconstruction block size was set to the number of cardiac phases

which the data was resampled into. Also, the fully sampled data for the coil

sensitivity calculations were sent to the external computer; where they were

used in the iterative SENSE reconstruction.

Fig. 9-2 presents the first results of retrospectively cardiac gated aortic

flow data, which were reconstructed on-line using the distributed reconstruction

system (Chapter 3). The imaging parameters were: FOV: 400x400 mm, matrix:

256x256, voxel size: 1.6x1.6x6 mm, TR/TE: 5.1/1.93 ms, flip angle: 20° and

VENC: 150 cm/s, complete k-space sampling: 80 interleaves. 5x spatial

acceleration and 2x temporal encoding was used to minimise the acquisition

time. The acquisition required 10 heartbeats, which resulted in data being

acquired in ~8 s, as the measured average heart rate was ~86 beats/min. This

Fig. 9-2 Initial results for accelerated gated PCMR sequence with on-line GPU reconstruction.

156

allowed the acquisition to be done within a short breath hold.

With minimal work the fast on-line GPU reconstruction of accelerated

gated PCMR data was enabled for clinical and research studies. However, the

new technique still needs to be thoroughly validated, which is planned for the

near future.

9.2 Fast reconstruction of image based self-navigator

The developed fast on-line real-time reconstruction can be used to aid

the reconstruction process of self-navigated golden-angle spiral PCMR

sequence for free-breathing acquisitions (56). The reconstruction calculates the

image-based respiration signal. This is subsequently combined with the

simultaneously acquired ECG signal for retrospective segregation of k-space

read-outs into the cardiac phases. The respiration signal is prepared on the

base of lower temporal resolution real-time images. This is enabled by rotating

read-out interleaves by the golden-angle, with each new frame. Consequently,

the adjacent read-outs can be combined into the real-time series of desired

temporal resolution. The real-time data need to be reconstructed with the

SENSE reconstruction before the separation into cardiac phases can start. This

reconstruction process is the limiting aspect of the algorithm. Usually, the data

are acquired over a period of ~5 minutes resulting in a long reconstruction

process; up to 40 minutes (using the multi-threaded CPU version of the SENSE

algorithm run on the native image reconstructor).

In future work, I would like to use the techniques developed in my work

to speed-up the real-time data reconstruction for the image-based navigator

calculations. The real-time data acquired with the retrospectively gated spiral

PCMR sequence are equivalent to the data acquired in the presented

continuous real-time assessment protocols (Chapter 7). Consequently, the

same external GPU reconstruction can be used to improve the reconstruction

speed.

157

9.3 Modified spiral acquisition for self-navigating

The calculation of the respiration navigator enables the free-breathing

gated acquisitions. The Cartesian and radial trajectories benefit from possibility

of self-navigating based on a single k-space read-out line. The idea is to acquire

a 1D signal in the anterior-posterior (front to back) direction allowing monitoring

of the chest wall motion. This strategy is in contradiction with the spiral

trajectory, in which data are acquired on spiral interleaves. Alternatively, the

creation of image based self-navigator signal can be done; however this is a

very time consuming process (56).

In future work, I would like to explore a new concept of self-navigating

for the spiral acquisitions using the gradient re-winding data. At the end of each

k-space acquisition, the encoding spatial information linear gradients have to be

ramped-down to zero or re-winded back to the centre of k-space. In our

sequences, this is a dead time when no sampling is performed, at present. This

linear traversing of k-space may be used to acquire additional 1D data.

Providing no information regarding the phase of data were necessary, reading

out only a half of the line should suffice to create a reliable navigator. A

modification to the spiral trajectory can be applied allowing linear read-outs of

the same k-space portion. Namely, after reading-out each spiral interleave, the

read-out position could be moved to the same location of the outer-portion of k-

space (Fig. 9-3). This would be the starting point of the navigator read-outs,

which would end in the centre of the k-space; at the same time re-winding the

gradients. Of course, the trajectory errors due to long read-outs can affect the

ending point of the spiral interleaves. However, I suspect that the exact

alignment of the consecutive navigators may not be so important to some

extent, as long as the directionality of each read-out is preserved. However, this

will need a detailed evaluation and study.

Fig. 9-3 An example of modified spiral trajectory including additional navigator read-outs.

The figure presents a series of rotating spiral read-outs (the black thick lines) followed with a
repositioning of a read-out (the dashed grey line) and a navigator data read-out (the dashed
black line).

1 2 3 4 5 6

158

9.4 MRI as a web service

The work described in this thesis provides flexibility in introducing new

components to existing MR systems. The fast external reconstruction with

hardware accelerators was efficiently integrated into the MR system. This was

done without compromise in the existing clinical/research framework. The next

step will be to expand the system onto more MR scanners, which will benefit

from the fast reconstruction process when connected into the system.

Ultimately, the idea would be expanded into a grid (cloud) connecting not only

on-site resources, but also on-web available processing nodes. This will need

further development and research in the scope of applied middleware providing

identification of resources, load balancing and security to the system.

Presently, the implemented distributed reconstruction system was a

minimal version of the presented concept (Chapter 3). The implementation was

prepared to meet the needs imposed by the on-site hardware distribution. Only

a single external computer was connected to a scanner, as connecting multiple

scanners to the same external computer was logistically difficult. Consequently,

to not overcomplicate the implementation, the server applications were

prepared to maintain a single reconstruction process, as only a single scanning

protocol can run on a scanner at a time. Nevertheless, I consider the many-to-

many assignment as a very important to develop in future work. This will allow

more optimal use of the available resources. To clarify, the present

implementation was not hardwired to the specific networked hardware, but only

restricted in the implemented functionality. Namely, the identification provided

from the client was reduced to indexing of external buffers for which the

processing request was issued. Similarly, the server side was prepared to

maintain reconstruction objects (buffers) only for a single client. When

expanding the system, simple measures can be undertaken to address these

issues in new versions of servers; i.e. assigning a unique identification to each

client and adding a client identification step on the server side. However, this

would only be the first step to increase the awareness of the components. In

future work, I would like to research a more robust and intelligent management

of resources, allowing the real-time load balancing. This is crucial for big

systems containing multiple processing nodes. The work would involve

replacing or enriching the naming service used to identify the distributed

159

components. The new version would be an active part of the system monitoring

the workload, rather than a static record of system’s components.

In this new setting, the adopted client-server architecture with the

division into two kinds of network objects; client and server, can be seen as a

limitation. Self-discovering and collaborating objects could be a better approach.

This could be introduced with peer-to-peer (p2p) network architecture. In p2p

networks each object is equally privileged being at the same time a supplier and

consumer of resources.

160

161

10. References

1. Purcell EM, Torrey HC, Pound RV. Resonance Absorption by Nuclear

Magnetic Moments in a Solid. Physical Review. 1946;69(1-2):37-8.

2. Bloch F, Hansen WW, Packard M. Nuclear Induction. Physical Review.

1946;69(3-4):127-.

3. Rabi II, Zacharias JR, Millman S, Kusch P. A New Method of Measuring

Nuclear Magnetic Moment. Physical Review. 1938;53(4):318-.

4. Zeeman P. XXXII. On the influence of magnetism on the nature of the

light emitted by a substance. The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science. 1897;43(262):226-39.

5. Haacke EM, Brown R, Thompson M, Venkatesan R. Magnetic resonance

imaging: physical principles and sequence design. New York: John Wiley and

Sons, Inc; 1999.

6. Cooley JW, Tukey JW. An algorithm for the machine calculation of

complex Fourier series. Mathematics of computation. 1965;19(90):297-301.

7. McGibney G, Smith MR, Nichols ST, Crawley A. Quantitative evaluation

of several partial Fourier reconstruction algorithms used in MRI. Magnetic

resonance in medicine : official journal of the Society of Magnetic Resonance in

Medicine / Society of Magnetic Resonance in Medicine. 1993;30(1):51-9. Epub

1993/07/01.

8. Feinberg DA, Hale JD, Watts JC, Kaufman L, Mark A. Halving MR

imaging time by conjugation: demonstration at 3.5 kG. Radiology.

1986;161(2):527-31. Epub 1986/11/01.

9. Margosian P, Schmitt F, Purdy D. Faster MR imaging: imaging with half

the data. Health Care Instrum. 1986;1(6):195.

10. Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic

resonance imaging. IEEE transactions on medical imaging. 1991;10(2):154-63.

Epub 1991/01/01.

162

11. Cuppen J, van Est A. Reducing MR imaging time by one-sided

reconstruction. Magnetic Resonance Imaging. 1987;5(6):526-7.

12. Haacke E, Lindskogj E, Lin W. A fast, iterative, partial-Fourier technique

capable of local phase recovery. Journal of Magnetic Resonance (1969).

1991;92(1):126-45.

13. Mansfield P. Multi-planar image formation using NMR spin echoes.

Journal of Physics C: Solid State Physics. 1977;10(3):L55.

14. Ahn CB, Kim JH, Cho ZH. High-speed spiral-scan echo planar NMR

imaging-I. IEEE transactions on medical imaging. 1986;5(1):2-7. Epub

1986/01/01.

15. Yudilevich E, Stark H. Interpolation from samples on a linear spiral scan.

IEEE transactions on medical imaging. 1987;6(3):193-200. Epub 1987/01/01.

16. Rasche V, Holz D, Schepper W. Radial turbo spin echo imaging.

Magnetic resonance in medicine : official journal of the Society of Magnetic

Resonance in Medicine / Society of Magnetic Resonance in Medicine.

1994;32(5):629-38. Epub 1994/11/01.

17. Steeden JA, Atkinson D, Taylor AM, Muthurangu V. Assessing vascular

response to exercise using a combination of real-time spiral phase contrast MR

and noninvasive blood pressure measurements. Journal of magnetic resonance

imaging : JMRI. 2010;31(4):997-1003.

18. Brouw W. Aperture synthesis. Image Processing Techniques in

Astronomy: Springer; 1975. p. 301-7.

19. O'Sullivan JD. A fast sinc function gridding algorithm for fourier inversion

in computer tomography. IEEE transactions on medical imaging. 1985;4(4):200-

7. Epub 1985/01/01.

20. Schomberg H, Timmer J. The gridding method for image reconstruction

by Fourier transformation. IEEE transactions on medical imaging.

1995;14(3):596-607. Epub 1995/01/01.

163

21. Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a

convolution function for Fourier inversion using gridding [computerised

tomography application]. IEEE transactions on medical imaging.

1991;10(3):473-8. Epub 1991/01/01.

22. Carlson J, Minemura T. Imaging time reduction through multiple receiver

coil data acquisition and image reconstruction. Magnetic Resonance in

Medicine. 1993;29(5):681-7.

23. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial

harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magnetic

Resonance in Medicine. 1997;38(4):591-603.

24. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE:

sensitivity encoding for fast MRI. Magnetic resonance in medicine : official

journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic

Resonance in Medicine. 1999;42(5):952-62. Epub 1999/11/05.

25. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et

al. Generalized autocalibrating partially parallel acquisitions (GRAPPA).

Magnetic resonance in medicine : official journal of the Society of Magnetic

Resonance in Medicine / Society of Magnetic Resonance in Medicine.

2002;47(6):1202-10. Epub 2002/07/12.

26. Madore B, Glover GH, Pelc NJ. Unaliasing by fourier-encoding the

overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging

and fMRI. Magnetic resonance in medicine : official journal of the Society of

Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine.

1999;42(5):813-28. Epub 1999/11/05.

27. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding

incorporating temporal filtering (TSENSE). Magnetic resonance in medicine :

official journal of the Society of Magnetic Resonance in Medicine / Society of

Magnetic Resonance in Medicine. 2001;45(5):846-52. Epub 2001/04/27.

28. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE:

dynamic MRI with high frame rate exploiting spatiotemporal correlations.

164

Magnetic resonance in medicine : official journal of the Society of Magnetic

Resonance in Medicine / Society of Magnetic Resonance in Medicine.

2003;50(5):1031-42. Epub 2003/10/31.

29. Madore B. UNFOLD-SENSE: a parallel MRI method with self-calibration

and artifact suppression. Magnetic resonance in medicine : official journal of the

Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in

Medicine. 2004;52(2):310-20. Epub 2004/07/30.

30. Pruessmann KP, Weiger M, Bornert P, Boesiger P. Advances in

sensitivity encoding with arbitrary k-space trajectories. Magnetic resonance in

medicine : official journal of the Society of Magnetic Resonance in Medicine /

Society of Magnetic Resonance in Medicine. 2001;46(4):638-51. Epub

2001/10/09.

31. Schaeffter T, Hansen MS, Sørensen TS, editors. Fast Implementation of

Iterative Image Reconstruction. International Society for Magnetic Resonance in

Medicine.

32. Tsao J. On the UNFOLD method. Magnetic resonance in medicine :

official journal of the Society of Magnetic Resonance in Medicine / Society of

Magnetic Resonance in Medicine. 2002;47(1):202-7. Epub 2002/01/05.

33. Madore B. Using UNFOLD to remove artifacts in parallel imaging and in

partial-Fourier imaging. Magnetic resonance in medicine : official journal of the

Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in

Medicine. 2002;48(3):493-501. Epub 2002/09/05.

34. Roemer P, Edelstein W, Hayes C, Souza S, Mueller O. The NMR phased

array. Magnetic Resonance in Medicine. 1990;16(2):192-225.

35. Hansen PC. Rank-deficient and discrete ill-posed problems: numerical

aspects of linear inversion: SIAM; 1998.

36. Ying L, Xu D, Liang ZP. On Tikhonov regularization for image

reconstruction in parallel MRI. Conference proceedings : Annual International

Conference of the IEEE Engineering in Medicine and Biology Society IEEE

165

Engineering in Medicine and Biology Society Conference. 2004;2:1056-9. Epub

2007/02/03.

37. Lin F-H, Kwong KK, Belliveau JW, Wald LL. Parallel imaging

reconstruction using automatic regularization. Magnetic resonance in medicine :

official journal of the Society of Magnetic Resonance in Medicine / Society of

Magnetic Resonance in Medicine. 2004;51(3):559-67.

38. Kellman P, Sorger JM, Epstein FH, McVeigh ER. Low-latency temporal

filter design for real-time MRI using UNFOLD. Magnetic resonance in medicine :

official journal of the Society of Magnetic Resonance in Medicine / Society of

Magnetic Resonance in Medicine. 2000;44(6):933-9. Epub 2000/12/07.

39. Di Bella EV, Wu YJ, Alexander AL, Parker DL, Green D, McGann CJ.

Comparison of temporal filtering methods for dynamic contrast MRI myocardial

perfusion studies. Magnetic resonance in medicine : official journal of the

Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in

Medicine. 2003;49(5):895-902. Epub 2003/04/22.

40. Guttman MA, Kellman P, Dick AJ, Lederman RJ, McVeigh ER. Real-time

accelerated interactive MRI with adaptive TSENSE and UNFOLD. Magnetic

resonance in medicine : official journal of the Society of Magnetic Resonance in

Medicine / Society of Magnetic Resonance in Medicine. 2003;50(2):315-21.

Epub 2003/07/24.

41. Harris M. General-Purpose computation on Graphics Processing Units.

2002; Available from: gpgpu.org.

42. CUDA C Programming Guide. NVIDIA Corporation; 2014 [updated

February 13, 2014; cited 2014]; Available from:

http://docs.nvidia.com/cuda/cuda-c-programming-guide.

43. CUDA C Best Practices Guide. NVIDIA Corporation; 2014 [updated

February 13, 2014; cited 2014]; Available from:

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html.

44. Corporation I. Intel® Xeon Phi™ Coprocessor 7120D (16GB, 1.238

GHz, 61 core). 2014 [cited 2014]; Available from:

http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

166

http://ark.intel.com/products/80310/Intel-Xeon-Phi-Coprocessor-7120D-16GB-

1_238-GHz-61-core.

45. Corporation I. Intel® Xeon Phi™ Product Family Performance. [cited

2014]; Available from:

http://www.intel.co.uk/content/dam/www/public/us/en/documents/performance-

briefs/xeon-phi-product-family-performance-brief.pdf.

46. Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in

humans. Magn Reson Imaging. 1982;1(4):197-203. Epub 1982/01/01.

47. Steeden JA, Atkinson D, Taylor AM, Muthurangu V. Split-acquisition real-

time CINE phase-contrast MR flow measurements. Magnetic resonance in

medicine : official journal of the Society of Magnetic Resonance in Medicine /

Society of Magnetic Resonance in Medicine. 2010;64(6):1664-70. Epub

2010/10/13.

48. Steeden JA, Atkinson D, Hansen MS, Taylor AM, Muthurangu V. Rapid

flow assessment of congenital heart disease with high-spatiotemporal-resolution

gated spiral phase-contrast MR imaging. Radiology. 2011;260(1):79-87. Epub

2011/03/19.

49. Hansen MS, Atkinson D, Sorensen TS. Cartesian SENSE and k-t

SENSE reconstruction using commodity graphics hardware. Magnetic

resonance in medicine : official journal of the Society of Magnetic Resonance in

Medicine / Society of Magnetic Resonance in Medicine. 2008;59(3):463-8. Epub

2008/02/29.

50. Sorensen TS, Schaeffter T, Noe KO, Hansen MS. Accelerating the

nonequispaced fast Fourier transform on commodity graphics hardware. IEEE

transactions on medical imaging. 2008;27(4):538-47. Epub 2008/04/09.

51. Stone SS, Haldar JP, Tsao SC, Hwu WM, Sutton BP, Liang ZP.

Accelerating Advanced MRI Reconstructions on GPUs. J Parallel Distrib

Comput. 2008;68(10):1307-18. Epub 2008/10/01.

52. Group OM. OMG IDL Syntax and Semantics. [cited 2014]; Available

from: http://www.omg.org/cgi-bin/doc?formal/02-06-39.

http://ark.intel.com/products/80310/Intel-Xeon-Phi-Coprocessor-7120D-16GB-1_238-GHz-61-core
http://ark.intel.com/products/80310/Intel-Xeon-Phi-Coprocessor-7120D-16GB-1_238-GHz-61-core
http://www.intel.co.uk/content/dam/www/public/us/en/documents/performance-briefs/xeon-phi-product-family-performance-brief.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/performance-briefs/xeon-phi-product-family-performance-brief.pdf
http://www.omg.org/cgi-bin/doc?formal/02-06-39

167

53. Ltd A. omniORB : Free CORBA ORB. [cited 2014]; Available from:

http://omniorb.sourceforge.net/.

54. Mortensen KH, Steeden JA, Panzer J, Taylor AM, Muthurangu V.

Isometric exercise in cardiac magnetic resonance imaging: an initial experience

using fast imaging. Journal of Cardiovascular Magnetic Resonance.

2011;13(Suppl 1):P386.

55. Jones A, Steeden JA, Pruessner JC, Deanfield JE, Taylor AM,

Muthurangu V. Detailed assessment of the hemodynamic response to

psychosocial stress using real-time MRI. Journal of magnetic resonance

imaging : JMRI. 2011;33(2):448-54. Epub 2011/01/29.

56. Steeden JA, Knight DS, Bali S, Atkinson D, Taylor AM, Muthurangu V.

Self-navigated tissue phase mapping using a golden-angle spiral acquisition-

proof of concept in patients with pulmonary hypertension. Magnetic resonance

in medicine : official journal of the Society of Magnetic Resonance in Medicine /

Society of Magnetic Resonance in Medicine. 2014;71(1):145-55. Epub

2013/02/16.

57. Steeden JA, Jones A, Pandya B, Atkinson D, Taylor AM, Muthurangu V.

High-resolution slice-selective Fourier velocity encoding in congenital heart

disease using spiral SENSE with velocity unwrap. Magnetic resonance in

medicine : official journal of the Society of Magnetic Resonance in Medicine /

Society of Magnetic Resonance in Medicine. 2012;67(6):1538-46. Epub

2012/04/19.

58. Alted F. Why Modern Cpus Are Starving and What Can Be Done About

It. Comput Sci Eng. 2010;12(2):68-71.

59. Gregerson A. Implementing fast MRI gridding on GPUs via CUDA.

NVidia Whitepaper, Online:

http://cnnvidiacom/docs/IO/47905/ECE757_Project_Report_Gregersonpdf.

2008.

60. Podlozhnyuk V. Image convolution with CUDA. NVIDIA Corporation

white paper, June. 2007;2097(3).

http://omniorb.sourceforge.net/
http://cnnvidiacom/docs/IO/47905/ECE757_Project_Report_Gregersonpdf

168

61. Luo Y, Duraiswami R, editors. Canny edge detection on NVIDIA CUDA.

Computer Vision and Pattern Recognition Workshops, 2008 CVPRW'08 IEEE

Computer Society Conference on; 2008: IEEE.

62. Zhang N, Chen Y-s, Wang JL, editors. Image parallel processing based

on GPU. Advanced Computer Control (ICACC), 2010 2nd International

Conference on; 2010: IEEE.

63. Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, et al.

Concomitant gradient terms in phase contrast MR: Analysis and correction.

Magnetic resonance in medicine : official journal of the Society of Magnetic

Resonance in Medicine / Society of Magnetic Resonance in Medicine.

1998;39(2):300-8.

64. White SW, Quail AW, de Leeuw PW, Traugott FM, Brown WJ, Porges

WL, et al. Impedance cardiography for cardiac output measurement: an

evaluation of accuracy and limitations. European heart journal. 1990;11 Suppl

I:79-92. Epub 1990/12/01.

65. Hecht HS, DeBord L, Sotomayor N, Shaw R, Dunlap R, Ryan C. Supine

bicycle stress echocardiography: peak exercise imaging is superior to

postexercise imaging. Journal of the American Society of Echocardiography :

official publication of the American Society of Echocardiography. 1993;6(3 Pt

1):265-71. Epub 1993/05/01.

66. Klein C, Schalla S, Schnackenburg B, Bornstedt A, Fleck E, Nagel E.

Magnetic resonance flow measurements in real time: Comparison with a

standard gradient-echo technique. Journal of magnetic resonance imaging :

JMRI. 2001;14(3):306-10.

67. Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for

navigating in multidimensional DICOM images. Journal of digital imaging : the

official journal of the Society for Computer Applications in Radiology.

2004;17(3):205-16. Epub 2004/11/10.

68. Odille F, Steeden JA, Muthurangu V, Atkinson D. Automatic

segmentation propagation of the aorta in real-time phase contrast MRI using

169

nonrigid registration. Journal of magnetic resonance imaging : JMRI.

2011;33(1):232-8.

69. Frick MH, Somer T. Base-Line Effects on Response of Stroke Volume to

Leg Exercise in the Supine Position. Journal of applied physiology.

1964;19:639-43. Epub 1964/07/01.

70. Pandya B, Kowalik GT, Knight DS, Tann O, Derrick G, Muthurangu V.

Towards a more comprehensive assessment of cardiovascular fitness-magnetic

resonance augmented cardiopulmonary exercise testing (MR-CPEX). Journal of

Cardiovascular Magnetic Resonance. 2013;15(Suppl 1):P58.

71. Guier WH, Friesinger GC, Ross RS. Beat-by-beat stroke volume from

aortic-pulse-pressure analysis. IEEE transactions on bio-medical engineering.

1974;21(4):285-92. Epub 1974/07/01.

72. Oh JK, Tajik J. The return of cardiac time intervals: the phoenix is rising.

Journal of the American College of Cardiology. 2003;42(8):1471-4. Epub

2003/10/18.

73. Hansen MS, Baltes C, Tsao J, Kozerke S, Pruessmann KP, Eggers H. k-

t BLAST reconstruction from non-Cartesian k-t space sampling. Magnetic

resonance in medicine : official journal of the Society of Magnetic Resonance in

Medicine / Society of Magnetic Resonance in Medicine. 2006;55(1):85-91. Epub

2005/12/03.

74. Afacan O, Hoge WS, Janoos F, Brooks DH, Morocz IA. Rapid full-brain

fMRI with an accelerated multi shot 3D EPI sequence using both UNFOLD and

GRAPPA. Magnetic resonance in medicine : official journal of the Society of

Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine.

2012;67(5):1266-74. Epub 2011/11/19.

75. Vivekananthan K, Kalapura T, Mehra M, Lavie C, Milani R, Scott R, et al.

Usefulness of the combined index of systolic and diastolic myocardial

performance to identify cardiac allograft rejection. The American journal of

cardiology. 2002;90(5):517-20. Epub 2002/09/05.

170

76. Winkler P. Effects of experimental iatrogenic hypercortisolism on

systemic and pulmonary artery pressure, left ventricular mass as well as left

and right ventricular dimension and function in dogs - an echocardiographic

study. University of Zurich; 2009.

77. Nielsen JF, Nayak KS. Referenceless phase velocity mapping using

balanced SSFP. Magnetic resonance in medicine : official journal of the Society

of Magnetic Resonance in Medicine / Society of Magnetic Resonance in

Medicine. 2009;61(5):1096-102. Epub 2009/02/21.

78. Joseph AA, Merboldt KD, Voit D, Zhang S, Uecker M, Lotz J, et al. Real-

time phase-contrast MRI of cardiovascular blood flow using undersampled

radial fast low-angle shot and nonlinear inverse reconstruction. NMR in

biomedicine. 2012;25(7):917-24. Epub 2011/12/20.

79. Kowalik GT, Steeden JA, Pandya B, Odille F, Atkinson D, Taylor A, et al.

Real-time flow with fast GPU reconstruction for continuous assessment of

cardiac output. Journal of magnetic resonance imaging : JMRI.

2012;36(6):1477-82. Epub 2012/06/30.

80. Shin T, Nielsen JF, Nayak KS. Accelerating dynamic spiral MRI by

algebraic reconstruction from undersampled k-t space. IEEE transactions on

medical imaging. 2007;26(7):917-24. Epub 2007/07/26.

81. Rojo EC, Rodrigo JL, Perez de Isla L, Almeria C, Gonzalo N, Aubele A,

et al. Disagreement between tissue Doppler imaging and conventional pulsed

wave Doppler in the measurement of myocardial performance index. European

journal of echocardiography : the journal of the Working Group on

Echocardiography of the European Society of Cardiology. 2006;7(5):356-64.

Epub 2005/10/04.

82. Frank MN, Haberern N. The effect of hand grip and exercise on systolic

time intervals in human subjects. The American journal of the medical sciences.

1971;261(4):219-23. Epub 1971/04/01.

83. Roujol S, Senneville BDd, Vahala E, Sorensen TS, Moonen C, Ries M.

Online real-time reconstruction of adaptive TSENSE with commodity CPU/GPU

171

hardware. Magnetic resonance in medicine : official journal of the Society of

Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine.

2009;62(6):1658-64.

84. Hansen MS, Sorensen TS. Gadgetron: an open source framework for

medical image reconstruction. Magnetic resonance in medicine : official journal

of the Society of Magnetic Resonance in Medicine / Society of Magnetic

Resonance in Medicine. 2013;69(6):1768-76. Epub 2012/07/14.

172

173

11. Appendices

11.1 Network communication module

1. #ifndef TRANSFER_MODULE_IDL

2. #define TRANSFER_MODULE_IDL

3.

4. module TransferModule {

5.

6. typedef long TDLong;

7. typedef unsigned long TDULong;

8. typedef char TDBase;

9.

10. typedef sequence<TDBase> TransferData;

11.
12. interface DataTransfer {

13.

14. TDLong Init(in TDBase id, in string oper, in TransferData inData);

15.
16. TDLong SetRawData(in TDBase id, in string oper, in TransferData inData);

17.
18. TDLong Process(in TDBase id, in string oper);

19.
20. TDLong GetResultData(in TDBase id, in string oper, in TransferData index, out TransferData

outData);

21.
22. };

23. };
24. #endif

This code was used to generate C++ version of the network interfaces

for the distributed reconstruction system. Each interface provides the client with

a set of input parameters. A pair; in TDBase id, in string oper of input

parameters can be used by a client to identify a remote reconstruction object

(data structures, buffers) as well as to specify a variant of operation if

necessary. Parameters of TransferData type are used to transmit an arbitrary

length of data. All of the interfaces return a status of a requested operation.

11.2 Reconstruction module interface

1. #ifndef IRECONSTURCTION_H

2. #define IRECONSTURCTION_H

3.

4. #include <stdlib.h>

5. #include <iostream>

6.

7. namespace ICH_MRI

8. {

9. namespace SERVER

10. {
11. class IReconstruction
12. {
13. public:
14. bool isRecInit; // It decides if the PreProcess function does an initialization step or not.

15.
16. public:
17. IReconstruction():isRecInit(false) { return; }

18. virtual ~IReconstruction() { }

19.

20. // It is used to read initialization data.

21. virtual bool ReadHeader(std::istream &in) = 0;

22.
23. // Processing functions

24. // called by servant in this order.

25. virtual bool PreProcess(const char* oper) = 0;

26. virtual bool Process(const char* oper) = 0;

27. virtual bool PostProcess(const char* oper) = 0;

28. virtual bool Store(const char* oper) = 0;

29. virtual bool Clean(const char* oper) = 0;

174

30.
31. // Is called by servant::* each time a new request come.

32. virtual bool StartThread(int i) = 0;

33.

34. // Data transmission functions.

35. virtual int SetData(unsigned int dataSize, void* inData) = 0;

36. virtual unsigned int GetResSize(unsigned int size, const void * index, void *&ptr) = 0;

37. virtual unsigned int GetResultData(void *_ptr, void* outData) = 0;

38.
39. virtual bool CopyBuffer(const IReconstruction *p, bool isCPUMem = true) = 0;

40. virtual bool ManageBuffers(IReconstruction **mri, unsigned int buffSize, unsigned int buffId)

41. { return true; }

42.
43. virtual int Test(int argc, char** argv) = 0;

44. };
45.
46. #ifndef __DLL_EXPORT
47. #define __DLL_EXPORT __declspec(dllimport)
48. typedef IReconstruction* (*_GetIReconstruction)(void);
49. typedef bool (*_StartLibrary)(void);
50. typedef bool (*_StopLibrary)(void);
51. #else
52. #undef __DLL_EXPORT
53. #define __DLL_EXPORT __declspec(dllexport)
54. #endif
55.
56. #if defined(_WINDLL)
57. extern "C" __DLL_EXPORT IReconstruction* __cdecl GetIReconstruction(void);
58. extern "C" __DLL_EXPORT bool __cdecl StartLibrary(void);
59. extern "C" __DLL_EXPORT bool __cdecl StopLibrary(void);
60. #endif
61.
62. }
63. }
64. #endif

The listing presents the reconstruction module interface used by the

implemented server application. The presented class serves as a root for all

modules that are accessible through the server. The presented abstract

methods must be provided within the deriving reconstruction module/class.

Similarly, a new module must implement the global module initialisation

(StartLibrary, StartLibrary) and reconstruction object creation

(GetIReconstruction) functions.

11.3 The pseudo code of the conjugate gradient linear solver
algorithm for the SENSE reconstruction

1. 𝑟 = 𝐼𝐸𝐻𝐷2𝑆
2. 𝑝⃗ = 𝑟

3. 𝑏⃗⃗ = 0
4. 𝑞⃗ = 0
5. 𝑠𝑡𝑜𝑝 = 𝑟ℎ𝑟 = 𝑟𝐻𝑟
6. 𝑤ℎ𝑖𝑙𝑒(𝑡𝑟𝑢𝑒)
7. 𝑞⃗ = (𝐼𝐸𝐻𝐷2𝐸𝐼 + 𝜆2𝐼𝜃−1𝐼)𝑝⃗

8. 𝛼 =
𝑟ℎ𝑟

𝑝𝐻𝑞⃗⃗

9. 𝑏⃗⃗ = 𝑏⃗⃗ + 𝛼𝑝⃗
10. 𝑟 = 𝑟 − 𝛼𝑞⃗
11. 𝑟ℎ𝑟1 = 𝑟𝐻𝑟

12. 𝑖𝑓 𝑖 ≥ 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 𝑜𝑟
𝑟ℎ𝑟1

𝑠𝑡𝑜𝑝
< 𝐸𝑃𝑆

13. 𝑏⃗⃗ = 𝐼𝑏⃗⃗
14. 𝑏𝑟𝑒𝑎𝑘
15. 𝑒𝑛𝑑𝑖𝑓

16. 𝑝⃗ = 𝑟 +
𝑟ℎ𝑟1

𝑟ℎ𝑟
𝑝⃗

17. 𝑟ℎ𝑟 = 𝑟ℎ𝑟1
18. 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒

175

The algorithm presents the conjugate-gradient solver (Section 1.4.2),

which is an iterative method for solving sparse systems of linear equations. The

algorithm was adapted to the reconstruction needs, based on the Equations

1-41, 1-42 and 1-43.

11.4 The template of element-wise matrix-vector operations on GPU

1. // The function multiplies each row of matrix, 'mat' with elements of array 'vec'.

2. // It is an element-wise multiplicatiion.

3. // Threads of each thread block iterate through y-dim., thus there is no need to span them

4. // on the whole y-dim size.

5. // (e.g. threadBlockSize.y = 1 & gridSize.y = 1 will iterate through all data rows;

6. // it is advised to play with these parameter to achieve better performance).

7. // x-dim : number/index of an element in a row;

8. // y-dim : index of a row.

9. // Shared memory is used to store 'vect' values. These are shared among

10. // threads with the same y-index.

11. // vSize - number of elements in a vector 'vec'.
12. // rowSize - size of each row in bytes.
13.
14. extern volatile __shared__ char _scal[];
15.
16. template <class T1, class T2>
17. __global__ void mulElemMatVec(T1 *mat, T1 *out,
18. FFT_UNSIGN nRows, FFT_UNSIGN rowSize,

19. T2 *vec, FFT_UNSIGN vSize)

20. {
21. // Thread's index.

22. FFT_UNSIGN id = threadIdx.x;

23. // The possition within a vector.

24. FFT_UNSIGN vId = id + blockDim.x * blockIdx.x;

25. // The index of matrix row to be processed.

26. FFT_UNSIGN rowId = threadIdx.y + blockDim.y * blockIdx.y;

27.

28. T2* scal = (T2*)_scal;

29.
30. if(vId >= vSize) { return; }

31. // Read in the vector values.

32. if(threadIdx.y == 0)

33. {

34. scal[id] = *(vec + vId);

35. }

36. // Synchronise the treads within the thread block.

37. __syncthreads();

38.
39. T1 tmp;

40. T1 *_ptr;

41. // iterate through all of the matrix rows.

42. for(; rowId < nRows; rowId += blockDim.y * gridDim.y)

43. {

44. // Read-in matrix data.

45. _ptr = FLAT_MEM_PTR(mat, 0, rowId, rowSize, T1);

46. tmp = _ptr[vId];

47. // Scale the data.

48. tmp *= scal[id];

49. // Store the result.

50. _ptr = FLAT_MEM_PTR(out, 0, rowId, rowSize, T1);

51. _ptr[vId] = tmp;

52. }

53. }

The appendix presents a simple GPU kernel dedicated to speed-up the

element-wise multiplication of matrices. The kernel was written in C for CUDA

and can be complied for NVIDIA GPU cards.

176

11.5 The gridding optimisation tests and results

This appendix presents the extended evaluation and solution to the

problem of gridding of data acquired on the non-repeating trajectories; which

was introduced in Chapter 7. The tests concentrated on optimisation of the

gridding process, as the new reconstruction required reformulation of this step.

The optimisation steps I described aimed to expand the developed

reconstruction onto the non-repeating trajectories (generalised reconstruction)

without compromise in the provided reconstruction performance. The gridding

tests were done with the repeating and non-repeating trajectories for

comparison.

This appendix complements the previous description and results by

extending the tests on to different GPU enabled hardware. The tests were run

on the previously described system (Section 3.4 and 4.6) using the three

computers, which specifications are presented in Tab. 7-1, as the external

reconstructors.

11.5.1 Gridding tests

The same spiral PCMR sequence, as in the transmission tests (Section

3.5), was used to acquire multiple data sets (as presented in Tab. 11-1 and the

following) for the optimisation tests.

The boundary limits; Acquisition time, Upper- and Lower-limits are

presented in Tab. 11-1. As previously stated, the acquisition time and Upper-

limit were the same in all tests, as they are related to the sequence and scanner

reconstructor performance. The first was defined as the time needed to acquire

the whole set of frames and the second was the time needed by the native

scanner reconstructor to run the gridding on the set of frames acquired with the

non-repeating trajectories.

As discussed in the Section 7.2.1, the Lower-limit was calculated, as

the time needed by an external computer to run the batched version of gridding

for data on the repeating trajectory. The results are presented in Tab. 11-1. The

tests showed speed-up compared to the Acquisition time, of ~43x, ~58x and

~15x for Work-station, Desktop and Laptop respectively (all further results are

presented in this order). Assuming that the gridding accounted to about half of

177

each iteration time and that at least seven iterations are required, the Laptop

would not provide sufficient speed-up for the reconstruction process.

Nevertheless, the consecutive optimisation stages were run on the Laptop for

the completeness of the comparative study. In the test, the Desktop performed

notably better, which can be assigned to higher clock rate and number of CUDA

cores (Tab. 7-1).

The test allowed estimation of the maximum achievable speed-up with

the GPU gridding. The batched gridding results were linearly dependent on the

number of gridded frames. Consequently, the maximum achievable speed-up

(Tab. 11-1; Ratio) was fixed for each machine; ~19x, ~25x and ~6x.

The initial assessment (Section 7.2.1) looked into gridding times

providing all data structures were available on a GPU. The aim was to

determine an impact of sequential scheduling of the gridding tasks as compared

with the single batch call. The results for this rather impractical approach were

collected in Tab. 11-2. The tests showed that providing the whole data

structures were already available in the GPU memory, the sequential

scheduling of gridding operations yields the same results as the batched

gridding (the Lower-limit). Nevertheless, the memory consumption (as

discussed in Section 7.2.1) was too high and better solutions were needed.

Number of frames 28

44

60

76

92

Average

[ms] Ratio [ms] Ratio [ms] Ratio [ms] Ratio [ms] Ratio Ratio

Acquisition time 1162.6

1826.9

2491.2

3155.5

3819.8

Upper-limit 555.1 2.1 744.4 2.5 1040.9 2.4 1300.9 2.4 1616.4 2.4 2.3±0.1

Lower-limit

 Work-station 26.8 20.7 42.0 17.7 57.2 18.2 72.4 18.0 87.7 18.4 18.6±1.4

Desktop 20.2 27.5 31.7 23.5 43.2 24.1 54.7 23.8 66.2 24.4 24.7±1.9

 Laptop 78.2 7.1 122.7 6.1 167.4 6.2 211.5 6.2 256.7 6.3 6.4±0.5

Tab. 11-1 Estimation of the gridding optimisation limits.

The Upper-limit was determined as the time needed by the native image reconstructor to grid
data on the non-repeating trajectories. The Lower-limit was calculated as the time needed by an
external computer to grid data on repeating trajectory. Ratios for the Upper-limit were calculated
with reference to the acquisition time and for the Lower-limit with reference to the Upper-limit.

178

Number of frames 28 44 60 76 92 Average
Total / per frame Work-station 26.82/0.96 42.08/0.96 57.35/0.96 72.61/0.96 87.83/0.95 - / 0.96±0.00

` Desktop 20.27/0.72 31.85/0.72 43.45/0.72 54.95/0.72 66.55/0.72 - / 0.72±0.00

Laptop 78.19/2.79 123.06/2.80 167.67/2.79 212.33/2.79 256.36/2.79 - / 2.79±0.00

Difference Work-station 0.00/0 0.05/0 0.10/0 0.17/0 0.13/0 - / -
[ms]/[%] Desktop 0.09/0 0.15/0 0.25/1 0.25/0 0.35/1 - / -

Laptop -0.03/0 0.36/0 0.30/0 0.86/0 -0.32/0 - / -

Ratio Work-station 1.00 1.00 1.00 1.00 1.00 1.00±0.00

Desktop 1.00 1.00 1.01 1.00 1.01 1.01±0.00

 Laptop 1.00 1.00 1.00 1.00 1.00 1.00±0.00

Tab. 11-2 Results - Sequential (pre-calculated & pre-stored).

The timing results for sequential scheduling of gridding operations on GPU with data structures
pre-calculated and stored in GPU’s memory. The results are presented as total time needed to
grid a set of frames (including how much each frame accounted to) and their comparison to the
equivalent Lower-limit result. The timing ratio comparison and timings each frame accounted to
were averaged and presented in the last column.

179

11.5.2 Sequential approach

To reduce the memory consumption, the sequential tests allowed only a

single gridding matrix to be stored on a GPU. The algorithm sequentially

created a matrix in CPU memory related to each frame, which then was used to

replace the one in GPU memory (Section 7.2.2). The naive strategy (without

buffering) showed very poor results which were ~33x, ~39x and ~7x slower

(Tab. 11-3) than expected (as compared with the Lower-limit). The overlapping

version was only marginally better ~33x, ~37x and ~6x (Tab. 11-4). The

improvement was connected to a slight shift in the creation of matrix times with

which the final timing results were driven. In all cases the serial matrix creation

took >98 % of the total time.

-Number of frames 28 44 60 76 92 Average
Gridding Work-station [ms] 889.20 1400.10 1903.20 2410.20 2917.20

 Total Desktop [ms] 780.00 1224.60 1669.20 2117.70 2570.10

Laptop [ms] 569.40 893.10 1216.80 1540.50 1856.40

Gridding Work-station [ms] 31.76 31.82 31.72 31.71 31.71 31.74±0.05
 per Frame Desktop [ms] 27.86 27.83 27.82 27.86 27.94 27.86±0.05
 Laptop [ms] 20.34 20.30 20.28 20.27 20.18 20.27±0.06

Create Work-station [ms] 877.50 1380.60 1899.30 2398.50 2909.41
 Total Desktop [ms] 760.50 1212.90 1653.60 2090.40 2535.00

Laptop [ms] 553.80 877.50 1209.00 1509.30 1836.90

Create Work-station [ms] 31.34 31.38 31.66 31.56 31.62 31.51±0.14
 per Frame Desktop [ms] 27.16 27.57 27.56 27.51 27.55 27.47±0.17
 Laptop [ms] 19.78 19.94 20.15 19.86 19.97 19.94±0.14

Create Work-station [%] 98.68 98.61 99.80 99.51 99.73 99.27±0.58
 Ratio Desktop [%] 97.50 99.04 99.07 98.71 98.63 98.59±0.64

Laptop [%] 97.26 98.25 99.36 97.97 98.95 98.36±0.82

Create Work-station [ms] 0.42 0.44 0.07 0.15 0.08 0.23±0.18
 Difference per Desktop [ms] 0.70 0.27 0.26 0.36 0.38 0.39±0.18
 Frame Laptop [ms] 0.56 0.35 0.13 0.41 0.21 0.33±0.17

Comparison Work-station [ms] 862.37 1358.08 1845.96 2337.76 2829.50
 Difference Desktop [ms] 759.82 1192.91 1626.01 2063.00 2503.90

 (Lower-limit) Laptop [ms] 491.18 770.40 1049.43 1329.04 1599.72

Comparison Work-station [ms] 30.80 30.87 30.77 30.76 30.76 30.79±0.05
 Difference per Desktop [ms] 27.14 27.11 27.10 27.14 27.22 27.14±0.05
 Frame (Lower-limit) Laptop [ms] 17.54 17.51 17.49 17.49 17.39 17.48±0.06

Ratio Work-station 33.15 33.32 33.25 33.27 33.26 33.25±0.06
 (Lower-limit) Desktop 38.65 38.64 38.65 38.71 38.82 38.69±0.08
 Laptop 7.28 7.28 7.27 7.28 7.23 7.27±0.02

Tab. 11-3 Results - Sequential (naive).

Timing results for scheduling of gridding operations on GPU with a single matrix calculated on
CPU and no additional buffering. The results comprise total time needed for the whole task
(including estimated times each frame accounted to), times creation of all matrices took
(including averaged times of each operation) and comparison to the equivalent Lower-limit. The
timing ratio comparison and timings each frame accounted to were averaged and presented in
the last column.

180

For the overlapping version to make a difference the proportion of

creation to transmission time would need to be very close to one. Unfortunately,

the creation was up to ~45x, ~41x and ~31x slower in tests.

The assessment of the basic stages of the gridding process was carried

out in the course of sequential tests. These included Creation of a matrix, single

Gridding operation as a matrix multiplication on GPU and Copy as a transfer

data structures on a GPU. Tab. 11-5 comprises average times for these

operations.

Number of frames 28 44 60 76 92 Average
Gridding Work-station [ms] 873.60 1396.20 1883.70 2379.00 2960.10

 Total Desktop [ms] 756.60 1177.80 1610.70 2047.50 2433.60

Laptop [ms] 479.70 741.00 1006.20 1275.30 1528.80

Gridding Work-station [ms] 31.20 31.73 31.40 31.30 32.18 31.56±0.40
 per Frame Desktop [ms] 27.02 26.77 26.85 26.94 26.45 26.81±0.22
 Laptop [ms] 17.13 16.84 16.77 16.78 16.62 16.83±0.19

Create Work-station [ms] 873.60 1388.40 1868.10 2363.40 2948.41
 Total Desktop [ms] 741.00 1170.00 1591.20 2020.20 2402.40

Laptop [ms] 471.90 733.20 986.70 1263.60 1501.50

Create Work-station [ms] 31.20 31.55 31.14 31.10 32.05 31.41±0.40
 per Frame Desktop [ms] 26.46 26.59 26.52 26.58 26.11 26.45±0.20
 Laptop [ms] 16.85 16.66 16.45 16.63 16.32 16.58±0.21

Create Work-station [%] 100.00 99.44 99.17 99.34 99.60 99.51±0.31
 Ratio Desktop [%] 97.94 99.34 98.79 98.67 98.72 98.69±0.50

Laptop [%] 98.37 98.95 98.06 99.08 98.21 98.54±0.45

Create Work-station [ms] 0.00 0.18 0.26 0.21 0.13 0.15±0.10
 Difference per Desktop [ms] 0.56 0.18 0.32 0.36 0.34 0.35±0.14
 Frame Laptop [ms] 0.28 0.18 0.33 0.15 0.30 0.25±0.08

Comparison Work-station [ms] 846.77 1354.18 1826.46 2306.56 2872.40
 Difference Desktop [ms] 736.42 1146.11 1567.51 1992.80 2367.40

 (Lower-limit) Laptop [ms] 401.47 618.30 838.83 1063.84 1272.12

Comparison Work-station [ms] 30.24 30.78 30.44 30.35 31.22 30.61±0.40
 Difference per Desktop [ms] 26.30 26.05 26.13 26.22 25.73 26.09±0.22
 Frame (Lower-limit) Laptop [ms] 14.34 14.05 13.98 14.00 13.83 14.04±0.19

Ratio Work-station 32.56 33.23 32.91 32.84 33.75 33.06±0.45
 (Lower-limit) Desktop 37.49 37.16 37.29 37.43 36.76 37.23±0.29
 Laptop 6.13 6.04 6.01 6.03 5.96 6.03±0.06

Tab. 11-4 Results - Sequential (overlapping).

Timing results for scheduling of gridding operations on GPU with a single matrix calculated on
CPU; with additional buffering. The results comprise total time needed for the whole task
(including estimated times each frame accounted to), times creation of all matrices took
(including averaged times) and comparison to the equivalent Lower-limit. The timing ratio
comparison and timings each frame accounted to were averaged and presented in the last
column.

181

Creation was implemented as a serial CPU code. As the Laptop had the

highest processor frequency it needed the least time to create the gridding

matrices. It was ~2x quicker executing this CPU code than the Work-station

machine. However, the Laptop had the slowest GPU used as a coprocessor.

Each Gridding operation was over 4x slower than execution on the Laptop, and

almost 3x slower on the Work-station machine, than the Desktop.

The tests showed discrepancies between the averaged individual

gridding times (Tab. 11-5) and estimated per frame times (Tab. 11-2). This was

especially visible in the Laptop and Work-station results. It suggests that the

adjacent gridding operations (not separated by the data transmissions) were

able to achieve some degree of overlap which levelled the cumulative time with

the Lower-limit. The data transmission could not be avoided, consequently the

maximum achievable speed-up reduced to ~17x, ~23x and ~6x (after correcting

for the acquired average gridding times; Tab. 11-5).

An important step of the tests was to find out if the data transfers could

be overlapped with the longer matrix multiplications on GPU. For this reason, the

Sequential (pre-calculated) tests (Section 7.2.2) assessed the case in which the

matrices were already available in the CPU memory. Each such gridding

process involved four tasks; three data transmissions and one matrix

multiplication.

The timing results for this test are presented in Tab. 11-6. The times

were ~0.4, ~0.8 and ~0.7 ms/frame longer than the batched gridding (the

Lower-limit) resulting in ~1.4x, ~2.1x and ~1.2x slow-down. Comparison of the

results with the transmission times (~0.7 ms, ~0.7 ms and ~0.6 ms; Tab. 11-5)

suggested that only Work-station was able to achieve some degree of overlap

between tasks. This can be assigned to Work-station’s improved architecture

and scheduling capabilities. However, partitioning of the data transmission

 Work-station Desktop Laptop
Creation [ms] 32.05 ± 0.81 26.63 ± 0.62 17.45 ± 1.52
Gridding [ms] 1.03 ± 0.00 0.76 ± 0.00 2.96 ± 0.16
Copy [ms] 0.71 ± 0.05 0.65 ± 0.06 0.55 ± 0.00

Tab. 11-5 Results - Average timings from the sequential approach tests.

The average timing results for single calculation of a gridding matrix (Creation), transmission of
matrix structures onto GPU (Copy) and execution of single gridding operation by GPU
(Gridding).

182

meant only a portion of the transmission time was overlapped with the matrix

multiplication operation.

The sequential tests run on the tested hardware revealed that creation

of matrices was the major limitation of the new gridding approach for data on

non-repeating trajectories. The execution times were dictated by the speed of

CPUs.

Only the Laptop achieved time comparable (~0.95x) to the Upper-limit

(execution on the scanner) and a good speed up (~2.5x) as compared to the

Acquisition time. Work-station and Desktop were slower than the Upper-limit;

~1.8x and ~1.5x and insignificantly quicker than the Acquisition time; ~1.3x and

~1.6x respectively. These results reflected the CPUs hardware performance.

11.5.3 Threaded approach

The Threaded approach aimed to reduce the total matrix creation time

by dividing the task among multiple of CPU threads (Section 7.2.3). Providing

enough computing resources were available the number of concurrently created

matrices could be brought to the level sufficing to fully occupy the GPU with

work. This way a set of matrices would be prepared while the previous one was

used.

However this condition was impossible to meet for all the tested

hardware. Work-station was limited to 12 physical processors, and the Desktop

and the Laptop to four.

Number of frames 28 44 60 76 92 Average
Total / per frame Work-station 36.43/1.30 59.89/1.36 78.95/1.32 100.36/1.32 120.44/1.31 - / 1.32±0.02
[ms] Desktop 42.42/1.52 67.55/1.54 89.39/1.49 117.55/1.55 140.80/1.53 - / 1.52±0.02

Laptop 96.61/3.45 152.04/3.46 206.76/3.45 261.41/3.44 315.05/3.42 - / 3.44±0.01

Difference Work-station 9.60/0.34 17.87/0.41 21.71/0.36 27.92/0.37 32.74/0.36 - / 0.37±0.02
Total / per frame Desktop 22.24/0.79 35.86/0.82 46.20/0.77 62.85/0.83 74.60/0.81 - / 0.80±0.02
[ms] Laptop 18.39/0.66 29.34/0.67 39.39/0.66 49.95/0.66 58.37/0.63 - / 0.65±0.01

Ratio Work-station 1.36 1.43 1.38 1.39 1.37 1.38±0.03

Desktop 2.10 2.13 2.07 2.15 2.13 2.12±0.03

 Laptop 1.24 1.24 1.24 1.24 1.23 1.23±0.00

Tab. 11-6 Results - Sequential (pre-calculated).

The timing results for sequential scheduling of gridding operations on GPU with data structures
pre-calculated and stored in CPU’s memory. Results are presented as total time needed to grid
a set of frames (including how much each frame accounted to) and their comparison to the
equivalent Lower-limit. The timing ratio comparison and timings each frame accounted to were
averaged and presented in the last column.

183

Number of frames 28 44 60 76 92 Average
Threads Work-station 24/2/14.0 21/3/14.7 16/4/15.0 20/4/19.0 21/5/18.4

 /frames per thread Desktop 12/ 3/ 9.3 12/4/11.0 11/6/10.0 9/9/8.4 8/ 12/ 7.7

 /expected speed-up Laptop 9/ 4/ 7.0 8/ 6/ 7.3 8/ 8/ 7.5 10/ 8/ 9.5 8/ 12/ 7.7

Gridding Work-station [ms] 62.40 95.20 125.58 125.21 160.88
 Expected Desktop [ms] 81.06 107.07 161.07 242.47 317.43

Laptop [ms] 68.53 101.05 134.16 134.24 199.41

Gridding Work-station [ms] 106.97 162.69 211.71 262.97 319.80
 Total Desktop [ms] 205.03 312.00 403.37 503.66 601.72

Laptop [ms] 156.00 220.63 291.94 369.94 469.49

Gridding Work-station [ms] 3.82 3.70 3.53 3.46 3.48 3.60±0.16
 per Frame Desktop [ms] 7.32 7.09 6.72 6.63 6.54 6.86±0.33
 Laptop [ms] 5.57 5.01 4.87 4.87 5.10 5.08±0.29

Create time Work-station [ms] 98.06 160.46 201.69 258.51 316.46
 Acquired Desktop [ms] 200.57 305.31 403.37 499.20 597.26

Laptop [ms] 149.32 209.49 276.34 354.34 455.87

Achieved Work-station [ms] 8.17 8.58 8.90 9.05 9.26 8.79±0.43
 Speed-up Desktop [ms] 3.69 3.78 3.99 4.07 4.04 3.91±0.17
 Laptop [ms] 3.07 3.36 3.45 3.45 3.26 3.32±0.16

Comparison Work-station [ms] 80.26 120.83 154.63 190.76 232.46
 Difference Desktop [ms] 184.91 280.36 360.30 449.11 535.66

 (Lower-limit) Laptop [ms] 77.88 97.80 124.58 157.63 212.85

Comparison Work-station [ms] 2.87 2.75 2.58 2.51 2.53 2.65±0.15
 Difference per Desktop [ms] 6.60 6.37 6.00 5.91 5.82 6.14±0.33
 Frame (Lower-limit) Laptop [ms] 2.78 2.22 2.08 2.07 2.31 2.29±0.29

Ratio Work-station 4.01 3.89 3.71 3.64 3.66 3.78±0.16
 (Lower-limit) Desktop 10.19 9.86 9.36 9.23 9.11 9.55±0.46
 Laptop 2.00 1.80 1.74 1.74 1.83 1.82±0.10

Tab. 11-7 Results - Threaded

Timing results for scheduling of gridding operations on GPU with parallel matrix calculations on
CPU. Apart of the acquired results the table presents estimation of potential speed up and total
time based on the number of worker threads, the size of a task and the best results from the
sequential approach. The rest are total time needed for the whole task (including estimated
times each frame accounted to), total matrices creation, achieved speed-up (as compared to
the sequential approach) and comparison to the equivalent Lower-limit. The timing ratio
comparison and timings each frame accounted to were averaged and presented in the last
column.

As discussed the number of frames and CPU threads were varied to

find the optimal partitioning of the task. The tests findings for all the hardware

are presented in Tab. 11-7. Additionally, the table presents the expected

processing time and speed up based on the partitioning.

All the CPU processors were capable of hyper-threading (mapping of

two virtual processors into one physical); however the tests showed the

achieved speed up (~9x, ~4x and ~3x) was significantly lower than expected

and would not exceed the number of physical processors. Also, this was

reflected in an increase of the average matrix creation time (~45.1 ms, ~44.5

ms and ~34.5 ms). Collected log files showed that some runs were able to

achieve the creation times similar to one found in the sequential approach, but

184

the rest required significantly longer time (about double the time). This

behaviour was observed regardless of the number of concurrently scheduled

threads and increased with total number of matrix creations. Presumably,

execution of some threads assigned to the same physical processor caused an

interrupted execution due to insufficient computing resources. Consequently,

the total time needed to create all of the matrices was greater than expected; as

based on the total number of threads involved in the task (Tab. 11-7).

The next step of the tests was to run the Threaded approach using pre-

calculated matrices stored in CPU memory (as discussed in Section 7.2.3). The

impact of the multi-threading was notable only for the Work-station and Desktop

computers, as compared with the Sequential (pre-calculated) approach (Tab.

11-6); however the Desktop’s improvement was not very significant. As

previously stated, providing all data structures were pre-calculated in CPU’s

memory (excluding the necessity of costly matrix coefficients calculations) the

Work-station machine could achieve almost the maximum expected speed up of

~17x. The Desktop machine achieved only ~13x as compared with the

expected maximum speed up of ~25x.

The threaded results for the Work-station suggested that all the data

transmission operations were almost completely hidden with the longer matrix

multiplication operations (Tab. 11-8), as in contrast to the sequential test (Tab.

11-6). Presumably, the multithreaded scheduling of GPU operations resulted in

more beneficial ordering and consequently in better utilisation of the GPU.

Comparison of the time difference per frame, with the average memory

transmission time, suggested the Desktop and Laptop’s GPUs were not able to

repeat the Work-station’s result, which can be assigned to their hardware

capabilities.

185

Number of frames 28 44 60 76 92 Average
Total / per frame Work-station 30.09/1.07 46.80/1.06 62.40/1.04 78.00/1.03 93.60/1.02 - / 1.04±0.02
[ms] Desktop 35.66/1.27 62.40/1.42 80.23/1.34 102.51/1.35 124.80/1.36 - / 1.35±0.05

Laptop 95.83/3.42 156.00/3.55 207.26/3.45 266.31/3.50 322.77/3.51 - / 3.49±0.05

Difference Work-station 3.38/0.12 4.94/0.11 5.32/0.09 5.79/0.08 6.26/0.07 - / 0.09±0.02
Total / per frame Desktop 15.53/0.55 30.76/0.70 37.15/0.62 47.97/0.63 58.75/0.64 - / 0.63±0.05
[ms] Laptop 17.71/0.63 33.17/0.75 39.90/0.66 54.00/0.71 66.14/0.72 - / 0.70±0.05

Ratio Work-station 1.13 1.12 1.09 1.08 1.07 1.10±0.02

Desktop 1.77 1.97 1.86 1.88 1.89 1.88±0.07

 Laptop 1.23 1.27 1.24 1.25 1.26 1.25±0.02

Tab. 11-8 Results - Threaded (pre-calculated).

The timing results for scheduling of gridding operations on GPU with data structures pre-
calculated and stored in CPU’s memory. Results are presented as total time needed to grid a
set of frames (including how much each frame accounted to) and their comparison to the
equivalent Lower-limit. The timing ratio comparison and timings each frame accounted to were
averaged and presented in the last column.

