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Abstract 

In Magnetic Resonance Imaging, energy of electromagnetic waves is 

used to excite protons placed in a static magnetic field. This generates a signal, 

which is further spatially encoded with linear magnetic field gradients. The 

signal exists in frequency domain called k-space. Traditionally, the signal is 

sampled in lines stored on a Cartesian grid. Next, Fast Fourier Transform is 

applied to generate images. However, the consecutive manner (line-by-line) of 

this strategy makes it very slow. Faster sampling strategies exist, but 

acquisitions with them require a more complex image reconstruction process. 

There is an obvious trade-off between acquisition time and complexity of image 

reconstruction. Real-time assessment protocols for day-to-day clinical work 

demand both data acquisition with rapid sampling trajectories and fast, robust 

image reconstructions. 

Computational solutions in form of parallel architectures can be used to 

aid image reconstruction, which has been proven to significantly speed-up 

reconstruction process. Regrettably, this is often done in off-line mode, where 

the data need to be downloaded from the scanner and reconstructed 

elsewhere. This process hinders the clinical workflow substantially. 

This work describes challenges entailed with translation of advanced 

imaging protocols into the clinical environment; (i) use of the advanced 

sequences is limited by their reconstruction time, and (ii) fast implementations 

exist but they still run in off-line mode. These were addressed and resolved with 

development of a novel online, heterogeneous image reconstruction system for 

Magnetic Resonance Imaging. The external platform was designed to support 

fast implementation of advanced reconstruction algorithms. An external 

computer equipped with a Graphic Processing Unit card was integrated into the 

scanner’s image reconstruction pipeline. This allowed direct access to high 

performance parallel hardware on which the rapid data reconstruction can be 

realised. Also, the automation of data transmission and reconstruction 

execution has preserved the non-interrupted assessment workflow.  
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1. Introduction 

1.1 Magnetic Resonance physics fundamentals 

1.1.1 Signal generation 

Atomic nuclei with odd atomic weight and/or odd atomic number have 

angular momentum (𝐽) referred to as a spin (1-4). Nuclei with non-zero spin 

have an associated magnetic moment (𝜇⃗ = 𝛾𝐽), where 𝛾 is the gyromagnetic 

ratio which is a property of specific nuclei. The magnetic moment magnitude is 

given by the following equation; 

Where 𝐼 is the nuclear spin quantum number, which relates to nuclei 

atomic mass and charge number and ℎ is Planck’s constant. For a nucleus to 

be MR active 𝐼 must be non-zero, therefore generating a non-zero magnetic 

moment. However, in thermal equilibrium and absence of a strong external 

magnetic field the direction of 𝜇⃗ is random. In consequence there is no net 

magnetic field from a population of spins. 

When placed in an external magnetic field (𝐵0⃗⃗⃗⃗⃗) the spins undergo 

several changes. Primarily, the spins are separated (quantized) into (2𝐼 + 1) 

quantum states (Zeeman splitting) (4, 5), as shown in Equation 1-2. 

Therefore, nuclei where 𝐼 =
1

2
 (i.e. 1H, 13C, 19F etc.) have two possible 

quantum states −
1

2
 and 

1

2
. Importantly, these quantum states have discrete 

energy levels directly associated with them (Equation 1-3). 

|𝜇⃗| =
𝛾ℎ

2𝜋
√𝐼(𝐼 + 1) 1-1 

Equation 1-1 Magnitude of a magnetic moment. 

𝑚𝐼 ∈ −𝐼,−𝐼 + 1, … , 𝐼 1-2 

Equation 1-2 Possible spin quantum states under an external magnetic field. 
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These energy states are important in determining the magnetic 

properties of the spin population. In an external magnetic field the magnetic 

moments associated with individual spins precess around the magnetic field 

axis as shown in Fig. 1-1. In this state the magnetic moment can be defined in 

terms of its component along the external field (𝜇𝑧), an orthogonal component 

(𝜇𝑥,𝑦), an angle (𝜃) and the precession frequency. 

 

The orientation of these precessing magnetic moments (either parallel 

or anti-parallel to the external field) is determined by the energy levels of the 

spins. Spins aligned with parallel directionality are in the low energy state (𝐸↑) 

and those in anti-parallel alignment are in the high energy state (𝐸↓).  

𝐸 = −𝜇⃗ ∙ 𝐵0⃗⃗⃗⃗⃗ = −𝜇𝑧𝐵0 = −𝑚𝐼
𝛾ℎ

2𝜋
𝐵0 

𝐸↑ = −
𝛾ℎ

4𝜋
𝐵0 

𝐸↓ =
𝛾ℎ

4𝜋
𝐵0 

𝛥𝐸 = 𝐸↓ − 𝐸↑ =
𝛾ℎ

2𝜋
𝐵0 

1-3 

Equation 1-3 Quantum state energy formulations. 

𝜔0 = 𝛾𝐵0 1-4 

Equation 1-4 Precession frequency 

 

Fig. 1-1 Schematic visualization of a magnetic vector precessing around an external field. 
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In a given spin population the proportion of the low to high energy spins 

is governed by the Boltzmann distribution; 

The ratio of spins in the lower energy state (𝑁𝑙𝑜𝑤) to those in the higher 

energy state (𝑁ℎ𝑖𝑔ℎ) is a function of the energy difference between the states 

(Equation 1-3) and the temperature of the system (𝑇𝑠), 𝐾 - the Boltzmann 

constant. Consequently, the ratio increases with the strength of the external 

field and falling system temperatures. There is always a small excess of nuclei 

in the low energy state. For the room temperature (25oC) and 𝐵0=1.5T there are 

~10 in a million protons (1H – Hydrogen molecules) in the low energy state. This 

excess is substantial enough to create a nonzero net magnetisation vector 

parallel to the external magnetic field. 

As was mentioned an important property of the magnetic moment under 

the external field is its precession around it. However, the net magnetic vector 

does not exhibit the precession around the external field. This is a result of the 

random distribution of the traversal magnetisation (𝜇𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗) from each nucleus. 

Nevertheless, an aligned magnetic vector can be tipped or nutated into the x-y 

plane by means of an external magnetic wave. The wave must have the same 

frequency as the precessional frequency (Larmor frequency). In classical 

description, the magnetic wave is seen as a force of torque, which is applied 

orthogonally to the torque of magnetic moment, oscillates as it precesses. In the 

quantum description, the electro-magnetic energy of the external impulse is 

used to force spins to change quantum state (Planck’s law – absorption). The 

energy of the external radiation (𝐸𝑒𝑥𝑡 =
ℎ𝜔𝑒𝑥𝑡

2𝜋
) must match the energy difference 

between the states (𝛥𝐸 - Equation 1-3). Thus, the electro-magnetic wave must 

propagate with the Larmor frequency. The matching frequency is called 

resonance frequency and the whole process is known as magnetic resonance 

(MR). 

MR static magnetic fields for clinical applications are typically in range 

of 0.1 to 7 Tesla (T), therefore the resonance frequency of Hydrogen nucleus 

𝑁𝑙𝑜𝑤
𝑁ℎ𝑖𝑔ℎ

= 𝑒
𝛥𝐸
𝐾𝑇𝑠 1-5 

Equation 1-5 Ratio of the low to high energy spins. 
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(the most abundant element in the human body, as up to ~65 % of it consists of 

water - H2O) is in range of radio frequencies and the external impulse is 

referred to as a radio frequency pulse (RF-pulse). 

RF excitation is used to reorient the net magnetisation from alignment 

with the external magnetic field. After excitation, the tipped magnetisation has a 

non-zero component in a plane that is orthogonal to the external field. 

Consequently, magnetic resonance generates the signal through the net 

alignment and synchronisation of the magnetic moments with each other. In this 

way they do not cancel each other out and the resultant signal can be detected. 

These net magnetic field changes (𝑚⃗⃗⃗(𝑡)) can be measured as an 

induced electric current in an antenna (more commonly called a coil) placed 

next to the sample of interest. The signal generated in the receiver coil dies out 

with time, which is referred to as Free Induction Decay (FID). The signal 

disappearance is caused by inhomogeneity of the external magnetic field and 

the spin-spin relaxation (destructive interaction of spins in close spatial 

proximity). Both factors force magnetic moments to get out of synchronisation 

and have a destructive effect on strength of the generated signal. This process 

is dictated by 𝑇2
∗ time, or the transverse relaxation time (5). 

𝑚⃗⃗⃗(𝑡) ∝ 𝜌𝑒−𝑖𝛾𝐵0𝑡 

𝑆(𝑡) ∝ 𝑚⃗⃗⃗(𝑡)𝑒
−
𝑡
𝑇2
∗
 

1-6 

Equation 1-6 Simplified MR signal formulation. 

Equation 1-6 describes (in a simplified form) a generated MR signal (𝑆) 

as a function of initial net magnetisation vector in the orthogonal plane (𝑚⃗⃗⃗) that 

is reduced in time with the exponential rate (𝑇2
∗). Strength of the initial 

magnetisation (𝑚⃗⃗⃗) vector is directly proportional to the density of nuclei in a 

sample (𝜌) that took part in MR, while its oscillations are dictated by Larmor 

frequency. 

The tipped spins also realign with the external field and recover 

magnetisation in that direction. This process is called the longitudinal relaxation 

described with 𝑇1 time. In every multiple of 𝑇1 second magnetic momentum 
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recovers ~63% of its magnetisation along the direction of the external magnetic 

field. 

The signal described forms the bases of the MR imaging and in the next 

section I describe how the spatial information is encoded into it. 

1.1.2 Spatial encoding 

MR experiments allow measurement of nuclei density by measuring FID 

signal that originated from an examined sample. Although the signal does not 

carry any spatial information this can be introduced using magnetic field 

gradients linearly varying through space. Larmor frequency depends on 

strength of an external magnetic field, which can be modified so it varies across 

space according to a vector field (gradient) 𝐺⃗ = 𝛻𝐵 – a linear gradient of 

magnetic field 𝐵. In this case, precession frequency (𝜔) depends on spatial 

position vector (𝑟); 

𝜔(𝑟) = 𝛾(𝐵0 + 𝐺⃗ ∙ 𝑟) 1-7 

Equation 1-7 Larmor frequency as a function of linearly varying magnetic gradient. 

The magnetisation can be now described by the following formula; 

𝑚⃗⃗⃗(𝑡) ∝ 𝑒−𝑖𝛾𝐵0𝑡∫𝜌(𝑟)𝑒−𝑖𝛾𝐺⃗̇∙𝑟𝑡𝑑𝑟 1-8 

Equation 1-8 Impact of linearly varying gradients on the total magnetization vector. 

Equation 1-8 dictates how net magnetic vector changes with strength of 

𝐺⃗ and the time this magnetic gradient is applied. 

Consequently, the simplest relation between position and precession 

frequency is obtained by applying a linearly varying magnetic gradient through 

space. This results in magnetic vectors from different spatial positions rotating 

with different frequencies. The constant 𝑒−𝑖𝛾𝐵0𝑡 can be demodulated, which is 

often referred to as moving to rotating reference frames, as a thought exercise 

to simplify the understanding of the processes. In this domain magnetic vectors 

of spins under no additional external magnetisation (i.e. 𝐺⃗ ∙ 𝑟 = 0) are seen as if 

having no angular momentum. However, magnetic vectors of spins under 

external magnetic field that deviates from 𝐵0 acquire different phases over time. 
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These are proportional to a difference in the external magnetic field (𝐺⃗ ∙ 𝑟) and 

the length of time of its application (𝑡). 

This difference in phase across space can be seen as a wave. Unlike 

oscillations through time these are oscillations through space. We have a wave 

of changing phases as we move from one position to another (Fig. 1-2). This 

can be described as a wave vector. This is traditionally denoted with a letter 𝑘, 

and as every wave it has its own spatial frequency, and wave length 𝜆; 

𝑘 =
1

𝜆
 

𝑘⃗⃗ =
𝛾

2𝜋
𝐺⃗𝑡 

1-9 

Equation 1-9 𝑘⃗⃗ – spatially varying phase of magnetic vectors. 

 

 

Fig. 1-2 Example of changes induced with a linear magnetic gradient in spatial oscillations (k-
space position) with time. 

The arrows represent spatially distributed spins presented in the rotating frame of reference. 
Equivalent continuous complex representation of the k-space is represented with the black (real 
component) and grey (imaginary component) plots. 

Time [s]

0 Space[m]

…
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Now, the superposition of all magnetic vectors can be seen as existing 

in a new domain, 𝑘-space domain; 

𝑆(𝑘⃗⃗) ∝ 𝑚⃗⃗⃗(𝑘⃗⃗) ∝ ∫𝜌(𝑟)𝑒−2𝜋𝑖𝑘⃗⃗∙𝑟𝑑𝑟 1-10 

Equation 1-10 Proportional relation between MR signal and total magnetic vector. 

Equation 1-10 is derived from equations 1-6 and 1-9, and describes the 

acquired MR signal, depending on a position in 𝑘-space. The position in 𝑘-

space can be changed with accumulation of time in a direction and strength of 

applied magnetic field gradient (Equation 1-9). 

More importantly, the acquired MR signal in 𝑘-space is a Fourier 

Transformation (FT) of nuclei density 𝜌(𝑟). Therefore, inverse Fourier 

Transformation (iFT) can be applied to get the nuclei density distribution. In the 

case of spatial encoding with 2D magnetic field gradients, this can be visualised 

in a form of an image. 

1.2 Fourier Transform and its properties 

The Fourier Transform (ℱ) and its inverse (ℱ−1) for unitary frequencies 

are formulated as follows; 

ℱ𝜁[𝑓(𝑥)] = 𝑭(𝜁) = ∫𝑓(𝑥)𝑒
−2𝜋𝑖𝜁𝑥𝑑𝑥 

ℱ𝑥
−1[𝑭(𝜁)] = 𝑓(𝑥) = ∫𝑭(𝜁)𝑒2𝜋𝑖𝜁𝑥𝑑𝜁 

1-11 

Equation 1-11 Fourier Transform and its inverse formulations. 

The first equation expresses transformation (ℱ𝜁) of function 𝑓 from 𝑥 

domain into its equivalent form 𝑭 in the reciprocal domain, 𝜁. Conversely, the 

second equation expresses inverse transformation (ℱ𝑥
−1) of 𝑭(𝜁) into 𝑓(𝑥). 

The following are properties of the transform that are used in this work. 

The properties are given without proofs as these can be found in other works; 



28 

ℱ𝜁 ∑ 𝛿(𝑥 − 𝑗𝑀) =
1

𝑀
∑ 𝛿 (𝜁 − 𝑗

1

𝑀
)

∞

𝑗=−∞

∞

𝑗=−∞

 

ℱ𝑥
−1 ∑ 𝛿(𝜁 − 𝑗𝑀) =

1

𝑀
∑ 𝛿 (𝑥 − 𝑗

1

𝑀
)

∞

𝑗=−∞

∞

𝑗=−∞

 

1-12 

Equation 1-12 Fourier Transform of a sampling function. 

𝛿 represents Dirac delta function, which is used to represent 

discretisation of continuous functions through a sampling process. Fourier 

Transformation of a sampling function results in a different sampling function. 

ℱ𝜁[𝑓(𝑥 − 𝑎)] = 𝑒
−2𝜋𝑖𝑎𝜁𝑭(𝜁) 

ℱ𝑥
−1[𝑭(𝜁 − 𝑎)] = 𝑒2𝜋𝑖𝑎𝑥𝑓(𝑥) 

1-13 

Equation 1-13 Fourier Transform of a shifted function. 

A shift of a transformed function results in modulation, phase shift in the 

reciprocal domain. 

ℱ𝜁[𝑒
2𝜋𝑖𝑎𝑥𝑓(𝑥)] = 𝑭(𝜁 − 𝑎) 

ℱ𝑥
−1[𝑒2𝜋𝑖𝑎𝜁𝑭(𝜁)] = 𝑓(𝑥 + 𝑎) 

1-14 

Equation 1-14 Fourier Transform of a modulated function. 

A modulation, phase shift of a transformed function results in a shift in 

the reciprocal domain. 

ℱ𝜁[𝑓(𝑥)𝑔(𝑥)] = 𝑭(𝜁) ∗ 𝑮(𝜁) 
ℱ𝑥
−1[𝑭(𝜁)𝑮(𝜁)] = 𝑓(𝑥) ∗ 𝑔(𝑥) 

1-15 

Equation 1-15 Fourier Transform of multiplication of functions. 

Fourier Transformation of a multiplication of functions results in 

convolution of their representations in the reciprocal domain. 

ℱ𝜁[𝑓(𝑥) ∗ 𝑔(𝑥)] = 𝑭(𝜁)𝑮(𝜁) 

ℱ𝑥
−1[𝑭(𝜁) ∗ 𝑮(𝜁)] = 𝑓(𝑥)𝑔(𝑥) 

1-16 

Equation 1-16 Fourier Transform of convolution of two functions. 

Fourier Transformation of a convolution of functions results in 

multiplication of their representations in the reciprocal domain. 
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1.3 Image reconstruction 

Equations 1-6 and 1-10 give us an insight into the relationship between 

underlying nuclei density and the generated MR signal. From equation 1-10 we 

know that the underlying density function can be reproduced accurately, 

providing we have sufficient knowledge about the signal. The signal was 

expressed in terms of a new spatial frequency domain (k-space). The signal 

cannot be acquired instantly as k-space position is time dependent (Equation 

1-9). However, the k-space can be navigated through using linear magnetic 

gradients. A sequence of changing magnetic gradients can be visualised in form 

of a path or trajectory of k-space positions. The signal is sampled while the 

series of gradients is being played out. Therefore a k-space path drawn by a 

predefined series of magnetic gradients is referred to as a sampling trajectory. 

From equation 1-6 we know that the k-space signal dies out and 

sampling trajectories cannot be infinitely long. It is impractical to cover the 

whole k-space with single trajectory, as it may happen that by the end of it there 

is no signal to acquire. Instead a series of MR excitations and sampling on 

different, complementary trajectories is preferred. The selected trajectory 

defines how quickly k-space can be sampled. Ultimately, the trajectory and 

sampling strategy should be selected depending on the application, as well as 

the desired resolution of the reconstructed data. 

1.3.1 𝑘-space sampling 

The previous section revealed that acquired 𝑘-space signal, 𝑆(𝑘⃗⃗) is a 

Fourier Transformation of nuclei density function, 𝜌(𝑟). As mentioned, an 

inverse Fourier Transform operation can be used to find 𝜌(𝑟). Although 𝑘-space 

can be seen as a continuous function it is not feasible to acquire data in 

continuous fashion. The signal can be sampled as its discrete representation. 

This can be represented with a sampling function (generalised comb function); 
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Ш𝑎⃗⃗∈𝐴(𝑥⃗) = ∑𝛿(𝑥⃗ − 𝑎⃗)

𝑎⃗⃗∈𝐴

 1-17 

Equation 1-17 Generalised comb function – sampling function. 

𝑎⃗ is the position of a sample from a set of sampling trajectory positions 

(𝐴). 

An 𝑚-dimensional comb function is defined as  

Ш𝑁⃗⃗⃗(𝑥⃗) =∑∑…∑ 𝑚𝛿(𝑥0 − 𝑖0𝑁0, 𝑥1 − 𝑖1𝑁1…𝑥𝑚−1 − 𝑖𝑚−1𝑁𝑚−1)

𝑖𝑚−1𝑖1𝑖0

 

= ∑𝛿(𝑥⃗ − 𝑖𝑁⃗⃗⃗)

𝑖

 

1-18 

Equation 1-18 𝑚-dimensional comb function. 

𝑁⃗⃗⃗ represents a vector of distances between 𝛿 functions positions. 

The discrete MR signal can be formulated in the following way; 

𝑆⃗̇(𝑘⃗⃗) = (𝑆(𝑘⃗⃗)Ш𝑎⃗⃗∈𝐴(𝑘⃗⃗)) ∗ Ш𝑁⃗⃗⃗(𝑘⃗⃗) 1-19 

Equation 1-19 Discrete version of MR signal. 

The convolution with Ш𝑁⃗⃗⃗(𝑘⃗⃗) is used to simulate signal’s periodicity. 

Substituting Equation 1-10 into Equation 1-19 yields the definition of Discrete 

Fourier Transform (DFT) assuming 𝑁⃗⃗⃗ represents support bandwidth of k-space 

signal (𝑆(𝑘⃗⃗)) and trajectory samples (𝐴) are on equidistant positions from 𝑁⃗⃗⃗. 

1.3.2 Cartesian trajectory 

The traditional way of acquiring data is to read-out data samples on a 

uniformly spaced Cartesian grid. This means intervals between samples of each 

of acquisition dimensions are constant. This property allows use of Fast Fourier 

Transformation (FFT) algorithm to generate images, which is a very robust way 

of performing DFT(6). Although this simplifies image reconstruction, the data 

acquisition is very slow, as each trajectory line requires separate RF-pulse 

excitation. 
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1.3.3 Partial Fourier 

One of the common ways of speeding up Cartesian acquisitions is by 

applying Partial Fourier technique(7). The Partial Fourier technique exploits 

redundancy in the acquired signal, assuming it is of real values (a quantity of 

nuclei density), in order to reduce the amount of data needed to be sampled. 

The Fourier Transform of a real function is symmetric. The frequency space is 

centrosymmetric with respect to its origin. If that was true for MR signals only 

half of k-space would need to be sampled, while the other can be calculated 

based on the read-out signal. Unfortunately, variations in the resonance 

frequencies, flow and motion may cause phase errors, thus make the frequency 

signal asymmetric and invalidate this assumption. Different techniques can be 

applied to correct for slowly varying phase errors (i.e. Conjugate Synthesis(8), 

Margosian(9), Homodyne(10), Cuppen(11), Projection onto Convex Sets(12) 

and techniques based on Finite Impulse Response filters(7)). These require 

calculation of a phase estimate map that is used in a correction step. This is 

done by fully sampling the central part of the k-space. For example, sampling 

may be limited to ~62 % of one of the encoding dimensions. The middle lines 

are used to estimate phase changes. Additionally, some techniques use filtering 

to reduce Gibbs’(5) ringing and/or reorder steps of reconstruction to reduce 

artefacts due to imperfections in the phase map estimation. 

Partial Fourier techniques are limited to structural imaging that may 

exhibit slowly varying phase errors, as information encoded in a phase of signal 

is lost with these techniques. Also, it usually does not provide more than ~1.66x 

speed-up in acquisition time (data reduction: 40 %). Also, it is an undersampling 

technique and as such it results in loss of signal-to-noise ratio (SNR). 

1.3.4 Non-uniform sampling trajectories 

A faster way of data sampling is to use a different, more time efficient 

trajectory than Cartesian (i.e. multi-planar imaging(13)), spiral imaging(14, 15), 

radial imaging(16). One of the fastest sampling trajectories is spiral 

trajectory(17), as these cover a large proportion of 𝑘-space in one read-out, and 

make efficient use of the gradient hardware. Regrettably, DFT cannot be 

directly applied to data acquired on a spiral trajectory, as it is no longer placed 

on a uniformly spaced grid. To solve this problem a technique, originating from 
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astronomy(18), called gridding(19, 20) is applied. This re-samples data onto a 

rectilinear grid by convolving it with a kernel function; 

𝑆𝑐̇
⃗⃗ ⃗⃗ (𝑘⃗⃗) = (𝑆⃗̇(𝑘⃗⃗) ∗ 𝑾(𝑘⃗⃗))Ш𝑁⃗⃗⃗(𝑘⃗⃗) 1-20 

Equation 1-20 Formulation of convolution onto rectilinear grid. 

This allows use of DFT and the convolution operation is followed by 

FFT; 

ℱ𝑟
−1 [𝑆𝑐̇
⃗⃗ ⃗⃗ (𝑘⃗⃗)] = ℱ𝑟

−1 [(𝑆⃗̇(𝑘⃗⃗) ∗ 𝑾(𝑘⃗⃗))Ш𝑁⃗⃗⃗(𝑘⃗⃗) ∗ Ш𝑁𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑘⃗⃗)] 

=
1

(𝑁2𝑀)𝑚
ℱ𝑟
−1 [𝑆⃗̇(𝑘⃗⃗)]𝑤(𝑟)Ш 1

𝑁𝑀
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑟) ∗ Ш1

𝑁
⃗⃗⃗ ⃗(𝑟) 

1-21 

Equation 1-21 Inverse FT of convolved MR signal. 

𝑚 is the number of dimensions. The final step is to remove weighting 

(ℱ𝑟
−1[𝑾(𝑘⃗⃗)] = 𝑤(𝑟)) introduced by the convolution (Equation 1-16); 

(𝑁2𝑀)𝑚

𝑤(𝑟)
ℱ𝑟
−1 [𝑆𝑐̇
⃗⃗ ⃗⃗ (𝑘⃗⃗)] = ℱ𝑟

−1 [𝑆⃗̇(𝑘⃗⃗)]Ш 1
𝑁𝑀
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑟) ∗ Ш1

𝑁
⃗⃗⃗ ⃗(𝑟) 1-22 

Equation 1-22 MR reconstruction by gridding. 

The final result has no aliasing resultant from DFT of the gridded signal 

(𝑆𝑐̇
⃗⃗ ⃗⃗ (𝑘⃗⃗)). However, it is important to note that gridding does not remove potential 

artefacts due to the selected trajectory imperfections (i.e. under-sampling). Also, 

if the selected trajectory function has a varying density of sampling points, this 

has to be corrected with an additional k-space samples weighting (21). 

The sinc function is the optimal convolution kernel(19) as the resultant 

weighting due to convolution process has a form of scaling of the final result. 

However, gridding using sinc function is impractical as it is too computationally 

intensive. A number of other kernels with their reciprocal window functions have 

been studied and are commonly used in MRI(19, 21). These are functions of 

Finite Impulse Response (FIR), which rapidly decay outside of the selected 

kernel width, allowing its truncation and fast convolution process. In this work 

the Kaiser-Bessel function was selected and used for the gridding operations, 



33 

due to its characteristics, performance and simplicity in computation of 

discretized values. 

1.3.5 Under-sampling 

Some applications (i.e. Cardiac MRI) require a very high data 

acquisition rate to reduce blurring due to dynamic behaviour of the imaged 

object. In many cases this cannot be achieved with efficient sampling 

trajectories alone, and for which data reduction techniques like Partial Fourier 

are not applicable (i.e. Phase-Contrast MR) or would not make significant 

difference. The reduction in acquisition time can be realised with under-

sampling. This means only a selected subset of trajectory read-out lines are 

acquired. This is a more general case than Partial Fourier acquisition, which is 

not limited to continuous sets of Cartesian lines. Any subset of trajectory 

positions can be selected. This operation is described in terms of under-

sampling factor or data reduction factor, which is defined as a ratio of acquired 

trajectory positions to their total number. Alternatively, it can be described in 

terms of acceleration factor defined as a reciprocal of data reduction factor. For 

example, acquisition of only even or odd lines halves the sampling time (data 

reduction factor of 0.5 or 2x acceleration). 

Unfortunately, with under-sampling some information about the signal is 

lost, which causes artefacts in the form of aliasing (Fig. 1-4). Consider a one 

dimensional signal 𝑆(𝑘) (the same principal applies to multi-dimensional 

signals). The signal is fully sampled with intervals of 𝑀 [
1

𝑚
] and 𝑆(𝑘) ≠ 0 ∀𝑘 ∈

[−
𝑁𝑀

2
;
𝑁𝑀

2
]; 

𝑆⃗̇(𝑘) = [𝑆(𝑘)Ш𝑀(𝑘)] ∗ Ш𝑁𝑀(𝑘) 1-23 

Equation 1-23 1D Cartesian sampling. 

Now, inverse Fourier Transform of 𝑆⃗̇(𝑘) is described as follows; 
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𝜌̇(𝑟) =
1

𝑁𝑀2
[𝜌(𝑟)Ш 1

𝑁𝑀

(𝑟)] ∗ Ш1
𝑀

(𝑟) 1-24 

Equation 1-24 Discrete nuclei density representation from 1D Cartesian sampling. 

The sampling function Ш𝑀(𝑘) gives rise to periodicity of 𝜌(𝑟), which is 

sampled with intervals of 
1

𝑁𝑀
[𝑚]. 

This explains aliasing for signals sampled with intervals wider than 𝑀. 

For example, acquisition of every other sample gives the following outcome; 

𝜌̇(𝑟) =
1

2𝑁𝑀2
[𝜌(𝑟)Ш 1

𝑁𝑀

(𝑟)] ∗ Ш 1
2𝑀

(𝑟) 1-25 

Equation 1-25 Two times under-sampling of 1D Cartesian sampling. 

This means distances between centres of repeated 𝜌(𝑟) are halved, 

and result in aliasing (Fig. 1-3 and Fig. 1-4). 

Fast imaging requires a compromise between data acquisition reduction 

that can be applied and visible artefacts in reconstructed images. This directly 

depends on the application and used sampling trajectory. For example, two 

times under-sampling of Cartesian trajectory in anterior to posterior direction for 

cardiac imaging may require no additional steps to remove incurred aliasing. 

This is because the elliptical shape of imaged cross-section leaves enough 

space for the alias. Although the outer parts of the body may alias, they do not 

wrap into the area of interest in the cardiac examination. An imaging plane can 

be positioned to place a heart’s cross-section in the centre leaving it 

unobstructed by the alias. However, even two times sped-up Cartesian read-out 

is too slow for many MR applications. These include all real-time cardiac 

assessments for which data sampling need to be on the level of ~40 ms or 

faster. Of course, higher acceleration factors can be used, but then the aliasing 

may start to corrupt the whole imaging space. 
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In practice this is not an undersampling technique as the region of 

interest (support region) is rectangular. Consequently, to preserve the spatial 

resolution an extent of sampled k-space is preserved, while a step between 

read-out lines is increased to reduce the field-of-view (FOV) in this direction. 

Nevertheless, implications of acquiring the rectangular FOV are the same as 

with equivalent undersampling (i.e. loss of SNR). 

1.4 Advanced MRI 

Under-sampling can be combined with efficient sampling trajectories 

(i.e. spiral trajectory) to achieve even lower acquisition times. Direct use of 

gridding, as a reconstruction technique, fails in this case. This would result in 

artefacts in the form of aliasing. 

 

Fig. 1-3 Schematic visualization of1D signal under-sampling. 

a) the k-space signal and the underlying object; b) discrete representation equivalent to fully 
sampled reconstruction; (c-d) progressive undersapling of the signal and its impact on the 
reconstructed object by inverse Fourier transform. 

a)

b)

c)

d)



36 

The artefacts can be removed with additional reconstruction steps. For 

example, reconstruction of under-sampled data through combination of 

simultaneously acquired data using spatially distributed receiver coils is a well-

studied technique with multiple variants(22-25). Alternatively, a temporal 

domain of data acquired as a series of frames or volumes can be used to 

encode information about the acquired signal(26). In such case a single 

receiver coil is sufficient to reconstruct the data. However, it is possible to 

combine both techniques(27-29), which results in improved image quality or 

increase in possible data acquisition rate. 

In this work, the Sensitivity Encoding (SENSE)(24) algorithm for 

arbitrary sampling trajectories was selected for implementation. Furthermore, 

the implemented algorithm was combined with the temporal encoding technique 

(UNFOLD) to double possible temporal resolution of acquired data. Both 

implementations were used in further described studies. For completion, the 

following describes the SENSE algorithm based on the original work(24, 27, 30) 

and its further studies(31), and the UNFOLD technique based on the original 

articles(26, 32, 33). 

1.4.1 Simplified reconstruction by Sensitivity Encoding 

To introduce basic concepts the simple case of under-sampled one 

dimensional signal is considered as introduced in section 1.3.5. This can be 

seen as an equivalent of under-sampling of the phase encoding dimension in 

Cartesian sequences (Fig. 1-4). 

Deriving from equation 1-25, we can represent the discrete aliased 

function (𝜌̇(𝑟)) as a sum of the underlying nuclei density (𝜌(𝑟)) from specific 

spatial locations; 
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𝜌𝑖
+ = 𝜌 (

𝑖

𝑀𝑁
) ; ∀

𝑖∈[−
𝑁
2
;0)∩ℕ

 

𝜌𝑖
− = 𝜌 (

𝑖

𝑀𝑁
) ; ∀

𝑖∈[0;
𝑁
2
)∩ℕ

 

𝜌̇ (
𝑖

𝑀𝑁
) =

{
 
 

 
 
𝜌̇𝑖
− =

𝜌 (
𝑖
𝑀𝑁) + 𝜌 (

𝑖
𝑀𝑁 +

1
2𝑀)

2𝑁𝑀2
=
𝜌𝑖
− + 𝜌𝑖

+

2𝑁𝑀2
; ∀
𝑖∈[−

𝑁
2
;0)∩ℕ

𝜌̇𝑖
+ =

𝜌 (
𝑖
𝑀𝑁) + 𝜌 (

𝑖
𝑀𝑁 −

1
2𝑀)

2𝑁𝑀2
=
𝜌𝑖
+ + 𝜌𝑖

−

2𝑁𝑀2
; ∀
𝑖∈[0;

𝑁
2
)∩ℕ
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Equation 1-26 Simplified description of 1D aliasing for two times under-sampling. 

This formulation is for two times under-sampling. Of course, the formula 

can be adapted to higher acceleration factors, as long as the number of 

samples (𝑁) is divisible by the acceleration factor. Also, this simple method is 

limited to acceleration factors from the set of natural numbers. Both conditions 

are imposed to guarantee that no gridding operations are necessary and all 

points are on the same Cartesian grid. 

A direct result of two times under-sampling is reduction of a support 

region or periodicity of 𝜌̇(𝑟) from every 
1

𝑀
[𝑚] intervals to 

1

2𝑀
[𝑚]. In 2D 

reconstructions, this is referred to as reduction in field of view (FOV). 

Consequently, both halves of the original function are overlaid on top of each 

other in each half of the function resulting from the under-sampling (Fig. 1-4). In 

this form the original signal cannot be determined as the linear equation is 

under-determined (there are more unknowns than equations). 

SENSE(24) compensates for loss of information, due to the under-

sampling process, using information about spatial signal weighting, introduced 

through each of acquisition coils. In principal, the closer a precessing magnetic 

momentum is to a receiver, the stronger the induced signal is (Fig. 1-4). In this 

understanding a receiver has spatially varying signal sensitivity dependent on 

its design. Commonly, these are represented by coil sensitivity maps (sensitivity 

profiles). The coil sensitivity directly translates into weighting of acquired 

signals. This additional information can be used to solve the under-sampling 

problem. A new system of linear equations can be written; 
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𝐶𝑗,𝑖
+ = 𝐶𝑗 (

𝑖

𝑀𝑁
) ; ∀

𝑖∈[−
𝑁
2
;0)∩ℕ

; ∀𝑗∈[0,𝐽−1]∩ℕ 

𝐶𝑗,𝑖
− = 𝐶𝑗 (

𝑖

𝑀𝑁
) ; ∀

𝑖∈[0;
𝑁
2
)∩ℕ
; ∀𝑗∈[0,𝐽−1]∩ℕ 

𝜌̇𝑗,𝑖
− = 𝜌̇𝑗,𝑖

+ =
𝐶𝑗,𝑖
−𝜌𝑖

− + 𝐶𝑗,𝑖
+𝜌𝑖

+

2𝑁𝑀2
; ∀𝑗∈[0,𝐽−1]∩ℕ 

1-27 

Equation 1-27 Simplified description of 1D aliasing including receiver coil weighting. 

Here 𝐶𝑗 and 𝜌̇𝑗 represent the spatial weighting introduced with the 𝑗th 

coil and the reconstructed nuclei distribution on a basis of the acquired signal, 

respectively. 

This can be represented in matrix notation; 

[
 
 
 
 
𝐶0,𝑖
− 𝐶0,𝑖

+

𝐶1,𝑖
− 𝐶1,𝑖

+

⋮ ⋮
𝐶𝐽−1,𝑖
− 𝐶𝐽−1,𝑖

+
]
 
 
 
 

[
𝜌𝑖
−

𝜌𝑖
+] =

[
 
 
 
𝜌̇0,𝑖
−

𝜌̇1,𝑖
−

⋮
𝜌̇𝐽−1,𝑖
−

]
 
 
 

=

[
 
 
 
 
𝜌̇0,𝑖
+

𝜌̇1,𝑖
+

⋮
𝜌̇𝐽−1,𝑖
+

]
 
 
 
 

 

[
𝜌𝑖
−

𝜌𝑖
+] =

[
 
 
 
 
𝐶0,𝑖
− 𝐶0,𝑖

+

𝐶1,𝑖
− 𝐶1,𝑖

+

⋮ ⋮
𝐶𝐽−1,𝑖
− 𝐶𝐽−1,𝑖

+
]
 
 
 
 
−1

[
 
 
 
𝜌̇0,𝑖
−

𝜌̇1,𝑖
−

⋮
𝜌̇𝐽−1,𝑖
−

]
 
 
 

=

[
 
 
 
 
𝐶0,𝑖
− 𝐶0,𝑖

+

𝐶1,𝑖
− 𝐶1,𝑖

+

⋮ ⋮
𝐶𝐽−1,𝑖
− 𝐶𝐽−1,𝑖

+
]
 
 
 
 
−1

[
 
 
 
 
𝜌̇0,𝑖
+

𝜌̇1,𝑖
+

⋮
𝜌̇𝐽−1,𝑖
+

]
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Equation 1-28 Simple 1D SENSE matrix notation. 

This system of linear equations can be created and solved for each of 

the special positions (𝑖 ∈ [−
𝑁

2
;
𝑁

2
) ∩ ℕ). The systems are solvable providing the 

special weights introduced with each coil are not correlated and each imaged 

spatial position (𝑖) is seen by a number of receivers equal or greater to the used 

acceleration factor. 

The SENSE technique works well providing each of the used 

acquisition coils contributes unique information about the whole imaged object. 

For this reason phased array coils (or surface coils) are used. These are arrays 

of smaller coils that can acquire signal simultaneously and independently of 

each other(34). They provide higher signal-to-noise ratio (SNR), although their 

signal sensitivity is more localised to close surrounding of the coil and quickly 

decays with distance. This is opposite to bigger volume coils (i.e. the body coil). 
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Pre-determination of coil sensitivities is not a trivial task as these can 

vary depending on experiment conditions. Additionally, the exact position of a 

coil with respect to an imaged object coordinates is needed. Instead, the coil 

sensitivities can be estimated on the basis of acquired images themselves(24); 

𝐶𝑗(𝑟) =
𝜌̇𝑗(𝑟)

𝑃(𝑟)
 1-29 

Equation 1-29 Simple estimation of the coil sensitivities for the SENSE algorithm. 

The estimation requires a reference image (𝑃(𝑟)). Optimally, the 

reference should be perfectly homogeneous; meaning it should not introduce 

any spatially varying weight to the underlying nuclei density (𝑃(𝑟) = 𝑏(𝑟)𝜌(𝑟)); 

for example a body coil image. However, it is not possible to simultaneously 

acquire data with both body and surface coils. Sequential acquisition may result 

in artefacts due to imaged object motion. Alternatively, the combination of 

acquired images from multiple surface coils with the sum-of-squares(34) can be 

used as a reference for the estimation; 

𝑠𝑜𝑠 = √∑𝜌̇𝑗(𝑟)𝜌̇𝑗
∗(𝑟)

𝑗

 1-30 

Equation 1-30 Simplified sum-of-squares technique for combination of images from multiple 
phased array coils. 

This can be done during a pre-scan for non-dynamic imaging. A fully 

sampled data set can be acquired for the calculation of the coil sensitivities. 

These are then used in following accelerated acquisitions. For dynamic objects, 

for which the profiles can change with time, they can be calculated from the 

accelerated data themselves. Assuming the sensitivity profiles are slowly 

varying in space, fully sampling of the central portion of 𝑘-space should be 

sufficient for the calculations. However, this is with an expense of the total 

acceleration and consequently limits the temporal resolution of the acquired 

data. 

Alternatively, a sliding window(27) approach can be applied in 

acquisitions of series of frames. Rotating between supplementary trajectories, 

while acquiring data, allows combination of the data into a fully sampled set. 
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The new combined data can serve as a fully sampled reference for calculation 

of the coil sensitivities, although it has a lower temporal resolution. Also, in long 

continuous real-time scans the sliding window approach can be used to make 

the reconstruction resistant to motion. 
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Fig. 1-4 Simple SENSE for uniform Cartesian under-sampling. 

Fully sampled, two times under-sampled and sensitivity maps for data acquired with four 
surface coils are presented in the first four rows. The under-sampled data was created 
artificially out of the fully sampled data by zero-filling of every other read-out line. The sensitivity 
maps were calculated according to equation 1-29 using the fully sampled data with the sum-of-
squares (Equation 1-30) as a reference image. The last row presents combined images (the 
sum-of-squares) for the fully- and under-sampled data sets, and the result of the simple SENSE 
reconstruction (Equation 1-28). 

Fully sampled Under-sampled Sensitivity maps

Coil 1

Coil 2

Coil 3

Coil 4

Combined

Fully sampled Under-sampled Simple SENSE
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1.4.2 Sensitivity Encoding algorithm 

The formulation of the SENSE algorithm for the under-sampled arbitrary 

trajectories has a more complex formulation(24, 30). Consequently, it is a more 

difficult problem to solve, due to the non-uniform sampling pattern of the 

trajectories. 

k-space signal function is reformulated to take in account multiple coils 

acquisition; 

𝑆𝑗(𝑘⃗⃗) ∝ ∫𝜌(𝑟)𝐶𝑗(𝑟)𝑒
−𝑖2𝜋𝑘⃗⃗∙𝑟𝑑𝑟 1-31 

Equation 1-31 MR signal formulation including spatial distribution of a receiver coil. 

𝐶𝑗(𝑟) - represents spatial weighting introduced by 𝑗th receiver coil. The 

signal is acquired on a sampling trajectory as a discrete function (𝑆⃗̇(𝑘⃗⃗)), which 

can be seen in a form of the matrix. For purpose of this discussion the following 

matrix notation is adopted to represent discrete functions; 

𝑣̇(𝑎⃗); 𝑎⃗ ∈ 𝑨 = [𝑎⃗0 𝑎⃗1 ⋯ 𝑎⃗𝑁−1]
𝑚𝑎𝑡𝑟𝑖𝑥
𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛
→       𝑣𝑁 = [

𝑣̇(𝑎⃗0)

𝑣̇(𝑎⃗1)
⋮

𝑣̇(𝑎⃗𝑁−1)

] ; 𝑣𝑛 = 𝑣̇(𝑎⃗𝑛) 1-32 

Equation 1-32 Matrix notation of discrete signals. 

Following this notation a set of 𝑆⃗̇𝑗(𝑘⃗⃗) can be seen as 𝑆𝐽𝑀. It represents 

𝑘-space data acquired for a set of [0; 𝐽 − 1] ∩ ℕ coils on 

𝑘⃗⃗ ∈ [𝑘⃗⃗0 𝑘⃗⃗1 ⋯ 𝑘⃗⃗𝑀−1]  trajectory samples. 𝐽 and 𝑀 are numbers of elements 

in the set of receiver coils and trajectory points respectively. 

The MR imaging can be expressed in the form of matrix notation as a 

system of linear equations; 

𝜌𝑁 = 𝐹𝑁,(𝐽𝑀)𝑆(𝐽𝑀) 1-33 

Equation 1-33 MRI experiment described as a system of linear equations (I). 

Here, 𝜌𝑁 is a vector of 𝑁 pixels/voxels representing the final 

image/volume. As described by (24), the reconstruction matrix 𝐹 has to meet 

the following condition; 
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𝐹𝐸 = 𝐼𝑑 1-34 

Equation 1-34 Identity condition for the SENSE algorithm. 

Where 𝐼𝑑 is identity matrix and 𝐸 denotes encoding matrix defined as; 

𝐸(𝑗,𝑚),𝑛 = 𝐶𝑗(𝑟𝑛)𝑒
2𝜋𝑖𝑘⃗⃗𝑚∙𝑟𝑛 1-35 

Equation 1-35 Encoding matrix definition. 

This can be seen in two forms of continuous functions, which were 

sampled onto columns or rows of the matrix; 

𝐸𝐽,𝑁(𝑘⃗⃗); 𝐸𝑗,𝑛(𝑘⃗⃗) = ∫𝐶𝑗(𝑟)𝑒
2𝜋𝑖𝑘⃗⃗∙𝑟𝛿(𝑟 − 𝑟𝑛)𝑑𝑟 1-36 

Equation 1-36 Encoding matrix rows definition. 

𝐸𝐽,𝑀(𝑟); 𝐸𝑗,𝑚(𝑟) = 𝐶𝑗(𝑟)∫ 𝑒
2𝜋𝑖𝑘⃗⃗∙𝑟𝛿(𝑘⃗⃗ − 𝑘⃗⃗𝑚)𝑑𝑘⃗⃗ 1-37 

Equation 1-37 Encoding matrix columns definition. 

The system of linear equations can be now formulated as; 

𝐸(𝐽𝑀),𝑁𝜌𝑁 = 𝑆(𝐽𝑀) 1-38 

Equation 1-38 MRI experiment described as a system of linear equations (II). 

Direct matrix inversion of 𝐸 is not preferable, as the matrix is very large 

(order of ~109 elements). Instead, a solution is found with an iterative process of 

conjugate-gradient linear solver algorithm (30). 

To prevent noise amplification with higher number of iterations, a 

regularisation formulation is added(35-37); 

[
𝐸𝜌

𝜆𝐿(𝜌 − 𝜌0)
] = [𝑆

0
] 

[
𝐸
𝜆𝐿
] 𝑏 = [𝑆 − 𝐸𝜌

0

0
] ⟺ 𝑏 = 𝜌 − 𝜌0 

1-39 

Equation 1-39 Regularisation formulation. 

Here 𝜌0, 𝐿 and 𝜆 are prior-information about the solution, linear 

transformation matrix and regularisation factor respectively. In simple words, 
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regularisation is a way of constraining a solution and is used to prevent noise 

amplifications with a higher number of solver’s iterations. 𝜆𝐿(𝜌 − 𝜌0) = 0 is a set 

of constraining equations that when added as a part of the linear equation 

system force the solution to be a trade-off between the prior knowledge (𝜌0) and 

the solution to 𝐸𝜌 = 𝑆 equations. The regularisation can itself be a source of 

artefacts and the regularisation factor (𝜆) is used to control the constraint 

strength. Optimal selection of the regularisation factor depends on the problem. 

Commonly an empirical approach is used to find a suitable value for a certain 

group of problems. The 𝐿 matrix can be seen as a selection filter that 

determines which parts of the solution and in what ratio should take part in the 

regularisation. The simplest regularisation uses 𝐿 = 𝐼𝑑 and is known as 

Tikhonov regularisation(36). In this form the regularisation is equally applied to 

all of the reconstructed image points with no correlation between them. 

Although the 𝐿 matrix can be selected arbitrarily, the optimal selection has to 

minimise sensitivity to noise. This can be expressed as an inverse of the 

expected signal intensity on a diagonal; as compared to Tikhonov 

regularisation. This way assigning higher regularisation strength to regions with 

no signal and reducing it in regions where an imaged object is expected. 

To speed up the convergence process, preconditioning in the form of 

intensity (𝐼) and density (𝐷) correction (Section 1.3.4) matrices are added; 

[ 𝐷𝐸𝐼𝐼
−1

𝜆𝐷𝐿𝐼𝐼−1
] 𝑏 = [𝐷(𝑆 − 𝐸𝜌

0)

0
] 

[
𝐷𝐸𝐼
𝜆𝐷𝐿𝐼

] 𝑔 = [𝐷(𝑆 − 𝐸𝜌
0)

0
] ⟺ 𝑔 = 𝐼−1𝑏 

1-40 

Equation 1-40 Intensity and density corrections. 

Simplifying, preconditioning is a way of restricting a solution process to 

concentrate only on selected regions. Excluding regions of low SNR, by 

assigning a smaller coefficient to them, improves the iterative process. As 

opposed to the regularisation matrix the preconditioning matrix (𝐼) should reflect 

the expected signal intensity. 
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This can be represented in matrix notation; 

𝐴𝑔 = 𝐵 ⟺ 𝐴 = [
𝐷𝐸𝐼
𝜆𝐷𝐿𝐼

] ; 𝐵 = [𝐷(𝑆 − 𝐸𝜌
0)

0
] 1-41 

Equation 1-41 Compact formulation of the linear encoding system. 

To ensure convergence for a conjugate-gradient linear solver, a system 

of equations has to be described by a positive-semidefinite matrix. Left 

multiplication by conjugate-transpose of 𝐴 guarantees this criterion; 

𝐴𝑔 = 𝐵 

𝐴𝐻𝐴𝑔 = 𝐴𝐻𝐵 

𝑔 = (𝐴𝐻𝐴)−1𝐴𝐻𝐵 

1-42 

Equation 1-42 Solution to the linear encoding system. 

The final formulation has the following form; 

𝐼−1(𝜌 − 𝜌0) = ([
𝐷𝐸𝐼
𝜆𝐷𝐿𝐼

]
𝐻

[
𝐷𝐸𝐼
𝜆𝐷𝐿𝐼

])
−1

[
𝐷𝐸𝐼
𝜆𝐷𝐿𝐼

]
𝐻

[𝐷(𝑆 − 𝐸𝜌
0)

0
] 

𝐼−1(𝜌 − 𝜌0) = (𝐼𝐸𝐻𝐷2𝐸𝐼 + 𝜆2𝐼𝐿𝐻𝐷2𝐿𝐼)−1𝐼𝐸𝐻𝐷2(𝑆 − 𝐸𝜌0) 

𝐼−1𝜌 = (𝐼𝐸𝐻𝐷2𝐸𝐼 + 𝜆2𝐼𝜃−1𝐼)−1𝐼𝐸𝐻𝐷2𝑆 ⟺ 𝜌0 = 0; 𝜃−1 = 𝐿𝐻𝐷2𝐿 

1-43 

Equation 1-43 The final linear equations system solved by the SENSE algorithm. 

Matrices 𝐷, 𝐼 and 𝐿 are diagonal of real values. Therefore, their 

conjugate-transpose is equal to themselves. 

Equation 1-43 describes how every step of the iteration process is 

carried out. Regrettably, even in this form it requires multiplications of the 

encoding matrix (𝐸(𝐽𝑀),𝑁) and its conjugate-transpose with some vectors 𝑥𝑁 and 

𝑦𝐽𝑀 respectively. Again, the size of the encoding matrix and vectors makes it a 

very computationally challenging task. Closer look reveals that each of these 

operations can be replaced with Fourier Transformation and FFT algorithm can 

be applied for acceleration. Using equation 1-36 the first operation can be 

broken down in a following way; 
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𝐸(𝑗,𝑀),𝑁𝑥𝑁 = 𝐸𝑗,𝑁(𝑘⃗⃗)𝑥𝑛 

(𝐸𝑥)𝑗(𝑘⃗⃗) = ∑ 𝑥𝑛∫𝐶𝑗(𝑟)𝑒
2𝜋𝑖𝑘⃗⃗∙𝑟𝛿(𝑟 − 𝑟𝑛)𝑑𝑟

𝑁−1

𝑛=0

 

(𝐸𝑥)𝑗(𝑘⃗⃗) = ∫∑ (𝑥𝑛𝐶𝑗(𝑟)𝛿(𝑟 − 𝑟𝑛))

𝑁−1

𝑛=0

𝑒2𝜋𝑖𝑘⃗⃗∙𝑟𝑑𝑟 

(𝐸𝑥)𝑗(𝑘⃗⃗) = ∫𝑋𝑗(𝑟)𝑒
2𝜋𝑖𝑘⃗⃗∙𝑟𝑑𝑟 

(𝐸𝑥)𝑗(𝑘⃗⃗) = ℱ𝑘⃗⃗
−1[𝑋𝑗(𝑟)] 
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Equation 1-44 Spatial domain to k-space domain transformation steps. 

The 𝐸(𝐽𝑀),𝑁 matrix transforms 𝑋𝑗(𝑟) - weighted with 𝐶𝑗 coil signal 𝑥 

sampled on 𝑟𝑁 positions; into k-space domain, by taking its inverse FT. 

Similarly, the equation 1-37 is used to break down the second multiplication; 

𝐸𝐻𝑁,(𝐽𝑀)𝑦𝐽𝑀 = 𝐸
𝐻
𝐽,𝑀(𝑟)𝑦𝐽𝑀 

(𝐸𝐻𝑦)(𝑟) =∑∑ 𝐶𝑗
𝐻(𝑟)𝑦(𝑗,𝑚)∫𝑒

−2𝜋𝑖𝑘⃗⃗∙𝑟𝛿(𝑘⃗⃗ − 𝑘⃗⃗𝑚)𝑑𝑘⃗⃗

𝑀−1

𝑚=0

𝐽−1

𝑗=0

 

(𝐸𝐻𝑦)(𝑟) =∑𝐶𝑗
𝐻(𝑟)∫ ∑ 𝑦(𝑗,𝑚)𝛿(𝑘⃗⃗ − 𝑘⃗⃗𝑚)

𝑀−1

𝑚=0

𝑒−2𝜋𝑖𝑘⃗⃗∙𝑟𝑑𝑘⃗⃗

𝐽−1

𝑗=0

 

(𝐸𝐻𝑦)(𝑟) =∑𝐶𝑗
𝐻(𝑟)∫𝑌𝑗(𝑘⃗⃗)𝑒

−2𝜋𝑖𝑘⃗⃗∙𝑟𝑑𝑘⃗⃗

𝐽−1

𝑗=0

 

(𝐸𝐻𝑦)(𝑟) =∑𝐶𝑗
𝐻(𝑟)ℱ𝑟[𝑌𝑗(𝑘⃗⃗)]

𝐽−1

𝑗=0
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Equation 1-45 k-space domain to spatial domain transformation steps. 

The 𝐸𝐻𝑁,(𝐽𝑀) matrix transforms 𝑌𝑗(𝑘⃗⃗) - 𝑘-space signals 𝑦 sampled on 𝑘⃗⃗𝑀 

trajectory positions from 𝐽 coils; into spatial domain. The 𝑘-space signals are 

Fourier Transformed and multiplied with 𝐶𝑗
𝐻(𝑟). The resultant products are 

added-up to create the final result of the operation. 

The results are presented as continuous functions, but in practice FFT 

is used to perform FT and inverse-FT. Voxel/pixel positions 𝑟𝑁 are located on 

uniformly spaced grid, which directly allows use of FFT. Conversely, positions of 
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k-space samples (𝑘⃗⃗𝑀) are on an arbitrary trajectory (i.e. spiral, radial), thus they 

do not have to meet this condition. Therefore, additional gridding operations are 

needed; these follow and precede inverse-FT and FT respectively. 

Described here is the SENSE technique for arbitrary trajectories, which 

removes aliasing, caused by data under-sampling. A conjugate gradient linear 

solver is used, which in an iterative way finds an artefact free solution. The 

iterative nature of this reconstruction process makes it a time consuming 

procedure, which requires significant computational power. This is a simplified 

description of the SENSE algorithm for under-sampled arbitrary trajectories. A 

comprehensive description can be found in the original papers(24, 27, 30) as 

well as in descriptions of further work on the technique(31). 

1.4.3 Temporal encoding 

It is a common practice in cardiac MR assessments to acquire a series 

of the same volume or slice data. This is an occasion to encode temporal 

information into acquired signal, which can be used to improve image quality 

and/or remove artefacts arising from under-sampling. 

One such technique is Unaliasing by Fourier-Encoding the Overlaps 

Using the Temporal Dimension (UNFOLD)(26). This method is based on 

linearity of integration; 

∫ (𝑚𝑓(𝑥) + 𝑛𝑔(𝑥))𝑑𝑥 = 𝑚∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

+ 𝑛∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
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Equation 1-46 Linearity property of integration. 

Integral of a sum of functions can be replaced with a sum of integrals of 

these functions. Consequently, this property also applies to Fourier 

Transformation; 

ℱ𝑦[𝑚𝑓(𝑥) + 𝑛𝑔(𝑥)] = 𝑚ℱ𝑦[𝑓(𝑥)] + 𝑛ℱ𝑦[𝑔(𝑥)] 1-47 

Equation 1-47 Linearity property of Fourier Transform. 

This is a very useful property, as it means that adding together 

reconstructed signals is equivalent to the reconstruction of sum of these signals. 

𝑇 frames of the same signal acquired separately with 𝑇 complementary 
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sampling trajectories can be combined to create a single, alias free frame. 

Although it is far from being the optimal solution to aliasing caused by under-

sampling, it shows that temporal domain can be used to encode information. 

Again, consider a one dimensional example (Section 1.3.5) of 𝑘-space 

signal 𝑆(𝑘) (Equation 1-23 and Equation 1-24) and its two times under-sampled 

case (Equation 1-25). The under-sampling caused reduction (
1

𝑀
→

1

2𝑀
) in 

distance between centres of repeated 𝜌̇(𝑟) resulting in potential overlap. To 

create a complementary trajectory to the under-sampled trajectory, the 

previously used one is shifted by one sampling interval (𝑀). This results in swap 

from acquiring even samples to odd samples. It can be formulated as follows; 

𝑆⃗̇(𝑘) = [𝑆(𝑘)Ш2𝑀(𝑘 − 𝑀)] ∗ Ш𝑁𝑀(𝑘) 

𝜌̇(𝑟) =
1

2𝑁𝑀2
[𝜌(𝑟)Ш 1

𝑁𝑀

(𝑟)] ∗ 𝑒2𝜋𝑖𝑀𝑟Ш 1
2𝑀

(𝑟) 

𝜌̇(𝑟) =
1

2𝑁𝑀2
[𝜌(𝑟)Ш 1

𝑁𝑀

(𝑟)] ∗∑(𝑐𝑜𝑠(𝑗𝜋) + 𝑖𝑠𝑖𝑛(𝑗𝜋))

𝑗∈𝕫

 

∀𝑗∈𝕫[𝑐𝑜𝑠(𝑗𝜋) + 𝑖𝑠𝑖𝑛(𝑗𝜋)] ∈ {−1, 1} 
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Equation 1-48 Result of reconstruction of data on a shifted under-sampled trajectory. 

The shift causes every other alias to change its sign from + to -. 

Consequently, acquiring a series of frames with alternating trajectories results in 

oscillations of 𝜌̇(𝑟) through the time domain (t-space). The overlaps are 

encoded into temporal domain in form of oscillations, as long as the used 

trajectories are complementary. A general case can be formulated as follow; 

𝜌̇(𝑟) =
1

𝐻𝑁𝑀2
[𝜌(𝑟)Ш 1

𝑁𝑀

(𝑟)] ∗ 𝑒2𝜋𝑖𝐿𝑀𝑟Ш 1
𝐻𝑀

(𝑟) 1-49 

Equation 1-49 General formulation of the impact of trajectory shift on aliases due to under-
sampling. 

𝐻 represents acceleration factor and determines the distance between 

samples on an under-sampled trajectory. Also, it defines a number of overlaps 

in each 𝑟 position. 𝐿 is the position of the first sample or a shift’s distance in 

number of samples. Both coefficients can be of real positive values, but in this 



49 

case a gridding operation must be used to allow use of DFT. The oscillating 

signal in each 𝑟 can be represented as; 

𝜌̇(𝑟𝑎, 𝑡) = ∑ 𝜌̇ (𝑟𝑎 − 𝑗
𝑀

𝐻
, 𝑡) 𝑒2𝜋𝑖𝑡

𝑗
𝐻

⌈𝐻⌉−1

𝑗=0

 1-50 

Equation 1-50 Temporally varying oscillations in under-sampled real space. 

𝜌̇(𝑟𝑎, 𝑡) represents the desired, alias-free signal at a position 𝑟𝑎 for a 

𝑡 ∈ ℕ acquisition frame. Modulated with  𝑒
2𝜋𝑖𝑡𝑗

𝐻 ∀𝑗∈{0,1,…,𝐻−1} signals are 

accumulated across 𝑟 positions. As it is a periodic function, 𝐿 (assuming 𝐿 ∈ ℕ 

and 𝐻 ∈ ℕ) was replaced with 𝑡 - the index of an acquired frame. Fourier 

Transformed through time 𝜌̇(𝑟, 𝑡) has 𝐻 peaks at 2𝜋
𝑗

𝐻
∀𝑗∈{0,1,…,𝐻−1} temporal 

frequencies, including a DC component related to the true signal (similarly as in 

Fig. 1-3). The components can be removed with application of low-pass filter. 

Positions of each peak are defined by 𝑇
𝑗

𝐻
∀𝑗∈{0,1,…,𝐻−1}, where 𝑇 is the number of 

frames used in Fourier Transformation. 

Although this technique can be used for dynamic objects, it is limited to 

slowly varying, continuous signals. Wide temporal frequency bandwidth of 

desired alias-free signal can result in overlap between temporal frequency 

peaks and prevent or impair artefact removal process(32, 38, 39). 

Temporal encoding can be used in conjunction with SENSE algorithm 

(29, 33, 40). It provides a way of creating coil sensitivity maps from acquired 

data itself (T-SENSE) (27). If incorporated as an additional reconstruction step, 

it could allow even higher accelerations (29). 

1.5 General Purpose computing on Graphic Processing Units 

The following sections (Section 1.5 and 1.6) are based on the publicly 

available on-line material as well as the documentation provided by NVIDIA, 

Santa Clara, CA, USA. This is a brief description to familiarise the reader with 

basic terms and concepts. More comprehensive description is available at the 

original sources (41-43).Permission to reproduce Fig. 1-5, Fig. 1-6 from the 

original sources (as indicated) has been granted by NVIDIA. 
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Graphic Processing Units (GPU) as dedicated vector processors can 

easily achieve a much higher processing speed than Central Processing Units 

(CPU) for applications that are based on matrix/vector operations (i.e. 

signal/video processing, statistics, computer simulations and modelling). The 

term vector processor, describes processing units dedicated for simultaneous 

execution of the same operation across multiple data sets (single instruction 

multiple data architecture, SIMD). A core of these processors is an array of 

multiple, tightly coupled arithmetic units (also called cores). These are usually 

less specialised than presently available CPU cores, but their strength lies in 

their number. Presently, desktop high-end GPU cards have up to 2880 cores 

(i.e. NVIDIA GeForce GTX TITAN Black), whilst the newest desktop CPUs 

expose scalability of 6 cores (12 simultaneously executed threads) per 

processor (i.e. Intel Core i7-4960X). 

Rapid growth of the computer game industry, has forced hardware 

producers to create faster, more sophisticated and easier to program GPUs. 

With time, they have reached a level of performance exciding one of CPUs. The 

term General Purpose computing on Graphic Processing Units (GPGPU) was 

coined by Mark Harris in 2002(41), and relates to the use of GPU cards for 

general calculations. The idea is simple; identify parts of algorithm that can be 

executed in parallel and run them on a GPU. Unfortunately, early GPUs with 

their roots deep in computer graphics and fixed processing pipe-line were not 

easy to use for other applications. Growing interests in GPGPU and demands 

for a simple, more general way of programing resulted in transformation of 

GPUs from dedicated chips for graphics into freely programmable co-

processors. 

While CPUs have not shown much improvement in floating point 

arithmetic performance over the last few years, GPUs have kept continuously 

improving. Recently, the peak computational performance excided 4.5 and 1.3 

TFlops (1012 floating-point operations per second) for single and double 

precision operations respectively (NVIDIA GeForce GTX TITAN Black). This left 

a huge gap between GPU and CPU, which only recently started to close up with 

commercialisation of Intel’s Many Integrated Core (MIC) architecture with Xeon 

Phi series. The newest Intel Xeon Phi 7120P/D/X (44) has 61 physical cores 
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capable of running at theoretical peak speed of 2.4 TFlops single and 1.2 

TFlops double precision (45). 

The peak computational power of GPUs is not always fully achievable, 

but porting computationally intense parts of algorithms onto the GPU has the 

potential to greatly increase the speed in comparison to serial code. While 

developing code for any parallel system, one has to bear in mind the conclusion 

from the Amdahl's law, 

𝑆(𝑛) =
1

(1 − 𝑃) +
𝑃
𝑛

 

𝑙𝑖𝑚
𝑛→∞

1

(1 − 𝑃) +
𝑃
𝑛

= 
1

(1 − 𝑃)

⟺ ∀𝑛∈ℕ;𝑃∈[0,1] 1-51 

Equation 1-51 Achievable speed-up with parallelization according to the Amdahl’s law. 

The Equaition 1-51 describes how much speed-up (𝑆) can be achieved 

using 𝑛 processing units. It is impossible to have code that can be infinitely 

parallelized. There is always a part that has to be executed in serial manner. 

This ratio is represented with 𝑃 which is the proportion of execution that can be 

run in parallel. The direct conclusion from the equation is that the maximum 

achievable speed-up is not determined solely by the number of used processing 

units (𝑛). It is rather an intrinsic property of the algorithm. As 𝑛 increases to 

infinity the speed-up saturates at the inverse of (1 − 𝑃). Only algorithms that 

exhibit very low values of (1 − 𝑃) can fully benefit from constantly increasing 

number of processing units. These are referred to as embarrassingly parallel 

problems in parallel computing. These are computational problems that need no 

or very little effort to split the problem into multiple of parallel tasks. This 

happens when there is no dependency between the tasks, and hence no 

communications and/or synchronisations are required between them. 

GPUs were designed with these embarrassingly parallel problems in 

mind. Their increasing number of cores executing the same operation on 

different data guarantees achieving the maximum possible speed-up dictated 

with the Amdahl’s law. However, often it means that a fast CPU version of an 

algorithm (designed for this architecture) performs very poorly on the GPU. 
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Consequently, the most effort needs to be concentrated on exposing as much 

of parallelism of the algorithm while porting onto the GPU platform. 

CPU and GPU were developed for different tasks (Fig. 1-5). CPU can 

quickly cope with purely serial code, since most of its architecture is dedicated 

to control unit blocks. On the other hand GPU can be seen as a computing 

engine, since most of its architecture consists of arithmetic unit blocks. It is clear 

that CPU and GPU do not cope with some tasks as well as their counterpart, 

and to achieve high performance they should be used in conjunction with each 

other. However, to achieve this access to the GPUs computational potential 

needed to be simplified. Namely, the necessary execution scheduling and 

control flow overweight must be reduced to its absolute minimum as it reduces 

the 𝑃 parameter (Equation 1-51). With the release of the NVIDIA’s Compute 

Unified Device Architecture (CUDA), the whole structure of GPU (of this 

manufacturer) was redesigned to create a new programming interface through 

which developers could easily access and utilise its computing power. It was a 

step to create a heterogeneous system in connection with a CPU as execution 

control unit. 

 

The CUDA technology is not the only existing GPU enabled 

programming platform. For example, OpenCL (Open Computing Language, 

Khronos Group) is a programming platform for software run across 

heterogeneous systems. As a non-vendor specific platform it simplifies 

development of code for different hardware architectures. These mostly include 

mobile devices but are not limited to them. 

 

Fig. 1-5 Comparison of CPU and GPU architectures (44). 
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I chose the CUDA technology as a programing platform, as it provides a 

very rich and mature code development ecosystem. Also, the technology is 

continuously developed and improved with the simplicity of programming in 

mind. The CUDA toolkit comes with the compiler, dedicated debugger, profiler 

and other tools. A growing community of users ensures continuity in support 

from other developers and variety of shared code examples. Additionally, the 

toolkit comes with a set of libraries dedicated to speed-up the most commonly 

used scientific operations (linear algebra, Fourier Transformations, digital image 

and signal processing). These are continuously maintained by NVIDIA to 

ensure their constant optimisation and adoption to new hardware releases. 

1.6 CUDA programming model 

CUDA introduced the heterogeneous programming model in which 

code is executed on the host - a system equipped with one or more CPUs; and 

a device connected to it – a CUDA enabled GPU card. A CUDA program is 

written in C/C++ language with some language extensions to introduce GPU 

specific data types and functions called kernels. This way the whole program 

can be written as a single source code. The code is separated automatically 

during the compilation process. The GPU specific instructions are extracted and 

compiled by the CUDA compiler, while the rest is processed by a C/C++ 

compiler. The final version is then linked together into a single executable file. 

Most commonly the CUDA programs adhere to the following execution 

pattern. First the host organises data in a way in which most of the data-

parallelism is exposed and partitions it between threads. Next, device memory 

is allocated for kernel arguments. The data are sent to the device and kernels 

necessary for the algorithm executions are launched. Kernel executions are 

always asynchronous. This means that after scheduling kernel calls, the host is 

free to run other calculations. The state of scheduled work can be checked 

through synchronisation functions. Also, the host’s execution can be halted until 

the device has finished. This allows simultaneous execution of work on the host 

and device. An adopted strategy depends on the application. The successful 

execution is usually followed with transferring the results into host’s memory for 
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analysis and potential further processing. All of the steps are repeated until the 

whole algorithm has been finished. 

To achieve high computational throughput, the kernel runs must use 

thousands of threads. Threads are organised in blocks, which then are 

arranged into a grid (Fig. 1-6). All kernel launches are supplied with a 

declaration of the size of a block of threads and how many blocks in a grid must 

be run to complete processing. Blocks and threads are indexed to allow 

identification of the part of data the thread has to work on. 

 

Each device contains one or more multiprocessors. Blocks of threads 

are mapped to the multiprocessors. To facilitate scheduling and management of 

thousands of threads that run concurrently, the threads are executed in groups 

of 32 called warps. GPU threads are very lightweight in comparison to a CPU 

one; there is a very little creation and no switching overhead. Each thread has 

its own set of resources, and once started the warp is executed until its work is 

finished. How many concurrent warps are run on a multiprocessor depends on 

the kernel's demands on resources. All threads of a warp execute the same 

instruction, which is referred to as Single Instruction Multiple Threads (SIMT) 

execution. In the case of conditional branches, if threads of a warp do not agree 

 

Fig. 1-6 Thread hierarchy (44). 
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on a path, the execution is serialised by the multiprocessor. This scheduling 

simplicity is required to achieve high performance by devoting more clock 

cycles to actual computation (43). 

In the CUDA programming model the most important performance 

consideration is to make sure that all global memory accesses are coalesced, 

or as many as possible. Namely, the global memory is accessible to all threads 

that run on a device. The global memory as an off-chip memory is relatively 

slow. Access to it introduces 400 to 600 clock cycles latency (42). If a sufficient 

number of warps run on a multiprocessor the latency can be hidden by 

executing the warps that are ready while the others are waiting for the data. 

Accesses to the global memory are done in transactions of 32-, 64- or 128-byte 

length segments (42). How many transactions are issued depends on the 

access pattern used by the requesting warp. The requirements vary depending 

on the type of device. In general accessed memory has to be a continuous 

array of elements aligned to the size of the segment. If these requirements are 

not met the access is performed in sequential manner one for each requested 

memory element. 

The secondary performance consideration is the minimisation of global 

memory access through efficient use of the shared on-chip memory. This 

memory is divided between thread blocks that presently run on the 

multiprocessor. Access to this memory is very fast and allows rapid exchange of 

data between threads of one block. If all threads of a block have to access the 

same part of global memory it is much more efficient to first load the data to the 

shared memory and then allow the threads to work on it from there. In this way 

the shared memory becomes a software managed cache saving the global 

memory bandwidth. Cache is a term used in programming referring to low 

latency memory that is used as a buffer to speed-up access to data, by 

preserving most recently used data for potential further access. 

One more important performance issue is connected to the adopted 

SIMT execution model. Divergence within a warp is highly undesirable. As 

mentioned every branching path will increase time of execution. Consequently, 

condition statements should be based on thread indices to avoid execution 

serialisation. 
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2. Motivation 

The work presented here was developed for the vascular imaging and 

physics group at the UCL Institute of Cardiovascular Science. The institute aims 

to be a world class centre for advancing the field of cardiovascular medicine. 

The work concentrates on improvement of detection and management of 

cardiac diseases through the use and development of multimodality imaging 

techniques. The vascular imaging and physics group’s role is to provide state-

of-art MR techniques for clinical cardiac MR and improve patient assessment by 

translation of these advanced methods into the clinical environment. 

Cardiac MR is challenging as it requires high temporal resolutions to 

provide accurate information (uncorrupted with motion blurring images) about 

the highly dynamic behaviour of the cardiovascular system. This work focuses 

on flow quantifications (i.e. assessments of blood flow velocities) using phase-

contrast MR (PCMR) (46). These types of assessments require repeated k-

space read-outs for each of the encoded velocity directions, which have a direct 

impact on the temporal resolution of acquired data. In these cases efficient 

sampling trajectories (Section 1.3.4) and data under-sampling (Section 1.3.5) 

have to be combined to allow very high data sampling rate. A good example is a 

fast real-time spiral PCMR sequence designed and developed by our group (17, 

47, 48). 

However, as previously indicated the high acquisition rate comes with 

the expense of reconstruction algorithm complexity. Complex MRI 

reconstruction algorithms like the SENSE reconstruction (Section 1.4.2) require 

substantial amount of computational power to keep the processing time within 

acceptable limits. Secondary to the trade-off between fast acquisition and 

complexity of reconstruction, is an increase in number of receiver coils. For 

sufficient artefact suppression it is required to have more independent coils than 

an acceleration factor, which is especially true for very high accelerations. 

Higher number of coils increases spatial information of an imaged object which 

is used to compensate for the under-sampling, although at the same time it 

increases the size of data that needs to be processed. 

In the case of progressive under-sampling, small gains in temporal 

resolution are quickly outmatched by increasingly longer reconstruction times. 
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All of these shift the bottleneck of the MR examinations from data acquisitions 

to their reconstructions and limit the utility of these complex MR techniques 

within the clinical environment. One extreme example is continuous real-time 

cardiac MR assessment. 

High-performance implementations are required to remove the 

reconstruction time limitation. This can be realised by exploiting intrinsic 

parallelisms of the algorithms. As discussed (Section 1.4.2), the MRI 

reconstruction algorithms are based on solving the set of linear equations 

(Equations 1-33, 1-38) that represent the process of imaging. Consequently, the 

whole process can be broken down into matrix operations. Matrix operations 

are highly parallelisable as there is no data dependency. Algorithms with very 

little or no data dependency scale well and significantly improve performance 

when run on higher number of processing units. Theoretically, knowing the size 

of a problem means that the processing time can be made as short as it is 

needed, by increasing the number of processing units. This is assuming the 

time required for the parallel execution preparation (partitioning, scheduling and 

result collection times) is negligible and only if a problem can be infinitely 

partitioned into smaller ones. Practically, this is never attainable as there are no 

problems that can be infinitely partitioned, nor is it possible to have an infinite 

number of processing units. Consequently, concurrent versions of MR 

algorithms are limited in implementation and performance by the hardware they 

are run on. 

A common way of providing a multitude of processing units is by 

organising computers (processors) into clusters. A cluster is a set of computing 

units connected together by one or multiple communication channels capable of 

working together on a specific problem. As clusters of sufficient number of 

computers may not be easily attainable for all clinical, research facilities another 

more commonly available solution is needed. 

Graphic Processing Units (GPU) as vector processors were designed to 

leverage applications relying on matrix operations. They consist of multiple 

arithmetic units (cores) tightly packed on a single die and capable of 

simultaneously executing the same instruction on a vector of data elements. 

The growing computer games industry demands constant improvements of 
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GPUs and their further development as capable co-processors. In consequence 

the GPUs are increasingly inexpensive while simultaneously becoming more 

powerful and simpler to use for general purpose programming. 

Fast GPU implementations of MRI reconstructions do exist and a 

significant improvement in performance as compared to the CPU 

reconstructions has been previously reported (49-51). However, GPU 

reconstructions are mostly done in an off-line mode. This means data are 

downloaded from the scanner and are reconstructed elsewhere, which 

constitutes a serious drawback to the clinical workflow. To truly facilitate use of 

the advanced MRI reconstructions, such developments must be incorporated 

into an online scanner reconstruction pipeline. This is vital in order to improve 

the overall efficiency of the clinical workflow and enable rapid viewing of the 

images to check for data integrity prior to finishing the MR examination. In this 

paradigm, proper data transmission management can be as important as 

reconstruction’s efficient implementation. Time improvements gained on the 

reconstruction side can be easily counterbalanced with slow transmission 

processes or lost on unnecessary synchronizations. 

The work presented here was not only motivated with the need to 

provide fast, flexible image reconstruction for computationally intensive 

reconstructions, but most of all to make them feasible within a busy clinical 

service. This can be summarised in form of two challenges that needed to be 

addressed; i) use of advanced MR sequences is limited by their reconstruction 

time, and ii) GPU implementations exist but run in off-line mode. One possible 

solution is to create a dedicated exchange protocol over a network that 

connects the scanner and the external machine. However, this fixed solution is 

limiting as it would need to be redone for each new application. Thus to not be 

tied to a fixed configuration, the new image reconstruction system was defined 

as a distributed system. Active components of a distributed system (i.e. 

applications running on a scanner or external computer) can be flexibly 

changed and rearranged. This meant additional system components like new 

clients for different types of scanners or different reconstructions could be 

quickly introduced. This way the defined system, not only serves as a leverage 

providing the fast seamless reconstruction process, but also becomes a 
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scalable platform for translation of advanced MRI algorithms into the clinical 

environment. 

Integration and scalability were key aspects of succeeding in the 

project. They had to provide the basic building blocks for development of future 

MR applications hosted in the heterogeneous distributed image reconstruction 

system. Thus the implementation was divided into two steps; i) networking with 

remote execution, and ii) implementation of the reconstruction algorithm. In the 

course of this work I: 

- networked an external computer equipped with a GPU card into the 

scanner's native image reconstruction system; 

- designed and developed the data transmission and remote execution 

protocol for efficient management of continuous streams of real-time MR 

data; 

- implemented and optimized a GPU based SENSE reconstruction for data 

acquired on arbitrary trajectories; 

- demonstrated the impact and improvement in the type of assessment 

protocols that can be enabled for patient management with  the new 

reconstruction system; 

- presented flexibility of the created system by re-using the created 

components to combine the SENSE reconstruction with temporal encoding 

technique (UNFOLDed-SENSE) and adapt the remote reconstruction to 

accelerated retrospective gating sequences. Both were done without 

changes to previously implemented data transmission and execution 

management steps; 
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3. Distributed image reconstruction system 

In the chapter, I describe my work on development of the novel on-

line image reconstruction system for clinical/research MRI. The work resulted 

in creation of the processing framework allowing the transparent integration 

of the external hardware into the scanner system. The work was published in 

the following article: 

Implementation of a generalized heterogeneous image 

reconstruction system for clinical magnetic resonance,  

GT Kowalik, JA Steeden and V Muthurangu; Concurrency and 

Computation: Practice and Experience (Special Issue) Volume 27, 

Issue 6, pages 1603–1611, 25 April 2015   

(DOI: 10.1002/cpe.3349); 

Appendix 11.6 

and the proceeding of 10th International Conference, PPAM 2013, Warsaw, 

Poland, September 8-11, 2013; 

Implementation of a Heterogeneous Image Reconstruction System 

for Clinical Magnetic Resonance, GT Kowalik, JA Steeden,  

D Atkinson, A Taylor, V Muthurangu; Parallel Processing and 

Applied Mathematics, Lecture Notes in Computer Science  

Volume 8384, 2014, pp 469-479; 

Appendix 11.7 
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3.1 Introduction 

To develop an implementation of a networking framework, its underlying 

components and functionalities need to be clearly stated and defined. The 

desired system at its core must provide bidirectional data exchange between 

the scanner’s application and an external application. However, only the 

scanner’s side was expected to make remote execution requests. In this 

simplistic form, a fixed architecture with a single remote application, a dedicated 

link and a predefined communication protocol might serve well for the purpose 

of a single project. However, as much as it benefits from simplicity, this 

arrangement lacks in flexibility and scalability. It would require re-

implementations with each new image reconstruction algorithm or scanning 

protocol. To avoid this, additional requirements were made; the framework must 

provide flexibility in extending the system with more scanners and include 

multiple remote reconstructions. Additionally, asynchronous remote execution 

calls are needed to allow overlapping of local and remote processes. 

I adopted the distributed system architecture in order to fulfil all of the 

requirements. I distinguished two system components; servers – the processes 

providing image reconstruction functionality, and clients – the processes that 

control connection, data exchange and remote calls. These by definition, are 

not linked to any specific physical location, but are meant to be a virtual pool of 

resources not limited to a single connection or arrangement. The distributed 

system promotes flexible organisation of clients and servers into separate 

reconstruction systems. Each system can contain multiple servers residing on 

the same/different machines, as well as clients making requests to the 

same/different servers. This way the built system was defined to be a 

distributed image reconstruction system, based on client-server architecture. 

3.2 Client-server architecture 

Portability across different hardware and programming technologies is 

crucial to the envisaged system, as it must allow independent development of 

each side of the system. Developments of different client side implementations 

for each MR system cannot have an impact on the server or networking side of 
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the application. Similarly, technology providing data transmission, remote 

execution and the way in which the server manages the reconstruction process, 

need to expose the same modularity. This allows substitution of these 

components without affecting the rest of the system. For this reason the system 

framework (Fig. 3-1) was organised into three layers; the Networking layer, 

Server-reconstruction layer and Client-reconstruction layer. 

3.2.1 Networking layer 

System integration is achieved by separating the clients and servers 

with the networking layer. The networking layer provides a single type of 

networking object. This defines a set of data transmission and remote execution 

interfaces for the client-server architecture. These must allow bidirectional 

exchange of data, parameters and identification of connected objects. Allowing 

only a single generic type of communication simplifies communication between 

server and client objects. Also, it ensures compatibility when replacing 

networked objects with different or newer versions. 

To reduce the development time the networking layer was based on the 

Common Object Request Broker Architecture (CORBA) technology. CORBA is 

a specification of interoperable, multi-platform network based and language 

independent objects. The specification is managed by the Object Management 

Group (OMG, Needham, MA, USA). It uses Independent Definition Language 

(IDL (52)) to define network object interfaces, which can be mapped to different 

programing languages (i.e. C/C++, Java, Python, etc.). Also, CORBA provides a 

naming server; this can be seen as an equivalent of Domain Name System 

(DNS) in the internet. With its help, the physical address of distributed objects is 

mapped onto easily memorable names. These are publicly available through 

the naming service. This allows objects to move between different physical 

locations without making an impact on the system configuration. 

The networking layer does not depend on any specific implementation 

of CORBA. Multiple implementations of CORBA can be used as long as they 

comply with the standard. Nevertheless, CORBA could be replaced with other 

technology (i.e. DCOM/COM+), providing that the necessary interfaces and 

functionalities are supplied. 
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3.2.2 Server-reconstruction layer 

The server-reconstruction layer implements a specific functionality to 

the interfaces provided by the networking layer. Within this layer, different 

reconstruction algorithms can be implemented. In a simple form these can be 

realised as a dedicated server object providing a single functionality. However, 

this would force a one-to-one relationship between a client and a server, 

rendering it inefficient. It is more desirable to have servers capable of facilitating 

multiple reconstructions for the same or different clients. In this case, the 

server’s main role is to ensure data consistency and control flow management. 

To realise this, the reconstructions are defined as objects of specific types. 

These are defined and stored in the form of modules or libraries. The modules 

are accessible through a module interface built into the server layer (Fig. 3-1). 

This approach allows a single server to consist of multiple different processing 

modules that can be loaded on the client's request. Again, to promote simplicity 

a single module interface per server is preferred. Of course, different servers 

can be prepared to access different types of reconstruction modules. 

By encapsulating reconstructions, a server can create separate 

reconstruction objects for each client. This way it is freed to concentrate on 

 

Fig. 3-1 Layered framework for the client-server architecture of the distributed image 
reconstruction system. 
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management of incoming calls, which in distributed computing are not 

guaranteed to come in a serial manner. Networking interface client IDs can be 

assigned to identify objects which should be used to execute a remote request. 

This ensures data consistency in the case of connection with multiple clients. 

However, a single client can make multiple simultaneous requests through 

different interfaces. In some cases this may be desirable (i.e. transmission of 

new data may overlap with retrieval of previous results). Thus it was decided 

that it is best to leave the decision about the synchronisation of access to 

client’s objects, up to the particular server specification. 

3.2.3 Client-reconstruction layer 

The client-reconstruction layer schedules, organises and controls data 

exchange and remote execution processes, employing interfaces provided by 

the networking layer. In the most trivial case only a single remote execution is 

needed. Sequential calls to the server layer can be encapsulated in a single 

execution unit (thread). In this case an overlap between stages constituting the 

reconstruction is undesired and synchronous remote execution is sufficient. 

This occurs when the required remote execution constitutes a whole 

undividable step of an algorithm and the next steps are dependent on its result. 

In a more general case, it is desirable to allow simultaneous work on 

local, as well as remote data. Additionally, asynchronous remote calls may be 

needed to allow overlap between remote execution calls. Unfortunately, in 

CORBA all remote calls are synchronous and are treated as if they were 

standard local function calls. This can be seen as a limitation of the technology. 

However, it promotes the developer discretion in selecting an execution 

parallelization technique. Also, it makes the potential replacement of CORBA 

with a different networking middleware easier, as it is only responsible for 

providing correct data transmission and remote execution, rather than additional 

local control flow management which may vary from application to application. 
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3.3 Application life cycle 

The new image reconstruction as a distributed application, based on the 

described client-server architecture was determined to have two system states: 

the system set-up (Fig. 3-2) and the reconstruction state (Fig. 3-3). 

3.3.1 The system set-up state 

The system set-up state is maintained by the naming server. This 

naming service contains a record of servers that registered themselves as 

available to clients. A desired system instantiation is created ad hoc by a client 

searching for, and connecting to, servers providing the required functionality. 

The system is destroyed by the client disconnecting from the servers, however, 

the servers’ applications remain awaiting new connections. 

 

3.3.2 The reconstruction state 

The reconstruction state contains four stages (Fig. 3-3); initialization, 

data transmission, remote execution and result collection. In the initialization 

stage a client sends the required parameters to the server in order for it to  

create the necessary data structures. This process is normally done once per 

reconstruction, since different repetitions usually have the same conditions. 

 

Fig. 3-2 The system set-up state. 

An overview of tasks necessary for setting-up an instantiation of the system. 
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After initialisation, the client invokes the remaining reconstruction stages in a 

desired order until the whole reconstruction task is done. 

 

3.4 The implemented system specifics 

The proposed client-server architecture does not force a specific order 

of the aforementioned reconstruction stages. However, for real-time 

applications proper data transmission management can be as important as 

efficient implementation of the image reconstruction algorithm. Time 

improvements gained by efficient reconstruction can be counterbalanced by a 

slow transmission process or lost on unnecessary synchronizations. For optimal 

processing of continuous and arbitrary length streams of real-time data, an 

overlap between data transmission and reconstruction is desired. This can be 

achieved by buffering of the incoming data and assigning different processing 

threads to each of the communication and execution stages. The optimal 

situation is when the reconstruction time is equal or shorter than data 

transmission. In this case only one additional storage space is required to allow 

a constant stream of data between computers. However, in the case of 

 

Fig. 3-3 The reconstruction state. 

An overview of tasks assigned to each of the independent stages of the application state. 
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reconstruction being slower than data transmission, it may be beneficial to have 

more than two buffers. 

The same idea behind the encapsulation into different reconstruction 

module objects is used to facilitate the buffering. A client may order that more 

than one object of a specific reconstruction type is created for its needs. On the 

server’s side, the buffers assigned to each of the clients may be explicitly 

separated from each other using an additional indexing structure. This is not 

necessary as it is the client’s role to identify a reconstruction object upon which 

each action should be carried out; through a unique identifier. Nevertheless, the 

distinction between objects representing buffers and those for different clients is 

made. Namely, there is no need to allow communication between 

reconstructions’ objects unless they constitute a part of a bigger coherent 

reconstruction process, as represented with buffers. The reconstruction of 

continuous stream of real-time data may require data to be shared between 

consecutive buffered reconstructions (i.e. to allow a sliding window 

reconstruction approach or to share coil sensitivity profiles). To enable this, the 

implemented module interface was extended to take in account possible 

communication between objects of the same type. 

A more detailed description of each aspect of the implemented data 

transmission and remote execution management for the continuous real-time 

MR assessments with the described distributed imager reconstruction system is 

presented in the following sub-sections. 

3.4.1 Networking and communication interfaces 

C++ implementation of CORBA technology (omniORB, Apasphere Ltd, 

Cambridge, United Kingdom (53)) was used to implement the networking layer. 

A definition of the network communication module in IDL is presented in 

Appendix 11.1. This was used to generate C++ version of the interfaces. The 

single type of networking object was defined with five networking interfaces. 

Four directly relating to each of the reconstruction stages described above (Fig. 

3-3) and one enabling the system set-up state (Fig. 3-2). Each interface 

provides the client with a set of input parameters that can be used by a client to 

identify a remote reconstruction object (data structures, buffers) as well as to 
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specify a variant of operation, if necessary. Other parameters are used to 

transmit an arbitrary length of data. All of the interfaces return the status of a 

requested operation. This is returned after an external execution has finished 

and it depends on the server’s implementation. 

3.4.2 Execution and data transmission management 

The scanner's native reconstruction system provided a C/C++ based, 

multi-threaded programming environment for the implementation of the client 

side of the system. Fig. 3-4 presents the implementation of a client for an 

incoming stream of real-time data. The whole task of maintaining the 

reconstruction process was left to the client. That means, the server side does 

not actively process the data. Each separate step (data transmissions and 

executions) must be implicitly scheduled and overlooked by the client side. The 

whole process is controlled by three cross-network groups of threads; Send 

threads, Process threads and Get threads. Each group of threads controls the 

processing of different aspects of the reconstruction state, enabling overlapping 

of data transmission and execution. On the client, these are represented by 

three control blocks, which work independently from one another, 

communicating only by passing messages about the completion of the previous 

stage. The stream of constantly acquired data is divided into sets, which can fit 

into buffers organised on the external machine. The buffers integrity is protected 

by a set of locks shared between the control blocks. This mechanism was 

adopted to prevent overwriting of data currently being reconstructed with newly 

incoming data. The number of buffers is an arbitrary parameter that is set during 

the reconstruction initialization stage. 

Send threads control the preparation of data for reconstruction. The 

client separates, labels the data and initiates the sending process. Equivalent 

threads on the server side store the transferred data in an appropriate format for 

reconstruction, within a selected buffer. The incoming data is first pre-stored by 

the client's send control block to avoid transmission of small chunks of data. 

The transmission takes place if the storage limits are reached or when the last 

line of data in a set was received. The send control block is responsible to 

check the status of the buffer's lock, and only transmit data if the buffer is 

unlocked. When the buffer is filled-up, the send control block locks the buffer 
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and changes the index of the receiving buffer. This way transmission can 

continue using a different buffer. 

Process threads are responsible for overlooking each side of the 

remote execution. The client signals readiness for processing by passing an 

index for the newly filled buffer, to the server. Corresponding threads on the 

server start the reconstruction and return its status upon completion. If the 

reconstruction is successful the process control block passes the index of the 

buffer to the collect control block. 

Get threads maintain the process of collecting results. The client sends 

the index of a result to the server for translation into its specific data storage 

system. A result is returned if processing for the selected buffer has finished. 

Next, the client marks the buffer as unlocked and the retrieved data are sent 

further down the scanner's system for processing, storing or presentation.  

This organization of overlapping transmission and remote execution can 

work smoothly with no interruptions or breaks, providing transmission and 

reconstruction are faster than the data acquisition. 

 

 

Fig. 3-4 The buffered transmission and remote execution management. 
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3.4.3 Reconstruction management 

A single reconstruction module interface (as presented in appendix 

11.2) was designed independently of the server application. This declares entry 

points through which the server application controls each created reconstruction 

object. A new reconstruction module must provide a single reconstruction class 

definition that derives from the declared interface (abstract class 

IReconstruction - Appendix 11.2). This class represents a processing algorithm 

implemented with the module. As no prior knowledge could be assumed, the 

module implementation must provide adequate functionality to each of the 

global functions through which the module is initialised after being loaded 

(StartLibrary), de-initialised prior to being un-loaded (StopLibrary) and each new 

object of the reconstruction is created (GetIReconstruction). Although, the 

module interfaces are declared with continuous real-time data processing in 

mind, they are not restricted to them. Apart from the necessary functionalities; 

setting up a new reconstruction (ReadHeader), copying data into an object 

(SetData), running reconstruction steps (PreProcess, Process, PostProcess) 

and retrieving results (GetResSize, GetResultData), it provides entry points for 

duplicating of already initialised objects (CopyBuffer) and general 

communication between a group of objects (ManageBuffers). 

The server application constitutes an execution controller whose main 

role is to protect data consistency of each of the reconstruction objects. The 

implemented version was based on a modular approach dedicated for buffered 

reconstruction. Specifically, it was prepared to handle only a single 

reconstruction module that was used to generate multiple reconstruction buffer 

objects. This implementation is limiting in situations where multiple scanners are 

connected into a system, but perfectly sufficient for the MR hardware, which is 

presently available to us (a single scanner connected with an external 

computer). 

The server was prepared to efficiently handle continuous real-time data 

acquisitions. However, it is not limited to this type of acquisitions. On connection 

and initialisation, the server loads the requested reconstruction module. Next, a 

single reconstruction object is created and initialised using the incoming 

reconstruction parameters. The initialised object is then replicated to form the 
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number of requested buffers. These are identified with an index sent by the 

client with each request. Also, a set of semaphores and mutex objects (these 

are special types of variables through which an access to a resource can be 

managed between multiple concurrently running threads) were created to 

control access to the buffers. Simultaneous data transmission and processing 

requests on the same object were forbidden as it would make no sense to allow 

retrieving of results (or updating in-put data) before processing finished. 

Additionally, the server implementation enabled data exchange 

between buffers. This was done to facilitate potential sliding window type 

reconstructions. On the reconstruction request, the server first calls the 

communication interface and passes to it all of the buffers and then calls the 

processing interface of the selected buffer. 

3.5 Data transmission test  

The described system was developed and implemented within 

research/clinical environment (UCL Centre for Cardiovascular Imaging, Institute 

of Cardiovascular Science, London, United Kingdom). The original installation 

connected a native reconstruction hardware (2x Intel Xeon E5440 2.8 GHz, 16 

GB DDR3) of 1.5 Tesla (T) MR scanner (Avanto, Siemens Medical Solutions, 

Erlangen, Germany) using a half-duplex Ethernet with an external computer 

(DELL Alienware Aurora, Intel i7-920 2.7 GHz, 9 GB DDR3) equipped with a 

GPU card (NVIDIA GeForce, GTX 480 1.4 GHz, 1.5 GB DDR5). The original 

system was replicated on another 1.5 T Siemens scanner at our institution. 

Also, the distributed image reconstruction system was installed at collaborating 

institutions. These include mirror installations at the Heart Hospital, London, 

United Kingdom, University Hospital Southampton, Southampton, United 

Kingdom and Yale Magnetic Resonance Research Center, New Haven, United 

States of America. 

As mentioned in the motivation (Chapter 2), in the clinical/research 

cardiac MR environment there is a high demand for rapid assessment of the 

cardiovascular system by MRI. The PCMR spiral sequence combined with 

parallel imaging (SENSE), developed in the unit allows a very fast acquisition of 

data (17). This allows real-time assessment of biomarkers during active 
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exercise (17, 54), as well as the response to mental stress (55). In addition, this 

created and validated sequence constituted a base for more advanced imaging 

techniques (i.e. prospectively cardiac gated PCMR (48), retrospectively cardiac 

gated PCMR (56) and high resolution Fourier Velocity Encoding (57)). However 

the original reconstruction proved very time consuming. This limited its use for 

research/clinical studies to short acquisitions (3-7 s) due to resulting long 

reconstruction times (up to 3-5 minutes). The new system was designed to 

remove this limitation and enable continuous real-time data acquisitions which 

are unconstrained by the reconstruction time. 

For optimal processing of a stream of real-time data an overlap 

between data acquisition and its reconstruction is required. One of 

consequences of the external processing is the requirement for data to be 

transferred onto the external machine. In this case the optimal processing 

requires both; the reconstruction and transmission times, to be faster than the 

acquisition. Consequently, it was essential to ensure the data transmission and 

the new reconstructions would not constitute bottlenecks for the future 

assessment protocols. 

The most important, for this part of the work, was to find the maximum 

network transmission bandwidth which consequently is the maximum 

acquisition bandwidth supported by the system. First the optimal size of 

transmission packets that would fully utilise the network capacity was estimated. 

To determine the network transmission performance depending on the 

size of transferred data, a simple application was implemented within the 

distributed system. The client generated data sets with increasing size, which 

were then transferred onto the external machine. The server’s role was to 

receive the data and store it in its memory. The time necessary for each 

transmission, calculated as the time spent to execute the network transmission 

interface call (SetRawData), was measured on the client side. The transmitted 

data size ranged from 2048 bytes (B) to 2.1 MB (Fig. 3-5). The tests allowed 

assessment of the impact of data fragmentation on the transmission 

performance. The maximum network bandwidth was found to be ~43.4 MB/s. It 

was estimated all transmissions of ~500 kB or more were achieving 90-100 % 

efficiency. 
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The acquisition throughput depends on the acquisition trajectory and 

the number of receiver coils. The Cartesian and radial trajectories can be seen 

as the least demanding, since only a single 𝑘-space line is acquired with each 

RF-excitation. Assuming a high resolution data; 256x256 matrix twice 

oversampled in the read-out direction acquired with repetition time (TR): 2.5-5 

ms and 12 receiver coils would produce 9.8-19.7 MB/s. More efficient 

trajectories can produce significantly more data. Typical spiral acquisition; 

128x128 matrix would need TR: ~6.92 ms and generate ~32 MB/s (assuming 

12 spiral interleaves to fully sample 𝑘-space with 2300 read-out points per 

interleave). These spiral acquisition parameters were used in the following 

tests. 

To validate the initial transmission results the final transmission protocol 

for the continuous real-time acquisitions (Section 3.4.2) was tested. A set of 60 

flow frames (total of 120 data frames) were acquired with four times 

acceleration. This resulted in total acquisition time: ~2.49 s and data size: ~79.5 

MB. The results are presented in Fig. 3-6. The transmission time was measured 

from the beginning of the transmission until the last of the frames was fully 

transferred on the external computer. The optimal transmission protocol, 

defined as the one introducing the shortest latency and providing faster total 

transmission time than acquisition time, was found for the transmission package 

size of 12 acquisition read-outs that were sent together as a single network 

transmission (the transmission package); latency: ~76 ms and total 

 

Fig. 3-5 Network transmission speed as a function of transmitted data size. 

The results are from the half-duplex Ethernet connection between the native scanner image 
reconstructor and the external computer. 
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transmission time: ∼2.41 s resulting in ~35 MB/s. The lower throughput, as 

compared to the simple application’s results, was caused by measuring the total 

time rather than the individual package transmissions. This included collection 

time of packages, which was dictated by the acquisition speed. 

 

Experimentally, I looked into data compression as some imaging 

protocols may produce more data per frame. For example, higher resolution 

spiral read-outs; 192x192 matrix, TR: ~8.28 ms, would generate: ~44 MB/s 

(assuming 16 spiral interleaves with 3812 read-out points per interleave and 12 

receiver coils). This already exceeds the limits of the implemented system and 

needed to be addressed. The tests were repeated, this time applying data 

compression prior to a transmission. In the scope of this work, only one 

compression algorithm was tested; BLOSC - A blocking, shuffling and lossless 

compression library (58). Unfortunately, the tests showed that the achievable 

compression rate (~93 %) was not sufficient and better alternatives have to be 

sought. Low compression rate made it insufficient to make up for time required 

to run the compression, which added-up to the total transmission time. Possibly, 

reorganization of transmission stages to hide this extra time may mitigate this 

problem. However, more data intensive applications (i.e. 3D imaging) may 

require much higher compression rates to keep a transmission time below an 

acquisition time.  

 

Fig. 3-6 Total transmission time test results. 
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4. GPU reconstruction implementation 

In this chapter, I present the initial implementation of the GPU based 

SENSE algorithm. This implementation was further improved and adopted in 

the further described projects. The work presented in the chapter was 

published in the following article: 

Real-time flow with fast GPU reconstruction for continuous 

assessment of cardiac output, GT Kowalik, JA Steeden,  

B Pandya, F Odille, D Atkinson, A Taylor and V Muthurangu; 

Journal of Magnetic Resonance Imaging, Volume 36, Issue 6, 

pages 1477–1482, December 2012 (DOI: 10.1002/jmri.23736). 

Appendix 11.8 
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4.1 Introduction 

The networking framework described above enables fast transmission 

of data onto an external computer. In this chapter I will describe a GPU 

implementation of the SENSE algorithm. This implementation was meant to 

counterbalance the reconstruction time limitations incurred with the use of 

highly accelerated fast acquisition trajectories. 

In cardiac MRI, cine data frames are acquired using either real-time or 

segmented 𝑘-space acquisitions. The segmented approach differs only in the 

organisation of data rather than the reconstruction process. This work 

concentrates on analysis of the real-time case, as this represents the more 

general example and is more demanding with respects to the time limitations. 

A simple real-time imaging sequence constantly repeats the same 

trajectory. As it will be shown, the repetitive sampling strategy is very favourable 

for the GPU implementation, as groups of frames could be processed in parallel 

using the same data structures. 

In this chapter, I will; i) present the profiling results of the original CPU 

implementation, which were calculated and used to identify the bottlenecks of 

the algorithm when run on the multi-core CPU; ii) discuss the GPU 

implementation for the repetitive real-time acquisition; and iii) present the GPU 

reconstruction for continuous real-time data, which was implemented within the 

previously described distributed reconstruction system (Chapter 3). The 

continuous assessment of cardiac output during exercise was used as an 

example of real-time acquisitions requiring prohibitively long reconstructions. 

4.2 Conjugate gradient linear solver algorithm for the SENSE 
reconstruction 

The SENSE reconstruction for data acquired on arbitrary trajectories 

uses the conjugate-gradient solver algorithm (Section 1.4.2). The algorithm is 

an iterative method for solving sparse systems of linear equations, which in this 

case is a very computationally intensive process. The appendix 11.3 presents a 

pseudo code of the solver, adapted to the reconstruction needs, based on the 
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equations 1-41, 1-42 and 1-43. On the basis of the equations and pseudo code 

the reconstruction can be divided into repeated matrix operations and dot-

product calculations. The major difficulty of an implementation are 

multiplications with the 𝐸 and 𝐸𝐻 matrices. However, the multiplications can be 

broken down to three operations (see Section 1.4.2; equations 1-44 and 1-45); 

FFT, gridding and linear matrix combinations with coil sensitivity maps (Fig. 

4-1). 

The reformulation of the SENSE reconstruction in the form of matrix 

multiplications and additions makes it a perfect candidate for implementation on 

the GPU platform. GPUs as vector processors were designed to support matrix 

operations (Section 1.5). For example, the 𝐼, 𝐷 and 𝜃 (i.e. Equation 1-43) are 

diagonal matrices and the left-multiplication with them simplifies to element-wise 

multiplication (scaling operations). This operation can be very efficiently 

implemented as a dedicated kernel (Appendix 11.4). Also, many basic linear 

algebra operations (i.e. dot-product) and more commonly used signal 

processing functions (i.e. FFT) are readily provided in different libraries. 

The new GPU implementation was based on a previous (original) multi-

core CPU implementation for arbitrary trajectories. When profiled (Tab. 4-1), it 

revealed that the gridding operations were the major bottleneck, accounting to 

over 80 % of each iteration time. It is obvious that these operations needed to 

be significantly sped-up to improve the overall performance of the 

reconstruction. 

Gridding is the process by which a non-Cartesian signal is resampled 

onto a rectilinear grid, by use of convolution (Section 1.3.4). Intrinsically the 

operation has no data dependency. However the irregular data addressing 

pattern complicates a GPU implementation. A process of porting onto the GPU 

platform requires careful analyses and design of an algorithm that complements 

the GPU specific hardware (59). There has been a significant work in this area, 

which I summarise below. 
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4.3 Existing GPU gridding implementations 

Conceptually, gridding is a very simple operation of combining the input 

data elements through the convolution operation. Convolution can be found in 

applications that need to process or analyse data resulting from some linear 

combination of another signal (sample data or, in general terms, functions). It is 

ubiquitous in digital signal processing, as it constitutes the basic step of many 

operations. Also, it is widely used in digital image processing (i.e. edge 

detection and calculation of image derivatives), digital data processing (i.e. 

Savitzky–Golay smoothing filters), physics (i.e. spectroscopy) and many other 

fields of science. The most common example is an image blurring or down-

sampling (a convolution of an image with a Gaussian kernel). 

A consequence of the widespread use of convolution is that it is crucial 

to optimise the operation in terms of speed and efficiency. Optimisation steps 

may depend on a targeted hardware. The procedure is intrinsically 

parallelisable, as in principle there are no dependencies between operations. 

Namely, each output result is not dependent on the other results. 

For most applications convolution can be very efficiently implemented 

on the GPU (60-62), as most commonly the input and output are on rectilinear 

grids of the same or proportional sizes. This simplifies the implementation, as 

 

Fig. 4-1 Simplified block chart of the iterative SENSE algorithm. 
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each separate accumulation step does the same operation, but on a different 

subset of elements. The necessary kernel values are limited in number and can 

be pre-calculated or even predefined for specific applications. Nevertheless, the 

optimised implementation needs to take in account the specifics of GPU 

hardware. Most importantly these include coalesced memory read and write 

operations, as well as use of the shared on-chip memory, as software managed 

cache (43). Neglecting these features during the implementation process will 

have significant impact on the final performance. 

A dedicated implementation for the transformation from an arbitrary 

trajectory onto a rectilinear grid is more difficult than the cases mentioned 

above. The input (or output in case of the inverse operation) may be of random 

(although always known) structure. This adds an additional step of calculating 

the kernel values, which can be very computationally intensive. Commonly, a 

table of kernel values is prepared only once in order to reduce a number of 

calculations. Next, the coefficients necessary for each convolution step are 

created through interpolation of the closest values from the table. 

The lack of symmetry between input and output data has resulted in a 

few potential implementation strategies (50, 59) (Fig. 4-2). These can be 

categorised on the basis of how the work was assigned to executing thread or 

threads. The starting point is to evaluate the Fine-grained input-driven 

assignment (Fig. 4-2) in which the input trajectory points are assigned to a 

thread on a one-to-one basis. A thread’s role is to identify output positions on a 

basis of a convolution kernel size. Next, kernel coefficients are calculated based 

on distances from the input point to the output points, and multiplied with the 

input value. The final step is to add the scaled values to values associated with 

each of the output positions. 

This is a straight forward multi-threaded implementation for CPU like 

architectures. The implementation benefits architectures where threads are 

loosely coupled and which provide hardware managed cache. However, the 

GPU architecture does not allow loose execution of its treads. It is a direct result 

of the GPU design in which processing cores are tightly interconnected. This 

means that only the same operation can be executed by all of the cores 

(Section 1.6). 
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A modified Coarse-grained version (Fig. 4-2) can be designed to 

support this feature. This strategy has the optimal number of memory reads and 

has full benefit of coalesced memory read operations. However, the input-driven 

assignment entails a serious drawback for the GPU implementations, as the 

output regions are irregular causing non-coalesced memory access. 

Additionally, they can overlap each other. In consequence, the implementation 

requires atomic operations on the global memory. An operation (or set of 

operations) is atomic if its execution cannot be interrupted. Atomicity 

guarantees isolation from concurrent processes. This does not constitute a 

problem for CPU versions as the atomic operations, if not provided by the 

compiler, can be provided with specialised libraries or self-implemented. 

These implementation challenges can be remedied with the output-

driven assignment (Fig. 4-2). In this approach the output is split between 

threads. The algorithm assigns each of the output elements to a thread (Fig. 4-2 

the fine-grained variant) or their group in a form of a region to individual block of 

threads (Fig. 4-2 the coarse-grained variant). 

The coarse-grained output-driven assignment (Fig. 4-2) is preferable for 

GPU implementations, as the regular output area allows coalesced memory 

writes. However, in this case, the potentially irregular input structure poses a 

difficulty. Of course, the trajectory on which data was acquired is known. Hence, 

the data can be pre-sorted on the basis of the assignment to the output regions, 

allowing coalesced memory reads. However the input data must be shared 

between different output regions. This can be resolved by replicating the shared 

input data or padding of the output regions. Again the latter requires atomic 

operations on the global memory or some sort of post processing that combines 

all of the separate results into the final one. Additionally, a block of threads need 

to share the input data. For maximum efficiency the on-chip shared memory 

must be used as a programmatically controlled cache to avoid repeated read-

outs from the global memory. 

The analysis of the implementations of gridding for the GPU platform 

demonstrates it as not a simple task. To guarantee the maximum performance, 

the implementation would require long and tedious code development, problem 

specific data structures, tests and incremental optimisations. Additionally, the 
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final version would be a problem specific solution for a targeted hardware, 

which can be outdated in a short course of time. 

 

4.4 The gridding operation as matrix multiplications 

My work did not aim to create the fastest GPU implementation of the 

gridding operation; however the solution is proposed to avoid future re-

implementations with new GPU architectures. 

Gridding can be thought of as the weighted sum of all acquired 𝑘-space 

samples. However, since the kernel function is usually rapidly decaying, only a 

small fraction of 𝑘-space points have non-zero weights and a truncation can be 

applied. The specific points involved in the separate convolutions are thus 

determined by the sampling trajectory and size of the kernel. The weights for 

convolutions on each Cartesian coordinate can be organized as vectors, with 

the position in the vector referring to a different sampling trajectory position. 

Next, a matrix can be created by stacking the vectors in the form of rows, in an 

order relating to the index of Cartesian grid positions (Fig. 4-3). Now, gridding of 

 

Fig. 4-2 Problem specific GPU gridding implementations (59). 

Input-driven assignment

Output-driven assignment

Fine-grained Coarse-grained

Fine-grained Coarse-grained
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non-uniformly spaced data can be performed by multiplying the vector of 

acquired data with the matrix of weights. 

𝐺𝑁,𝑀𝑆𝑀
𝑡 = 𝑆𝑁

𝑐  4-1 

Equation 4-1 The gridding in form of matrix-vector multiplication. 

This operation transforms a vector of 𝑀 𝑘-space data (𝑆𝑡) samples onto 

a Cartesian grid (𝑆𝑐) stored in a vector form of 𝑁 points. Importantly, an inverse 

operation can be done by multiplying 𝑆𝑐 with the conjugate-transpose of the 

gridding matrix (𝐺𝑀,𝑁
𝐻 ) yielding data on the acquisition trajectory (𝑆𝑡). 

 

4.5 Batched gridding strategy for the repetitive trajectories 

Further optimization of this strategy is possible when one considers the 

structure of raw multi-time frame MRI data. Firstly, 𝑘-space read-outs usually 

contain the same number of samples and therefore, the whole data can be kept 

in a single allocation organized in column-major matrix. In addition, where 

trajectories are repeated over consecutive frames, clustering of same trajectory 

into consecutive columns (𝑆𝑀,𝑇
𝑡 ; 𝑇 a number of read-outs) is possible. This 

 

Fig. 4-3 Creation of the gridding matrix. 

The arrows point storage positions of the kernel coefficients in the relevant row vector. 
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allows multiple simultaneous gridding operations in the form of matrix-matrix 

multiplication to be performed; 

𝐺𝑁,𝑀𝑆𝑀,𝑇
𝑡 = 𝑆𝑁,𝑇

𝑐  4-2 

Equation 4-2 Batched version of the gridding in form of matrix-matrix multiplication. 

This operation produces a new matrix (𝑆𝑐) of 𝑇 data sets with 𝑁 

samples on a Cartesian grid. An additional step required by this approach is the 

calculation of a gridding matrix for each trajectory. In the case when only a 

single or very few matrices are necessary this step is trivial as they can be pre-

calculated, stored as a sparse representation to minimize necessary memory 

usage, and reused when needed. 

This method of optimization by batching (simultaneous execution of the 

same operation on multiple data) is one of the most widely used on GPU 

platforms. Launching a kernel requires preparation of parameters, their 

transmission onto a device and scheduling of the execution. The execution of 

the kernel happens asynchronously with respect to the scheduling thread but 

the preparation process needs to be repeated for each individual kernel call. 

Batching keeps the number of necessary kernel launches to absolute minimum. 

4.6 Implementation specifics 

This reformulation of gridding operations allowed me to leverage 

already existing and optimized libraries for linear algebra that are widely used in 

multiple scientific applications. The entire SENSE algorithm was ported onto the 

GPU, whilst keeping the number of CPU to GPU communications to the 

absolute minimum. The implementation used NVIDIA's CUDA 5.5 toolkit, which 

provided necessary libraries for sparse-dense matrix operations (cusparse), for 

simple linear vector, matrix operations, reduction and dot product calculations 

(cublas) and for 2D Fourier Transformations (cufft). Most importantly, all of them 

provide a batched version of their functions. Use of these libraries significantly 

reduced the time required for development. Moreover, the implementation 

benefits from continuous optimization with new releases of the toolkit, as well as 

their adoption to new GPU architectures. Some minor operators were not 

provided with the libraries (i.e. element-wise multiplications). These were 
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implemented in the form of in-house built kernels for execution on GPU. The 

implementation took full advantage of the continuous allocation and the batched 

approach was applied to them as well. 

The implemented reconstruction was integrated into the distributed 

reconstruction system, as discussed in Section 3.4. The simplified data flow in 

the system for this reconstruction is presented on Fig. 4-4. The coil sensitivity 

maps, as well as the necessary preconditioning and regularisation maps, are 

calculated for each buffer (Section 3.4) prior to the SENSE reconstruction. After 

completion of the iterative SENSE reconstruction algorithm, Maxwell correction 

(63) and then standard PCMR subtraction are performed on the GPU. 

Execution of these steps on the external machine halves the size of result that 

need to be sent back; this way saving the network bandwidth. Upon completion 

of the external reconstruction, the resultant images are sent back into the 

scanner based reconstruction pipeline, for final conversion to the DICOM format 

and image viewing on the scanner console. 

 

4.7 Reconstruction tests 

For optimal processing of a stream of real-time data an overlap 

between data acquisition and its reconstruction is required, as discussed in 

Section 3.4. The data transmission tests determined the maximum acquisition 

throughput supported by the system, as based on the maximum network 

 

Fig. 4-4 Continuous real-time data processing with the distributed system. 

Flow chart for the real-time PCMR data reconstruction process using a heterogeneous system 
incorporating an external computer equipped with a GPU card into the native image 
reconstruction system of a commercially available MR scanner. 
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transmission speed. Correspondingly it was essential to ensure the processing 

of data would not be constrained by the external reconstruction time. 

The reconstruction tests concentrated on the new gridding operation 

and tests of the final version of the GPU based SENSE reconstruction. The 

tests were run on the same system as presented in the networking tests 

(Section 3.5), using four separate data acquisition channels. The same uniform-

density spiral PCMR sequence was used to acquire 60 flow frames; this was a 

size of reconstruction buffer. The imaging parameters were modified to match 

the desirable parameters in future assessments; FOV: 500x500 mm, matrix: 

128x128, voxel size: 3.9x3.9x6 mm, TR/TE: 7.3/1.9 ms, flip angle: 25°, velocity 

encoding (VENC): 280 cm/s, complete 𝑘-space sampling: 12 interleaves. Data 

were acquired with four times acceleration, resulting in temporal resolution: ~44 

ms. Neither water-only excitation, nor fat suppression pulses were used to 

minimize TR. The spiral interleaves were rotated with each frame to enable 

calculation of coil sensitivity maps. Under-sampled PCMR data was 

reconstructed using the new GPU SENSE reconstruction. Gridding was 

performed using a Kaiser-Bessel window function (19) (full-width: 8, 

oversampling factor: 1.25). This window size was chosen as a compromise 

between image quality and speed of reconstruction. 

The Tab. 4-1 presents comparison of the reconstruction times between 

the CPU and GPU implementations. The gridding operations were found to be 

the major bottleneck per iteration, for the CPU implementation. They constituted 

over 80 % of each reconstruction iteration time. Each step in the iterative 

SENSE algorithm was faster on the GPU compared to the CPU. However, as 

expected, it was the reduction in the time taken for gridding (~46x quicker) that 

had the greatest effect on the total reconstruction time. Although, per iteration, 

the GPU was ~23x faster than the multithreaded CPU implementation, 

additional computational overheads (coil sensitivities, preconditioning, 

regularisation and other calculations) reduced the total speed-up to ~15x. Both 

CPU and GPU implementation required 8-9 iterations to converge. Most 

importantly the GPU reconstruction time for 60 frames (~1.6 s) was shorter than 

the acquisition time (~2.6 s). This meant that during online reconstruction of 

larger data sets, the processing would be fully overlapped with the acquisition. 
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The presented tests showed that the data transmission (Section 3.5) 

and reconstruction (Section 4.7) can be done faster than the acquisition. More 

in-depth system reconstruction tests required a more comprehensive test case. 

The next chapter describes online tests of the system to assess its suitability for 

the clinical use. 

   CPU [ms] GPU [ms] CPU / GPU 

Per iteration FFT 287.67 73.95 4 
Gridding 2674.75 58.48 46 
Matrix combination 245.69 4.24 58 
Preconditioning 52.95 1.00 53 
Total 3288.32 144.83 23 

Per 60 frames Total 24115.24 1581.67 15 

Tab. 4-1 SENSE reconstruction time comparison. 

Times of per iteration steps comprise total time required for both forward- and back-
transformations between k-space and real domains. 
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5. Real-time reconstruction for continuous acquisitions 

In the chapter, an application of the developed system is presented 

on the example of continuous real-time assessment of blood flow. The work 

presented in the chapter was published in the article: 

Real-time flow with fast GPU reconstruction for continuous 

assessment of cardiac output, GT Kowalik, JA Steeden,  

B Pandya, F Odille, D Atkinson, A Taylor and V Muthurangu; 

Journal of Magnetic Resonance Imaging, Volume 36, Issue 6, 

pages 1477–1482, December 2012 (DOI: 10.1002/jmri.23736). 

Appendix 11.8 
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5.1 Introduction 

The continuous assessment of cardiac output during exercise may 

allow better understanding of the relationship between cardiac disease and 

exercise intolerance. Current clinical methods of continuous cardiac output 

assessment include; Doppler ultrasound, impedance cardiography and invasive 

measurements. However, they are impractical in the clinical environment and/or 

have been shown to have limited accuracy(64, 65). Flow quantification with 

PCMR sequences may provide a more suitable and accurate alternative (64-

66). However, a high temporal resolution real-time PCMR sequence is needed 

to assess dynamic changes in cardiac output during an exercise. One possible 

implementation is spiral real-time PCMR (17). Unfortunately as discussed 

(Chapter 2) the reconstruction of under-sampled spiral data is very 

computationally intensive. Consequently, to truly make the assessment feasible 

the reconstruction of acquired data must be fast enough to enable multiple 

assessments and to not impede the clinical workflow. In this chapter it will be 

shown that our original online (CPU) reconstruction would take over one hour to 

reconstruct 10 minutes of continuously acquired real-time data. These long 

reconstruction times made continuous assessment of cardiac output with PCMR 

impractical in the clinical environment. 

The purpose of this chapter was to demonstrate the potential of the 

described reconstruction system. This work aimed to; i) provide a quantitative 

validation of data provided with the new GPU reconstruction against the original 

CPU reconstruction, ii) demonstrate the significant improvement in 

reconstruction time on a demanding real-life application example; and most 

importantly, iii) present translation of this clinically important assessment 

protocol into an everyday examination tool, which was otherwise impractical. 

Therefore, the continuous cardiac output assessment during active exercise 

was selected as the test case. The study supplements the test results from the 

previous chapters by stress-testing the system with a 10 minutes real-time 

scanning protocol. 
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5.2 Methods 

5.2.1 Study Population 

Twenty healthy volunteers (9 Male: 11 Female) were recruited between 

August and September 2011. The median age was 31.5 years (range 25-51 

years). Exclusion criteria were: i) Cardiovascular disease (assessed by clinical 

history); ii) Illness that prevented exercise (i.e. joint disease); iii) 

Contraindications for MR such as MR-incompatible implants, or pregnancy. The 

local research ethics committee approved the study and written consent was 

obtained from all volunteers. 

5.2.2 Data acquisition and processing 

All imaging was performed on a 1.5 Tesla (T) MR scanner (Avanto, 

Siemens Medical Solutions, Erlangen, Germany) using two six-element body-

matrix coils. To reduce amount of acquired data the coils were set to combine 

mode. This is a feature of the scanner in which clusters of three coils are 

behaving as a circularly polarised coil read out through a single receiver. This 

resulted in four separate data acquisition channels. 

The uniform density spiral PCMR sequence previously developed in our 

unit (17) was used to acquire the flow data. The imaging parameters were the 

same as in the reconstruction tests (Section 4.7); FOV: 500x500 mm, matrix: 

128x128, voxel size: 3.9x3.9x6 mm, TR/TE: 7.3/1.9 ms, flip angle: 25°, velocity 

encoding (VENC): 280 cm/s, complete 𝑘-space sampling: 12 interleaves. Data 

were acquired with four times acceleration, resulting in temporal resolution: ~44 

ms. To minimize TR, neither water-only excitation nor fat suppression pulses 

were used. To enable calculation of coil sensitivity maps the spiral interleaves 

were rotated with each frame. The described networking framework (Chapter 3) 

was used to enable the overlapping data transmission and external 

reconstruction. The raw 𝑘-space lines were sent using the client application 

implemented on the scanner side to the reconstruction server on the external 

workstation for processing (Section 3.4). The tests were run on the same 

hardware as presented in the networking tests (Section 3.5). The data 

processing was done as described in Section 4.7. Importantly, incoming data 

were buffered on CPU memory and only sent to GPU memory when a whole 



92 

packet had been collected. Data were processed in packets of 60 flow frames to 

ensure sufficient SNR for the coil sensitivity calculations and reduce motion 

within a packet. 

Under-sampled PCMR data were reconstructed using the new GPU 

SENSE reconstruction (Chapter 4). Gridding was performed using a Kaiser-

Bessel window function (19) (full-width: 8, oversampling factor: 1.25). This 

window size was chosen as a compromise between image quality and speed of 

reconstruction. 

5.2.3 In-vivo validation of GPU reconstruction 

As the reconstruction of the exercise data was not possible without 

major changes to our existing multicore CPU implementation (due to the data 

size), a smaller data set was used for validation and comparison of GPU and 

CPU reconstructions. Similarly to the reconstruction tests (Section 4.7), the 

SENSE reconstruction was run on a data set of 60 frames; equivalent to a 

single reconstruction buffer or the length of one packet in the continuous 

acquisition. This small set was reconstructed offline using both the GPU 

reconstruction and the original CPU implementation. 

5.2.4 Vascular response to exercise 

The exercise was performed with an MR-compatible ergometer (Lode, 

Groningen. Netherlands), the participants were placed supine in the MR 

scanner, with their feet strapped into the pedals and the upper leg strapped to 

supports of the ergometer, prior to the scan. The exercise consisted of an up- 

and downward motion of the pedals. This type of exercise is designed to 

minimize motion artefacts as motion is restricted to the lower legs. The 10 

minute exercise protocol consisted of 1 minute of rest, 8 minutes of ramped 

exercise (starting at 2W and increasing by 2W every minute) and 1 minute of 

recovery. During the entirety of the exercise protocol, real-time flow data was 

acquired using the described sequence resulting in 13980 frames (~612 s) of 

PCMR data. 
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5.2.5 Image analysis 

All images were processed using in-house plug-ins for the open-source 

software OsiriX (the OsiriX Foundation, Geneva, Switzerland) (67) performed 

on a multicore workstation (12 core, Mac Pro, Apple, CA, USA). The magnitude 

flow images were segmented semi-automatically using a registration based 

algorithm (68). This requires the user to select and segment the aorta in one 

reference frame, and the plug-in performs subsequent propagation of this 

region of interest (ROI). For the CPU/GPU comparison the CPU magnitude 

images were segmented and the same ROIs were used to quantify flow in both 

the CPU and GPU phase images. 

The original segmentation plan had to be modified for the exercise data 

set due to its size. The original algorithm registers a single frame from a set to 

all of the others. In the case of long exercise data sets this was not desired and 

slow. Thus, I implemented a new split segmentation approach. The task was 

parallelized across multiple-cores by automatically dividing the full data set 

(13980 frames) into 12-15 equally sized subsets, each processed by a separate 

CPU thread. Subsets were presented within separate windows (Fig. 5-1) 

allowing the initial segmentation of the aorta in each of them. Next, a CPU 

thread was assigned to each subset and the original registration algorithm was 

run in parallel on each of them. Resultant ROIs were visually assessed and if 

necessary subsets were individually re-segmented to improve accuracy. The 

final ROIs were copied onto the phase data for flow quantification (Fig. 5-2). 

5.2.6 Statistical Analysis 

All aortic flow results were expressed as the mean ± standard deviation 

(SD). Measurements of agreement between the CPU and the GPU 

reconstruction were performed using Bland-Altman analysis, as well as 

calculation of correlation coefficients. 



94 

 

 

 

Fig. 5-1 Multi-threaded segmentation plug-in. 

A series of magnitude images was split into 12 sub-sections that were processed separately. 
Each window allowed visualisation of a sub-section to enable selection of a reference frame to 
which the rest of images were registered. After finished segmentation the plug-in enables 
combination of all sub-sets back into the single series in the original order. The prepared ROIs 
were preserved and propagated on the series for visualisation and further processing. 

 

Fig. 5-2 Flow analyse plug-in. 

Flow data were extracted on the basis of ROIs and were presented in the top plot. The peak 
detection algorithm was used to detect individual R-R intervals. These were used to calculate 
heart-rate, stroke volume, cardiac output, forward and backward flows. The averaged numerical 
values were presented in the table on the right hand side. The plug-in allowed exporting the 
results for further processing. 
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5.3 Results 

5.3.1 Reconstruction validation 

There was no observable difference in image quality between the CPU 

and GPU reconstructions (Fig. 5-3). 

 

Bland-Altman and correlation analysis (Fig. 5-4) demonstrated a 

negligible bias (~0.4 ml) and excellent agreement (limits of agreement: -1.9 to 

1.2 ml, r = 0.998, P < 0.05) in aortic stroke volumes measured using the CPU 

and GPU reconstructions of the 60 frames data set. 

 

Fig. 5-3 Image quality comparison. 

The first column – CPU reconstruction results: a) magnitude and b) phase images. The second 
column – GPU reconstruction results: c) magnitude and d) phase images. The third column – 
difference images of e) the magnitude and f) phase images. Images (a, c, e) and (b, d, f) are 
presented with the same window width. The phase images (b, d, f) were masked to remove the 
low SNR pixels. 
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5.3.2 Reconstruction times 

The reconstruction times of a single data packet (Tab. 4-1) were 

presented in the previous chapter (Section 4.7). The same results were found in 

this study with data acquired over much longer time period. Consequently, the 

external reconstruction times of each data packet were shorter than the 

acquisition and transmission times of the packet (Fig. 5-5). 

 

As mentioned, the complete exercise studies were not run through the 

CPU implementation. Consequently, an estimated CPU reconstruction time was 

calculated (mean reconstruction time for 60 frames multiplied by the total 

 

Fig. 5-4 Flow quantification validation 

The figure presents plots of Bland-Altman and correlation analysis for the set of aortic flow data 
from 20 volunteers, reconstructed with the CPU and the new GPU reconstructions. 
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Fig. 5-5 System workload during the continuous flow assessment. 

The alternating colours identify rotating processing between two buffers. 
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number of packets), which equalled to ~93 minutes. Thus, data would 

theoretically be available ~83 minutes after the acquisition finished. 

The estimated speed ups related to performing the reconstruction on 

the GPU for this application are shown in Tab. 5-1. On average, total 

reconstruction time with the external GPU reconstruction for the exercise data 

was ~629 s (data length: 13980 frames, acquisition time ~620 s). This included 

external reconstruction, data transmission/buffering to and from the external 

computer and results storage on the scanner, and resulted in all the data being 

available ~9 s after the scan finished. This represents a ~556x speed-up if 

measured from the end of acquisition. Of course, this is not a practical 

comparison, as the speed up value depends on a size of the problem. A better 

way of classifying algorithms is by big-O notation (Landau's symbol). 𝑂(𝜙) can 

be used to classify an algorithm’s processing time (𝑓) by specifying it’s limiting 

behaviour (𝜙) with respect to an input size (𝑛); 𝑓(𝑛) < 𝐴𝜙(𝑛). 𝐴 is a constant. 

Applying this notation to the waiting period after the acquisition finishing as a 

metric of improvement yields 𝑂(𝑛) (linear complexity) for the CPU and 𝑂(1) 

(constant complexity) for the GPU reconstructions. This shift in the algorithm’s 

classification was the crucial improvement that removed the reconstruction time 

as a restricting factor and enabled the real-time assessment studies. 

Also, the reconstructed data were collected throughout the acquisition 

time, which made it possible to view images during acquisition (with a slight 

delay). 

 

5.3.3 Continuous cardiac output monitoring 

All participants successfully completed the exercise protocol and MR 

flow data were measured successfully on all subjects. Flow curves collected 

during a whole exercise study and selected portions are shown in Fig. 5-6. 

   CPU [s] GPU [s] CPU / GPU 

Per 13980 frames Total 5618.85* 629.24 9 
(buffered recon.) From acquisition end 4998.61* 9.00 556 

Tab. 5-1 Continuous flow assessment reconstruction time comparison. 

* CPU times for the entire dataset of 13980 frames were estimated from the CPU reconstruction 
time required for a subset of 60 frames. 
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Increased heart rate during exercise is observable in this raw flow curve 

data. Fig. 5-7 shows the average measured responses to exercise, which 

demonstrate the expected behaviour (17). Cardiac output increased throughout 

the exercise protocol, particularly in the first minute of exercise. This was 

assigned to the increase in heart rate as stroke volume slightly declined during 

the 10 minutes of exercise. During recovery, heart rate fell dramatically although 

not to baseline, while stroke volume increased back to baseline. This led to a 

greater cardiac output in the first minute of recovery compared to baseline. 

 

 

Fig. 5-6 An example of flow data acquired with continuous real-time PCMR during exercise. 

Bottom graphs show 20 s sections of the total data taken at rest, mid exercise and recovery. 

 

Fig. 5-7 Exercise data results. 

The figure presents average and standard deviations of heart rate, aortic stroke volume and 
cardiac output based on flow data from the population of 20 volunteers. 
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5.4 Discussion 

The study showed the continuous MR assessment to be impractical 

with the CPU reconstruction. The CPU reconstruction was estimated to take 

over 80 minutes to reconstruct ~10 minutes of real-time data. The gridding was 

the bottleneck of the CPU reconstruction accounting for majority of its time. 

However, as described (Section 4.3) the gridding problem was well studied and 

the new developed GPU version (Section 4.4) was shown to provide significant 

speed-up for the iterative SENSE algorithm (Section 4.7). 

The GPU implementation made the reconstruction faster than the 

acquisition. This when combined with efficient data transmission (Section 3.5) 

enabled the buffered reconstruction process. Consequently, a single packet of 

continuous data was reconstructed and transmitted back to the scanner before 

the next packet was fully acquired. This allowed monitoring of the results and 

potential re-starting of the scan if necessary (i.e. if a patient moves) without 

waiting till the end of the acquisition. More importantly, the time between the 

acquisition finishing and the whole data set being available for viewing was 

independent of the scan length (~9 s in this study). This means that much 

longer acquisitions can be acquired without a significant effect on the clinical 

workflow. Furthermore, the described distributed reconstruction system 

preserved the existing clinical workflow; for example the simple transfer of final 

image data (including patient biometrics stored in the DICOM headers) to 

processing and storage nodes stayed unchanged. This was essential for the 

assessment protocols to be effectively translated into the clinical environment. 

The main objective of this study was to enable and validate the cardiac 

output measurement during exercise. First, the validation tests proved the new 

reconstruction equivalent to the original one and consequently it can be used 

instead. Next, the exercise results were in keeping with the type of supine 

exercise performed (69). To make the continuous real-time assessments 

feasible in the busy clinical environment the bottleneck in the form of 

prohibitively slow reconstructions was removed. However, a new bottleneck 

was uncovered; slow post-processing of the reconstructed data. Although 

segmentation was parallelised over the multiple CPU cores, the requirement for 

some manual correction led to relatively long post processing times (~1 hour). 
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Thus, more accurate segmentation algorithms better suited to such large data 

sets are required. Nevertheless, the study as a proof of principle opened up 

many novel areas in diagnostic and research cardiovascular MR that are 

currently impeded by long reconstruction times. For instance, cardiac output 

data could be combined with oxygen consumption to fully assess the cardio-

respiratory response to exercise (70). Furthermore, long-term beat-to-beat 

analysis could be performed (similar to beat-to-beat heart rate analysis) 

providing new insight into cardiovascular control mechanisms in health and 

disease (71). 
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6. High temporal resolution real-time acquisitions with 
temporal encoding 

In the chapter, I demonstrate the flexibility of the system to 

accommodate multiple of reconstruction algorithms. The UFOLD technique 

was developed and introduced to improve acquisition speed and/or image 

quality. The work presented in the chapter was published in the following 

article: 

Assessment of cardiac time intervals using high temporal 

resolution real-time spiral phase contrast with UNFOLDed-

SENSE, GT Kowalik, DS Knight, JA Steeden, O Tann, F Odille,  

D Atkinson, A Taylor and V Muthurangu; Magnetic Resonance in 

Medicine, Volume 73, Issue 2, pages 749–756, February 2015 

(DOI: 10.1002/mrm.25183). 

Appendix 11.9 
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6.1 Introduction 

One of principal goals of my work was to promote flexibility through 

development of robust building blocks and preparation of a computationally 

efficient translation environment. The first steps (Chapters 3) presented the 

distributed architecture as a scalable framework capable of accommodating the 

demanding acquisition sequences and reconstructions. Next, the GPU version 

of the SENSE algorithm was shown to very significantly boost the 

reconstruction’s performance, which elevated the algorithm’s utility in the clinical 

environment (Chapter 4). These components, in combination with the previously 

developed spiral PCMR sequence, were shown to have a sufficient impact to 

open new research paths (Chapter 5). 

This section describes the next step, which was to illustrate that the 

framework was not limited in the range of MR techniques which can be built 

within it. Other existing MR components can be integrated into the system and 

benefit from its seamless and robust reconstruction process. The combination 

of the temporal encoding technique (UNFOLD) with SENSE was selected as 

the first example. The presentation of the system’s expandability was not the 

only reason behind this choice. More importantly it provided an incremental 

improvement in the range of available assessment protocols. The temporal 

encoding technique is used to double the acquisition speed. However this can 

be exploited in two ways; improving image quality through higher spatial 

resolution or better artefact suppression, while preserving a temporal resolution, 

or doubling the temporal resolution, while sustaining the image quality. Of 

course the choice depends on the application. 

The problem of assessing cardiac time intervals with PCMR was used 

as the target application. This allowed me to present; i) the scalability of system, 

ii) the incremental improvement in quality of assessments; and iii) actual real-life 

applicability. Cardiac time intervals (i.e. isovolumic times and ejection time) can 

aid the assessment of integrated myocardial function (72). Usually the time 

intervals are assessed by Doppler echocardiographic measurement of 

ventricular in- and out-flow patterns, but they could also be assessed with 

PCMR. However, PCMR is conventionally cardiac-gated and this introduces two 
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major problems. Firstly, flow patterns produced by gated PCMR may be 

distorted by inter-beat variation in stroke volume and heart rate. This has little 

effect on quantification of velocity, but may affect the reliability of time interval 

measurement. Secondly, acquiring gated data with sufficiently high temporal 

resolution takes several minutes, limiting its utility in the clinical environment. An 

alternative option is to use real-time PCMR, which additionally can be used 

during an exercise. Unfortunately, assessment of cardiac time intervals requires 

very high temporal resolution, as the time intervals can be as short as ~30 ms. 

This is significantly lower than the sampling rate enabled by the combination of 

efficient 𝑘-space filling (i.e. spiral acquisition trajectory) and parallel imaging (i.e. 

SENSE), which typically results in 40-50 ms sampling rate. 

In the case of multiple frame acquisitions the temporal domain can be 

utilised for further acceleration. Previous work has shown development of k-t 

BLAST and k-t SENSE (28) techniques, which allow higher acceleration factors 

for multi frame imaging (73). These techniques require acquisition of low spatial 

and high temporal resolution training data. These data are intrinsically present 

in under-sampled radial data due to the oversampling of the central portion of k-

space. This is in contrast with spiral acquisitions. The rapid data sampling of the 

trajectory would need to be compromised to enable the simultaneous 

acquisition of the training data with the variable density spirals. Consequently, it 

would reduce the achievable sampling rate and increase imaging artefacts (due 

to longer read outs). A better approach for spiral imaging may be the previously 

described temporal encoding/filtering technique – UNFOLD (Section 1.4.3), 

which in combination with SENSE (27, 29) should allow the acquisition of real-

time data with high enough temporal resolution to assess cardiac time intervals. 

Therefore, the high temporal resolution real-time spiral PCMR 

sequence that combined UNFOLD and SENSE reconstructions (UNFOLDed-

SENSE) was implemented within the distributed image reconstruction system. 

The implementation process fully reused the previously developed accelerated 

real-time spiral PCMR sequence (17), overlapping data transmission-execution 

framework (Section 3.4), and GPU based SENSE reconstruction (Chapter 4). A 

new trajectory ordering pattern was applied to allow the temporal encoding for 

UNFOLD and self-referencing for creation of coil sensitivity maps. The major 
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implementation work concentrated on adding a new reconstruction step in the 

form of a filter designed to remove the temporal under-sampling. The new 

technique was validated in-silico, in-vitro and in-vivo to assess its suitability for 

the measurement of time intervals. Experimentally, the method was used to 

evaluate the changes in cardiac time intervals with exercise. 

6.2 Methods 

6.2.1 Data acquisition and processing 

All imaging was performed on a 1.5 Tesla MR scanner (Avanto, 

Siemens Medical Solutions, Erlangen, Germany) using six-element spine and 

body-matrix coils (total of twelve elements used in acquisition). 

The same type of real-time uniform density spiral PCMR sequence as in 

the continuous cardiac output assessment was used (Chapter 5). The imaging 

parameters were; FOV: 450x450 mm, matrix: 128x128, voxel size: 3.5x3.5x7 

mm, TR/TE: 7.4/2.0 ms, flip angle: 20° and VENC: 150 cm/s, complete 𝑘-space 

sampling: 10 interleaves. In order to minimize TR, neither water-only excitation 

nor fat suppression pulses were used. The trajectory acquisition patterns had to 

be modified to achieve high sampling resolution (<15 ms) and allow 

combination of the UNFOLD and SENSE reconstructions. The data acceleration 

factor was split into spatial (𝑆𝐸𝑁𝑆𝐸) and temporal accelerations (temporal 

encoding). The temporal acceleration for the UNFOLD technique was fixed: 2x, 

leaving the spatial acceleration to be determined depending on the desired 

temporal resolution. In this study we optimised the parameters for imaging of 

cardiac time intervals. A single interleave was acquired per flow frame, this 

resulted in 10x under-sampling (𝑆𝐸𝑁𝑆𝐸 = 5). The novel acquisition pattern was 

implemented to fulfil the temporal encoding criteria (Section 1.4.3) and enable 

the self-referencing SENSE approach for the calculation of coil sensitivity maps 

(27). The UNFOLD reconstruction was accommodated by acquiring alternate 

lines in consecutive frames, while the full coverage of 𝑘-space was enabled by 

rotating this pair of alternating lines every 𝑁 frames; referred to as an 

acquisition block (Fig. 6-1). In this study 𝑁 was set to 20. This allowed the maps 

used in the reconstruction (Section 1.4.2) to be calculated by combining data 

from 𝑁 ∗ 𝑆𝐸𝑁𝑆𝐸 = 100 frames, with the resultant maps having 𝑁/2 = 10 signal 
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averages (Fig. 6-1). This data acquisition plan required the total number of 

frames to be divisible by a multiple of the size of acquisition block and the 

spatial acceleration (𝑁 ∗ 𝑆𝐸𝑁𝑆𝐸), which equalled to 100 for the presented 

parameters. In the validation studies a total of 700 frames were acquired 

resulting in ~10.37 s of scanning time. 

 

The temporal filtering (Section 1.4.3) can be done in either image space 

or 𝑘-space (74) providing the following condition is met; 

𝜌(𝑟, 𝑡) = ℱ𝑡
−1[𝜌(𝑟, 𝜔)] 

𝑆(𝑘, 𝑡) = ℱ𝑡
−1[𝑆(𝑘, 𝜔)] 

𝑆(𝑘, 𝜔)𝑓(𝜔) = 𝜌(𝑟, 𝜔)𝑓(𝜔) ⇔ ∀𝜔𝑎∈ℝ𝑆(𝑘, 𝜔𝑎)
𝜘
↔𝜌(𝑟, 𝜔𝑎) 

 ℱ𝑟
−1[𝑆(𝑘, 𝜔)𝑓(𝜔)] = 𝜌(𝑟, 𝜔)𝑓(𝜔) 

6-1 

Equation 6-1 Filter reciprocity condition 

In this implementation UNFOLD was performed before the SENSE 

reconstruction. Primarily, the reason was to improve the initial conditions and 

consequently the convergence rate of the subsequent iterative SENSE solving 

process. This assumption was based on the fact that the UNFOLD filtering 

 

Fig. 6-1 Sampling trajectory pattern used in the 10x accelerated UNFOLDed-SENSE 
reconstruction. 

A batch of 100 frames is organised into five blocks of 20 frames (3 blocks are shown in the 
figure). Each row shows the alternating acquisition pattern within a block, with the acquired 
interleave in each frame (numbered) in continuous line. Each block uses a different pair of 
interleaves, thus data acquired in five adjacent blocks fully covers the whole 𝑘-space and can 
be used to calculate the coil sensitivity maps. 
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process, besides reducing the initial under-sampling (Fig. 6-2), removes high 

frequency noise and in this way improve SNR (33). 

In equation 6-1,  𝜘 denotes a transformation between image space and 

𝑘-space that does not depend on any temporal information about the imaged 

object. As demonstrated Fourier transform is such an operation. However, it can 

be only directly applied to Cartesian trajectories. For non-uniformly spaced 

accelerated trajectories, reconstructions like SENSE play the role of the 

transformation operator. Unfortunately, these reconstructions do not always 

conform to this condition. For instance, regularisation used to constrain the 

noise amplification, can alter the solution and have a negative impact on the 

oscillations in image space. Also, if coil sensitivity maps are not calculated 

correctly for each frame the accuracy of the result can vary through time 

introducing a temporal component. Presumably, these have negligible effect on 

the performance of UNFOLD post transformation into image space, as 

conducting temporal filtering in image space is the most common approach (29, 

33, 40). 

 

 

Fig. 6-2 Schematic visualisation of the temporal encoding used in the UNFOLDed-SENSE. 

The figure presents reduction in acceleration/under-sampling/aliasing with the UNFOLD 
technique applied directly to 𝑘-space data. On the left, a series of 20 frames acquired with 
alternating 10x accelerated trajectories has 10 spatial aliases (the top left image). Also, each 
acquired position is two times under-sampled through time (the bottom left plot). This results in 
aliasing in the temporal frequency space (the middle plot) which can be removed with an 
adequate filter. On the right, resultant data of the filtering process is fully sampled through time 
(the bottom right plot). This is equivalent to halving of the number of spatial aliases (the top right 
image). 

Acceleration 10x Acceleration 5x 

k-t 

k-f 

k-t 

UNFOLD 
Frames 1-20  
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A schematic visualisation of the UNFOLDed-SENSE reconstruction 

steps are presented in Fig. 6-3. UNFOLD was performed separately on each 

acquisition block. As each 𝑘-space position in the acquired interleaves, was 2x 

under-sampled in time (Fig. 6-2), Fourier transformation along time resulted in 

aliasing at the Nyquist temporal frequency. The aliases were removed using a 

low-pass temporal frequency filter and after inverse Fourier transformation, 

every 𝑘-space position in the processed interleave was fully sampled in time 

(Fig. 6-2). 

This resulted in each 𝑘-space frame containing two interleaves, a 

reduction in under-sampling from 10x to 5x. The reconstructed signal may suffer 

from ringing artefacts (38). This can happen when a temporal filter is too abrupt 

and/or a jump discontinuity is present between the beginning and end of a 

filtered signal – similarly to Gibbs artefacts. To address this problem, prior to 

UNFOLD, each acquisition block was extended by four frames in either 

direction (by replicating the first and last two frames) (Fig. 6-8). Therefore, 

potential ringing introduced by the filtering process was pushed into these 

additional frames, which were then discarded prior to the SENSE 

reconstruction. 
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The implementation of UNFOLDed-SENSE made full use of the 

previously described distributed reconstruction system (Fig. 6-4). All real-time 

reconstructions were performed online. The networking framework (Chapter 3) 

was used to enable the overlapping data transmission and external 

reconstruction of the acquired real-time data. A new temporal filtering step was 

added to the reconstruction process prior the SENSE reconstruction. This step 

allowed flexible definition of the filter parameters required for the optimisation 

tests. The resultant PCMR data, after temporal filtering (still 5x under-sampled 

in the spatial domain), were next reconstructed using the implemented SENSE 

reconstruction (Chapter 4) on the external machine (Workstation Specialists, 

Two Intel Xeon E5645 2.4 GHz,  24 GB DDR3) equipped with the GPU (NVIDIA 

Tesla C2075 1.2 GHz, 6 GB DDR5). Gridding was performed using a Kaiser-

Bessel window function (19); full-width: 5, oversampling factor: 1.25. The 

parameters were chosen to maximise reconstruction speed. Coil sensitivity 

maps were calculated by combining the original velocity compensated 

interleaves from 100 consecutive frames (the minimum number of frames 

required to ensure complete 𝑘-space filling). These coil sensitivity maps were 

used in the iterative non-Cartesian SENSE reconstruction on the same 100 

frames after they have undergone the UNFOLD reconstruction. 

Intrinsically, UNFOLD is a temporal filtering technique that can 

introduce blurring and reduce the temporal resolution of data. The optimal 

 

Fig. 6-4 Modified continuous real-time data processing for UNFOLDed-SENSE. 

The processing flow chart was extended with the temporal filtering step prior to the SENSE 
reconstruction. 
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selection of the filter is crucial for good performance of the technique. This 

depends on the temporal frequency spectrum of the imaged object. To find 

optimal filter parameters for flow data acquired in the assessment of cardiac 

time intervals, an in-silico experiment was designed as described below. 

To validate the necessity of the combination of UNFOLD with SENSE in 

the assessment of cardiac time intervals two additional reconstructions were run 

retrospectively on the acquired real-time data. Both can be seen as a form of 

sliding window reconstruction (Fig. 6-5). Firstly, the data was treated as if no 

temporal encoding was applied. This meant twice lower sampling resolution 

(~30 ms) (Sliding Windows with Low Temporal Resolution - SW-LTR). This 

reconstruction can be seen as an equivalent of the previously presented 

continuous real-time PCMR assessment. It was used to evaluate potential 

improvements with the higher temporal resolution acquisitions. Secondly, the 

data from adjacent frames were used to create combined frames with halved 

under-sampling. This is an equivalent of convolving the data with a box kernel 

of width of two. Consequently, it is a temporal filter of fixed broad window 

characteristic. This combination of 𝑘-space data produced the same sampling 

resolution as UNFOLDed-SENSE (Sliding Windows with High Temporal 

Resolution - SW-HTR) and was used to assess how the simpler form of 

temporal filtering compares with the tailored approach in UNFOLD. Similarly to 

UNFOLDed-SENSE, both sliding windows reconstructions reduced the 

 

Fig. 6-5 Two sliding window reconstructions used in validation. 

Sliding Window

Overlapping

High-resolution

1 2 3 19 204 18

1-2 2-3 18-19 19-203-4

Sliding Window

Non-overlapping

Low-resolution

1 2 3 19 204 18

1-2 19-203-4
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acceleration from 10x to 5x, and required the secondary step in form of SENSE. 

However, none of them needed the newly added temporal filtering step which 

was omitted or replaced with the necessary data exchange between 𝑘-space 

frames. The rest of the reconstruction was done as presented on Fig. 6-4. 

6.2.2 In-Silico simulation 

An in-silico simulation was used to determine the optimal filter 

characteristics for the UNFOLD reconstruction. A high resolution (matrix: 

256x256) 2D in-silico model was developed, consisting of a high intensity 

border representing subcutaneous fat, and an internal medium intensity ellipse 

representing the ventricular short axis at the mitral valve level (Fig. 6-6 c). 

Respiratory motion (Fig. 6-6 e) was modelled using a function consisting of 

expansion (inhalation), a brief pause and contraction (exhalation). The 

respiratory rate was ~0.22 Hz, with the outer border increasing by ~11 % of its 

original size. Blood flow velocity at the mitral valve orifice was based on a real 

mitral valve inflow (MVI) trace acquired using high temporal resolution Doppler 

echocardiography (Fig. 6-6 a) (SC2000 cardiac ultrasound system, Siemens 

Healthcare, Erlangen, Germany, pulsed-wave Doppler frequency 1.75 MHz, 

 

Fig. 6-6 In-silico model design. 

a) The captured Doppler echocardiography result of MVI acquisition was used to synthesize b) 
the new flow curve. The model’s simulated mitral valve orifice phase (d) was varied 
proportionally to this curve. Visual representations of the in silico model; c) a magnitude, d) a 
phase and e) a cross-section time representation to display motion are presented. 



112 

sweep speed: 100–150 mm/s). Next, a temporal frequency spectrum (up to ~76 

Hz) of the curve was extracted and used to synthesize a new flow curve of 2 ms 

temporal resolution (Fig. 6-6 b). The phase and magnitude of the simulated 

mitral valve orifice varied proportionally to the synthesized flow trace with a 

maximum phase of ±0.9 𝜋 rad (Fig. 6-6 d). Cardiac motion was simulated by 

sinusoidal translation of the internal ellipse along a diagonal trajectory. The 

simulated heart rate was matched with the extracted curve period (~1 Hz) and 

the amplitude of translation was of ~30 % of the internal ellipse size. 

This high resolution model (matrix: 256x256, sampling resolution: 2 ms) 

was used to simulate 𝑘-space data acquisitions. The model was down sampled 

to match the MR acquisition resolution (14.8 ms) and spatial frequency data 

were extracted on 10 spiral interleaves with a matrix of 128x128 points. The 

extracted fully sampled data, reconstructed by gridding and inverse Fourier 

transformation, were used as the reference standard. For the temporal filtering 

tests, the simulated 𝑘-space data were two times under-sampled, rotating 

between even and odd interleaves. I choose not to simulate the total under-

sampling in the sequence as the in-silico model was designed to select the 

optimal UNFOLD filter. As mentioned, the subsequent SENSE reconstruction’s 

performance may vary depending on the initial conditions. This might have led 

to sub-optimal filter choice; for example due to imperfections of coil sensitivity 

simulations. 

The under-sampled 𝑘-space data underwent the UNFOLD 

reconstruction with a wide range of temporal filters, along with the sliding 

window reconstructions for comparison. The filters were defined using a 

modified version of Tukey filter, which allowed control of the beginning of the 

cosine lobe as well as its end point. Two filter characteristics were varied: the 

passband (20-100 % of temporal frequency, in increments of 5 %) and the 

position of the stopband corners (passband edge – Nyquist frequency, in 

increments of 5 %). The resultant data were reconstructed by gridding and 

Fourier transformed into image space. The average phase in the simulated 

mitral valve orifice for each filter was compared to the equivalent phase data 

extracted from the reference data. The optimal filter was the one with the lowest 

normalised root-mean-square error (NRMSE). Also, to assess the level of 
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temporal blurring introduced by each technique, the up-slop starting points of 

the two highest flow peaks were calculated and compared. 

6.2.3 In-vitro validation study 

The in-vitro phantom consisted of a PVC pipe (length: ~12.5 m, internal 

diameter: 2 cm) surrounded by water and oil bottles (width 400 mm; height 200 

mm; Fig. 6-10). Fifteen experiments were performed with different stroke 

volumes (range: 25 to 45 ml) and heart rates (range: 60 to 130 beats-per-

minute) using a pulsatile flow pump (Harvard Apparatus, Holliston, USA). These 

values were chosen to produce peak mean velocities and ejection times in the 

normal range seen in humans. Ejection times were compared to simultaneously 

acquired pressure curves (the reference standard) measured at the same 

position as the imaging planes using MR compatible pressure transducers 

(Datex-Ohmeda, GE healthcare, Helsinki, Finland) with 1 kHz sampling 

frequency. Peak mean velocities measured using the three real-time 

reconstructions were compared to a reference standard Cartesian PCMR 

sequence (FOV: 400x300 mm, matrix: 192x144, voxel size: 2.1x2.1x5 mm, 

TR/TE: 10.7/2.5 ms, temporal resolution: ~10.7 ms, flip angle: 20°). The peak 

mean velocity and ejection time of the flow curve produced by the pump were 

analysed in the same way as described below. 

6.2.4 In-vivo validation study 

Fifteen healthy volunteers (6 male and 9 female) were recruited for this 

study. The median age was 43 (range 27–66 years). Exclusion criteria were: i) 

Cardiovascular disease (assessed by clinical history), ii) Contraindications to 

MR, iii) Cardiac rhythm abnormalities including heart block. The local research 

ethics committee approved the study and written consent was obtained from all 

volunteers. 

An image plane at the base of the heart was selected so that both the 

MVI and left ventricular outflow tract (LVOT) were imaged in the short axis. Flow 

data in this plane were collected using the real-time UNFOLDed-SENSE PCMR 

(which was also reconstructed using the sliding window reconstructions), and a 

high-resolution Cartesian gated scan (same parameters as for the in-vitro 



114 

study). The optimal temporal filter found in the in-silico tests was used in the 

UNFOLD step. 

For comparison (the reference standard) transthoracic 

echocardiography was performed immediately prior to or after MR examination 

(same system as for the in-silico experiment). Pulsed-wave Doppler recordings 

were acquired separately in the LVOT (apical 5-chamber view) and at the MVI 

in the apical 4-chamber view. 

6.2.5 Exercise study 

The imaging protocol was altered to increase the data sampling rate for 

the exercise study. The imaging parameters were; FOV: 500x500 mm, matrix: 

128x128, voxel size: 3.9x3.9x7 mm, TR/TE: 6.58/1.97 ms, flip angle: 15°, 

complete 𝑘-space sampling: 12 interleaves. Consequently, to keep the 

acquisition rate high with a single interleave per frame, the total acceleration 

factor was increased to 12x resulting in the sampling rate of ~13 ms. The 

acquisition block size was kept at 20 frames with six blocks constituting the full 

𝑘-space coverage needed for the self-referencing SENSE reconstruction. In this 

case the total number of frames needed to be a multiple of 120 and hence, 480 

frames were acquired in ~6.32 s. The same type of temporal filter was used as 

in the in-vivo validation study. 

Ten healthy volunteers (all male) were recruited for this study. The 

median age was 31.5 (range 21–44 years). Exclusion criteria were: i) 

Cardiovascular disease (assessed by clinical history); ii) Illness that prevented 

exercise; iii) Contraindications to MR. The local research ethics committee 

approved the study and written consent was obtained from all volunteers. 

Subjects were scanned prone to facilitate the alternating weighted knee 

flexion exercise (bilateral 500 g ankle weights) used in this study. Real-time flow 

data were acquired using the UNFOLDed-SENSE spiral PCMR sequence at 

rest and during active exercise as soon as the heart rate increased by more 

than 20 % (as measured using plethysmography). The imaging plane was 

placed at the base of the heart such that both the MVI and LVOT were imaged 

in the short axis. 
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6.2.6 Image analysis 

All PCMR data (in-vitro and in-vivo) were segmented using a 

registration-based algorithm (68) with manual user correction. Mean velocity 

curves were extracted using in-house plug-ins that I developed, for the OsiriX 

software (the OsiriX Foundation, Geneva, Switzerland (67)). The velocity curves 

were sinc interpolated to ~1 ms temporal resolution. MVI mean velocity curves 

contained early (E wave) and late diastolic waves (A wave), while LVOT velocity 

curves contained systolic ejection wave (S wave). To calculate the timing 

intervals the start and end of each wave had to be found. For this task I 

designed and implemented an automated peak-detection algorithm as a part of 

the image processing plug-ins (Fig. 6-7). An example of the velocity curves 

processing is shown on Fig. 6-11. The start and end of each wave were defined 

by tangent lines calculated at the inflection points of ascending and descending 

slopes of the wave. The S wave peak was used to divide the trace into separate 

R-R intervals, which were processed independently. The following cardiac time 

intervals were measured; ejection time (ET) was the length of the S wave, 

isovolumic contraction time (ICT) was the time between the end of the A wave 

and the start of the S wave, isovolumic relaxation time (IRT) was the time 

between the end of the S wave and the start of the E wave. E and A wave peak 

Fig. 6-7 Data processing plug-in for calculation of cardiac time intervals. 

The two upper plots allow visualisation of LVOT and MVI extracted from images and used in 
processing. The bottom plot presents the results; the velocity curves with markers placed at the 
start, end and peaks of each wave form used in calculations. Numerical values are gathered in 
the table on the right hand side. 
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mean-velocities were measured using the automated peak detection and E/A 

ratio was calculated from these data. Additionally, Tei index (index of 

myocardial performance; (IRT + ICT)/ET) was calculated. 

Doppler echocardiographic data were manually processed and the time 

intervals were calculated as previously described (75) using both the LVOT and 

MVI Doppler traces and the concurrently acquired ECG (76). 

Estimation of SNR and velocity-to-noise ratio (VNR) in the in-vivo 

validation data was performed as previously described (56, 77). A region-of-

interest (ROI) was drawn in stationary tissue, and estimated noise was 

calculated as the average standard-deviation of the pixel intensity or velocity 

through all time frames. Final estimates of SNR were made from the mean 

signal intensity, and VNR from the mean velocity, within a ROI drawn in the 

vessel during peak systole, divided by their noise estimates. 

6.2.7 Statistical analysis 

Results of in-silico tests were compared using the normalised root 

mean square error (NRMSE – Equation 6-2) metric normalised with respect to 

the reference data. This allowed a direct comparison and selection of the 

optimal filter. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑎𝑖 − 𝑏𝑖)2
𝑁
𝑖=1

𝑁
: 𝑎𝑖 ∈ 𝐴, 𝑏𝑖 ∈ 𝐵 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛
∗ 100[%] 

6-2 

Equation 6-2 Definition of normalised root mean square error used in the in-silico test. 

For real-time data, each cardiac cycle was analysed separately and 

then averaged to produce the final result that was compared to the Cartesian 

gated PCMR, both in-vivo and in-vitro. Time intervals, peak mean velocities, 

SNR and VNR were expressed as mean ± standard deviation. Measurements 

of agreement were performed using Bland–Altman and correlation analysis and 

differences between means was tested using ANOVA with post-hoc Bonferroni 

testing. The significance of changes in time intervals and peak mean velocities 

in response to exercise were tested using paired Student’s t-test.  
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6.3 Results 

6.3.1 In-silico tests 

The filter comparison results varied from 3.1 maximum to 0.33 % 

minimum NRMSE. The optimal temporal filter had a passband of 48 % and 

stopband corners at the Nyquist frequency ~33.7 Hz (–3 dB cut-off frequency at 

~25 Hz resulting in ~20 ms temporal resolution) (Fig. 6-8). The NRMSE of this 

optimal filter was 0.33 %, compared to the SW-HTR NRMSE of 0.66 % and 

SW-LFR NRMSE of 1.22 %. Fig. 6-9 shows the velocity curves generated by 

the three reconstructions with the SW-HTR and SW-LTR curves exhibiting 

temporal blurring that affected their ability to accurately reproduce the starting 

point of the simulated E waves. 

 

Fig. 6-8 Example of k-space temporal filtering for accelerated spiral read-out 

A) plot of the magnitude of a k-space sample through time (note the two-fold under-sampling); 
B) temporal frequency of the sample before and after filtering; C) plot of the magnitude of the k-
space sample through time after the UNFOLD filtering (note that the data is now fully sampled 
through time). Grey area indicates extrapolated data, which were discarded after UNFOLD to 
suppress possible ringing artefact. 
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6.3.2 In-vitro validation 

The results for in-vitro experiments are shown in Tab. 6-1 and Fig. 6-10. 

The ejection times calculated using the UNFOLDed-SENSE and SW-HTR data 

were similar to the reference standard pressure measurement, with negligible 

biases, narrow limits of agreement and excellent correlations. Both the SW-LTR 

and the gated Cartesian data overestimated the ejection time (positive bias) 

with wider limits of agreement and poorer correlation. Peak mean velocities 

from three real-time reconstructions agreed well with the reference standard 

gated Cartesian PCMR sequence. Nevertheless, UNFOLDed-SENSE 

performed marginally better. A residual spiral artefact can be seen on the 

phantom image (Fig. 6-10 a) possibly due to sub-optimal distribution of receiver 

coils. These spatial artefacts seemed to have no or very little effect on 

quantitative assessment of flow or time intervals. 

6.3.3 In-vivo study 

The imaging results are presented in Fig. 6-11, whilst the numerical 

results are collected in Tab. 6-1 and summarised in Fig. 6-12. There was good 

agreement for all time intervals (including Tei index) between the UNFOLDed-

SENSE results and Doppler echocardiography with negligible biases, 

 

Fig. 6-9 In-silico results. 

The average phase curves extracted from simulated mitral valve orifice for all real-time 
reconstructions. On the right the close-up of the ascending slope of the simulated E wave 
showing displacement of its starting point at 0.188 s (calculated as the x-intercept of a tangent 
line through the inflection point) in the SW-HTR (0.186 s) and SW-LTR reconstructions 
(0.185 s) due to temporal blurring. 

Fully sampled 

UNFOLD 

SW-HTR 

SW-LTR 
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reasonable limits of agreement and good correlations. The SW-LTR and SW-

HTR reconstructions performed less well, with increasing biases, and generally 

wider limits of agreement. Cartesian PCMR performed worst of all with clinically 

significant biases, wide limits of agreement and poor correlation compared to 

echocardiography. For assessment of E/A ratio, all the real-time reconstruction 

performed reasonably well with similar biases, limits of agreement and 

correlations. However, Cartesian PCMR performed better with negligible bias 

and narrower limits of agreement and better correlation. 

There was no statistically significant (P > 0.6) difference between the 

UNFOLDed-SENSE, SW-HTR or SW-LTR reconstructions in terms of SNR 

(27.4 ± 7.3, 26.8 ± 8.4 and 28.5 ± 7.6 respectively) or VNR (21.7 ± 5.7, 23.9 ± 

6.5 and 23.2 ± 6.0 respectively). SNR and VNR were highest for the Cartesian 

gated sequence (40.4 ± 8.5 and 32.0 ± 11.8 respectively) and were significantly 

different from the real-time reconstructions (P < 0.05). 

 

Fig. 6-10 In-vitro validation results. 

a) In vitro phantom reconstructed with the UNFOLDed-SENSE reconstruction. The phantom 
consisted of three doped water bottles, a bottle of oil, and a nondistensible polyvinyl chloride 
(PVC) pipe placed in middle. b) Bland–Altman and c) scatter plots of UNFOLDed-SENSE mean 
velocity measurements against the reference standard Cartesian gated results. d) Bland–
Altman and e) scatter plots of UNFOLDed-SENSE measured time intervals against the 
reference standard pressure measurements. 
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Fig. 6-11 In-vivo imaging results. 

a) Examples from two volunteers of magnitude and phase images reconstructed with the 
UNFOLDed-SENSE reconstruction, at systole, diastole and represented as a cross section (as 
shown by red line) against time image. The red dotted lines represent transitions between 
blocks that underwent UNFOLD and the green dotted lines represent the transition between 
100 frame sets that underwent SENSE. b) Plot of left ventricular outflow tract (LVOT - blue line) 
and mitral valve inflow (MVI - pink line) velocity curves. The start and end of the S, E and A 
waves are delineated by the horizontal axis intercepts of tangent lines drawn on the ascending 
and descending slopes of the respective waves. These are then used to calculate: isovolumic 
relaxation time (IRT), isovolumic contraction time (ICT) and ejection time (ET) as shown. 

a) 

b) 
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Mean velocity Mean [cm/s] Bias[cm/s] Limits [cm/s] Correlation 

Cartesian Gated 40.86±9.07 --------- --------- --------- 
UNFOLDed-SENSE 40.73±8.96 -0.13±0.84 -1.79 : 1.52 r=0.996 
SW-HTR 40.44±8.78 -0.42±0.89 -2.16 : 1.32 r=0.996 
SW-LTR 40.37±8.51 -0.49±1.46 -3.34 : 2.36 r=0.988 

Time intervals Mean [ms] Bias [ms] Limits [ms] Correlation 

Pressure curves 412.59±73.55 --------- --------- --------- 
Cartesian Gated† 404.94±68.22 7.65±11.15* -14.22 : 29.51 r=0.990 
UNFOLDed-SENSE 411.83±72.98 0.76±3.51 -6.12 : 7.64 r=0.999 
SW-HTR 411.90±74.39 0.69±6.83 -12.69 : 14.08 r=0.996 
SW-LTR 410.24±69.07 2.35±10.58 -18.38 : 23.09 r=0.991 

ICT Mean [ms] Bias [ms] Limits [ms] Correlation 

Echo 46.42±12.64 --------- --------- --------- 
Cartesian Gated† 39.58±12.28 -6.84±8.96* -24.39 : 10.71 r=0.759 
UNFOLDed-SENSE 45.02±11.57 -1.40±5.55 -12.67 : 9.87 r=0.898 
SW-HTR 42.45±11.63 -3.97±6.94* -17.58 : 9.63 r=0.850 
SW-LTR 41.82±13.24 -4.60±8.62 -21.49 : 12.29 r=0.794 

IRT Mean [ms] Bias [ms] Limits [ms] Correlation 

Echo 73.80±14.71 --------- --------- --------- 
Cartesian Gated† 56.73±12.54 -17.06±13.76* -44.03 : 9.09 r=0.534 
UNFOLDed-SENSE 74.13±9.26 0.33±9.61 -18.51 : 19.17 r=0.793 
SW-HTR 71.53±9.33 -2.26±10.58 -23.00 : 18.47 r=0.724 
SW-LTR 70.48±9.20 -3.32±11.44 -25.74 : 19.11 r=0.661 

Ejection Time Mean [ms] Bias [ms] Limits [ms] Correlation 

Echo 301.09±21.43 --------- --------- --------- 
Cartesian Gated† 310.33±20.89 9.24±17.81 -25.67 : 44.16 r=0.669 
UNFOLDed-SENSE 305.99±19.02 4.90±11.73 -18.10 : 27.90 r=0.849 
SW-HTR 308.07±19.13 6.98±10.77* -14.12 : 28.08 r=0.875 
SW-LTR† 309.49±19.24 8.40±11.35* -13.86 : 30.65 r=0.860 

Tei Mean Bias Limits Correlation 

Echo 0.40±0.06 --------- --------- --------- 
Cartesian Gated† 0.31±0.05 -0.088±0.069* -0.226 : 0.047 r=0.378* 
UNFOLDed-SENSE 0.39±0.04 -0.010±0.046 -0.099 : 0.080 r=0.721 
SW-HTR 0.37±0.05 -0.029±0.053 -0.133 : 0.075 r=0.610 
SW-LTR† 0.36±0.05 -0.036±0.058* -0.150 : 0.077 r=0.523 

E/A Mean Bias Limits Correlation 

Echo 1.42±0.29 --------- --------- --------- 
Cartesian Gated 1.47±0.35 0.047±0.245 -0.433 : 0.528 r=0.745 
UNFOLDed-SENSE 1.55±0.39 0.128±0.288 -0.435 : 0.692 r=0.698 
SW-HTR† 1.57±0.38 0.145±0.283 -0.410 : 0.699 r=0.697 
SW-LTR 1.55±0.39 0.127±0.299 -0.459 : 0.713 r=0.681 

Tab. 6-1 Combined in-vitro and in-vivo results of Bland–Altman and correlation analyses. 

* –fixed bias or insignificant correlation (95 % confidence).  
† - significant difference in Bonferroni's Multiple Comparison Test (95 % confidence) against the 
reference standard measurement. 
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Fig. 6-12 In-vivo validation results. 

Bland-Altman and scatter plots of UNFOLDed-SENSE against Doppler echocardiography. All of 
the measured ventricular function parameters had a good agreement with all negligible biases 
and acceptable limits of agreement, as well as strong correlations. 
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6.3.4 Exercise study 

All of the volunteers successfully finished the exercise protocol with a 

mean increase in heart rate of approximately 30 %. MVI and LVOT mean 

velocity curves allowed calculation of cardiac time intervals in all subjects. All 

time intervals were significantly lower (P < 0.05) during the exercise (Tab. 6-2). 

However, Tei index was also lower during exercise, demonstrating that cardiac 

time intervals do not fall proportionally with exercise. Both E and A wave 

velocities significantly increased (P < 0.05) during exercise, although E/A ratio 

fell (P < 0.05) demonstrating an increased reliance on A wave filling. 

 

6.4 Discussion 

Currently cardiac time intervals are not routinely assessed using MRI. 

This is because of the lack of robust and reliable measurement technique. For 

instance, commonly used cardiac gated PCMR sequences with sufficient 

temporal resolution would be too time consuming. This study showed that a 

more suitable approach is to measure the cardiac time intervals using real-time 

PCMR, and that this approach is superior to gated PCMR. Namely, gated 

PCMR data is produced by averaging over multiple heartbeats, consequently 

inter-beat variability results in temporal blurring of flow data and errors during 

processing. Using real-time PCMR, each heartbeat is processed separately and 

therefore the raw measurements are unaffected by inter-beat variability. In 

contrast to processing of the gated PCMR data the averaging of resulting timing 

intervals from individual R-R waves is advantageous as it strengthens 

confidence in the result. Also, by using real-time imaging it was possible to 

acquire data within a few seconds. This strongly limits variation in the results 

due to the beat-to-beat variability. This was confirmed with the strong 

 
HR [bpm] IRT [ms] ICT [ms]  ET [ms] E/A Tei Index 

Rest 66.9±11.3 66.8±8.1 55.9±21.3  276.8±20.1 2.61±0.87 0.45±0.08 
Stress 87.6±11.3 57.9±9.5 42.6±19.5  264.8±21.4 1.95±0.58 0.38±0.09 

P 2.8E-05 0.0213 0.0307  0.0067 0.0017 0.0339 

Tab. 6-2 In-vivo exercise results. 

Results (mean ± standard deviation and P values of paired two-tailed t-test) of the cardiac time 
intervals assessment measured before and during the exercise in population of 10 male 
volunteers: HR – heart rate, IRT – isovolumic relaxation time, ICT – isovolumic contraction time, 
ET – ejection time, E/A – ratio of E- to A-wave maximum mean-velocity and Tei index. 
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agreement between the UNFOLDed-SENSE and Doppler echocardiography 

results. 

Further benefits of the real-time approach are the ability to use it during 

physiological interventions such as exercise or forced respiratory manoeuvres, 

and possibility of extending the assessment time to analyse the beat-to-beat 

variability due to different physiological processes. 

Accurate measurement of cardiac time intervals requires high temporal 

resolution data. Real-time PCMR imaging with sufficient resolution requires 

significant acceleration, beyond the level at which SENSE can produce artefact 

free images. This was the rationale behind expanding the acceleration to the 

temporal domain. Specifically, the temporal encoding doubles the achievable 

acceleration, which increased the sampling rate to 13-15 ms (67-77 

frames/sec). This is a significantly higher resolution than previously described 

for real-time PCMR (47, 78, 79) and is a prerequisite for assessment of cardiac 

time intervals during rest and exercise. Of course this required additional 

reconstruction steps to combat the temporal under-sampling. 

In this study, I designed the comparative experiment to demonstrate the 

necessity for the high temporal resolution data and increased accuracy with the 

optimised temporal filtering technique (UNFOLD) in the measurement of cardiac 

timing intervals. The importance of high temporal resolution can be appreciated 

by evaluating the results of SW-LTR reconstruction, which was the equivalent of 

acquiring data with no temporal acceleration (2x lower sampling resolution). The 

velocity curve from the in-silico test reconstructed with SW-LTR exhibited 

notable blurring and had the worst NRMSE score from all the tested 

reconstructions. This translated into blurring of velocity curves and lengthening 

of ejection times in the in-vitro experiment. Correspondingly, velocity curves 

extracted in the in-vivo validation using this reconstruction demonstrated 

significant temporal blurring of the E, A and S waves; resulting in shorter ICT’s 

and IRT’s and longer ET’s. These results suggested that a higher temporal 

resolution is required, which could be achieved with the sliding window 

reconstruction (SW-HTR), which doubled the sampling rate (number of frames) 

through convolution with the predefined narrow kernel. The simplicity of the 

operation was its biggest advantage; however its temporal frequency 
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characteristic of the equivalent filter was inadequate to the frequency spectrum 

of the imaged object. Consequently, it resulted in temporal blurring visible in the 

in-silico experiment. Nevertheless, SW-HTR did perform better than the SW-

LTR reconstruction. However the best results and closest match with the 

reference curve were achieved with the optimised temporal filter characteristic 

enabled with the UNFOLD technique. 

The next steps were to robustly combine the optimised UNFOLD 

technique with the SENSE reconstruction and validate its performance. 

Although UNFOLD had previously been combined with both SENSE and spiral 

imaging, I developed a novel implementation that was optimized for the specific 

needs of real-time acquisitions. Namely, the batched acquisition/reconstruction 

scheme was applied to enable the coil sensitivity maps to be created from the 

data itself, while still allowing the temporal encoding. A simpler acquisition plan 

could be used if the coil sensitivity maps were acquired separately. However, 

due to possible patient movement and respiratory motion, separate acquisitions 

are not optimal. Specifically this feature of the acquisition pattern meant 

UNFOLD was performed independently on consecutive blocks of data. This had 

two important benefits. Firstly, data undergoing UNFOLD were acquired over a 

short period of time (263-296 ms) compared to the respiratory period (4–6 s). 

This limited potential impact of the respiratory motion (39). Secondly, it allowed 

different interleaves to be acquired in each block and enabled the coil sensitivity 

maps to be created by combining frames from adjacent blocks. Consequently, 

the coil sensitivity maps were updated every ~1.5 s (every five blocks) resulting 

in adaptation and some resistance to patient motion. 

It should be noted that the abrupt transitions between the blocks 

undergoing UNFOLD or the adjacent blocks undergoing SENSE could lead to 

temporal discontinuities. Although neither was seen in the study, methods could 

be employed to reduce the impact of these transitions. For instance, the coil 

sensitivity maps could be continuously updated using a sliding window 

approach (this would have an impact on reconstruction time). 

A less conventional aspect of the reconstruction was performing 

temporal filtering on the raw 𝑘-space data, prior to the SENSE reconstruction. 

The main reason for this was to better condition the iterative SENSE 
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reconstruction by removing high frequency noise and improving SNR (33). 

However, it should be noted that this does require formal testing. The main 

drawback is that it is not possible to use the support region technique to further 

improve image quality in static areas of an image (32). Nevertheless, aliasing 

introduced with 10x under-sampling would cover the whole image space, 

invalidating the support region technique.  

The final reconstruction (UNFOLDed-SENSE) had the highest 

resolution (sampling resolution: ~14.8 ms, effective resolution due to filtering: 

~20 ms) of all the tested reconstructions, which translated into accurate 

assessment of in-vivo and in-vitro timing intervals with negligible temporal 

blurring. One of the main limitations of this technique was the lack of fat 

suppression or water selective excitations, which can lead to image blurring at 

the tissue interfaces. This was not obvious in the acquired data. A further 

limitation was the significant reduction in SNR due to high levels of under-

sampling, although this did not affect the accuracy of time interval assessment. 

Potentially, the technique could be improved by using an algebraic 

reconstruction (80) rather than temporal filtering. This could further improve 

artefact suppression, particularly potential ghosting due to respiratory motion. 

Importantly, I showed that this sequence can accurately quantify 

cardiac time intervals and peak velocity in phantom models and in-vivo. The in-

vivo validation results were in keeping with previously published literature (81, 

82). Furthermore, the experimental study showed that it is possible to measure 

the change in these parameters in response to exercise. However, more work is 

needed to design a better exercise protocol for the evaluation of changes in 

timing intervals. Nevertheless, the developed imaging technique was a valuable 

precedence and future protocols can be built on its example. 

In conclusion, the modular approach (to the development of 

reconstructions) allowed reuse of the optimised GPU SENSE implementation in 

all three tested reconstructions. The incremental development concentrated 

solely on the pre-processing of 𝑘-space data in different forms of temporal 

filtering. The subsequent handling of data stayed the same. The project 

demonstrated the scalability of the system with the pioneering example of 

calculating cardiac time intervals with PCMR, for the first time using MRI. 
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Moreover, the technique allowed performing the comparative exercise study, 

which laid out the basis for more complex assessment studies. Also, it could 

provide a valuable tool of assessment of ventricular walls stiffness in elderly 

patients. 
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7. GPU reconstruction generalisation 

In the chapter, I describe the further development of the GPU 

implementation of SENSE algorithm. The work resulted in the new version 

capable to support a wider variety of MR sequences. The work was 

published in the article: 

Implementation of a generalized heterogeneous image 

reconstruction system for clinical magnetic resonance,  

GT Kowalik, JA Steeden and V Muthurangu; Concurrency and 

Computation: Practice and Experience (Special Issue) Volume 27, 

Issue 6, pages 1603–1611, 25 April 2015   

(DOI: 10.1002/cpe.3349); 

Appendix 11.6 

and the proceeding of 10th International Conference, PPAM 2013, Warsaw, 

Poland, September 8-11, 2013; 

Implementation of a Heterogeneous Image Reconstruction System 

for Clinical Magnetic Resonance, GT Kowalik, JA Steeden,  

D Atkinson, A Taylor, V Muthurangu; Parallel Processing and 

Applied Mathematics, Lecture Notes in Computer Science Volume 

8384, 2014, pp 469-479. 

Appendix 11.7 
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7.1 Introduction 

My previous developments, projects and tests (Chapters 3-5) aimed to 

remove limitations connected with the fast real-time data acquisition for cardiac 

MR, for which the long reconstruction times were the most severe. In Chapter 4 

the fast GPU based reconstruction of MR data was introduced. Next, its positive 

impact on the type of protocols available in the clinical and research settings 

was presented, and evaluated (Chapter 5 and 6). 

The developed distributed image reconstruction system proved to 

enable continuous real-time data reconstructions for data acquired with 

repeating trajectories. The significant reduction in reconstruction time was 

achieved by executing the computationally intensive parts of the reconstruction 

on a GPU. As it was shown, the repetitive nature of the used k-space 

acquisition strategy enabled processing of multiple frames in a single run. This 

feature of the used sequences was greatly beneficial for the adoption to GPU 

architecture. However, some applications may require non-repeating sampling 

strategies. A good example is multi-frame golden angle (137.5°) spiral imaging 

(56). This acquisition pattern is attractive as it allows reconstruction from the 

same data with different temporal resolutions. Unfortunately, as no two 

trajectories are the same, the data structures necessary for reconstruction 

cannot be reused. This complicates a GPU implementation of these 

reconstructions. Specifically, the optimisation steps that were used in the initial 

implementation are rendered inadequate if applied to this more general case of 

acquisitions with non-repeating trajectories. 

It was clear that the developed GPU reconstruction cannot be efficiently 

applied to all data acquisition patterns without some degree of alterations. An 

important question was to determine if the benefits of the implementation (most 

importantly the batched processing and the use of optimised libraries) can be 

preserved. 

In this chapter, I answer this question by evaluating different 

implementation approaches to solve the problem. In consequence, it led to 

development of a generalized GPU reconstruction suitable for repetitive and 

non-repetitive trajectories. I present; i) the further evaluation of the 
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implementation of SENSE algorithm on a GPU, ii) the necessary modifications 

to the GPU reconstruction required to support repetitive and non-repetitive 

trajectories, and iii) the profiling of the final optimized GPU reconstruction, which 

was implemented within the previously described distributed reconstruction 

system. The original implementation (Chapter 4) for the repetitive real-time data 

acquisition was used as the starting point in the optimisation process. Also, the 

golden angle spiral SENSE reconstruction was selected as a test case, as it 

represents one of the most challenging examples. 

The tests were run on the previously described system (Section 3.4 and 

4.6). The same spiral PCMR sequence, as in the transmission tests (Section 

3.5), was used to acquire multiple data sets (28, 44, 60, 76 and 92 frame sets). 

These were used in the tests to assess scalability of different approaches. 

The final optimised version of the GPU based SENSE reconstruction 

was re-evaluated to assess its usability. For this purpose the continuous online 

reconstruction of accelerated golden angle spiral PCMR sequence was 

implemented and assessed. 

Experimentally, the tests were repeated on different GPU enabled 

machines to assess performance across different hardware. The computers 

specifications are presented in Tab. 7-1. The Laptop was used as the 

development machine, while the Desktop and Work-station machines were also 

used as production machines in different projects. 
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7.2  Gridding optimisation steps 

The major implementation difference, entailed with the transition from 

repeating to non-repeating trajectories, is in the organisation and preparation of 

gridding operations. Specifically, the batched optimization (Section 4.5) of 

gridding is not applicable in situations where the trajectories are non-repeating. 

Thus, to create a generalised GPU implementation of the iterative SENSE 

reconstruction, it was foremost necessary to optimize gridding for non-repeating 

trajectories. In order to do this, a series of tests was run on data acquired with 

the golden angle acquisition pattern. This acquisition strategy prevented 

gridding operations from being scheduled as a single batched call across 

multiple frames. Additionally, the gridding tests were done with the equivalent 

repeating trajectories for comparison. 

This section concentrates on the description of the optimisation steps 

that led to the final gridding implementation, and were based on results from the 

production computer (Tab. 7-1 Work-station). The results from all tested 

machines and comparisons are presented in the Appendix 11.5. 

7.2.1 Initial assessment 

An important step of the process was to define the acceptable 

execution time boundaries and resulting from them, the maximum achievable 

 Laptop Desktop Work-station Native  

Name 
Apple 

MacBookPro10,1 
DELL Alienware 

Aurora 
Workstation 
Specialists 

1.5 T Siemens 
Avanto 

CPU Intel i7-3820QM Intel i7-920 
Two Intel Xeon 

E5645 
2x Intel Xeon E5440 

 ---- Clock 3.7 GHz 2.7 GHz 2.4 GHz 2.8 GHz 
 ---- Cores 4 4 2 x 6 2 x 4 
 ---- Threads 8 8 2 x 12 2 x 4 
 ---- Cache 8 MB 8 MB 2 x 12 MB 2 x 12 MB 
Memory 16 GB DDR3 9 GB DDR3 24 GB DDR3 16 GB DDR3 

GPU (NVIDIA) 
GeForce 
GT 650M 

GeForce 
GTX 480 

Tesla C2075 – 

 ---- Processor Clock 0.9 GHz 1.4 GHz 1.2 GHz – 
 ---- Memory 1 GB DDR5 1.5 GB DDR5 6 GB DDR5 – 
 ---- CUDA cores 384 480 448 – 

Tab. 7-1 Tested hardware specification. 

Specifications of computers used during different stages of development and tests of the 
system, and ones used as image reconstructors during data acquisition. 
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speed-up with the GPU gridding. This laid out a context within which the new 

implementations were assessed. The maximum time (Upper-limit) was defined 

as the time it took for the native scanner multi-core CPU to grid frames acquired 

using the non-repeating trajectory. The minimum time (the Lower-limit) was 

defined as the time needed for the GPU to grid the same amount of data, but 

acquired on a repetitive trajectory (the initial batched implementation of 

gridding). I considered these were valid assumptions, as it was unlikely that the 

implementation for non-repetitive trajectories would be quicker than the 

previously described GPU implementation. Also, execution times longer than 

the existing on-scanner implementation would be unacceptable. 

The measured boundaries were found to be linearly related to the 

number of frames within the tested range. This allowed calculation of the 

averaged time (boundaries) per data frame. On the scanner, a single gridding 

operation for the non-repeating trajectories (the Upper-limit) took approximately 

17.76±1.06 ms. The external GPU implementation needed 0.95±0.00 ms to grid 

a single frame from the repeating set of trajectories (the Lower-limit). 

Consequently, the maximum attainable speed-up for the gridding of the non-

repeating trajectories on the GPU was estimated as ~19x, as compared to the 

Upper-limit. Alternatively, when compared to the Acquisition time (the time 

needed to acquire the whole set of frames) the achievable speed-up was 

estimated as ~43x. 

The Acquisition time and the Upper-limit were the same in all tests, as 

they are related to the sequence and scanner reconstructor performance. 

The initial timing tests showed that the sequential scheduling of 

individual gridding operations yields the same results (0.96±0.00 ms to grid a 

frame) as the batched gridding (the Lower-limit), providing the whole data 

structures were already available in the GPU memory. 

Tab. 7-2 presents GPU memory requirements for the gridding 

operation. ~11 MB was needed to accommodate a single gridding operation, 

from which ~32 % was needed for a gridding matrix. However, in the worst case 

of non-repeating trajectories the matrix cannot be re-used and the ~32 % 

overhead quickly becomes problematic. This is especially important when 
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considering buffered real-time reconstruction, as a service for multiple incoming 

requests. 

 

This initial assessment confirmed the original GPU implementation as 

applicable to the non-repeating trajectories, but impractical due to excessive 

GPU memory use. Consequently, a better data structures management was 

needed to reduce memory usage without performance loss. 

7.2.2 Sequential approach 

My first step was to evaluate a simple sequential strategy where a 

single CPU control thread creates gridding matrices and then calls the multi-

threaded gridding in form of matrix-matrix multiplications on the GPU (Fig. 7-1). 

In this naive implementation no parallelism on the CPU side is exposed and the 

control thread waits for the gridding operation to finish. To reduce the memory 

consumption, the sequential approaches allowed only a single gridding matrix to 

be stored on the GPU. The algorithm sequentially created a matrix in CPU 

memory related to each frame, which then was used to replace the one in GPU 

memory. 

A possible optimization of this naive approach is to allow the creation of 

the next gridding matrix to occur while gridding of the current data is being 

executed. Additionally, declaring more than one gridding matrix object and 

rotating between them allows an overlap between creation and execution. Of 

course, execution on the GPU is always asynchronous and the CPU needs only 

Receiver Coils 12 
     Acceleration 4 
     Matrix 

 
128x128 

     Read-out samples 2300 
     PCMR encodings 2 
     Frames 

 
1 28 44 60 76 92 

Spiral Trajectory [MB] 1.33 37.16 58.39 79.63 100.86 122.09 
Cartesian Grid [MB] 5.90 165.15 259.52 353.89 448.27 542.64 
Gridding Matrix [MB] 3.40 95.24 149.66 204.08 258.51 312.93 
Total [MB] 10.63 297.55 467.58 637.61 807.63 977.66 

Tab. 7-2 GPU memory requirement of the gridding operation. 

The table presents how much GPU memory is needed to enable the gridding operation. The 
results were calculated for spiral PCMR data acquired with the presented parameters. The total 
value is a sum of space needed to store the data on the spiral trajectory, the result in form of 
Cartesian grid and the gridding matrix stored in the sparse format. 
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to wait until the gridding matrix is transferred before starting calculation of the 

next one. In this case, the overlap can be used to hide the transmission time. 

These simplistic implementations did not perform well; however, it 

allowed assessment of the average times of the basic operations constituting 

the GPU gridding. These times were fixed across the test sets (linear relation to 

a number of frames), as only the number of frames varied rather than the type 

of a trajectory. These operations are; Creation of a matrix (32.05±0.81 ms), 

single frame Gridding operation as a matrix multiplication on GPU (1.03±0.00 

ms) and Copy – transfer of data structures on a GPU (0.71±0.05 ms). The 

average times were calculated from all the sequential gridding tests results. 

The tests revealed a noticeable difference between these estimated 

gridding times of a single frame (~1.03 ms) and those from the initial 

assessment (~0.96 ms). It suggests that the adjacent gridding operations (as in 

contrast to ones interleaved with data transmissions – the sequential gridding 

tests) were able to achieve some degree of overlap, which levelled the 

cumulative time with the Lower-limit. After correction for these gridding times 

the maximum achievable speed-up changed to ~17x. 

 

Fig. 7-1 Sequential approach to gridding of data from non-repeating trajectories. 

The single CPU control thread in sequential fashion goes through all of the data frames (𝑆𝑗) 

repeating the creation of a gridding matrix for that data set (𝐺𝑖) and scheduling of multiplication. 
The algorithm rotates between available gridding objects to allow the overlap between the 
creation of a matrix for the presently processed data and the multiplication with the previous 
data. 
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The overlapping approach is most efficient if both stages take the same 

amount of time. Specifically, unless creation of the gridding matrix is faster or 

equal to data transmission onto the GPU, there will be a delay between 

consecutive matrix multiplications. For the overlapping version to make a 

difference the ratio between the creation and transmission times would need to 

be very close to one. Unfortunately, the creation was up to ~45x slower in the 

tests. 

The naive strategy showed very poor results which were ~33x slower 

than expected (as compared with the Lower-limit). The overlapping version was 

only marginally better. The improvement was connected to a slight shift in the 

creation of matrix times with which the final timing results were driven. In all 

cases the serial matrix creation took >98 % of the total time. 

Consequently, the total processing time was reduced to the time 

needed to create all of the matrices in serial fashion. In fact, my tests showed 

that optimization by overlapping had no or negligible impact on the sequential 

version of the GPU gridding. This was because the data transmission time was 

short enough to be hidden with an overhead introduced with scheduling of the 

consecutive GPU matrix multiplication calls. 

In order to gain more insight into the performance of the sequential 

scheduling of operations onto a GPU the tests were repeated using pre-

calculated matrices stored in the CPU memory. The goal was to find out if the 

data transfer could be overlapped with the longer matrix multiplications on GPU. 

To facilitate the overlapping execution I made use of CUDA streams. These can 

be seen as processing pipelines within which tasks are run sequentially. 

However, tasks across different streams can overlap providing a GPU has 

enough hardware resources. The process involved four tasks; three data 

transmissions and one matrix multiplication for each gridding. This was because 

in this version the non-zero values and their row, column indices for sparse 

matrices were stored separately. 

The timing results were ~0.4 ms/frame longer than the batched gridding 

(the Lower-limit) resulting in ~1.4x slow-down. Comparison of the results with 

the transmission times (~0.7 ms) revealed that only a portion of the 

transmission time was overlapped with the matrix multiplication operation. This 
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could be caused by an overhead time due to the GPU kernel launch scheduling 

or the partitioned transmission of each gridding matrix. The former cause would 

be connected with the CPU time needed to arrange consecutive operations. 

This can be an issue if a GPU kernel call takes longer than its execution on a 

GPU. The latter would suggest only the adjacent operations could be 

overlapped, as the total transmission time was shorter than the gridding 

operation. Further addressing of this issue and a consequent removal of the 

time difference would level the total time with the Lower-limit. However, the time 

necessary for the pre-calculation of matrices would need to be added to the 

final result, which would make it longer than the previously discussed 

overlapping version. 

These tests revealed that creation of matrices is the major limitation of 

the new gridding approach for data on non-repeating trajectories. The execution 

times were dictated by the speed of CPU, as the GPU execution was short 

enough to be hidden by it. In fact, the sequential gridding was only marginally 

(~1.3x) quicker than the acquisition of data and significantly (~1.8x) slower than 

the Upper-limit. 

7.2.3 Threaded approach 

Creation of a gridding matrix requires preparation of weights assigned 

to each 𝑘-space sample and connected with them indices describing the matrix 

in sparse format. Preparation of the indices is done in a serial fashion, as they 

depend on the number of points included in each convolution, which vary 

depending on the position of the sample. However, creations of individual 

matrices are independent of each other and can be run in parallel. 

Consequently, a straightforward optimization is to spread gridding matrix 

creations between 𝑁 threads, so that each thread performs the two stages 

considered on a different frame, thus allowing the parallel processing of 𝑁 

frames (Fig. 7-2). The speed-up would be equivalent to the number of 

concurrently running calculations. This is strictly hardware dependent, as there 

may be not enough resources for each thread to run without interruptions. 
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For this implementation, the optimal number of concurrent matrix 

creations is equal to the ratio of the time needed to create a matrix to the time 

needed to execute gridding on the GPU (~31x). Providing enough computing 

resources were available the number of concurrently created matrices could be 

brought to the level sufficing to fully occupy the GPU with work. This way a set 

of matrices would be prepared while the previous one was used. Consequently, 

both the CPU and GPU would be fully utilized and the final processing time 

would equal the total GPU time plus initial creation of the first set of matrices. 

However this condition was impossible to meet as the tested hardware (Tab. 

7-1) was limited to 12 physical processors. 

In the tests, apart from using different number of frames, the number of 

CPU threads was varied as well. This was done to find the optimal partitioning 

of the task for the tested hardware. 

The tested CPU was capable of hyper-threading (mapping of two virtual 

processors into one physical); however the tests showed the achieved speed up 

(~9x) was significantly lower than expected and would not exceed the number 

of physical processors. Also, this was reflected in an increase of the average 

matrix creation time (~45.1 ms). Collected log files showed that some runs were 

able to achieve the creation times similar to those found in the sequential 

approach, but the rest required significantly longer time (about double the time). 

This behaviour was observed regardless of the number of concurrently 

scheduled threads and increased with total number of matrix creations. 

Presumably, execution of some threads assigned to the same physical 

processor caused an interrupted execution due to insufficient computing 

 

Fig. 7-2 Threaded approach to gridding of data from non-repeating trajectories. 

A single CPU control thread splits the work between 𝑁 sequential gridding tasks that are run in 
parallel. 
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resources. Consequently, the total time needed to create all of the matrices was 

greater than expected based on the total number of threads involved in the task. 

Finally, I assessed if concurrent scheduling of gridding on the GPU with 

pre-calculated matrices would perform better than the equivalent sequential 

approach. As before, the tests were repeated using pre-calculated matrices and 

the resultant times were in perfect agreement with the estimated total time of 

gridding (difference: 0.00±0.03 ms, ratio: ~1.0x). The average gridding times 

(found in the sequential gridding test) were used as a reference to estimate the 

expected processing time (the single gridding operation time on GPU multiplied 

by a number of repetitions) in this test. 

The threaded results suggested that all the data transmission 

operations were almost completely hidden with the longer matrix multiplication 

operations, as in contrast to the sequential test. Presumably, the multithreaded 

scheduling of GPU operations gave rise to more beneficial ordering, resulting in 

better utilisation of the GPU.  

However, comparing with the batched execution (the Lower-limit) the 

difference in time was 0.09±0.02 ms resulting in ~1.1x slow down. This can be 

related to the difference between the gridding times per frame found for the 

batched gridding (~0.95 ms) and one acquired in the sequential gridding tests 

(~1.03 ms). 

For non-repeating trajectories the gridding operations on the GPU had 

to be interleaved with the data transmissions, as in contrast to the batched 

gridding or the initial assessment from the sequential tests – where the data 

structures were pre-stored on the GPU. Consequently, even if fully overlapped 

with the data transmission operations, the total gridding time could not achieve 

its minimum. Assuming the data structures were available in the CPU memory 

(neglecting the creation time), the threaded approach would achieve almost the 

maximum desirable speed-up (~17x). 

7.3 Hybrid CPU/GPU implementation 

For the threaded optimization strategy the limiting factor was the 

hardware on which the algorithm runs. Providing a sufficient number of CPU 
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cores capable of uninterrupted work (31 in the tests) were available, full overlap 

between the creation of matrices and execution of gridding could be achieved. 

In the tests this was not possible and resulted in suboptimal processing time. As 

shown, providing the gridding matrices were readily available the processing 

time would be the closest to the batched execution. Gridding matrices (gridding 

kernel coefficients) can be hard coded into the application if the sampling 

trajectory type and order of acquired lines were known; removing the need of 

their calculation. However, to build a tool for generalized reconstruction, no prior 

knowledge of the application can be assumed. Effectively, the necessity of re-

creating the gridding matrices must be assumed. Nevertheless, the image 

reconstruction works in an iterative way in which the gridding operations are 

repeated multiple times for a set of reconstructed images. Thus, matrices 

created during the first iteration can be stored and reused in following iterations, 

assuming there is sufficient space. Consequently, I decided to build both 

versions of the threaded approach into the new iterative SENSE reconstruction. 

The new version differed only in the way gridding operations were organised. 

Depending on the iteration index the control thread launched a set of worker 

threads that carried out the gridding operations in parallel by creating the 

necessary gridding matrices or reusing the one stored in CPU’s memory. The 

rest of the SENSE reconstruction stayed as previously described (Section 4.6). 

The new algorithm forces partitioning of reconstructions for which data 

structures cannot fit into memory. Separate reconstruction of sets of frames 

could extend the reconstruction time even if the reconstruction time per frame 

stayed unchanged. Consequently, the set size (number of reconstructed 

frames) needed to be optimised to keep the reconstruction time below the 

acquisition time. The new implementation was tested with different set sizes to 

find out if the reconstruction times were faster than the frames acquisition and 

to assess the relation of the reconstruction time to the set size. 

Tab. 7-3 presents the comparison of the new GPU reconstruction with 

the original CPU version run on the native scanner reconstructor. The table 

comprises timing results of different steps of the iterative algorithm; Fast Fourier 

Transformations (FFT), combination with coil sensitivity maps (CSM), gridding 

and other (it refers to element-wise operations, preconditioning and 

regularisation) were distinguished. Also, the averaged total reconstruction and 
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iteration times are presented. The results were divided into timings per set of 

frames and the average per frame. The Ratio marks the achieved speed-up as 

compared to the native image reconstructor. The Laptop machine was unable to 

run tests with 76 and 92 frames due to an insufficient amount of memory. 

All tests showed a linear relation with the size of the reconstructed data. 

Proportions between the reconstruction steps were preserved across all of the 

data sets. As presented, the combination with coil sensitivity maps and gridding 

operations were the bottlenecks of the original CPU reconstruction. These 

accounted to ~81 % of each iteration time. 

Not surprisingly, of the external reconstructors, the Laptop performed 

the worst achieving a total ~5x speed up. This was more than two times slower 

than the Desktop (~12x speed up) and almost three times slower than the 

Work-station machine (~15x speed up). 

The reconstruction times, calculated per frame, were compared with the 

acquisition rate. For the Work-station and Desktop machines, the very high 

acceleration meant the reconstruction time constituted only ~55 % and ~68 % of 

the acquisition time, respectively. 

The time balance between the reconstruction stages was shifted with 

the GPU reconstructions, as compared to the CPU reconstruction. All of them 

were significantly sped up, with the most visible improvement in the CSM 

operations (~52x, ~55x and ~8x for the Work-station, the Desktop and the 

Laptop respectively) which clearly demonstrates GPU’s efficiency in running 

multiple simple arithmetic operations. The gridding was also significantly sped 

up ~15x, ~12x and ~5x for the Work-station, the Desktop and the Laptop 

respectively. However this was not sufficient to reduce its impact on the total 

time, which similarly to CPU’s was 36-42 %. Nevertheless, the aggregate ratio 

of the CSM and gridding was reduced to ~50 %, ~53 % and ~67 % for the 

Work-station, the Desktop and the Laptop respectively.  
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7.4 System workload tests 

The early tests (Section 3.5 and 4.7) showed that the data transmission 

and reconstruction can be done faster than data acquisition. This was confirmed 

with the online continuous assessment reconstruction tests (Section 5.3.2). As 

stated, the use of the batched gridding strategy was highly dependent on the 

application, as it can be only used if all, or the majority of read-outs, are on 

repeating trajectories. Also, these are ideal situations and to test the system in a 

more general, demanding condition, a continuous acquisition with all non-

repeating trajectories needed to be assessed. 

The new set of tests for the generalised reconstruction (Section 7.2 and 

7.3) showed the same dependency between the reconstruction and acquisition 

times. The last test was to assess suitability of the new online GPU 

reconstruction for the use in clinical/research setting. As in the previous tests, 

the real-time spiral PCMR sequence was used to acquire data using a trajectory 

continuously rotated by the golden angle. The new reconstruction was installed 

in the distributed reconstruction system. All three external reconstructors (Tab. 

7-1) were connected with the scanner and tested using the same 

implementation (Section 3.4) of the GPU based SENSE reconstruction (Chapter 

4) service. The simplified data flow in the system was presented in Fig. 4-4 and 

was discussed in Section 4.6. The processing of the continuous stream of data 

did not change and was done as presented in Section 5.2.2. To allow the 

overlapping acquisition and reconstruction, the incoming stream of continuous 

data was divided into blocks that can be transferred and processed separately. 

The aim was to find out if the waiting time after the acquisition finishes and data 

being available on the scanner would increase with the length of acquisition or 

stay constant as in the previous test (Section 5.3.2). In the latter case, as long 

as the transmission and reconstruction time of a block were faster than its 

acquisition, it would not matter how many blocks needed to be processed. On 

the other hand, if they proved slower, the tests with small number of blocks 

would suffice to ascertain it. Consequently, the number of continuously acquired 

frames was set to five times the size of a block (reconstruction buffer), in each 

test. 
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As in the previous tests, five sizes (28, 44, 60, 76 and 92) of data blocks 

were used in tests to determine the impact on performance. The timing results 

are presented in Tab. 7-4. As in the conjugate gradient tests (Section 7.3), the 

size of data proved problematic not only to the Laptop but also to the Desktop 

computer. Reconstructions for blocks of 76 and 92 failed to run on the Laptop 

due to in-sufficient memory for all the necessary data structures. The 60 frames 

block test for the Laptop and the 76 and 92 frame block tests for the Desktop 

did run, but did not allow fully unimpeded buffered reconstruction. One or both 

buffers were limited in available space for temporal processing structures, 

restricting some operations. Most notably the FFT on the GPU was forced to 

switch from batched to serial processing resulting in unacceptable extension of 

the reconstruction time. 

Timing results were collected in the form of time-stamps, recorded on 

the client side. These were used in assessment of the system work-load across 

different block sizes and external reconstructors (Fig. 7-3). In all cases, external 

reconstructions of the first two blocks proved to be significantly longer than the 

last three. This is explained with the necessary initialisation and memory 

allocations that must be done once per each reconstruction buffer. These are 

time consuming operations that caused ~1.3x to ~3.6x increase in the expected 

reconstruction time (as calculated in Tab. 7-3). Fortunately, the subsequent 

runs with the initialised buffers showed to be more reliable in execution time. 

This can be observed in the time plots (Fig. 7-3) and numerical values (Tab. 

7-4). However, even then the measured external reconstruction time was on 

average ~31 % longer for the Work-station and Desktop machines, and ~13 % 

for the Laptop, as compared to the time needed to run the SENSE 

reconstruction (Tab. 7-3). This additional time on top of the SENSE 

reconstruction, is spent on the preparation of coil sensitivity, preconditioning 

and regularisation maps, as well as organisation of data. This is not an 

insignificant amount of time which may become a bottleneck of the 

reconstruction for more demanding applications. The Laptop’s performance was 

already shown insufficient to allow full overlap with the acquisition, which can be 

seen in the plots (Fig. 7-3). Even with the additional overhead, the Work-station 

and Desktop’s averaged reconstruction times were still faster than the 

acquisition time. 
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For tests with the Work-station and Desktop machines, the transmission 

speed exceeded the acquisition speed (~32 MB/s) as expected, which resulted 

in a block transmission time being faster than or equal to the corresponding 

data acquisition. For the Laptop tests, the transmission time measurements 

showed poorer than expected performance. This was secondary to the slow 

reconstruction consuming the processing time. 

Overall, it can be seen that the continuous assessments, which are un-

restricted by acquisition time, would be possible with the described GPU 

reconstruction within the online distributed system using either the Work-station 

or Desktop computers. The initial delay, due to the initialisations, would resolve 

over time as both the transmission and external reconstructions were much 

faster than the acquisition. This would result in the waiting period measured 

from the end of acquisition to become constant and depend solely on the image 

resolution parameters and the block size. 

Based on these final test conclusions, I showed that the assessment of 

strategies for generalised gridding (Section 7.2) resulted in the implementation 

that had the least impact on the original implementation and connected with it 

performance benefits (Section 7.3). 
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– 

  

Fig. 7-3 Examples of system workload charts. 

Timing results were brought together in Gantt chart like representations of work flow in the 
distributed system. The alternating colours identify the rotating processing with two buffers. The 
upper charts compare performance between all the three external reconstructors; the Tesla, 
Desktop and Laptop, for the buffer size of 44. The lower charts present only comparison 
between the Laptop and Desktop for the buffer size of 60, as the Laptop had not enough 
resources for this reconstruction. 
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Receiver Coils 12  Flow encodings 2 
  Acceleration 4   

   Matrix 
 

128x128 
     Frames     28 44 60 76 92 

Work-station 
       Send 
 

[s] (MB/s) 1.03±0.05(35) 1.79±0.13(32) 2.26±0.12(34) 3.01±0.11(33) 3.71±0.09(32) 
Get 

 
[s] (MB/s) 0.17±0.06(44) 0.25±0.04(47) 0.36±0.14(44) 0.58±0.39(34) 0.57±0.18(42) 

Process 1st [s] 3.13 3.87 4.66 5.24 5.98 

 
2nd [s] 1.35 2.13 2.79 3.48 4.35 

 
Rest [s] 0.90±0.06 1.33±0.02 1.81±0.05 2.19±0.05 2.68±0.05 

Overhead [%] 40 29 32 27 28 

Desktop 
       Send 
 

[s] (MB/s) 1.09±0.11(33) 1.78±0.13(32) 2.42±0.12(32) - - 
Get 

 
[s] (MB/s) 0.19±0.05(40) 0.31±0.14(37) 0.54±0.16(29) - - 

Process 1st [s] 3.08 3.44 4.25 - - 

 
2nd [s] 1.26 2.49 3.39 - - 

 
Rest [s] 1.05±0.10 1.57±0.07 2.18±0.11 - - 

Overhead [%] 30 34 28 - - 

Laptop 
       Send 
 

[s] (MB/s) 1.17±0.22(31) 2.15±0.51(27) - - - 
Get 

 
[s] (MB/s) 0.36±0.20(21) 0.69±0.36(17) - - - 

Process 1st [s] 5.06 4.58 - - - 

 
2nd [s] 2.19 4.20 - - - 

 
Rest [s] 2.14±0.15 3.25±0.09 - - - 

Overhead [%] 11 16 - - - 

Tab. 7-4 Work-load timing results. 

The continuous acquisition was split into five reconstruction packets and run for different sizes 
of the packet (28, 44, 60, 76 and 92). Lack of sufficient memory prevented the buffered 
reconstruction to be run for a packet size larger than 60 for the Desktop and 44 for the Laptop. 
The measurements were done on the client side (scanner). The averaged transmission time of 
the whole packet and transmission time of image results (with the achieved transmission speed) 
are presented. The processing time was divided into time needed to run the first initial 
reconstruction on each of two reconstruction buffers and the average of the subsequent 
reconstruction times. The overhead was calculated as a ratio of the averaged measured time to 
the averaged SENSE reconstruction time (Tab. 7-3) minus one. 
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8. Discussion 

In this work I describe some of the challenges underlying translation of 

advanced MRI protocols into the clinical environment. These were addressed 

with the development and implementation of an external, heterogeneous image 

reconstructor integrated into the scanner system. In this implementation, 

distributed client-server architecture was applied to create the flexible, modular 

platform that can span multiple different MRI systems and reconstruction 

hardware. 

Throughout this work the iterative SENSE reconstruction implemented 

for GPU was optimised. The generalized GPU implementation reduced the 

main bottlenecks, the element-wise matrix operations and the gridding steps. 

However, it was only by speeding up each part of the iterative SENSE 

reconstruction using the GPU that make it possible to perform reconstruction 

quicker than acquisition. 

Nevertheless, the GPU implementation must be integrated into the 

scanner’s reconstruction pipeline to make the external reconstruction invisible to 

the end user, which is essential for clinical translation. This introduced a middle 

step in the form of data transmission that could become the new bottleneck of 

the reconstruction. Therefore, I implemented a data management scheme that 

allowed overlap between all three parts of the reconstruction; acquisition, 

transmission and execution. Also, the reconstruction was optimised to 

accommodate arbitrary data acquisition patterns, which ensured its suitability 

for a wide range of applications. 

Next, I showed that this reconstruction methodology can be used to 

translate advanced MR sequences into clinical environment. The tests and 

validations concentrated on challenging examples of real-time PCMR data 

acquisitions. One of which was the continuous acquisition with the non-

repeating trajectories (the golden angle acquisition). In which a separate 

gridding matrix had to be created for each trajectory. This prevented 

optimisation of GPU execution with the batched gridding on GPU. Importantly, it 

was a valuable example presenting the importance of proper organisation of 

execution of CPU and GPU tasks. The key step was to keep both CPU and 

GPU utilised to maximise the time gains from parallel execution. 
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The presented work not only validated the developed online image 

reconstruction process, but showed that it is possible to run continuous, real-

time acquisitions in an unrestricted by reconstruction time fashion. 

Of course, the system has its limitations. The tests identified the weak 

spots that need to be considered in future developments. The reconstruction 

algorithm was shown to be very memory intensive. This was limiting for 

workstations with low available memory. This would be particularly important in 

bigger systems encompassing multiple clients. Also, the network transmission 

capacity would need to be carefully considered; including potential data 

compression as an additional speed up. However, the presented data 

compression tests were unsatisfactory. Presumably, the MR data exhibits too 

high entropy and more advanced, algorithms are needed which may be 

dedicated for real signals. 

The devised networking framework allowed flexible organisation of the 

system, which can be extended with new processing nodes (or replaced) 

without impacting on applications that run within it. A typical MR system has 

only a single scanner (client), as scanner systems are not designed to be 

interconnected by network. To reduce development time the client and server 

applications implemented only the basic functionalities necessary for them to 

run in the system. Nevertheless, they could be modified and expanded to allow 

multiple simultaneous reconstructions for different requesting clients (as 

discussed in Section 3.4.3) 

Also, in systems encompassing multiple active nodes, the adopted 

distinction into clients and servers could prove limiting. Specifically when 

considering the active supervision and management of tasks within the 

distributed system. Presently, task assignment is fixed to a single coupling 

between server and client. For dynamic load-balancing, a more flexible 

approach, similar to peer-to-peer (P2P) networks, may be needed. For 

example, a class of network objects could be capable of identifying themselves 

and dynamically sharing the processing load within the network. 

Similar works toward offloading image reconstruction from the scanner 

have previously been described (83). These works concentrated on 

interventional MRI where resultant images were presented on a separate 
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viewing station. Also, worth of mentioning is a recent work toward an open 

source platform for implementing and sharing online medical image 

reconstruction algorithms (84). 

In conclusion, all of the project goals were achieved by integrating a 

GPU-based image reconstructor into the scanner system. I developed and 

described the novel distributed image reconstruction system dedicated for the 

clinical MRI. The system allowed integration of existing MR components for the 

seamless reconstruction process necessary to make a difference in a busy 

clinical service. Also, it provided a scalable platform for the translation of 

advanced MRI algorithms. The presented work laid out bases for further 

developments and improvements, which in consequence has the potential to 

revolutionize the type of sequences that can be performed on patients. 
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9. Future work 

My work succeeded in creating a flexible system that can be used to 

translate multiple MRI sequences into the clinical environment. In this final 

chapter I discuss MRI techniques that I would like to investigate in the near 

future; i) implementing retrospectively gated sequences with fast GPU 

reconstructions, ii) image and non-image based navigators for the retrospective 

gating, iii) researching modified spiral trajectories for non-image based 

respiration navigators, and iv) expanding and testing the developed system to 

multiple acquisition and reconstruction nodes. 

9.1 Retrospectively gated reconstruction 

Chapter 6 presented the modularity of the reconstruction system. 

However, the system design provides the same flexibility on the client side. The 

client (or scanner side) is not fixed to purely real-time protocols and the 

developed gateway between computers can be used to provide the fast 

reconstruction for other types of acquisitions. In keeping with the projects 

described in this thesis, the real-life example of retrospective cardiac gating will 

be considered. Cardiac gated PCMR sequences are one of the most often used 

in clinical cardiac MR. They provide a very high quality and reliable imaging 

technique. However, they are very time consuming. Alternatively, the spiral 

sequence could be used (48, 56) providing rapid data acquisition that can be 

performed within a very short breath-hold. 

To date, I have modified the spiral PCMR sequence used in chapter 5 

and 6 to support cardiac gated acquisitions. The real-time acquisition pattern 

used in chapter 6 (Fig. 6-1) was adapted for segmented, retrospectively gated 

acquisitions. The sequence was prepared to acquire a set of alternating 

interleaves per heartbeat (read out spiral interleaves per heartbeat). The set of 

interleaves was changed with each new heartbeat, covering the whole k-space 

over time. The acquisition finished when the last spiral interleave (segment) was 

acquired. To speed-up the acquisition process, parallel imaging (SENSE) was 

introduced, which reduces the number of acquired interleaves. Also, temporal 

encoding (UNFOLD) was implemented to allow two times under-sampling 

through time. 
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This acquisition pattern is exactly the same as the one presented on 

Fig. 6-1, with the exception of the number of read-out lines within each 

acquisition block. In the real-time approach the number of lines was predefined 

and equal in each of acquisition blocks. In retrospective acquisitions the number 

of lines that fits into a heartbeat is unknown and varies between heartbeats. A 

physiological signal (i.e. electrocardiogram - ECG) was used as a trigger to 

change an acquisition block (sub-set of interleaves). 

The self-referencing approach to creation of coil sensitivity maps is 

impractical for cardiac gated spiral acquisitions, thus a fully sampled set of k-

space data was acquired at the end of each acquisition. 

On the reconstruction side, the whole networking framework and 

remote reconstruction were left unchanged, as in the real-time assessments. 

However, an additional functionality was built into the scanner reconstruction 

pipeline, prior to the data transmission step (Fig. 9-1). Namely, resampling 

along the time domain of the acquired data was introduced. In retrospective 

fashion, using the ECG signal for synchronization, the data were divided into 

separate sections – cardiac intervals. Next, each interval was divided into equal 

number of cardiac phases. The data from all intervals were realigned with each 

other by resampling to the beginning of each phase. The Lanczos resampling 

algorithm was implemented for this purpose. If the acquired data was temporally 

encoded, the resampling step was preceded with the UNFOLD filtering of  

 

Fig. 9-1 Modified continuous data processing for accelerated gated PCMR data. 

The processing flow chart was extended with the resampling step prior to the collection, 
transmission and remote execution blocks. 
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the k-space data (the same technique as in Chapter 6). 

The resampled k-space data were then treated as if they originated 

from a single packet in the continuous real-time acquisition (Chapter 5). The 

external reconstruction block size was set to the number of cardiac phases 

which the data was resampled into. Also, the fully sampled data for the coil 

sensitivity calculations were sent to the external computer; where they were 

used in the iterative SENSE reconstruction. 

Fig. 9-2 presents the first results of  retrospectively cardiac gated aortic 

flow data, which were reconstructed on-line using the distributed reconstruction 

system (Chapter 3). The imaging parameters were: FOV: 400x400 mm, matrix: 

256x256, voxel size: 1.6x1.6x6 mm, TR/TE: 5.1/1.93 ms, flip angle: 20° and 

VENC: 150 cm/s, complete k-space sampling: 80 interleaves. 5x spatial 

acceleration and 2x temporal encoding was used to minimise the acquisition 

time. The acquisition required 10 heartbeats, which resulted in data being 

acquired in ~8 s, as the measured average heart rate was ~86 beats/min. This 

Fig. 9-2 Initial results for accelerated gated PCMR sequence with on-line GPU reconstruction. 
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allowed the acquisition to be done within a short breath hold. 

With minimal work the fast on-line GPU reconstruction of accelerated 

gated PCMR data was enabled for clinical and research studies. However, the 

new technique still needs to be thoroughly validated, which is planned for the 

near future. 

9.2 Fast reconstruction of image based self-navigator 

The developed fast on-line real-time reconstruction can be used to aid 

the reconstruction process of self-navigated golden-angle spiral PCMR 

sequence for free-breathing acquisitions (56). The reconstruction calculates the 

image-based respiration signal. This is subsequently combined with the 

simultaneously acquired ECG signal for retrospective segregation of k-space 

read-outs into the cardiac phases. The respiration signal is prepared on the 

base of lower temporal resolution real-time images. This is enabled by rotating 

read-out interleaves by the golden-angle, with each new frame. Consequently, 

the adjacent read-outs can be combined into the real-time series of desired 

temporal resolution. The real-time data need to be reconstructed with the 

SENSE reconstruction before the separation into cardiac phases can start. This 

reconstruction process is the limiting aspect of the algorithm. Usually, the data 

are acquired over a period of ~5 minutes resulting in a long reconstruction 

process; up to 40 minutes (using the multi-threaded CPU version of the SENSE 

algorithm run on the native image reconstructor). 

In future work, I would like to use the techniques developed in my work 

to speed-up the real-time data reconstruction for the image-based navigator 

calculations. The real-time data acquired with the retrospectively gated spiral 

PCMR sequence are equivalent to the data acquired in the presented 

continuous real-time assessment protocols (Chapter 7). Consequently, the 

same external GPU reconstruction can be used to improve the reconstruction 

speed. 
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9.3 Modified spiral acquisition for self-navigating 

The calculation of the respiration navigator enables the free-breathing 

gated acquisitions. The Cartesian and radial trajectories benefit from possibility 

of self-navigating based on a single k-space read-out line. The idea is to acquire 

a 1D signal in the anterior-posterior (front to back) direction allowing monitoring 

of the chest wall motion. This strategy is in contradiction with the spiral 

trajectory, in which data are acquired on spiral interleaves. Alternatively, the 

creation of image based self-navigator signal can be done; however this is a 

very time consuming process (56). 

In future work, I would like to explore a new concept of self-navigating 

for the spiral acquisitions using the gradient re-winding data. At the end of each 

k-space acquisition, the encoding spatial information linear gradients have to be 

ramped-down to zero or re-winded back to the centre of k-space. In our 

sequences, this is a dead time when no sampling is performed, at present. This 

linear traversing of k-space may be used to acquire additional 1D data. 

Providing no information regarding the phase of data were necessary, reading 

out only a half of the line should suffice to create a reliable navigator. A 

modification to the spiral trajectory can be applied allowing linear read-outs of 

the same k-space portion. Namely, after reading-out each spiral interleave, the 

read-out position could be moved to the same location of the outer-portion of k-

space (Fig. 9-3). This would be the starting point of the navigator read-outs, 

which would end in the centre of the k-space; at the same time re-winding the 

gradients. Of course, the trajectory errors due to long read-outs can affect the 

ending point of the spiral interleaves. However, I suspect that the exact 

alignment of the consecutive navigators may not be so important to some 

extent, as long as the directionality of each read-out is preserved. However, this 

will need a detailed evaluation and study. 

 

 

Fig. 9-3 An example of modified spiral trajectory including additional navigator read-outs. 

The figure presents a series of rotating spiral read-outs (the black thick lines) followed with a 
repositioning of a read-out (the dashed grey line) and a navigator data read-out (the dashed 
black line). 

1 2 3 4 5 6
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9.4 MRI as a web service 

The work described in this thesis provides flexibility in introducing new 

components to existing MR systems. The fast external reconstruction with 

hardware accelerators was efficiently integrated into the MR system. This was 

done without compromise in the existing clinical/research framework. The next 

step will be to expand the system onto more MR scanners, which will benefit 

from the fast reconstruction process when connected into the system. 

Ultimately, the idea would be expanded into a grid (cloud) connecting not only 

on-site resources, but also on-web available processing nodes. This will need 

further development and research in the scope of applied middleware providing 

identification of resources, load balancing and security to the system. 

Presently, the implemented distributed reconstruction system was a 

minimal version of the presented concept (Chapter 3). The implementation was 

prepared to meet the needs imposed by the on-site hardware distribution. Only 

a single external computer was connected to a scanner, as connecting multiple 

scanners to the same external computer was logistically difficult. Consequently, 

to not overcomplicate the implementation, the server applications were 

prepared to maintain a single reconstruction process, as only a single scanning 

protocol can run on a scanner at a time. Nevertheless, I consider the many-to-

many assignment as a very important to develop in future work. This will allow 

more optimal use of the available resources. To clarify, the present 

implementation was not hardwired to the specific networked hardware, but only 

restricted in the implemented functionality. Namely, the identification provided 

from the client was reduced to indexing of external buffers for which the 

processing request was issued. Similarly, the server side was prepared to 

maintain reconstruction objects (buffers) only for a single client. When 

expanding the system, simple measures can be undertaken to address these 

issues in new versions of servers; i.e. assigning a unique identification to each 

client and adding a client identification step on the server side. However, this 

would only be the first step to increase the awareness of the components. In 

future work, I would like to research a more robust and intelligent management 

of resources, allowing the real-time load balancing. This is crucial for big 

systems containing multiple processing nodes. The work would involve 

replacing or enriching the naming service used to identify the distributed 
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components. The new version would be an active part of the system monitoring 

the workload, rather than a static record of system’s components. 

In this new setting, the adopted client-server architecture with the 

division into two kinds of network objects; client and server, can be seen as a 

limitation. Self-discovering and collaborating objects could be a better approach. 

This could be introduced with peer-to-peer (p2p) network architecture. In p2p 

networks each object is equally privileged being at the same time a supplier and 

consumer of resources. 
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11. Appendices 

11.1 Network communication module 

1. #ifndef TRANSFER_MODULE_IDL 

2. #define TRANSFER_MODULE_IDL 

3.  

4. module TransferModule { 

5.  

6.  typedef long TDLong; 

7.  typedef unsigned long TDULong; 

8.  typedef char TDBase; 

9.  

10.  typedef sequence<TDBase> TransferData; 

11.  
12.  interface DataTransfer { 

13.   

14.   TDLong Init(in TDBase id, in string oper, in TransferData inData); 

15.  
16.   TDLong SetRawData(in TDBase id, in string oper, in TransferData inData ); 

17.  
18.   TDLong Process(in TDBase id, in string oper); 

19.  
20.   TDLong GetResultData(in TDBase id, in string oper, in TransferData index, out TransferData 

outData); 

21.  
22.  }; 

23. }; 
24. #endif 

This code was used to generate C++ version of the network interfaces 

for the distributed reconstruction system. Each interface provides the client with 

a set of input parameters. A pair; in TDBase id, in string oper of input 

parameters can be used by a client to identify a remote reconstruction object 

(data structures, buffers) as well as to specify a variant of operation if 

necessary. Parameters of TransferData type are used to transmit an arbitrary 

length of data. All of the interfaces return a status of a requested operation. 

11.2 Reconstruction module interface 

1. #ifndef IRECONSTURCTION_H 

2. #define IRECONSTURCTION_H 

3.  

4. #include <stdlib.h> 

5. #include <iostream> 

6.  

7. namespace ICH_MRI 

8. { 

9. namespace SERVER 

10. { 
11. class IReconstruction 
12. { 
13. public: 
14.  bool isRecInit; // It decides if the PreProcess function does an initialization step or not. 

15.  
16. public: 
17.  IReconstruction():isRecInit(false) { return; } 

18.  virtual ~IReconstruction() { } 

19.   

20.    // It is used to read initialization data. 

21.  virtual bool ReadHeader(std::istream &in) = 0; 

22.  
23.    // Processing functions 

24.    //  called by servant in this order. 

25.  virtual bool PreProcess(const char* oper) = 0; 

26.  virtual bool Process(const char* oper) = 0; 

27.  virtual bool PostProcess(const char* oper) = 0; 

28.  virtual bool Store(const char* oper) = 0; 

29.  virtual bool Clean(const char* oper) = 0; 
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30.  
31.    // Is called by servant::* each time a new request come. 

32.  virtual bool StartThread(int i) = 0; 

33.   

34.    // Data transmission functions. 

35.  virtual int SetData(unsigned int dataSize, void* inData) = 0; 

36.  virtual unsigned int GetResSize(unsigned int size, const void * index, void *&ptr) = 0; 

37.  virtual unsigned int GetResultData(void *_ptr, void* outData) = 0; 

38.  
39.  virtual bool CopyBuffer(const IReconstruction *p, bool isCPUMem = true) = 0; 

40.  virtual bool ManageBuffers(IReconstruction **mri, unsigned int buffSize, unsigned int buffId) 

41.  { return true; } 

42.  
43.  virtual int Test(int argc, char** argv) = 0; 

44. }; 
45.  
46. #ifndef __DLL_EXPORT 
47. #define __DLL_EXPORT __declspec(dllimport) 
48. typedef IReconstruction* (*_GetIReconstruction)(void); 
49. typedef bool (*_StartLibrary)(void); 
50. typedef bool (*_StopLibrary)(void); 
51. #else 
52. #undef __DLL_EXPORT 
53. #define __DLL_EXPORT __declspec(dllexport) 
54. #endif 
55.  
56. #if defined(_WINDLL) 
57. extern "C" __DLL_EXPORT IReconstruction* __cdecl GetIReconstruction(void); 
58. extern "C" __DLL_EXPORT bool __cdecl StartLibrary(void); 
59. extern "C" __DLL_EXPORT bool __cdecl StopLibrary(void); 
60. #endif 
61.  
62. } 
63. } 
64. #endif 

The listing presents the reconstruction module interface used by the 

implemented server application. The presented class serves as a root for all 

modules that are accessible through the server. The presented abstract 

methods must be provided within the deriving reconstruction module/class. 

Similarly, a new module must implement the global module initialisation 

(StartLibrary, StartLibrary) and reconstruction object creation 

(GetIReconstruction) functions. 

11.3 The pseudo code of the conjugate gradient linear solver 
algorithm for the SENSE reconstruction 

1. 𝑟 = 𝐼𝐸𝐻𝐷2𝑆 
2. 𝑝⃗ = 𝑟 

3. 𝑏⃗⃗ = 0 
4. 𝑞⃗ = 0 
5. 𝑠𝑡𝑜𝑝 = 𝑟ℎ𝑟 = 𝑟𝐻𝑟 
6. 𝑤ℎ𝑖𝑙𝑒(𝑡𝑟𝑢𝑒) 
7.  𝑞⃗ = (𝐼𝐸𝐻𝐷2𝐸𝐼 + 𝜆2𝐼𝜃−1𝐼)𝑝⃗ 

8.  𝛼 =
𝑟ℎ𝑟

𝑝𝐻𝑞⃗⃗
 

9.  𝑏⃗⃗ = 𝑏⃗⃗ + 𝛼𝑝⃗ 
10.  𝑟 = 𝑟 − 𝛼𝑞⃗ 
11.  𝑟ℎ𝑟1 = 𝑟𝐻𝑟 

12.  𝑖𝑓 𝑖 ≥ 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 𝑜𝑟 
𝑟ℎ𝑟1

𝑠𝑡𝑜𝑝
< 𝐸𝑃𝑆 

13.   𝑏⃗⃗ = 𝐼𝑏⃗⃗ 
14.   𝑏𝑟𝑒𝑎𝑘 
15.  𝑒𝑛𝑑𝑖𝑓 

16.  𝑝⃗ = 𝑟 +
𝑟ℎ𝑟1

𝑟ℎ𝑟
𝑝⃗ 

17.  𝑟ℎ𝑟 = 𝑟ℎ𝑟1 
18. 𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 
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The algorithm presents the conjugate-gradient solver (Section 1.4.2), 

which is an iterative method for solving sparse systems of linear equations. The 

algorithm was adapted to the reconstruction needs, based on the Equations 

1-41, 1-42 and 1-43. 

11.4 The template of element-wise matrix-vector operations on GPU 

1. // The function multiplies each row of matrix, 'mat' with elements of array 'vec'. 

2. // It is an element-wise multiplicatiion. 

3. // Threads of each thread block iterate through y-dim., thus there is no need to span them  

4. // on the whole y-dim size. 

5. // (e.g. threadBlockSize.y = 1 & gridSize.y = 1 will iterate through all data rows; 

6. //  it is advised to play with these parameter to achieve better performance). 

7. // x-dim : number/index of an element in a row; 

8. // y-dim : index of a row. 

9. // Shared memory is used to store 'vect' values. These are shared among  

10. //  threads with the same y-index. 

11. // vSize - number of elements in a vector 'vec'. 
12. // rowSize - size of each row in bytes. 
13.  
14. extern volatile __shared__ char _scal[]; 
15.  
16. template <class T1, class T2> 
17. __global__ void mulElemMatVec(T1 *mat, T1 *out,  
18.        FFT_UNSIGN nRows, FFT_UNSIGN rowSize, 

19.        T2 *vec, FFT_UNSIGN vSize) 

20. { 
21.   // Thread's index. 

22.  FFT_UNSIGN id = threadIdx.x; 

23.   // The possition within a vector. 

24.  FFT_UNSIGN vId = id + blockDim.x * blockIdx.x; 

25.   // The index of matrix row to be processed. 

26.  FFT_UNSIGN rowId = threadIdx.y + blockDim.y * blockIdx.y; 

27.   

28.  T2* scal = (T2*)_scal; 

29.  
30.  if(vId >= vSize) { return; } 

31.   // Read in the vector values. 

32.  if(threadIdx.y == 0) 

33.  { 

34.   scal[id] = *(vec + vId); 

35.  } 

36.   // Synchronise the treads within the thread block. 

37.  __syncthreads(); 

38.  
39.  T1 tmp; 

40.  T1 *_ptr; 

41.   // iterate through all of the matrix rows. 

42.  for(; rowId < nRows; rowId += blockDim.y * gridDim.y) 

43.  { 

44.    // Read-in matrix data. 

45.   _ptr = FLAT_MEM_PTR(mat, 0, rowId, rowSize, T1); 

46.   tmp = _ptr[vId]; 

47.    // Scale the data. 

48.   tmp *= scal[id]; 

49.    // Store the result. 

50.   _ptr = FLAT_MEM_PTR(out, 0, rowId, rowSize, T1); 

51.   _ptr[vId] = tmp; 

52.  } 

53. } 

The appendix presents a simple GPU kernel dedicated to speed-up the 

element-wise multiplication of matrices. The kernel was written in C for CUDA 

and can be complied for NVIDIA GPU cards. 
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11.5 The gridding optimisation tests and results 

This appendix presents the extended evaluation and solution to the 

problem of gridding of data acquired on the non-repeating trajectories; which 

was introduced in Chapter 7. The tests concentrated on optimisation of the 

gridding process, as the new reconstruction required reformulation of this step. 

The optimisation steps I described aimed to expand the developed 

reconstruction onto the non-repeating trajectories (generalised reconstruction) 

without compromise in the provided reconstruction performance. The gridding 

tests were done with the repeating and non-repeating trajectories for 

comparison. 

This appendix complements the previous description and results by 

extending the tests on to different GPU enabled hardware. The tests were run 

on the previously described system (Section 3.4 and 4.6) using the three 

computers, which specifications are presented in Tab. 7-1, as the external 

reconstructors. 

11.5.1 Gridding tests 

The same spiral PCMR sequence, as in the transmission tests (Section 

3.5), was used to acquire multiple data sets (as presented in Tab. 11-1 and the 

following) for the optimisation tests. 

The boundary limits; Acquisition time, Upper- and Lower-limits are 

presented in Tab. 11-1. As previously stated, the acquisition time and Upper-

limit were the same in all tests, as they are related to the sequence and scanner 

reconstructor performance. The first was defined as the time needed to acquire 

the whole set of frames and the second was the time needed by the native 

scanner reconstructor to run the gridding on the set of frames acquired with the 

non-repeating trajectories. 

As discussed in the Section 7.2.1, the Lower-limit was calculated, as 

the time needed by an external computer to run the batched version of gridding 

for data on the repeating trajectory. The results are presented in Tab. 11-1. The 

tests showed speed-up compared to the Acquisition time, of ~43x, ~58x and 

~15x for Work-station, Desktop and Laptop respectively (all further results are 

presented in this order). Assuming that the gridding accounted to about half of 
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each iteration time and that at least seven iterations are required, the Laptop 

would not provide sufficient speed-up for the reconstruction process. 

Nevertheless, the consecutive optimisation stages were run on the Laptop for 

the completeness of the comparative study. In the test, the Desktop performed 

notably better, which can be assigned to higher clock rate and number of CUDA 

cores (Tab. 7-1). 

The test allowed estimation of the maximum achievable speed-up with 

the GPU gridding. The batched gridding results were linearly dependent on the 

number of gridded frames. Consequently, the maximum achievable speed-up 

(Tab. 11-1; Ratio) was fixed for each machine; ~19x, ~25x and ~6x. 

 

The initial assessment (Section 7.2.1) looked into gridding times 

providing all data structures were available on a GPU. The aim was to 

determine an impact of sequential scheduling of the gridding tasks as compared 

with the single batch call. The results for this rather impractical approach were 

collected in Tab. 11-2. The tests showed that providing the whole data 

structures were already available in the GPU memory, the sequential 

scheduling of gridding operations yields the same results as the batched 

gridding (the Lower-limit). Nevertheless, the memory consumption (as 

discussed in Section 7.2.1) was too high and better solutions were needed. 

Number of frames 28 
 

44 
 

60 
 

76 
 

92 
 

Average 

  
[ms] Ratio [ms] Ratio [ms] Ratio [ms] Ratio [ms] Ratio Ratio 

Acquisition time 1162.6 
 

1826.9 
 

2491.2 
 

3155.5 
 

3819.8 
  

Upper-limit 555.1 2.1 744.4 2.5 1040.9 2.4 1300.9 2.4 1616.4 2.4 2.3±0.1 

Lower-limit            

 Work-station 26.8 20.7 42.0 17.7 57.2 18.2 72.4 18.0 87.7 18.4 18.6±1.4 

 
Desktop 20.2 27.5 31.7 23.5 43.2 24.1 54.7 23.8 66.2 24.4 24.7±1.9 

  Laptop 78.2 7.1 122.7 6.1 167.4 6.2 211.5 6.2 256.7 6.3 6.4±0.5 

Tab. 11-1 Estimation of the gridding optimisation limits. 

The Upper-limit was determined as the time needed by the native image reconstructor to grid 
data on the non-repeating trajectories. The Lower-limit was calculated as the time needed by an 
external computer to grid data on repeating trajectory. Ratios for the Upper-limit were calculated 
with reference to the acquisition time and for the Lower-limit with reference to the Upper-limit. 
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Number of frames 28 44 60 76 92 Average 
Total / per frame Work-station 26.82/0.96 42.08/0.96 57.35/0.96 72.61/0.96 87.83/0.95 - / 0.96±0.00 

` Desktop 20.27/0.72 31.85/0.72 43.45/0.72 54.95/0.72 66.55/0.72 - / 0.72±0.00 

 
Laptop 78.19/2.79 123.06/2.80 167.67/2.79 212.33/2.79 256.36/2.79 - / 2.79±0.00 

Difference Work-station 0.00/0 0.05/0 0.10/0 0.17/0 0.13/0 - / - 
[ms]/[%] Desktop 0.09/0 0.15/0 0.25/1 0.25/0 0.35/1 - / - 

 
Laptop -0.03/0 0.36/0 0.30/0 0.86/0 -0.32/0 - / - 

Ratio Work-station 1.00 1.00 1.00 1.00 1.00 1.00±0.00 

 
Desktop 1.00 1.00 1.01 1.00 1.01 1.01±0.00 

  Laptop 1.00 1.00 1.00 1.00 1.00 1.00±0.00 

Tab. 11-2 Results - Sequential (pre-calculated & pre-stored). 

The timing results for sequential scheduling of gridding operations on GPU with data structures 
pre-calculated and stored in GPU’s memory. The results are presented as total time needed to 
grid a set of frames (including how much each frame accounted to) and their comparison to the 
equivalent Lower-limit result. The timing ratio comparison and timings each frame accounted to 
were averaged and presented in the last column. 
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11.5.2 Sequential approach 

To reduce the memory consumption, the sequential tests allowed only a 

single gridding matrix to be stored on a GPU. The algorithm sequentially 

created a matrix in CPU memory related to each frame, which then was used to 

replace the one in GPU memory (Section 7.2.2). The naive strategy (without 

buffering) showed very poor results which were ~33x, ~39x and ~7x slower 

(Tab. 11-3) than expected (as compared with the Lower-limit). The overlapping 

version was only marginally better ~33x, ~37x and ~6x (Tab. 11-4). The 

improvement was connected to a slight shift in the creation of matrix times with 

which the final timing results were driven. In all cases the serial matrix creation 

took >98 % of the total time. 

-Number of frames     28 44 60 76 92 Average 
Gridding Work-station [ms] 889.20 1400.10 1903.20 2410.20 2917.20 

 
   Total Desktop [ms] 780.00 1224.60 1669.20 2117.70 2570.10 

 
 

Laptop [ms] 569.40 893.10 1216.80 1540.50 1856.40 
 

Gridding Work-station [ms] 31.76 31.82 31.72 31.71 31.71 31.74±0.05 
   per Frame Desktop [ms] 27.86 27.83 27.82 27.86 27.94 27.86±0.05 
  Laptop [ms] 20.34 20.30 20.28 20.27 20.18 20.27±0.06 

Create Work-station [ms] 877.50 1380.60 1899.30 2398.50 2909.41   
   Total Desktop [ms] 760.50 1212.90 1653.60 2090.40 2535.00 

 
 

Laptop [ms] 553.80 877.50 1209.00 1509.30 1836.90 
 

Create Work-station [ms] 31.34 31.38 31.66 31.56 31.62 31.51±0.14 
   per Frame Desktop [ms] 27.16 27.57 27.56 27.51 27.55 27.47±0.17 
  Laptop [ms] 19.78 19.94 20.15 19.86 19.97 19.94±0.14 

Create Work-station [%] 98.68 98.61 99.80 99.51 99.73 99.27±0.58 
   Ratio  Desktop [%] 97.50 99.04 99.07 98.71 98.63 98.59±0.64 

 
Laptop [%] 97.26 98.25 99.36 97.97 98.95 98.36±0.82 

Create Work-station [ms] 0.42 0.44 0.07 0.15 0.08 0.23±0.18 
   Difference per Desktop [ms] 0.70 0.27 0.26 0.36 0.38 0.39±0.18 
    Frame Laptop [ms] 0.56 0.35 0.13 0.41 0.21 0.33±0.17 

Comparison Work-station [ms] 862.37 1358.08 1845.96 2337.76 2829.50   
   Difference Desktop [ms] 759.82 1192.91 1626.01 2063.00 2503.90 

 
   (Lower-limit) Laptop [ms] 491.18 770.40 1049.43 1329.04 1599.72 

 
Comparison Work-station [ms] 30.80 30.87 30.77 30.76 30.76 30.79±0.05 
   Difference per Desktop [ms] 27.14 27.11 27.10 27.14 27.22 27.14±0.05 
   Frame (Lower-limit) Laptop [ms] 17.54 17.51 17.49 17.49 17.39 17.48±0.06 

Ratio  Work-station   33.15 33.32 33.25 33.27 33.26 33.25±0.06 
   (Lower-limit) Desktop   38.65 38.64 38.65 38.71 38.82 38.69±0.08 
  Laptop   7.28 7.28 7.27 7.28 7.23 7.27±0.02 

Tab. 11-3 Results - Sequential (naive). 

Timing results for scheduling of gridding operations on GPU with a single matrix calculated on 
CPU and no additional buffering. The results comprise total time needed for the whole task 
(including estimated times each frame accounted to), times creation of all matrices took 
(including averaged times of each operation) and comparison to the equivalent Lower-limit. The 
timing ratio comparison and timings each frame accounted to were averaged and presented in 
the last column. 
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For the overlapping version to make a difference the proportion of 

creation to transmission time would need to be very close to one. Unfortunately, 

the creation was up to ~45x, ~41x and ~31x slower in tests. 

The assessment of the basic stages of the gridding process was carried 

out in the course of sequential tests. These included Creation of a matrix, single 

Gridding operation as a matrix multiplication on GPU and Copy as a transfer 

data structures on a GPU. Tab. 11-5 comprises average times for these 

operations. 

Number of frames     28 44 60 76 92 Average 
Gridding Work-station [ms] 873.60 1396.20 1883.70 2379.00 2960.10 

 
   Total Desktop [ms] 756.60 1177.80 1610.70 2047.50 2433.60 

 
 

Laptop [ms] 479.70 741.00 1006.20 1275.30 1528.80 
 

Gridding Work-station [ms] 31.20 31.73 31.40 31.30 32.18 31.56±0.40 
   per Frame Desktop [ms] 27.02 26.77 26.85 26.94 26.45 26.81±0.22 
  Laptop [ms] 17.13 16.84 16.77 16.78 16.62 16.83±0.19 

Create Work-station [ms] 873.60 1388.40 1868.10 2363.40 2948.41   
   Total Desktop [ms] 741.00 1170.00 1591.20 2020.20 2402.40 

 
 

Laptop [ms] 471.90 733.20 986.70 1263.60 1501.50 
 

Create Work-station [ms] 31.20 31.55 31.14 31.10 32.05 31.41±0.40 
   per Frame Desktop [ms] 26.46 26.59 26.52 26.58 26.11 26.45±0.20 
  Laptop [ms] 16.85 16.66 16.45 16.63 16.32 16.58±0.21 

Create Work-station [%] 100.00 99.44 99.17 99.34 99.60 99.51±0.31 
   Ratio  Desktop [%] 97.94 99.34 98.79 98.67 98.72 98.69±0.50 

 
Laptop [%] 98.37 98.95 98.06 99.08 98.21 98.54±0.45 

Create Work-station [ms] 0.00 0.18 0.26 0.21 0.13 0.15±0.10 
   Difference per Desktop [ms] 0.56 0.18 0.32 0.36 0.34 0.35±0.14 
    Frame Laptop [ms] 0.28 0.18 0.33 0.15 0.30 0.25±0.08 

Comparison Work-station [ms] 846.77 1354.18 1826.46 2306.56 2872.40   
   Difference Desktop [ms] 736.42 1146.11 1567.51 1992.80 2367.40 

 
   (Lower-limit) Laptop [ms] 401.47 618.30 838.83 1063.84 1272.12 

 
Comparison Work-station [ms] 30.24 30.78 30.44 30.35 31.22 30.61±0.40 
   Difference per Desktop [ms] 26.30 26.05 26.13 26.22 25.73 26.09±0.22 
   Frame (Lower-limit) Laptop [ms] 14.34 14.05 13.98 14.00 13.83 14.04±0.19 

Ratio  Work-station   32.56 33.23 32.91 32.84 33.75 33.06±0.45 
   (Lower-limit) Desktop   37.49 37.16 37.29 37.43 36.76 37.23±0.29 
  Laptop   6.13 6.04 6.01 6.03 5.96 6.03±0.06 

Tab. 11-4 Results - Sequential (overlapping). 

Timing results for scheduling of gridding operations on GPU with a single matrix calculated on 
CPU; with additional buffering. The results comprise total time needed for the whole task 
(including estimated times each frame accounted to), times creation of all matrices took 
(including averaged times) and comparison to the equivalent Lower-limit. The timing ratio 
comparison and timings each frame accounted to were averaged and presented in the last 
column. 
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Creation was implemented as a serial CPU code. As the Laptop had the 

highest processor frequency it needed the least time to create the gridding 

matrices. It was ~2x quicker executing this CPU code than the Work-station 

machine. However, the Laptop had the slowest GPU used as a coprocessor. 

Each Gridding operation was over 4x slower than execution on the Laptop, and 

almost 3x slower on the Work-station machine, than the Desktop. 

The tests showed discrepancies between the averaged individual 

gridding times (Tab. 11-5) and estimated per frame times (Tab. 11-2). This was 

especially visible in the Laptop and Work-station results. It suggests that the 

adjacent gridding operations (not separated by the data transmissions) were 

able to achieve some degree of overlap which levelled the cumulative time with 

the Lower-limit. The data transmission could not be avoided, consequently the 

maximum achievable speed-up reduced to ~17x, ~23x and ~6x (after correcting 

for the acquired average gridding times; Tab. 11-5). 

An important step of the tests was to find out if the data transfers could 

be overlapped with the longer matrix multiplications on GPU. For this reason, the 

Sequential (pre-calculated) tests (Section 7.2.2) assessed the case in which the 

matrices were already available in the CPU memory. Each such gridding 

process involved four tasks; three data transmissions and one matrix 

multiplication. 

The timing results for this test are presented in Tab. 11-6. The times 

were ~0.4, ~0.8 and ~0.7 ms/frame longer than the batched gridding (the 

Lower-limit) resulting in ~1.4x, ~2.1x and ~1.2x slow-down. Comparison of the 

results with the transmission times (~0.7 ms, ~0.7 ms and ~0.6 ms; Tab. 11-5) 

suggested that only Work-station was able to achieve some degree of overlap 

between tasks. This can be assigned to Work-station’s improved architecture 

and scheduling capabilities. However, partitioning of the data transmission 

    Work-station Desktop Laptop 
Creation [ms] 32.05 ± 0.81 26.63 ± 0.62 17.45 ± 1.52 
Gridding [ms] 1.03 ± 0.00 0.76 ± 0.00 2.96 ± 0.16 
Copy [ms] 0.71 ± 0.05 0.65 ± 0.06 0.55 ± 0.00 

Tab. 11-5 Results - Average timings from the sequential approach tests. 

The average timing results for single calculation of a gridding matrix (Creation), transmission of 
matrix structures onto GPU (Copy) and execution of single gridding operation by GPU 
(Gridding). 
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meant only a portion of the transmission time was overlapped with the matrix 

multiplication operation. 

The sequential tests run on the tested hardware revealed that creation 

of matrices was the major limitation of the new gridding approach for data on 

non-repeating trajectories. The execution times were dictated by the speed of 

CPUs. 

Only the Laptop achieved time comparable (~0.95x) to the Upper-limit 

(execution on the scanner) and a good speed up (~2.5x) as compared to the 

Acquisition time. Work-station and Desktop were slower than the Upper-limit; 

~1.8x and ~1.5x and insignificantly quicker than the Acquisition time; ~1.3x and 

~1.6x respectively. These results reflected the CPUs hardware performance. 

 

11.5.3 Threaded approach 

The Threaded approach aimed to reduce the total matrix creation time 

by dividing the task among multiple of CPU threads (Section 7.2.3). Providing 

enough computing resources were available the number of concurrently created 

matrices could be brought to the level sufficing to fully occupy the GPU with 

work. This way a set of matrices would be prepared while the previous one was 

used. 

However this condition was impossible to meet for all the tested 

hardware. Work-station was limited to 12 physical processors, and the Desktop 

and the Laptop to four. 

Number of frames 28 44 60 76 92 Average 
Total / per frame Work-station 36.43/1.30 59.89/1.36 78.95/1.32 100.36/1.32 120.44/1.31 - / 1.32±0.02 
[ms] Desktop 42.42/1.52 67.55/1.54 89.39/1.49 117.55/1.55 140.80/1.53 - / 1.52±0.02 

 
Laptop 96.61/3.45 152.04/3.46 206.76/3.45 261.41/3.44 315.05/3.42 - / 3.44±0.01 

Difference Work-station 9.60/0.34 17.87/0.41 21.71/0.36 27.92/0.37 32.74/0.36 - / 0.37±0.02 
Total / per frame Desktop 22.24/0.79 35.86/0.82 46.20/0.77 62.85/0.83 74.60/0.81 - / 0.80±0.02 
[ms] Laptop 18.39/0.66 29.34/0.67 39.39/0.66 49.95/0.66 58.37/0.63 - / 0.65±0.01 

Ratio Work-station 1.36 1.43 1.38 1.39 1.37 1.38±0.03 

 
Desktop 2.10 2.13 2.07 2.15 2.13 2.12±0.03 

  Laptop 1.24 1.24 1.24 1.24 1.23 1.23±0.00 

Tab. 11-6 Results - Sequential (pre-calculated). 

The timing results for sequential scheduling of gridding operations on GPU with data structures 
pre-calculated and stored in CPU’s memory. Results are presented as total time needed to grid 
a set of frames (including how much each frame accounted to) and their comparison to the 
equivalent Lower-limit. The timing ratio comparison and timings each frame accounted to were 
averaged and presented in the last column. 
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Number of frames   28 44 60 76 92 Average 
Threads Work-station   24/2/14.0 21/3/14.7 16/4/15.0 20/4/19.0 21/5/18.4 

 
   /frames per thread Desktop   12/ 3/ 9.3 12/4/11.0 11/6/10.0 9/9/8.4 8/ 12/ 7.7 

 
   /expected speed-up Laptop   9/ 4/ 7.0 8/ 6/ 7.3 8/ 8/ 7.5 10/ 8/ 9.5 8/ 12/ 7.7 

 
Gridding  Work-station [ms] 62.40 95.20 125.58 125.21 160.88   
   Expected Desktop [ms] 81.06 107.07 161.07 242.47 317.43 

 
 

Laptop [ms] 68.53 101.05 134.16 134.24 199.41 
 

Gridding Work-station [ms] 106.97 162.69 211.71 262.97 319.80   
   Total Desktop [ms] 205.03 312.00 403.37 503.66 601.72 

 
 

Laptop [ms] 156.00 220.63 291.94 369.94 469.49 
 

Gridding Work-station [ms] 3.82 3.70 3.53 3.46 3.48 3.60±0.16 
   per Frame Desktop [ms] 7.32 7.09 6.72 6.63 6.54 6.86±0.33 
  Laptop [ms] 5.57 5.01 4.87 4.87 5.10 5.08±0.29 

Create time Work-station [ms] 98.06 160.46 201.69 258.51 316.46   
   Acquired Desktop [ms] 200.57 305.31 403.37 499.20 597.26   

 
Laptop [ms] 149.32 209.49 276.34 354.34 455.87   

Achieved Work-station [ms] 8.17 8.58 8.90 9.05 9.26 8.79±0.43 
   Speed-up Desktop [ms] 3.69 3.78 3.99 4.07 4.04 3.91±0.17 
  Laptop [ms] 3.07 3.36 3.45 3.45 3.26 3.32±0.16 

Comparison Work-station [ms] 80.26 120.83 154.63 190.76 232.46   
   Difference Desktop [ms] 184.91 280.36 360.30 449.11 535.66 

 
   (Lower-limit) Laptop [ms] 77.88 97.80 124.58 157.63 212.85 

 
Comparison Work-station [ms] 2.87 2.75 2.58 2.51 2.53 2.65±0.15 
   Difference per Desktop [ms] 6.60 6.37 6.00 5.91 5.82 6.14±0.33 
   Frame (Lower-limit) Laptop [ms] 2.78 2.22 2.08 2.07 2.31 2.29±0.29 

Ratio  Work-station   4.01 3.89 3.71 3.64 3.66 3.78±0.16 
   (Lower-limit) Desktop   10.19 9.86 9.36 9.23 9.11 9.55±0.46 
  Laptop   2.00 1.80 1.74 1.74 1.83 1.82±0.10 

Tab. 11-7 Results - Threaded 

Timing results for scheduling of gridding operations on GPU with parallel matrix calculations on 
CPU. Apart of the acquired results the table presents estimation of potential speed up and total 
time based on the number of worker threads, the size of a task and the best results from the 
sequential approach. The rest are total time needed for the whole task (including estimated 
times each frame accounted to), total matrices creation, achieved speed-up (as compared to 
the sequential approach) and comparison to the equivalent Lower-limit. The timing ratio 
comparison and timings each frame accounted to were averaged and presented in the last 
column. 

As discussed the number of frames and CPU threads were varied to 

find the optimal partitioning of the task. The tests findings for all the hardware 

are presented in Tab. 11-7. Additionally, the table presents the expected 

processing time and speed up based on the partitioning. 

All the CPU processors were capable of hyper-threading (mapping of 

two virtual processors into one physical); however the tests showed the 

achieved speed up (~9x, ~4x and ~3x) was significantly lower than expected 

and would not exceed the number of physical processors. Also, this was 

reflected in an increase of the average matrix creation time (~45.1 ms, ~44.5 

ms and ~34.5 ms). Collected log files showed that some runs were able to 

achieve the creation times similar to one found in the sequential approach, but 
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the rest required significantly longer time (about double the time). This 

behaviour was observed regardless of the number of concurrently scheduled 

threads and increased with total number of matrix creations. Presumably, 

execution of some threads assigned to the same physical processor caused an 

interrupted execution due to insufficient computing resources. Consequently, 

the total time needed to create all of the matrices was greater than expected; as 

based on the total number of threads involved in the task (Tab. 11-7). 

The next step of the tests was to run the Threaded approach using pre-

calculated matrices stored in CPU memory (as discussed in Section 7.2.3). The 

impact of the multi-threading was notable only for the Work-station and Desktop 

computers, as compared with the Sequential (pre-calculated) approach (Tab. 

11-6); however the Desktop’s improvement was not very significant. As 

previously stated, providing all data structures were pre-calculated in CPU’s 

memory (excluding the necessity of costly matrix coefficients calculations) the 

Work-station machine could achieve almost the maximum expected speed up of 

~17x. The Desktop machine achieved only ~13x as compared with the 

expected maximum speed up of ~25x. 

The threaded results for the Work-station suggested that all the data 

transmission operations were almost completely hidden with the longer matrix 

multiplication operations (Tab. 11-8), as in contrast to the sequential test (Tab. 

11-6). Presumably, the multithreaded scheduling of GPU operations resulted in 

more beneficial ordering and consequently in better utilisation of the GPU. 

Comparison of the time difference per frame, with the average memory 

transmission time, suggested the Desktop and Laptop’s GPUs were not able to 

repeat the Work-station’s result, which can be assigned to their hardware 

capabilities. 
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Number of frames 28 44 60 76 92 Average 
Total / per frame Work-station 30.09/1.07 46.80/1.06 62.40/1.04 78.00/1.03 93.60/1.02 - / 1.04±0.02 
[ms] Desktop 35.66/1.27 62.40/1.42 80.23/1.34 102.51/1.35 124.80/1.36 - / 1.35±0.05 

 
Laptop 95.83/3.42 156.00/3.55 207.26/3.45 266.31/3.50 322.77/3.51 - / 3.49±0.05 

Difference Work-station 3.38/0.12 4.94/0.11 5.32/0.09 5.79/0.08 6.26/0.07 - / 0.09±0.02 
Total / per frame Desktop 15.53/0.55 30.76/0.70 37.15/0.62 47.97/0.63 58.75/0.64 - / 0.63±0.05 
[ms] Laptop 17.71/0.63 33.17/0.75 39.90/0.66 54.00/0.71 66.14/0.72 - / 0.70±0.05 

Ratio Work-station 1.13 1.12 1.09 1.08 1.07 1.10±0.02 

 
Desktop 1.77 1.97 1.86 1.88 1.89 1.88±0.07 

  Laptop 1.23 1.27 1.24 1.25 1.26 1.25±0.02 

Tab. 11-8 Results - Threaded (pre-calculated). 

The timing results for scheduling of gridding operations on GPU with data structures pre-
calculated and stored in CPU’s memory. Results are presented as total time needed to grid a 
set of frames (including how much each frame accounted to) and their comparison to the 
equivalent Lower-limit. The timing ratio comparison and timings each frame accounted to were 
averaged and presented in the last column. 


