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Abstract

This paper provides the first unified explanation of behavior in coordinated

attack games under both public and private information. It demonstrates that

the main experimental results, such as threshold strategies, comparative stat-

ics, and the differences in behavior under public and private information, are

robust predictions of limited depth of reasoning models. This is in contrast

to equilibrium, which mispredicts the coordinating roles of public and private

information. The analysis has implications for understanding macroeconomic

phenomena, like currency attacks and debt crises, which are commonly modeled

using incomplete information coordinated attack games.

Keywords: coordination games, level-k models, cognitive hierarchy models, global

games

1 Introduction

Consider a simple coordination game used to model a speculative attack. Players

have the option to attack a currency peg. If enough players attack, the attack is

successful, and the peg collapses. If not enough players attack, the attack fails, and

the peg holds. The threshold for a successful attack depends on the fundamentals of
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the economy. If fundamentals are strong, a large proportion of players must attack

in order for the attack to be successful. If fundamentals are weak, only a small

proportion of players are needed for a successful attack.

Heinemann et al. (2004), Duffy and Ochs (2012), Heinemann et al. (2009), and

Cornand (2006) test coordinated attack games in the laboratory. There are two

main aggregate findings. (1) Players use threshold strategies. They attack when

fundamentals are weak and restrain from attacking when fundamentals are strong.

This holds regardless of whether players receive public or private information about

fundamentals. And, (2) the degree of coordination depends upon the information

structure.1 Public information increases coordination relative to private information.

These results provide a challenge for equilibrium theory. Private information

generates disperse higher-order beliefs which weaken complementarities in actions

generating a unique threshold equilibrium. In contrast, public information strength-

ens complementarities between actions generating multiple equilibria driven by self-

fulfilling beliefs. Equilibrium predicts the use of threshold strategies under private

information but does not explain why behavior is tied to fundamentals under public

information. Further, equilibrium mispredicts the coordinating roles of different types

of information, predicting weakly better coordination under private information than

under public information.2

This paper shows that an alternative solution concept, based on limited depth of

reasoning, provides a unified explanation of the pattern of behavior under both public

and private information. To the best of our knowledge, this is the first paper to provide

a consistent explanation of the existing experimental literature on coordinated attack

games.

Limited depth of reasoning, like level-k thinking and cognitive hierarchy, is a

behaviorally-motivated approach to reasoning in games.3 Each player has a bounded

1We use the term coordination here to mean that players use the same strategies. In a complete
information game, if players use the same pure strategy they would perfectly coordinate on either
attacking or not attacking. But under incomplete information, even if players use the same strategy,
there could be ex post coordination failure where some players attack and others do not attack
because they have different private information. However, if players are not using the same threshold
strategy this will only increase the degree of ex post coordination failure.

2Even though equilibrium allows multiple equilibria under public information, it is possible for
players to coordinate on the same equilibrium, thus generating perfect coordination. The inconsis-
tency of equilibrium with experimental data lies in the private information predictions. Equilibrium
fails to explain the observed coordination failure under private information.

3For, pioneering works in the literature see Stahl and Wilson (1994; 1995), Nagel (1995), Costa-
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depth of reasoning determined by her cognitive type. L0 types have zero depths of

reasoning - their behavior is specified outside of the model. L1 types have one depth

of reasoning. They best respond to L0 types. L2 types have two depths of reasoning.

They best respond to some belief over L0 and L1 types. And, so on, with Lk types

best responding to some belief over lower types {L0,L1,. . .,Lk-1}. All higher types

anchor their beliefs in the nonstrategic L0 type and calculate their optimal actions

using a finite number of iterated best responses.

Limited depth of reasoning is consistent with the existing experimental results.

Behavior is tied to fundamentals under any information structure with players attack-

ing only when fundamentals are weak. Moreover, limited depth of reasoning predicts

that coordination is greater under public information than private information. Play-

ers with different depths of reasoning treat public information similarly but private

information differently. Public information coordinates higher- and lower-order beliefs

about fundamentals. This coordinates the behavior of players with different depths

of reasoning. In contrast, private information decreases coordination by creating dif-

ferences between higher- and lower-order beliefs and hence differences in the behavior

of players with different depths of reasoning.

This paper goes on to show that the aggregate experimental results are robust

predictions of limited depth of reasoning models. The results hold under weak as-

sumptions on the non-strategic L0 type. And, they hold under any limited depth of

reasoning model. That is, they hold for any specification of beliefs that an Lk type

might hold over lower types and for any distribution of types in the model. The re-

sults even hold if there is some proportion of sophisticated types in the model (types

that have correct beliefs about the types of others, infinite depths of reasoning, and

realize that others may also have infinite depths of reasoning).

Part of the difficulty with models like level-k thinking and cognitive hierarchy is

that L0 behavior and the type distribution must be specified outside of the model.

This is problematic because both L0 behavior and the type distribution do not appear

to be stable across games. However, the theoretical predictions of this paper are

largely independent of these specifications. Even without knowing L0 behavior or the

type distribution, limited depth of reasoning models make robust, testable predictions.

In addition, this paper analyzes the experimental data from Heinemann et al.

Gomes et al. (2001), and Camerer et al. (2004). For a recent survey of this literature, see Costa-
Gomes et al. (2013).
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(2004) and classifies subjects as either level-k or equilibrium types using maximum

likelihood to fit a finite mixture model to the data. Allowing for level-k types signifi-

cantly improves the model’s ability to explain the experimental data. Approximately,

83 percent of subjects can be classified as level-k types and 17 percent of subjects as

equilibrium types. Further, the level-k model explains the data just as well as a model

with level-k and equilibrium types. Limited depth of reasoning provides a consistent

explanation for experimental behavior at both the individual and aggregate level.

Three papers study a related class of incomplete information games under limited

depth of reasoning. Shapiro et al. (2014) and Cornand and Heinemann (2014) test

these games in the laboratory and find, respectively, that the level-k and cognitive

hierarchy models are consistent with behavior.4 The analysis is similar to the maxi-

mum likelihood analysis done in this paper, showing that there exists a limited depth

of reasoning model that fits the experimental behavior better than equilibrium. We

reinforce these results by demonstrating that the same holds true for the coordinated

attack game. But, the insights from these papers can not be extended to the coor-

dinated attack game. Neither of the two papers investigates the coordinating roles

of different types of information or considers the robust predictions of limited depth

of reasoning models. Cornand and Heinemann (2015) uses the estimated type distri-

bution from Cornand and Heinemann (2014) to analyze the welfare effects of public

information under the cognitive hierarchy model.

The motivation in this paper is similar to Strzalecki (2014) who uses limited depth

of reasoning models to explain observed behavior in Rubinstein’s (1989) email game,

which is a 2-player coordinated attack game with private information. Strzalecki in-

vestigates whether the limited depth of reasoning model is consistent with observed

behavior under a particular information structure. This paper is focused on under-

standing behavior across different information structures. In addition, the limited

depth of reasoning solution concept is applied differently in the two papers. The

analysis of Strzalecki would be equivalent to fixing the solution concept as the set

mth-order rationalizable actions (for some fixed and small m). However, the analysis

in the current paper closely follows the approach of the existing level-k and cognitive

hierarchy literature and focuses on the outcomes that result from a fixed L0.

4Players have both an information motive (incentive to match fundamentals) and a coordination
motive (incentive to match behavior of others) in these games. Shapiro et al. find that the level-k
model does particularly well in games where the coordination motive dominates the information
motive, and less well when the information motive dominates.
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This paper is closely related to the global games literature. The coordinated

attack game analyzed here is one of the workhorse models of global games. Global

games, initiated by Carlsson and van Damme (1993b,a) and furthered by Morris and

Shin (1998, 2003), has shown that multiplicity in coordination games stems from

common knowledge of payoffs. The concern is that increased precision of public

information may be destabilizing; it could lead to multiplicity driven by self-fulfilling

beliefs. However, both the existing experimental literature and the boundedly rational

approach to strategic reasoning studied here suggests that public information does

not have destabilizing effects.5

This paper proceeds as follows. The next section describes the coordinated attack

game and the equilibrium results. Section 3 establishes the limited depth of reasoning

results. Section 4 analyzes the experimental data and discusses the consistency of

level-k with the experimental literature. And, Section 5 concludes. Omitted proofs

can be found in Appendix A.

2 Coordinated Attack Game

A simple model of a coordinated attack is presented. The model follows Morris and

Shin (2004) and Bannier (2002). The coordinated attack game is interpreted as a

speculative attack throughout the rest of this paper. This model can be applied to

describe other phenomena such as bank runs, debt crises, coordinated investment,

and political change.

There is a continuum of players indexed by i and uniformly distributed on [0, 1].

Players may attack the exchange rate peg or do nothing. There is a cost t of attacking.

If a player attacks and the peg is abandoned, the player receives a positive payoff D,

for a net payoff of D − t. It is assumed D > t. The payoff from not attacking is

zero. The exchange rate peg is abandoned if and only if the proportion of players

attacking, denoted by l, is no less than a critical value θ ∈ R.

The critical value θ parametrizes the strength of the status quo. It is often referred

5A second application of global games is as an equilibrium selection mechanism. In this appli-
cation, all commonly known information is treated as private information (with vanishing noise).
This selects a unique threshold equilibrium - providing an explanation for the observed behavior.
However, this interpretation necessarily limits the study of behavior under different types of infor-
mation because public information is equated with private information. Allowing for the existence
of boundedly rational types allows us to talk meaningfully about behavior under different types of
information.
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to as the fundamentals of the economy. Under the speculative attack interpretation,

θ can be interpreted as foreign exchange reserves held by the Central Bank. A higher

θ represents better fundamentals and raises the threshold for a successful attack. The

payoffs for each player can be summarized by the function π : [0, 1]xR→ R, the payoff

gain from attacking. It is defined as

π(l, θ) =

{
D − t if l ≥ θ

−t otherwise

2.1 Common Knowledge of Payoffs

There are three different cases to consider when payoffs are common knowledge:

θ > 1 Even if all players attack, the fundamentals are sufficiently strong to main-

tain the exchange rate peg. There is a unique equilibrium in which none

of the players attack.

θ ≤ 0 The fundamentals are too weak for the peg to be maintained. The unique

equilibrium is one in which all players attack.

0 < θ ≤ 1 The currency regime is ripe for attack. There exist two equilibria - one

in which all players attack and the exchange rate peg is abandoned and

another in which no player attacks and the peg is upheld.

This game has multiple equilibria whenever 0 < θ ≤ 1. Attacking is only worthwhile

if a player expects others to attack. As beliefs are self-fulfilling, they are not tied to

fundamentals and there is no way to predict an attack.

2.2 Incomplete Information of Payoffs

The above game can be converted into an incomplete information game by letting θ

be unknown and having each player receive signals about θ. The distribution of θ

and the signal processes are assumed to be common knowledge. Each player receives

a private signal xi and a public signal y about θ, where xi = θ+ εi with εi ∼ N(0, 1
β
)

and y = θ + η with η ∼ N(0, 1
α

). The fundamental θ is distributed uniformly on the
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real line.6,7

Conditional on the information received, θ is normally distributed with a mean

formed by a weighted average of the public and private signals. Given signals x and

y, θ is conditionally distributed according to

θ|x, y ∼ N

(
(1− µ)y + µx,

1

α + β

)
(1)

where µ = β
α+β

. A player’s strategy in the incomplete information game is a function

s : R → {attack, not attack}, which lists an action for any private signal she might

receive.

There is a unique equilibrium in the incomplete information game provided private

information is sufficiently precise relative to public information (i.e. α√
β
≤
√

2π). In

this case, there will be a unique threshold equilibrium where players attack if and

only if x ≤ x̄E, for some unique x̄E.8 However, if public information is relatively

precise there exists multiple equilibria driven by self-fulfilling beliefs. These results

are established in Morris and Shin (2004).

If there is only private information (public information is imprecise, α→ 0), then

the condition, α√
β
≤
√

2π, holds automatically and there is a unique threshold equi-

librium. If there is only public information (private information is imprecise, β → 0),

the condition does not hold and there are multiple equilibria. Thus, equilibrium the-

ory makes a sharp prediction for the case of private information but is uninformative

about behavior under public information. Further, equilibrium mispredicts the coor-

dinating roles of different types of information, predicting perfect coordination under

private information.9

6The assumption that θ is uniformly distributed on the real line is typical of the global games
literature. The assumption presents no technical difficulties as long as we restrict attention to
conditional beliefs. See Hartigan (1983) for further discussion of this issue.

7The assumptions of normality and the uniform prior are not essential. The results go through
with a generalized prior and signal structure. This is shown in a previous version of this paper,
Kneeland (2012).

8Notice that the threshold cutoff x̄E(y) will depend on the public signal y. We suppress that
dependence and just write x̄E , taking the public signal y as fixed.

9The global games literature establishes that a unique equilibrium in these types of coordinated
attack games depends on the degree of payoff uncertainty in the model (e.g. Morris and Shin, 2003).
Typically, this is modeled by introducing asymmetric information over fundamentals. However, we
can think about introducing payoff uncertainty in other ways, such as uncertainty about the risk
preferences of other players. (Hellwig, 2002) shows that allowing for asymmetric information about
the degree of risk aversion will induce a unique threshold equilibrium even when information about
fundamentals is public information. Thus, this type of payoff uncertainty could explain why subjects
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In the next section, we analyze the coordinated attack game under limited depth

of reasoning and show that it’s consistent with the existing experimental results.

3 Level-k Thinking

In a limited depth of reasoning model each player’s behavior is determined by her

cognitive type, which is drawn from a discrete distribution over a particular hierarchy

of types {L0,L1, . . . ,Lk, . . .}. L0 types are non-strategic, their behavior is specified

outside the model. L0 types act as the starting point for players’ strategic thinking:

L1 best responds to L0, L2 to a distribution over L0 and L1, and so on. The behavior

of all types can be calculated recursively, in a finite number of steps.

In a general limited depth of reasoning model, Lk types best respond to some

distribution over lower types, where each type’s beliefs about others are defined ac-

cording to some prespecified rule. Under cognitive hierarchy, Lk types best respond

to a mixture of L0,L1, . . . ,Lk− 1 types with weights determined by the conditional

Poisson distribution (e.g. Camerer et al. 2004). Under level-k thinking, Lk types best

respond to Lk-1 types (e.g. Costa-Gomes and Crawford 2006). The main portion of

this paper works within a level-k thinking model. This is for simplicity only. The

results hold for any limited depth of reasoning model with Lk types best responding

to some distribution over lower types (see Appendix B).

Both limited depth of reasoning and equilibrium require that players play a best

response given their beliefs about others. This requirement alone is not enough to

generate precise predictions. Equilibrium adds the additional assumption that play-

ers’ actions and beliefs must be mutually consistent. Limited depth of reasoning

models do not impose mutual consistency. Instead, they impose the assumption that

players follow decision rules based on an iterated process of strategic thinking; players

recursively calculate optimal behavior based on the anchoring L0 type. This defines

a procedural model of player’s decisions that avoids the circular logic of equilibrium

imposed by the assumption of mutual consistency.

The estimated distribution of cognitive types tends to put most of the weight

on L1 and L2 types and negligible weight on L0 types (Costa-Gomes and Crawford

coordinate successfully under public information. However, this type of explanation does not explain
the failure to coordinate when information is private. Introducing other forms of payoff uncertainty
will not increase coordination under public information while decreasing coordination under private
information.
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2006; Costa-Gomes et al. 2001). The anchoring L0 type exists mainly in the minds

of others. This paper takes this position and assumes there is no support on L0 in

the type distribution. In most applications, the specification of L0 is the key to the

model’s explanatory power. However, the predictive power in this paper comes from

the recursive nature of the level-k model. The main results hold under only weak

restrictions on L0 behavior.

Let the behavior of L0 types be described by the cumulative distribution func-

tion Q(l|x, y) on [0, 1] and its associated density function q(l|x, y). The distribution

Q represents beliefs about the proportion of L0 types attacking. An L1 type who

receives private information x and public information y believes that others are be-

having according to Q(l|x, y). The perceived behavior of L0 may be influenced by

information.10 This is reasonable, as L0 types exist mainly in the minds of others.

Two restrictions are placed on the behavior of L0.

A1 Q(l|x, y) is weakly increasing in x and y for a given l.

A2 q(l|x, y) is continuous in x and y for a given l.

Assumption A1 assumes that the perceived behavior of L0 types varies monotonically

as information varies. This captures the likelihood that an L1 type with a low signal

believes that others are more likely to attack than an L1 type with a higher signal.

This is the natural specification for L0 as L0 is meant to capture players’ intuitive

responses to the game. Assumption A2 requires q(l|x, y) to be continuous with respect

to x and y. This restriction is included for convenience to ensure continuity in the

payoff functions. In previous level-k applications with incomplete information, L0

behavior was specified to be independent of information (e.g. Brocas et al. 2014 and

Crawford and Iriberri 2007). Assumptions A1 and A2 are satisfied automatically in

this case.

An L1 type who observes signals x and y believes that the behavior of others can

be described by the density function q(l|x, y). Given this, an L1 type knows that if

she attacks, she will receive positive payoff D whenever θ ≤ l and pay a fixed cost

t with certainty. For a given l, the expected gain from attacking can be written as

D ·Pr(θ ≤ l|x, y)−t. Given the conditional distribution of θ from (1), the probability

of a successful attack is

10L0’s behavior may also depend upon other variables like D or t. The results presented below
are robust to their inclusion.
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Pr(θ ≤ l|x, y) = Φ
(√

α + β (l − (µx+ (1− µ)y))
)
.

Averaging over l according to density q gives the expected payoff gain for an L1 type

who receives signals x and y. This can be written as

πL1(x) = D

ˆ 1

0

Φ
(√

α + β (l − (µx+ (1− µ)y))
)
q(l|x, y)dl − t.

Note that πL1 is continuous and strictly decreasing in x by A1 and A2. There is a

unique point κ1 such that πL1(κ1) = 0. The cutoff κ1 is determined implicitly by

ˆ 1

0

Φ
(√

α + β (l − (µx+ (1− µ)y))
)
q(l|x, y)dl =

t

D
. (2)

L1 types play according to a threshold strategy with cutoff κ1. They attack if and

only if their private signal x is below the threshold cutoff κ1.11,12

L2 types best respond to the belief that all others are playing a threshold strategy

with cutoff κ1. L2 types believe that players attack only if their private signal is

below the threshold cutoff κ1. From the perspective of L2 types, there is a successful

attack if and only if

Φ
(√

β(κ1 − θ)
)
≥ θ.

Let θ̄2 be determined uniquely by the solution to Φ(
√
β(κ1 − θ̄2)) = θ̄2. As a result,

an L2 type expects an attack to be successful whenever θ ≤ θ̄2.

The expected payoff gain for an L2 type who observes signals x and y is given by

D ·Pr(θ ≤ θ̄2|x, y)− t. Using the conditional distribution of θ from (1), the expected

payoff gain for an L2 type is given by

πL2(x, θ̄2) = D · Φ
(√

α + β
(
θ̄2 − (µx+ (1− µ)y)

))
− t.

Since πL2 is continuous and strictly decreasing in x, there is a unique point κ2 such

that πL2(κ2, θ̄
2) = 0. Therefore, L2 types play according to a threshold strategy with

11Assumption A2 guarantees continuity in expected payoffs. However, without this assumption
there still exists a unique point κ such that πL1 > 0 if x < κ and πL1 < 0 if x > κ. As a result, L1
types still play threshold strategies, although they may no longer be indifferent between attacking
and not attacking at the threshold signal.

12Also, note that this is for a given public signal y, thus κ1(y), but we suppress the notation
throughout the paper.
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cutoff κ2. They attack if and only if x ≤ κ2.

The behavior of higher types is similar to that of L2 types since they also believe

that others are playing threshold strategies. Lk types will play a threshold strategy

with cutoff κk, where κk is determined implicitly by

Φ
(√

α + β
(
θ̄k − (µκk + (1− µ)y)

))
=

t

D
(3)

with θ̄Lk determined by the solution to

Φ
(√

β(κk−1 − θ̄k)
)

= θ̄k. (4)

Proposition 1 summarizes these results.

Proposition 1. Let A1 and A2 hold. In the speculative attack game, an Lk type

attacks if and only if x ≤ κk for all k ≥ 1, where κ1 is determined by equation (2)

and κk (k > 1) is determined by equations (3) and (4).

3.1 Properties of the Level-k Solution

This section establishes some of the properties of the level-k solution. Proposition

2 establishes a set of comparative static results for the level-k model. Proposition

3 establishes the relationship between equilibrium and level-k behavior: if there is

a unique equilibrium, then the level-k cutoffs converge monotonically towards the

equilibrium cutoff as k converges to infinity. And, Corollary 1 establishes the level-k

results for two special information treatments: when there is only private information

and when there is only public information.

Define the likelihood of a successful attack to be proportional to the size of the

interval [−∞, θ̄], where θ̄ is the aggregate threshold for a successful attack under

level-k thinking (i.e. there will be a currency crisis if θ ≤ θ̄ and no crisis otherwise).13

The intuitive comparative static results hold under level-k thinking. If the payoff to

attacking (D) decreases, the likelihood of a successful attack decreases. If the cost

of attacking (t) increases, the likelihood of a successful attack decreases. If public

information (y) increases, then the likelihood of a successful attack crisis decreases.

Proposition 2 formalizes the comparative static results.

13The proof of Proposition 2 establishes that there exists a unique θ̄ such that given the distribution
of cognitive types there is a currency crisis if and only if θ ≤ θ̄.
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Proposition 2. Let A1 and A2 hold. The likelihood of a successful attack falls

whenever D decreases, t increases or y increases.

The comparative static predictions of the level-k model are consistent with the

existing experimental results in coordinated attack games. Heinemann et al. (2004),

Duffy and Ochs (2012), and Cornand (2006) all test how thresholds respond to changes

in the safe payoff t. They find that the likelihood of a successful attack falls whenever

t increases.

Proposition 3 establishes that the threshold cutoffs for each level-k type converge

monotonically to the equilibrium threshold as k tends to infinity. Given the spec-

ification for L0, the cutoffs either monotonically increase or decrease towards x̄E

depending on whether κ1 < x̄E or κ1 > x̄E, respectively.

Proposition 3. Let A1 and A2 hold and α√
β
≤
√

2π. Let x̄E be the equilibrium

cutoff and {κk} be the set of level-k cutoffs. Then the threshold cutoffs {κk} converge

monotonically towards the equilibrium cutoff x̄E as k→∞. In addition,

(i) if κ1 < x̄E, then {κk} is a strictly increasing sequence

(ii) if κ1 > x̄E, then {κk} is a strictly decreasing sequence

If the L1 cutoff is above the equilibrium cutoff under private information, then the

L1 cutoff will be higher than the cutoffs of all other Lk types (i.e. κ1 > κ2 > κ3 > · · · ).
For this to hold we require the behavior of L0 types to be biased towards the payoff

dominant equilibrium. This is a natural specification for L0. Many experiments find

that players tend to play payoff-dominant actions in coordination games, at least in

initial periods (e.g. Costa-Gomes et al., 2009).

For example, let P = {1
2
, 1; 1

2
, 0} be the distribution where half of the players at-

tack with probability one. P represents the beliefs of the equilibrium threshold player

when there is only private information. Because information is symmetric, each player

believes that half the players should receive a signal above her own. Therefore, the

threshold player believes that half the players will attack. If Q first-order stochasti-

cally dominates P , L0 behavior is biased towards the payoff-dominant equilibrium and

we are guaranteed that all level-k thresholds will be above the equilibrium threshold.

The next corollary formalizes the results when there is only public or only private

information.
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Corollary 1. Let A1 and A2 hold. Suppose players receive a private signal xi or a

public signal y with xi, y ∼ N(θ, 1
β
). Let θ be distributed uniformly on the real line.

There exists a unique cutoff, κY , and unique cutoffs, κXk , for each k ≥ 1, such that

(i) Lk types attack if and only if xi ≤ κXk , for k ≥ 1 when information is private

(ii) Lk types attack if and only if y ≤ κY , for k ≥ 1 when information is public

When there is only public information, all types coordinate on the same threshold

cutoff. However, when information is private, different types use different thresholds.

This results from the interaction of bounded depths of reasoning with differences in

the nature of public and private information. Public information coordinates higher-

and lower-order beliefs about fundamentals. All types share the same beliefs about

fundamentals, regardless of their depth of reasoning. This coordinates the behavior

of players with different depths of reasoning. When information is private, higher-

order beliefs are more disperse than lower-order beliefs. This decreases coordination

by causing differences in behavior for players with different depths of reasoning. The

level-k model predicts greater coordination under public information than under pri-

vate information.

3.2 Robustness

Threshold strategies, comparative statics, and the coordinating role of public infor-

mation are robust predictions of limited depth of reasoning models. These results

hold under only weak assumptions on the behavior of L0. And, they hold for any

limited depth of reasoning model.

More specifically, the regularities only rely on assumption A1. A1 is a very weak

requirement and holds trivially under the specification that L0 behavior does not

depend on information. The level-k model also places specific assumptions on the

beliefs of each cognitive type about the cognitive types of others. Specifically, an Lk

type believes there are only Lk-1 types. Cognitive hierarchy, another popular limited

depth of reasoning model, assumes that a Lk type believes there are all lower types

with weights determined by a conditional Poisson distribution. In general, we could

think that an Lk type may hold any distribution of beliefs over the lower types. The

exact belief structure does not matter. Moreover, the exact type distribution does

not matter. The results hold for any distribution of types in the population. In other

words, they hold for any limited depth of reasoning model. This is shown in Appendix
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B.

The results even hold for L∞ types. L∞ types have infinite depths of reasoning

but believe others have bounded depths of reasoning. Further, the results hold for

some proportion of sophisticated types. These are types that have infinite depths of

reasoning and take into account the fact that others may also have infinite depths of

reasoning. We show in Appendix B that as long as the proportion of sophisticated

types is not too large, limited depth of reasoning with sophisticated types is consistent

with the existing experimental evidence.

One of the main criticisms of the limited depth of reasoning literature is that

predictions are not robust to model specification. This is not true for the aggregate

predictions of the coordinated attack game. They are robust predictions of limited

depth of reasoning models.

4 Empirical Analysis

This section analyzes the experimental data from Heinemann et al. (2004) (HNO

hereafter).14 The distribution of level-k and equilibrium types are estimated using a

finite mixture model. Allowing for level-k types significantly improves our ability to

explain the experimental data.

For this section, the results rely on the specification of a particular limited depth

of reasoning model. We use the level-k model. This is because the quantitative

predictions of the model (the threshold cutoffs used by different types) are needed

in order to fit the model to data. This does not mean that other limited depth

of reasoning models would not fit the data equally well or even better than the

level-k model. But the goal of this exercise is to show that there exists a limited

depth of reasoning model that explains the data better than equilibrium. Notice that

this exercise is different to that in Section 3, which concerns itself with qualitative

predictions. In that case we showed limited depth of reasoning models make robust

qualitative predictions that are consistent with existing experimental evidence.

14In this section, we restrict attention to the experimental data from Heinemann et al. (2004),
because it includes both a private and public information treatment.
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4.1 The experiment

Subjects play a finite player game similar to the above game. In each session, there

are 15 subjects who simultaneously decide whether to attack or not attack. An attack

is associated with an opportunity cost t (which is modeled as the safe payoff to not

attacking). An attacking subject earns the amount θ if the attack is successful. An

attack is successful if and only if a sufficient number of players attack. The threshold

to a successful attack is determined by a(θ) which is a non-increasing function of θ.

Low θ represents good fundamentals and a high threshold to a successful attack. High

θ represents poor fundamentals and a low threshold to a successful attack.

This game differs from the game analyzed in previous sections in a number of

ways: it is a discrete player game, the payoff from a successful attack depends upon

the fundamentals, and a lower θ corresponds to better fundamentals. However, none

of these changes alter the previous analysis in a substantial way.15 The only change

to note is that the attack/non-attack regions are flipped. Players attack if and only

if their signals are above the cutoff threshold.

There are two information treatments in the experiment. A private information

treatment (PI) and a common information treatment (CI). In PI, players do not

know the fundamental, but know that θ is distributed uniformly on [10, 90] and re-

ceive private signals xi randomly drawn with independent and uniform conditional

distributions on [θ − 10, θ + 10]. In CI, players learn the fundamental θ when they

receive a precise public signal y = θ. There are also four different payoff parametriza-

tions. The payoff to the safe (not attack) option varies between t = 20 and t = 50

and the threshold parameter ψ, a(θ) = 15(80−θ)
ψ

, varies between ψ = 60 and ψ = 100.

The eight treatments are summarized in Table 1.

We analyze the data from a total of 29 sessions and 435 subjects. Subjects play

16 rounds in the experiment, but we analyze only the first round because we are

interested in initial play. In each round, each subject receives 10 signals and makes a

choice for each signal (attack or not-attack), for a total of 4350 choices.

15See Appendix C for an analysis of the level-k results. See HNO for an analysis of the equilibrium
results.
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Table 1: Treatments
Treatment Information Safe Payoff (t) ψ Sessions
PI 20 100 Private 20 100 1
CI 20 100 Public 20 100 1
PI 50 100 Private 50 100 1
CI 50 100 Public 50 100 1
PI 20 60 Private 20 60 6
CI 20 60 Public 20 60 5
PI 50 60 Private 50 60 7
CI 50 60 Public 50 60 7

4.2 Econometric Analysis

The analysis uses two main econometric methods. First, we follow Heinemann et al.

(2004) and Duffy and Ochs (2012) and estimate aggregate mean thresholds by es-

timating a logit response model in which the binary attack decision depends on a

constant and the signal (Z = x or y). That is, we use maximum likelihood estima-

tion to find the coefficient estimates â and b̂, that are a best fit to the logit response

function:

Pr(attack|Z) = [1 + exp (−a− bZ)]−1

The attack threshold can be viewed as the critical value, Z∗, for which a represen-

tative player is indifferent between attacking and not attacking, which obtains when

Pr(attack|Z∗) = 0.5. Using this, we can obtain the estimated mean attack threshold

Ẑ∗ = − â

b̂
. The standard deviation is given by π

b̂
√

3
. We take the standard deviation to

be a measure of the coordination of subjects around the estimated attack threshold.

Second, we follow Costa-Gomes et al. (2001) and estimate a finite mixture model

that allows for different behavioral types. This approach assumes that each subject’s

type is drawn from a fixed common prior distribution over all types. The types we

allow include: an equilibrium type (E) who believes all other types are equilibrium

types, an L1 type who believes all other types are L0 types whose behavior is fixed

(and specified below), and an L2 type who believes all other types are L1 types.

We assume that each player follows the predictions of a particular type with error.

Because subjects often make a type’s exact choices, we use a simple spike-logit error

structure. Index types k = 1, . . . , 3 and choices by q = 1, . . . , 10. In each choice, a

subject has a given probability 1−ε of making her type’s exact choice, and with error-
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rate, ε, makes choices that follow a logistic distribution with error density, dkq(a
i
q, λ).16

The parameter λ represents the logistic precision parameter.

For subject i, let Qik represent the set of choices where subject i’s action is con-

sistent with type k’s predicted action. The aggregate log-likelihood function is given

by

lnL(p, ε, λ|a) =
S∑
i=1

ln

 3∑
k=1

pk

∏
q∈Qi

(
1− ε+ εdk(aiq, λ)

) ∏
q∈QiC

εdkq(a
i
q, λ)

 (5)

where S is the number of subjects.

With three types, this model has 4 independent parameters: 2 independent type

probabilities pk, a precision parameter λ, and an error-rate ε.17

In order to fully specify this model, we must specify the behavior of L0 types.

In most level-k applications, L0 behavior is chosen to be either uniformly random

or some focal behavior. However, we know from previous coordination experiments

that players tend to focus on payoff-dominant outcomes (at least during initial play)

(Costa-Gomes et al. 2009) and Crawford et al. (2008) find that level-k models with

L0 players biased towards payoff-salient outcomes explain behavior in coordination

games fairly well. For these reasons, we assume that the behavior of L0 types is given

by a discrete probability function q(l) over {0, 1, . . . , 14} that first-order stochasti-

cally dominates the uniformly random distribution.18 This biases the behavior of L0

types towards the payoff-dominant outcome (attack) relative to the uniformly random

specification. Notice that this specification of L0 behavior satisfies assumption A1.

16The error density, dkq (aiq, λ), is defined dkq (aiq, λ) =
exp[λSk

q (a
i
q)]

exp[λSk
q (attack)]+exp[λSk

q (not−attack)]
. The term,

Skq (aiq), is type k′s expected payoff from playing action aiq in choice q, given type k’s beliefs about
the actions of others.

17We limit attention to an aggregate analysis because of the way the data is structured. Subjects
make choices for 10 random signal draws. Depending on the random draws, we may not be able
to identify a type for every subject. As well, the design is a between subjects design, subjects do
not make choices under both public and private information. It is only in the private information
treatments that L1 and L2 types are identified separately (although public information treatments
are still helpful for seperating level-k and equilibrium types). Thus, we use the aggregate analysis
as a substitute for the individual analysis. Costa-Gomes et al. (2001) run both individual and
aggregate analyses and find virtually the same results (individual results recorded in earlier version
of the paper (Costa-Gomes et al. 1998 )).

18Specifically, the distribution used is q(0) = q(1) = q(2) = q(3) = q(4) = 1/60, q(5) = q(6) =
q(7) = q(8) = q(9) = q(13) = q(14) = 4/60, and q(10) = q(11) = q(12) = 8/60.
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Each type’s behavior is determined by a threshold cutoff. A type attacks if and

only if her signal is above the threshold cutoff. Given the behavior of the L0 types

we can determine the threshold cutoffs for L1 and L2 types. The threshold cutoffs

for equilibrium types are given by the unique equilibrium thresholds in the private

information treatments and by the global games thresholds in the public information

treatments.19 Thresholds vary across both information treatments and safe-payoff

treatments for all four types. The type’s threshold predictions are given in Table 2.

These thresholds fully specify each type’s predicted actions. A type k attacks if and

only if her signal in choice q is greater than or equal to her cutoff threshold.

Table 2: Threshold Predictions by Type

CI PI

t ψ E L1, L2 E L1 L2
20 100 33.3 27.3 32.4 27.7 29.5
50 100 60 53.3 61 53.4 58
20 60 44 37.5 41.8 38.3 39.6
50 60 64 57.7 66.0 57.9 61.2

4.3 Aggregate Regularities

The mean threshold cutoffs are estimated for each treatment using the binary response

logit model specified in the previous section. Table 3 lists the estimated mean cutoff

thresholds and the associated standard deviations for each treatment.20

19HNO find that the global games equilibrium explains this data better than any other known
equilibrium selection method, i.e. payoff-dominance, risk dominance or max-min.

20The patterns we observe in the first round data are similar to the patterns observed by HNO
across the entire 16 rounds.
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Table 3: Estimated Mean Threshold Cutoffs
  Treatment  

(n=4350) PI_20_100 CI_20_100 PI_50_100 CI_50_100 PI_20_60 CI_20_60 PI_50_60 CI_50_60 

         
Estimated  
mean threshold 30.36 37.24 58.14 53.50 48.54 36.90 60.62 54.63 

Estimated  
standard deviation 29.63 22.79 17.06 15.12 29.14 29.02 22.77 17.79 

!!!
!!
numdev!=!
!!
!!!!!!0!!!279!!!222!!!190!!!175!
!!!!!!0!!!!!0!!!!57!!!!89!!!116!
!!!!!!0!!!!!0!!!!!0!!!!32!!!!59!
!!!!!!0!!!!!0!!!!!0!!!!!0!!!!27!
!!
!>>!sum(devpersubject)!
!!
!ans!=!
!!
!!!!279!
!
[]!/!

We can see from Tables 2 and 3 that mean thresholds are closer to the level-k

predictions than the equilibrium predictions. As well, mean thresholds are lower in the

PI20 and CI20 treatments relative to the PI50 and CI50 treatments. Subjects respond

to changes in the safe payoff t as predicted in both the level-k and equilibrium models.

Mean thresholds are also lower in the CI treatments relative to the PI treatments in

all cases except when t = 20 and ψ = 100. The level-k model is consistent with these

patterns. However, equilibrium predicts that the mean threshold should increase in

the CI 50 60 treatment relative to PI 50 60, which is not true in the data.

Lastly, notice that the standard deviation of estimated thresholds is lower in the

CI treatments relative to the corresponding PI treatments. This is inconsistent with

an equilibrium analysis, which predicts that coordination should be weakly better

under private information than public information. The level-k model is consistent

with this pattern, as the level-k model predicts that coordination should be strictly

better under public information than under private information.

4.4 Model Estimation

The type classification is based on 435 subjects who each make 10 choices. There are

279 choices that separate the predictions of E and L1 types, 222 choices that separate

the predictions of E and L2 types and 57 choices that separate the predictions of L1

and L2 types.

Table 4 gives the maximum likelihood estimates of equation (5). The first column

gives the estimates for the combined model that includes all three types: E, L1, and

L2. The second column gives the estimates for the level-k model and the third column

gives the estimates for the equilibrium model. In the combined model, level-k types

make up 83 percent of the estimated type distribution. L1 types are most frequent,

making up 70 percent of the type distribution and L2 types make up 13 percent. This
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Table 4: Aggregate Type Classification

MODEL: All Types Level-k Equilibrium

Log-Likelihood -1955.80 -1960.16 -2138.97

L1 .6993 .6695
(.0487) (.0542)

L2 .1312 .3305
(.0556) (.0542)

E .1695 1
(.0700)

λ .0410 .0430 .0255
(.0032) (.0028) (.0020)

ε .7366 .7906 .7084
(.0365) (.0367) (.0354)

n 4350 4350 4350

AIC 3953.5 3953.8 4294.7

BIC 3921.6 3928.4 4281.9

*Notes: bracketed numbers are bootstrapped standard errors clustered

at the subject level.

is compared to 17 percent for equilibrium types.

The level-k model fits the data better than the equilibrium model looking at both

AIC and BIC. But, the combined model does not really offer an improvement over

the level-k model. The AIC for the model with all four types is 3953.5, which is only

marginally smaller than the AIC for the level-k model, 3953.8.

Both the precision parameter and the error-rate parameter combine to determine

the rate of deviation from each type’s predicted play. Types follow their type’s pred-

icated action about 83 percent of the time on average.

5 Conclusion

The existing experimental evidence on coordinated attack games presents a challenge

to equilibrium theory, which mispredicts the coordinating roles of public and private
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information. Limited depth of reasoning models provide a consistent explanation

of experimental behavior across different information conditions. Having a model

that explains experimental behavior under private and public information provides a

behaviorally-motivated answer to the debate over the potentially destabilizing effects

of public information.

In addition, this paper highlights robust predictions of the level-k model. The

main results from coordinated attack experiments are robust predictions of limited

depth of reasoning models. This demonstrates that limited depth of reasoning models

have predictive power even if L0 and the type distribution are not stable across games.

In particular, comparative static predictions hold for a wide class of these models.

Determining accurate comparative statics does not require determining accurate point

predictions. This is especially desirable if what we care about is policy prescriptions

and not necessarily point estimates.
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A Omitted Proofs

Proof of Proposition 1

The expected payoff gain for an L1 type who receives signal x can be written as

πL1(x) = D

ˆ ∞
−∞

φ
(√

α + β(θ − µx− (1− µ)y)
)

[1−Q(θ|x, y)] dθ − t

This expression is continuous and strictly decreasing in x by A1 and A2. To see this

notice that there are two effects to consider. First, 1−Q(θ|x, y) is weakly decreasing

in x for a given θ. Second, the mean of the distribution of θ shifts as x increases

which puts more weight on higher values of θ, which means more weight is put on

smaller values of 1 − Q(θ|x, y). The two effects work in the same direction. Also,

πL1(−∞) > 0 and πL1(∞) < 0 by properties of the normal distribution. As a result,

L1 types play a threshold strategy with cutoff κ1 determined implicitly by equation

(2).

Claim: Lk types play threshold strategies with cutoff κk ∀ k ≥ 1.

This claim is proved by induction on k.

It is true for L1 types by the above argument.

Suppose it is true for Lk-1 types.

Lk types expect a proportion Φ(
√
β(κk−1 − θ)) of players to attack. Since Φ is

continuous and strictly decreasing in θ, we can find a unique θ̄k such that an Lk

type thinks there is a successful attack if and only if θ ≤ θ̄k where θ̄k is determined

implicitly by equation (4).

The expected payoff gain for an Lk type who receives signal x is then given by

πLk(x, θ̄k) = D
(

1− Φ(
√
α + β(µx+ (1− µ)y − θ̄k))

)
− t.

πLk is continuous, strictly decreasing in x, πLk(−∞) > 0 and πLk(∞) < 0. As a

result, Lk types play according to a threshold strategy with cutoff κk determined by

implicitly by equation (3).

The result follows by induction.

Proof of Proposition 2

Consider the case for level-k types. Let the distribution of types be specified by

λ1, λ2, . . . where λk is the proportion of Lk types.

Let LK(θ) be the proportion of all Lk types that attack,
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LK(θ) =
∞∑
k=1

λkΦ
(√

β(κk − θ)
)

LK(θ) is continuous and strictly decreasing in θ. Thus, there exists a unique θ̄ such

that LK(θ̄) = θ̄ and there is a currency crisis iff θ ≤ θ̄.

We want to know how θ̄ changes when some parameter z varies. If ∂κk
∂z

> 0(< 0) ∀k,

then LK(θ) is shifted to the right (left) and hence ∂θ̄
∂z
> 0(< 0).

Claim: ∂κk
∂D

> 0, ∂κk
∂t

< 0 and ∂κk
∂y

< 0 ∀k ≥ 1

Show by induction on k.

Consider k = 1. Let

F = D

ˆ 1

0

(
1− Φ

(√
α + β(µκ1 + (1− µ)y − l)

))
q(l|κ1, y)dl − t

The cutoff is implicitly determined by F = 0.

By the proof of Proposition 1 ∂F
∂κ1

< 0.
∂F
∂D

=
´ 1

0

(
1− Φ

(√
α + β(µκ1 + (1− µ)y − l)

))
q(l|κ1, y)dl > 0 ,

∂F
∂t

= −1 < 0 ,
∂F
∂y
< 0. This is analogous to ∂F

∂x
.

Therefore, by the implicit function theorem, ∂κ1
∂D

> 0, ∂κ1
∂t

< 0 and ∂κ1
∂y

< 0.

Now suppose the claim is true for k− 1.

Equations (3) and (4) jointly determine κk.

From the equation (4) we have:

dθ̄Lk

dz
=

√
βφ(·)

1 +
√
βφ(·)

dκk−1

dz

Totally differentiate equation (3) taking into account the effect on the cutoff θ̄Lk :(√
α + βµφ(·)

)
dκk −

(
t

D2
+
√
α + βφ(·)dθ̄

Lk

dD

)
dD = 0⇒ ∂κk

∂D
> 0

(√
α + βµφ(·)

)
dκk +

(
1

D
−
√
α + βφ(·)dθ̄

Lk

dt

)
dt = 0⇒ ∂κk

∂t
< 0

(√
α + βµφ(·)

)
dκk +

√
α + βφ(·)

(
(1− µ)− dθ̄Lk

dy

)
dy = 0⇒ ∂κk

∂y
< 0
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The claim follows by induction.

Thus, by the argument above: ∂θ̄
∂D

> 0, ∂θ̄
∂t
< 0 and ∂θ̄

∂y
< 0.

Proof of Proposition 3

Define the function f : RxR→ R by

f(x, κ) = D
(

1− Φ(
√
α + β(µx+ (1− µ)y − θ̄(κ)))

)
− t

where θ̄(κ) is implicitly determined by θ̄(κ) = Φ(
√
β(κ− θ̄(κ))).

Define the function b : R→ R by letting b(κ) be the value that solves f(b(κ), κ) = 0.

By argument in proof of Proposition 1, b is a well-defined function. By the implicit

function theorem ∂θ̄
∂κ

> 0 and ∂b
∂κ

> 0. So, b is a strictly increasing, continuous

function. Notice that f(x̄, x̄) = 0 defines the equilibrium cutoff x̄. This means

that b has a unique fixed point. Define the function bk : R → R recursively by

bk(κ) = b(bk−1(κ)) for k ≥ 2.

Now let κ1 be such that κ1 < b(κ1).

Consider the following real sequence {bn(κ1)}∞n=1. This sequence is increasing, since

b is an increasing function and κ1 < b(κ1). The sequence is also bounded since b is a

bounded function (bounded above by x̄)

Since {bn(κ1)} is bounded, continuous, and increasing, it has some limit, call it c.

c = lim
n→∞

bn+1(κ1) = lim
n→∞

b (bn(κ1)) = b
(
lim
n→∞

bn(κ1)
)

= b(c)

where the third equality follows from continuity of b. Since, b has a unique fixed point

c = x̄.

We can find the analogous result for any κ1 such that b(κ1) < κ1.

The proof follows by noticing that κk = bk−1(κ1).

Proof of Corollary 1

Let z be the signal received (i.e.. either z = x or z = y).

The expected payoff gain of an L1 type is given by

πL1
z (z) = D

ˆ ∞
−∞

φ(
√
β(θ − z))[1−Q(θ|z)]dθ − t.

By similar arguments as in Proposition 1, πL1 is strictly decreasing and continuous

in z. Therefore, L1 types play threshold strategies with cutoff κz1 determined by

πL1
z (κz1) = 0. Players attack if signal z ≤ κz1 and do not attack otherwise.

26



Claim1: Lk types play threshold strategies with cutoff κXk ∀ k ≥ 1 in the private

information game

This claim is proved by induction on k.

It is true for L1 types by the above argument.

Suppose it is true for Lk-1 types.

Lk types expect a proportion Φ(
√
β(κXk−1 − θ)) of players to attack. Since Φ is

continuous and strictly decreasing in θ, we can find a unique θ̄k such that an Lk

type thinks there is a successful attack if and only if θ ≤ θ̄k where θ̄k is determined

implicitly by Φ(
√
β(κXk−1 − θ̄k)) = θ̄k.

The expected payoff gain for an Lk type who receives signal x is then given by

πLk(x, θ̄k) = D
(

1− Φ(
√
β(z − θ̄k))

)
− t.

πLk is continuous, strictly decreasing in x, πLk(−∞) > 0 and πLk(∞) < 0. As a result,

Lk types play according to a threshold strategy with cutoff κXk uniquely determined

by πLk(κXk , θ̄
k) = 0

The result follows by induction.

Claim2: Lk types play threshold strategies with cutoff κY ∀ k ≥ 1 in the public

information game

This claim is proved by induction on k.

It is true for L1 types by the above argument.

Suppose it is true for Lk-1 types.

Lk types expect everyone to attack if y ≤ κY .

If y > κY , payoff to attacking is D ·Pr(θ ≤ 0)− t (< 0 since L1 payoff is negative)

If y ≤ κY then payoff to attacking is D · Pr(θ ≤ 1) − t (> 0 since L1 payoff is

positive)

The result follows by induction.

B

Generalized Level-k

The extension from level-k thinking to a general limited depth of reasoning model

follows almost immediately. L1 types best respond only to L0. As a result, the

behavior of an L1 type is unchanged under any limited depth of reasoning model.
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Suppose L1 types play a threshold strategy with cutoff κ1. Let λki be the proportion

of Li types that an Lk type believes she is playing against.

Claim: Lk types play threshold strategies with cutoff κk ∀ k ≥ 1.

This claim is proved by induction on k.

It is true for L1 types trivially, analysis doesn’t change.

Suppose it is true for Lk-1 types.

First consider the case where λk0 6= 0. Lk types believe the proportion of players

attacking is given by λk0l0 + λk1Φ(
√
β(κ1− θ)) + . . .+ λkk−1Φ(

√
β(κk−1− θ)). Thus, Lk

types believe they get a payoff D if λk0l0 +λk1Φ(
√
β(κ1− θ)) + . . .+λkk−1Φ(

√
β(κk−1−

θ)) ≥ θ. Using the distribution Q, we can then write the expected payoff of an Lk

type as

πLk(x, κ1, . . . , κk−1) =

ˆ ∞
−∞

φ(
√
α+ β(µx+(1−µ)y−θ))

(
1−Q

[
1

λk0

(
θ −

k−1∑
i=1

λki Φ(
√
β(κi − θ))

)
|x, y

])
dθ

πLk is continuous, strictly decreasing in x by A1 and A2 and πLk(−∞) > 0 and

πLk(∞) < 0. To see that πLk is strictly decreasing notice that 1 − Q is weakly

decreasing in x for a given θ. As x increases, the mean of the normal distribution

shifts, placing more weight on higher values of θ. So more weight is placed on lower

values of 1 − Q. The two effects work in the same directions. As a result, Lk

types play a threshold strategy with a cutoff κk where κk is uniquely determined by

πLkσ (κk, κ1, . . . , κk−1) = 0.

Now consider the other case where λk0 = 0. Lk types believe the proportion of

players attacking is given by λk1Φ(
√
β(κ1−θ))+ . . .+λkk−1Φ(

√
β(κk−1−θ)). Thus, Lk

types believe an attack is successful if λk1Φ(
√
β(κ1−θ))+ . . .+λkk−1Φ(

√
β(κk−1−θ)) ≥

θ. The LHS is continuous and strictly decreasing in θ. Therefore ∃ a unique θ̄Lk such

that there is a successful attack iff θ ≤ θ̄Lk. The expected payoff for an Lk type is

then given by

πLk(x, θ̄Lk) = D
(

1− Φ(
√
α + β(µx+ (1− µ)y − θ̄Lk))

)
− t.

πLk is continuous, strictly decreasing in x, πLk(−∞) > 0 and πLk(∞) < 0. As a result,

Lk types play according to a threshold strategy with cutoff κk uniquely determined

by πLk(κk, θ̄
Lk) = 0.

The result follows by induction.
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Sophisticated Types

Proposition. Let γ be the proportion of sophisticated players and let A1 and A2 hold.

If γ α√
β
≤
√

2π, there is a unique equilibrium in the speculative attack game where

sophisticated types attack if and only if x ≤ κs, where κs is uniquely determined.

Proof:

Consider the optimal strategy for a sophisticated type who believes all other so-

phisticated types are playing according to a threshold strategy with cutoff κs. Let the

distribution of types be specified by λ1, λ2, . . . where λk is the proportion of Lk types.

A type Lk plays according to a threshold strategy with cutoff κk. The proportion of

players attacking is given by

L(θ) = (1− γ)
∞∑
k=1

λkΦ
(√

β(κk − θ)
)

+ γΦ(
√
β(κs − θ))

There is a unique value θ̄s such that L(θ̄s) = θ̄s. There is a currency crisis if

and only if θ ≤ θ̄s. Rearranging the expression, L(θ̄s) = θ̄s, and letting S(θ) =
∞∑
k=1

λkΦ
(√

β(κk − θ)
)
, we can get the following relationship between κs and θ̄s,

κs = θ̄s +
1√
β

Φ−1

(
1

γ
θ̄s − 1− γ

γ
S(θ̄s)

)
.

An equilibrium cutoff κs is the solution to the following equation

D
(

1− Φ(
√
α + β(µκs + (1− µ)y − θ̄s)

)
= t.

The aggregate size of attack θ̄s is then determined implicitly by equation

α√
β

(y − θ̄s) + Φ−1

(
1

γ
θ̄s − 1− γ

γ
S(θ̄s)

)
=

√
α + β√
β

Φ−1

(
D − t
D

)
.

The left hand side of this expression is continuous in θ̄s, positive for low θ̄s and

negative for high θ̄s. As a result, there always exists a solution. In other words, there

exists at least one threshold equilibrium. There will be a unique symmetric threshold

equilibrium whenever there is a unique solution θ̄s to this equation.

Let G(θ) = α√
β
(y − θ) + Φ−1

(
1
γ
θ − 1−γ

γ
S(θ)

)
.

Then, dG
dθ

=
1
γ

+ 1−γ
γ

(−S′(θ))
φ(Φ−1( 1

γ
θ−( 1−γ

γ
)L(θ)))

− α√
β
.
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Since φ ≤ 1/
√

2π and −S ′(θ) > 0 hold, G is strictly increasing whenever
√

2π ≥
α√
β
γ .

Uniqueness follows from an iterated deletion of strictly dominated strategies argu-

ment. Let πs(x, κ) be the expected gain for a sophisticated player attacking, given

that she observes signal x and all other sophisticated players are playing threshold

strategies with a cutoff κ.

πs(x, κ) = D
(

1− Φ(
√
α + β(µx+ (1− µ)y − θ̄s(κ)

)
− t

Define the function b : R→ R to be the value b(κ) that solves the equation πs(b(κ), κ) =

0. b is well-defined, continuous and strictly increasing by arguments above. There-

fore, b(k) has a unique fixed point, κs. Define the function bk : R→ R recursively by

bk(κ) = b(bk−1(κ)) for k ≥ 2.

Consider strategies that survive 1 round of deletion of strictly dominated strategies.

First, consider strategies that are dominated by playing attack at some signals. The

best payoff that a player could achieve if not attacking at those signals is if all sophis-

ticated types played not-attack for all signals. That is, as if all sophisticated types

played the threshold strategy with cutoff −∞. The best response to sophisticated

types playing with a cutoff −∞ is to play a threshold strategy with a cutoff b(−∞).

This means that any strategy for which not-attack is played for any x < b(−∞) is a

dominated strategy. Following an analogous argument we can show that any strategy

for which attack is played for any x > b(∞) is a dominated strategy. Thus, the set

of strategies that survive 1 round of iterated deletion of strictly dominated strategies

look like:

play
{

attack
not-attack

if x<b(−∞)
if x>b(∞)

We can now repeat the argument on this smaller set of strategies and show that

the set of strategies that survive k-rounds of iterated deletion of strictly dominated

strategies look like:

play
{

attack
not-attack

if x<bk(−∞)
if x>bk(∞)

By the argument in the proof of Proposition 3 for a function b that is strictly increas-

ing, continuous, bounded and has one fixed point: bn(x0) → κs as n → ∞ for any

x0 ∈ R. This means that there is a unique strategy that survives iterated deletion of

strictly dominated strategies - the threshold strategy with cutoff κs.
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C

Proposition. Suppose the behavior of L0 types is given by the cdf Q(l) on {0, . . . , 14}.
(i) Suppose we are in information treatment PI. Then there exists a unique κk,

for each k ≥ 1, such that the behavior of type Lk is given by

play

{
1 if x ≥ κk

0 o.w

(ii) Suppose we are in information treatment CI. Then there exists a unique κ

such that the behavior of type Lk, for any k ≥ 1, is given by

play

{
1 if y ≥ κ

0 o.w

Proof

(i) By induction on k.

Consider k=1.

The expected payoff gain from playing action 1 for an L1 type who receives a

private signal x, given the behavior of L0 is

πL1(x) =
1

2ε

ˆ x+10

x−10

ˆ 1

a(θ)−1
15

θq(l)dldθ − t

= =
1

2ε

ˆ x+10

x−10

θ

[
1−Q

(
a(θ)− 1

15

)]
dθ − t

Notice that πL1 is strictly increasing and continuous x. Also, for θ low enough

1 − Q = 0 and for θ high enough, 1 − Q = 1. Thus, there exists xl, xh such that

πL1(xl) < 0 and πL1(xh) > 0. Therefore, L1 types play according to a threshold

strategy with cutoff κ1 determined by πL1(κ1) = 0.

Assume true for k-1.

Consider k.

The expected payoff gain of an Lk type given that she receives signal x and that

she expects all other players to play threshold strategies with the cutoff κk−1 is

πLk (x, κk−1) =
1

2ε

ˆ x+10

x−10
θ

[
1−Bin

(
â(θ)− 2, n− 1,

θ + ε− κk−1

2ε

)]
dθ − t

The function πLk is strictly increasing and continuous in x and there exists xl, xh

such that πLk(xl) < 0 and πLk(xh) > 0. Therefore, there is a unique cutoff κk where
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π(κk, κk−1) = 0. Best responses for Lk types are to play threshold strategies with

cutoff κk.

The result follows by induction.

(ii) By induction on k.

Consider k=1.

The expected payoff gain from playing action 1 for an L1 type who receives a

precise public signal y is

πL1(y) =

ˆ 1

a(y)−1
15

yq(l)dl − t

= = y ·
[
1−Q

(
a(y)− 1

15

)]
− t

Notice that πL1 is strictly increasing in y and there exists yl, yh such that πL1(yl) <

0 and πL1(yh) > 0. If there exists a x such that πL1(x) = 0 then define κ such that

πL1(κ) = 0. If not, (may happen since Q is not continuous), let κ be such that

πL1(κ) < 0 and πL1(κ + ε) > 0 for any ε > 0. Such a κ is unique as πL1 is strictly

increasing. Thus, L1 types play according to a threshold strategy with cutoff κ.

Assume true for k-1.

Consider k.

Lk types expect everyone to attack if y > κ.

If y < κ, payoff to attacking is y · 0− t < 0

If y ≥ κ then payoff to attacking is y · 1− t > 0

The result follows by induction.
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