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Abstract. In oder to realize the DFT simulations on large-scale complex systems, we have
been developing a linear-scaling DFT code ConquesT. In this paper, we report the parallel
efficiency of the code on K-computer and show that it has almost ideal parallel efficiency
even when we use more than 200,000 cores. Using the code on such large-scale parallel
computers, we are now ready to do actual DFT study on million-atom systems. By showing
our current study on the nucleation of Ge dimers on three-dimensional Ge nano-islands on
Si(001), we demonstrate that accurate, efficient and robust structure relaxation based on the
DFT is possible in the actual scientific research on complex nano-structured materials.
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1. Introduction

First-principles calculation methods can provide reliable information of structures and prop-
erties of materials through electronic structure calculations based on the density functional
theory (DFT). They have been playing important roles in various fields as a powerful re-
search tool which can provide reliable data independently from experimental results. How-
ever, compared with the calculations using classical force fields, this method requires a
large amount of computation time. In addition, the computational cost of the conventional
first-principles methods increases rapidly when the size of target systems becomes larger, in
proportion to the cube of the number of atoms N contained in the system. It has been very
difficult to treat the systems containing more than one thousand atoms and the targets of the
DFT study have been limited only for small parts of the real materials or idealized model
systems.
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On the other hand, the speed of supercomputers keeps growing rapidly. Roughly speak-
ing, the peak performance of the supercomputers have been going up tenfold every four
years. In June and November 2011, Japanese supercomputer named “K-computer” was
ranked as the world’s fastest computer in the TOP500 list [1]. (It is now ranked as the 4th.)
The computer, whose performance exceeds 10 PFLOPS, was open to public in September
2012, bringing about a dramatic change in the computational materials science. By us-
ing such a huge and powerful computer, it is expected to realize first-principles study of
large-scale systems having the size of complex materials or real devices. However, this
would require high-efficiency in ultra-large-scale parallel calculations. The K-computer has
88,128 CPUs. As each CPU has 8 cores (128 gigaflops), it has more than 700,000 cores in
total. It is not easy to achieve high parallel efficiency using such a large number of cores.
Especially the efficiency of the planewave DFT methods, which are most widely used in the
DFT calculations at present, strongly depends on the efficiency of the FFT libraries and it
is usually difficult for FFT libraries to achieve high efficiency on massively parallel com-
puters. In this respect, development of a new calculation method and advanced calculation
technique is essential.

We have been developing a DFT code ConquesT, which is designed for massively par-
allel calculations. In addition, the code uses a linear scaling (or O(N)) method [2] where
the computation time and memory requirement are both only proportional to N. We have
recently optimized the code on K-computer to realize the DFT study on very large systems.
In this paper, we report the performance of the code on K-computer and show that the first-
principles study on million-atom systems is now possible using such a big computer, with
the O(N) technique.

2. Linear-scaling DFT code CoNQUEST

ConNquEsT is a linear-scaling DFT code which enables us to perform the first-principles calcu-
lations on very large-scale systems. Since the details of the calculation method are explained
in a series of previous papers [3, 4, 5], we only summarize main points here.

In the conventional DFT method, we calculate Kohn-Sham orbitals ¢,(r), which are the
eigenfunctions of the Kohn-Sham equations. Here, 7 is the index of a band or an electronic
state, and the number of n is proportional to N. In ConQuEsT, instead of calculating the set
of Kohn-Sham orbitals, we work on the Kohn-Sham density matrix p defined by summation
of the occupied Kohn-Sham orbitals

P, ) = > fn(O (), ()

Here, f, is the occupation number for the state n. The DFT total energy (Kohn-Sham to-
tal energy) can be calculated from the density matrix. In CoNQUEST, the density matrix is
represented in terms of localized orbitals, called “support functions”:

PO E) = D" Gia(D)Kia, jo jo(X). 2)

ia,jB
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Here, the support functions ¢;,(r) are functions that are non-zero only inside “support re-
gions” centered on the atoms, where i labels the atom and @ runs over the support functions
on a given atom; the coeflicients Kj, jz are the matrix elements of the density matrix in the
non-orthogonal “basis” of support functions. The support functions ¢;,(r) themselves are
expressed as linear combinations of localized basis functions associated with each atom i.
ConquesT provides two types of basis functions, one being B-splines on regular grids [6] as
a systematically improvable basis set and the other being numerical pseudo-atomic orbitals
(PAOs) [7, 8] for efficient calculations.

In order to calculate the density matrix, we use the density matrix minimization (DMM)
method proposed by Li, Nunes and Vanderbilt (LNV) [9]. ConQUEST can also employ con-
ventional diagonalization method, but the CPU time is proportional to N° in this case. In
the LNV method, we optimize p to minimize the total energy with the constraints that p is
weakly idempotent (all occupation numbers f, lie between 0 and 1) and p gives the cor-
rect total valence electron number. In order to satisfy the constraint of idempotency, K is
expressed in terms of an auxiliary density matrix L;,, jg by the matrix relation:

K=3LSL-2LSLSL, 3)

with Sy, j8 = (@ialdjp) the overlap matrix of support functions. To use the locality of the
density matrix, LNV method imposes a spatial cut-off R; on the L-matrix: Lj, jg = 0 for
IR; —R;| > Ry, where R; are the atomic positions. The method is variational; the increase of
Ry results in decrease of the total energy, and an infinite R; should give us the exact result.
Thus, once support function is given, the accuracy of the method can be controlled only by
one parameter R;. The decaying behavior of the density matrix depends on the energy gap
of the system, and the method is more efficient for systems having large energy gaps.

3. Parallel Efficiency of ConquesT on K-computer

As explained in the last section, CoNQUEST uses the locality of the electronic structure and
thus has an advantage also in parallelization efficiency. In our previous paper [10], we
have shown that ConquesT is efficient on parallel computers, but the number of cores of K-
computer is much larger than those used in our previous works. It is not clear whether the
code can still show good performance on K-computer. Through the program of the trial use
of K-computer, we have done the optimization of ConquesTt from April in 2011. We have
done OpenMP parallelization, optimization of computation and communication parts in the
sparse matrix multiplications, which is the most expensive part in CONQUEST. As a result, we
have obtained a parallel scaling efficiency on K-computer shown in Fig. 1.

In the parallel sparse matrix multiplications, CoNQuEST is designed to overlap some of
the communication and computation parts by using a series of non-blocking MPI sends and
receives. The details of the scheme is explained in our previous paper [11]. On K-computer,
we have found that the time for the communication part can be reduced simply by calling
MPI test regularly. This is probably because calling MPI test issues the controlling signals
for MPI communications and invokes the actual MPI sends and receives. Figure 1 (a) shows
the timing of the sparse matrix multiplications in the calculations of the 32768-atom bulk
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silicon system using different number of CPUs. Here, we use the double zeta polarization
function (DZP) basis set as support functions, and employ non-selfconsistent calculations
using the Harris-Foulkes energy functional with the local density approximation. The range
Ry is 14 bohr!, and the cutoff energy for the charge density grid is 36 Ry. The timing
of the computation and communication parts is shown, with the total elapsed time spent
for the matrix multiplications. The figure shows the data for two cases, with and without
calling MPI test. We can see that the timing of the communication part is reduced by calling
MPI test, and the reduction of the time obtained in the communication part is also observed
in the total time.
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Figure 1: (a) Timing spent for parallel matrix multiplications in the calculations of bulk Si
system having 32,768 atoms. Timing of two subroutines mainly for computation part and
that of a subroutine for communication part are plotted for two cases with or without calling
MPI test. (b) Timing spent for optimizing density matrix for bulk Si systems having various
number of atoms, using different number of CPUs.

Figure 1(b) shows the time spent in the calculations of bulk silicon systems having var-
ious number of atoms. These calculations use the same calculation conditions explained
above. With the present calculation condition used in the density matrix minimization, we
can consider the measured time as an approximate time needed for each step in structure
relaxation or molecular dynamics. The lines in the figure show the measured time when the
number of atoms per core is fixed. We can see that the weak scaling, shown by each line,
is ideal even when the number of CPUs is about 25,000 and the number of cores is about
200,000. On the other hand, we can extract a strong scaling behavior by comparing the tim-
ing of different lines. The parallel efficiency in the strong scaling is also good at least if the
number of atoms per core is larger than 4. (The efficiency evaluated by decreasing the num-
ber of atoms per core from 8 to 4 is 83 % of the ideal performance.) It should be noted that
these data were measured in the trial use of K computer and they may have been improved
or will be improved in the future. But, the present data are already encouraging. The wall
time for 786.432-atom system using 24,576 CPUs (4 atoms/core) is 289.0 sec. Considering

"We expect that the parallel efficiency would be probably better if the cutoff radius of L matrix (R) is larger
than 14 bohr, but the actual efficiency may strongly depend on each platform used. For more details of the
paralell implementation of the code, see our previous papers [4, 5, 11, 12, 13].
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that the weak-scaling is almost ideal, we expect that one step of MD or structure relaxation
in the DFT calculation on a million-atom system is shorter than five minutes if the number
of CPUs is larger than about 32,000 CPUs. It means that the simulation time of MD can
reach almost 10 pico seconds if we run the calculation for fifteen days. Accurate and effi-
cient calculations of MD simulations with the O(N)-DFT method is a challenging task and
we will report our scheme with CONQUEST in our forthcoming paper [14].

4. Example: Linear-scaling DFT study of the nucleation of Ge
dimers on three-dimensional Ge nano-islands on Si(001)

Using the high parallel efficiency of ConqQuesT on the K-computer, we have been recently
conducting a large-scale DFT study on the growth of three-dimensional(3D) nanostructures
on a semiconductor surface. Here, we show that such large nanostructures can be studied
by using a linear-scaling DFT technique and demonstrate the performance of the structure
relaxation employed in this study.

Figure 2: (Top) The model of a 16x26 Ge hut (light blue) on a 24x36 SiGe (001) film
(blue and grey) with additional {105} facets (yellow). (Bottom) Additional Ge dimers on
the ”small” {105} facet: “unstable” dimers have one Ge atom (green) with an extra dangling
bond.

The system we have been working is the Ge 3D structures, called ‘hut clusters’, which
are formed when Ge is deposited on the Si (001) surface [15]. The Ge/Si (001) system has
been extensively studied, because it is a prototypical example of hetero-epitaxial Stranski-
Krastanov growth [16, 17]. When Ge atoms are deposited on Si (001), growth initially
occurs layer by layer, up to a critical thickness of about three mono-layers (ML). Strain
due to the lattice mismatch is relieved by the formation of regularly spaced rows of dimer
vacancies in the two-dimensional (2D) structure, resulting in the 2 X N structure. Deposition
of further Ge leads to another strain-relief structure, 3D island structures made by four {105}
facets, called ‘hut cluster’. The electronic structure of strained Ge (105) surface states has
a wide energy gap [18], and thus is suitable for O(N) DFT study. In our previous paper
[19], we confirmed that the surface energy of Ge (105) converges quickly with respect to the
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cutoff range R;. Furthermore, we also showed that a cross-over of the total energy from 2D
to 3D structures occurs when the coverage of Ge is close to three, being consistent with the
experimental observations [20].

To utilize the novel properties of the nano-structured materials, it is often necessary to
control their structures at the atomic scale. For the Ge/Si systems, there are many experi-
mental studies aiming to control the structures by changing the growth conditions [21, 22].
There is a report that using a growth condition where the Ostwald ripening can be sup-
pressed, hut clusters are stable and the density of hut clusters is almost constant [22]. In
this case, hut clusters, when they grow, become larger only by increasing the length of the
longer side while keeping the width constant. Discovering such a specific growth condition
is encouraging for controlling the morphology of the nanostructures in the future, but un-
fortunately it is unclear how hut clusters would grow in this condition because there are no
observations of imperfect Ge (105) facets. (It is proposed that the growth speed observed in
experiments can be reproduced using a theoretical model assuming that an additional layer
of (105) facet is formed from the apex of the smaller facet of hut cluster.)

In order to obtain the detailed atomic-scale information how the 3D nano-structure
would grow, we first need to know how the stability of the adsorbed Ge atoms or dimers
would vary depending on the adsorbed positions. Hence, we have first calculated an energy
map of single Ge dimers adsorbed on two different facets of an elongated hut, in order to
identify stable adsorption sites. The system we have been mainly working on is shown in
Fig. 2. The typical number of atoms in this system is about 20,000. The dimers shown in
yellow are the candidates of the positions for a single Ge dimer adsorbed on the facet. Al-
though the size of the hut cluster in the figure is still a little smaller than typical hut clusters,
we still need to calculate more than 100 cases to study the position dependent energies for
the adsorbed single Ge dimer. In addition, structure relaxations by DFT are essential in this
study since the system includes various irregular sites, like ridges or boundaries between the
facets, and there are no experimental information for the atomic positions at these sites. It
should be also noted that the adsorption energy strongly depends on the relaxation of the
atoms near the adsorbed Ge dimer. Such theoretical studies had been impossible, but they
are not difficult to carry out now by using CoNQUEST on K-computer.

For the structure relaxation, we mainly used the Fast Inertia Relaxation Engine (FIRE)
method [23]. Within this method one performs a quenched MD run with variable time
step, as well as other adjustable parameters. Employing a quenched MD relaxation became
efficient due to recent implementations that identify the transformation between the two lists
of neighbor atoms before and after the movement of atoms. As explained before, we work
with the sparse matrix Lj,, jg in the O(N) method. When the atoms move during the structure
relaxation, we need to update the list of the pairs of neighbor atoms {i, j} whose distance is
within the cutoff range R;. The transformation between lists of current and previous atom
positions allows to use the optimized density matrix in the last step of a MD run as an initial
guess for the density matrix at the current MD step. This scheme can reduce the number of
steps largely in the DMM.

In the structure optimization, as we need to relax a large number of atoms, we have
adopted an approach where we relax groups of atoms step by step; we first relax the atoms
having large forces with the initial positions, then increase the number of target atoms whose
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Figure 3: Change in the residual of the density matrix during first steps of the quenched
MD (left), as well as the number of DMM iterations during the structure optimization run
(right) at different stages of structure relaxation: circle - relaxation of surface atoms only,
triangle - relaxation of all Ge atoms, square - relaxation of the entire system. For the same
number of DMM iterations 3, 6 and 18 MD steps are accomplished for each relaxation stage,
respectively.

positions will be optimized. In the optimization of hut clusters without adsorbed Ge dimers,
we performed calculations in three steps: i) optimizing first only surface atoms (atoms of
the {105} facets and their nearest neighbors, and surface atoms of the Ge wetting layer) and
keeping the rest of the system frozen; ii) relaxing all Ge atoms and keeping the Si substrate
fixed; iii) allowing Si atoms to relax too. In the calculation of a single Ge dimer adsorbed
on a hut cluster, we have done two-step relaxation using the optimized atomic positions of a
hut cluster; i) optimization of the dimer, and its neighbor atoms within the four hops (Ge-Ge
bonds) from the dimer atoms, then ii) relaxation of the all atoms except the three bottom
layers of Si substrate.

The change of the residual in the DMM during different stages of the structure relaxation
of a hut cluster is shown in Fig. 3. The graph on the left-hand side of the figure shows
the change in the density matrix residual during several MD steps for different stages of
structure relaxation. Number of iterations required to minimize the density matrix at starting
configuration are 65, 44, and, 35 for each stage of structure optimization respectively. Using
density matrix minimized at the previous step as starting point for the next one reduces the
number of DMM iterations to 4, 1, and 1 in the second MD step, and to 8, 7, and 1 in the
third one for three different quenched MD runs. The graph on the right-hand side of Fig. 3
shows the number of iterations to achieve the given tolerance, 107*, of the density matrix
residual during structure optimization. In the beginning of each MD run, when the time step
and its change are small, the number of DMM iterations is considerably reduced. However,
as the MD simulation proceeds, the velocity increases and two consecutive configurations
may differ at greater extent, the number of iterations to minimize the density matrix will
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increase, but still is smaller by, at least, a factor of two even in the worst case. As the system

gets closer to its relaxed configuration, the number of DMM decreases again, so the new
implementation considerably speeds up the MD run.
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Figure 4: Evolution of total energy (left), force residual (middle), and maximum force com-
ponent (right), during different stages of optimization: circle - relaxation of surface atoms
only, triangle - relaxation of all Ge atoms, square - relaxation of the entire system.

Figure 4 shows the changes in total energy E, force residual (average force) Fi.s, and
maximum force component on an atom Fp,x at different stages of relaxation. The FIRE
method employs an efficient structure optimization by increasing the time step when the
scalar product P of velocity and force is positive (downhill direction), and by decreasing the
time step with zeroing the velocity when P is negative. The method also has a control pa-
rameter Af™, maximum of the time step, which prevents the time step being too large. We
have confirmed that the FIRE optimization is quite efficient at the first and second stages.
However, at the third stage, we sometimes observed a very slow reduction or even the in-
crease of Fl5, even when the scalar product P is positive. In such cases, we have found that
A™™ needs to be very small. But, since this small Af™** would cause a slowdown of the
optimization even when the method works, we have introduced another resetting condition;
if P keeps increasing and F'.s does not decrease for several steps, we decrease the time step
and set the velocity zero. We have observed that this resetting would stabilize the structure
optimization and would decrease the number of MD steps to reach the fully relaxed struc-
ture. The green lines in Fig. 4 show the results with this resetting. We also note here that
a periodical decrease of Npysys in Fig. 3 for the third stage of relaxation is due to this new
condition of resetting. This resetting also helps to reduce the number of total DMM steps.
We have shown that even in such large and complex systems, we can perform robust and
accurate structure relaxation with ConNQuesT using the O(N) DFT technique. As a result, we
have succeeded to obtain an energy map of single Ge dimers, showing that ridges and edges
between two facets are stable and that the upper positions are usually more stable than lower
positions by 0.2eV/atom approximately. We have been also investigating the completion of
{105} facets by calculating the stability of “imperfect” facets. The results together with the
energy map of single Ge dimers on the facets will be reported in our forthcoming paper [24].
We also point out that we have done structure relaxations of bigger systems, having more
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than 100,000 atoms in total.

5. Conclusion

In this paper, we have demonstrated that our linear-scaling DFT code ConquesT has good
parallel efficiency on K-computer. It was shown that parallel scaling is almost ideal even
when about 200,000 cores are used, and the time needed to do one MD or one structure
relaxation step is small enough to realize the actual DFT study on very large, for example
million-atom systems. For the DFT study on the adsorption of Ge dimers on Ge hut cluster
on Si(001) substrate, we show that the accurate, efficient and robust structure relaxation in
the actual scientific research on complex systems is now possible.
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