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1 Brief description of HIV Synthesis Progression model 

The HIV Synthesis Progression model is an individual-based stochastic computer simulation model 

of HIV progression and the treatment of HIV infection. The current version of the model is Synthesis 

version 6 (V6).  

 

The model was originally developed by Phillips and colleagues to reconstruct the HIV-infected 

population in the UK(1). It incorporates our understanding of the underlying processes of HIV 

disease progression and the effect of antiretroviral therapy (ART), based on data from clinical trials 

and epidemiological data. eFigure 1 and eFigure 2 show a simplified influence diagram of the main 

parameters modelled to describe the natural history and the effect of ART respectively. 

 

In brief, the Synthesis Progression model generates simulated “data” on the progression of HIV 

infection and effect of ART on simulated persons living with HIV. Each individual in the model is 

simulated from the time of infection (although for simplicity we do not explicitly model acute changes 

in viral load and CD4 count around the time of seroconversion) and they are followed until either 

death, emigration or to a given calendar year of interest. For each simulated person, the model 

generates variables such as calendar date, calendar year of HIV infection, CD4 cell count, viral 

load, age and presence of transmitted resistance mutations. The values of these variables are 

updated every three months in the model. Use of specific antiretroviral drugs, adherence, 

accumulation of resistance mutations and clinical events are also modelled in order to incorporate 

the effects of ART. The model has been shown to provide a generally close fit to observed data 

relating to the natural progression and therapy outcomes(1-3).  

 

 

eFigure 1: Influence diagram of HIV Synthesis progression model showing variables 
modelled to describe the natural history of HIV 
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eFigure 2: Influence diagram of HIV Synthesis progression model showing variables 
modelled to describe the effect of ART 
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2 Model details 

2.1 Documentation 

The most up to date documentation for Synthesis V6 can be found here: (3;4) 

 

2.2 Updates made to Synthesis V6 since last published documentation  

2.2.1 Interruption of ART without clinic/clinician being aware 

The proportion of people who have interrupted, but where the clinic/clinician is not aware of the 
interruption, is given by clinic_not_aware_frac. The proportion used in the updated model is 0.5 
(previously 0.3), which relates to the proportion of interruptions where the clinic/clinician is not 
aware of it at any given point in time. This variable was introduced because data from the literature 
clearly show that not all people who experience virologic failure have resistance in majority virus; 
these remaining people are likely to have interrupted ART, with the interruption unknown to the 
clinician, causing their viral load to rebound(5;6). 

2.2.2 Accumulation of resistance mutations 

newmut(t) is a probability used to indicate the level of risk of new mutations arising in a given 3 
month period. If this chance comes up in a given 3 month period (determined by sampling from the 
binomial distribution) then there is a probability of resistance mutations to arise if on a given drug.  
 
Note that newmut(t) depends on length of time it has been since the individual started their current 
period of continuous therapy, number of active drugs in current regimen,‘effective adherence’ in the 
last 6 months and whether their previous underlying viral load was below or above 4 log10 copies/ml. 
 
The probability of acquiring I50V, I54, L76 and I84 whilst on darunavir is now 0.01 (previously 0.02), 
conditionally on this chance arising (which depends on the above factors listed). The probability was 
made lower based on new data showing that darunavir mutations are very rare(7;8). 

2.2.3 Effect of being on ART on the occurrence of AIDS/HIV-related deaths and non-HIV-
related deaths 

The rate of AIDS, defined by the variable, base_rate, according to (most recent) CD4 count is 
multiplied by a further factor of 0.9, 0.85 and 0.6 if on a single drug, 2 drug or 3 drug regimen 
respectively. The multiplicative factor of 0.6 if on a 3 drug regimen used to be 0.8. This was modified 
to reflect the low rates of AIDS seen in people on combination therapy. 

2.2.4 Non-HIV-related deaths 

The rate of death now differs by ART status: if not on ART, then we assume a 2-fold increased rate 
compared to HIV-negative individuals of all non-HIV causes of death throughout life (based on 
evidence that HIV infection itself may indicate a raised risk of common clinical conditions). However 
if on ART, then this increased rate is reduced to 1.3-fold, given that being virally suppressed has 
been associated with a reduced risk of death(9-11).   
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3 Model calibration procedure 

3.1 What is meant by ‘calibration’ 

Synthesis V6 is a simulation model which depicts the progression of HIV and the effects of ART for 

a given hypothetical population. The primary outcome of the model is a longitudinal dataset for such 

a population with a range of variables that describes the course of HIV for each individual. This 

simulated dataset can be analysed to output outcomes of interest. Simulated populations have 

different characteristics and therefore different outcomes depending on the values of the input 

(prior) parameters into the model (parameterisation is described in more detail in section 3.4).  

 

National-level surveillance of HIV/AIDS is conducted in most European countries although there is 

large variability in the type of data collected and methods of collecting and reporting. Individual data 

(as opposed to aggregate level data) on HIV and AIDS case-reports and aggregate data on number 

of HIV tests conducted are routinely submitted to European Centre for Disease Prevention and 

Control (ECDC) and World Health Organisation (WHO) Regional Office for Europe.  

 

The concept of ‘calibration’ refers to the process of finding the set of parameter values inputted into 

the Synthesis model which generates a set of modelled outcomes which are similar to what is 

actually observed in reality, i.e. the surveillance data. 

3.2 Approximate Bayesian Computation 

The model is calibrated using Approximate Bayesian Computation (ABC) methods(12). The model 

naturally lends itself to working in a Bayesian framework to account for multiple parameter 

combinations which produce model outputs which fit well to the observed data (instead of 

converging to a single set of parameters as would be the case in maximum likelihood estimation). 

ABC involves running the model multiple times where each run of the model is considered one 

simulation. The outcomes of the model (usually a summary statistic) are then compared against the 

observed data and sets of parameter values are accepted if sufficiently close (i.e. within an arbitrary 

tolerance threshold). The posterior distributions of the relevant parameters are then approximated 

based on the accepted values. 

 

ABC methods are suitable for calibrating simulation models to multiple data sets within tolerance 

bounds and have the advantage of accounting for parameter uncertainty and parameter 

correlations. We have chosen to use ABC methods because we wish to explore a wide parameter 

space and consider as many parameter sets as possible which are adequately consistent with the 

data and not focus on finding the single parameter set that is most consistent with the data. 

3.3 Population to calibrate model to 

In order to calibrate the model to a particular population, the parameters which are sampled are 

those thought to differ between populations or which have a large degree of uncertainty and should 

not be fixed in each simulation. This means it is necessary to decide and consider the population or 

sub-population to calibrate the model to. This will depend on whether there are substantial 

differences predominantly in the incidence of new infections and probability of diagnosis by sub-

population. Sub-populations may be specific HIV transmission risk groups, or perhaps a regional 
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population. Here we use transmission risk groups to define our sub-populations. The greater the 

number of sub-populations to calibrate to separately the longer the calibration procedure will take 

because of an increased number of parameters to calibrate. The choices made here are: 

- Whether to calibrate to data on the total HIV-positive population 

- Whether to break down the whole HIV-positive population into transmission risk groups (e.g. 

men who have sex with men (MSM), people who inject drugs (PWID), heterosexually-

acquired infections) 

 

If calibrating to data on the heterosexual group separately, then there is also the choice to decide 

whether there are appreciable numbers of infections in people who once lived outside Europe, 

primarily sub-Saharan Africa, who have then subsequently immigrated to Europe. If there are large 

numbers of people infected heterosexually in sub-Saharan African and who then subsequently 

immigrate to the European country of interest, then these infections are modelled separately and 

the modelling approach described in this manuscript is not appropriate.  

3.4 Parameterisation 

3.4.1 Types of parameters 

In the Synthesis V6 model, parameters can either be fixed (fixed parameter) or varied (variable 

parameter) per simulation. A fixed parameter is one in which the value does not change from 

simulation to simulation. A varied parameter on the other hand is one in which the value is sampled 

from a probability distribution and therefore changes from simulation to simulation. 

3.4.2 Parameter values reflecting the intrinsic effects of HIV and ART 

As explained in Section 1, the progression model has been shown to provide a generally close fit to 

observed data relating to the natural progression of HIV and ART outcomes(1-3). Therefore, for the 

purpose of calibrating the model to a given HIV-positive population (which could be the total 

population or one particular risk group), we hold parameter values reflecting the intrinsic effects of 

HIV and ART fixed, thereby becoming part of the model structure. This assumes that these 

parameter values are the same regardless of the population under consideration. 

3.4.3 Parameters which are varied per simulation 

There are also a number of variable parameters in cases where there is uncertainty about what 

values the parameter should take. These parameters take a different value per simulation and are 

sampled from suitable distributions in each simulation. 

 

In order to calibrate the model to a given HIV exposure group in a given country, the main 

parameters for which values are sampled are those which describe the incidence (number of new 

infections per year) and the diagnosis rate (probability of diagnosis in any 3-month period). See 

more in section 3.4.4. 

 

In addition, other parameter values that may be specific for a given HIV exposure group and country 

and therefore could also be varied across simulations are: proportion of people who avoid testing for 

HIV, probability of not being linked to care soon after diagnosis, rate of being lost to follow-up whilst 
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ART-naïve, rate of being lost to follow-up whilst on ART, rate of re-entry into care after being lost to 

follow-up, probability of starting ART when eligible, population distribution of underlying levels of 

ART adherence, rate of ART interruption, rate of re-starting ART after interruption and rate of 

emigration. See more in section 3.4.5. 

3.4.4 Parameters which determine HIV incidence and diagnosis rate 

The parameters which determine the incidence and diagnosis rate are given in eeTable 1. The 

distributions presented are an example template, with only suggested values (which may be 

amended). Specific values are discussed within the relevant population simulated (e.g. section 4 for 

MSM epidemic in the UK, section 4.2 for pseudo epidemic). 

eTable 1: Parameters which determine HIV incidence and diagnosis rate per simulation. 
Values for Max1 and Max2 are described on page 8. 

Name Description of parameter Prior distribution 

i1 Number of infections per year during 1980-84 Beta(2,4)*Max1 

i2 Number of infections per year during 1985-89 Beta(2,4)*Max1 

i3 Number of infections per year during 1990-94 Beta(2,4)*Max1 

i4 Number of infections per year during 1994-99 Beta(2,4)*Max1 

i5 Number of infections per year during 2000-04 Beta(2,4)*Max1 

i6 Number of infections per year during 2005-09 Beta(2,4)*Max1 

i7 Number of infections per year during 2010-13 Beta(2,4)*Max1 

d1 Diagnosis rate per 3 month period during 1984-91 Beta(1,5)*Max2 

d2 
Additional absolute change in diagnosis rate from 1984-91 

(i.e. diagnosis rate during 1992-99 is d1+d2) 
Beta(1,50) 

d3 
Additional absolute change in diagnosis rate from 1992-99 

(i.e. diagnosis rate during 2000-08 is d1+d2+d3) 
Beta(1,50) 

d4 
Additional absolute change in diagnosis rate from 2000-08 

(i.e. diagnosis rate during 2009-13 is d1+d2+d3+d4) 
Beta(1,50) 

  
 
Parameters i1,i2,…,i7 determine the number of HIV infections per year (incidence) for a given 5 

year period. These parameters inform a piecewise constant curve for the HIV incidence. As 

i1,i2,…,i7 are all sampled randomly in each simulation, the curve is also randomly generated in 

each simulation (see eFigure 3). 

 

Model variables are updated every 3 months and so the infection is sampled to occur at one of 4 

time points in a year (25% probability they will be infected in January-March, April-June, July-

September and October-December).  

 

Similarly, parameters d1, d2, d3 and d4 determine the diagnosis rate for a given 8 year period.  

These parameters inform a piecewise constant curve for the HIV diagnosis rate. As d1, d2, d3 and 

d4 are all sampled randomly in each simulation, the curve is also randomly generated in each 

simulation (see eFigure 3). The change in diagnosis rate is sampled as opposed to the absolute 

diagnosis rate because we thought that the diagnosis rate is likely to change only slightly from one 

period to the next. 
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The diagnosis rate denotes the probability with which an HIV-infected individual gets diagnosed with 

HIV in a given 3-month period, given that they are not in the primary infection phase, are not 

symptomatic nor have AIDS.  

 

eFigure 3: Example of a randomly sampled incidence curve (left) and diagnosis rate curve 
(right) 

 
 

We assume that the minimum value for both the incidence and change in diagnosis rate is 0 in a 

given period over which the values are constant (5 years for incidence and 8 for diagnosis rate). 

The following formula is thus used to determine the maximum value of the sample space, where we 

set the minimum values to be 0, and thus the prior distributions, for the incidence curve and 

diagnosis rate curve respectively: 

 

𝑀𝑎𝑥1 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝐼𝑉 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 

= 𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝐼𝑉 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠 𝑒𝑣𝑒𝑟 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑛 𝑜𝑛𝑒 𝑦𝑒𝑎𝑟 × 3 

 

𝑀𝑎𝑥2 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 3 𝑚𝑜𝑛𝑡ℎ𝑠 

=  
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑚𝑝𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑚𝑜𝑠𝑡 𝑟𝑒𝑐𝑒𝑛𝑡 𝑦𝑒𝑎𝑟 

4
 

 

A prompt presentation is where the person has a CD4 count >350 cells/mm3 at the time of diagnosis 

(or within 6 months of diagnosis). This is thought to be a reasonable choice of prior because it is 

assumed that diagnosis rates have generally increased over time given increases in testing. 

Although both these formulae were somewhat arbitrarily devised, we wanted to decide on a fixed 

formula so that the calibration method can be used in any setting. We consider this range is wide 

enough to capture unlikely but plausibly high incidence or diagnosis rates.  

 

The purpose of having these formulae is to provide a simple method to decide on initial prior 

distributions. If the above formulae do not seem appropriate for a given setting, the initial parameter 

distributions for both the incidence curve and diagnosis rate curve could also be decided using a 

combination of surveillance/observational data and expert opinion. In addition, if there is none or 

little data to inform the prior distributions, then the prior distributions could always start with a wider 

distribution.   
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The Beta distribution is proposed for describing the prior distributions because of the great flexibility 

offered as parameterised by the two shape parameters α and β. The mean, standard deviation and 

mode for Beta(α,β) is given by α/(α+β), √(αβ/(α+β)2(α+β+1)), and (α-1)/(α+β-2) respectively. Beta 

(2,4) is used for the incidence to reflect the fact that the true incidence is more likely to lie in the 

lower numbers, but we want to be able to sample a much wider sample space. Beta (1,5) is used for 

parameter d1, for a similar reason, as we expect initial rates of diagnosis to be much lower than in 

later years. For most settings, which have observed gradually increasing rates of testing, a 

monotonically non-decreasing rate of diagnosis seems appropriate which is why we set the 

minimum change in diagnosis possible as 0; in other words, the diagnosis rate can stay the same, 

or increase by an increment (distributed by Beta(1,50)) from period to period but that it will not 

decline. If there are specific country conditions that suggest a decline is possible then the 

parameterization must be changed to allow a decrease as well as an increase. 

 

The choice of parameterisation for the incidence and diagnosis rate curves (i.e. choice of keeping 

the incidence constant over five years and diagnosis rate constant over eight years) was influenced 

by some preliminary work. In brief, this work involved using a simple regression approach using 

pseudo data to decide on the number of parameters and shape of the resulting curves. For the 

incidence curve, we looked at using 5, 7 and 11 year periods and similarly for the diagnosis rate 

curve, 4, 5 and 6 year periods. We used a multivariable logistic regression model, where the 

outcome variable was the calibration score (whether it was less than a certain cut-off) and the 

dependent variables were the categories representing the different number of parameters used to 

describe the piecewise incidence curve.  

 

The true incidence and diagnosis rate curves are unknown and for most epidemics there will be a 

lack of data to inform the prior distributions for these parameters. Therefore, when sampling these 

parameters it is important to ensure that the parameter space sampled is chosen to be large 

enough to allow for extremities and that the parameterisation is sufficiently flexible but, given this, as 

restricted as possible to limit computation time. We use such a crude parameterisation for both the 

incidence and diagnosis rate parameters so that any sets of parameter values which may calibrate 

well to the data are not excluded. Also, as explained further in section 3.5, the aim of the calibration 

procedure is to not estimate these curves per se, but to find sets of curves which generate a 

modelled population with characteristics similar to that of the observed data.  

3.4.5 Other parameter values that may be specific for a given HIV exposure group and 
country  

There are a number of other parameters which are varied per simulation. These are parameters 

which are likely to vary by sub-population, or perhaps there are few data sources to inform them 

precisely. These are: Prop_avoid_testing, prob_loss_at_diag, rate_lost, rate_lost_art, rate_return, 

prob_art, adh_pattern, rate_inter, rate_restart, rate_emig (eeTable 2). Therefore, we sample these 

from a distribution for each simulation, in addition to the parameters describing the incidence and 

diagnosis rate curve. Although the values are sampled from a distribution in each simulation, these 

prior distributions will be informed from surveillance data or observational studies carried out in the 

country of interest or from other European studies. The sample space for these parameters will 

therefore be much narrower, compared to the prior distributions for the incidence and diagnosis rate 

parameters. Therefore for these nine parameters the aim is not to estimate the plausible range 

these lie in, but in fact the sampling is done per simulation to reflect the uncertainty associated with 

the prior distributions chosen.    
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eTable 2: Other parameters which are sampled per simulation 

Parameter name Description of parameter Notes 

prop_avoid_testing Proportion of people who are resistant to testing  
These people are 10-fold less likely to be diagnosed with HIV (unless 
they have HIV related symptoms) 

prob_loss_at_diag 
Probability of not being linked to care soon after 
diagnosis  

This is the probability per 3-month period. These people are then 
classified as lost to follow-up. 

prob_lost 
Probability of being lost to follow-up for those not 
on ART 

This is the base probability per 3-month period, for those with average 

adherence ≥0.8. Those with average adherence 0.5-0.8 and <0.5 have 

these probabilities multiplied by a factor of 1.5 and 2 respectively 

prob_lost_art 
Probability of being lost to follow-up given that 
treatment has been interrupted  

This is the base rate per 3-month for those with average adherence ≥0.8. 

Those with average adherence 0.5-0.8 and <0.5 are 2-times and 3-times 
more likely to being lost to follow-up. 

rate_return Rate of re-entry into care 

This is the base rate per 3-month for those with average adherence ≥0.8. 

Those with average adherence 0.5-0.8 and <0.5 are 2-times and 3-times 
less likely to re-enter into care. If the person has an AIDS-defining 
condition however, they consistently have 80% probability every 3-
months of re-entry into care.  

prob_art Probability of starting ART when eligible 
If the person has AIDS, then there is a 90% probability of starting ART in 
any 3-month time period.. 

adh_pattern 
Population distribution of underlying levels of ART 
adherence 

This is a categorical variable. The value of this variable is sampled from 

(1,2,3,4,5), each representing a different distribution of the adherence 

levels in a population, such that 1 represents a very good population 

level of adherence (around 95% of people on treatment with suppressed 

viral load) to 5 which represents a poor population level of adherence 

(around 60% of people on treatment with suppressed viral load).  

rate_inter Rate of ART interruption 

This is the base probability per 3-month period, for those with average 

adherence ≥0.8. Those with average adherence 0.5-0.8 and <0.5 have 

these probabilities multiplied by a factor of 1.5 and 2 respectively. If the 
person has an ART-related side effect, this rate is further multiplied by a 
factor of 2. The rate of interruption is further modified by age, such that 
the younger the person, the more likely they are to interrupt. 

rate_restart 
Rate of re-starting ART after interruption (for 
people still in clinical care) 

This is the base probability per 3-month period. If symptomatic or an 
AIDS-defining condition has developed then this probability is multiplied 
by a factor of 2 and 3 respectively. 

rate_emig Rate of emigration This is the rate of emigration per 3-month period. 
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There are a number of other parameters which could potentially differ across populations and are 

factors known to have an impact on HIV progression, such as the proportion of people with HBV co-

infection, proportion of people with HCV co-infection and prevalence of smoking in the exposure 

group of interest. Whether these parameters are sampled or not will depend on the setting and 

availability and reliability of data to inform these parameters. 

 

3.5 Calibration procedure 

As described in section 3.2, the approach we have used to calibrate the model is based on ABC 

methods. The calibration procedure used is formed of three stages.  

 

In the first stage, 10,000 sets of parameter values (those listed in eeTable 1, i.e. seven for 

incidence and four for diagnosis rate) are sampled using Latin hypercube sampling(13). We use 

Latin hypercube sampling to ensure maximum and even coverage of the entire plausible parameter 

space. The simulation model is then run 10,000 times, each time using one of these sampled sets 

of parameter values. A different population of HIV-positive people until 2013 are constructed in each 

simulation (because of different rates of incidence and diagnosis in each simulation). Outcomes of 

the model up until 2012 are then compared with a range of surveillance (and/or observational) data. 

We quantify how well the model outputs match the surveillance data, i.e. assessing the goodness-

of-fit, by calculating the ‘calibration-score’. If the calibration-score deems it a close fit (i.e. within an 

arbitrarily defined tolerance threshold), then the parameter values are accepted. See section 3.6 for 

the description of the calibration-score.  

 

The second stage is similar to the first, but the parameters are sampled using simple random 

sampling. Instead, we look at the distribution of all accepted values for each separate parameter 

from stage 1, and use the minimum and maximum values to refine our prior distributions (reduce the 

sample space to improve efficiency of calibration procedure). We then remain in this second stage 

until enough sets of parameters values calibrate well to the observed data.  

 

In the third stage, further simulations are run using the parameter values which calibrated well in the 

second set. Due to the stochastic nature of the model, a set of parameter values may fit well to the 

data in one simulation but not in another. Therefore only the simulations which again calibrate well 

to the observed data are used to determine the final model outputs. The median values and 5% and 

95% centiles of the distribution of these model outputs at each calendar year are considered the 

point estimate and plausibility range (PR) limits, respectively. 

 

At every stage and for each simulation, the parameters listed in eeTable 2 are sampled to reflect 

the uncertainty reflected in the chosen prior distributions.  

 

3.6 Calibration-score 

In order to assess how well the model outputs match the surveillance data, the calibration-score is 

calculated for each simulation. If the calibration-score is within a defined tolerance threshold, then 

the set of parameter values used for that simulation are accepted. It is defined as the weighted sum 



      

13 
 

of the deviances of the modelled outputs from the observed data, averaged over the number of 

years data was available for and for each type of data available.  

 

The calibration-score was derived based on the chi-square test statistic, which is a measure of how 

close the observed frequencies are to the expected frequencies. If D is the surveillance (and/or 

observational) data point and M is the corresponding output of the model for the same data point, 

then the deviance is simply quantified by 

|𝐷 − 𝑀|

𝐷
 

 

We use this definition because it succinctly and simply captures the magnitude of the difference 

between the surveillance data and modelled outputs. 

 

This deviance is calculated for each data point, which is defined by the calendar year, i, and data 

point, j (e.g. one data point could be the number of HIV diagnoses reported in 2005, so i=2005 and 

j=number of reported HIV diagnoses). ‘Data items’ are described later. For each of the nd data 

items, the sum of the deviances is then averaged over the number of years, rj, that data were 

available. The un-weighted calibration-score per data item j is then summarised by 

un-weighted calibration-score, 𝑆𝑗 = 
1

𝑟𝑗
∑

|𝐷𝑖𝑗 − 𝑀𝑖𝑗|

𝐷𝑖𝑗
 

𝑦𝑟

𝑖=𝑦1

 

 

Where i=[y1,…,yr] represents the calendar year and j=[1,…,nd] represents the data item.  

 

The calibration-score can be further weighted by factors which describe the confidence in the 

observed data. Specifically, 

weighted calibration-score = 
∑ 𝑤𝑗𝑆𝑗

𝑛𝑑
𝑗=1

∑ 𝑤𝑗
𝑛𝑑
𝑗=1

  

 

The weights, wj, should ideally be chosen a priori to reflect the confidence, quality or conversely, 

uncertainty associated with data items. A larger weight would be used for data types which the 

model should calibrate better to. This would ensure that these data types would contribute more 

towards the calibration-score. The potential range of weights used was decided to be [0.5,5]. Any 

data item deemed to have a weight of less than 0.5 because of the lack of certainty or quality should 

not be included in the calibration-score.  

 

The calibration-score is calculated in a way that it is standardised by the quantity of observed data 

and the weights used, and therefore the calibration-score for one setting (with a certain range of 

data items with associated confidence in quality) can be directly compared to that of another setting 

with a different range of data items and associated confidence in quality. The main limitation is that 

the weights chosen will be subjective, which is why they are chosen a priori. 

 

Therefore, given the formula shown above, the property of the calibration-score means that the 

lower the calibration-score, the smaller the deviance between the modelled data and observed data 

and thus the better the model calibrates to the data. The aim of the fitting method is therefore to find 

sets of parameter values which achieve low calibration-scores. 
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Examples of observed data (termed ‘data items’) which could be used to calibrate the model include 

for a given year:  

 Number of HIV diagnoses by year 

 Number of AIDS diagnoses by year 

 Number of simultaneous HIV/AIDS diagnosis by year 

 Number of deaths by year  

 CD4 count at diagnosis (median CD4 count, or proportion with CD4 count <200 or <350 

cells/mm3) 

 Proportion of diagnosis which were recently acquired infections 

 Number of people seen in care 

 Number of people seen in care and on ART 

 

In the process of developing this calibration procedure, we judged that a simulation with a 

calibration-score <0.25 demonstrated that the modelled data were fairly comparable to the observed 

data. Simulations with a calibration-score <0.2 demonstrated an even closer comparison. In this 

particular application of the method, we have therefore specified that the tolerance threshold of a 

well-calibrated model should have a calibration-score of <0.2 Note that a simulation with calibration-

score <0.2 can be interpreted as the average deviation of the modelled outcomes from the observed 

data across all data items is <20%. In a setting with large quantities of data to calibrate to, we 

consider that it would be rare to observe a calibration-score <0.1 because it would be unlikely to be 

able to simultaneously calibrate to all sources of data, because sometimes the data themselves are 

inconsistent with each other.  

 

Referring to stage 1, as described in the beginning of this section (3.5), the tolerance threshold used 

here will be greater than 0.2, because from experience it has been very unlikely to achieve 

parameter sets which calibrate well, purely from 10,000 samples. Also the aim is to narrow the prior 

distribution without risking exclusion of parameter values that could be part of low calibration-score 

parameter sets. The threshold chosen here will vary by setting. It may be as low as 0.3, 0.5 or even 

as high as 1.0. 

 

In the second stage of the calibration process however, this is where we remain until enough 

simulations are completed with calibration-score <0.2. If this never happens for a given calibration-

score, then it is likely that there are inconsistencies between the data sources. So either, the 

calibration-score can be re-defined (different data items or weights after re-consideration of possible 

biases in data) or rather than using a tolerance threshold of 0.2, this may have to be increased to 

0.3 or higher.  

 

The parameter sets used in stage 3 will be those which achieved a calibration-score<0.2 in the 

second stage.  

 

The final model outputs are based on the simulations from stage 3 which again achieve a 

calibration-score<0.2 

3.7 Additional features of calibration procedure 

During each simulation, the calibration-score will be calculated in five year intervals. If it becomes 

clear during the simulation, that it will not be possible, based on the current calibration-score, to 
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calibrate well to the observed data, then the simulation will be terminated prematurely. These 

criteria may differ by setting, but an example criterion could be that the calibration-score is already > 

0.5, i.e. the modelled outputs are more than 50% away from the observed data on average. This 

has the advantage that we save on computing resources to be used for other runs. 

 

Re-constructing the HIV-positive population for a setting may involve a vast number of people – as 

an individual-based model, this means greater computing resources and time are required. For 

settings with more than 10,000 individuals thought to be HIV-positive in 2012, we choose a random 

sample of these people, and simulate only a proportion of them. The modelled outcomes are then 

multiplied back up to represent the full population. The calibration-score is calculated from this full 

population data. 

 

In the calibration process, we use a process by which simulations are kept if the calibration score is 

less than the threshold (e.g. 0.2), and throw away those which are greater than this threshold. This 

is a standard approach in ABC. This means that in the second stage of the calibration process, 

simulations with a calibration score of 0.19 are less likely to be carried forward into the third stage 

compared with simulations with a calibration score of 0.01. Nevertheless, once the final sets of 

parameter values are chosen for use in the third stage, we do give all simulations equal weight, no 

matter what the calibration score was in the previous stage. We recognise that there are other ways 

in which to choose the parameter sets. One alternative method is to consider weighting the ones 

with lower calibration score more highly, however this is not undertaken within this paper.  
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4 MSM epidemic in the UK 

To reconstruct the HIV epidemic in MSM in the UK, we simulate a random 1/10th of the number of 

infections which took place (predominantly to make the simulations more manageable). Although 

this depends on the actual incidence sampled, this corresponds to approximately 4,000 to 10,000 

people. We assume that the HIV epidemic began in 1980, with first diagnoses in 1984, and follow-

up until the end of 2013. 

4.1 Method  

4.1.1 Choice of prior distributions 

The prior distributions for the incidence and diagnosis rate parameters which are used are shown in 

eTable 3 and eFigure 4. The prior distributions were informed using the formulae presented in 

section 3.4.4. 

eTable 3: Prior distribution used to simulate MSM epidemic in the UK 

Parameter 
Prior 

distribution 

Posterior distribution 

[90% plausibility range] 

i1 Beta(2,4)*9750 [822,2205] 

i2 Beta(2,4)*9750 [951,3275] 

i3 Beta(2,4)*9750 [706,2600] 

i4 Beta(2,4)*9750 [596,2257] 

i5 Beta(2,4)* 9750 [1394,3942] 

i6 Beta(2,4)* 9750 [1960,4567] 

i7 Beta(2,4)* 9750 [2324,5438] 

d1 Beta(1,5)*0.16 [0.003,0.027] 

d2 Beta(1,50) [0.013,0.038]* 

d3 Beta(1,50) [0.020,0.056]* 

d4 Beta(1,50) [0.026,0.061]* 

* These posterior distributions actually refer to the absolute diagnosis rate for that time period, as 
opposed to the additional change. 
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eFigure 4: Histogram of prior distributions; parameters i1-i7 (top left), parameter d1 (top 
right), parameters d2-d4 (bottom) 

 

 

 

4.1.2 Other sampled parameters  

The prior distributions for the other parameters which are sampled per simulation are given in 
eTable 4.These distributions were derived from observational studies carried out in the UK and 
were informed by the data given in eTable 5. 
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eTable 4: Parameters sampled and the distribution sampled from. All rates expressed per 3 
months unless stated otherwise.  

Parameter 
Prior 

distribution* 

Mode (Beta) or 
Mean (LogNormal) 
of prior distribution 

Posterior 
distribution 

(90% plausibility 
range) 

Prop_avoid_testing Beta(9,91) 0.08 (0.039,0.136) 

prob_loss_at_diag Beta(2.5,49.5) 0.03 (0.011,0.105) 

prob_lost Log N(0.02,0.5) 0.02 (0.009,0.026) 

prob_lost_art Beta(2,10) 0.1 (0.025,0.406) 

Rate_return Log N(0.4,0.1) 0.4 (0.300,0.530) 

Prob_art Beta(41,11) 0.8 (0.695,0.873) 

Adh_pattern 1: 50%, 2: 50% N/A 1: 44%, 2: 56% 

Rate_inter Log N(0.01,0.2) 0.01 (0.007,0.014) 

Rate_restart Log N(0.8,0.1) 0.8 (0.701,0.801) 

Rate_emig Log N(0.002,1) 0.002 (0.0004,0.007) 

 

* Probability distributions of parameters shown below  
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4.1.3 Number of simulations and computing resources 

The number of simulations in the first stage of the calibration process was 10,000. Simulations were 

terminated prematurely if the total number of AIDS case reports in 1986-1990 or 1991-1995 were 

more than 50% greater than actually observed. Similarly, simulations were also terminated 

prematurely if the total number of HIV case reports in 1996-2000, 2001-2005 or 2006-2011 were 
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more than 50% greater than actually observed. In the second stage, the model was ran until there 

were at least 100 parameter sets with a calibration-score <0.2 (i.e. parameters were accepted only if 

the calibration-score was within the tolerance threshold of 0.2). In the third stage, we simulated a 

further 1000 runs (random sampling with replacement, one of the 100 parameter sets).   

 

The results in the manuscript are based on the 742 runs (out of the 1000 runs in the final stage), 

where the calibration-score was again <0.2 (there were 258 runs where the calibration-score was 

>0.2 in these sets of simulations). 

 

When submitting jobs to the computing cluster, we are required to estimate and request for 

sufficient computing resources which the simulation will use, including wall-clock time, RAM size 

and temporary file sizes. For each simulation run, we allocated a wall-clock time of 2 hours within 

the computing cluster. This is the maximum time that we allow the simulation to run for, so that the 

correct computing resources can be allocated within the cluster. In reality however, each simulation 

should take no longer than a few minutes on a fast node. The 20,000 simulations which were 

submitted, therefore took a maximum of 40,000 computing hours. However, all of these simulations 

did not take the full 2 hours and many simulations were also terminated prematurely due to the fact 

that it was already clear they would not provide a good fit. 
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eTable 5: Data used to inform choice of distributions to sample each parameter listed in eTable 4. 

Parameter 
Data used to inform 

parameter distribution 
Value in our example (MSM, UK) Data source in our example (MSM, UK) 

Prop_avoid_testing 
Probability of uptake of HIV 
tests when offered  

88-90% of MSM who were offered a 
test in STI clinics in England took one.  

Health Protection Agency. Time to test for HIV: Expanded 
healthcare and community HIV testing in England. Interim 
Report. December 2010 

prob_loss_at_diag 
Proportion of CD4 measured 
within 3 months of diagnosis 

97% for all adult patients in the UK.  
Health Protection Agency. HIV in the UK: 2012 Report. London: 
Health Protection Services, Colindale. November 2012. 

prob_lost 
Proportion still in care after 
12 months from diagnosis 

86% for all adult patients in the UK.  
Health Protection Agency. HIV in the UK: 2012 Report. London: 
Health Protection Services, Colindale. November 2012. 

prob_lost_art 
Proportion in care among 
adults seen for care in the 
last 12 months 

96% for all adults seen for care in 
2010 and also seen in 2011. 

Health Protection Agency. HIV in the UK: 2012 Report. London: 
Health Protection Services, Colindale. November 2012. 

Rate_return 
Mean length of time spent 
interrupting ART in people 
seen in clinics 

Of those with suppressed viral load 
(<50 copies/ml) in UK CHIC, median 
duration of each interruption was 4.4 
(IQR: 1.9-10.1) months. 

Bansi LK et al. Are previous treatment interruptions associated 
with higher viral rebound rates in patients with viral suppression? 
AIDS 22(3): 349-356, 2008 

Prob_art 
Proportion of ART-naïve 
people with CD4 count<350 
cells/mm

3
  

9% in all adults in UK CHIC cohort 
collaboration. 

Kober C, Johnson M, Fisher M, et al. Non-uptake of highly active 
antiretroviral therapy among patients with a CD4 count < 350 
cells/μL in the UK. HIV Med. 2012 Jan;13(1):73-8. 

Adh_pattern 
Proportion with viral load 
<50 copies/ml within 12 
months of starting ART 

87% for all adult patients in the UK. 
Health Protection Agency. HIV in the UK: 2012 Report. London: 
Health Protection Services, Colindale. November 2012. 

Rate_inter 
Proportion of ART-
experienced people who are 
currently on ART 

5.3% and 2.7% respectively 
interrupted (discontinued all drugs for 
>2 weeks) during the year in 2003 and 
2009 in Royal Free cohort.  

Smith CJ et al. Frequency of treatment interruptions over 
calendar time: The impact of results from the SMART study. 
2011, HIV Med 12(Suppl 1):84 

Rate_restart 
Mean length of time spent 
interrupting ART in people 
seen in clinics 

Of those with suppressed viral load 
(<50 copies/ml) in UK CHIC, median 
duration of each interruption was 4.4 
(IQR: 1.9-10.1) months. 

Bansi LK et al. Are previous treatment interruptions associated 
with higher viral rebound rates in patients with viral suppression? 
AIDS 22(3): 349-356, 2008 

Rate_emig 

Estimate of rate of 
emigration (per 100,000) in 
the general population (but 
by risk group if available) 

In UK population (63 million), around 
300,000-400,000 people emigrate 
each year.* 

Annual Report on Migration and International Protection 
Statistics for United Kingdom 2008. 
Rice BD et al. Loss to Follow-Up Among Adults Attending 
Human Immunodeficiency Virus Services in England, Wales,and 
Northern Ireland. 2011, Sex Trans Inf 38(8):685-90 

* It is possible that the association between loss to follow-up and black-African ethnicity, acquiring HIV-infection abroad, and having a recent diagnosis can be 
explained by migrants moving to the United Kingdom leaving shortly after receiving an HIV diagnosis. Their emigration may be voluntary or involuntary, 
temporary or permanent 
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4.2 Using different parameterisation for the incidence curve 

We also looked at parameterising the incidence curve differently, given that the incidence curve in 
our main results did not reflect a peak in the early to mid-1980s as seen in other MSM epidemics in 
Western Europe(14-16). Some of this peak may be an artefact of an increase in the number of tests 
conducted in this period; however it is difficult to disentangle exactly how much was a due to the 
rise in the number of infections and how much due to an increase in testing. 
 
For the figures in the circulated manuscript, we used 5-year fixed values, each representing 1980-4, 
1985-89, 1990-4 etc. For the results below, we use the same calibration method, but instead split 
the first period into 1980-1 and 1982-4 (i.e. sample one additional parameter). 
 
eFigure 5 shows the re-parameterised incidence curve (and corresponding diagnosis rate curve). 
The peak in incidence which is seen using other back-calculation type models is not obvious looking 
at the median value, although the 90% percentile band shows that it is plausible.  
 
The main outcomes of interest, total number living with HIV and number living with undiagnosed 
HIV are shown in eFigure 6. For the most recent decade in particular, the estimates are similar to 
the main results in the manuscript. We consider that this example also demonstrates the 
repeatability of the calibration method.  
 

eFigure 5: Re-parameterised estimated incidence and diagnosis rate amongst MSM in the UK 
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eFigure 6: Estimates of the total number of MSM living with HIV in the UK and total number 
of MSM living with undiagnosed HIV, by calendar year, using re-parameterised incidence 
parameters. Columns and aste bars: Modelled median and 90% PR.   

 

 

4.3 Sensitivity analysis 

4.3.1 Method 

We conducted a sensitivity analysis to evaluate the impact of using different sets of weights given to 

the calibration-score and of using different calibration-score tolerance thresholds. Based on the 

outputs from the second stage of the calibration procedure, we have simulated 8 further scenarios, 

in addition to the main results presented within the main manuscript (i.e. 9 scenarios presented here 

in total).  

Three different sets of weights and three different tolerance thresholds were considered in a 

factorial structure. The different sets of weights which were considered were labelled weight A, B 

and C. These sets of weights retain the same ordering of weights (if a data item X has the smallest 

weight in set A, then it shall also have the smallest weight in set B and C) but we have altered the 

relative differences between the weights. The allocation of weights to the different data items are 

summarised in the table below.  

Data item A B C 

Number of HIV diagnoses, 1997-2012 1 2 5 

Number of first AIDS diagnoses, 1980-1996 1 2 5 

Median CD4 count at diagnosis, 1980-1996 0.5 0.5 1 

Median CD4 count at diagnosis, 1997-2012 1 2 5 

Proportion of diagnoses which were in recently 

acquired infections, 2009-2012 
0.5 0.5 1 

Number seen for care, 1998-2012 0.5 0.5 1 

Number seen for care and on ART, 1999-2012 0.5 0.5 1 

 

The three tolerance thresholds for the calibration-score which were considered were 0.18, 0.20 and 

0.23. We resampled from the chosen parameter sets to generate the final results. A further 100, 300 
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and 1,000 simulations were performed by resampling the parameter sets chosen for the thresholds 

0.18, 0.20 and 0.23 respectively. 

The outputs which were compared between the 9 scenarios were the estimated number of people 

living with HIV in 2013, as well as the estimated number of infections per year between 2010 and 

2013. 

 

4.3.2 Results 

eTable 6 summarises the results from the sensitivity analyses. Note that the row with tolerance 

threshold 0.20 and set of weight A is the same as the main result presented in the main manuscript. 

These results show that the simulations are not very sensitive to changes in the calibration score 

tolerance threshold or allocation of weights to data items. The greater the tolerance threshold 

however, the wider the 90% plausibility range. 

 

eTable 6: Sensitivity analysis results 

Calibration-

score 

tolerance 

threshold 

Set of 

weight 

used 

Number of 

parameter 

sets 

included 

Median modelled outcomes (90% plausibility 

range) 

Estimated number of 

people living with HIV 

Estimated incidence 

for 2010-2013 

0.18 A 42 51,200 (41,400-60,000) 3,440 (2,470-5,030) 

 B 40 50,500 (40,100-60,700) 3,400 (1,890-5,620) 

 C 42 50,000 (38,400-60,400) 3,340 (2,320-5,030) 

0.20 A 121 51,000 (41,400-61,000) 3,270 (2,310-5,380) 

 B 118 50,000 (40,100-61,200) 3,360 (1,760-5,440) 

 C 125 50,600 (40,500-60,400) 3,430 (1,890-5,570) 

0.23 A 359 47,900 (38,100-61,500) 3,420 (1,810-5,570) 

 B 354 48,000 (35,700-59,700) 3,100 (1,530-5,410) 

 C 360 48,100 (36,800-61,200) 3,230 (1,530-5,620) 
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5 Using pseudo data 

To demonstrate the calibration procedure and to show how well the procedure would work in a 

setting with varying amounts of data to fit to, we also simulate a hypothetical epidemic where the 

incidence rate and diagnosis rate are fully known. The pseudo data were also generated using 

Synthesis model. Such pseudo data was used to provide the true incidence, diagnosis rate and 

outcomes from the hypothetical epidemic, and thus these are fully known, which then allows us to 

use the method described above to see how closely it is able to reconstruct the true epidemic. 

Although this approach is somewhat circular, in that the same model is used to generate the 

epidemic and to analyse it, it provides a useful means of being able to compare our calibration 

method in the presence of differing levels of data availability. We conceived three scenarios of data 

availability, high, medium and low: 

 

 

Simulated data availability (weights used in 

calibration-score given in brackets) 

High Medium Low 

Number of HIV diagnoses 1985-2012 (1) 1996-2012 (1) 2011-2012 (1) 

Number of first AIDS diagnoses 1985-2012 (1) 1996-2012 (1)  

Number of deaths 1985-2012 (1)   

Median CD4 count at diagnosis 1990-2012 (1)  2011-2012 (1) 

Proportion of diagnoses where CD4 count <200 

cells/mm
3
 

1990-2012 (1)   

Proportion of diagnoses which were in recently 

acquired infections 
2009-2012 (1)   

Number seen for care 1998-2012 (1)   

Number seen for care and on ART 1998-2012 (1) 2000-2012 (1)  

 

Data are available on a per year basis, i.e. there are 28 data points (1985 to 2012 inclusive) to 

calibrate for the number of HIV diagnoses in the high simulated data availability scenario. The ‘high’ 

data availability scenario was based on a setting with a well-established surveillance system for HIV 

which has been used since the first infections were reported. The ‘medium’ data availability scenario 

was based on a setting which did not start conducting HIV surveillance until the cART era. The ‘low’ 

data availability scenario was based on a setting with no HIV surveillance until very recently.  

5.1 Choice of epidemic  

The hypothetical epidemic is loosely based on that thought to have occurred in MSM in Western 

Europe.  

 

The incidence curve (eFigure 7) depicts the number of infections over calendar time. In Western 

European countries, there is thought to have been an early peak in incidence in mid-1980s, 

plateauing in the mid-1990s and gradually increasing again. The total number of infections from 

1980 to 2014 was 10,000.    

 

Diagnoses of HIV start from 1985 onwards. We assume that the diagnosis rate is monotonically 

increasing, i.e. entirely non-decreasing (eFigure 8). 
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eFigure 7: Number of infections per year in hypothetical epidemic 

 

eFigure 8: Rate of diagnosis per 3 months in hypothetical epidemic 

 
 

5.2 Method 

5.2.1 Choice of prior distributions 

The prior distributions for the incidence and diagnosis rate parameters which are used are shown in 

eTable 7 and eFigure 9. Priors were chosen as we would when these parameters are unknown. As 

the epidemic which we are trying to reconstruct has the same incidence and diagnosis rate, the 

priors used for all three data availability scenarios (high, medium and low) are the same. 

In this example using pseudo data, we chose not to sample the other parameters listed in eTable 2 
for simplicity. These parameters are those which describe the average behaviour of the population. 
For any given setting, the values would be informed by observational data from that setting or 
similar. We saw in Section 4 for the MSM example that the posterior distributions did not differ 
hugely from the prior distributions. These parameters themselves are unlikely to alter the incidence 
and diagnosis rate parameters greatly.  

0

200

400

600

800

1000

1980 1985 1990 1995 2000 2005 2010 2015N
u

m
b

e
r 

o
f 

n
e

w
 in

fe
ct

io
n

s 
p

e
r 

ye
ar

 

Year 

Incidence curve 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1980 1985 1990 1995 2000 2005 2010 2015R
at

e
 o

f 
d

ia
gn

o
si

s 
(p

e
r 

3
 m

o
n

th
s)

 

Year 

Diagnosis rate 



      

27 
 

eTable 7: Prior distributions used for all scenarios 

Parameter Prior distribution 

i1 Beta(2,4)*1350 

i2 Beta(2,4)*1350 

i3 Beta(2,4)*1350 

i4 Beta(2,4)*1350 

i5 Beta(2,4)*1350 

i6 Beta(2,4)*1350 

i7 Beta(2,4)*1350 

d1 Beta(1,5)*0.16 

d2 Beta(1,100) 

d3 Beta(1,100) 

d4 Beta(1,100) 

 

eFigure 9: Histogram of prior distributions; parameters i1-i7 (top), parameter d1 (middle), 
parameters d2-d4 (bottom) 

 

5.2.2 Number of simulations 

The number of simulations in the first stage of the calibration process was 10,000. Similarly to the 

example using MSM data from the UK, we decided to aim for at least 100 parameter sets with 
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calibration-score <0.2 for each data availability scenario in the second stage of the calibration 

procedure. For this illustrative example the third stage of the calibration was not implemented, nor 

were any simulations terminated prematurely. 

 

The three different data availability scenarios required a different number of simulations in total to 

achieve 100 parameter sets with calibration-score<0.2. The number of simulations to be run will 

depend on how quickly we can find 100 such parameter sets. The final set of results presented are 

based on the 100 smallest calibration-scores were used. The smallest calibration-score which was 

achieved amongst these 100 simulations were 0.153, 0.138 and 0.001 respectively for ‘high’, 

‘medium’ and ‘low’ data availability. This illustrates that the more data there are to calibrate the 

model to, the harder it is to find a smaller calibration-score.  Although the ‘low’ data availability 

situation led to the smallest calibration-score, looking at the plausibility range presented in Figure 5 

in the main manuscript, we can deduce that a small calibration-score does not necessarily mean 

that it captures the underlying epidemic well, but in fact just calibrates very closely to the small 

amount of data available. So in other words, while the calibration-scores are in some sense 

comparable between situations with a large amount of data to fit to or little, it is important to bear in 

mind that a calibration-score of 0.18, say, based on a large amount of data is more likely to be 

accurately capturing an underlying epidemic than a simulation with a calibration-score of 0.07 based 

on little data. Although this means that the calibration-score itself is somewhat hard to interpret, it is 

still a useful concept because it indicates that the model was calibrated to the observed data with a 

given error margin. In the most ideal situation, the model will be calibrated to a range of observed 

data with the smallest calibration-score possible. This will vary by setting however, as if the data 

within the surveillance system are inconsistent with each other, given the model then this indicates 

either bias in one or both observed data sources or model misspecification. If these cannot be 

resolved (and the basic underlying model cannot be changed just to fit to one set of country data 

and it should only be done if model-specification is consistently indicated over multiple country data 

calibrations procedures have been performed), such a conflict would mean that the calibration-score 

threshold may have to be larger than desired.  
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