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Abstract: It is important not only to collect epidemiologic data on 
HIV but to also fully utilize such information to understand the epi-
demic over time and to help inform and monitor the impact of policies 
and interventions. We describe and apply a novel method to estimate 
the size and characteristics of HIV-positive populations. The method 
was applied to data on men who have sex with men living in the UK 
and to a pseudo dataset to assess performance for different data avail-
ability. The individual-based simulation model was calibrated using 

an approximate Bayesian computation-based approach. In 2013, 
48,310 (90% plausibility range: 39,900–45,560) men who have sex 
with men were estimated to be living with HIV in the UK, of whom 
10,400 (6,160–17,350) were undiagnosed. There were an estimated 
3,210 (1,730–5,350) infections per year on average between 2010 
and 2013. Sixty-two percent of the total HIV-positive population are 
thought to have viral load <500 copies/ml. In the pseudo-epidemic 
example, HIV estimates have narrower plausibility ranges and are 
closer to the true number, the greater the data availability to calibrate 
the model. We demonstrate that our method can be applied to settings 
with less data, however plausibility ranges for estimates will be wider 
to reflect greater uncertainty of the data used to fit the model.

(Epidemiology 2016;27: 247–256)

Despite the introduction of effective antiretroviral therapy 
(ART), HIV remains a key public health issue in most 

parts of the world, including Europe. UNAIDS estimates sug-
gest that there were 2.2 million people living with HIV in the 
European region in 2012.1

To understand an HIV epidemic in detail, a range of 
epidemiological data is required. Such data will help inform 
and monitor the impact of policies and interventions to 
tackle issues of prevention, diagnosis, and treatment of HIV. 
UNAIDS have launched a new target, “90-90-90,” which 
refers to three key steps to improve healthcare outcomes for 
HIV-positive people and to limit new infections: 90% of HIV-
positive people to know their status, 90% of all diagnosed 
people to receive ART, and 90% of all people receiving ART 
to have viral suppression. There has also been increased inter-
est in estimating the HIV care cascade2,3 as an additional tool 
to understand and monitor linkage and retention in care.

It is desirable to have some estimates, regardless of 
the availability of surveillance data, to be able to consider 
future healthcare needs and to understand the importance of 
improved surveillance systems. A number of methods already 
exist to estimate the number of people living with HIV, which 
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are based on fitting to prevalence survey data or performing 
back-calculations to reconstruct the historical HIV incidence 
curve.4–6 However, there are relatively few countries in Europe 
where these methods are currently applied, due to lack of avail-
able data or resources, or concerns over their applicability for 
concentrated epidemics.7 Even in settings where such methods 
have been applied, few have provided a breakdown of the char-
acteristics of HIV-positive populations, including size of the 
undiagnosed population, CD4 count and viral load distribution 
of the total population and the undiagnosed population, and 
number of people with triple class drug failure and resistance.

The objective of the Stochastic Simulation of Out-
comes of People with HIV In Europe project in EuroCoord  
(EuroCoord-SSOPHIE project) is to generate such HIV estimates 
for European countries by developing a calibration method using 
an individual-based model of HIV. We present here the method 
we have developed which first calibrates such a model to the 
range of surveillance data available, and then uses the parameter 
sets which calibrate well to estimate and characterise the status of 
HIV-positive populations. The method is applied to data on men 
who have sex with men (MSM) in the UK and to pseudodata to 
assess the impact of different levels of availability of data.

METHODS
In brief, the calibration method presented here is a set 

of procedures that uses existing methodology (approximate 
Bayesian computation [ABC] methods) to calibrate a simula-
tion model of HIV, to make inference about the populations 
simulated using parameter sets which calibrate well to the 
available data (includes both routinely collected case-report 
data and observational data). The method is first applied to 
generate HIV estimates for MSM in the UK for 2013. Sur-
veillance data used to calibrate the model were obtained from 
Public Health England databases. Behavioural and other clini-
cal data were obtained from a range of sources, described in 
references.8,9 We chose the MSM epidemic in the UK as it has 
been studied extensively using other methods and there are 
other estimates with which we can compare our results.10,11 
We assume that the first infections occurred in 1980. Diagno-
sis of HIV was possible from 1984 onwards.12 ART use was 
based on information from clinical cohorts.13 This modelling 
study was exempt from the need for review by the institutional 
review board as only aggregate data published in the public 
domain were used.

The Model
The method uses an updated version of an individual-

based stochastic simulation model of HIV progression and 
the effect of ART (HIV Synthesis progression model).9,14,15 
The model is programmed in SAS software, Version 9.3 (SAS 
Institute Inc., Cary, NC). Model assumptions and parameters 
are based on data from observational cohort studies and clini-
cal trials. The model aims to reconstruct the HIV-positive 
population of interest by simulating data on individual people 

from infection and following them over time. Variables such as 
CD4 count, viral load, use of specific antiretrovirals, treatment 
interruptions, presence of resistance mutations, and adherence 
levels are updated every 3 months. The risk of loss to follow-
up, AIDS events, AIDS deaths, and non-AIDS deaths are 
also modeled. Note that in this model, we do not follow HIV- 
negative individuals as transmission of HIV is not modeled. 
Further details of the model have been described previously,8,9 
and additional updates are included in the eAppendix 
(Section 2; http://links.lww.com/EDE/A994).

There are multiple parameter values describing various 
elements of the underlying progression of HIV and the effect 
of ART. We have previously shown that the model output 
mimics empirical data on such processes well.8,14 Therefore, 
for the purpose of calibrating the model parameters to a given 
HIV-positive population, we hold parameter values reflecting 
the intrinsic effects of HIV and ART fixed. In other words, this 
assumes that these parameter values are the same regardless of 
the population under consideration and are effectively part of 
the model structure.

Parameter Values Sampled Per Simulation
To calibrate the model to a particular population, the 

parameters which are sampled are those thought to potentially 
differ between populations or which have a large degree of 
uncertainty. We chose to focus only on one population (MSM) 
because the HIV incidence and diagnosis rate curves will typi-
cally differ by transmission route.

The two main sets of parameters for which values are sam-
pled per simulation are those which parameterize the HIV inci-
dence (number of new infections per year) and diagnosis rate. 
As all individuals in our progression model are HIV positive, the 
latter is the probability of diagnosis in an undiagnosed, asymp-
tomatic individual in any 3-month period. The incidence and 
diagnosis rate curves between 1980 and 2013 are parameterized 
using seven and four parameters, respectively. These parameters 
inform two independent piecewise constant curves, i.e., the inci-
dence and diagnosis rate are modeled to be constant over 5- and 
8-year periods, respectively. We use such crude parameterization 
to limit the number of parameters and because the aim is not to 
estimate these curves per se, but to find sets of parameter values 
which generate a modeled population with characteristics simi-
lar to that of the surveillance and/or observational data.

There are a number of other parameter values that are 
likely to be specific for a given population and which are also 
varied across simulations: proportion of people resistant to 
testing, probability of not being linked to care soon after diag-
nosis, rate of loss to follow-up while ART-naïve, rate of treat-
ment interruption, rate of restarting ART after interruption, rate 
of loss to follow-up while interrupting ART, rate of re-entry 
into care, probability of starting ART when eligible, rate of  
emigration and the population distribution of adherence lev-
els. The prior distributions of these parameters are derived 
from observational studies carried out in the setting of interest 
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or from other European studies. We sampled these parameters 
per simulation to reflect the uncertainty conveyed by the prior 
distributions used.

How the Model Is Calibrated to Country Data
The model is calibrated using ABC methods.16 The model 

naturally lends itself to working in a Bayesian framework to 
account for multiple parameter combinations providing outputs 
which fit well to the observed data (instead of converging to a 
single set of parameter values as would be the case in maximum 
likelihood estimation). ABC methods are suitable for calibrating 
simulation models to multiple datasets within tolerance bounds 
and have the advantage of accounting for parameter uncertainty 
and correlations. They are ideal for our purpose because we wish 
to explore a wide parameter space and consider as many param-
eter sets as possible that are consistent with the data.

ABC involves running the model multiple times where 
each run of the model is considered one simulation. In each 
simulation, unknown parameters are sampled from prior distri-
butions, thereby constructing a different HIV-positive popula-
tion. For each simulation, outputs of the model are compared 
with a range of surveillance data (in settings with incomplete 
surveillance systems, observational data may be used addition-
ally or instead). Hereafter, we refer to each type of data (e.g., 
number of HIV diagnoses) as a “data item.” We quantify how 
well the model outputs match the surveillance data (i.e., assess-
ing the goodness-of-fit) by calculating the “calibration score.” If 
the calibration score is within the tolerance threshold, then the 
set of parameter values used for that simulation are accepted. 
This process is repeated over multiple simulations. Further 
details of this calibration procedure are included in the eAp-
pendix (Section 3; http://links.lww.com/EDE/A994).

For any single simulation, the calibration score is cal-
culated as the weighted average of the deviances of the mod-
eled outputs from the observed data. Therefore, the lower 
the calibration score, the better the model fits to the data. 
Weights for each data item are chosen a priori to reflect per-
ceived data quality and completeness. Examples of data items 
which may be used to calibrate the model include: number of 
HIV diagnoses, number of first AIDS diagnoses, number of 
deaths, median CD4 count at diagnosis, number of new diag-
noses which are recent infections, number seen in care and 
number on ART. The calibration process is continued until 
at least 100 sets of parameter values are within the tolerance 
threshold. In this particular application of the method, we 
have specified that the threshold should be a calibration score  
<0.2 (i.e., average deviation from the observed data across all 
data items is <20%). Further simulations are then performed 
using the accepted parameter sets to account for stochastic 
variability (i.e., variability in model outputs between simula-
tion runs when using the same parameter set). The median, 
5th and 95th percentiles of the distribution of these model 
outputs at each calendar year are considered the point esti-
mate and plausibility range limits, respectively. The primary 
model outputs of interest are the number of people living 
with HIV, broken down by diagnosis status, ART-use, viral 
load, and CD4 count strata.

To apply this method to the HIV epidemic among MSM 
in the UK, the model is calibrated to a wide range of surveil-
lance data available until 2012. As it is an individual-based 
model, we simulate a random 10% sample of the total infec-
tions to make the simulations more manageable, then multi-
ply our outputs up. The data items and corresponding weights 
used to calibrate the model are shown in the Table.

TABLE.   Data Items and the Range of Calendar Years for Which Data Were Used to Calibrate the Model (Weights Used in 
Calibration Score Given in Brackets)

Application of the 
Calibration Method to Data 

on MSM in the UK

Application of the Calibration Method to Pseudodata  
(to Assess How Well the Method Works for Different  

Availability of Data Items)

Data Itemsa  
(Weight)

Simulated Data Availability (Weight)

High Medium Low

Number of HIV diagnoses 1997–2012 (1) 1985–2012 (1) 1996–2012 (1) 2011–2012 (1)

Number of first AIDS diagnoses 1985–1996 (1) 1985–2012 (1) 1996–2012 (1)

Number of deaths 1985–2012 (1)

Median CD4 count at diagnosis 1985–1996 (0.5), 

1997–2012 (1)

1990–2012 (1) 2011–2012 (1)

Proportion of diagnoses where  

CD4 count <200 cells/mm3

1990–2012 (1)

Proportion of diagnoses which were  

in recently acquired infections

2009–2013 (0.5) 2009–2012 (1)

Number seen for care 1998–2012 (0.5) 1998–2012 (1)

Number seen for care and on ART 1998–2012 (0.5) 1998–2012 (1) 2000–2012 (1)

aNote that although there are more data available on MSM in the UK, the table only shows the data that were used as part of the calibration-score definition.
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We also apply the calibration method to pseudodata to 
assess how well our method works for different availability 
of data items. The pseudodata was simulated also using the 
HIV Synthesis progression model, for a given incidence and 
diagnosis rate (all other parameters are fixed). The simulated 
outputs are used as if they are real data and the method is 
applied to model the hypothetical epidemic. Various data for 
the epidemic can then be assumed to be “unknown,” which 
then allows us to use the method described above to see how 
well it is able to reconstruct the true epidemic in different data 
availability scenarios. We conceived three scenarios of data 
availability: high, medium, and low (Table). The method was 
applied under each scenario and the resulting HIV estimates 
compared. Although this approach is somewhat circular in 
that the same model is used to generate and analyse the epi-
demic, it provides a useful means of being able to compare our 
calibration method with differing levels of data availability. 
Full details are given in the eAppendix (Section 5; http://links.
lww.com/EDE/A994).

RESULTS

Calibration to Data on MSM in the UK and 
Resulting Estimates for 2013

Twenty-thousand simulations of the epidemic were gen-
erated, of which 294 were within the 0.2 calibration score tol-
erance threshold. A further 1,000 simulations were performed 
by resampling these 294 parameter sets. The following results 
presented are those generated using the 742 parameter sets 
where the calibration score was <0.2 (median: 0.178, min: 
0.107, max: 0.199) among the 1,000 resampled simulations. 
Figure 1 shows that the model largely calibrates to the surveil-
lance data. The surveillance data in 2012 compared with the 
median across the simulations, respectively, were number of 
HIV diagnoses (3,230 vs. 2,840), number of AIDS diagnoses 
(140 vs. 360), number of deaths (160 vs. 290), proportion of 
diagnoses with CD4 <350 cells/mm3 (34% vs. 39%), number 
seen for care (33,970 vs. 35,310) and number seen for care 
and currently on ART (28,530 vs. 30,215).

The distribution of incidence and diagnosis rate param-
eters are shown in Figure 2. This shows a steady increase in 
incidence from 1980, followed by a slightly lower level in 
the early 1990s and then a gradual increase again from then 
onwards. An estimated 3,210 (90% plausibility range:1,730–
5,350) infections per year on average are thought to have 
occurred since 2010. The cumulative number of HIV infec-
tions that is thought to have occurred by end of 2012 totalled 
67,720 (56,470–78,800). The diagnosis rate in asymptomatic 
individuals has steadily increased over time, but still remains 
low at an estimated rate of 0.042 (0.025–0.069) per 3 months 
in recent years.

By 2013, an estimated 48,310 (90% plausibility range: 
39,900–45,560) MSM were living with HIV in the UK 
(Figure 3), and 2,300, 5,500, 11,830, and 28,680 individuals 

had CD4 count ≤200, 201–350, 351–500, and >500 cells/
mm3 respectively. It is thought that 10,400 (6,160–17,350) 
MSM were living with undiagnosed HIV, which means the 
undiagnosed proportion is 22% (13%–36%, Figure 3). In this 
undiagnosed population, an estimated 710, 1,930, 3,040, and 
4,720 individuals had CD4 count ≤200, 201–350, 351–500, 
and >500 cells/mm3, respectively.

Figure  4A shows the estimated HIV care cascade in 
2013. According to the model outputs, of all MSM living with 
HIV in 2013, 22% were undiagnosed, 23% were not in care, 
and 66% were receiving ART (current UK guidelines recom-
mend ART to be initiated once the CD4 count drops below  
350 cells/mm3). More than half (62%) of all HIV-positive MSM 
are thought to have suppressed viral load (<500 copies/ml). Of 
the 40,530 MSM in need of treatment (defined as people on 
ART and people ART-naïve with CD4 count <500 cells/mm3), 
80% were estimated to be actually receiving it. Figure  4B 
shows a detailed breakdown of the population characteristics 
in terms of diagnosis status, treatment status, viral load distri-
bution, CD4 count distribution, and resistance development.

Validation on Pseudodata to Assess Impact of 
Various Degrees of Data Availability

The results that follow are based on 100 simulations 
which had calibration score <0.2 for each of the three data 
availability scenarios. Where there were more than 100 sim-
ulations with calibration score <0.2, the 100 parameter sets 
leading to the 100 smallest calibration scores were used. The 
smallest calibration score achieved among these 100 simula-
tions were 0.153, 0.138, and 0.001, respectively, for “high,” 
“medium,” and “low” data availability.

Figure  5 shows the estimated number of people liv-
ing with HIV and living with undiagnosed HIV in 2013 by 
data availability. The category, “based on prior distributions,” 
refers to the median and 90% plausibility range of the esti-
mates based on the full parameter distributions, including the 
outputs which did not get accepted based on the tolerance 
threshold; the plausibility range for this category therefore 
shows how wide it could have been if there were no data to 
calibrate the model to, compared with the other three sce-
narios). Although the smallest minimum calibration score was 
achieved with the “low” data availability scenario, the plausi-
bility range is also the widest as the model was calibrated only 
to two data points.

Figure 6 depicts how well each data availability scenario 
was able to recapture the “true” incidence and diagnosis rate 
curves. Comparing with the incidence curve firstly, only the 
“high” scenario was able to obtain the approximate trend of 
an initial rise in incidence, followed by a dip, then a gradual 
increase subsequently, although some of the observations are 
outside the 90% plausibility range. All three scenarios esti-
mate approximately the same number of infections which took 
place from 2010 onward, although the widths of the plausi-
bility range differ greatly. Comparing with the diagnosis rate 
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curve, all three scenarios were able to obtain a diagnosis rate 
of approximately 0.06 per 3 months in the most recent years of 
the epidemic. The differences, however, lie in the widths of the 
plausibility range, especially in the early years of the epidemic.

DISCUSSION
We have demonstrated an approach to estimate the size 

and characteristics of HIV-positive populations using a sto-
chastic computer simulation model of HIV progression and 

FIGURE 1.  Calibrating the model to data on MSM in the UK. A, Number of HIV diagnoses, (B) number of AIDS diagnoses, (C) 
number of deaths, (D) proportion of diagnoses which were recent infections (defined here as an infection which took place 
within six months of an HIV diagnosis), (E) total number seen for care, (F) Median CD4 count at diagnosis. Diamonds represent 
surveillance data until 2012 supplied by Public Health England (PHE). Filled diamonds show data used to calibrate the model; open 
diamonds show data not used to calibrate the model. Model median (solid line), model 90% plausibility range (dotted lines) and 
model range (light grey band) also shown. RITA indicates recent infection testing algorithm; SOPHID, survey of prevalent HIV infec-
tions diagnosed; CD4 SS, CD4 surveillance scheme.
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the effects of ART. As the model reconstructs the population 
characteristics at a level corresponding to data collected as 
part of clinical care, it provides an approach to describe and 
understand HIV-positive populations in detail. We have shown 
that it is possible to generate estimates of numbers of people 
living with HIV and their characteristics, albeit with different 
levels of uncertainty, depending on the quality and availability 
of surveillance data. Together with other available informa-
tion, epidemiologic and clinical estimates generated using our 
method could be used to further inform decisions and poli-
cies.17,18 Although the HIV care cascade can be ascertained 
using alternative estimates of the undiagnosed proportion 
together with available surveilance data about the diagnosed 
population, we have also demonstrated (Figure  4) that it is 
possible to estimate the full cascade using this approach.

The number of MSM living with HIV in the UK is now 
estimated to be 48,310 for 2013. We estimated that there were 
approximately 3,210 new infections per year between 2010 

and 2013, which was higher than the average for 2005–2009. 
However, the total number of undiagnosed HIV infections is 
thought to have remained reasonably stable over the past 5 to  
7 years at around 10,000. The estimates and plausibility ranges 
generated using our method are based on the assumptions 
within the HIV Synthesis progression model and the prior dis-
tributions chosen. Our results were consistent with other UK 
estimates of the number of MSM living with HIV, living with 
undiagnosed HIV, and their CD4 count distribution.10

Results from our pseudodata example, which compared 
estimates when calibrating the model with varying amounts of 
data availability, show the difference in estimates and ranges 
for three different scenarios. Our results indicate that more 
reliable estimates are made with a wide range of surveillance 
data, and that having historical data also helps. The width of 
the plausibility range increases with less data available to 
calibrate the model. The differences between the three dif-
ferent scenarios showed that having data about the current 

FIGURE 2.  A, Estimated incidence (number of new HIV infec-
tions in a year) and the (B) estimated diagnosis rate (probabil-
ity of being diagnosed in any given 3-month period) among 
MSM in the UK.

FIGURE 3.  Estimates of the (A) total number of MSM living 
with HIV in the UK and (B) total number of MSM living with 
undiagnosed HIV, by calendar year. Columns and error bars: 
Modeled median and 90% plausibility range.
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population in care, such as data on the numbers of people on 
ART and case-report data on the number of diagnoses in a 
year, vastly help inform estimates of the total numbers living 
with HIV.

Our method has a number of advantages. The HIV 
Synthesis progression model simulates each individual’s life 
course and therefore reconstructs detailed characteristics of 
individuals which compose the HIV-positive population.19 
The model can therefore be calibrated to a wide range of 
observational data (data items) simultaneously, which is ben-
eficial because for some countries there may not be much HIV 
case-report data while data on the numbers of people on ART 
might be very accurate. It is possible to calibrate the model to 

less data; however, the plausibility ranges will be wider due to 
greater uncertainty. It is thus a very flexible approach which 
can utilise the data that is available, including but not limited 
to case-report data. We consider that our method is particularly 
useful when there are various sources of data available, as it 
also provides a framework for triangulation to assess overall 
coherence and consistency of data from various sources. The 
method in principle becomes very similar to other existing 
back-calculation methods when it uses only data that are used 
in those methods for calibration.

Using an individual-based model means that it is pos-
sible to estimate not only the size of the undiagnosed popula-
tion but also we can simultaneously describe the population in 

FIGURE 4.  Estimated (A) treatment cascade and (B) popula-
tion characteristics of all MSM living with HIV in the UK in 
2013. Columns and error bars: Modeled median and 90% 
plausibility range. ART indicates antiretroviral therapy. “Resis-
tance” is defined as at least one resistance mutation in major-
ity virus. “In need of ART” includes people who are on ART and 
those who are ART-naïve with CD4 count <500 cells/mm3. ART 
indicates antiretroviral therapy.

FIGURE 5.  Estimate of the (A) number of people living with 
HIV and (B) number of people living with undiagnosed HIV in 
a hypothetical epidemic by data availability (high, medium, 
and low; see Table). Columns and error bars: modeled median 
and 90% plausibility range. “Based on prior distributions” 
refers to the outputs when all parameter sets are considered 
(none excluded by calibration-score criteria). The reference 
line (dotted) refers to the actual number of people living with 
HIV in the hypothetical epidemic.
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terms of whether they are in care, ART coverage, immunologi-
cal status, and population viral load. The model is also able to 
take account of specific drug use if data on regimens used are 
available, and hence can output estimates of drug resistance 
mutations and drug side effects, which may further help to 
inform national recommendations and policies.

By extending the duration of the simulated epidemic 
and projecting into the future, the method can also potentially 

be used for making short-term projections. Such projections, 
however, will be based heavily on the assumptions made 
regarding the incidence and diagnosis rate in the future and all 
resulting estimates will only be as reliable as the information 
put into the model.

A limitation of any modelling approach is that the valid-
ity of model estimates is highly dependent on the quality of 
available data used to calibrate the model. This means that 

FIGURE 6.  The resulting incidence curves and diagnosis rate curves as determined using our calibration method to the (A) and (B) 
high, (C) and (D) medium, and (E) and (F) low data availability scenario, respectively, with the “true” values as in the hypothetical 
epidemic represented by diamonds.
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the more reliable and accurate the data used to calibrate the 
model, the more likely estimates will be useful. In particular, 
it is essential to know the characteristics of the data and the 
mechanisms of surveillance systems so that these can inform 
the model calibration process. For instance, most countries 
will know about data problems such as under-ascertainment, 
double-counting, and misclassification bias, so efforts to 
reduce these errors or otherwise adjust the surveillance data 
accordingly is of importance. In our UK MSM example spe-
cifically, we think that the discrepancy between the observed 
data and modeled outputs on AIDS case reports (Figure 1) is 
due to known substantial under-reporting of such data in the 
UK in the era of effective ART.20 For this reason, the model 
was not calibrated to data on AIDS case reports in those years 
(Table).

There are also a number of other limitations specific to 
our approach. First, even though our simulations are run on 
a computing cluster, as we use an individual-based model, 
our method is time consuming. However, once the plausible 
range of the historic incidence and diagnosis rate curves 
have been estimated, updating the estimates in future years 
will not require the same intensive fitting process to find 
parameter sets which calibrate well. Another limitation is the 
choice to use piecewise constant curves to parameterize the 
incidence and diagnosis rate. Other back-calculation studies 
on MSM epidemics in Western Europe have found a peak in 
incidence in the early to mid-1980s21–23; however, due to the 
parameterization used, we cannot observe such a peak using 
this method. Although this means that the resulting inci-
dence curve may not be an accurate reflection of infections 
in the past, estimates are unlikely to be severely biased, as 
the modeled incidence is just an average over a given time 
period. We investigate and discuss this further in the eAppen-
dix (Section 4; http://links.lww.com/EDE/A994). One other 
limitation is that the definition of a “good” calibration score 
is somewhat arbitrary. The method simultaneously tries to fit 
to multiple data items, which may have their own biases, over 
a large number of years. Although we expect the data items 
to be complementary with one another, they will nevertheless 
have under- or over-counting nuances so we would not expect 
the calibration score to be zero. The results from applying the 
method to pseudodata illustrated that the more data there are 
to calibrate the model, the less likely it is to find a small cali-
bration score.24

The EuroCoord-SSOPHIE project aims to build on a 
previous effort to generate HIV estimates for Europe.25 The 
development of methods to produce various HIV estimates 
and projections remains an important area within HIV epi-
demiology.10,22,26–28 Our method provides an alternative and 
complementary approach to existing methods because a more 
extensive range of data sources can be incorporated, if avail-
able. Having different methods that use different data and 
assumptions enables us to see whether the various approaches 
give comparable estimates, which provide support for the 

various estimates. The method presented here also provides 
a way to estimate key indicators such as the total number 
of people living with HIV, which helps to put targets such 
as the UNAIDS “90-90-90” into context. An adaptation of 
the method will be required to model epidemics among risk 
groups with a high proportion of migrants, such as people 
who acquired HIV in sub-Saharan Africa, as it is assumed that 
infections are mainly acquired in the setting of interest.

We have shown here an approach using an individual-
based simulation model of HIV, which describes the size 
and characteristics of HIV-positive populations. This novel 
method allows us to also naturally produce plausibility ranges 
for these estimates, which describe the uncertainty surround-
ing the estimates, based on the data to which the model was 
calibrated.
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