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2 Abstract 

Being born too early or being born too small is the largest cause of neonatal 

mortality in the world. Compared to the rest of the world, Malawi has one of 

the largest burdens of preterm birth and neonatal stunting, with infection 

recognised as an important risk factor. Previous studies have used culture 

and molecular methods to identify bacteria that could be responsible for 

triggering labour and foetal growth restriction. The composition of the oral 

and vaginal microbiome has also been linked as the possible source of these 

bacteria. However, studies up to this point have been small and have not 

utilised the full potential of current sequencing technologies. In this thesis, I 

demonstrated using high-throughput sequencing of the 16S rRNA gene that 

certain organisms are associated with adverse birth outcomes. 

Contaminating bacterial taxa, PCR and sequencing error can be filtered post-

sequencing to allow reliable reconstruction of microbial communities from low 

biomass samples such as the placenta. This revealed a specific community 

structure in the placenta and foetal membranes associated with severe 

chorioamnionitis. Analysis of communities in both matched vaginal and 

placental samples increased prevalence of Peptostreptococcus anaerobius, 

Sneathia sanguinegens and Prevotella amnii were associated with a smaller 

newborn size. These results provide further evidence of the important role 

the vaginal microbiome may play in seeding organisms found on placental 

tissues and therapeutic interventions could be designed to impact these 

communities with the goal of reducing the risk of preterm birth or intrauterine 

growth restriction.  
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8 Chapter 1: Introduction 

 

8.1 Adverse birth outcomes 

The definition of preterm birth is not fixed and can vary country-to-country. In 

the UK it is defined as a delivery that occurs before 37 gestational weeks, 

and being born within this time frame leads to an increased chance of 

mortality and morbidity. These problems are exacerbated when born before 

32 weeks (1); this sub-category of preterm deliveries can be subdivided into 

very preterm births (32-28 weeks) and extremely preterm births (before 28 

weeks).  

At the turn of the millennium it was estimated that premature birth was the 

direct cause 1,080,000 neonatal deaths, world-wide, every year (2). It is 

considered the largest cause of neonatal mortality in the world (3). 

Approximately 75% of neonatal deaths occur in premature infants. In 

developed countries improved standard of care has led to a drop in mortality 

for neonates born preterm but consequently has led to an increase in 

morbidity for those extremely preterm neonates who survive. The burden of 

mortality and morbidity increases again for twin births over singletons with 

twins more likely to be delivered preterm. In the long term premature infants 

are more likely to be effected by blindness, deafness, cerebral palsy, 

stunting, learning disabilities, as well as respiratory and gastrointestinal 

problems (1,4). A lower gestational age is proportional to the increase in 
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morbidity with a UK-based study reporting 50% of neonates delivered 

between 24 and 25 weeks classified as impaired and 25% considered 

severely disabled (5). 

Intrauterine growth restriction (IUGR) resulting in low birth weight and other 

measures of neonatal size such as neonatal length and head circumference 

are also associated with both mortality and morbidity (6). Low birth weight 

itself is defined by any live birth where the infant weighs 2500 grams or less. 

Although low birth weight is strongly associated to preterm birth, it can also 

occur in babies born at term due to a number of factors that limit foetal 

growth in utero. Excluding those born preterm, infants born with low birth 

weight have a 5-30 greater risk of mortality than those born greater than 

2500g (7). In the United States it is estimated that 40% of cases of cerebral 

palsy are diagnosed in children with a very low birth weight (8). Stunting and 

small head circumference at birth is also an indicator of IUGR. Stunting is 

defined by the World Health Organisation (WHO) as being -2 standard 

deviations lower than the median Z-score for length-for-age and small head 

circumference is defined as -2 standard deviations lower than the median 

head circumference-for-age Z-score. In 2011, 165 million children worldwide 

were stunted (9).  Stunting, along with other measures of undernutrition are 

estimated to cause 3.1 million child deaths annually (9) and neonates with a 

small head circumference are at a greater risk of impairment of neurological 

function (10). The knock on effect of this mortality and morbidity can also be 

measured in state expenditure, with the USA estimated to have spent $26.2 
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billion in 2005 dealing with the medical and educational costs of these 

complications (11). 

The worldwide preterm birth rate is estimated at 9.6% (11), with the figure 

particularly low in most developed countries (12). In the UK, infant mortality 

occurred in 24.3 per 1000 preterm births compared to 1.6 per 1000 term 

births (13). Where accurate reporting has been available, preterm birth rates 

have been rising in the developed world (14), however the effect is mitigated 

by the fact that there is now a near 100% survival rate for neonates born after 

32 weeks, dropping only marginally with earlier gestational ages (13). 

Although preterm birth and IUGR are still a recognised, serious problem in 

the developed countries, relatively it is a greater risk and burden in 

developing countries. Sub-Saharan Africa is known to have the current 

largest incidence of preterm birth in the world, with preterm birth in Southern 

Africa approximated at 17.5% (95%CI, 14.6-20.3) of all births (Figure 8-1).  
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Figure 8-1: Preterm birth rate in Southern Africa in 2005 compared to 
other geographical regions. 
Data used in plot published by Beck et al (11). 

 

In Malawi, although figures vary, a recent study placed the incidence of 

preterm birth (<37 weeks gestation) at 15.1% by ultrasound assessment (15). 

This is a serious problem for such a resource poor country with current 

estimates of overall neonatal mortality (including both term and preterm 

births) ranging between 96.8 (95%CI, 84.3–111.6) per 1000 births (16) and 

33 per 1000 births (17) in 2010. This figure rises even further to 132 per 1000 

births in children born preterm (18). Complications due to the preterm birth 

were the largest cause of mortality for babies aged between 0-27 days in 

Malawi in 2010 (Figure 8-2). 
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Figure 8-2: Causes of mortality in Malawi in 2010 for infants aged 
between 0-27 days. 
Data used to in plot published by Liu et al (19). 

 

Malawi’s health infrastructure, especially in rural areas, means that newborns 

are at a severe risk of mortality even when born after 32 weeks, whereas 

studies in the UK have just focused on those born very preterm. In Malawi, 

there is very little data on long-term morbidity of the children who survive 

being born at 32-37 weeks gestation and so the scale of the problem remains 

largely unknown. By any measure, it is more dangerous to be born at term in 

Malawi than preterm in the UK. For a child born very preterm in Malawi the 

risks are even greater, and strategies are urgently needed to bring down both 

mortality and morbidity. 
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8.2 Causes of adverse birth outcomes 

Before a clear intervention can be formulated, a better understanding of the 

pathology is needed. A number of different causes have been associated 

with preterm birth and intrauterine growth restriction, with many being inter-

connected. The mechanisms behind pregnancy and labour are complex and 

not fully understood, so it is unlikely that preterm birth itself will be a single 

aetiology but rather a culmination of multiple factors (Figure 8-3). 

 

Figure 8-3: Factors linked to an increased risk of preterm birth. 
Edited from Romero et al (20). 

 

 

Current knowledge suggests that term and preterm parturition use the same 

pathways, and so the instigator of labour must differ between the two (21). As 

well as by gestational age, preterm birth can also be split into 3 distinct types. 
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Indicated preterm birth is generally due to a maternal or foetal disorder such 

as pre-eclampsia and can be caused by smoking or obesity and, in countries 

with good healthcare coverage, can be diagnosed early culminating in an 

elective caesarean section (4,14). The other types of preterm labour are 

spontaneous and are distinguishable by delivery with intact membranes with 

regular contractions or preterm premature rupture of membranes (PPROM) 

before contractions begin. There are multiple risk factors that have been 

linked including cervical length, previous history of preterm birth, multiple 

pregnancy, stress, uteroplacental ischemia, placental abruption, intrauterine 

infection and up to 30 different SNPs have been identified as potential 

genetic markers (14,22). These include a mutation in the promotor region of 

tumor necrosis factor α that leads to oversecretion of the cytokine and 

increase in risk of preterm birth. Polymorphisms in the genes for other pro-

inflammatory cytokines such as interleukin 4, 6 and 10 have also been linked 

to a higher risk of preterm birth or premature rupture of membranes. Malawi 

also has serious region specific causes that are relatively uncommon in the 

developed countries including malnutrition, maternal malaria parasitaemia 

and HIV infection which have been shown as having a key influence on 

preterm birth (23–25).  

Microbiological studies have indicated infection as a key causative factor in 

around ~25% of preterm births, with the presence of bacteria involved in 

~80% of preterm deliveries depending on the gestational age. Exact 

mechanisms for triggering labour before 37 weeks are still unknown but they 

involve many potential risk factors that stimulate inflammatory pathways or 
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allow the spread of infection. Knowledge of a link between infection and 

preterm birth has existed since the 1970s (26) and is generally associated 

with those delivering spontaneously rather than indicated preterm births (27). 

The presence of intrauterine infection is inversely correlated with gestational 

age. Depending on the method used it identify microorganisms, amniotic fluid 

was more likely to be positive for bacteria the early the gestational age at 

delivery (28,29). This was true even in pregnancies with intact membranes. 

Viral infections as a cause of IUGR have been well studied. Human 

cytomegalovirus in particular has been shown to be able to translocate to the 

placenta and infect fetal tissue (30). Depending on the timing of these 

infections, this can impair placental development and could be an underlying 

cause of IUGR. Although work with viruses in terms of fetal growth restriction 

has been forthcoming, the same associations have not been commonly 

studied in bacteria.  

 

8.3 Chorioamnionitis 

Preterm birth or IUGR caused by infection is mediated by the recognition of 

microorganisms by the immune system (31).  Diagnosis of chorioamnionitis 

has been extensively used as evidence of intrauterine infection and is 

defined by inflammation of the chorioamnion tissues. Clinical diagnosis of 

chorioamnionitis is generally thought to be caused by hyper virulent strains of 

known human pathogens and diagnosed with the preterm rupture of 

membranes (32,33). More commonly chorioamnionitis is diagnosed 
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histologically; this is able to detect less severe but clinically relevant cases of 

inflammation. Histological chorioamnionitis (HCA) is defined by inflammatory 

cell infiltration into the placenta and membranes, however multiple semi-

quantitative definitions exist leading to discrepancy in interpretation of results 

(34). Funisitis occurs when this inflammatory process reaches the umbilical 

cord and foetuses that are exposed to severe chorioamnionitis can develop 

fetal inflammatory response syndrome (FIRS). This syndrome is defined sub-

clinically by funisitis and is a significant risk factor for perinatal mortality (35), 

fetal cardiac dysfunction (36), lung damage (37) and neurological impairment 

(38). Chorioamnionitis can put the foetus in direct risk due to migration of pro-

inflammatory cells from the site of infection or contact with potentially infected 

amniotic fluid (39). In vitro modelling of the most severe manifestations of 

chorioamnionitis show an increased incidence of systemic inflammation, 

preterm birth and foetal loss (40–42). A retrospective histopathological study 

showed that histological chorioamnionitis and funisitis were more commonly 

seen in deliveries that had neonatal sepsis, perinatal mortality or low birth 

weight (43). Chorioamnionitis is significantly more prevalent in preterm births 

than term births, and this relationship is more pronounced the earlier the 

delivery. Interestingly, chorioamnionitis is more prevalent amongst term 

deliveries in black populations (44).  
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Figure 8-4: Histologic section of chorioamnion (fetal membranes) from 

a participant showing infiltration of neutrophils (chorioamnionitis) 

between the membranes and the decidua denoted by the black arrows. 

 

 

8.4 16S rRNA gene 

Early studies used microbial culture techniques to sample and diagnose the 

presence of bacteria in the amniotic fluid and chorio-decidual space. Many 

preterm deliveries showed signs of inflammation in a number of the maternal 

and fetal tissues but there was no evidence of infection by culture. This made 

diagnosing intrauterine infection as a potential cause of preterm increasingly 

difficult (45). During this period, researchers found that measuring cytokine 

levels such as interleukin-6 was a better predictor of preterm birth than the 
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presence or absence of an infectious agent (46). Either culture techniques 

were not sensitive enough to elucidate possible infection or microbial 

invasion of the amniotic cavity is not the only infection site that triggers 

preterm birth. The limitations of classic bacteriology are well documented and 

many microbial species are uncultivable or difficult to culture at this time. 

Analysis of intrauterine infection by this technique is thought to be 

underestimating the problem. However, when bacteria have been cultured it 

was found that intra-amniotic infection was often poly microbial with multiple 

genera recovered including Ureaplasma, Mycoplasma, Fusobacterium, 

Bacteroides, Streptococcus and Gardnerella (47–50). 

The 16S ribosomal RNA gene (16S rRNA gene) has been adopted as the 

candidate gene for detecting and differentiating bacteria. It has allowed the 

application of new molecular techniques in linking infection and adverse birth 

outcomes. The gene has an important structural role in prokaryotic ribosomal 

proteins and so it is both ubiquitous and contains highly conserved regions 

across all bacteria. The primary structure of the 16S rRNA gene subunit also 

contains variable and hypervariable regions which have allowed researchers, 

beginning with Fox et al (51), to differentiate bacteria at various taxonomic 

ranks based purely on a relatively small section of their genomes. Also, the 

highly conserved secondary structure allows multiple pairwise alignments 

between these sequences enabling phylogenetic analyses. 16S rRNA 

sequencing has turned out to be a powerful method of discerning taxa 

(52,53), as well as being accurate enough to use in a clinical setting (54). 
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Figure 8-5: Distribution of variable and conserved regions in the 16S 

rRNA gene. 
Variable regions are in black and numbered. Conserved regions are in white. 

 

Studies that compared culture techniques with broad-range primers 

amplifying the 16S rRNA universally showed an increase in prevalence of 

bacteria using molecular techniques (55–60). In the context of adverse birth 

outcomes, the spectrum of genera associated with preterm delivery and the 

amniotic cavity also increased with these molecular techniques. Sanger 

sequencing of recovered 16S rDNA amplicon uncovered an increased 

number of genera recovered from the amniotic fluid of women who delivered 

preterm, including Sneathia spp., Staphylococcus spp., Prevotella spp., 

Peptostreptococcus spp., Haemophilus spp. and Leptotricihia spp. (61). 

 

8.5 Identification of bacteria in the placenta 

Much of the focus for intrauterine infection has been on bacteria recovered 

from amniotic fluid of women who deliver preterm, however it is known that 

prevalence of bacteria and even the subsequent inflammatory response can 

be common in term deliveries (62). One study in 2009 by Jones et al 

sequenced the 16S rDNA of bacteria found in the placenta and fetal 

membranes comparing neonates delivered both term and preterm. It showed 
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a greater diversity of bacteria in tissues from women who had delivered 

preterm and increased prevalence of bacteria in those born preterm 

compared to term. There were also species recovered in the preterm 

placenta and membranes not found at term such as Veillonella parvula, 

Haemophilus influenza, Peptoniphilus lacrimali, Finegoldia magna and 

Enterobacter aerogenes (63). A later study I carried out using high-

throughput sequencing found term deliveries shared many of the same 

genera, such as Streptococcus, Microbacterium, Rhodococcus and 

Corynebacterium, confirmed by two separate primer sets targeting different 

variable regions of the 16S rRNA gene (64). Six genera (Fusobacterium, 

Streptococcus, Mycoplasma, Aerococcus, Gardnerella and Ureaplasma) and 

one family (Enterobacteriaceae) which were either present in greater relative 

abundances in preterm samples or absent in term deliveries (Figure 8-6). 

There was a marked difference between the relative levels of Lactobacillus in 

the vaginal deliveries compared to caesarean sections; however this was 

expected and is easily identifiable. At the species level, Fusobacterium 

nucleatum, Mycoplasma hominis, Aerococcus christensenii, Streptococcus 

anginosus, Streptococcus agalactiae, Streptococcus spp. (mitis group) and 

Gardnerella vaginalis were all identified in the placental tissue of women who 

delivered preterm.  
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Figure 8-6: Bacteria present in placental membranes from term elective 

caesarean sections, term vaginal deliveries and preterm caesarean 

sections. 
Relative abundance of each genera are coloured by what 16S rRNA variable regions were 

used to amplify the sequencing library. The right hand heat map was sorted in descending 

order by the highest relative abundance genera identified using primers targeting V5-7. T 

CS: Term delivery by caesarean section. TL V: Term vaginal delivery. PTL V: Preterm 

vaginal delivery. This figure is the same used by the author in Placenta. 2014 Dec; 35 

(12):1099–101. 

 

 

The study provided further evidence for the role of bacteria in preterm birth. 

Bacterial DNA is present in the majority of placental membranes whether 

they are from term or preterm deliveries and irrespective of mode of delivery. 

However, the relative roles of bacterial diversity, bacterial load and host in 

the induction of preterm birth still remain to be clarified. 
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8.6 The source of placental bacteria 

Bacteria can colonise the placenta through a number of different routes, 

including ascending through the cervix from the vagina and haematogenous 

spread across the placenta. Ascending infection is characterised by a 

number of distinct stages. Firstly there is a change in the vaginal flora to 

include microbiota associated with invasion of the intrauterine cavity. This is 

usually associated with the development of bacterial vaginosis (65,66). There 

is a link between bacteria commonly found in the vagina and preterm birth 

(55,66,67). The second stage is the ascension through the cervix and 

colonisation of the decidua and chorionic membranes. Presence of bacteria 

on the fetal chorion is associated with thinning and membrane rupture which 

could lead to foetal infection (68). However, it has also known that bacteria 

can cross intact fetal membranes as well (69). Bacteria, once inside the 

amniotic cavity, can be ingested by the foetus through infected amniotic fluid 

leading to foetal bacteraemia and sepsis. 
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Figure 8-7: Ascending intrauterine infection. 
Adapted from Goldenberg et al (70).  

 

 

The classic view that these infectious agents invade and colonise maternal 

and fetal tissues through an ascending infection from the vagina does not 

explain the full spectrum of taxonomy recovered. There is increasing 

evidence for a haematogenous model of transmission to the placenta, 

notably from the oral cavity (71) and those bacteria can still be recovered 

from the neonate after delivery (72). A number of mouse model experiments 

have shown that infections from two organisms associated with periodontal 

disease, Porphyromonas gingivalis and Campylobacter rectus, are capable 
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of causing a number of adverse birth outcomes including low birth weight. If 

the bacteria reached the murine placenta they could inhibit a number of 

placental growth factors leading to IUGR (73–76). Using a nested PCR 

approach one recent study has shown a higher prevalence of Eikenella 

corrodens in placentas of women who had periodontitis and a higher 

prevalence of Fusobacterium nucleatum in women with periodontitis and 

preterm birth or low birth weight (77). Another study has used primers aimed 

at the 16S-23S rRNA intergenic transcribed spacer to track a a specific 

Fusobacterium nucleatum strain from a maternal origin to the gastric aspirate 

of the newborn, providing further evidence for the haematogenous spread of 

oral bacteria to the newborn (78). A systematic review looking for an 

association between periodontitis and preterm birth and low-birth weight 

found a positive correlation in nine out of ten studies (79). A recent study 

trying to define a common placental microbiome found it resembled the oral 

microbiome more than any other body site when compared against a large 

mixed population (80). This included some differences between those 

placentas recovered from term and preterm deliveries. 

The placenta and fetal membranes have been shown not to be sterile sites 

(62,80) and as techniques have become more sensitive, studies have moved 

beyond the mere detection of bacteria. Numerous microbial communities 

exist that have a commensal relationship with the host immune system, as 

well as others that are pathogenic. Advancements in current technologies for 

large-scale sequencing platforms allow greater insight and depth into distinct 

differences between these microbiomes and therefore could provide greater 
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evidence for bacteria that could be triggering adverse birth outcomes. High-

throughput sequencing has many advantages over the conventional Sanger 

sequencing including a decrease in the cost per sequence, the potential to 

uncover unlikely pathogens and the depth of coverage to provide a relatively 

unbiased profile of commensal and pathogenic bacteria (81). Although run 

time has increased compared to Sanger capillary sequencing, a single 

Illumina MiSeq run produces ~18 million paired-end reads compared to 

0.000096 million reads in a capillary sequencing run. In real terms, this 

reduces the cost per Megabase from ~£1000/Mb for Sanger sequencing to 

~£0.25/Mb for the Illumina MiSeq (82). The umbrella term high-throughput 

sequencing incorporates a number of different platforms utilising separate 

methods, however most require short template DNA (200-1000bp) and 

binding sites for forward and reverse sequencing primers. All current 

generation sequencers generate millions of sequenced reads in parallel from 

an input sample allowing the assembly of a draft genome in a single run. 

However, 16S rDNA high-throughput sequencing studies have widely 

discussed drawbacks including PCR bias (83) and reagent contamination 

(84). The lack of standardisation amongst the field also means that even 

once the data is generated, a variety of the different results can be obtained 

dependent on what downstream analysis is chosen (85). Still, the use of 

high-throughput sequencers have already been used successfully in other 

16S microbiome studies including antibiotic-associated diarrhoea (86) and 

bacterial vaginosis (87). It could be that intrauterine infection is also 

associated with a fluctuating community of bacteria, otherwise termed a 

dysbioses, rather than the isolation of a single pathogen. 
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8.7 Aims 

The main aim of this project was the characterisation of the range of 

placental microbiota found in a large cohort of women in rural Malawi and 

how community composition might associate with birth outcome. To do this I 

needed to develop and refine a protocol capable of collecting, processing 

and analysing samples in a low-income environment with greater risk of 

contamination. A secondary aim of the project was to quantify if the 

nutritional intervention that the cohort received as part of the clinical trial had 

an influence on the multiple microbiomes I measured. Additionally, I wanted 

to define both the oral and vaginal microbiomes in this group to probe 

possible sources of placental bacteria from other body sites. Lastly, due to 

the risk of ascending infection I also wanted to study the association between 

vaginal microbiota and adverse birth outcomes.  
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9 Chapter 2: General materials and methods 

 

9.1 Study design and enrolment 

All subsequent cross-sectional studies in this project were part of a larger 

clinical trial assessing whether providing Lipid-based Nutrient Supplements 

(LNS) to mothers during pregnancy and for 6 months postpartum, and to the 

infant from 6 to 18 months of age, improves child growth to a greater extent 

than prenatal iron and folic acid (IFA) or multiple micronutrient (MMN) tablets 

(88).  

Participants were enrolled prospectively into the main trial and followed 

throughout pregnancy, childbirth and beyond. Pregnant women who arrived 

for antenatal care during the enrolment period were approached for possible 

inclusion. Inclusion criteria were: ultrasound confirmed pregnancy of no more 

than 20 completed gestation weeks, residence in the defined catchment 

area, availability during the period of the study and signed or thumb-printed 

informed consent. Exclusion criteria were: age less than 15 years, need for 

frequent medical attention due to a chronic health condition, diagnosed 

asthma treated with regular medication, severe illness warranting hospital 

referral, history of allergy towards peanuts, history of anaphylaxis or serious 

allergic reaction to any substance, requiring emergency medical care, 

pregnancy complications evident at enrolment visit (moderate to severe 

oedema, blood Hb concentration < 50 g / l, systolic blood pressure (BP) > 

160 mmHg or diastolic BP > 100 mmHg), earlier participation in the iLiNS-
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DYAD-M trial (during a previous pregnancy), or concurrent participation in 

any other clinical trial. All women enrolled as part of the main trial who 

delivered were included in these analyses. 

 

9.2 Study setting 

Enrolment took place in southern Malawi in four separate study sites in the 

Mangochi district. These included one public district hospital (Mangochi), one 

semi-private hospital (Malindi) and two public health centres (Lungwena and 

Namwera). It is estimated that Magochi district hospital serves a semi-urban 

population of 100,000, while the other sites provide health care to a rural 

population of around 30,000 people each.  

 

9.3 Collection of birth outcome and baseline data 

At enrolment, participants’ weight, height and haemoglobin concentration 

were measured and obstetric history was recorded. Duration of pregnancy 

was measured using ultrasound. All participants were tested for malarial 

infection and HIV (unless they were already known to be HIV positive or 

opted out). At the first home visit to participants 1-2 weeks post-enrolment, 

information was gathered on demographic, social and economic background. 

Birth weight was measured as soon as possible after delivery while newborn 

length and newborn head circumference were measured at the infant’s first 

clinic visit at 1-2 weeks old. 
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9.4 Sample collection 

The placenta was collected after delivery and transferred to a covered sterile 

container in the hospital, health centre or home (wherever the delivery took 

place). While in the sterile container awaiting sampling temperatures ranged 

between 20°C and 40°C. Tissue sampling of the placenta occurred 

immediately after delivery, unless delivery occurred overnight (in which case 

the placenta was sampled the following morning), or at home (in which case 

the container had to be transported to the nearest study clinic first). Two 5 cm 

x 1 cm pieces of the fetal (chorionic and amniotic) membrane were taken 

from the edge of the rupture site and two 0.5 cm x 0.5 cm pieces of placental 

tissue at full thickness were taken from near the umbilical cord insertion. 

Tissue was cut using individual surgical scissors for each sample. Scissors 

were autoclaved and wiped with DNA AWAY (Thermo scientific, USA) 

between uses. One fetal membrane and one placenta sample were placed in 

separate cryovials. If the sample collection took place in Mangochi district 

hospital, the cryovials were placed at -80°C. If sample collection took place at 

an outlying health centre or Malindi hospital, the samples were stored at -

20°C for a maximum of two days before being transferred to -80°C storage at 

Mangochi district hospital. The other two placenta and fetal membrane 

samples were placed in 10% neutral buffered formalin fixative, processed 

and embedded in paraffin wax. These were sectioned at 3-5 micron thick and 

stained with haematoxylin & eosin before being read. 



35 

 

Vaginal mucus samples were taken at a postnatal visit (approx. 1 week after 

delivery), by a nurse using 4 cotton swabs. She inserted the swabs 

approximately 7 cm deep into the participant’s vagina, without a visual 

control, and rotated the swab a few times before withdrawing it. After the 

sample collection, two of these swabs were stored at -80°C for to await DNA 

extraction. 

Dental swabs were collected at Mangochi central site from all mothers who 

completed the oral health visit at one week after delivery or as soon as 

possible by specifically trained dental therapists. One sterile plastic swab 

stick with nylon fiber tip, stored in plain dry tube (microRheologics no. 552, 

Coban, Brescia, Italy) was used for the sample collection. The dental 

therapists collected the sample by rubbing the gingival margin of each tooth 

with the swab. They used dental mirror elevate the cheeks so that the teeth 

were visible and skin contact was avoided. They started the sample 

collection from the buccal side of the most posterior (farthest) tooth on the 

right upper jaw. They repeated the procedure for the palatal sites of the same 

teeth, continuing then to the lower jaw and repeating it for all lower teeth’s 

buccal and lingual side. They placed the swab immediately to a cold box with 

ice bricks. The cold box was taken to the laboratory and handed it over to a 

laboratory technician who removed the swab from the tube and cut the 

applicator stick with scissors above the fibre tip to fit the swab into cryovials 

where they were stored. Prior to cutting, they wiped the scissors with 

disinfectant to avoid contamination. They placed the cyrovial into a -

20°Cfreezer and as soon as possible, moved the swab into a -80°C freezer.  
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9.5 DNA Extraction 

DNA extraction was carried out for all sample types using the QIAmp DNA 

mini kit (Qiagen, Germany) as per the manufacturer's protocol with an 

additional cell disruption step after lysis with Proteinase K. In the additional 

step, 0.1mm glass beads (Lysing Matrix B, MP Biomedicals) were added to 

each sample and the 2ml tubes were shaken on a cell disrupter (Vortex 

Genie 2, Scientific Industries) for 10 minutes at the highest speed. For every 

10 extractions, a negative extraction control was included (200μl buffer AE). 

  

9.6 16S rDNA broad-range qPCR 

All DNA samples from placenta and fetal membranes were screened for 

bacteria using a quantitative PCR (qPCR) SYBR green fluorescent dye 

assay. The following primer pair targeted the V5-7 regions of the 16S rRNA 

gene, v785F: 5′-GGATTAGATACCCBRGTAGTC-3′, 1175R: 5′-

ACGTCRTCCCCDCCTTCCTC-3′ (64). Each PCR reaction was carried out 

with the following, 1x Power SYBR Green master mix (Life technologies), 

0.4μM of forward and reverse primers, 1µl of template DNA and molecular 

grade water (Bioline) to give a final volume of 25μl. Amplification took place 

in an ABI 7300 Real-Time system (Life) under the following conditions: 

95°C×10 min, 40 cycles of 95°C×15 sec and 60°C×1 min. Each PCR run 

included three negative PCR controls (1μl buffer AE from QIAmp DNA mini 

kit), and a serial dilution of a known amount of positive control from a pure 
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Escherichia coli culture for quantification used to calculate the bacterial load 

for each sample. 16S rRNA copy number for each E. coli dilution was 

calculated from the genome molecular weight and DNA concentration as 

measured by a Qubit 2.0 (Life technologies) and corrected for the seven 16S 

rRNA copies within the E. coli genome. Samples were defined as positive for 

bacterial DNA if their Ct value was at least 1 Ct lower than the three negative 

PCR controls (28 Ct ± 3 cycles, depending on variation between runs). 

 

9.7 16S rDNA amplicon high-throughput sequencing 

Library preparation was carried out using dual-indexed forward and reverse 

primers, with barcodes taken from a previous study (89). Both sets of primer 

sequences can be found in appendix. Each library preparation PCR was 

carried out with 1X Molzym PCR Buffer, 200 µM dNTPs (Bioline), 0.4 µM 

forward and reverse primer, 25 mM Moltaq, 5µl template DNA and molecular 

grade water (Bioline) to give a final reaction volume of 25µl. The reaction was 

amplified under the following conditions depending on the sample type. 

Placenta and fetal membrane samples were amplified under the following 

conditions: 94°C×3 min, 32 cycles of 94°C×30 sec, 60°C×40 sec and 

72°C×90 sec, with a final extension cycle of 72°C×10 min. Vaginal and oral 

swab samples were amplified under the following conditions: 94°C×3 min, 30 

cycles of 94°C×30 sec, 60°C×40 sec and 72°C×90 sec, with a final extension 

cycle of 72°C×10 min. The resulting amplicons were cleaned and pooled 

using SequalPrep normalization plate kits (Invitrogen) and AMPure XP beads 

(Beckman Coulter) both as per manufacturer’s protocol. Each plate was 
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pooled into an equimolar final library after quantification using a Qubit 2.0 

(Life technologies). Library was loaded onto a MiSeq (Illumina) as per 

manufacturer’s protocol for 500 cycle V2 kits and were multiplexed at either 

96 or 384 samples per run. Custom primers were added for read 1 

(TACCGGGACTTAGGATTAGATACCCBRGTAGTC), read 2 

(AACACGTTTTAACGTCRTCCCCDCCTTCCTC) and index 1 

(GAGGAAGGHGGGGAYGACGTTAAAACGTGTT). 

 

9.8 Bioinformatics and statistical analysis 

Paired-end 250bp sequenced reads from each MiSeq run were merged using 

FLASH with the minimum and maximum overlap changed to match the 

370bp expected amplicon (90). Merged reads were demultiplexed, pooled 

and assigned OTUs using QIIME v1.8.0 (91) at 97% similarity against a small 

custom database of full length 16S rDNA sequences and any sequences that 

failed to match at 97% were assigned against the full Greengenes database 

using UCLUST. A representative sequence was picked for each OTU cluster 

and aligned using PyNAST. Taxonomy information from Greengenes was 

added to each representative OTU using UCLUST. Parameters for all scripts 

run through QIIME can be found in the appendix. 

Mock communities were sequenced alongside samples and used to filter the 

dataset for error. Each sample was filtered based on the relative abundance 

at which the first erroneous OTU appeared in the mock community data for 
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that specific sequencing run. For most sequencing runs all OTUs occurring 

~0.8% relative abundance and below were removed.  

 

Table 9-1: Twenty member mock community control (BEI resources) 

Bacterial species  NCBI reference sequence 

Acinetobacter baumannii, strain 5377 NC_009085 

Actinomyces odontolyticus strain 1A.21 NZ_AAYI02000000 

Bacillus cereus strain NRS 248 NC_003909 

Bacteroides vulgatus strain ATCC 8482 NC_009614 

Clostridium beijerinckii strain NCIMB 8052 NC_009617 

Deinococcus radiodurans strain R1 (smooth) NC_001263, NC_001264 

Enterococcus faecalis strain OG1RF NC_17316 

Escherichia coli strain K12 substrain MG1655 NC_000913 

Helicobacter pylori strain 26695 NC_000915 

Lactobacillus gasseri strain 63 AM NC_008530 

Listeria monocytogenes strain EGDe NC_003210 

Neisseria meningitides strain MC58 NC_003112 

Propionibacterium acnes strain KPA171202 NC_006085 

Pseudomonas aeruginosa strain PAO1-LAC NC_002516 

Rhodobacter sphaeroides strain ATH 2.4.1 NC_007493, NC_007494 

Staphylococcus aureus strain TCH 1516 NC_010079 

Staphylococcus epidermidis FDA strain PCI 1200 NC_004461 

Streptococcus agalactiae strain 2603 V/R NC_004116 

Streptococcus mutans strain UA159 NC_004350 

Streptococcus pneumonia strain TIGR4 NC_003028 
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Negative controls were sequenced for screening of reagent contamination. 

SourceTracker (92) was used to predict OTUs in the placental and fetal 

membrane databases whose sources were the negative controls. These 

OTUs were removed from further analysis. After filtering, any samples with 

less than 1000 reads were also removed.  

Alpha diversity (number of unique OTUs) and beta diversity (unweighted 

UniFrac distance) were both calculated as implemented in QIIME after 

random subsampling without replacement to 1000 reads per sample. 

Diversity of microbes within an individual’s body site was summarised by 

taking the median value of their intra-individual UniFrac distances with a high 

value representing a variable community from other individuals and a lower 

value representing a stable community. The bacterial load of particular phyla, 

families or species was calculated from participant’s relative abundance and 

their overall bacteria load. Where individual bacterial loads of different 

species were calculated, 16S rRNA copy number was adjusted for those 

species accordingly. Heat map comparisons between organism relative 

abundances were produced using the R package Algorithms and framework 

for Nonnegative Matrix Factorization (NMF). 

Birth weight as measured was used if recorded within 48 h of delivery; if not, 

birth weight was back calculated from weight measured at 6 or 13 days. If the 

weight was first measured within 2 to 5 days after delivery, when infants 

usually lose weight, birth weight was estimated by applying an age-

dependent multiplicative factor to the measured weight (93). Length-for-age 

and head circumference-for-age z scores were calculated using the WHO 



41 

 

Child Growth Standards (94). Statistical analysis was carried out with Stata 

v13 and R v3.1.0. Adjusted linear regression models were used to measure 

the change in continuous outcome variables (duration of delivery, birth 

weight, LAZ and HCZ). Covariates entered into adjusted models were 

chosen based on previous literature and were entered into the model 

simultaneously in a one step, forced entry method. For comparisons between 

OTU abundances and birth outcomes, q values were calculated using the 

Benjamini-Hochberg correction to control for the false discovery rate (FDR). 

 

9.9 Ethical approval and consent 

Informed consent was granted from the mother at enrolment. Ethical 

approval was obtained from College of Medicine Research and Ethics 

Committee (COMREC), Malawi (Protocol number: P.08/10/972). The trial 

was registered at clinicaltrials.gov as NCT01239693. 
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10 Chapter 3: Development of high-throughput 16S 

rDNA amplicon sequencing method. 

 

10.1 Introduction 

An exponential rise in high-throughput sequencing microbiome studies has 

been possible because of the advances made in wet and dry laboratory 

techniques. For example, the curation of detailed 16S rDNA sequence 

databases (95) and algorithms capable of dealing with fast alignment of 

millions of sequences (96) have allowed accurate recovery of microbial 

communities from early next generation sequencers (97). Unique short DNA 

sequences that can be integrated into the 16S rDNA amplicon from specific 

samples during a PCR step allow the multiplexing of hundreds of samples in 

a single sequencing run (98). There is enough unique variety in these short 

“barcode” sequences, especially with dual indexing of the forward and 

reverse strands, to now allow multiplexing of thousands of samples (89,99). 

This technique maximises the potential read depth in the latest sequencers to 

reduce per-sample sequencing costs to their lowest point in history.  

There are many challenges facing the interpretation of 16S rRNA gene 

sequencing results. Primary extraction of genomic DNA can lead to both bias 

and contamination in later analysis (84,100). The amplicon length studied 

effects classification (101), diversity of microbes identified and their relative 

abundance, with smaller amplicons inflating the number of unique community 

members (102) and the choice of variable region studied has multiple, far-
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reaching effects on results. These include underestimation and 

overestimation of the number of OTUs in a community (103,104) and 

different taxa recovered depending on region and community analysed (105–

107). The type of full length 16S rDNA sequence database used produces 

different alignment results (85). Chimeric reads produced by PCR generation 

of the sequencing library can lead to false novel organisms being discovered 

in the community (108,109). In fact, PCR biases in general have been found 

to exhibit the greatest effect over community structure (83,110). 

Even with these drawbacks, accurate and reliable results can be generated 

with the use of the right tools and techniques (111,112). These include 

mechanical disruption of bacterial cells in the extraction and the avoidance of 

multiple freezing and thawing steps to improve recovery of all taxa (113). 

Reducing the number of PCR cycles during library preparation to prevent 

“jackpotting” and stringent quality filtering in the downstream analysis phase 

both limit the number of erroneous sequences (114,115). Larger, more 

diverse databases will allow greater breadth of taxonomic classification (116) 

whereas smaller, curated databases may be better for accurate identification 

to species level (117). There are also different advantages to using 

overlapping and non-overlapping paired-end reads (99,118) including uses a 

complete overlap to check and correct sequencing error, greatly improving 

quality (119). 

There are many bioinformatics tools now available for analysis of 16S 

amplicon data. The most popular packages combining a number of tools from 

different sources are currently Quantitative Insights Into Microbial Ecology 
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(QIIME) (91) and mothur (120). Prior to the initiation of this project there had 

not been a single study comparing microbial communities in placental tissue. 

In addition to this there was no consensus in the methods used throughout 

different microbiome projects. For these reasons I wanted to design and 

optimise a method that would be ideally suited to addressing the aims of our 

project. This included the use of a positive control material to provide quality 

control and standardisation of each method, this has been overlooked in the 

vast majority of previously  published sequencing projects (121,122).  

The aim of this chapter was to develop a high-throughput sequencing method 

for targeting the 16S rRNA gene that identified true constituents compared to 

contamination. This method would be designed to be able to process 

thousands of samples easily by a single person and would identify bacteria 

present at their greatest possible taxonomic depth in the placenta. 
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10.2 Materials and Methods 

 

10.2.1 Sample collection 

For preliminary analysis and method development, nine extra full-thickness 

placental samples were taken after delivery, in addition to the two samples 

already taken as part of the study.  These samples underwent the same 

processing and shipment as those stipulated in section 9.4. 

   

10.2.2 DNA Extraction 

The nine extra placental samples used in this preliminary work underwent the 

same extraction protocol as in section 9.5. 

 

10.2.3 16S rDNA amplicon high-throughput sequencing 

All PCR and sequencing reactions took place under the same protocols and 

conditions as stipulated in section 9.7 unless otherwise stated in the results. 

All gels were loaded with 20µl of amplified product in pre-cast 2% E-gel 

Agarose SYBR-Safe gels (Invitrogen). All bands on the gel were sized using 

either 50bp or 100bp DNA ladders (Invitrogen). For results analysing 

potential contamination of PCR reagents, a single Sanger sequencing run 

was performed on PCR amplicon using the Big-Dye 3.1 Cycle-sequencing kit 

(Thermo Fisher scientific) as per manufacturer’s instructions and was 

analysed on a 3130 Genetic Analyser (Thermo Fisher scientific). 
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10.2.4 Bioinformatics 

Primer prospector was used to perform in silico comparisons between primer 

pairs. Analyze_primers.py, get_amplicons_and_reads.py and 

taxa_assignment_report.py were used to score primers against the full 16S 

Greengenes database, generate the amplicon that would be produced and 

test the possible taxonomic depth recoverable from the amplicon using the 

RDP classifier. The script check_primer_barcode_dimers.py was used to 

check and filter possible causes of primer dimer after MiSeq compatible 

785F/1175R library preparation primers were designed. Downstream 

analysis and quality filtering of resulting FASTQ files generated from the 

MiSeq was carried out under the same protocol as stipulated in section 9.8. 
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10.3 Results 

 

10.3.1 Comparison of 16S rRNA variable region targets for optimum 

taxonomic coverage 

In order to build a representative microbiome from the placenta, fetal 

membrane, oral and vaginal samples collected in this study I compared three 

different pairs of broad-range 16S rDNA primers that targeted different 

variable regions of the 16S rRNA gene. Three potential pairs were compared 

in silico against a large database of full length 16S rDNA gene sequences 

using primer prospector (123). Two of the primer pairs chosen were 

785F/1175R and 13F/343R, both of which are used routinely by the clinical 

microbiology service at Great Ormond Street Hospital. The third primer pair, 

515F/806R, is used regularly in microbiome studies and a large number of 

individually barcoded primers have already been designed (89). Amplicons 

were built from successful hits against the entirety of the Greengenes 

database for each pair of primer sequences entered in silico. A scoring 

system based on gaps, 3’ and non-3’ mismatches was used to decide 

whether the primers would successfully generate an amplicon against a 

target 16S rDNA database sequence. It allowed for the modelling of the 

potential success or failure of using a specific primer without the costly 

process of trial and error on a high-throughput sequencer. Figure 10-1 

showed, as expected, that all primers lost coverage as they attempted to 

increase the depth of classification. Both 785F/1175R and 515F/806R 

generated a taxonomic classification for a similar number of reads in the 
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database. Primer pair 785F/1175R classified more sequences at phylum, 

class and order level compared to 515F/806R but this difference was not 

seen at the family level. 8F/3R was unable to classify a large proportion of 

taxa  within the Greengenes database and the in silico distribution of the 

length of amplicons generated was quite erratic with no clear peak as seen in 

the other primer pairs. As both 785F/1175R and 515F/806R showed similar 

high coverage they were chosen for further optimisation using placental 

samples on the MiSeq. 

 

 

Figure 10-1: In silico comparison of taxonomic coverage.  
Taxonomic coverage and classification depth predicated against the Greengenes database 

for three different potential primer pairs. Successful primer hits against the database with low 

numbers of mismatches were modelled using the Primer Prospector pipeline. Successful 

amplicons built from the entire database were then assigned taxonomy, then number of 

successfully assigned amplicons or OTUs are displayed on the y-axis. 
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Custom sequencing primers were designed with the addition of Illumina 

adapters, unique barcode sequences and an extra padding sequencing to 

lessen the likelihood of possible primer dimer. Possibility of secondary 

structure formation and primer dimer between the primers and the addition of 

the unique barcodes was checked in silico using primer prospector’s 

check_primer_barcode_dimers.py script.  

After library preparation, I compared the efficiency of the primers in 

amplifying a serial dilution of a known concentration of Escherichia coli. 

Reactions for both primer pairs were set up using the same input volume of 

template (5µl), the same number of PCR cycles (32 cycles) and the same 

unique barcode sequence (rcbc0). The annealing temperature for primers 

515F/806R (50°C) differed from 785F/1175R (60°C) as this is what was used 

previously by Caporaso et al (124). As Figure 10-2 shows, primers 

785F/1175R generated a higher concentration of amplified product when 

compared to 515F/806R.  
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Figure 10-2: Semi-quantitative comparison of product concentration 
after library preparation between 515F/806R and 785F/1175R primer 
pairs.  
Both sets of primer pairs amplified the same input concentrations of E. coli using 5µl of 
template and 32 cycles of PCR. 20µl of amplified library was visualised on 2% agarose 
SYBR Safe E-Gels (Invitrogen). 

 

 

Nine placental samples were sequenced on separate MiSeq runs using both 

the custom designed 785F/1175R primers and Caporaso et al designed 

515F/806R primers. After quality filtering and demultiplexing, the 785F/1175R 

primers generated 5,834,379 sequences with a median length of 369bp. The 

515F/806R primers generated 5,896,952 sequences with a median length of 

242bp. Analysis by the QIIME pipeline was used to see whether assembling 

longer reads allowed for greater confidence in assigning genus and species 

classifications. The reads generated by the primer pair 785F/1175R 

generated reads which both had more unique OTUs than 515F/806R and a 
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higher percentage of reads classified to both genus (77% compared to 68%) 

and species (31% compared to 23%) level (Figure 10-3) 

 

 

Figure 10-3: Comparison of OTU richness and taxonomic depth 

between two primer pairs. 
The absolute numbers of OTUs that could be confidently assigned to each classification are 

listed on the y-axis for each of the separate MiSeq runs. Each of the values at Kingdom 

classification represents 100% of the OTUs identified by that particular primer pair. 

 

 

10.3.2 Development of library preparation protocol for 

custom Illumina MiSeq runs 

To optimise library preparation for broad-range 16S rDNA specific amplicon I 

compared Taq polymerase, cycle number and reaction template volume. In 

order to try and reduce error within the PCR reaction I compared high fidelity 

polymerase (KAPA Biosystems) against an ultra-clean polymerase (Moltaq, 

Molzym). I compared both Taq polymerases using the same PCR conditions 
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for both as stipulated in section 9.5. The KAPA Taq and buffer were loaded 

as per manufacturer’s instructions. The library after PCR was visualised on a 

2% SYBR Safe agarose gel (Invitrogen). Figure 10-4 shows that negative 

controls in lanes 6 and 7 amplified using KAPA Hifi Taq, containing 5µl PCR-

grade water (Bioline), generated a band at the same size as the expected 

amplicon and matched band amplified in the E. coli controls in lanes 2, 3 and 

4. This band was missing in the negative controls amplified with the ultra-

clean Moltaq polymerase.  

 

 

Figure 10-4: Bacterial contamination in Taq polymerase. 
20µl of amplified library was visualised on 2% agarose SYBR Safe E-Gels (Invitrogen). 

Lanes 2, 3 and 4 in both gels contain a serial dilution of a known concentration of E. coli. 

Negative controls in lanes 6 and 7 contained 5µl of PCR-grade water. KAPA Hifi Taq lane 5: 

50bp ladder and on the Moltaq gel lane 5: 100bp ladder. 16S rDNA amplicons in both gels 

appeared at ~500bp. 
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To reduce the number of errors introduced into the dataset during the PCR, I 

reduced the number of PCR cycles. A reduction in the number of cycles from 

36 to 34, following the addition of 2µl template into a 25µl reaction, resulted 

in a 10-fold reduction in the sensitivity of the PCR (Figure 10-5). 

 

 

 

Figure 10-5: Comparison of lowering cycle number on sequencing 
library generation. 
20µl of amplified library was visualised on 2% agarose SYBR Safe E-Gels. EC = positive 
control E. coli DNA. 34 or 36 = 34 cycles or 36 cycles of PCR respectively.  Expected 

amplicon size was observed at ~500bp on a 50bp ladder. 
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However, by increasing the volume of template added to the reaction I was 

able to reduce the number of PCR cycles whilst retaining the original 

sensitivity of the PCR. Figure 10-6 shows in lanes 11 and 12 of the first gel, 

that successful amplification of E. coli was possible once volume of template 

added to the reaction was increased to 5µl using 30 PCR cycles. However 

when amplifying the lowest diluted concentration in E. coli (right hand gel, 

lane 2) only elucidated a very weak band compared to when amplified by 32 

cycles (left hand gel, lane 7).  When 2µl of E. coli template was added and 

amplified for 30 cycles, no band could be seen on the gel (left hand gel, lanes 

8, 9 and 10). 

 

 

 

Figure 10-6: Comparison of template volume and cycle number on 

library preparation. 
20µl of amplified library was visualised on 2% agarose SYBR Safe E-Gels. 2 or 5 EC = 
Either 2µl or 5µl of 1/10 serial dilutions of E. coli DNA for each combination of loading 
volume and cycle number. From left to right: EC 10

-2
, EC 10

-3
 and EC 10

-4
. 30 or 32 = 30 
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cycles or 32 cycles of PCR respectively.  Expected amplicon size was ~500bp on a 50bp 
ladder. 

 

 

 

10.3.3 Bacterial contamination of oligonucleotide primers 

when sequencing low biomass samples 

 

After preliminary analysis of the first 384 samples sequenced I found that the 

predominate organism recovered from the high-throughput sequencing data 

was an unknown Sphingomonas species (Figure 10-7). 
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Figure 10-7: Relative abundance of a Sphingomonas sp. across 384 placental tissue samples. 
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I tested for the possibility of reagent contamination and when I used the 

sequencing primers as template in the library preparation reaction I found 

that I could detect amplicon at the same size as our expected 16S rDNA 

product (Figure 10-8Figure 10-8). Sanger sequencing of the PCR product 

produced was used to confirm whether it was the same organism identified 

after high-throughput sequencing on the MiSeq and a BLAST search of the 

Sanger sequencing product also matched it to an uncultured Sphingomonas 

sp. New lyophilised oligonucleotide primers from a different source were also 

tested for the same contamination and were found to be free of detectable 

bacterial DNA. These primers were taken forward to be used in all future 

library preparations. 

 

 

Figure 10-8: Amplification of bacterial DNA contamination found in 

diluted oligonucleotides.  
20µl of amplified library was visualised on 2% agarose. Lane 2 contained amplified product 
from 5µl PCR grade water and lane 3 contained amplified product from 5µl E.coli DNA. 
Lanes 4-11 contained amplified product from 5µl of an randomly selected individual 
oligonucleotide used for library preparation.  Expected amplicon size was ~500bp on a 50bp 
ladder. 
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10.3.4 Development of a concise custom 16S database and 

rigorous filtering recreates artificial mock communities 

To validate the specificity and sensitivity of my 16S rDNA high-throughput 

sequencing wet lab and dry lab protocols, I sequenced mixtures of known 

concentrations of genomic DNA from a number of different bacteria in an 

attempt to describe the exact microbial community present. I used a ten 

member mock community kindly provided by the Jim Hugget at LGC, 

Teddington, UK (Table 10-1).  

 

Table 10-1: Ten member mixed bacterial mock community with known 

relative abundances 
 

Bacterial species  
16S rRNA gene copy number adjusted 

relative abundance (%) 

Neisseria meningitides 28.60 

Streptococcus pneumoniae 25.83 

Klebsiella pneumonia 20.24 

Staphylococcus aureus 12.74 

Streptococcus pyogenes 7.26 

Streptococcus agalactiae 2.72 

Escherichia coli 1.50 

Enterococcus faecalis 0.67 

Pseudmonas aeruiginosa 0.36 

Acinetobacter baumanii 0.07 
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I sequenced the mock community in triplicate on a single MiSeq run and after 

quality filtering I obtained 244,009, 21,671 and 19,705 high quality reads in 

each sample. After picking Operational Taxonomic Units at 97% sequence 

identity against either the Greengenes database or SILVA database, I found 

a large amount of read artefacts and erroneous assignment of taxonomy 

leading to an inflation of richness and phylogenetic diversity as sequencing 

depth increased. Figure 10-9 shows even though there was only a single 

Neisseria species in the sample, read error contributed to five separate OTU 

bins being assigned Neisseria or Neisseriaceae taxonomy. This included one 

OTU that clustered with Streptococcus spp. rather than in the Neisseria 

clade. Similar separations of clades due to error were also seen in both 

OTUs assigned to either Streptococcus or Staphylococcus genera. I also 

found at least one example of an erroneous sequence included in the 

Greengenes database that led to a sequence that was later shown to have 

99% similarity to Streptococcus pneumoniae being clustered as a separate 

OTU identified as an uncultured member of the Caulobacteraceae family. 
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Figure 10-9: Phylogenetic tree of the most abundant 28 OTUs after sequencing a known mock community. 
Phylogenetic analyses of ~370 bp OTUs with taxonomy assigned by RDP classifier. Colours highlight similar taxa that have been clustered 

on separate branches based on nucleotide differences. 
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I filtered the SILVA SSU Ref NR 111 database from 597,607 full length 16S 

rDNA sequences to 5,493 sequences. I kept only high quality sequences that 

had species identification and were from phyla previously found in our 

dataset after taxonomy assignment against the full Greengenes database. In 

most cases I limited the database to one full length sequence per species. 

When assigning global OTUs, I would first pick against the smaller, curated 

custom database and would pass any sequences that failed to match at 97% 

similarity through a second round of OTU picking against the full Greengenes 

database. 

An unfiltered dataset with OTUs assigned through the default workflow in 

QIIME found 166 unique OTUs in the 20 species mixed mock community 

(Table 10-2). This included all the known community members as well as 69 

OTUs whose taxa did not match any in the mock community. The most 

inflated OTU counts in actual mock community genera were Streptococcus 

(26 unique OTUs compared to 3 species) and Staphylococcus (24 OTUs 

compared to 1 species). Using the two rounds of OTU picking against our 

custom database and modest filtering of the dataset, removing all OTUs 

found at 0.07% abundance in the sample and below, I removed a vast 

majority of spurious OTUs (Table 10-2). The value 0.07% was chosen as it 

was the most abundant OTU from a taxonomic lineage that I knew was not 

present in the mock community. 

Using the same OTU table, I performed a further rigorous filtering step that 

removed the erroneous Neisseria, Streptococcus and Staphylococcus OTUs 

identified after multiple pairwise alignments in Figure 10-9. This led to all 
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OTUs present at 1% relative abundance and below in the sample removed. 

While this recreated an ideal OTU-to-species ratio for many of the mock 

community members it also meant three of the lower abundance organisms 

were filtered out from the dataset entirely (Table 10-2). 

 

 

Table 10-2: Comparison of database and filtering effects on mock 

community members  
 

 
Unfiltered, 

Greengenes 
database 

Contaminating 
bacteria filtered 
(0.07%), custom 

database 

Major alignment 
errors filtered 
(1%), custom 

database 

Overall number of OTUs 166 29 13 

Neisseria meningitides 8 2 2 

Streptococcus pneumoniae 21 6 1 

Klebsiella pneumonia 8 6 4 

Staphylococcus aureus 24 6 2 

Streptococcus pyogenes 4 2 2 

Streptococcus agalactiae 1 1 1 

Escherichia coli 6 1 1 

Enterococcus faecalis 14 2 0 

Pseudmonas aeruiginosa 7 1 0 

Acinetobacter baumanii 5 1 0 

Other 68 0 0 
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10.4 Discussion 

A successful method for the characterisation of microbiota across multiple 

body sites has been designed and optimised and can now be applied to the 

samples collected in this study. Likely sources of reagent contamination have 

been identified and removed and methods formulated to filter out external 

PCR and sequencing errors from  the dataset. 

In this study I compared three primer sets that covered 16S rRNA gene 

hypervariable regions V1-V2 (8F/3R), V4 (515F/806R) and V5-V7 

(785F/1175R). Much of the variance seen in a microbiome study can be due 

to the particular human, animal or environmental site studied as well as the 

technology employed to capture, amplify and sequence DNA. However 

choosing which of the target variable regions of the 16S rDNA gene to 

amplify is an important contributing factor (105). Liu et al reported that 

primers covering the V2 and V3 regions performed much better than V6 in 

taxonomic assignment and community clustering (125). Although I compared 

similar variable regions, in this study, I merged larger amplicons from 

overlapping paired-end reads, encompassing multiple variable regions, which 

could explain why the V5-V7 amplicon in this study yielded the best results. 

Soergel et al proposed a primer pair amplifying a smaller read length from 

the V4 provided similar coverage to longer reads from other areas of the 

gene for comparing shifts at the phylum level (105). However phylum level 

shifts are not always useful and species level identification is ideal in many 

studies. The microbiome of placental and fetal tissue does not have the same 

static, complex microbiome found in other sites, for example the gut and so 
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large scale comparisons of shift in bacteria phyla is unlikely to be as useful in 

determining underlying problems. In silico comparisons have been used to 

evaluate primer pairs (106,107) and although this kind of computational 

modelling can identify obvious shortcomings of certain methods, it can be 

difficult to translate these findings to those of the more complex 

representative human body sites. There are limitations in every broad-range 

primer pair chosen and so screening of potential candidates for your study 

question against “real world” examples is a key advantage (106). I found 

primers covering the V5-V7 hypervariable region could easily be integrated 

into a workflow on the MiSeq platform and provided better coverage for our 

specific samples when compared to the two other primer pairs in this study. 

Reagent contamination is now beginning to be recognised as a large 

confounding factor in microbiome studies (126). In a study by Salter et al, 

they showed that as the bacterial biomass used as input for your library 

preparation reduced, the relative amount and diversity of reagent 

contamination increased (84). In their example they used serial dilutions of 

known quantities of Salmonella bongori to demonstrate this, however I show 

similar results when sequencing 16S rDNA from placental tissue. The 

amount of bacterial DNA extracted from the placenta can vary greatly which 

leaves ample opportunity in some samples to amplify 16S rDNA 

contamination found in laboratory reagents. In our case it was widespread 

presence of a Sphingomonas sp. in the diluted forward and reverse 

oligonucleotide primers was the most significant contamination faced. This is 

due to the fact that primers can be shipped with contaminating bacterial DNA 
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due to improper sterilisation during the manufacturing process. There have 

been other published cases of Sphingomonas spp. contamination in 16S 

rDNA studies (127,128) probably because this organism is a recognised as a 

contaminant of ultra-pure water systems in the manufacturing industry (129). 

Due to the lower levels of contamination observed in lyophilised primers 

supplied by the same company it is likely that water used during 

oligonucleotide synthesis was the source.   

The number of PCR cycles has long been recognised as a source of bias 

and can lead to inflation of unique 16S rDNA sequences in bacterial studies. 

In a comparison between 35 and 18 amplification cycles, an increase in the 

percentage of chimeric sequences was seen at 35 cycles (130). A later 

similar study found 30% more chimeric samples within their dataset when 

comparing amplification at 30 cycles to 15 cycles (114). Unfortunately, 

reduction of PCR cycle also leads to reduction in the amount of PCR product 

recovered. In this study I have tried to strike a balance between lowering 

PCR cycles but still keeping sensitivity high enough to identify genuine 

bacterial colonisation of placental tissue. Instead I have focused on the use 

of ultra-pure reagents (Moltaq) and a number of methods to try and reduce 

the numbers of erroneous reads post-sequencing, including clustering OTUs 

and extensive quality filtering (115,131). 

Other considerations to take into account when trying to improve the 

accuracy and reproducibility of high-throughput sequencing data are the 

quality of the reads produced and the reference database used. Generally 

the MiSeq can produce millions of high quality reads but the accuracy of 
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Illumina reads increases from 85% to 99.65% when overlapping paired-end 

reads are used instead of single-end (132). There are also a host of 

documented advantages using the current Greengenes database as a 

training set due to it being largest available repository of curated full length 

16S rDNA gene sequences. Trimming this reference database to match a 

specific amplicon length has also been shown to increase confidence in 

taxonomic assignment (116). I have chosen to pursue an additional strategy 

that is the curation of a site-specific reference database, which has been 

previously described for a set of oral microbiome data (133). It is common for 

16S databases to have large numbers of unidentified and poorly annotated 

sequences and this leads to poor taxonomic assignment. Instead, a site-

specific 16S rDNA database can be curated and updated and as more 

samples are sequenced, the database becomes more accurate, as 

previously shown by the Vaginal Human Microbiome Project (117). 

The sequencing technique has been designed and optimised and can now 

be applied to the study samples using larger multiplexed MiSeq runs. 

Jackknifed bootstrapping analysis of the data already collected showed that 

1,000 sequences per sample provided enough depth to recover all the 

diversity in the sample. This means there is the potential to multiplex 500 

samples on a single MiSeq run and still be confident the results are accurate 

and reproducible. Also, as improvements to sequencing methods and 

downstream processing of data are regularly published (119,134) they should 

lead to even more reproducible and reliable results from microbiome studies.  
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11 Chapter 4: Effect of the Lipid-based nutritional 

supplement on placental, oral and vaginal 

microbiota. 

 

11.1 Introduction 

Nutritional status is a key health determinant, especially during pregnancy. 

The prevalence of women with low BMI in Africa is still 10% higher than in 

high-income countries (9) and maternal nutritional deficits such as anaemia, 

vitamin A deficiency  or zinc deficiency during pregnancy can lead to higher 

incidence of maternal and newborn morbidity and mortality (135–137). 

Southern Africa has the second highest prevalence of low birth weight and 

among the highest proportions of stunted, wasted and underweight mothers 

and neonates (9). Micronutrient supplementation has been used in the 

attempt to supplement poor diet in low-income countries during pregnancy to 

improve duration of pregnancy and newborn size. A meta-analysis of these 

studies found that multiple micronutrients (MMN) had a small effect on birth 

weight but no effect on duration of pregnancy compared to iron and folic acid 

(IFA) supplementation (94).  

The iLiNS-DYAD-M trial set about to improve maternal and child health in 

rural Malawi with the addition of Lipid-based nutrient supplement (LNS) to a 

pregnant mother’s and newborn child’s diet. A previous systematic review 

found that additional protein and energy, as well as micronutrients, could 

reduce intrauterine growth restriction (138). The only previous LNS trial 



68 

 

before iLiNS-DYAD-M that studied the impact of LNS during pregnancy found 

that it increased mean birth length compared to MMN supplementation (139). 

iLiNS-DYAD-M trial results were published in 2015 and found that the 

provision of LNS did not have any statistically significant effect on low birth 

weight, newborn stunting or newborn small head circumference (88). Despite 

these results, the change to the diet of these participants could still affect 

predictors and outcomes used in this thesis. 

The effect of nutrition and diet on the microbiome is well established. 

Microbial composition of the gut has now been associated with obesity, with 

reduced species richness and a change in phenotype that increases energy 

extraction contributing to weight gain (140,141). Gut microbiota have also 

been linked to the widespread problem of undernutrition (142) and in 

malnourished children there are consistent, long-term changes in community 

structure (143). A study in Kenya in 2014 even found that a micronutrient 

supplement, specifically iron, could be adversely altering infant’s gut 

microbiota (144). Due to the action of malnutrition on the immune system 

(145), it is also plausible that diet and nutritional supplementation could have 

an effect on other human microbiomes. The vaginal microbiome has been 

shown to be altered by increased fat, folate, vitamin E and calcium intake that 

can increase the prevalence of pathogenic bacteria associated with bacterial 

vaginosis (146). In the mouth, increased sugar consumption has long been 

linked to increased prevalence of dental caries and enamel erosion (147). In 

low income, tropical countries where malnutrition and other infections are rife, 

this can affect the efficiency of saliva as an immune barrier, substantially 
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changing the microbiota found in the mouth and possibly causing acute 

necrotising gingivitis (148). One recent study has looked at the specific action 

of a diet supplement on a rural sub-Saharan African population but found 

while there were changes in the gut microbiota, there was little difference 

found in both the oral and vaginal microbiomes (149). 

I wanted to study the potential impact the nutritional intervention an individual 

received on their multiple microbiomes. I wanted to quantify any effects so 

they could be taken into account later when comparing the possible role of 

the microbiome has in association with birth outcomes. Secondly, if there 

was an effect, it would be possible to study the possibility of using nutritional 

interventions in positively altering microbial community structures in the 

placenta, mouth or vagina.  
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11.2 Materials and Methods 

 

11.2.1 Study design and enrolment 

See section 9.1. Full details on the design, nutrient and energy contents of 

each dietary supplement in the trial can be found in the publication of the 

primary outcomes (88). 

 

11.2.2 Study setting 

See section 9.2 

 

11.2.3 Collection of birth outcome and baseline data 

See section 9.3 

 

11.2.4 Sample collection 

See section 9.4 

 

11.2.5 DNA Extraction 

See section 9.5 
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11.2.6 16S rDNA broad-range qPCR 

See section 9.6 

 

11.2.7 16S rDNA amplicon high-throughput sequencing 

See section 9.7 

 

11.2.8 Bioinformatics and statistical analysis 

Downstream processing of all FASTQ reads collected from placenta, fetal 

membrane, vaginal and oral samples was carried out as stipulated in section 

9.8.  

Three separate variables were used to measure changes in microbiota found 

in the placenta and fetal membranes. Prevalence of bacteria in the placenta 

and fetal membrane was defined as detectable presence of 16S rDNA in a 

sample of placenta or fetal membrane tissue from a participant. I also 

analysed the amount of 16S rDNA present in the tissue as representative of 

the bacterial load. To represent how bacterial community structure changes 

between the different arms of the study I calculated the median intra-

individual unweighted UniFrac distance for each individual from pairwise 

comparisons between all individuals. A higher median UniFrac distance 

represented a different subset of microbiota in that individual compared to all 

others. The lower the UniFrac distance, the more similar that participant’s 

microbiota was to other participants. To represent bacterial species richness I 
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calculated the number of unique OTUs present for each intervention arm in 

each site. For the oral and vaginal microbiome I only reported UniFrac 

distances and observed number of OTUs. 

I carried out the statistical analysis with Stata 13 (StataCorp, College Station, 

USA). I conducted the statistical analysis according to the analysis plan 

written and published before the intervention code was opened. I based the 

analysis on the principle of intention-to-treat. The intervention code was 

broken after the analysis. The global null hypothesis was tested between 

intervention groups using Fishers exact test for binary outcomes and one-

way ANOVA for continuous outcomes. If either test was significant, pairwise 

comparisons were then carried out between all intervention groups. All 

analyses were also adjusted using multivariate models to correct for possible 

confounding effects, all variables picked for testing in the models were 

chosen based on previous literature as logically capable of forming an 

independent interaction with the outcome being measured. All covariates 

were then entered in a single step into the equation. Continuous outcomes 

were modelled using linear regression and binary outcomes were modelled 

using log-binomial regression. I tested variables predefined in the analysis 

plan as effect modifiers using the likelihood ratio tests for interaction between 

the intervention and maternal characteristics. Maternal variables tested were 

age, BMI at enrolment, number of previous pregnancies, anaemia, HIV and 

malaria status at enrolment, education (completed years), socio-economic 

status and study site of enrolment.  Stratified analysis was then produced for 

any effect modifiers that were statistically significant.  
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11.3 Results 

 

11.3.1 Sample collection and baseline characteristics by 

intervention group 

I did not have a predefined hypothesis concerning the effect of LNS on 

participant’s resident microbiomes at inception. However, I was still 

interested in any potential impact on the microbiome and postulated that LNS 

might change the prevalence and amount of bacteria recovered from the 

placenta and fetal membranes and the diversity of bacteria found in the oral 

cavity and vagina.  

Of the 1391 participants recruited into the iLiNS-DYAD-M trial, a sample of 

placenta was collected at delivery from 1030 (73.3 %) participants and a 

sample from the fetal membranes was collected from 1095 (78.7 %) 

participants. For DNA analysis, after excluding twin deliveries, this left 1018 

(73.2 %) participants with a placenta sample analysed, with 347, 335 and 

336 in the IFA, MMN and LNS groups respectively. Loss to follow up was 

similar in all of the supplement groups (p=0.535). It also left 1083 (77.9 %) 

participants with fetal membrane samples analysed with a breakdown of 358, 

364 and 361 in the IFA, MMN and LNS groups respectively. Loss to follow up 

was similar in all of the supplement groups (p=0.811). An oral and vaginal 

swab was also collected from each participant one week after delivery. After 

excluding twin deliveries and any samples that did not produce enough reads 

after sequencing, 1104 (79.4 %) oral swabs and 1107 (79.5 %) vaginal 

swabs were included in the analysis. Of the 1104 participants with an oral 
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swab collected, 374 were in the IFA, 374 in MMN and 356 in LNS groups. 

Loss to follow up was similar in all of the supplement groups (p=0.531). For 

participants with a vaginal swab collected there were 370, 371 and 366 in the 

IFA, MMN and LNS groups respectively. Loss to follow up was similar in all of 

the supplement groups (p=0.952). 

Across study arms, all participants with a vaginal swab sample taken had 

similar health status, demographic and socioeconomic characteristics at 

enrolment (p>0.05) (Table 11-1). 
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Table 11-1: Baseline characteristics of participants at enrolment by intervention group  
 

Characteristic IFA MMN LNS P value
b 

Number of participants (n=1107
a
) 370 371 366 - 

Mean (SD) BMI, kg/m² 22.1 (2.6) 22.1 (3.0) 22.1 (2.8) 0.908 

Mean (SD) maternal age, years 25 (5.9) 25 (5.9) 25 (6.2) 0.824 

Mean (SD) maternal education, completed years at 

school 
3.9 (3.4) 3.9 (3.4) 4.0 (3.5) 0.809 

Mean (SD) proxy for socioeconomic status -0.08 (0.9) -0.04 (0.9) -0.03 (0.9) 0.817 

Proportion of anaemic women (Hb < 100 g/l) 21.6 % 18.1 % 20.2 % 0.480 

Proportion of primiparous women  19.7 % 20.8 % 19.7 % 0.916 

Proportion of women with a low BMI (<18.5 kg/m²)  5.4 % 5.5 % 6.3 % 0.860 

Proportion of women with a positive HIV test 16.0 % 10.9 % 14.8 % 0.097 

Proportion of women with a positive malaria test 

(RDT) 
21.9 % 24.6 % 23.8 % 0.699 

a 
Those participants that had a section of placental tissue taken after delivery and were processed for DNA extraction and sequencing. 

b 
P-value obtained from ANOVA (comparison of means) or Fishers exact test (comparison of proportions) .
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11.3.2 Association between placental and fetal membrane 

bacterial load, prevalence and nutritional intervention 

From participants included in all intervention arms, bacteria were identified in 

46.8 % (n=476) of participants’ placental tissue and 64.8 % (n=654) of fetal 

membranes. The mean (SD) bacterial load was 4.8 (0.7) Log10 16S rDNA 

copies/µl in the placental tissue and 5.2 (0.8) Log10 16S rDNA copies/µl in 

fetal membranes. Bacterial load had a J-shaped distribution in both the 

placenta and the fetal membranes with most tissues having very low bacterial 

loads. 

Analysis of bacterial load in the placenta and fetal membranes by 

intervention group showed an association in the unadjusted values with the 

bacterial load in the placenta being lower in the LNS group (Table 11-2). The 

difference in means (95% CI) was -0.17 (-0.31, -0.02) between the LNS and 

IFA groups (p=0.023) and -0.21 (-0.35, -0.06) between the LNS and MMN 

groups (p=0.006). This difference was also seen in the adjusted model at the 

global level and between the LNS and MMN groups, but not between the 

LNS and IFA groups. There were no differences seen in the presence of 16S 

rDNA among individuals in the different groups (Table 11-3). 
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Table 11-2: Bacterial load in the placenta and fetal membranes by intervention group 
 

 Result by study group 
Comparison between LNS 

and IFA group 

Comparison between LNS 

and MMN group 

Comparison between 

MMN and IFA group 

Outcome IFA MMN LNS 
P 

value 

Difference in 

means (95 % 

CI) 

P 

value 

Difference in 

means (95 % 

CI) 

P 

value 

Difference in 

means (95 % 

CI) 

P 

value 

Mean (SD) bacterial load in the 

placenta (Log10 16S rDNA 

copies/µl)
 1
 

4.85 

(0.7) 

4.89 

(0.7) 

4.68 

(0.6) 
0.014 

-0.17 (-0.31, -

0.02) 
0.023 

-0.21 (-0.35, -

0.06) 
0.006 

0.04 (-0.10, 

0.18) 
0.583 

Placenta bacterial load 

comparison adjusted model
 3
 

   0.049 
-0.14 (-0.28, 

0.01) 
0.071 

-0.18 (-0.34, -

0.03) 
0.019 

0.05 (-0.10, 

0.20) 
0.536 

           

Mean (SD) bacterial load in the 

fetal membrane (Log10 16S 

rDNA copies/µl)
 2
 

5.21 

(0.8) 

5.22 

(0.9) 

5.24 

(0.8) 
0.896 

0.03 (-0.12, 

0.17) 
0.736 

0.03 (-0.12, 

0.19) 
0.650 

0.01 (-0.14, 

0.16) 
0.901 

Fetal membrane bacterial load 

comparison adjusted model
 3
 

   0.761 
0.04 (-0.11, 

0.19) 
0.588 

0.05 (-0.09, 

0.20) 
0.478 

-0.01 (-0.16, 

0.13) 
0.865 

           
1 

IFA n=168, MMN n=151, LNS n =157
 

2
 IFA n=247, MMN n=260, LNS n =231 

3
 Model was adjusted for mother’s height at enrolment, mother’s age at enrolment, BMI, HIV, primiparity, anaemia, malaria status at enrolment, completed years in education, 

socio-economic status, study site, time between delivery and collection of placenta sample, caesarean sections and season at enrolment. Covariates were chosen in a 
predefined analysis plan on the logical potential to form an association with one of the outcomes based on previous literature.  
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Table 11-3: Prevalence of bacteria in the placenta and fetal membranes by intervention group 
 

 Result by study group 
Comparison between 

LNS and IFA group 

Comparison between 

LNS and MMN group 

Comparison between 

MMN and IFA group 

Outcome IFA MMN LNS 
P 

value 

Risk ratio 

(95 % CI) 

P 

value 

Risk ratio 

(95 % CI) 

P 

value 

Risk ratio 

(95 % CI) 

P 

value 

Bacteria in the placenta
1
 

157 

(46.7%) 

151 

(45.1%) 

168 

(48.4%) 
0.683 

1.03 (0.89, 

1.21) 
0.659 

0.96 (0.82, 

1.13) 
0.668 

1.07 (0.91, 

1.26) 
0.383 

Bacteria in the placenta 

comparison adjusted model
 3
 

   0.400 
1.02 (0.87, 

1.19) 
0.821 

0.92 (0.78, 

1.08) 
0.298 

1.11 (0.95, 

1.30) 
0.198 

           

Bacteria in  the fetal 

membrane
2
 

247 

(68.9%) 

260 

(71.4%) 

231 

(63.9%) 
0.094 

1.08 (0.97, 

1.19) 
0.156 

1.12 (1.01, 

1.23) 
0.033 

0.97 (0.88, 

1.06) 
0.475 

Bacteria in the fetal 

membranes comparison 

adjusted model
 3
 

   0.112 
1.07 (0.96, 

1.19) 
0.233 

1.11 (1.01, 

1.23) 
0.037 

0.96 (0.87, 

1.05) 
0.363 

           
1 

IFA n=347, MMN n=335, LNS n =336
 

2
 IFA n=358, MMN n=364, LNS n =361

 

3
Model was adjusted for mother’s height at enrolment, mother’s age at enrolment, BMI, HIV, primiparity, anaemia, malaria status at enrolment, completed years in education, 

socio-economic status, study site, time between delivery and collection of placenta sample, caesarean sections and season at enrolment. Covariates were chosen in a 
predefined analysis plan on the logical potential to form an association with one of the outcomes based on previous literature.  
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11.3.3 Association between placental, fetal membrane, oral 

and vaginal beta diversity and nutritional intervention 

Table 11-4 and Table 11-5 show the analysis between bacterial diversity in 

placenta, fetal membranes, oral cavity and vagina. Phylogenetic diversity 

was measured using the unweighted UniFrac distance based on pairwise 

comparisons between all samples. A single value per participant was 

generated by taking the median distance value from all comparisons. A 

higher distance value would suggest that an individual’s microbiome had 

phylogenetically dissimilar organisms to the rest of the cohort and a lower 

value would suggest the opposite. When the values were grouped by 

intervention arm there were no statistically significant differences seen at the 

global level in either the unadjusted values or the adjusted models. 
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Table 11-4: Bacterial diversity in the placenta and fetal membranes by intervention group 
 

 Result by study group 
Comparison between 

LNS and IFA group 

Comparison between 

LNS and MMN group 

Comparison between 

MMN and IFA group 

Outcome IFA MMN LNS 
P 

value 

Difference in 

means (95 % 

CI) 

P 

value 

Difference in 

means (95 % 

CI) 

P 

value 

Difference in 

means (95 % 

CI) 

P 

value 

Mean (SD) intra-individual 

unweighted UniFrac distance in 

placental tissue
 1
 

0.69 

(0.1) 

0.69 

(0.1) 

0.69 

(0.1) 
0.869 

0.00 (-0.01, 

0.02) 
0.627 

0.00 (-0.01, 

0.01) 
0.947 

0.00 (-0.01, 

0.01) 
0.680 

Placenta unweighted UniFrac 

distance comparison adjusted 

model
 3
 

   0.872 
0.00 (-0.01, 

0.02) 
0.700 

0.00 (-0.01, 

0.01) 
0.903 

0.00 (-0.01, 

0.02) 
0.620 

           

Mean (SD) intra-individual 

unweighted UniFrac distance in 

fetal membranes
2
 

0.72 

(0.1) 

0.72 

(0.1) 

0.71 

(0.1) 
0.156 

-0.01 (-0.02, 

0.00) 
0.141 

-0.01 (-0.02, 

0.00) 
0.067 

0.00 (-0.01, 

0.01) 
0.730 

Fetal membrane unweighted 

UniFrac distance comparison 

adjusted model
 3
 

   0.219 
-0.01 (-0.02, 

0.00) 
0.136 

-0.01 (-0.02, 

0.00) 
0.124 

0.00 (-0.01, 

0.01) 
0.962 

           
1 

IFA n=167, MMN n=150, LNS n =157
 

2
 IFA n=247, MMN n=260, LNS n =231 

3
 Model was adjusted for mother’s height at enrolment, mother’s age at enrolment, BMI, HIV, primiparity, anaemia, malaria status at enrolment, completed years in education, 

socio-economic status, study site, time between delivery and collection of placenta sample, caesarean sections and season at enrolment. Covariates were chosen in a 
predefined analysis plan on the logical potential to form an association with one of the outcomes based on previous literature.  
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Table 11-5: Bacterial diversity in the oral cavity and vagina by intervention group 
 

 Result by study group 
Comparison between 

LNS and IFA group 

Comparison between 

LNS and MMN group 

Comparison between 

MMN and IFA group 

Outcome IFA MMN LNS 
P 

value 

Difference in 

means (95 

% CI) 

P 

value 

Difference in 

means (95 

% CI) 

P 

value 

Difference in 

means (95 % 

CI) 

P 

value 

Mean (SD) intra-individual 

unweighted UniFrac distance in 

the oral cavity
1
 

0.49 

(0.1) 

0.49 

(0.1) 

0.51 

(0.1) 
0.342 

0.01 (-0.01, 

0.02) 
0.347 

0.01 (-0.01, 

0.02) 
0.148 

0.00 (-0.02, 

0.01) 
0.609 

Oral cavity unweighted UniFrac 

distance comparison adjusted 

model
 3
 

   0.326 
0.01 (-0.01, 

0.02) 
0.366 

0.01 (-0.00, 

0.02) 
0.137 

0.00 (-0.02, 

0.01) 
0.553 

           

Mean (SD) intra-individual 

unweighted UniFrac distance in 

the vagina 

0.59 

(0.1) 

0.59 

(0.1) 

0.60 

(0.1) 
0.510 

0.01 (-0.01, 

0.02) 
0.295 

0.00 (-0.02, 

0.02) 
0.923 

0.01 (-0.01, 

0.02) 
0.340 

Vaginal unweighted UniFrac 

distance comparison adjusted 

model
 3
 

   0.438 
0.01 (-0.01, 

0.03) 
0.264 

0.00 (-0.02, 

0.02) 
0.990 

0.01 (-0.01, 

0.03) 
0.270 

           

1 IFA n=370, MMN n=371, LNS n =366 
2 IFA n=374, MMN n=374, LNS n =356 
3 Model was adjusted for mother’s height at enrolment, mother’s age at enrolment, BMI, HIV, primiparity, anaemia, malaria status at enrolment, completed years in education, 
socio-economic status, study site, time between delivery and collection of placenta sample, caesarean sections and season at enrolment. Covariates were chosen in a 
predefined analysis plan on the logical potential to form an association with one of the outcomes based on previous literature.  
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11.3.4 Association between placental inflammation and 

nutritional intervention 

Prevalence of intervillositis across all participants included in the analysis 

was 17.5 % (n=176). Chorioamnionitis was recorded in 26.1 % (n=258) of 

participants whereas 12.1 % (n=120) of participants had severe 

chorioamnionitis. Table 11-6 shows the analyses between intervillositis and 

chorioamnionitis across different nutritional interventions. There were no 

statistically significant differences between intervention groups for these 

variables at the global level in either the unadjusted values or the adjusted 

models. 
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Table 11-6: Inflammation in the placenta by intervention group 

  
Comparison between 

LNS and IFA group 

Comparison between 

LNS and MMN group 

Comparison between 

MMN and IFA group 

Outcome IFA 

(n=330)
 

MMN 

(n=333)
 

LNS 

(n=345)
 

P 

value 

Risk ratio 

(95 % CI) 

P 

value 

Risk ratio 

(95 % CI) 

P 

value 

Risk ratio 

(95 % CI) 

P 

value 

Intervillositis
1 

 

54 

(16.4%) 

64 

(19.2%) 

58 

(16.8%) 
0.580 

0.97 

(0.69 to 1.58) 
0.876 

1.14 

(0.83 to 1.58) 
0.415 

0.85 

(0.61 to 1.18) 
0.337 

Intervillositis, adjusted 

model
2 

 

   0.264 
0.97 

(0.68 to 1.38) 
0.858 

1.25 

(0.89 to 1.25) 
0.195 

0.78 

(0.55 to 1.09) 
0.144 

Chorioamnionitis
1 

 

89 

(27.3%) 

85 

(26.1%) 

84 

(24.9%) 
0.180 

1.09 

(0.85 to 1.42) 
0.473 

1.05 

(0.81 to 1.36) 
0.718 

1.05 

(0.81 to 1.35) 
0.723 

Chorioamnionitis, 

adjusted model
2 

 

   0.486 
1.17 

(0.89 to 1.52) 
0.245 

1.13 

(0.87 to 1.47) 
0.377 

1.04 

(0.71 to 1.17) 
0.772 

Severe chorioamnionitis
1 

 

45 

(13.8%) 

38 

(11.7%) 

37 

(10.9%) 
0.511 

1.26 

(0.69 to 1.63) 
0.265 

1.06 

(0.69 to 1.63) 
0.773 

1.18 

(0.79 to 1.77) 
0.412 

Severe chorioamnionitis, 

adjusted model
2 

 

   0.476 
1.27 

(0.84 to 1.93) 
0.258 

1.05 

(0.67 to 1.63) 
0.842 

1.22 

(0.79 to 1.86) 
0.364 

1
 Unadjusted model. 

2
 Adjusted p-values were calculated using log-binomial regression models. Models were adjusted for covariates that had a significant association (p<0.10) with the outcome on 

bivariate analysis, in addition to the corresponding values at enrolment. All models were adjusted for mother’s height at enrolment, mother’s age at enrolment, BMI, HIV, 

primiparity, anaemia, malaria status at enrolment, completed years in education, socio-economic status, study site, time between delivery and collection of placenta sample and 

season at enrolment.
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11.3.5 Effect modifiers 

Maternal height, maternal BMI, gestational age at enrolment, maternal age, 

proxy for socioeconomic status, maternal education, primiparity, season at 

enrolment, maternal anaemia, malarial infection, enrolment site and maternal 

HIV status were all tested for interactions with the intervention, with respect 

to the microbiota. The variables were tested using the likelihood ratio test and 

were selected in a predefined analysis plan as likely to be able to modulate 

the effect of the nutritional intervention. Only whether the mother was 

primiparous or multiparous tested positive for effect modification with at least 

one outcome. 

Table 11-7 shows bacterial load by intervention group and stratified by 

whether the mother was primiparous or multiparous. The comparison had 

both a significant interaction with the intervention using the likelihood ratio 

test and had a global significant P value between the intervention groups in 

multiparous women. When stratified by parity, mothers who were multiparous 

had a lower bacterial load in the LNS group compared to the MMN group (-

0.24 (-0.39, -0.09), p=0.002) but not the IFA group. 
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Table 11-7: Effect modification by intervention group 
 

  
Result by study group 

Comparison between 

LNS and IFA group 

Comparison between LNS 

and MMN group 

Comparison between 

MMN and IFA group 

Outcome 

Interaction 

test P 

value
1
 

IFA  MMN LNS  
P 

value
2
 

Difference in 

means (95 % 

CI) 

P 

value 

Difference in 

means (95 % 

CI) 

P 

value 

Difference in 

means (95 % 

CI) 

P 

value 

Placenta bacterial 

load, multiparous 
0.035 

4.8 

(0.6) 

4.9 

(0.7) 

4.7 

(0.5) 
0.010 

-0.12 (-0.27, 

0.03) 
0.127 

-0.24 (-0.39, -

0.09) 
0.002 

0.12 (-0.03, 

0.27) 
0.113 

            
1
 P values were calculated using likelihood-ratio test. 

2
 P values were calculated using ANOVA comparison of means.
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11.4 Discussion 

 

This study’s findings suggest that provision of LNS to pregnant women may 

have an impact on lowering bacteria load in full thickness placental samples 

when compared against the MMN group, especially in mothers that have 

delivered more than once. However the same result was not seen when 

compared to the IFA group or when comparing fetal membrane samples. 

There were no differences between intervention groups when compared to 

the presence of bacteria in the placenta and fetal membranes or bacterial 

diversity in the placenta, fetal membranes, oral cavity and the vagina. 

Inflammation associated with intrauterine infection can be harmful to the 

foetus. Low birth weight infants have been shown to have significantly higher 

levels of oxidative stress markers in their cord blood, when compared to 

those of a healthy weight (150). As well as injuring the foetus, reactive 

oxygen species can also damage the amniotic epithelium potentially leading 

to early delivery. However this effect has been mitigated in vitro after 

treatment with vitamins C and E. However even with the high levels of 

vitamin deficiency in Malawian diets, there were no statistical differences 

seen across the different intervention arms in birth outcomes (88) or 

chorioamnionitis. Although it did not translate into a quantifiable effect on 

birth outcomes, the lower bacterial load in the LNS group suggests a possible 

role for increased energy and fat intake in a rural Malawian diet in protecting 
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against bacterial proliferation in the placenta. However, this was not reflected 

in the ability to detect the presence of bacterial 16S rDNA. 

Comparative studies looking at the associations between nutrient intake, birth 

outcomes and the microbiome are scarce. A recent study in Tanzania looked 

at the effect of probiotic yoghurt with additional micronutrients on maternal 

vaginal, oral and faecal microbiota and its impact on birth outcomes, however 

it did not study the effect on placental microbiota (149). Similar to this study, 

they found very little effect on phylogenetic diversity could be explained by 

the nutritional supplement. Generally large scale shifts in taxa composition 

were explained by other influences. 

Although I found no difference in bacterial diversity in the oral microbiota, the 

ability to detect a difference could be influenced by the type of sample 

obtained in this study. A swab was used to rub the gingival margins, which 

would not pick up pathogenic bacteria found in deep periodontal pockets that 

could affect oral health and so I cannot rule out that these interventions had 

no effect. 

More complex analysis could be carried out on this dataset to track more 

minor shifts in community constituents if this was desired. For example, I 

know the effect that iron has on certain gut and vaginal taxa (144,151) and so 

I could look at the effect on abundance of OTUs known to utilise iron 

sources, rather than focusing on the entire community. The effect might also 

be more acute in at-risk populations, such as anaemic individuals. However, 

as I did not find any major shifts in multiple bacterial and inflammatory 
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variables across the intervention arms I have chosen to focus the subsequent 

result chapters in this thesis to studying their possible association with birth 

outcomes.  
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12 Chapter 5: The placental microbiome, its 

association with adverse birth outcomes and the 

potential source of intrauterine bacteria 

 

12.1 Introduction 

Sub-Saharan Africa has had consistently higher incidence of preterm 

deliveries (152) compared with the rest of the world, with recent estimates of 

between 10.0% (88) and 16.3% (153) of all births in Malawi. While the 

aetiology of spontaneous preterm labour remains elusive, a role for bacterial 

infection and colonisation of fetal membranes and the associated maternal 

inflammatory immune response is now recognized as the probable trigger in 

some cases. Spontaneous preterm birth (SPTB) is distinguished by a higher 

frequency of bacterial colonisation and by the nature and diversity of bacterial 

species (63). There is increasing evidence to suggest that it is the type of 

bacteria present in preterm deliveries, rather than simply the presence of 

bacteria, that differs from term deliveries (62,64,80). While bacteria can 

infect, and sometimes cross the placenta via the maternal circulation, in the 

majority of cases the common route of spread is through ascending infection 

from the vagina through the cervical canal (70). It appears that it is these 

bacteria that leads to inflammation of the chorioamniotic membranes 

(chorioamnionitis), well recognised as being highly associated with earlier 

delivery (70,154). 
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Whereas most studies to date have been conducted in Europe and North 

America, in this study I wanted to describe the core microbiome found in 

placental tissue and fetal membranes in a cohort of women in rural southern 

Malawi. I hypothesised that microbial community structure would be altered 

in participants with chorioamnionitis and those changes would be associated 

with duration of pregnancy, birth weight, newborn length and newborn head 

circumference.  
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12.2 Materials and Methods 

 

12.2.1 Study design and enrolment 

See section 9.1 

 

12.2.2 Study setting 

See section 9.2 

 

12.2.3 Collection of birth outcome and baseline data 

See section 9.3 

 

12.2.4 Sample collection 

Sample collection for genomic DNA extraction was carried out as stipulated 

in section 9.4. To examine for chorioamnionitis, one fetal membrane and one 

placenta were placed in 10% neutral buffered formalin fixative, processed 

and embedded in paraffin wax. These were sectioned at 3-5 micron thick and 

stained with haematoxylin & eosin before being read. 
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12.2.5 DNA Extraction 

In preparation for extraction of genomic DNA, each frozen tissue sample was 

cut into smaller pieces using a sterile pair of surgical scissors. 20-50mg of 

tissue was then transferred to a sterile 2ml screw-cap tube and extracted 

using same protocol as stipulated in section 9.5. 

 

12.2.6 16S rDNA broad-range qPCR 

See section 9.6. 

12.2.7 16S rDNA amplicon high-throughput sequencing 

Samples positive for bacterial DNA by qPCR were selected for sequencing. 

Sequencing was carried out as per protocol in section 9.7. 

 

12.2.8 Bioinformatics and statistical analysis 

See section 9.8. 
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12.3 Results 

 

12.3.1 Sample collection 

A total of 1391 participants were recruited into the iLiNS-DYAD-M trial and 

enrolment began in February 2011, with the last delivery taking place in 

February 2013. 1097 (78.9%) participants had at least one placental or fetal 

membrane tissue analysed for bacteria and histology. Figure 12-1 shows a 

flow diagram that documents reasons for the loss to follow-up of the 21.1% of 

participants who were not included in this microbiome study. Of these, 49 

were excluded because they had twins, a placental sample wasn’t collected 

or no histological result was obtained. 
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Figure 12-1: Study participant flow diagram. 

 

 

When the participants that were included in this study were compared to 

those excluded, those included had a lower BMI (22.1 vs 22.6 kg/m2, 

p=0.005), were older (25 vs 24 years, p=0.025), had completed less 

education (3.9 vs 4.7 years, p<0.001), had a lower score for socioeconomic 

status (-0.07 vs 0.36, p<0.001) and were less likely to be primiparous (20.4% 

vs 28.1%, p=0.006) (Table 12-1).  
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Table 12-1: Baseline characteristics of included and excluded 

participants 

Characteristic 
Included 

(n=1097)
1
 

Excluded 

(n=294) 

P 

value 

Mean (SD) BMI, kg/m
2
 22.1 (2.8) 22.6 (3.0) 0.005 

Mean (SD) maternal age, years 25.1 (6.1) 24.2 (6.3) 0.025 

Mean (SD) maternal education, completed years at 

school 
3.9 (3.4) 4.7 (3.8) <0.001 

Mean (SD) proxy for socioeconomic status -0.07 (0.9) 0.36 (1.2) <0.001 

Proportion of aenemic women (Hb < 110 g/l) 19.9 % 24.2 % 0.118 

Proportion of primiparous women 20.4 % 28.1 % 0.006 

Proportion of women with a low BMI (< 18.5 kg/m
2
) 5.6 % 4.7 % 0.656 

Proportion of women with a positive HIV test 13.3 % 15.0 % 0.469 

Number (%) of women with a positive malaria test 

(RDT) 
23.4 % 22.7 % 0.874 

1
Total n=1391 

2 
P value obtained from t-test (comparison of means) or Fishers exact test (comparison of proportions). 

 

 

12.3.2 Detection of bacterial DNA 

Bacteria were detected in 738 (68·1%) of fetal membranes and in 476 

(46·8%) of placental samples. Of those participants that had detectable 

bacteria the mean (SD) bacterial load was 5.22 (0.84) Log10 16S rDNA 

copies/µl in the fetal membranes and 4.80 (0.66) Log10 16S rDNA/µl copies in 

the placenta. The median sequencing depths for placental tissue and fetal 

membranes were 11,803 and 21,040 reads respectively (Table 12-2). 

 

 



96 

 

 

 

Table 12-2: Sequencing output. 

Sample type 
Number of 

samples 

Median number of reads per 

sample (IQR) 

Total number 

of reads 

Placental tissue 476 11,803 (3800,33561) 14,001,032 

Fetal membrane 738 21,040 (7340,54473) 30,941,823 

Total 1214  44,942,855 

 

 

12.3.3 The microbiome found in the placental tissues at 

delivery is distinct 

Figure 12-2 shows, across the population analysed, the 25 commonest 

organisms detected within placental tissues. Bacterial patterns were similar in 

fetal membranes and placental tissue. Fetal membranes had a higher 

incidence of Lactobacillus iners, Gardnerella vaginalis and Sneathia 

sanguinegens whereas the placental tissues had higher incidences of 

Acinetobacter spp. and Enterobacteriaceae spp.  
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Figure 12-2: Rank abundance curve. 
The 25 commonest organisms recovered from participants’ placental tissue (n=476) and fetal 

membranes (n=738). 
 

 

Comparing individuals, the bacteria detected within the placental and fetal 

membrane tissues were indistinguishable, suggesting in many cases a large 

overlap of similar taxa (Figure 12-3). Comparison of bacteria in placental and 

fetal tissues with bacteria in vaginal and oral samples from the same 

individuals revealed some overlap with the microbiota within the vagina, but 

very little overlap with the microbiota from the oral cavity (Figure 12-3). The 

placental and fetal membrane microbial communities had high variability 

when compared to the vaginal and oral microbiomes. Intra-individual 
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unweighted UniFrac distances in the placenta and fetal membranes were 

higher than the oral cavity and vagina. Placenta and fetal membranes had a 

mean (SD) UniFrac distance across all individuals of 0.69 (0.06) and 0.71 

(0.06) respectively, compared to 0.50 (0.09) in the oral cavity and 0.59 (0.11) 

in the vagina. 
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Figure 12-3: Principal component analysis of unweighted UniFrac 

distances computed for matched individual body sites. 
Distances computed from matched placenta (n=445), fetal membrane (n=719), oral 

(n=725) and vaginal (n=747) samples from 1107 participants. 
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12.3.4 Variation in the placenta microbiome is determined by 

abundance of a limited range of species 

Figure 12-4 and Figure 12-5 show that higher bacterial loads, as determined 

by qPCR, were observed when there were fewer OTUs, as determined by 

16S amplicon sequencing. In the placental tissue, a drop in observed OTUs 

of 1 was associated with a mean (95%CI) increase in bacterial load of 0·03 

(0·03, 0·04) log 10 16S rDNA copies / µl, p<0·001.  A decrease in observed 

OTUs of 1 in fetal membranes was associated with a mean (95%CI) increase 

in bacterial load of 0·04 (0·03, 0·05), p<0·001. This indicates that a high 

bacterial load is linked to the expansion of a limited number of organisms.  

However, the high median intra-individual unweighted UniFrac distances 

indicate that the composition of the microbial communities is highly variable 

between individual women.  Figure 3 demonstrates that a decrease in 

observed OTUs of 1 in placental tissue was associated with a rise of the 

mean (95%CI) intra-individual unweighted UniFrac distances of 0·02 (0·02, 

0·03), p<0·001 (Figure 3a). In fetal membranes a decrease in observed 

OTUs of 1 was associated with a rise of the mean intra-individual unweighted 

UniFrac distance of 0·03 (0·03, 0·04), p<0·001 (Figure 3b).  
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Figure 12-4: Multivariate plot of participant’s’ placental bacterial load, 

observed number of OTUs and median intra-individual unweighted 

UniFrac distances. 
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Figure 12-5: Multivariate plot of participant’s’ fetal membrane bacterial 

load, observed number of OTUs and median intra-individual 

unweighted UniFrac distances. 

 

 

12.3.5 Distinct combinations of bacteria associate with each 

other 

The placental microbial community structure was probed using the 

associations between the abundances of different OTUs. The abundances of 

a distinct group of phyla containing Fusobacteria, Tenericutes, Bacteroidetes 

and Actinobacteria were found to be positively correlated (Figure 12-6). 

Proteobacteria and Firmucutes were rarely found together and were 

negatively correlated with all other phyla.  

 



103 

 

 

 

Figure 12-6: Heat map of Spearman’s correlations between the 6 most 

abundant bacterial phyla in fetal membranes. 
Hierarchical clustering was computed by complete linkage of Euclidean distances. The heat 
map is annotated with mean difference in bacterial load between participants with and 
without severe chorioamnionitis for each bacterial phylum.  Asterisks indicate p<0·05 
association between higher load of that bacterial phylum and prevalence of severe 
chorioamnionitis. Adjusted model P values were calculated using linear regression adjusting 
for the nutritional intervention, maternal BMI at enrolment, maternal age, proxy for 
socioeconomic status, number of previous pregnancies, anaemia, site of enrolment, mode of 
delivery and time between delivery and placenta sampling. 

 

To explore these interactions in more detail I examined correlations among 

the 20 most abundant bacterial families and using hierarchical clustering this 

split the taxa into two major groups (Figure 12-7). One group, in which 

Fusobacteriaceae, Mycoplasmataceae, Bifidobacteriaceae, Prevotellaceae 

and Leptotrichiaceae abundances clustered together, matched the same 

correlations seen at the phyla level. However, the group also included many 

families from the Firmicutes phyla such as Clostridiaceae, Lachnospiraceae, 
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Lactobacillaceae and Peptostreptococcaceae. The second group of 

organisms that clustered together included a group of families from the phyla 

Firmicutes that included Streptococcaceae, Staphylococcaceae, 

Leuconostocaceae, Enterococcaceae and Lactobacillales, whose 

abundances were positively correlated with each other. The other organisms 

in that cluster were overwhelmingly from the phyla Proteobacteria and 

included Enterobacteriaceae, Aeromonadaceae, Pseudomonadaceae and 

Moraxellaceae. Abundances for all families in the phyla Proteobacteria were 

positively correlated with each other and with the abundance of Bacillaceae. 

Similar patterns were seen in full-thickness placental tissue samples at both 

the phylum and family level (Figure 12-8 & Figure 12-9). 
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Figure 12-7: Heat map of Spearman’s correlations between the 20 most 

abundant bacterial families in fetal membranes. 
Hierarchical clustering was computed by complete linkage of Euclidean distances. The heat 
map is annotated with mean difference in bacterial load between participants with and 
without severe chorioamnionitis for each bacterial family.  Asterisks indicate p<0·05 
association between higher load of that bacterial family and prevalence of severe 
chorioamnionitis. Adjusted model P values were calculated using linear regression adjusting 
for the nutritional intervention, maternal BMI at enrolment, maternal age, proxy for 
socioeconomic status, number of previous pregnancies, anaemia, site of enrolment, mode of 
delivery and time between delivery and placenta sampling. 
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Figure 12-8: Heat map of Spearman’s correlations between the 6 most 

abundant bacterial phyla in placental tissue. 
Hierarchical clustering was computed by complete linkage of Euclidean distances. The heat 
map is annotated with mean difference in bacterial load between participants with and 
without severe chorioamnionitis for each bacterial phylum.  Asterisks indicate p<0·05 
association between higher load of that bacterial phylum and prevalence of severe 
chorioamnionitis. Adjusted model P values were calculated using linear regression adjusting 
for the nutritional intervention, maternal BMI at enrolment, maternal age, proxy for 
socioeconomic status, number of previous pregnancies, anaemia, site of enrolment, mode of 
delivery and time between delivery and placenta sampling. 
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Figure 12-9: Heat map of Spearman’s correlations between the 20 most 

abundant bacterial families in placental tissue. 
Hierarchical clustering was computed by complete linkage of Euclidean distances. The heat 
map is annotated with mean difference in bacterial load between participants with and 
without severe chorioamnionitis for each bacterial family.  Asterisks indicate p<0·05 
association between higher load of that bacterial family and prevalence of severe 
chorioamnionitis. Adjusted model P values were calculated using linear regression adjusting 
for the nutritional intervention, maternal BMI at enrolment, maternal age, proxy for 
socioeconomic status, number of previous pregnancies, anaemia, site of enrolment, mode of 
delivery and time between delivery and placenta sampling. 
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12.3.6 Severe chorioamnionitis 

A total of 258 (26·1%) participants had histologically determined 

chorioamnionitis with 120 (12·1%) participants classified as having severe 

chorioamnionitis. Presence of chorioamnionitis was not significantly 

associated with birth outcomes, however, participants with severe 

chorioamnionitis delivered significantly earlier (-0·4 (-0.8,-0·1) gestational 

weeks, p=0·019) than those without severe chorioamnionitis. Those with 

severe chorioamnionitis also had a lower observed number of OTUs in the 

placenta (p=0·029) and fetal membranes (p=0·025) and increased intra-

individual unweighted UniFrac distances in the placenta (p=0·034) and fetal 

membranes (p=0·003) (Figure 12-10 & Figure 12-11). Severe 

chorioamnionitis was also associated with distinct phyla.  

A higher mean Fusobacteria load of 0·41 (0·17, 0·64) Log10 16S rDNA 

copies/µl (p=0·001) and higher mean Tenericutes load of 0·18 (0·05, 0·30) 

Log10 16S rDNA copies/µl (p=0·006) were found in fetal membranes with 

severe chorioamnionitis (Figure 12-6). This was also reflected at a family 

level with a significantly higher mean bacterial load of Mycoplasmataceae 

(p=0·010), Leptotrichiaceae (p=0·001), and Veillonaceae (p=0·001) in 

placental tissues with severe chorioamnionitis (Figure 12-7). Abundances of 

Mycoplasmataceae, Leptotrichiaceae, and Veillonaceae were also all 

positively intercorrelated. 
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Figure 12-10: Comparison between observed number of OTUs and 

median intra-individual unweighted UniFrac distances in placental 

tissue and presence of severe chorioamnionitis. 
Adjusted model P values were calculated using linear regression adjusting for the 

intervention, maternal BMI at enrolment, maternal age, proxy for socioeconomic status, 

number of previous pregnancies, anaemia, site of enrolment, mode of delivery and time 

between delivery and placenta sampling (*p<0.05, **p<0.01). 
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Figure 12-11: Comparison between observed number of OTUs and 

median intra-individual unweighted UniFrac distances in fetal 

membranes and presence of severe chorioamnionitis. 
Adjusted model P values were calculated using linear regression adjusting for the 

intervention, maternal BMI at enrolment, maternal age, proxy for socioeconomic status, 

number of previous pregnancies, anaemia, site of enrolment, mode of delivery and time 

between delivery and placenta sampling (*p<0.05, **p<0.01). 

 

 

12.3.7 Microbial composition recovered from fetal 

membranes differed when the individual delivered early or 

when the newborn had restricted growth 

31 OTUs from fetal membranes were identified whose abundances were 

positively correlated with or belonging to bacterial families that were 

significantly associated with severe chorioamnionitis (denoted with an 
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asterisk in figure Figure 12-7). Generally organisms fell into two groups, 

those that were associated with a shorter duration of pregnancy and those 

that were associated with a smaller newborn size (birth weight, length-for-age 

z-score and head circumference-for-age z-score).  Higher bacterial loads of 

Fusobacterium nucleatum, Ureaplasma sp. and Gemella asaccharolytica 

were associated with a shorter duration of pregnancy (Table 12-3). Higher 

loads of Gardnerella vaginalis, Sneathia sanguinegens, Prevotella copri, 

Prevotella amnii, Lachnospiraceae sp., Blautia sp. and 

Phascolarctobacterium succinatutens were all significantly associated with 

smaller newborn size (Table 12-4, Table 12-5 & Table 12-6). After controlling 

for the false discovery rate using the Benjamini-Hochberg procedure, only a 

higher mean bacterial load of an unidentified Lachnospiraceae sp. was 

significantly associated with a lower newborn head circumference-for-age z-

score (Table 12-6). 
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Table 12-3: OTUs isolated from fetal membranes significantly associated with differences in duration of delivery. 

   Unadjusted analysis Adjusted analysis 

O.T.U ID 

(Custom 

database and 

greengenes) 

Greengenes Taxonomy Genbank BLASTN result 
Correlation 

coefficient 
P value

1
 N 

Regression 

coefficient 

(95%CI) 

P 

value
2
 

q 

value 

270856 g__Ureaplasma; s__ Ureaplasma sp. -0.11 0.003 737 
-0.33 (-0.56, -

0.09) 
0.007 0.217 

5119 g__Fusobacterium; s__ Fusobacterium nucleatum -0.11 0.003 737 
-0.43 (-0.78, -

0.08) 
0.015 0.233 

558508579 g__Gemella; s__ Gemella asaccharolytica -0.09 0.018 737 
-0.12 (-0.01, -

0.23) 
0.027 0.279 

3677 f__Peptostreptococcaceae; g__ Clostridium sp. 0.08 0.024 737 
0.04 (-0.04, 

0.14)  
0.349 1.000 

1
 P value calculated using Pearson’s correlation. 

2
 Adjusted p-values were calculated using linear regression models. Regression coefficient shows the change in duration of delivery (weeks) in relation to an increase in 

bacterial load of 1 Log10 genomes/µl. All models were adjusted for the intervention, maternal BMI at enrolment, maternal age, proxy for socioeconomic status, number of 
previous pregnancies, anaemia, site of enrolment, mode of delivery and time between delivery and placenta sampling.
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Table 12-4:  OTUs isolated from fetal membranes significantly associated with differences in birth weight. 

   Unadjusted analysis Adjusted analysis 

O.T.U ID 

(Custom 

database and 

greengenes) 

Greengenes Taxonomy Genbank BLASTN result 
Correlation 

coefficient 

P 

value
1
 

N 

Regression 

coefficient 

(95%CI) 

P 

value
2
 

q 

value 

645321357 g__Sneathia; s__ Sneathia sanguinegens -0.10 0.008 681 -25 (-44, -7) 0.008 0.248 

288932 Prevotella; s__copri Prevotella copri -0.10 0.012 681 -51 (-94, -9) 0.018 0.279 

10703 f__Bifidobacteriaceae Gardnerella vaginalis -0.08 0.028 681 -19 (-37, 0) 0.045 0.465 

631251895 g__Prevotella; s__ Prevotella amnii -0.08 0.030 681 -24 (-56, 9) 0.158 1.000 

1
 P value calculated using Pearson’s correlation. 

2
 Adjusted p-values were calculated using linear regression models. Regression coefficient shows the change in birth weight (grams) in relation to an increase in bacterial load 

of 1 Log10 genomes/µl. All models were adjusted for the intervention, maternal BMI at enrolment, maternal age, proxy for socioeconomic status, number of previous 

pregnancies, anaemia, site of enrolment, mode of delivery and time between delivery and placenta sampling.
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Table 12-5: OTUs isolated from fetal membranes significantly associated with differences in length-for-age Z-score. 

   Unadjusted analysis Adjusted analysis 

O.T.U ID 

(Custom 

database and 

greengenes) 

Greengenes Taxonomy Genbank BLASTN result 
Correlation 

coefficient 

P 

value
1
 

N 

Regression 

coefficient 

(95%CI) 

P 

value
2
 

q value 

2386814 f__Lachnospiraceae; g__; s__ Lachnospiraceae sp. -0.11 0.006 644 -0.3 (-0.5, -0.1) 0.005 0.199 

10703 f__Bifidobacteriaceae Gardnerella vaginalis -0.08 0.044 644 -0.1 (-0.1, -0.0) 0.007 0.678 

645321357 g__Sneathia; s__ Sneathia sanguinegens -0.08 0.036 644 -0.1 (-0.1, -0.0 0.020 0.372 

302279 g__Phascolarctobacterium; s__ 
Phascolarctobacterium 

succinatutens 
-0.09 0.026 644 -0.1 (-0.3, -0.0) 0.024 0.203 

288932 g__Prevotella; s__copri Prevotella copri -0.09 0.017 644 -0.1 (-0.8, -0.1) 0.025 0.107 

2700884 f__Lachnospiraceae Blautia sp. -0.08 0.048 644 -0.4 (-0.7, -0.0) 0.032 0.248 

1
 P value calculated using Pearson’s correlation. 

2
 Adjusted p-values were calculated using linear regression models. Regression coefficient shows the change in length-for-age Z-score in relation to an increase in bacterial 

load of 1 Log10 genomes/µl. All models were adjusted for the intervention, maternal BMI at enrolment, maternal age, proxy for socioeconomic status, number of previous 

pregnancies, anaemia, site of enrolment, mode of delivery and time between delivery and placenta sampling.
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Table 12-6: OTUs isolated from fetal membranes significantly associated with differences in head circumference-for-age Z-

score. 

   Unadjusted analysis Adjusted analysis 

O.T.U ID 

(Custom 

database and 

greengenes) 

Greengenes Taxonomy Genbank BLASTN result 
Correlation 

coefficient 

P 

value
1
 

N 

Regression 

coefficient 

(95%CI) 

P 

value
2
 

q 

value 

2386814 f__Lachnospiraceae; g__; s__ Lachnospiraceae sp. -0.13 0.001 647 -0.4 (-0.6, -0.2) 0.000 0.003 

302279 g__Phascolarctobacterium; s__ 
Phascolarctobacterium 

succinatutens 
-0.11 0.007 647 -0.2 (-0.3, -0.1) 0.005 0.078 

645321357 g__Sneathia; s__ Sneathia sanguinegens -0.12 0.002 647 -0.1 (-0.1, -0.0 0.007 0.072 

288932 g__Prevotella; s__copri Prevotella copri -0.09 0.023 647 -0.1 (-0.2, 0.0) 0.067 0.519 

631251895 g__Prevotella; s__ Prevotella amnii -0.10 0.014 647 -0.1 (-0.2, 0.0) 0.125 0.775 

1
 P value calculated using Pearson’s correlation. 

2
 Adjusted p-values were calculated using linear regression models. Regression coefficient shows the change in head circumference-for-age Z-score in relation to an increase 

in bacterial load of 1 Log10 genomes/µl. All models were adjusted for the intervention, maternal BMI at enrolment, maternal age, proxy for socioeconomic status, number of 

previous pregnancies, anaemia, site of enrolment, mode of delivery and time between delivery and placenta sampling. 
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12.3.8 Source of Placental Bacteria 

SourceTracker (92) was used to identify the likely source for the bacteria 

detected in the placental and fetal membrane tissues. I identified 20 OTUs 

that were detectable from at least one participant’s placental tissue or fetal 

membrane and were also present in a matched individual sample from either 

the vagina or oral cavity. I compared their abundances with proportions of 

bacteria identified from SourceTracker as being from either the vagina or the 

oral cavity. 16 OTUs were positively associated with only a single source site 

using SouceTracker’s predictions, with 14 OTUs from the vagina and two 

from the oral cavity (Figure 12-12). Four bacteria could not be positively 

correlated with either source and so were not taken forward into subsequent 

analysis.   
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Figure 12-12: Identifying individual OTUs in placental and fetal 

membrane tissues sourced from either the vagina or oral cavity.  
The heat map plots the Spearman’s rho correlations between the proportion of OTUs in each 
individual that was predicted to be sourced from either the vagina or the oral cavity and 
individual OTU abundances. If both are positively correlated, it is assumed that the OTU is 
likely to have come from that source. Hierarchical clustering was computed by complete 
linkage of Euclidean distances. 
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A larger proportion of OTUs were identified as being sourced from the vagina 

than from the oral cavity (Figure 12-13). Also, similar proportions of 

organisms from the vagina were found in vaginally delivered and C-section 

delivered placenta and fetal membranes (Figure 12-14). A high proportion of 

organisms found within the placenta and fetal membranes did not have an 

obvious source (Figure 12-13).  

 

 

 

 

Figure 12-13: The mean ± SEM proportion of OTUs in placenta and fetal 

membranes predicted to be from either vaginal, oral cavity or an 

unknown source. 
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Figure 12-14: The mean ± SEM estimated proportion of OTUs in 

placenta and fetal membranes sourced from the vagina stratified by 

whether they were delivered vaginally or by C-section. 

 

 

Participants were clustered into groups by whether they had these 14 

vaginally sourced OTUs within either their placenta or fetal membrane 

tissues (Figure 12-15).  In one cluster, participants had evidence of multiple 

OTUs present in the vagina and in the placenta. In a second cluster 

participants had no evidence of these organisms within the vagina or 

placenta and a third cluster consisted of participants who had a combination 

of these 14 organisms in the vagina but not in the placenta.  
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Figure 12-15: Presence of vaginal organisms in the placenta across all participants. 
Hierarchical clustering was computed using complete linkage of Euclidean distances. Individuals were ranked by whether an OTU could be identified in both a 

matched vaginal and placental sample, only in the vaginal and sample or in neither the vagina nor the placenta.  
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Individuals were grouped by whether they had a detectable presence of 

these OTUs in their vagina and placenta and the mean LAZ score was taken 

for each group (Figure 12-16). The mean LAZ score was lowest in individuals 

when the organisms were present in both the vagina and placenta, with the 

highest mean LAZ score when the organisms were not present at all. This 

trend was statistically significant when Sneathia sanguinengens and 

Peptostreptococcus anaerobius were detected in the vagina and placental 

tissues (q<0.05). There were no significant associations between the 

presence of any of the same organisms and duration of pregnancy, birth 

weight or neonatal head circumference.  
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Figure 12-16: LAZ score for individuals grouped by presence of vaginal 

OTUs. 
Mean LAZ scores were plotted with error bars representing 95% confidence intervals. 
Individuals were group by whether an OTU could be identified in both a matched vaginal and 
placental sample, only in the vaginal and sample or in neither the vagina nor the placenta. 
Mean values across the three groups were compared using one-way ANOVA (*q<0.05). 
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12.4 Discussion 

This is the largest study to date of placental microbiota with over 1000 

individuals with tissue available. Bacteria were found in more than 50% of 

placental tissues and the core microbiome was distinct from the oral and 

vaginal microbiome. This microbial community structure was altered in 

individuals with severe chorioamnionitis. The abundance of these altered 

bacteria were associated with birth outcomes and the predominant source for 

these bacteria was from the vagina.  

A study by Aagaard et al (80) of 320 placental samples was recently 

published and showed that the taxa in the placenta resembled the oral 

microbiome more than the vagina, gut or skin. They found that certain genera 

had increased abundance in those who delivered preterm compared to term, 

including Burkholderia, Anaeromyxobacter, Streptosporangium and 

Roseovarius. These genera have not been previously associated with 

preterm birth and include environmental organisms or those associated with 

reagent contamination of sequencing studies (84).  Samples with low 

bacterial biomass, such as from the placenta, are susceptible to reagent, 

delivery and environmental contamination. Using positive and negative 

sequencing controls and controlling for the effects of mode of delivery, I have 

tried to mitigate these effects. The majority of full-thickness placental tissue 

sections had no detectable bacterial DNA and comparable numbers of 

bacteria from the vagina in both caesarean sections and vaginally delivered 

samples. This suggests that contamination of samples during delivery and 

processing occurred at a relatively low level. The majority of individuals had 
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an OTU rich placental microbiome, containing OTUs that could not be found 

in either matched or unmatched vagina or oral cavity samples. A minority of 

individuals had a relatively small number of phylogenetically diverse OTUs 

that could also be found in matched vaginal samples and it seems likely that 

these features represent ‘true’ infection of the placental tissue.  

Many of the OTUs I identified as being inversely correlated with duration of 

delivery have previously been associated with preterm birth. Fusobacterium 

nucleatum and Ureaplasma spp. have frequently been found in the amniotic 

fluid of women who deliver preterm (155,156,58). Although not commonly 

reported, recent molecular studies have found Sneathia sanguinegens, 

Prevotella spp., Peptostreptococcus spp. and Gardnerella vaginalis in both 

amniotic fluid and placental tissues of women who have delivered 

prematurely (57,63). Interestingly, several OTUs associated with a shorter 

duration of pregnancy and smaller newborn size in our study have been 

previously associated with bacterial vaginosis such as Gardnerella spp., 

Ureaplasma spp., Sneathia spp., Prevotella spp. and Lachnospiraceae spp. 

(157,158). This includes a recent study that found a higher abundance of 

Gardnerella and Ureaplasma in the vaginas of women during pregnancy who 

subsequently delivered preterm (159). I found that the presence of 

Peptostreptococcus anaerobious and Sneathia sanguinegens in both the 

vagina and placenta was associated with smaller newborn size, which 

provides further evidence supporting the view that ascending infection, and 

hence the vaginal microbiome, may play an important role in birth outcomes. 

However it is not possible to exclude a role for the oral microbiome in 
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seeding placental tissue, as has been previously suggested (78), as I have 

found the same OTUs in the oral cavity and placenta for some individuals. 

Also, the oral sample collected in this study was a swab of the gingival 

margins and may not isolate the bacteria found in deep periodontal pockets 

or periapical tissues that I now know have an association with adverse birth 

outcomes in this cohort (160). 

Severe chorioamnionitis was associated with a shorter duration of 

pregnancy. Moreover, certain bacterial phyla were associated with 

chorioamnionitis and also with each other. Based on these distinct microbial 

profiles, participants enrolled in this study fell broadly into two groups: one 

group dominated by species in the Proteobacteria or Firmicutes phyla and a 

second group dominated by a set of phylogenetically different organisms, 

mainly from the Fusobacteria and Tenericutes phyla. It was the second group 

who were more likely to have widespread inflammation in their placental 

tissue, deliver early and deliver a smaller newborn. In particular, higher loads 

in the load of these two phyla that appeared to be associated with severe 

chorioamnionitis. 

While there are no comparable data from Africa, studies across Europe and 

North America have shown some similarity between the organisms I have 

identified and those identified in amniotic fluid (60,161) or placental tissues 

(64,162). In a different trial in Malawi, prospectively treating women with 

antibiotics during pregnancy had a protective effect on the incidence of 

preterm birth and low birth weight (163). This could be explained by the 

possible clearing of potential pathogens responsible for ascending infection 
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that could then be leading to preterm birth or growth restriction. The gut 

microbiome is known to differ significantly between western and African 

populations (164) and I found a minority of OTUs such as a Blautia sp., 

Phascolarctobacterium succinatutens and a Lachnospiraceae sp. that have 

not previously been associated with adverse birth outcomes. It is unknown at 

the moment whether these are faecal contaminants or regional differences 

between this study and previous studies.  

In summary, I have identified a distinct microbial community in the placenta 

and fetal membranes that are associated with severe chorioamnionitis and 

poor birth outcomes in a large cohort in rural Malawi. Bacteria associated 

with both severe chorioamnionitis and poor birth outcomes were 

phylogenetically diverse and not the most abundant taxa recovered in the 

placenta or fetal membranes. Interestingly, none of the species associated 

with preterm birth were significantly associated with any of the three 

measures of growth restriction. Further studies are needed to elucidate 

mechanisms by which bacteria restrict fetal growth without triggering 

chorioamnionitis or preterm labour. Previous studies on the use of antibiotics 

in treating infection as a cause of preterm delivery have had limited success 

(165,166). A therapeutic approach targeted against the types of bacteria 

associated with poor birth outcomes may prove more successful, this is 

supported by trials using clindamycin that have reduced the risk of preterm 

birth and late miscarriage (167). Strategic control of the microbiome resident 

in the vagina or oral cavity, using antibiotics or probiotics with proven efficacy 
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against organisms identified in this study could potentially control potential 

etiologic agents that spread to the placenta. 
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13 Chapter 6: The vaginal microbiome in rural Malawi. 

 

13.1 Introduction 

Abnormal vaginal microbiota is an alteration in the microbial community that 

is otherwise predominated by lactobacilli species. Previous studies have 

found individuals lacking an abundance of lactobacilli are more likely to 

develop other conditions such as bacterial vaginosis (BV) or aerobic vaginitis 

(AV) and have an increased risk in transmission of sexually transmitted 

infections (168). BV is defined by an overabundance of anaerobic organisms 

such as Gardnerella vaginalis, Prevotella spp. and Bacteroides spp. (169) 

and has previously been identified by a change in vaginal pH, vaginal 

discharge and a fishy odour. However symptoms can be rare and many 

women that have BV are asymptomatic. Another vaginal microbiota disorder 

is aerobic vaginitis, defined by the overabundance of aerobic bacteria such 

as Escherichia coli Staphylococcus spp. and group B Streptococci (170). It 

differs from BV not only in the aerobic environment in creates in the vaginal 

microbiota but also correlates with increased levels of toxic leukocytes and 

parabasal cells in the epithelium. This strong inflammatory response can lead 

to itching and burning sensations but has also been linked to preterm birth 

and miscarriage (171). 

Incidence of abnormal vaginal microbiota during pregnancy has been 

associated with adverse birth outcomes, in particular preterm birth 
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(66,171,172,65,173) which is the largest cause of neonatal deaths worldwide. 

Incidence of preterm birth is highest in low-income countries like Malawi 

(152). Amongst a variety of risk factors, infection has been estimated as the 

probable cause of preterm birth in 25-40% of cases and ascending infection 

has long been associated as the potential source of organisms invading 

maternal and fetal tissues (4). Many of the organisms historically involved in 

intrauterine infections are commonly found in the genital tract (174) 

While previous work in diagnosing BV has used scoring of Gram stains (175), 

recent studies have been using molecular techniques focusing on the 

amplification of the 16S rRNA gene to elucidate how structure shifts between 

Lactobacilli dominated and BV communities (87,176). These studies 

exclusively acquire data from high-income countries, especially the USA. 

Ethnicity seems to influence the vaginal microbiome (158) but there have 

been no studies focusing on low-income populations in Africa. Prevalence of 

BV in Malawi has been studied and found to be as high as 85.5%,diagnosed 

using Amsel criteria (vaginal fluid pH >4.5, clue cells on microscopy, 

nonspecific vaginitis discharge and positive potassium hydroxide odour) 

(177). No attempt has been made to characterise the bacteria involved. 

The aim of this study was to characterise the vaginal microbiome of a large 

cohort of pregnant women in rural Malawi using 16S rDNA amplicon 

sequencing. I wanted to expand the current knowledge base for the structure 

of the vaginal microbiome in a low-income, African setting and investigate 

possible associations between the abundance of certain organisms and birth 

outcomes.  
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13.2 Materials and Methods 

  

13.2.1 Study design and enrolment 

See section 9.1. 

 

13.2.2 Study setting 

See section 9.2. 

 

13.2.3 Collection of birth outcome and baseline data 

See section 9.3. 

 

13.2.4 Sample collection 

See section 9.4. 

 

13.2.5 DNA Extraction 

See section 9.5. 

 

13.2.6 16S rDNA amplicon high-throughput sequencing 

See section 9.7. 
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13.2.7 Bioinformatics and statistical analysis 

See section 9.8. 

 

13.2.8 Ethical approval and consent 

See section 9.9. 
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13.3 Results 

 

13.3.1 Sample collection 

Starting in February 2011 a total of 1391 pregnant women were recruited into 

the iLiNS-DYAD-M trial, with the last delivery taking place in February 2013. 

A vaginal microbiome was characterised in 1107 (79.6%) participants. Figure 

13-1 shows that of those excluded, 222 were lost to follow up, 11 were 

excluded due to twin deliveries and 51 failed sequencing.  
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Figure 13-1: Study participant flow diagram. 
 

 

When the participants that were included in this study were compared to 

those excluded they tended to be older (25y vs 24y, p=0.025), had 

completed less time in education (3.9y vs 4.5y, p=0.049), had a lower proxy 

for socioeconomic status (-0.05 vs 0.30, p<0.001) and were more likely to be 

primiparous (29.6% vs 20.0%, p=0.001) (Table 13-1). Sequencing 1107 
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samples from individual participants and filtering for quality and error allowed 

analysis at a median depth of 14,585 reads per sample (IQR: 7,986 to 

21,659) from 18,661,136 reads in total. 

 

Table 13-1: Baseline characteristics of included and excluded 

participants 

Characteristic 
Included 

(n=1107)
1
 

Excluded 

(n=272)
1
 

P value
2
 

Mean (SD) BMI, kg/m
2
 22.1 (2.8) 22.4 (2.9) 0.126 

Mean (SD) maternal age, years 25.1 (6.10 24.2 (6.6) 0.025 

Mean (SD) maternal education, completed years at 

school 
3.9 (3.4) 4.5 (3.7) 0.049 

Mean (SD) proxy for socioeconomic status -0.05 (0.9) 0.30 (1.1) <0.001 

Proportion of aenemic women (Hb < 110 g/l) 29.6 % 20.1 % 0.001 

Proportion of primiparous women 4.1 % 5.7 % 0.367 

Proportion of women with a low BMI (< 18.5 kg/m
2
) 12.2 % 13.9 % 0.591 

Proportion of women with a positive HIV test 22.4 % 23.5 % 0.749 

Number (%) of women with a positive malaria test 

(RDT) 
23.4 % 22.7 % 0.874 

1
Total n=1391 

2 
P value obtained from t-test (comparison of means) or Fishers exact test (comparison of proportions)  

 

 

13.3.2 The vaginal microbiome of rural Malawian women is 

dominated by Gardnerella vaginalis with limited numbers of 

Lactobacillus spp. 

Figure 2 shows that Gardnerella vaginalis was the most common organism 

recovered from participant’s vaginal swabs. It was prevalent in 75.7% 

(838/1107) of participant’s genital tracts and was the only OTU found in 

>50% of individuals. In contrast, Lactobacillus spp. were found in the vaginal 
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microbiomes of just 30.4% (337/1107) participants. When Lactobacillus spp. 

were present they were usually Lactobacillus iners. A participant positive for 

the presence of Lactobacillus iners was also frequently positive for 

Gardnerella vaginalis. The relative abundances of these two organisms were 

significantly positively correlated (Spearman’s rho = 0.24, p<0.001).  

 

 

 

Figure 13-2: Rank abundance curve. 
The 25 most prevalent OTUs recovered from participants’ vagina (n=1107). 
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To identify the taxonomic groups that define the vaginal microbiota of this 

Malawian cohort I compared Spearman’s correlations between the 50 most 

abundant OTUs that accounted for 89.7% of all reads in the dataset. Figure 

13-3 shows that these OTUs separated into four taxonomic groups. The first 

group contained G. vaginalis, Leptotrichia amnionii, Sneathia sanguinegens 

Gemella asaccharolytica, Atopobium vaginae, Parvimonas sp. and a 

Clostridiales sp. Taxon group one was more likely to be negatively 

associated with the other three groups, especially taxonomic group two which 

consisted of F. magna, S. anginosus, Peptostreptococcus stomatis, 

Veillonella montpellierensis, Prevotella spp., Anaerococcus spp. and 

Corynebacterium spp.. P. anaerobious did not have a strong positive 

association with any of the other four taxonomic groups. 
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Figure 13-3: Heat map of pairwise Spearman’s correlations between the 50 most abundant OTUs. 
Hierarchical clustering by complete linkage of Euclidean distances was used to split the OTUs into four taxonomic groups. The heat map is annotated with Spearman’s 
correlation between the abundance of the OTU in that row and either vaginal pH, duration of pregnancy, birth weight, LAZ and HCZ.   
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To capture the diversity of the vaginal microbiome in each individual and to 

see if these taxonomic groups also defined groups of individuals, normalised 

read counts for the top 25 most abundant OTUs were compared and 

participants were clustered based on their microbiome composition (Figure 

13-4). Participants separated into two broad groups which are represented by 

the separately coloured clades in Figure 13-4. One group was defined by 

higher abundances of those organisms found in taxon group one and 

bacterial vaginosis-associated bacterium (BVAB)-3. The second group was 

more complex, containing a number of different sub-groups defined by higher 

abundance of Lactobacillus iners or clusters of OTUs containing 

Corynebacterium spp., Ureaplasma urealyticum, Mycoplasma hominis, 

Streptococcus anginosus, Peptoniphilus sp., Finegoldia magna and 

Anaerococcus spp. Both Gardnerella vaginalis and Peptostreptococcus 

anaerobious were present in abundance across a range of individuals and 

could not be associated with a single participant cluster. 
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Figure 13-4: Heat map of noramlised read counts from 25 most abundant OTUs in all participants. 
Read counts were noramlised using variance stabilizing transformation in DESeq2. Participants are clustered on their microbiota composition using hierarchical clustering by 

complete linkage of Euclidean distances. OTUs are group by their taxonomic group identified in Figure 13-3. The heat map is annotated by whether that participant was HIV-

positive or HIV-negative with the annotation left white if no information was available.
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Taxon group one was more likely to dominate the entirety of an individual’s 

vaginal microbiome, unlike the other taxon groups and P. anaerobius that 

often co-existed within the same individual (Figure 13-5). The core 

microbiome of 46.4% (514/1107) individuals was dominated by taxon group 

one (>50% relative abundance of taxon group one). In comparison only 

16.4% of individuals were dominated by taxon group four, 7.1% by taxon 

group two and 2.9% by taxon group three. 

 

 

Figure 13-5: Distribution of relative abundances of each taxon group 

amongst all participants. 
Taxon groups are the same as identified in Figure 13-4. Boxes define the taxon group’s 
median relative abundance along with the 25th and 75th percentiles. Error bars plot the 10th 
and 90th percentiles in the data with all outliers beyond this plotted as individual points. 
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13.3.3 Factors that may influence or could be influenced by 

vaginal microbial composition. 

13.9 % (154/1107) of individuals in this study were HIV positive. The heat 

map in Figure 13-4 was annotated with an individual’s HIV status to compare 

its possible association with microbial composition. HIV infection did not 

explain the observed structure of vaginal OTUs amongst participants. 

However, I compared differential abundances between OTUs in HIV-negative 

and HIV-positive participants using log-binomial regression. The two greatest 

differences in OTU abundance were in M. hominis and BVAB3 with a Log2-

fold increase in abundance of 0.77 and 0.58 in HIV-positive compared to 

HIV-negative participants, respectively. Both were not statistically significant 

changes after adjusting for FDR (q=0.05). 

Abundances of each OTU were compared using Spearman’s correlation with 

vaginal pH, gestational age at delivery, birth weight, newborn length-for-age 

z-score (LAZ) and head circumference-for-age z-score (HCZ) (Figure 13-3). 

Distinct patterns were seen between groups one and two with pH and birth 

outcomes. Increased abundances of taxonomic group one and P. 

anaerobious correlated with lower birth weight, lower newborn LAZ and lower 

HCZ. Higher abundances of taxonomic group 2 OTUs correlated with a lower 

pH and lower gestational age at birth. Taxonomic groups three and four, as a 

whole, had no distinct negative association with birth outcomes. 
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13.3.4 Associations between individual OTUs and adverse 

birth outcomes 

Using the taxonomic groups identified in Figure 13-3, I compared the 

association of individual OTUs within each group to four birth outcomes. 

There was a general trend across all individual OTUs from taxonomic group 

1 and P. anaerobius that an increased abundance corresponded with a lower 

birthweight, newborn LAZ and newborn HCZ. Increased abundances of P. 

anaerobius and P. amnii were both significantly associated with a lower 

newborn length for age z-score (q=0.023 and q=0.036, respectively) (Table 

2). When the association of individual OTUs found in taxonomic group 2 were 

compared to vaginal pH and duration of pregnancy, although the same 

trends were seen as for group 2 as a whole, there were no statistically 

significant associations for individual OTUs seen after adjusting for false 

discovery rate (supplementary table 1). 
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Table 13-2: Association between birth weight, newborn LAZ, HCZ and OTUs belonging to taxonomic group one including 

P. anaerobius. 

 Outcome 

 
Birth weight, grams 

(n=1008) 
 

Newborn length-for-

age Z score (n=979) 
 

Newborn head 

circumference-for-age Z 

score (n=982) 

 

OTU 
Adjusted regression 

coefficient
2
 (95% CI) 

q value
1
 

Adjusted regression 

coefficient
2
 (95% CI) 

q value
1
 

Adjusted regression 

coefficient
2
 (95% CI) 

q value
1
 

Peptostreptococcus anaerobius -7 (-14, 0) 0.306 -0.03 (-0.04, -0.01) 0.023 -0.02 (-0.04, -0.01) 0.023 

Parvimonas sp. -9 (-18, 1) 0.279 -0.02 (-0.04, 0.01) 0.389 -0.02 (-0.04, 0.01) 0.389 

Atopobium vaginae -0 (-8, 7) 0.922 -0.00 (-0.02, 0.02) 1.000 -0.01 (-0.03, 0.01) 1.000 

Gemella assacharolytica 3 (-5, 10) 0.722 -0.01 (-0.02, 0.01) 0.831 -0.00 (-0.02, 0.02) 0.831 

Sneathia sanguinegens -6 (-13, 1) 0.250 -0.02 (-0.04, -0.00) 0.057 -0.01 (-0.03, 0.01) 0.057 

Gardnerella vaginalis -2 (-8, 4) 0.735 -0.00 (-0.02, 0.02) 0.989 -0.01 (-0.03, 0.01) 0.989 

Leptotrichia amnionii -1 (-8, 6) 0.849 0.00 (-0.01, 0.02) 0.872 -0.01 (-0.02, 0.01) 0.872 

Prevotella amnii -10 (-19, -1) 0.297 -0.03 (-0.05, -0.01) 0.036 -0.02 (-0.04, 0.01) 0.036 

Clostridiales sp. -4 (-12, 5) 0.679 -0.01 (-0.03, 0.01) 0.526 -0.01 (-0.03, 0.02) 0.526 

1
P values calculated by linear regression and q values were generated by controlling for the false discovery rate using the Benjamini-Hochberg method. Regression models 

show the change in birth outcome measured with an increase in OTU’s noramlised read count of one. All models were adjusted for nutritional intervention, maternal BMI at 

enrolment, maternal age, proxy for socioeconomic status, number of previous pregnancies, maternal anaemia at enrolment and site of enrolment. 
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Table 13-3: Association between vagina pH, duration of pregnancy and OTUs belonging to taxonomic group two. 

 Outcome 

 Vaginal pH (n=942)  Duration of pregnancy, weeks (n=1107)  

OTU Adjusted regression coefficient
2
 (95% CI) q value

1
 Adjusted regression coefficient

2
 (95% CI) q value

1
 

Peptinophilus sp. -0.00 (-0.03, 0.02) 0.881 -0.02 (-0.08, 0.03) 1.000 

Finegoldia magna -0.01 (-0.04, 0.02) 1.000 -0.02 (-0.08, 0.04) 0.803 

Corynebacterium amycolatum -0.00 (-0.03, 0.03) 0.957 -0.02 (-0.08, 0.04) 0.714 

Anaerococcus lactolyticus -0.02  (-0.05, 0.01) 0.449 0.03 (-0.04, 0.09) 1.000 

Corynebacterium sp. -0.02 (-0.05, -0.01) 0.506 -0.02 (-0.08, 0.04) 0.823 

Streptococcus anginosus -0.02 (-0.05, 0.01) 0.385 0.03 (-0.03, 0.09) 1.000 

Prevotella timonensis  -0.03 (-0.05, 0.00) 0.297 0.00 (-0.05, 0.05) 0.956 

Anaerococcus tetradius -0.00 (0.03, 0.02) 0.877 0.02 (-0.03, 0.08) 0.939 

Prevotella bivia -0.02 (-0.04, -0.00) 0.517 0.02 (-0.02, 0.06) 1.000 

Veillonella montpellierensis -0.01 (-0.03, 0.01) 0.587 -0.01 (-0.05, 0.04) 0.854 

Peptostreptococcus stomatis -0.01 (-0.04, 0.01) 0.783 -0.01 (-0.07, 0.05) 0.937 

1
P values calculated by linear regression and q values were generated by controlling for the false discovery rate using the Benjamini-Hochberg method. Regression models 

show the change in birth outcome measured with an increase in OTU’s noramlised read count of one. All models were adjusted for nutritional intervention, maternal BMI at 

enrolment, maternal age, proxy for socioeconomic status, number of previous pregnancies, maternal anaemia at enrolment and site of enrolment. 
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13.4 Discussion 

In this study I have characterised the vaginal microbiome of 1,107 women in 

Southern Africa. This represents the largest cross-sectional study of its kind 

to date and one of the few studies in an African population (149,178,179). I 

have shown that a diverse microbial community deficient in Lactobacillus 

spp. dominates the vaginal samples in this cohort of women. A proportion of 

individuals who have delivered babies with lower LAZ and HCZ tend to have 

a particular combination of bacterial vaginosis associated bacteria which 

included higher abundances of P. anaerobius and P. amnii. 

Studies that have analysed the vaginal microbiome using 16S rDNA 

amplicon sequencing have concluded that the majority of the population has 

a microbiome dominated by Lactobacillus spp. and a less prevalent group of 

BV-associated organisms (87,180,159). These have taken place in 

predominantly white Caucasian populations from U.S.A or Europe. Ethnic 

differences between populations in the U.S.A have been studied and there 

are show some similarities with our findings. Those with African American 

ancestry have been found to have a higher prevalence of Prevotella spp., 

Dialister spp., Atopobium spp., Gardnerella spp., Peptoniphilus spp., 

Sneathia sanguinegens. Aerococcus spp, Finegoldia magna and a 

decreased prevalence of Lactobacillus spp. when compared to other groups 

(87). A study explicitly comparing participants with African American and 

European ancestry found that those with African American ancestry had a 

“healthy” microbiome dominated by M. hominis, Aerococcus spp, 

Anaerococcus spp, Dialister spp, Peptoniphilus spp., Parvimonas spp,, S. 
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sanguinegens , P. amnii, Atopobium spp. and G. vaginalis. When 

Lactobacillus spp. were found in an African American cohort, as noted in this 

study, it was most likely to be L. iners (158). Two studies in East Africa that 

have used marker gene studies to characterise the vaginal microbiome have 

focused on either HIV-positive women and those with BV and so the results 

cannot be extrapolated to see how the population looks as a whole 

(178,179). As well as ethnic differences, regional microbiome differences 

have previously been established in gut studies (164), however comparable 

data for the vagina has not been available until now. Other environmental 

factors such as vaginal douching are common to this region (181). However 

there is some disagreement on whether this can (182,183), or cannot (179), 

alter the vaginal microbiota.  

This cross-sectional study sampled the vaginal microbiome at one week 

post-partum. During pregnancy, longitudinal studies have found that specific 

community structures are more stable than others (184) and that as 

pregnancy progressed there was an increase in abundance of Lactobacillus 

spp. (180). However, studies looking at the post-partum vaginal microbiome 

showed an abrupt drop in abundance of Lactobacillus spp and an increase in 

Prevotella spp., Anaerococcus spp., Streptococcus spp and Peptoniphilus 

spp (159,185). It is known that oestrogen levels post-partum change 

substantially and fall up to a 1000-fold in some cases, having a significant 

effect on bacterial community members. A recent study sampled the vaginal 

microbiome in an African population in Tanzania before and after delivery 

and found that while during pregnancy the microbiome was generally still 
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dominated by Lactobacillus spp. there was a large shift post-partum 

(between 3 days and 1 month after birth) (149). Although the numbers of 

individuals studied were low compared to this study, it showed many 

similarities with higher abundances of Prevotella spp., Gardnerella spp. and 

Sneathia spp. However, there was still a relative high prevalence of 

Lactobacillus spp. post-partum in the Tanzanian cohort compared to this 

Malawian cohort. This could be explained by the lower incidences of adverse 

birth outcomes such as preterm birth (5%) compared to the population in this 

study (10%). An extensive longitudinal study is needed to confirm both the 

stability of these community structures over time and shifts in microbial 

composition pre- and post-partum.  

Although BV has previously been associated with preterm birth, I found the 

majority of participants in this study were dominated with BV-associated 

bacteria, and similar to another large study (180), they could not all explain 

incidences of adverse birth outcome. I found that BVAB-3, previously 

associated with BV patients, was positively associated with a longer duration 

of delivery. Interestingly, in an African American population, an increased 

bacterial load of BVAB3 identified by qPCR was also associated with a 

decreased risk of preterm birth (186). BV is more prevalent in Malawi than in 

the U.S.A and Europe, with incidences between 35% and 85.5% previously 

diagnosed using a mixture of Amsel and Nugent (based on the observation of 

specific morphotypes under the microscope after Gram stain) methods 

(177,181,187). Taxonomic groups one and two contain anaerobic bacteria 

that could represent an altered BV microbiota in this population. I found that 
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Prevotella amnii and Peptostreptococcus anaerobius were both found to be 

significantly associated with a measure of intrauterine growth restriction. 

Interestingly, it has been shown that Prevotella spp. provide amino acids that 

increase the growth of P. anaerobius in vitro and it seems likely that  similar 

symbiotic relationships exist between the species within the groupings 

identified in this study (188).  

Taxonomic group three could represent a mixed community of both BV and 

AV flora, with previously identified AV flora such as Staphylococcus aureus 

and Streptococcus agalactiae present in high abundance alongside BV-

associated genera such as Prevotella spp, Parvimonas spp and 

Coriobacteriales spp. (170). Although AV has been previously associated 

with preterm birth (171), I found no associations with birth outcomes 

measured in this study and the prevalence of these organisms across the 

entire population was very low.  

Administration of antibiotics in pregnancy in Africa have been shown to 

reduce the risk of preterm birth and low birth weight (163,189,190), 

presumably by eradicating certain vaginal bacteria and reducing the risk of 

ascending intrauterine infection. Microbial therapy or administration of 

probiotics could promote the growth of commensal microbiota but a better 

understanding of how the vaginal microbial community differs in these 

populations is needed first to inform any future interventions. 
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14 Chapter 7: Conclusion 

In this thesis I have demonstrated a successful method for identifying the 

microbial community structure of the placenta and vagina from a rural, low-

income setting. Through using this method I have shown distinct community 

structures in the placenta and vagina are associated with chorioamnionitis 

and adverse birth outcomes. When interpreting the placental high-throughput 

sequencing results, one the biggest challenges was differentiating genuine 

signal from contamination. There were a number of different sources of 

contamination in this dataset and it was a challenging setting to carry out 

sensitive bacterial DNA detection. Potential sources of contamination 

included during deliveries in hospital and health centres that might not have 

sterile equipment and the threat of constant electricity black-outs during the 

storage of samples at local sites. It might not be feasible to avoid all possible 

contamination but if the correct positive and negative controls were used I 

have shown it is possible to filter potential noise from the dataset post-

sequencing. While a study in the UK could be designed to avoid these 

possible pitfalls, this might be the only workaround in a rural sub-Saharan 

African setting. 

It is still undecided whether the placenta is truly a sterile site or not. Results 

from sequencing low biomass samples such as these can be heavily effected 

by contamination after the sample is collected and after the genomic DNA is 

extracted. High-throughput sequencers are now able to process thousands of 

samples to a depth spanning millions of reads which gives it unprecedented 

sensitivity if viable DNA is loaded onto the machine. Previous studies using 
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molecular techniques to detect bacteria in the placenta have used less 

sensitive techniques (63). However a recent high-throughput sequencing 

study has suggested that all placentas have a resident microbiome (80). As 

mentioned previously, many of the bacteria recovered were environmental 

organisms, known to be present in a lot of the laboratory reagents used in the 

preparation and amplification of DNA (84). In this project, I screened samples 

using a broad-range 16S rDNA qPCR to define samples that would go 

forward for high-throughput sequencing. Using a less sensitive technique 

before going ahead with high-throughput sequence would reduce future 

issues with reagent contamination. This was corroborated by the fact that 

positive samples with the lowest bacterial loads were both more likely to have 

a higher relative abundance of environmental organisms that were found in 

the negative sequencing controls and were more likely to contain higher 

abundances of the Sphingomonas sp. identified in Figure 10-7. The same 

problem was not encountered when I sequenced samples from established 

microbial communities such as the vagina and the oral cavity. A screening 

method such as the broad-range 16S rDNA qPCR might be necessary for 

low biomass samples such as placental tissue to provide reliable datasets in 

the future and previous studies not taking this into account need to have their 

results reassessed in light of this. 

Further improvements are needed in reducing PCR error, sequencing error 

and the reliable assignment of OTUs. At the family level there was a strong 

association between certain taxa and adverse birth outcomes in this study 

that was largely lost when comparing individual OTUs. Current OTU picking 
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strategies that define sequence bins based on global sequence similarity can 

mistakenly split what should be a single OTU into many spurious OTUs as 

previously shown in Figure 10-9. Some progress is being made with a move 

away from global thresholds to a more iterative, de novo approach (191). 

Another largely understudied problem in this field is also the use of large, 

curated 16S rDNA databases in the assignment of both OTUs and taxonomy 

to samples. Although proper comparison studies are needed to elucidate the 

exact effects, it seems that there is a trade off in attempting to represent all 

bacterial environments and the ability to successfully separate sequences 

that could originate from biologically different organisms. Computational 

requirements are drastically reduced when using a restricted database and 

although there is time saved on using pre-curated databases, a two-step 

OTU picking approach can be used with a database tailored to the study 

question. This might be more suited to current OTU and taxonomy 

assignment algorithms. 

Although not included in the scope of this thesis, further work will be needed 

to elucidate any minor alterations the nutrient interventions might be having 

on various organism found in the placenta, vagina and oral cavity. All 

comparisons between bacteria and birth outcomes in this thesis were 

controlled for the effect of the intervention using relevant regression models. 

However comparisons between phylogenetic diversity in the various 

microbiomes between different intervention arms would only reveal very 

broad shifts in community structure. If lipid-based nutrient supplements are 

going to be sold locally in Malawi to reduce the prevalence of chronic 
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undernutrition, then further work is needed to characterise its impact on the 

microbiome and especially oral health. 

Collaborators on this project have published that periapical infections in the 

same cohort were associated with both shorter duration of pregnancy and 

IUGR (160). This would provide further evidence for a case of 

haematogenous spread of bacteria from the mouth to the placenta and 

perhaps infection of the foetus itself. We only reliably detected two oral 

organisms that could be traced in both matched oral and placental samples. 

This included Group B Streptococci which has previously been implicated in 

preterm birth (192,193) but was not associated with adverse birth outcomes 

in this population. It is known that many of the more problematic oral 

pathogens, like Fusobacterium nucleatum, are anaerobes found in increasing 

numbers at greater pocket depth (194). F. nucleatum was detected at 

relatively high prevalence in placental tissue in this study and at the family 

level. Greater abundances of Fusobacteriaceae were also associated with 

both a higher prevalence of severe chorioamnionitis and a lower duration of 

delivery. This pathogen has long been associated with adverse birth 

outcomes (61); however the prevalence in the oral samples was very low. 

Many participants had a placental tissue sample dominated by F. nucleatum 

that was completely absent from a matched participant oral swab. One 

explanation would be that the F. nucleatum we sampled was being 

introduced from a different source. However, I think a more likely reason for 

this discrepancy is the type of sample taken in this study. It is more likely the 

full diversity of oral bacteria in these participants was not identified. Any 
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future studies need to sample at multiple sites, including deep periodontal 

pockets, in order to discover reliable associations between oral pathogens 

and adverse birth outcomes. 

Based on the results of this thesis, a therapeutic intervention (either 

antibiotics or probiotics) in this population that had proven efficacy against P. 

anaerobious, P. amnii and S. sanguinegens early in pregnancy might be an 

ideal next step to reduce the prevalence of newborn stunting and low birth 

weight. The ability to screen for these organisms using species-specific PCR 

might also be useful in targeting at-risk populations. However, I think further 

studies are needed to confirm these associations. Longitudinal sampling of 

the vagina is needed at regular intervals throughout pregnancy and after 

delivery. Unfortunately the only available vaginal microbiome time point in 

this study was one week post-partum, and as previously mentioned, a wide 

variety of changes make it difficult to draw conclusions as to microbial 

community structure pre-partum. The stark contrasts however between the 

results between different ethnic groups in both prevalence of preterm birth, 

BV and even healthy vaginal tract microbiota suggest that a greater variation 

in community structure than perhaps previously thought. Despite this, these 

results provide further evidence of the important role the vaginal microbiome 

may play in seeding organisms found on placental tissues in rural Malawi and 

therapeutic interventions could be designed to impact the microbiome with 

the goal of reducing the risk of preterm birth or intrauterine growth restriction. 
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16 Appendix 

 

16.1 Qiime script settings 

 

#Pick OTUs 

parallel_pick_otus_uclust_ref.py -i /data/seqs.cat.fna -o /data/pick_otus/ -r 

/data/97_named_trimmed_reference.fasta -O 159 –T 

filter_fasta.py -f /data/seqs.cat.fna -o /data/pick_otus/seqs.cat_failures.fasta -s 

seqs.cat_failures.txt 

parallel_pick_otus_uclust_ref.py -i /data/pick_otus/seqs.cat_failures.fasta -o 

/data/pick_otus/failures/ -r /home/ubuntu/qiime_software/gg_otus-12_10-

release/rep_set/97_otus.fasta -O 159 -T 

#pick representative sequences for all split otu maps 

nohup pick_rep_set.py -i seqs.cat.combined.txt -f /data/seqs.cat.fna -o 

/data/rep_set/rep_set.fasta & 

nohup parallel_assign_taxonomy_uclust.py -i rep_set.fasta -o 

/data/uclust_assigned_taxonomy/ -O 8 & 
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cat seqs.cat_otus.txt seqs.cat_otus_failures.txt > seqs.cat_otus_merged.txt 

nohup make_otu_table.py -i otu_maps/seqs.cat_otus_merged.txt -o otu_table.biom -t 

uclust_assigned_taxonomy/rep_set _tax_assignments.txt & 

nohup parallel_align_seqs_pynast.py -i rep_set/rep_set_.fasta -o pynast_aligned_seqs/ -T -O 

8 & 

filter_alignment.py -o pynast_aligned_seqs/ -i pynast_aligned_seqs/rep_set _aligned.fasta 

nohup make_phylogeny.py -i pynast_aligned_seqs/rep_set _aligned_pfiltered.fasta -o 

rep_set.tre & 

# *** REMOVING NEGATIVE EXTRACTION AND NEGATIVE RUN CONTROL 

CONTAMINANTS *** 

split_otu_table.py -i otu_table.biom -m mapping_combined.txt -f BodySite -o split_by_site/ 

biom convert -i otu_table_Negative_extraction.biom -o otu_table_Negative_extraction.txt -b 

--header-key taxonomy 

filter_otus_from_otu_table.py -i otu_table.biom -o otu_table_c.biom -e 

contamination_otus.txt 

filter_otus_from_otu_table.py -i otu_table_c.biom -o otu_table_c_mc2.biom -n 2 

# *** ANALYSING MOCK COMMUNITY DATA *** 

biom convert -i otu_table_Mock_community.biom -o otu_table_Mock_community.txt -b --

header-key taxonomy 

# *** FILTERING OTU TABLE *** 

python filter_observations_by_sample.py -i combined/output/otu_table_c_mc2.biom -o 

combined/output/otu_table_c_f.biom -n 0.008 -f 

filter_samples_from_otu_table.py -i otu_table_c_f.biom -o otu_table_c_f_lf.biom -m 

mapping_combined.txt --output_mapping_fp mapping_combined_filtered.txt -n 1000 

filter_otus_from_otu_table.py -i otu_table_c_f_lf.biom -o otu_table_c_f_lf_mc2.biom -n 2 

biom summarize-table -i otu_table_c_f_lf_mc2.biom -o otu_table_c_f_lf_mc2_summary.txt 

single_rarefaction -i otu_table_f_c_mc2_lf_s_mc2.biom -o 

otu_table_f_c_mc2_lf_s_mc2_1000.biom -d 1000 

split_otu_table.py -i otu_table_c_f_lf_mc2.biom -m mapping_combined.txt -f BodySite -o 

split_by_site/ 

*** ALPHA DIVERSITY *** 
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alpha_rarefaction.py -i oral/otu_table_c_f_lf_mc2_Dental_plaque_Malawi.biom -m 

oral/mapping_Dental_plaque_Malawi.txt -o oral/alpha/ -t 

/home/ronan/miseq/combined/output/rep_set.tre -a -O 7 -n 1 --min_rare_depth 1000 -e 1000 

-p /home/ronan/miseq/combined/alpha_parameter.txt 

alpha_rarefaction.py -i vagina/otu_table_c_f_lf_mc2_Vaginal_mucus_Malawi.biom -m 

vagina/mapping_Vaginal_mucus_Malawi.txt -o vagina/alpha/ -t 

/home/ronan/miseq/combined/output/rep_set.tre -a -O 7 -n 1 --min_rare_depth 1000 -e 1000 

-p /home/ronan/miseq/combined/alpha_parameter.txt 

alpha_rarefaction.py -i placenta/otu_table_c_f_lf_mc2_Placenta_Malawi.biom -m 

placenta/mapping_Placenta_Malawi.txt -o placenta/alpha/ -t 

/home/ronan/miseq/combined/output/rep_set.tre -a -O 7 -n 1 --min_rare_depth 1000 -e 1000 

-p /home/ronan/miseq/combined/alpha_parameter.txt 

alpha_rarefaction.py -i membrane/otu_table_c_f_lf_mc2_Fetal_membrane_Malawi.biom -m 

membrane/mapping_Fetal_membrane_Malawi.txt -o membrane/alpha/ -t 

/home/ronan/miseq/combined/output/rep_set.tre -a -O 7 -n 1 --min_rare_depth 1000 -e 1000 

-p /home/ronan/miseq/combined/alpha_parameter.txt 

*** BETA DIVERSITY *** 

beta_diversity_through_plots.py -i oral/otu_table_c_f_lf_mc2_Dental_plaque_Malawi.biom 

-m oral/mapping_Dental_plaque_Malawi.txt -o oral/beta/ -t 

/home/ronan/miseq/combined/output/rep_set.tre -a -O 7 -p 

/home/ronan/miseq/combined/beta_parameter.txt -e 1000 

beta_diversity_through_plots.py -i 

vagina/otu_table_c_f_lf_mc2_Vaginal_mucus_Malawi.biom -m 

vagina/mapping_Vaginal_mucus_Malawi.txt -o vagina/beta/ -t 

/home/ronan/miseq/combined/output/rep_set.tre -a -O 7 -p 

/home/ronan/miseq/combined/beta_parameter.txt -e 1000 

beta_diversity_through_plots.py -i placenta/otu_table_c_f_lf_mc2_Placenta_Malawi.biom -

m placenta/mapping_Placenta_Malawi.txt -o placenta/beta/ -t 

/home/ronan/miseq/combined/output/rep_set.tre -a -O 7 -p 

/home/ronan/miseq/combined/beta_parameter.txt -e 1000 

beta_diversity_through_plots.py -i 

membrane/otu_table_c_f_lf_mc2_Fetal_membrane_Malawi.biom -m 

membrane/mapping_Fetal_membrane_Malawi.txt -o membrane/beta/ -t 

/home/ronan/miseq/combined/output/rep_set.tre -a -O 7 -p 

/home/ronan/miseq/combined/beta_parameter.txt -e 1000 

split_otu_table.py -i otu_table_f_c_mc2_lf_s_mc2.biom -m 

mapping/mapping_combined_filtered.txt -f BodySite -o split_by_site_filtered/ 

filter_otus_from_otu_table.py -i otu_table_f_c_mc2_lf_s_mc2_Dental_plaque_Malawi.biom 

-o otu_table_f_c_mc2_lf_s_mc2_Dental_plaque_Malawi_mc1.biom -n 1 

filter_otus_from_otu_table.py -i 

otu_table_f_c_mc2_lf_s_mc2_Fetal_membrane_Malawi.biom -o 

otu_table_f_c_mc2_lf_s_mc2_Fetal_membrane_Malawi_mc1.biom -n 1 
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filter_otus_from_otu_table.py -i otu_table_f_c_mc2_lf_s_mc2_Placenta_Malawi.biom -o 

otu_table_f_c_mc2_lf_s_mc2_Placenta_Malawi_mc1.biom -n 1 

filter_otus_from_otu_table.py -i 

otu_table_f_c_mc2_lf_s_mc2_Vaginal_mucus_Malawi.biom -o 

otu_table_f_c_mc2_lf_s_mc2_Vaginal_mucus_Malawi_mc1.biom -n 1 


