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Abstract The activity of certain parietal neurons has been
interpreted as encoding affordances (directly perceivable
opportunities) for grasping. Separate computational models
have been developed for infant grasp learning and affor-
dance learning, but no single model has yet combined these
processes in a neurobiologically plausible way. We present
the Integrated Learning of Grasps and Affordances (ILGA)
model that simultaneously learns grasp affordances from
visual object features and motor parameters for planning
grasps using trial-and-error reinforcement learning. As in
the Infant Learning to Grasp Model, we model a stage of
infant development prior to the onset of sophisticated visual
processing of hand—object relations, but we assume that cer-
tain premotor neurons activate neural populations in primary
motor cortex that synergistically control different combina-
tions of fingers. The ILGA model is able to extract affordance
representations from visual object features, learn motor para-
meters for generating stable grasps, and generalize its learned
representations to novel objects.
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1 Introduction

The notion of affordances as directly perceivable opportuni-
ties for action (Gibson 1966) was used to interpret the activity
of certain parietal neurons as encoding affordances for grasp-
ing in the FARS model of parieto-frontal interactions in
grasping (Fagg and Arbib 1998). However, the FARS model
“hard-wires” these affordances, whereas our concern is with
the development of these affordances and the grasps they
afford. While computational models of infant grasp learn-
ing (Oztop et al. 2004) and affordance learning (Oztop et al.
2006) have been developed that work in a staged fashion,
there do not exist any models that learn affordance extrac-
tion and grasp motor programs simultaneously. This model
follows from a suggestion of Arbib et al. (2009) and imple-
ments a dual learning system that simultaneously learns both
grasp affordances and motor parameters for planning grasps
using trial-and-error reinforcement learning. As in the Infant
Learning to Grasp Model (ILGM, Oztop et al. 2004), we
model a stage of infant development prior to the onset of
sophisticated visual processing of hand—object relations, but
as in the FARS model (Fagg and Arbib 1998), we assume
that certain premotor neurons activate neural populations in
primary motor cortex that synergistically controls different
combinations of fingers. The issue is to understand how dif-
ferent visual patterns can activate the appropriate subset of
these neurons. Specifically, the task of ILGA is to learn (i)
“affordances,” representations of object features that indicate
where it can be grasped, and (ii) motor parameters that can
be used to successfully grasp objects based on these repre-
sentations.
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Newborn infants aim their arm movements toward fixated
objects (von Hofsten 1982). These early arm movements have
been related to the development of object-directed reaching
(Bhat et al. 2005), leading to grasping (Bhat and Gal-
loway 2006), the development of which continues throughout
childhood (Kuhtz-Buschbeck et al. 1998). Previous rele-
vant models of infant motor development include Berthier’s
(1996), Berthier et al. (2005) and Caligiore et al.’s (2014)
models of learning to reach and the ILGM. The thread shared
by these models is reinforcement-based learning of intrinsi-
cally motivated goal-directed actions based on exploratory
movements, or motor babbling: Movements are generated
erratically in response to a target and the mechanisms gener-
ating the movements are modified via positive reinforcement
(Cangelosi and Schlesinger 2013).

Grasping in development seems to increasingly involve
visual information in preprogramming the grasp (Lasky
1977; Lockman et al. 1984; Von Hofsten and Ronnqvist 1988;
Clifton et al. 1993; Newell et al. 1993; Witherington 2005).
In ILGM, the affordance extraction module only represented
the presence, position, or orientation of an object. All fin-
gers were extended in the initial “preshape” portion of the
grasp to a maximal aperture. Initially, the enclosure was trig-
gered by the palmar reflex upon object contact. However,
each time the result of reflex grasping provided a stable
grasp, this grasp was reinforced, and over time, a reper-
toire developed of situations in which a stable grasp could
be elicited—including the appropriate prepositioning of the
hand to a position from which the final approach of hand to
object could be made—without relying on the happenstance
of reflex grasping. However, the model did not learn the
affordances of objects and a fortiori could not exploit them
by preshaping appropriately during the reach to grasp. This
shortcoming motivates the Integrated Learning of Grasps
and Affordances (ILGA) model which simulates the way in
which affordance extraction and grasp specification may be
adapted simultaneously. It models the developmental tran-
sition to hand preshape based on visual information (Von
Hofsten and Ronnqvist 1988; Schettino et al. 2003; Wither-
ington 2005) and utilizes the “virtual finger hypothesis” for
hand control during grasping. The virtual finger hypothesis
states that grasping involves the assignment of real fingers to
the so-called virtual fingers (VFs) or force applicators (Arbib
et al. 1985). For example in a power grasp, one virtual fin-
ger might be the thumb and the other might be the palm
while a precision pinch might oppose the thumb to a vir-
tual finger comprising one or more of the other fingers. The
task of grasping is then to preshape the hand according to the
selected virtual fingers and the size of the object and bring the
opposition axis of the virtual fingers into alignment with the
selected object surface opposition axis (grasp affordance).
Experimental evidence consistent with this hypothesis, also
known as hierarchical control of prehension synergies, has
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been found (Smeets and Brenner 2001; Zatsiorsky and Latash
2004; Winges and Santello 2005). These studies suggest that
grasp force planning occurs in two hierarchical levels, with
virtual finger force planning occurring first and then planning
at the level of individual fingers, which provides a common
input to motor neurons in various finger muscles (Zatsiorsky
and Latash 2004; Winges and Santello 2005). However, note
that it has also been suggested that prehension synergies are
not well represented in motor cortex and that the role of motor
cortex is to modulate subcortically represented synergies in
order to allow individual control of the fingers (Mollazadeh
et al. 2014).

In the FARS model, ventral premotor region F5 contained
populations of neurons prewired for each grasp type (pre-
cision pinch, power grasp, etc.). Within each population,
subpopulations were selective for each phase of the grasp.
In the behavioral protocol used in the FARS simulations,
this included Set, Extension, Flexion, Hold, and Release;
however, only Set, Extension, and Flexion are considered
here. Neurons in each Set subpopulation excited neurons in
the same subpopulation and inhibited those neurons in Set
subpopulations selective for other grasps. This connectivity
implemented a winner-take-all dynamic that selected which
grasp to perform based on affordance input from the anterior
intraparietal area AIP. The grasp was controlled by activat-
ing F5 populations that encoded each phase of the grasp
(although some neurons might be active across more than one
consecutive phase). Feedback projections from F5 neurons
to AIP modulated its activity according to the grasp phase.

In FARS, the secondary somatosensory cortex (SII)
detected when the hand aperture reached the predicted maxi-
mal value for the planned grasp and triggered grasp enclosure
by activating the appropriate Flexion subpopulation in F5.
ILGM included detection of object contact with the palm
in SI that automatically triggered enclosure. These repre-
sent feedforward and naive feedback strategies, respectively.
However, a more sophisticated feedback strategy might be
used where the detection of the hand approaching the object
is used to trigger the grasp enclosure. This is still a feedback
strategy in that the relative position of hand and target object
is used to trigger the enclosure, but does so before the hand
contacts the object as in the naive feedback strategy.

Before delving further into the anatomy, it is important
to note that we are conflating neurophysiological and neu-
roanatomical data from macaques with behavioral and lesion
data from humans. Thus, the areas that ILGA simulates are
primarily rooted in macaque neuroanatomy. However, it is
widely accepted that the basic mechanisms of the reach and
grasp are conserved across monkeys, apes, and humans, and
thus the ILGA model, like the FARS model, is assumed to
apply equally well to the macaque and (with suitable align-
ment of homologous brain regions) for apes and humans.
The FARS model made an important distinction between the
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Fig. 1 Reach and grasp parameters encoded by the premotor cortex.
The small cube denotes the planned reach offset point, and the larger
rectangular prism is the object to be grasped. As explained later, area F2
encodes the shoulder-centered object position, s, 65, ps, F7 encodes the

processing of visual input via the dorsal and ventral streams.
The dorsal stream was modeled as extracting the affordances
of the attended object, whereas the ventral stream could
extract the identity of the object and could thus supply data
to prefrontal cortex (PFC) to use in determining which of
the affordances would best meet current task demands and
working memory. The division of labor can be exemplified
by having the ventral stream recognize a mug, recall that it
still contains coffee, deciding to drink it, and thus selecting
the handle for grasping; but it is up to the dorsal stream to
process shape information to extract the affordance of the
handle and the motor parameters of the grasp appropriate to
that affordance.

Since the distinction was first made between the roles of
dorsal and ventral visual streams in grasping (Goodale and
Milner 1992; Jeannerod et al. 1994), the dorsal stream has
been further subdivided into the dorsal-medial and dorsal-
ventral streams (Rizzolatti and Matelli 2003). It has been sug-
gested that the dorsal-medial stream, involving superior pari-
etal and intraparietal regions and the dorsal premotor cortex,
controls reaching, while the dorsal-ventral stream, including
inferior parietal and intraparietal regions and the ventral pre-
motor cortex, controls grasping (Jeannerod et al. 1995; Wise
et al. 1997). The main regions of the dorsal-medial stream
seem to include the medial intraparietal area (MIP) and area
V6A in the parietal cortex, and area F2 in the dorsal premo-
tor cortex. The spatial dimensions of potential targets such as
direction and distance are likely processed independently in

object-centered reach offset, ¢,, 05, po, FS encodes the VF combination
and maximum aperture used for the grasp, and F2/F5 encodes the wrist
orientation wry, wry, wr;

parallel (Battaglia-Mayer et al. 2003). In support of this idea,
direction and distance reach errors dissociate (Soechting and
Flanders 1989; Gordon et al. 1994) and distance information
decays faster than direction information in working memory
(McIntyre et al. 1998). Our model therefore dissociates the
representation of direction and distance in order to reduce
the dimensionality of spatial representations to be associated
with motor parameter values. However, we note data sug-
gesting that many neurons are modulated by a combination
of both variables (Fu et al. 1993; Messier and Kalaska 2000).
ILGA learns to perform successful grasps by developing
mappings between visual object features and various para-
meters used to control the arm and hand (Fig. 1). The grasp is
determined by the selection of virtual fingers, VF1 and VF2,
as well as the maximum aperture. While studies of parietal
representation of object location test the encoding of the cen-
ter of a visual target, reach-to-grasp movements direct the
wrist to some region offset from this point so that the hand
may contact the object’s affordances appropriately. Simi-
lar to the ILGM, ILGA learns to select an object-centered
reach offset in spherical coordinates, ¢o, 65, po. This vector
is combined with a shoulder-centered representation of the
object center, ¢s, 05, pg, in order to compute a reach target.
Once the wrist reaches this point, the reach controller aims
for the center of the object, ensuring that the hand approaches
the object from the chosen direction. Along with affordance
information, the selected offset and grasp type influence the
selection of the wrist orientation, wry, wry, and wr;.
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2 Methods
The simulation environment is composed of

1. the Neural Simulation Language (NSL) simulator inter-
faced with the Open Dynamics Engine (ODE, http://
www.ode.org) for physics simulation and Java3D (http://
java3d.java.net) for visualization,

2. anew model of the primate arm and hand, and

3. the implementation of the ILGA model in NSL.

2.1 The simulation environment

In order to embody models in simulated environments, the
Java version of the Neural Simulation Language (NSL,
Weitzenfeld et al. 2002) simulator has been extended to
include 3D graphics functionality and a physics engine. Util-
ities were developed to create a simulated 3D environment
and embed bodies in this environment with limbs connected
by hinge, universal, or ball joints. The 3D graphics function,
physics engine, and 3D simulation utilities allow NSL mod-
els to control bodies in a simulated 3D world and to receive
virtual sensory input from the environment.

— ((s3c1—C35251) €4 — (—s351—C352C1) $4) I2 — (s351+C382¢1) 1

2.2 Modeling the primate arm and hand

The arm and hand generate forces on the object via the ODE,
which in turn is used to estimate grasp stability. To facil-
itate translation of ILGA to a robotic implementation (see
Sect. 4), we chose to model the arm and hand as realistically
as possible within the confines of our simulation engine. We
implemented a 22-degree of freedom (DOF) arm/hand model
using limb proportions based on those for a 7.5-kg monkey
(Chan and Moran 2006). The arm has a ball joint at the shoul-
der with 3 DOFs, a 1-DOF hinge joint at the elbow, and a
3-DOF ball joint at the wrist (Fig. 2). The fingers each have
three joints with 1 DOF for the metacarpophalangeal, proxi-
mal interphalangeal, and distal interphalangeal joints, while
the thumb has one 2-DOF joint at its base (simplifying the
carpometacarpal joint) and a 1-DOF metacarpophalangeal
joint.

The forward kinematics of the arm is described by a
matrix, known as the Jacobian matrix, which transforms
joint angles of the shoulder and elbow into resulting wrist
positions. The inversion of the Jacobian can then be used to
determine required joint angles for a desired wrist position.
The Jacobian matrix for the arm with upper arm length /; and
forearm length /5 is given by:

— ((c3cacr) 4 — (—c3c81) 54) lr—c3c2511

J = | —((—c3c1—s35251) ca—(c3s1—s352¢1)54) I — (—c351+535201) [1 — ((s53¢2¢1) €4 — (—s3C281) 54) [a—53C2511)

— ((—c281) ¢4 — (—cacy) $4) b—cacily

— ((—s2¢1) ca — (5251) $4) b +s2511)

— ((c3s1—5352¢1) €4 — (c3c1+535251) 54) [o — (—c3c1—535251) [1 — (= (s351+C35201) 54 — ($3¢1—C35251) €a) In
— ((s351+c352¢1) €4 — (s3¢1—C35251) $4) I — (—=s3Cc1+C35281) [1 — (— (c381+5352¢1) S4 — (—c3¢1—535281) €a) [

0

— (= (c2c1) 84 — (—c28s1) ca) 2

The simulated 3D world uses Java3D to maintain a scene
graph—a data structure commonly used in computer games
to represent the spatial configuration of objects in a scene.
Geometric transformations and compound objects are effi-
ciently handled by associating transformation matrices with
graph nodes. These matrices can be transformed in order to
move an object and all of its child objects (e.g., moving the
elbow moves the arm and the hand).

The Open Dynamics Engine (ODE) is used for the physics
simulation. ODE is an open source library for simulation of
rigid body physics. It contains several joint types and per-
forms collision detection (and contact force application) with
friction. When the engine is initialized, NSL maintains a cou-
pling between it and the Java3D representation. At each time
step, the physics engine is polled for the position and ori-
entation of the object which is used to update the object’s
position and orientation in the Java3D scene graph. Forces
can be applied to objects in the scene and torque to objects
connected with joints.

@ Springer

where sin(61) and cos(6;) are abbreviated as s; and ¢q, sin(6;)
and cos(6») as s> and ¢;, sin(f3) and cos(f3) as s3 and ¢3,
and sin(64) and cos(04) as s4 and c4. The angle 0y is the angle
of the shoulder in the x-axis, 6, is the shoulder angle in the
y-axis, 63 is the shoulder angle in the z-axis, and 0, is the
elbow angle.

Proportional-derivative (PD) controllers are used to con-
trol each DOF of the arm and hand. A PD controller adjusts a
variable until it reaches a target value and includes gain and
damping parameters which can be adjusted to produce fast
and smooth trajectories. In ILGA, each PD controller applies
torque t at time ¢ to its controlled joint with angle 6 in order
to reach to a desired value 6:

(1) =p (é _ e(z)) +db()

where p is the gain and d is a damping parameter (see Online
Resource 1, Table 1 for parameter values).
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Fig. 2 Unless specified, each joint has 1 DOF. The simulated arm/hand
has a total of 22 DOFs

The torque from the joint controllers is applied to the arm
and hand segments in the physics model, which updates the
position of all of the rigid bodies in the simulated world
including the object. Stable grasps are evaluated by monitor-
ing contact points between the fingers and the object in order
to provide the reinforcement signal. Figure 3 provides three
examples of the arm and hand positioned to grasp an object.
In each case, we show a configuration that ILGA can achieve
after it has learned to extract affordances from an object and
pair them with appropriate grasps.

2.3 Integrated Learning of Grasping and Affordances

The main modules in ILGA are the Feature and Affordance
Extraction, Reach and Grasp Planning, and Primary Motor
modules (Fig. 4). The Feature Extraction module represents
the metric features of graspable objects such as their location,
orientation, shape, and oriented surfaces. This information is
passed on to the Affordance Extraction module which learns
to combine this information into representations of affor-
dances for grasping the object. These representations are
used by the Reach and Grasp Planning modules to select
motor parameters for reaching to and grasping the object.
The Primary Motor module decodes these parameters and
controls the reach and grasp movements. Grasp success is
monitored by the primary somatosensory (S1) module and is
used to generate a reinforcement signal which modifies the
connections between the Feature and Affordance Extraction

Fig. 3 Examples of the model (a)
successfully grasping the same
object with different types of
grasps. a Tripod, b power, ¢
precision pinch

modules and those between the Affordance Extraction and
Reach and Grasp Planning modules.

The Affordance Extraction module receives basic object
information such as location, size, shape, and orientation
in the form of population codes from the Feature Extrac-
tion module. The Affordance Extraction module contains
a self-organizing feature map (SOM) with its learning rate
modulated by a global reinforcement signal. SOMs use unsu-
pervised learning (although the version used in ILGA is
semi-supervised since the learning rate is modulated by
a reinforcement signal) to map a high-dimensional vector
space onto alower-dimensional space. The resulting map pre-
serves topological relationships between vectors (i.e., similar
vectors in the high-dimensional input space are mapped onto
nearby vectors in the low-dimensional output space, albeit
with some possible discontinuities) and identifies dimensions
in the input space with the highest variance. The preservation
of topological relationships allows the network to general-
ize to objects it has never seen before but nonetheless elicit
activation patterns overlapping those generated by objects
in the training set. They are similar to other dimensionality
reduction methods such as multidimensional scaling (MDS)
and principal components analysis (PCA, Yin 2008), and it
has been argued that a similar mechanism organizes repre-
sentations of high-dimensional spaces in the cerebral cortex
(Durbin and Mitchison 1990). Our addition of modulation by
a reinforcement signal causes the network to preferentially
represent input vectors that are used to generate grasps which
result in a positive reward signal by effectively increasing the
variance in these regions of input space, a method comparable
to the reinforcement-driven dimensionality reduction model
(Bar-Gad et al. 2003). The result of training is a network
that can extract combinations of object features that afford
successful grasps (affordances).

Neurons in the Affordance Extraction module activate
dynamic neural fields (DNFs, Amari and Arbib 1977; Erl-
hagen and Schoner 2002) in the Reach and Grasp Planning
modules that select parameters for grasping such as reach
offset, wrist rotation, grasp type, and maximum aperture.
DNFs utilize cooperation and competition between neu-
rons depending on their preferred stimulus values. In their
most basic form, DNFs implement a winner-take-all (WTA)
process, resulting in a population code centered on the cell

(b) ()
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Fig. 4 An overview of the ILGA model. Connections modifiable by
reinforcement learning are shown in dashed lines. The parietal regions
MIP and V6A provide the premotor region F2 with object position infor-
mation to plan the reach. V6A, MIP, and the cIPS populations project
to AIP, which projects to the signal-related populations of the other
premotor regions. Each premotor region selects a value for the para-
meter it encodes and projects to the primary motor region F1 which
controls the movement. The reach planning is performed by area F2
which represents the center of the target object and F7 which selects the

with the highest mean input. In ILGA, we use one-, two-,
and three-dimensional DNFs as WTA networks to select
grasp parameters. Each neuron in every DNF has a preferred
stimulus value for each dimension of the encoded parame-
ter. In general, the preferred values of each unit could be
set arbitrarily, but we set them in a regular fashion such that
the population defines a grid in stimulus space (one-, two-,
or three-dimensional depending on the dimensionality of the
DNF).

Below, we specify the equations used by the Primary
Motor module (F1/Spinal Cord in Fig. 4) to decode the activ-
ities of the Reach and Grasp Planning module DNFs to obtain
the values of various parameters used to plan the reach and
grasp movement. Note that the Primary Motor module is not
modeled as a neural network, but supplies the inputs needed
by the physics simulator to apply torques to the joints of
the hand and arm. Due to noise in each layer, a random grasp
plan can be generated with a small probability, which encour-
ages exploration of the parameter space. Noise levels were
set empirically to optimize the trade-off between exploration
and exploitation.

Reinforcement learning modifies the connections to and
from Affordance Extraction module, resulting in (i) affor-
dances: representations in of combinations of object features
relevant for grasping, and (ii) grasp plans: connection weights
between the Affordance Extraction and Reach and Grasp
Planning modules that bias selection of appropriate grasp
motor parameters. The realistic physics simulator we use

@ Springer

reach offset. Grasp planning is performed by area F5 which selects the
virtual fingers and maximum grasp aperture and F2/F5 which selects
the wrist rotation. Grasp feedback is returned to somatosensory area S1
which provides the reinforcement signal to the model and somatosen-
sory feedback to F1. Preparation-related premotor populations plan
the reach and excite corresponding execution-related premotor popula-
tions. Each execution-related premotor population additionally receives
tonic inhibitory inhibit (not shown) that is released when a go signal is
detected, triggering the performance of the reach and grasp

allows evaluation of grasp stability based on whether or not
the grasp can be maintained. Grasps which do not apply
forces to appropriate contact points on the object will cause
the object to rotate and slip from the hand’s grasp. Positive
reinforcement is given by the realization of a stable grasp
of the target object, and negative reinforcement is given for
grasps that do not contact the object or are unstable enough
to allow the object to slip from the hand. The result is that
Affordance Extraction neurons are shaped to provide “better”
affordance input for the Reach and Grasp Planning module,
which in turn expands the repertoire of grasp actions pro-
viding more data points for Affordance Extraction learning.
Eventually, a stable state is reached when affordance repre-
sentations are nearly static and grasp performance reaches
an upper limit. When this dual learning system stabilizes,
the model is endowed with a set of affordance extraction and
robust grasp planning mechanisms.

2.4 Reinforcement

Rather than relying on basic extrinsic reward signals from
primary reinforcers, it has been suggested that hierarchies
of skills could be learned based on intrinsic reward signals
that reinforce unexpected salient events (Chentanez et al.
2004). Infants as young as 3—4 months old have experience
with objects being placed in their grasp and seem intrinsi-
cally motivated to reach for and grasp objects themselves
(Thelen et al. 1993). The ILGM thus posited an intrinsic
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“joy of grasping” as the reward stimulus generated from sen-
sory feedback resulting from the stable grasp of an object.
We use the same signal to train the connection weights in
this model using reinforcement learning (Sutton and Barto
1998). However, this model uses a more realistic physics
simulator than the ILGM, taking into account not only kine-
matics but also dynamics. This makes motor control a much
more difficult task, but simplifies grasp stability evaluation
(see below). Another consequence is that since the object
can be moved, hand—object collision can knock the object
out of reach, making successful grasps much less likely to
occur by chance during trial-and-error learning. In order
to increase the probability of successful grasps, we pre-
train the connection weights that determine the direction
of hand approach to the object and the wrist orientation
using a more basic reinforcement signal, what may be called
the “joy of palm contact.” After pretraining these connec-
tion weights, the majority of attempted grasps make at least
transient palm contact with the object, increasing the num-
ber of stable grasps during the next stage of training. We
therefore model palm contact as an unexpected and intrin-
sically rewarding salient event during early training. As the
infant becomes more proficient in reaching for and orienting
their hand toward the object, we suggest that palm contact is
less novel and therefore less intrinsically rewarding. At this
stage, stable grasps are the primary intrinsically rewarding
events.

The ILGM used a kinematic simulator that did not han-
dle dynamics and therefore had to use an ad hoc scheme to
estimate grasp stability. Since we use a physics simulator
that handles rigid body dynamics including friction, grasp
stability evaluation is more direct. We ran all simulations
reported here with gravity turned off and the object sus-
pended at various locations in order to simplify control of
the arm and hand. Even without gravity, the physics simu-
lation will cause the object to slip from the hand’s grasp if
the grasp is unstable. The simulator informs the model of
the list of contact points between the hand and the object. If
two contact points are achieved that define an opposition axis
(a vector connecting them in space) that passes through the
object, and these contact points are maintained for 2 seconds
of simulation time, the grasp is declared successful. Note that
none of the other modeled regions have any notion of contact
points—the grasp is planned and controlled in an open loop
manner. However, contact point feedback could be used to
learn internal models for feedback-based grasp control (see
Sect. 4).

2.5 Primary motor module: reach and grasp generation
With the Primary Motor module (F1 and the Spinal Cord in

Fig. 4), we leave the domain of neural networks: The mod-
ule decodes the motor parameters for the reach and grasp

from the activities of the premotor populations and directs the
actual movement by setting the joint angle targets of the PD
controllers for each DOF. While future versions of the model
may implement this module in a more neurobiologically
plausible way, we chose to implement it using techniques
from robotics in order to simplify the neural components of
the model and focus on parietal and premotor neural activity.
Although non-neural, the Primary Motor module serves to
achieve the planned grasp end state in order to evaluate the
success of the chosen parameter values in producing a stable
grasp.

The wrist rotation, reach, and grasp components of the
movement are handled by separate controllers (Fig. 5). The
reach and grasp components are coupled by starting the pre-
shape phase of the grasp once the reach target has been
determined, and triggering the enclose phase once the hand
reaches a certain distance from the object or achieves palm
contact. Palm or inner thumb contact is also used as a sig-
nal to stop the reach controller at the current wrist position.
Each controller decodes the input it receives from premotor
execution-related populations, transforms this input along
with some proprioceptive or tactile signals, and sets joint
angle targets for PD controllers that apply torque to each
joint.

Each neuron in every DNF has a preferred stimulus value
for each dimension (X, J, z) of the parameter it encodes.
Reach and grasp parameter values were decoded from the
activity of each DNF using the center-of-mass technique (Wu
etal. 2002). Since noise can greatly bias this form of decoding
in small populations, we only include the activities of neurons
that pass a threshold, & (set to 0.01 in these simulations). For
a one-dimensional DNF, the encoded value, x, was estimated
as:

>, (f %)
>0

where the sums are over all neurons i with an activation
greater than or equal to the threshold, &. Similarly, the
encoded x, y value was estimated from a two-dimensional
DNF as:

> (X (6 px0))
> (T fa0)

>, (X 06 H5())
> (Z£60)

X =

y:

and the x, y, z value encoded by a three-dimensional DNF
as:
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Fig. 5 Wrist, reach, and grasp motor controllers. Each uses population
decoders to decode reach and grasp parameter values from premo-
tor inputs and set joint angle targets for PD controllers which move
the limbs by applying torque to the joints. The reach motor controller
combines the shoulder-centered object position, object-centered reach
offset, and current wrist position to compute a wrist error vector. The
error vector is used to set goal values for dynamic movement primitives,
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The simplest controller, the wrist rotation controller, decodes
the target wrist angles from its premotor input and passes
them as target angles to the wrist PD controllers. The reach
controller combines the output of F2 encoding the center of
the object, with the output of F7 encoding the object-centered
reach offset into a wrist-centered error vector defining the
initial target of the reach. The reach controller couples a tra-
jectory planning mechanism (dynamic movement primitives,
DMPs, Ijspeert et al. 2002) with an inverse arm kinematics
module. Given a reach target location, the reach planner uses
DMPs to generate a trajectory of desired wrist locations to
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which generate a reach trajectory for the wrist. An inverse arm kinemat-
ics module computes target joint angles for each target wrist position.
The grasp motor controller contains dynamic movement primitives for
the preshape and enclose phases that are triggered by reach and tactile
events. These dynamic movement primitives generate normalized tra-
jectories for each virtual finger that are converted into target joint angles
by VF — real finger mapping modules

reach it starting from the current wrist position. DMPs can
generate arbitrary trajectories and dynamically adapt to new
goals. They are defined by the following differential equa-
tion:

V= uK(Z[ Il%(lu;l(c(;j o) _ x) +(1—-u)K(g—x)

—Dv

where x is the current value of the controlled variable (the
position of the wrist in this case), xg is the initial value (the
starting position of the wrist), v is the current target velocity
of the variable, ¢; are equilibrium points of linear acceleration
fields with nonlinear basis functions v;, g is the goal value
(the target reach position), K and D are gain and damping
parameters, and u is a phase variable which can be used to
scale the duration of the movement. DMPs therefore generate
a trajectory from xg to g that can be straight or parameterized
to take any arbitrary path (which we do not exploit in this
model but leave open the possibility for future work). In the
reach module, the output of the DMP, x(¢), is used as an
actual target position for the wrist that is input to the inverse
kinematics controller at each time step.
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Given a desired wrist location, the inverse arm kinemat-
ics controller computes the required wrist displacement and
then uses the pseudo-inverse of the Jacobian to compute the
required joint rotations to bring the wrist to that position. The
body’s Jacobian matrix describes how changes in shoulder
(61, 62, 03) and elbow (64) angles result in changes in the
wrist’s 3D position (x, y, z):

01
0
03
0

IR
I
—

The inverse of the Jacobian matrix then describes how much
each joint must rotate in order to effect a desired wrist dis-
placement. The Jacobian is not invertible, so we use the
pseudo-inverse:

R (JJT)il

Each required joint rotation is used to input the target joint
angle into the PD controller for that DOF:

A X
6=0+J"|y
2

where x, y, z describe the desired wrist displacement.

The grasp controller controls the timing of the preshape
and enclosure phases of the grasp. Depending on the phase
of the grasp, the controller translates the selected virtual fin-
ger combination and maximum aperture into final target joint
angles for each finger (see Online Resource 1, Table 2). Each
virtual finger combination is associated with a preshape hand
configuration with certain finger angles that can be modulated
by the maximum aperture parameter, and a set of fingers
to control during the enclose phase. The possible virtual
finger combinations define the following grasps: precision
pinch (index finger and thumb extended then enclosed), tri-
pod grasp (index and middle fingers and thumb extended then
enclosed), whole-hand prehension (all fingers and thumb
extended then enclosed), and side grasps (all fingers enclosed
and thumb extended then enclosed).

The grasp controller uses DMPs to control the timing of
the preshape and enclosure phases of the grasp, but here the
DMP output is interpreted as a normalized timing signal,
rather than a physical target value. This is accomplished by
setting the initial input to the DMP at 0 and the target to 1, and
using its output at each time step to interpolate between the
current finger joint angles and the final target angles in order
to generate targets for the PD controllers. The preshape DMP
is triggered as soon as a reach target is set, while the enclose
DMP is triggered once the wrist reaches a certain threshold

distance from the object, «, or once the palm contacts the
object, whichever happens first. ILGA thus captures a period
of development where the innate infant grasp reflex is present,
but some predictive hand enclosure during grasping starts to
emerge.

2.6 Parietal module: feature/affordance extraction

The populations in the Feature Extraction and Affordance
Extraction modules are based on findings from a series of
primate single-unit recording studies (Sakata et al. 1998;
Galletti et al. 2003) in parietal cortex. These experiments
found that neurons in the anterior intraparietal sulcus (AIP)
are responsive to 3D features of objects relevant for manipu-
lation (Murata et al. 2000). Neurons in the caudal intraparietal
sulcus (cIPS) are selective for objects and their surfaces
at preferred orientations. Subsets of these neurons have
been described as axis orientation selective (AOS) and
surface orientation selective (SOS, Taira et al. 1990). It
has been suggested that the regions V6A and MIP are
involved in encoding the direction of movement required
to bring the arm to potential reach targets (Rizzolatti et al.
1998; Galletti et al. 2003). Both cIPS and V6A project
to AIP (Shipp et al. 1998; Nakamura et al. 2001). Based
on these studies, in ILGA the areas cIPS, MIP, and V6A
extract object features and location and V6A/MIP and cIPS
project this information to AIP for grasp affordance extrac-
tion.

The neurophysiological experiments upon which the
model parietal regions are based used simple objects (cube,
cylinder, sphere, etc.) as stimuli. However, more complex
objects such as hammers or coffee cups contain multiple
affordances. We suggest that the dorsal visual stream ana-
lyzes objects in terms of a set of multiple affordances and
accurately represents the metrics of different object compo-
nents to provide data essential for grasp affordance extraction
(Fig. 6).

2.6.1 V6A/MIP

The model region VOA/MIP represents the shoulder-centered
direction and distance of each object component in spherical
coordinates as two- and one-dimensional population codes,
respectively. The module provides this information to pari-
etal area AIP for affordance extraction and premotor area
F2 for programming the reach. Area V6A contains mostly
visual cells (Galletti et al. 1997; Rizzolatti et al. 1998) with
receptive fields covering the whole visual field and repre-
senting each portion of it multiple times (Galletti et al. 1993,
1999). The so-called real-position cells are able to encode
the spatial location of objects in the visual scene with visual
receptive fields that remain anchored despite eye move-
ments (Galletti et al. 1993). Intermingled with real-position
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Fig. 6 Object component variables represented in each parietal region
for the handle (top row) and head (bottom row) of a hammer. The areas
V6A and MIP represent the shoulder-centered direction of the center
of the primitive, ¢s and 6, and the shoulder-centered distance, ps, and

cells are retinotopic cells, whose visual receptive fields shift
with gaze, suggesting that the region is involved in convert-
ing coordinates from retinotopic to head- or body-centered
reference frames (Galletti et al. 1993). Many neurons in
V6A only respond when the arm is directed toward a par-
ticular region of space (Galletti et al. 1997; Fattori et al.
2005). Lesions of the region result in misreaching with the
contralateral arm (Battaglini et al. 2002). It has thus been
suggested that the region is involved in encoding the direc-
tion of movement in at least head-centered coordinates (but
we use shoulder-centered coordinates for the single arm in
the model) required to bring the arm to potential reach tar-
gets (Rizzolatti et al. 1998; Galletti et al. 2003). Area V6A
receives input from central and peripheral visual field rep-
resentations in V6 (Shipp et al. 1998) and projects to the
premotor area F2 (Matelli et al. 1998; Shipp et al. 1998;
Luppino et al. 2005).

Distance is represented in a one-dimensional population
code, with each unit having a preferred distance, c?s , uni-
formly distributed between 0 and 1 m. The activity of each
unit, , at time ¢ is given by a Gaussian population code over
the unit’s preferred distance and the actual shoulder-centered
distance, ds, to each object component, p:

(ds()—ds (p.n)?
_ (O-dp0)”
20p1sT

DIST (i, 1) = z e

p

+ eDpIST
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cIPS represents the object component’s orientation, oy, 0y, 0, size, sy,
sy, 5z, and orientation of surface normal vectors (n1, nz, and n3 in this
case)

where opjst is the population code width and epist is a
noise term. For all codes, we add a Gaussian noise term in
order to simulate stochasticity in neural activity. A table of
all parameter values is given in Online Resource 1, Table
3. Direction is encoded in a two-dimensional population
code with each unit selective for both particular azimuth
and elevation values of the shoulder-centered object direc-
tion:

(5.0 —05(p.0) > +(@s (. —os(p.0)?
- 2

DIR (i, j, )= (e 205R
P

+ EDIR

where 6, (p, t) is the azimuth angle, ¢, (p, ?) is the elevation
angle of object component p at time ¢ in a shoulder-centered
reference frame, opjr is the population code width, and epir
is a noise term. Each unit of the population, i, j, has pre-
ferred angles, és, @s , With és uniformly distributed between
0 and 7, and @5 uniformly distributed between —m and
0.

2.6.2 cIPS

The model region cIPS contains three populations that rep-
resent the object orientation, size, and visible surface normal
vectors as three-dimensional population codes. The caudal
intraparietal sulcus (cIPS) is a region located the caudal
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part of the lateral bank and fundus of the intraparietal sul-
cus (Shikata et al. 1996). The cIPS receives input mainly
from V3A, whose neurons are sensitive to binocular dis-
parity and have small, retinotopic receptive fields (Sakata
et al. 2005), and projects primarily to the anterior intrapari-
etal sulcus (AIP, Nakamura et al. 2001). Neurons in area
cIPS have large receptive fields (10-30 degrees in diame-
ter) with no retinotopic organization (Tsutsui et al. 2005).
Two functional classes of neurons in area cIPS have been
described: surface-orientation-selective (SOS) neurons that
are selective to the orientation of flat surfaces, and axis-
orientation-selective (AOS) neurons that respond best to
an elongated object whose principal axis is oriented in a
particular direction. Both types of neurons respond best
to binocular stimuli (Sakata et al. 1997) and are spatially
intermingled (Nakamura et al. 2001). Muscimol-induced
inactivation of this region disrupts performance on a delayed
match-to-sample task with oriented surfaces using perspec-
tive and disparity cues (Tsutsui et al. 2001, 2005). Both
types of cells include some neurons that are selective for
the object’s dimensions (Kusunoki et al. 1993; Sakata et al.
1998). Again, these neurons have only been tested with sim-
ple objects. We suggest that they actually encode the features
of object components that comprise complex objects. To sim-
plify the model, we include AOS and SOS cells as well as
one population that encodes the size of each object compo-
nent.

Axis-orientation-selective (AOS) cells prefer bars tilted
in the vertical, horizontal, or sagittal planes (Sakata et al.
1998, 1999). Some are selective for shape (rectangular ver-
sus cylindrical) and probably represent surface curvature
(Sakata et al. 2005). Their discharge rate increases monoton-
ically with object length, and their width response curve is
monotonically decreasing in the 2—32 cm range. It is thought
that these cells integrate orientation and width disparity
cues to represent principal axis orientation (Sakata et al.
1998).

Surface-orientation-selective (SOS) cells are tuned to the
surface orientation in depth of flat and broad objects (Shikata
et al. 1996; Sakata et al. 1997, 1998, 1999). These cells
respond to a combination of monocular and binocular depth
cues (texture and disparity gradient cues) in representing sur-
face orientation (Sakata et al. 2005). Neurons sensitive to
multiple depth cues are widely distributed and spatially inter-
mingled with those sensitive to only one depth cue (Tsutsui
et al. 2005).

We model AOS cells as two subpopulations—one selec-
tive for rectangular and one for cylindrical objects. Each
subpopulation is a three-dimensional population code, with
each neuron i, j, k, selective for a combination of the com-
ponents of the object’s main axis orientation, oy, oy, and o;.
When the object is cylindrical, the activity of each unit in the
cylindrical AOS population is given by:
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where 0y (i, j, k), 0y (i, j, k), and 0, (i, j, k) are the pre-
ferred orientations of the unit i, j, k in the x, y, and z
dimensions. When the object is not cylindrical, each unit’s
activity in the cylindrical AOS population is given by the
noise term. Given a rectangular object, the activity of each
unit in the rectangular AOS population is defined by:

RECT (i, j, k, 1)

(xR =0x (p.0) >+ (dy (.. k) =0y (p.0) >+ (92 (. j.K) —0z (p.1))?
=2 (e
14
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Similarly, the noise term determines the activation of these
units when the object is not rectangular.

We model the SOS population as anoisy three-dimensional
Gaussian population code over the normal vector (ns, ny,
n ) of each visible surface, f, of a rectangular object com-
ponent, p:

SOS (i, j, k, t)

(iix (i.jk)—ny (I)..r.l))2+(l7)» (i.j.k)—ny 1,7,\‘:))2+(n"zu.j.k)—n,~(p.z.r))2
- 7
= E E e 20¢1ps
)4

f
+ écips

Each unithas a preferred value in each dimension (7ix, 7y, 71;)
uniformly distributed between —1 and 1. If the object is not
rectangular, the activity of each unit in these populations is
determined by the noise term.

The size population, S, represents the size of an object
component p in each dimension (s, sy, s;), with the activity
of each unit, i, j, k, given by:

SG, j,k,t)
 Gx ) =sx (p.0) 4Gy (k) =5y (p.0) >+ (2 (.0 =52 (p.1)
— Z e 20¢1ps
P
=+ &crps

where ocips is the population code width and ecyps is a noise
term.

2.6.3 AIP
The anterior intraparietal area AIP is located on the lat-

eral bank of the anterior intraparietal sulcus and con-
tains visually response neurons selective for 3D features
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of objects, motor-dominant neurons that only respond during
grasping, and visuomotor neurons that are activated by grasp-
ing and modulated by sight of the object (Sakata et al. 1998).
The region receives its main input from area cIPS (Nakamura
et al. 2001), but also receives input from V6A (Shipp et al.
1998) and projects most strongly to the premotor region F5
(Borra et al. 2007).

In ILGA, the AIP module receives input from each popu-
lation of the VOA/MIP and cIPS modules. While the distance
to the object is important for parameterizing the reach as well
as the coordination of the reach and grasp movements, it is
not important for specifying the grasp itself, and therefore we
do not model a connection between the distance population
of VOA/MIP and AIP. The SOM is a toroidal grid of 40 x 40
units, with the input vector, I, constructed by concatenating
the activity vectors of each VOA/MIP and cIPS population
into one vector, which is then normalized. The activity of
each AIP unit with indices i and j is given by:

AIP(, j, 1) = Warr (i, j, HI() + earp

The weights Warp are initialized to small random values.
Weight training uses a form of competitive learning. This
learning algorithm modifies the connection weights of neu-
rons in a neighborhood surrounding the neuron with the
greatest activity level. The size of this neighborhood gets
smaller over time and in ILGA, both the neighborhood
size and learning rate are increased by the presence of the
reinforcement signal. At the beginning of training, the neigh-
borhood is broad and the learning rate is high. This causes the
self-organization to take place on the global scale. As training
progresses and the neighborhood size decreases, the weights
converge to local estimate of the training input vectors. The
modulation of the learning rate and neighborhood function
by the global reinforcement signal ensures that input vectors
that are used to plan stable grasps become represented by
more units in the SOM at the expense of input vectors that
result in failed grasps.

Given the input vector, I, the AIP unit with the most similar
weight vector is determined as the best matching unit (BMU).
The similarity metric we used was the Euclidean distance
between the vectors. The weights of the BMU and all units
within its “neighborhood” are adjusted in the direction of the
input vector:

Warr (i, j,t +1) =Warp (0, j, 1)
+OG j,T)a T)A@)
—Warp (0, j, 1))

where © is the reinforcement-dependent neighborhood
function, T is the current training epoch, and « is the
reinforcement-dependent learning rate. The neighborhood
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function is a Gaussian function over the Euclidean distance,
B, between the indices of the neuron i, j and those of the
BMU. The Gaussian is truncated at a certain radius, r, that
also defines its spread:

—(=0)%
e 2r(1)?

if B <r(T)
otherwise

0ajt =

The radius of the neighborhood function shrinks over the
duration of training, but is expanded by the global reinforce-
ment signal, rs(¢):

r (6, T) = roe 7 +13(7)

where rq is the initial radius and the parameter A deter-
mines the rate at which the radius decreases (see Online
Resource 1, Table 3 for parameter values). The learning rate
also decreases over the duration of training:

a(t,T) = aoe%T +rs(t)
where « is the initial learning rate.
2.7 Premotor module: Reach and Grasp Planning

Each region in the Reach and Grasp Planning module con-
tains one population of preparation-related cells and one
population of execution-related cells. Execution-related cells
discharge on movement onset, while signal-related cells
show anticipatory activity prior to the start of movement.
These broad categories of cells have been found in sev-
eral premotor areas (Kurata 1994; Wise et al. 1997; Cisek
and Kalaska 2002). In this model, preparation-related cells
receive external input and project topologically to execution-
related cells with hard-wired, fixed connections. Execution-
related cells additionally receive tonic inhibition which is
released when the go signal is detected, ensuring that the
movement does not begin until the signal is observed. The
basal ganglia are typically implicated in disinhibition of
planned movements (Kropotov and Etlinger 1999) and rein-
forcement learning (Barto 1995). While models of the basal
ganglia exist that could provide the tonic inhibition and rein-
forcement signals in ILGA (Gurney et al. 2001), we simply
provide these inputs procedurally.

The Reach and Grasp Planning module contains several
subpopulations based on various regions of dorsal and ven-
tral premotor cortex including F2, F5, and F7. Each of these
populations selects grasp motor parameters based on input
from AIP and VOA/MIP. In ILGA, areas F2 and F7 are mainly
involved with specifying the reach, with F2 selecting the cen-
ter of the object component to reach to, and area F7 selecting
an object-centered offset from that center for the reach target
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(Fig. 1). Area F5 selects the grasp type and maximal aper-
ture, and F2/F5 selects the wrist orientation. All the motor
parameters handled by the premotor cortex modules in both
ILGM and ILGA are kinematics parameters—dynamics is
completely ignored by these modules and handled entirely
by the primary motor module.

Although there is evidence which supports the role of the
primary motor cortex in both kinematic and dynamic encod-
ing (Kalaska 2009), it has been shown that the evidence in
favor of kinematic encoding could be an epiphenomenon
of multidimensional muscle force coding (Todorov 2000).
Lesions of the premotor cortex result in deficits in movement
kinematics (Freund 1990; Gallese et al. 1994). However, neu-
rons in dorsal and ventral premotor cortex have been found
that correlate with movement dynamics variables (Xiao et al.
2006) and a series of studies has shown that the motor cortex
may be involved in transforming kinematic variables from
extrinsic to intrinsic reference frames (Kakei et al. 1999,
2001, 2003). Here, we make the simplifying assumption that
the premotor cortex specifies movement kinematic variables
which are translated into muscle forces by the primary motor
cortex and spinal cord.

In this model, each preparation- and execution-related
population is simulated as a DNF. Each DNF contained leaky
integrator neurons with sigmoidal transfer functions. Each
neuron consisted of a membrane potential variable, u, and
a firing rate variable, f. The membrane potential was com-
puted by integrating the weighted input over time with input
from other neurons in the DNF:

du
T = —u+h + IN +f * WpNE + DNF

where u and f are the population membrane potentials and
firing rates, 4 is the baseline activation (see Online Resource
1, Table 4 for parameter values), IN is the weighted input,
* is the convolution operator, WpNF is the winner-take-all
(WTA) weight kernel defined below, and epnf is a noise
term. The firing rate, f, is then a sigmoid function of the
membrane potential:

1
f= 1 + e—Blu—up)

where 8 and u( are parameters of the sigmoid.

The weight kernel was set as a Gaussian that was negative
except for a center peak, implementing the WTA functional-
ity. The kernel was set to be twice as large as the population to
ensure global competition. For one-dimensional DNFs, the
weight kernel was given by:

—(i—=N/2)?

. 202
WDNE (i) = Wexcite€ ~ONF — Winhibit

where wexcite 1S the height of the peak of the Gaussian, winhibit
is the level of inhibition, N is the size of the population,
and opnr is the width of the Gaussian. Similarly, the two-
dimensional weight kernel was defined as:

—((=N/22+G-N/2?)

. 202
WDNE (i, ) = Wexcite€ 7DNF — Winhibit

and the three-dimensional DNF was given by:

—(=N/22 K= N/D> k=N /D)%)
.. 202
WDNF (I, J, k) = Wexcite® DNF

— Winhibit

Every DNF in each modeled region used the same parameters
(Table 3), which were determined empirically.

The tonic inhibitory input to each execution-related pop-
ulation, GP, was set to 10 before the go signal was
detected and O once it appeared. Therefore, preparation-
related cells in ILGA plan the movement, while the activation
of execution-related cells triggers its onset. Reinforcement
learning is applied to the afferent connection weights of
the preparation-related cells, using the activity of the corre-
sponding execution-related population as an eligibility trace.
Eligibility traces are commonly used in reinforcement learn-
ing in order to assign credit to the appropriate connection
weight for delayed reward (Singh and Sutton 1996). This is
typically a decaying copy of the activated neurons, but since
the delay between preparation-related cell activity and the
achievement of a stable grasp that elicits a reward can be
quite long, we use the activity of corresponding execution-
related cells as the eligibility trace.

2.7.1 F2

Within the premotor cortex, the caudal portion F2 most
likely codes reach movements in a shoulder-centered ref-
erence frame (Caminiti et al. 1991; Rizzolatti et al. 1998;
Cisek and Kalaska 2002). Many of the cells in F2 have broad
directional tuning, and their population activity appears to
encode a vector representing the direction of arm movement
and not the position of the end target (Weinrich and Wise
1982; Caminiti et al. 1991). The region was first defined by
Matelli et al. (1985) and was later subdivided into the F2
dimple (F2d) and ventrorostral (F2vr) subregions (Matelli
et al. 1998). Visual inputs to area F2 come mainly from the
superior parietal lobe (Johnson et al. 1993; Caminiti et al.
1996). The subregion F2vr receives projections from area
V6A (Shipp and Zeki 1995) and the medial intraparietal area
MIP (Matelli et al. 1998; Shipp et al. 1998; Marconi et al.
2001). The main output of F2 projects to F1 (Dum and Strick
2005).

Area F2 contains a rostro-caudal gradient of cell types
with preparation-related cells found predominantly in F2vr
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and execution-related cells located in F2d, the caudal por-
tion adjacent to F1 (Tanne et al. 1995; Johnson et al. 1996).
Preparation-related cells are 43 % of F2 neurons and respond
to the visual target for reaching, while execution-related cells
have changes in activity that are synchronized with the onset
of movement (Weinrich and Wise 1982). Some execution-
related cells are only active after the go signal and these
are more common caudally (Crammond and Kalaska 2000).
This categorization of cells seems to correspond to a similar
modality-based classification used by Fogassi et al. (1999)
and Raos et al. (2004), which describes cells as purely motor,
visually modulated, or visuomotor. Purely, motor cells are
not affected by object presentation or visual feedback of the
hand, visually modulated cells discharge differentially when
reaching in the light vs. dark, and visuomotor cells discharge
during object fixation without movement. Most of visually
modulated or visuomotor cells are in F2vr (Fogassi et al.
1999) and therefore likely correspond to the preparation-
related cells described by Crammond and Kalaska (2000).
Our model thus subdivides F2 into rostral and caudal regions
(F2vrand F2d, respectively) and simplifies the distribution of
cell types by confining preparation-related cells to the rostral
region and execution-related cells to the caudal region.

Most cells in F2 are sensitive to amplitude and direction,
with very few cells sensitive to only amplitude (Fuetal. 1993;
Messier and Kalaska 2000). However, muscimol inactivation
caused increases in directional errors when conditional cues
are presented, but amplitude and velocity were unchanged
(Kurata and Hoffman 1994). Neurons in the dorsal premotor
cortex have more recently been shown to encode the relative
position of the eye, hand, and goal (Pesaran et al. 2006), but
we do not vary the eye position in these simulations and this
influence is therefore constant. We thus decode the output of
F2d as a population code with each cell having a preferred
spherical coordinate in a shoulder-centered reference frame.
Note that the issue of which reference frame is used in the
reach circuit is still debated.

We model the F2vr region as two DNFs encoding
the shoulder-centered direction (F2vrDIR) and distance
(F2vrRAD) of the target object in spherical coordinates. The
input to each DNF is given by:

INE2viDIR (1) = DIR(:)WpRR > F2 + €R2
INE2virAD () = DIST(1)WpisT—F2 + €F2

where the matrices Wpr_ 2 and Wpist_r2 define the
weights of the projections from V6A/MIP to F2. Since we
assume that reaching ability has already developed, these
weights are not subject to learning and set according to the
following rule:

W, j) =31
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where I is the identity matrix. This results in F2vr faithfully
selecting the center of the object component (as signaled by
V6A/MIP) as the position from which to calculate the final
target for the wrist using the object-centered reach offset.
The F2d region is similarly modeled as two DNFs that each
receive excitatory input from F2vr and tonic inhibitory input,
GP:

INp2apIR (f) = F2viDIR(1)Wro 2 + GP(1) + R
INp2drAD () = F2vrIRAD(1))Wr2 2 + GP (1) + eR2

The weight matrices between preparation- and execution-
related premotor populations, Wgy_, pp, were not subject to
learning and were set as follows:

W, j)=21

272 F7

While there does not appear to be direct evidence for a popu-
lation of premotor neurons encoding an object-centered reach
offset, there is some suggestion that such a representation
does exist and may be located in the dorsal premotor cor-
tex. The rostral portion of the dorsal premotor cortex, area
F7 (approximately equal to PMdr, Wise et al. 1997), can
be separated into the dorso-rostral supplementary eye field
(SEF) and a lesser-known ventral region. The SEF is known
to contain neurons which encode space in an object-centered
reference frame (Olson and Gettner 1995), but the region is
implicated in control of eye movements. While the proper-
ties of ventral F7 are not well known, it does contain neurons
related to arm movements (Fujii et al. 1996, 2002), receives
the same thalamic input as the arm region of F6, and receives
input from the same region of the superior temporal sulcus
that projects to F2vr (Rizzolatti and Luppino 2001). The ven-
tral portion of F7 may therefore be a likely candidate for the
location of population of neurons encoding reach targets in
an object-centered frame of reference.

We model F7 as a preparation- and execution-related pop-
ulation. The preparation-related population consists of two
DNFs encoding the object-centered reach offset in spheri-
cal coordinates (F7sDIR encoding azimuth and elevation,
and F7sRAD encoding the radius). Inputs to the F7 module
come from F2, signaling the center of the object component,
and AIP, providing an affordance representation. The input
to each preparation-related DNF is given by:

INF7spIR (1) = AIP(1)WArPF7DIR (1)
+ F2vrDIR (1 )Wgy g7 + €57

INEF7srRAD (1) = AIP(1)WArpF7RAD(?) + €F7
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The execution-related population also contains two DNFs,
each corresponding to one DNF in the preparation-related
population. The input to each execution-related DNF is given
by:

INg7epIR (1) = F7sDIR (1) Wg7_F7(2) + GP(1) + ep7
INF7erAD (1) = F7SRAD(1)Wg7 57 (1) + GP(1) + €p7

The connection weights between F2 and AIP and the
preparation-related F7 populations were initialized to small
random values and subject to learning using a variant of the
REINFORCE rule (Sutton and Barto 1998) which is Heb-
bian for positive reward values and anti-Hebbian for negative
ones:

Warp—FDIR (a, b, i, j,t + 1) = WarpFDR (a, b, 1, j, 1)
+aprrs(t) (AIP (a, b, 1) F7eDIR (i, j, 1))

Walp—F7rAD (@, b, i, t + 1) = WarpF7rAD (@, b, 1, 1)
+ ap7rs(t) (AIP (a, b, t) F7eRAD (i, 1))

Wgp7(a, b, i, j,t +1) =Wg g7 (a, b, i, j, 1)
+ aprrs(t) (F2dDIR (a, b, 1) F7eDIR (i, j, 1))

The outputs of the execution-related populations are used as
the eligibility traces since in general the object may not be
visible at the end of the grasp and preparation-related cells
may not be active anymore.

2.7.3 F5

Many neurons in premotor area F5 fire in association with
specific types of manual action, such as precision grip, fin-
ger prehension, and whole-hand prehension (Rizzolatti and
Camarda 1988) as well as tearing and holding. Some neurons
in F5 discharge only during the last part of grasping; others
start to fire during the phase in which the hand opens and
continue to discharge during the phase when the hand closes;
finally a few discharge prevalently in the phase in which the
hand opens. Grasping appears therefore to be coded by the
joint activity of populations of neurons, each controlling dif-
ferent phases of the motor act. Raos et al. (2006) found that
F5 neurons selective for both grip type and wrist orientation
maintained this selectivity when grasping in the dark. Simul-
taneous recording from F5 and F1 showed that FS neurons
were selective for grasp type and phase, while an F1 neu-
ron might be active for different phases of different grasps
(Umilta et al. 2007). This suggests that F5 neurons encode a
high-level representation of the grasp motor schema, while
F1 neurons (or, at least, some of them) encode the component
movements or components of a population code for muscle
activity of each grasp phase.

We model F5 as a preparation- and execution-related pop-
ulation, each containing a one-dimensional DNF for each

VF combination with neurons in each DNF selective for
maximum grasp aperture. In this module, in addition to the
WTA dynamic within DNFs, every unit in a DNF laterally
inhibits every other unit in the other DNFs, so that inter-
DNF competition selects a VF combination, while intra-DNF
competition selects a maximum aperture. The possible VF
combinations are index finger pad—thumb pad (precision
grasp), index+middle finger pads—thumb pad (tripod grasp),
inner fingers—palm (power grasp), and thumb pad-side of
index finger (side grasp). The maximal aperture is encoded
as a normalized value from O to 1 that is transformed into
target finger joint angles by the grasp motor controller (see
Online Resource 1, Table 2).

Inputs to the F5 module come from the AIP module, and
therefore F5 selects an appropriate grasp based on the learned
affordance representation. The inputs to each preparation-
related population, FSSPREC, FSsTRIL F5sPOW, F5sSIDE
for the precision, tripod, power, and side grasps, respectively,
are given by:

INgssprec (1) = AIP(1)Warp— rsprec ()
— Wess—rss ), (FSSTRI G, 1)

1

+F5sPOW (i, t) + F5sSIDE (i, 1)) + eFs

INEsstrI(7) = AIP()) Warp— FsTRI(?)

— Wesspss D (FSSPREC (i, 1)

+ F5sPOW (il, t) + F5sSIDE (i, 1)) + eFs
INEsspow (1) = AIP(1)Warp— rspow (7)

— Wesspss D (FSSPREC (i, 1)

+ F5STRI (i,'1) + F5sSIDE (i, 1)) + eFs
INEsssipE (1) = AIP ()W Arp— F5SIDE ()

— WEss—Fss z (F5sPREC (i, t)

1

+F5sTRI (i, 1) + F5sPOW (i, 1)) + es

where Wrss_, Fs; is the inhibitory connection weight between
DNFs, set to .25 in these simulations. The inputs to the
execution-related populations, FSePREC, F5eTRI, FSePOW,
FS5eSIDE, are given by:

INgseprec(?) = FSSPREC(1)Wgss s (t) + GP(?) + €Fs
INgsetrI(2) = FSSTRI(1)WEss— pse (1) + GP(2) + €Fs
INgsepow (1) = FSsSPOW (1) WEss s (t) + GP(7) + €Fs
INgsesipE (1) = FSSSIDE (1) Wess . pse (1) + GP (1) + eFs

The Wgss_pse weights were set just as the Wgy_. > and
Wr7_, p7 weights, and the connection weights W a1p_, FspREC,

Warp— rstrI, Warp—Espow, and Warp_, pssipg were initial-
ized to small random values and subject to learning using the
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REINFORCE learning rule (as the connections to F7, Sutton
and Barto 1998):

Warp—rsprec (@, b, i, t + 1) = Warp_pspreC (@, b, i, 1)
+ apsrs(t) (AIP (a, b, t) F5ePREC (i, t))
Warp—rstrI (@, b, 1,1 + 1) = WarpFstrI (@, b, I, 1)
+ apsrs(t) (AIP (a, b, t) F5e¢TRI (i, 1))
Warp—rspow (a, b, i, t + 1) = Warp_pspow (@, b, i, 1)
+ apsrs(t) (AIP (a, b, t) F5ePOW (i, t))
Warp—FssIDE (@, b, i, t + 1) = WarpFssipE (@, b, i, 1)
+ apsrs(t) (AIP (a, b, t) F5eSIDE (i, 1))

2.7.4 Wrist rotation

Infants starting at 7 months old begin to pre-orient their
hands to match an object’s affordances when reaching for
that object (Witherington 2005). By 9 months old, infants are
skilled at hand pre-orientation and adjustment and increase
reach and grasp efficiency (Morrongiello and Rocca 1989).
Neurons have been described in area F2 that become active
in relation to specific orientations of visual stimuli and to
corresponding hand/wrist movements (Raos et al. 2004).
That same paper showed that 66 % of grasp neurons in F2
were highly selective for grasp type and that 72% were
highly selective for wrist orientation. In addition to reach
target selection, the dorsal premotor cortex is implicated in
wrist movements (Riehle and Requin 1989; Kurata 1993).
Raos et al. (2006) show that F5 neurons combine selectiv-
ity for grip type and wrist orientation, and that 21 out of the
38 they tested for wrist orientation selectivity showed high
selectivity for a particular orientation. The most plausible
hypothesis that reconciles these findings is that the dorsal
premotor cortex is involved in coding reach direction and
the ventral premotor cortex is involved in coding grasps,
and that interconnections between F2 and F5 (Marconi et al.
2001) allow the two regions to converge on a wrist orien-
tation appropriate for the selected reach direction and grasp
type.

We model the F2/F5 wrist rotation network as a
preparation- and an execution-related population, similarly
to the other premotor modules. The signal-related population
contains a three-dimensional DNF, with each unit selective
for a combination of the angles of the DOFs of the wrist
within its joint angle limits (see Online Resource 1, Table
1). The F2/F5 module receives inputs from the AIP, F5, and
F7 module and therefore selects the wrist orientation based
on the affordance representation and selected grasp and reach
offset. The input to the three-dimensional preparation-related
DNF is given by:
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INwRs (1) = AIP () Warp— wr () + F7sDIR(7)
XWg7_wr (1) + FSSPREC(7) WgspreC—wR (1)
+F5sTRI(¢)Wgstri—wWR (f) + F5sPOW(¢)

x WEspow > wR (¢) + F5sSIDE (1) WgssipE wr ()
+ewr

Note that the preparation-related F2/F5 DNF receives input
from the F7sDIR population encoding the direction of the
reach offset, but it does not get reach offset radius infor-
mation from the F7sRAD population since the wrist rotation
should not depend on the offset radius. The execution-related
population also contains a three-dimensional DNF, with its
input given by:

INwre (t) = WRs(1)Wwr—wr + GP(7) + ewr

As with F5 and F7, the weights of the afferent connections of
the preparation-related populations were updated using the
REINFORCE learning rule (Sutton and Barto 1998):

Warr—wr (a,b,i, j,k,t +1) = Warpwr (a, b, i, j, k, 1)
+ awrrs(t) (AIP (a, b, t) WRe (i, j, k, 1))

Wrrwr (a, b, i, j, k,t +1) = Warp—p7 (a, b, i, j, k, 1)
+ awrrs(t) (F7eDIR (a, b, t) WRe (i, j, k, 1))

WesprECWR (@, i, J, k, 1 + 1)=WEpsprEc>WR (@, I, ], k, 1)
+ awrrs(t) (FSePREC (a, t) WRe (i, j, k, t))

Westri>WR (@, 1, J, k.t + 1) = WesTRISWR (@, 1, J, k, 1)
+ awrrs(t) (F5eTRI (a, t) WRe (i, j, k, 1))

Wespow—wr (@, i, j, k.t + )=Wgspowwr (a, 1, j, k, 1)
+ awrrs(t) (F5ePOW (a,t) WRe (i, j, k, 1))

WEssiDE—wr (4, i, j, k, t + 1)=WgssipE>wr (a, 1, j, k, )
+ awrrs(t) (F5eSIDE (a, t) WRe (i, j, k, 1))

2.8 Training

Each training trial was run for 5s with a 1-ms time step.
All training simulations used the same protocol in which at
0.5s a green object appeared in the model’s field of view.
Different objects were presented (cubes, rectangular prisms,
cylinders, spheres, and flat plates) at random orientations
and locations. The model input was obtained by getting the
object’s shape, color, size, orientation, and position from the
physics simulator. At 1 s into the simulation the object turned
red, triggering the release of inhibition from the execution-
related premotor populations by setting the tonic inhibitory
input GP to each of these populations to 0. In the last five
time steps of each trial (corresponding to 5 ms of simulation
time), 7s(¢) is set to DAgyccess 1f the grasp is successful, and
DAy, if not. Although the bulk of learning in this model is
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done simultaneously in all layers, we still found it necessary
to use a somewhat staged learning approach to bootstrap the
system. During AIP pretraining trials, no movements were
attempted and rs(f) was always equal to 0. During the wrist
rotation pretraining trials, rs(#) was set to % if palm
contact was achieved at all.

2.8.1 AIP pretraining

We found that at the start of training, the neurons in AIP did
not have sufficient activity rates to drive the premotor popula-
tions. This resulted in approximately 1000 trials in which no
grasps were attempted, but the connection weights into AIP
were slowly modified according to the SOM weight adjust-
ment rule described above. Eventually large numbers of AIP
units were significantly activated in widespread overlapping
representations sufficient to activate premotor populations.
This period may correspond to a period of visual experience
before the development of skilled reaching in which no grasps
are attempted and visual regions are shaped by unsupervised
learning mechanisms.

Although we assume the existence of a pretrained reach-
ing circuit, this period could correspond to a period of motor
babbling in which internal models of the arm are learned
(Bullock et al. 1993). This period of training may also cor-
respond to the motor babbling period of infant development
modeled by Kuperstein (1988).

2.8.2 Wrist rotation pretraining

The added realism of our simulator compared to that of ILGM
comes at the price of a much lower probability of success-
fully grasping an object with random motor parameters. This
makes the task of learning much more difficult. To surmount
this problem, we used a period of pretraining in which any
palm contact was rewarded and only the connection weights
between F7 and F2/F5 were modified. At the end of pretrain-
ing, the system could at least orient the hand in the correct
direction to make finger or palm contact with the object at
various locations and orientations (Fig. 7), similar to the
automatic wrist orienting mechanism used in some ILGM
simulations. This period of training therefore corresponds to
infant development from 7 to 9 months where infants learn to
pre-orient their wrist in response to an object’s affordances
(Morrongiello and Rocca 1989; Witherington 2005).

2.8.3 Grasp training

After pretraining, the system was trained for 10,000 trials
with different objects at random locations and orientations.
The object type, position, and orientation were changed every
6 trials since each trial lasted 5s and infants will repeatedly
reach to anovel object for at least 30 s before habituation (Von

Fig. 7 Examples of two successful reaches in the wrist rotation pre-
training stage. Note the rotation of the wrist which orients the palm
toward the object

Hofsten and Spelke 1985). During these training trials, only
stable grasps were positively reinforced and all modifiable
connection weights (dashed arrows in Fig. 4) were subject to
learning.

3 Results

After training, the model was able to generate stable grasps
of each object type at various locations and orientations.
The representation in AIP allowed the model to generalize
across object properties enough to successfully grasp objects
in novel configurations in a few attempts. Here, we demon-
strate the ability of the model to generate successful grasps,
analyze the learned representations in AIP, and generate pre-
dictions for future experiments.

3.1 AIP representation

Each object at each location and orientation in the train-
ing set elicited a slightly different activation pattern in the
cIPS and V6A/MIP populations. However after pretraining
AIP, objects with similar features elicited similar, overlap-
ping, patterns of activation in this region (Fig. 8). This is
an inherent property of SOMs and is what allows the model
to successfully grasp novel objects in familiar locations and
orientations (see Grasp training, below).

Murata et al. (2000) tested the response of AIP neurons to
the sight of various types of objects and found that a high pro-
portion of visually responsive AIP neurons were highly shape
selective, responding strongly to one particular object shape
and weakly to all others. They used multidimensional scaling
(MDS) to look at how moderately object-selective neurons
encode the similarity of objects. MDS is a method of reduc-
ing a high-dimensional input space into a lower-dimensional
space while preserving topological relations between vec-
tors. It was found that moderately object-selective visually
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Fig. 8 AIP activation after pretraining for different objects in various locations and orientations. Each panel shows a third-person view (left) and

AIP activation (right)

responsive AIP neurons respond to common combinations of
geometric features shared by similar objects such as shape,
size, and/or orientation. However, note that the objects used
in this experiment were not natural, complex objects, but geo-
metric primitives. We suggest that AIP codes combinations
of features of object components and that given a complex
object, AIP neurons selective for features of each of its com-
ponents will be activated.

We did not include any explicit encoding of object shape
in the inputs to AIP (although the CYL and RECT popu-
lations selectively respond to features of particularly shaped
objects). However, we found that after training AIP contained
a mixture of highly, moderately, and weakly shape-selective
neurons (Fig. 9). To characterize a neuron’s object prefer-
ence, we used the same technique as Raos et al. (2006) where
the object specificity of a neuron is defined as a preference
index (PI) :

e
Pl = \eet/
n—1

where n is the number of object shapes tested, r; is the mean
activity of the neuron for objects with shape i, and rprer is
the mean activity for the preferred object shape in the current
epoch. This measure can range from 0 to 1, with 0 meaning
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the neuron responds equally to all object shapes and 1 indi-
cating activity for only one shape. We classified neurons as
highly shape selective if they had a PI greater than .75, mod-
erately selective if they had a PI between .25 and .75, and
non-shape selective if they had a PI less than .25. The PI of
each neuron was evaluated in blocks of 500 trials throughout
the entire training period.

We found that at the start of training, all AIP neurons were
moderately shape selective (Fig. 9b), responding to combina-
tions of features such as size and orientation. After about 500
trials, a small amount of neurons became non-shape selective
and simply responded to the presence of any object shape.
By the end of the AIP pretraining period, nearly 80% of
AIP neurons were highly shape selective, some reaching a
maximum PI near 1.0, indicating they only responded to spe-
cific combinations of features that signaled a particular object
shape. This selectivity was maintained throughout the entire
training period, even after the model began to attempt grasps.

At the end of training, we computed the PI for each AIP
neuron for object shape, shoulder-centered direction (¢s, 65),
orientation (oy, 0y, 07), and size (ox, 0y, 0;). The PI for
each AIP neuron for each object feature is shown in Fig.
10. A significant portion of AIP neurons were moderately
selective for object shape, position, orientation, and size.
Each AIP neuron responded to a combination of these object
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Fig. 9 a Object shape (a)
specificity statistics for the AIP 1.0 e —— - —
population during training (solid /
maximum PI, dashed mean PI, . 08
dotted minimum PI). b 1)
Numbers of highly (solid), £ 0.6
moderately (dashed), and non- 3
(dotted) shape-specific neurons §
throughout training o 04

2

& 0.2

........

Training Trial

shape

10 20 30 40 10 20 30 40

oy

10 20 30 40

AIP Neuron

10 20 30 40
AIP Neuron

Fig. 10 Preference index (PI) for each AIP neuron for different object
features after training. a Shape, b shoulder-centered direction ¢y, ¢
shoulder-centered direction 6, d orientation, oy, € orientation, oy, f
orientation o, g size, sy, h size, sy, i size, s,

features. We fitted the activity of each AIP neuron to a lin-
ear model using the z-scored value of each object feature
as independent variables. The coefficients for each variable
for all AIP neurons are shown in Fig. 11. While many neu-
rons are highly selective for the object shape, neurons within
those populations preferentially respond to a combination of
different orientations, positions, and sizes.

We tested the ability of AIP representations to encode
different object orientations and positions by presenting the
model with a cylinder of a given size at various orientations
and positions (Fig. 12). In all trials, the cylinder elicited a
similar pattern of activation in AIP, but certain cells were
modulated by the orientation and/or position of the object.
The AIP module therefore represented not only the grasp
affordance represented by the object (a power grasp in this
case), but also the metric information needed to parameterize
the grasp according to the object’s position and orientation.
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—————— 100
—~ 80
S
2 60
o
3
[0}
Z 40
o
<<
20
4,000 6,000 8,600 10,000 2,000 4,000 6,000 8,000 10,000
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Fig. 11 Value of each fitted linear coefficient for each AIP neuron after
training. a Shape, b shoulder-centered direction g, ¢ shoulder-centered
direction 6, d orientation, o,, e orientation, oy, f orientation o, g size,
sy, hsize, sy, i size, s,

3.2 Grasp training

For each object shape and configuration, the model repli-
cated the results of the ILGM, which used a simplified AIP
model that signaled the presence, location, or orientation of
an object in different simulations. As in ILGM, the learned
connection weights between the AIP module and the pre-
motor populations encoded grasp parameters most likely to
result in the performance of a stable grasp. The model was
able to generate stable grasps of each object tested in vari-
ous positions with different orientations (Figs. 13, 15, see
Online Resources 2—6 for videos of sample grasps), suc-
cessfully grasping the presented object in nearly 70 % of the
trials after 5000 training trials (Fig. 14). Halfway through
the training period, we introduced a set of novel object trials,
presenting the model with objects having the same shapes as
objects it had seen before, but in new positions, orientations,
and having different sizes. Performance initially decreased
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(b)

(d)

AIP Firing Rate

AIP Neuron
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Fig. 12 Response of each AIP neuron after training to a cylinder of the same size presented at different orientations and positions

(a)

~

11 4

(b)

1)

Fig. 13 Stable power grasps generated by the model of different objects with various positions and orientations. Each panel shows a third-person
view on the /eft and the model’s first-person view on the right. a Sphere, b rectangular prism, ¢ cylinder, d plate

to approximately 50 % at 6000 trials, but then increased to
nearly 80 % after 8000 trials.

ILGM showed that even without hand preshaping and vir-
tual finger enclosure, precision pinches could result from
trial-and-error reinforcement learning, although not often.
We have replicated this result, but because the more real-
istic physics simulator we used is much less forgiving in
evaluating grasp stability, we had to build the ability to pre-
shape the hand for a precision pinch into the model. In spite
of this limitation, we have shown that it is possible to learn
appropriate affordance representations and motor parameters
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for precision pinches without feedback-based control. We
therefore believe that the development of precision pinching
coincides with the development of feedback-based, skilled
grasping (see Sect. 4). A sequence of frames from a preci-
sion pinch generated by the model during training is shown in
Fig. 15 (see Online Resource 2 for the video). Hand preshap-
ing and wrist rotation begins shortly after object presentation
(Fig. 15¢), and the enclosure phase is triggered once the grasp
reaches its maximal aperture (Fig. 15d). The forefinger first
makes contact with the object (Fig. 15f), and the thumb
contacts the other side of the object’s surface (Fig. 15g).
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Fig. 14 Percentage of trials resulting in a stable grasp during training

The opposition axis between the thumb and forefinger was
aligned close enough to stabilize the object, aided by friction,
and the resulting grasp is judged as stable (Fig. 15h).

As demonstrated above, the learned AIP representation
preserved those features represented in cIPS and V6A/MIP
that are essential for programming the grasp, allowing the
model to successfully grasp objects in various orientations
and positions. Activity in cIPS, AIP, and premotor cortex is
shown in Fig. 16 during two grasps of the same size cylinder
at the same location (sometimes the object is displaced by the
hand after grasping), but with different orientations. The cIPS
AOS cylinder population encodes the three-dimensional ori-
entation of the main axis of the cylinder as a two-dimensional
population code. Based on this representation and those in the
other cIPS populations and V6A/MIP, the AIP module forms
a distributed representation of combinations of the object’s
features that are important for grasping. AIP neurons selec-
tive for the object shape and/or position are active during
each grasp trial, resulting in highly similar patterns of activ-
ity in AIP. However, there are some AIP neurons selective for
the orientation of the object, and this causes the patterns of

(a (b)

AIP activity to be slightly different depending on the object’s
orientation in each trial. These neurons bias motor parame-
ter selection in the premotor populations, resulting in the
selection of parameters appropriate for the current object’s
orientation. The differences in F2—F5 activity encode the dif-
ferent wrist rotations that must be used to successfully grasp
the cylinder at each orientation.

In this model, F5 neurons encode grasp types, since their
activity is decoded in order to perform the grasp. In contrast,
AIP neurons come to represent affordances—combinations
of object features that signal the possibility for grasping. A
comparison of AIP and F5 activity while grasping the same
object with different types of grasps is shown in Fig. 17. Each
row shows AIP and F5 activity while grasping the same object
with three different types of grasps. The AIP representation
is almost exactly the same during each grasp, but the F5
activation patterns are completely different. AIP neurons in
this model therefore do not specify the type of grasp, but
represent an affordance that can be acted on using several
types of grasps.

Because of its learned affordance representation, ILGA
can generalize learned grasp plans to novel objects. After
training, the model was presented with a novel object at
a similar orientation and position to those in the training
set. Figure 18a shows the input to each premotor popula-
tion during the first trial with the novel object, and Fig. 18b
shows the resulting premotor population activity in that trial.
The circles denote regions of grasp parameter space where
the model was biased toward selecting grasp parameters
that had proved successful with similar objects during train-
ing. These parameters resulted in successful grasps of the
novel object in some proportion of trials, but after 35 trials,
a better strategy was found, demonstrated by the shifts in
the peaks of input activity to each premotor population in
Fig. 18c.

(c) (d)

1 1 N I |68 =3
(e) (f) (9) (h)
_ \ ; \
A‘V

Fig. 15 A series of frames showing the progression of a precision pinch of a small cube generated by the model. After the go signal (b), hand
preshaping and wrist rotation has begun (¢). The enclose phase is triggered in d and the object is first contacted in f
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Fig. 16 Top row of each panel shows (from left to right) fir-
ing rates of slices of the cIPS AOS cylinder population at x =
—n/9, /9, /3, 57/9 and the AIP population. The bottom row of
each panel shows (from left to right) firing rates of slices of the F2/F5
population at x = —m/9, 7/9, w/3, 57/9 and the resulting grasp. a

4 Discussion

The main computational ingredients in ILGA and their
contributions to the main results of our simulations are sum-
marized in Table 1. We have shown not only that the current
model explains the development of F5 canonical neurons
controlling grasping, as did ILGM, but that it also gives an
account of the development of visual neurons in area AIP.
In our simulations, highly shape-specific neurons developed
in this region as the result of unsupervised learning before
grasps were even attempted. This specificity was maintained
even as grasps were performed. The result was a mixture of
AIP neurons that only fire for particular shapes and those
that are activated by combinations of features representing
grasp affordances. This allows the model to respond to novel
objects in positions and orientations similar to ones it has
already successfully grasped.

Parietal representations in both ILGA and its precursor,
ILGM, use population codes to represent object features,
but ILGA represents multiple object features at once and
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Network activity and resulting grasp in response to a cylinder rotated
60 degrees about the x axis. b Network activity and resulting grasp in
response to a cylinder rotated 120 degrees about the x-axis. Activity in
other populations was not significantly different during each grasp and
is therefore not shown

combines them into a representation of a grasp affordance.
ILGM’s premotor module uses a probabilistic coding fol-
lowed by a rewriting of activity as a population code, while
ILGA uses a more realistic noisy WTA process. In ILGM
the wrist rotation, object-centered reach offset and hand
enclosure rate are selected by the premotor module, but
ILGA comes closer to FARS in including the grasp type and
maximum aperture in addition to wrist rotation and object-
centered reach offset.

Oztop et al. (2006) presented a model of AIP related
to ILGM and ILGA. Like ILGA, this model used a SOM
to model visual-dominant AIP neurons. The basic result of
this model was the demonstration of how AIP could extract
higher-level information from simpler visual inputs and map
them onto hand postures resulting in stable grasps. In this
sense, the results of ILGA are similar, showing how AIP can
combine simpler visual input into higher-level affordance
representations and map them onto motor parameters that
will result in stable grasps. However, Oztop et al. (2006) used
backpropagation, a biologically implausible learning rule, to



Biol Cybern (2015) 109:639-669

661

0.5

o2
4
3}

0.5

o2
4
3

1 pinch =
power =
tripod =

AIP Firing Rate
F5 Firing Rate
o
(4]

o2

0.5 1
Max Aperture

Fig. 17 Firing rates of neurons in AIP (left column) and F5 (middle
column) while grasping a plate with a tripod grasp (a), power grasp (b),
and precision pinch (c¢)

shape the connections between AIP and F5, while ILGA uses
reinforcement learning. The inputs and outputs to Oztop et
al.’s (2006) model are also less biologically plausible than
in ILGA. In their model, the input to AIP was a depth map
and the F5 representation was set of hand joint angles. This is
inconsistent with the neurophysiological data showing repre-
sentation of object geometric properties in cIPS (Sakata et al.
1998) and its projection to AIP (Nakamura et al. 2001), as

well as data showing that F5 neurons are tuned to a particular
grasp rather than the specific posture of the hand at any point
during the grasp (Umilta et al. 2007).

4.1 Skilled grasping

Normally, grasping is controlled in a feedforward manner
(Santello et al. 2002; Winges et al. 2003); however, sev-
eral studies have found online feedback-based corrections
of the hand shape relative to the object in the later part of
the movement (Schettino et al. 2003; Nataraj et al. 2014)
especially during object perturbations (Gritsenko et al. 2009)
and as a compensatory strategy after stroke (Raghavan et al.
2010). This indicates that humans are capable of both types
of grasp control and can switch between them based on task
demands and availability of sensory information (Hoff and
Arbib 1993; Gritsenko et al. 2009). Indeed, transient inacti-
vation of human area AIP using TMS causes deficits in error
correction during online control of grasping (Tunik et al.
2005). While the current model accounts for the development
of visually dominant AIP neurons, it does not include motor
and visuomotor neurons. Itis thought that these neurons com-
plete a feedback loop between AIP and area F5 that is used to
perform feedback-based control of grasping and other man-
ual actions. In order for this model of open loop control of
infant grasping to include feedback control to guide the fin-
gertips to the object’s surface, two extensions are required.
The first is a region to represent patches of an object’s surface
to serve as targets to bring the fingertips to, and the second is
an inverse kinematics model of the hand and wrist to bring the
desired virtual fingers to these targets. Introduction of these
features to the model would both increase the granularity of

(a) 50 WRx WRy WRz F5-Power F7Az F7El F7Rad
25 m
. 7 N @
-1/6 /4 -1/6 /2 -n/12 /18 0 10 2n 0 21 0.2 0.5
(b)
— Preparation
— Execution
0
-1/6 /4 -1/6 /2 -m/12 /18 0 10 2n 0 21 0.2 0.5
(o
(c),
0 g ; b M @ .
-1/6 /4 -1/6 /2 -n/12 /18 0 10 21 0 21 0.2 0.5

Fig. 18 An example of the generalization abilities of ILGA. a Input to
each premotor population during the first trial with a novel object. The
circles highlight biases based on previous successful grasps of similar

objects. b Premotor signal and execution subpopulation activity on the
first trial with the novel object. ¢ Input to each premotor population after
35 trials with the novel object
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Table 1 Summary of ILGA components and results

Component

Result

Object feature population codes

Self-organizing map (SOM)

Modulation of SOM learning rate by reinforcement

Dynamic neural fields (DNFs)
Noise in DNF activity

Learned connection weights between AIP and premotor DNFs

Learned connection weights between premotor DNFs

Fixed connection weights between V6a/MIP and premotor

Dynamic movement primitives (DMPs)

Aids generalization between objects with slightly different features
(i.e., objects of a similar size or orientation)

Aids generalization between objects with similar combinations of
features and novel objects with feature combinations similar to those
seen before

Causes SOM to preferentially represent feature combinations of
successfully grasped objects

Allow selection of motor parameters based on input strength
Promotes exploration of parameter space

Bias the selection of reach and grasp parameters to successfully grasp
object

Bias the selection of reach and grasp parameters that depend on values
of other parameters (i.e., the appropriate wrist rotation depends on
the chosen reach offset)

Allow accurate reaches. Future versions could change with learning to
simulate reach learning

Implement reach trajectory planning in a way that is easily extended to
handle more complex trajectories

object representation and improve fine control of the hand,
expanding the range of possible grasp affordances that can
be extracted and acted upon.

Since the orientation of the surface patches matters in
programming a grasp, a candidate region for the object
surface patch representation would be cIPS since surface-
orientation-selective cells have been found there (Sakata et al.
1997). To make the target surface representation invariant to
object location, it may be represented in an object-centered
reference frame. Although such an organization has not been
reported in cIPS, this may be due to a lack of experiments
using eye tracking to control for gaze position with respect to
the center of the object. A potential problem with this idea is
that cIPS neurons have only been found to respond to visible
surfaces, whereas fingertips may potentially contact a surface
on the opposite side of an object during a grasp. The location
of potential target surfaces on the opposite side of a visible
object must therefore be inferred from the 2 1/2-dimensional
sketch of the object provided by cIPS.

The current model uses an inverse kinematics model of the
arm to convert target wrist locations into target joint angles
for the shoulder and elbow. In order to perform more pre-
cise and dextrous grasp and manipulation tasks, the extended
model must include an inverse kinematics model of the arm
and hand that can convert target locations for any combina-
tion of virtual fingers into target joint angles for the shoulder,
elbow, wrist, thumb, and finger joints. ILGA uses the pseudo-
inverse of the Jacobian matrix for computing inverse reach
kinematics, requiring a 3 x 4 matrix (4 controlled degrees
of freedom, 3-dimensional wrist position). If the extended
model used the same method, this would require multiple

@ Springer

Jacobian matrices, one for each combination of virtual fingers
and mapping to real fingers. Assuming that only two fingers
will contact the object, each Jacobian would therefore be a
6 x 22 matrix (22 controlled DOFs, and two 3-dimensional
virtual finger positions). Since multiple combinations of vir-
tual fingers, mappings to real fingers, and contact points are
possible, this method may not be tractable.

A model like ILGA could provide the scaffolding for such
amodel by generating arange of stable grasps that can be used
to learn the prediction of unseen target surfaces. Given a sta-
ble grasp, the haptic feedback from finger and hand contacts
with the object can be used to calculate an object-centered
representation of the location of these contact points using
the location of the object (represented in VOA/MIP) and the
posture of the harm and hand. These contact point locations
could then be used as a training signal for a network that pre-
dicts the location of target surfaces given the representation
of visible surfaces in cIPS. Such a model would then develop
AIP cells that are responsive to the affordances characterized
by these combinations of surface patches. Computing the
positions of hand—object contact points given the arm/hand
posture requires a forward kinematics model of the entire
arm and hand including shoulder, elbow, wrist, thumb, and
finger joints.

The extended model therefore requires a set of
inverse/forward model pairs for the entire arm/hand. The
models could be learned using multiple model-based rein-
forcement learning (MMRL, Doya et al. 2002) during the
ILGA training period. MMRL is a method of using rein-
forcement learning and predictor error to learn multiple
inverse/forward model pairs, and has been formulated in
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both discrete and continuous time and state cases. This
architecture is composed of multiple modules containing
inverse/forward model pairs that compete to learn new tasks,
with certain modules becoming specialized for different tasks
with repeated training. These models could be learned offline
while ILGA training progresses, until the prediction errors
of the forward models become small enough to allow their
associated inverse models to control the arm and hand. At
this point, the forward model pairs would continue to com-
pete for control of the arm and hand and become specialized
for controlling different types of grasps.

4.2 Context-dependent grasps

At least two studies show that infants 1-2 years old selec-
tively modify their actions based on future planned actions.
McCarty et al. (1999) demonstrated that 9- and 14-month-old
infants grasp a spoon with their preferred hand, regardless of
its orientation and whether the next action was to bring the
spoon to the mouth or another location. At 19 months, infants
had learned to coordinate hand selection with the action goal
and the spoon’s orientation in order to facilitate the smooth
execution of the next action. Claxton et al. (2003) measured
the arm kinematics of 10-month-old infants reaching for a
ball and then either throwing it or fitting it down a tube. They
found that the reach to the ball was faster if they then intend
to throw it. Both of these studies suggest that infants pre-
plan segments of compound actions at some level. This point
brings to light a shortcoming in both the ILGM and the ILGA
models. Both of these models use some evaluation of the sta-
bility of the grasp as the metric for reinforcement. A more
realistic model would use success in a subsequent action with
the object such as throwing or placing as the grasp reinforce-
ment criterion. This would require some representation of the
task or goal with the ability to bias selection of grasp targets
and affordance representations to perform grasps appropriate
for the planned action.

In the original FARS model, working memory and task-
specific associations in prefrontal cortex bias grasp execution
by modulating the grasp selection in F5 such that those grasps
appropriate for the current task are selected. Using synthetic
brain imaging, a method to compare global model activity
with PET or fMRI data, Arbib et al. (2002) showed that a
projection from PFC to AIP rather than F5 better explained
human PET data. A projection from PFC to AIP had not been
reported at that time, but this prediction was later validated
both anatomically (Borra et al. 2007) and neurophysiologi-
cally (Baumann et al. 2009). This could be included in ILGA
by the addition of a prefrontal cortex module encoding the
task context with projections to the AIP module that are also
modifiable through reinforcement. Thus, task representations
in prefrontal cortex would presumably become associated
with the affordances and actions that lead to reward. Such

a simulation could shed insight into the interplay between
cognitive and motor development by examining the oper-
ation of the model without or without a pretrained motor
system or prefrontal cortex. It could be that associative sig-
nals from an already trained prefrontal cortex could interfere
with the normal development of the parieto-premotor con-
nection weights.

The issue of context-dependent grasps also requires a
more sophisticated mechanism for representing multiple
affordances. We suggest that the dorsal visual stream ana-
lyzes the affordances of the components of complex objects,
but in general, objects are not made of spheres and rectan-
gular solids. Rather, they may have diverse shapes, yet the
developing brain learns to embed an opposition space in them
that affords a stable grasp. There is additionally a binding
problem here if there are multiple affordances, which may
require encoding a “focus of attention” to give an approxi-
mate localization of the affordance with learning refining this
to the localization of the grasp axis to guide the grasp-plan-
specific guidance of reaching.

4.3 Predictions

Using biologically plausible learning rules and inputs, we
have shown that ILGA can learn to represent affordances for
grasping and to select motor parameters appropriate to act on
them. This model makes several testable predictions concern-
ing (a) the encoding of object features in area AIP, (b) shifts
in AIP activation during learning, and (c) the existence of
an object-centered spatial representation for reach-to-grasp
movements.

ILGA reproduces experimental data showing that many
AIP neurons are moderately object shape selective, show-
ing responses to multiple objects (Murata et al. 2000). Since
ILGA is a developmental model, it allows us to go beyond
available experimental data and predict that AIP neurons
are initially selective for various object features and become
shape selective early in development, before grasping has
developed. In ILGA, the global reinforcement signal elicited
by successful grasps modulates the rate of unsupervised
learning occurring in AIP. This causes neurons in AIP to pref-
erentially encode features of objects that can be successfully
grasped, resulting in a representation of grasp affordances
rather than strictly geometric features. To our knowledge,
no studies have looked for shifts in AIP activation during the
course of grasp learning. This model predicts that if grasps of
certain objects are disrupted (through local muscimol injec-
tion or physical perturbation), AIP cell selectivity will shift,
with more cortical representation eventually given to the
features of other objects that are successfully grasped. For
example, the selectivity of any AIP neurons that prefer round,
elongated objects should shift over many trials if grasps of
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cylinders are repeatedly disrupted by spatial perturbing the
target object.

While we are not aware of any data showing the existence
of an object-centered reference frame for reaching, we found
it necessary to use such a representation in order to plan the
direction of the hand’s approach to the object. One possible
reason that such a representation has not been found is that
most experiments use either a pure reaching, wrist rotation,
or naturalistic grasping task. Once ILGA has been trained,
the reach offset direction is highly correlated with the wrist
rotation so that the hand will approach the object with the
correct orientation for grasping. Therefore, selectivity for
object-centered offset directions cannot be experimentally
demonstrated without trials in which the offset direction is
held constant while the wrist rotation is varied. This is similar
to the situation in the interpretation of motor cortex activ-
ity, where it has been shown that intrinsic and extrinsic and
kinematic and kinetic variables are highly correlated dur-
ing a commonly used experimental reaching task (Chan and
Moran 2006). In order to determine whether a region encodes
the object-centered reach offset independent of wrist rota-
tion, a reaching task must be used in which the subject must
reach to a target object from different directions with varying
wrist orientations. On the basis of its object-centered repre-
sentation for saccades, and arm-related activity in its ventral
portion, we predict an object-centered spatial representation
in ventral F7.

4.4 Related models

Most related grasping models focus on learning inverse kine-
matics for the hand, selecting contact points on the object’s
surface, and developing feedback-based control of the hand.
Most models plan the grasp in terms of kinematics, but at
least one model stresses control of grasp forces. While many
models use trial-and-error learning, they are not developmen-
tal models like ILGM and ILGA in the sense that they begin
learning at a phase corresponding to grasping development in
infants 9 months and older. Some models are based on neuro-
physiological data, but many are built purely using machine
learning and robotics techniques.

Two models that stress learning inverse kinematics trans-
formations for the hand are those of Molina-Vilaplana et al.
(2007), Rezzoug and Gorce (2003) and Gorce and Rezzoug
(2004). Molina-Vilaplana et al.’s (2007) model first learns the
inverse kinematics functions of the fingers and then learns to
associate object properties with grasp postures (a function
they relate to AIP/F5 functionality). The model first learns
inverse kinematics for the thumb, index, and middle fingers
so that it knows the relationships between finger motor com-
mands and their sensory consequences (proprioceptive and
visual), and then learns to associate object features with grasp
postures with a local network called GRASP. The input to
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GRASP is a 7-dimensional vector encoding object shape
(cube, sphere, or cylinder), object dimensions, and whether
to grasp with two or three fingers. Similarly, Rezzoug and
Gorce (Rezzoug and Gorce 2003; Goree and Rezzoug 2004)
have a model with a modular architecture that first learns
inverse kinematics for the fingers using backpropagation and
then learns hand configuration for grasping using reinforce-
ment. The Fingers Configuration Neural Network (FCNN)
learns finger postures given the desired position of the fin-
gertip.

Several models plan grasps in terms of finger contact
points on the object. Molina-Vilaplana et al. (2007) use
heuristics to select contact points on the object surface for
the fingers. Rezzoug and Gorce’s (Rezzoug and Gorce 2003;
Gorce and Rezzoug 2004) model uses a Hand Configuration
Neural Network (HCNN) that learns contact locations for
each finger. Kamon et al. (1996) split the problem of grasp
learning into two problems: choosing grasping points and
predicting the quality of the grasp. Each grasp type has a cer-
tain set of location and quality parameters used to select grasp
locations and predict quality, which are supplied beforehand
as task-specific knowledge. Grasp quality is predicted by the
angles between the fingers and the surface normals at the
contact points, and the distance between the opposition axis
and the center of mass. They suggest that the grasp specifi-
cation and evaluation modules run in an alternating manner
until a suitable grasp is selected. Faldella et al. (1993) present
an interesting model where a neural mechanism for matching
object geometry to hand shape interacts with a symbolic rule-
based expert system. The symbolic system performs some
geometric analyses such as identifying curvature type, selects
candidate hand contact positions, identifies symmetric situa-
tions (to reduce neural module input), and ranks the selected
grasp according to task constraints. Multilayer perceptrons
trained using backpropagation were used to determine poten-
tial grasps based on geometric information.

For Grupen and Coelho (2000), grasping is primarily a
force domain task, emphasizing force closure around an
object over form (of the hand) closure. Their model used
closed loop control, utilizing tactile feedback to reposition
contact forces based on models of interaction between the
contacts and object surface. A Markov decision process
(MDP) framework is used to select a sequence of controllers
to maximize object stability without knowing the object’s
identity, geometry, or pose. This model is complementary to
those that focus on visual-based kinematic grasp planning
in that it learns to use haptic feedback in order to reposition
contact forces to stabilize the object. Including such a mech-
anism in a model like ILGA would increase the number of
successful grasps early in training and may provide a way to
adjust grasp plans that lead to initially unstable grasps that
can be subsequently stabilized with corrective hand move-
ments.
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The Two Route, Prefrontal Instruction, Competition of
Affordances, Language Simulation (TRoPICALS) model is
a neural network model similar to FARS which includes the
influence of the dorsal and ventral stream in affordance selec-
tion and grasp planning (Caligiore et al. 2010). Like ILGA,
TRoPICALS utilizes SOMs, winner-take-all processes, and
a staged learning approach to learn to represent object shapes
and motor parameters appropriate for grasping them. While
ILGA does not include the ventral visual stream, TRoPI-
CALS includes the influence of language and ventral stream
recognition of object identity on affordance selection and
is able to reproduce the pattern of reaction times shown
by human subjects when presented with conflicting grasp
instructions and affordances. However, ILGA uses a more
complex simulation environment, captures the emergence of
affordance representations in AIP, and addresses the linkage
between reaching and grasping in ways that TRoPICALS
does not.

Each of these models addresses some aspect of grasping
that is neglected in this model. In ILGA, only the inverse kine-
matics for the arm is used to plan reaching movements, while
grasping movements are controlled by rotating the wrist and
preshaping then enclosing the fingers. Grasping is controlled
in an open loop manner without a notion of target contact
points on the object surface, and kinetics is handled by PD
controllers that are not concerned with balancing force appli-
cation along an opposition axis. However, ILGA is more
biologically plausible in that it uses neural representations
based on neurophysiological data, modules with connectiv-
ity constrained by anatomical data, and biologically inspired
learning rules. ILGA could be extended to a more complete
model by including aspects of these other models such as
inverse kinematics for the hand and feedback-based grasp
control (described in Skilled grasping, above), using visual
feedback for the control of the hand, and utilizing haptic
feedback for corrective movements.

Integration of ILGA with models of the primate mirror
system could provide the system with a feedback signal
for skilled grasping. The neurons in the AIP module of
ILGA correspond to visual-dominant neurons in monkey
area AIP and project to the FS module, but do not receive
reciprocal connections from F5. In reality, area AIP also
contains neurons classified as visuomotor and motor dom-
inant and receives feedback from F5 (Sakata et al. 1995).
Motor-dominant cells respond during grasping in the light
and the dark, while visual-dominant cells respond only dur-
ing object fixation and grasping in the light and visuomotor
cells respond during object fixation and grasping in the dark
but fire most strongly during grasping in the light. Sakata et al.
(1995) offer a conceptual model of feedback-based grasping
in which F5 canonical neurons provide AIP motor-dominant
neurons with a copy of the grasp motor command, which then
pass this signal to AIP visuomotor neurons which combine

this information with information from AIP visual-dominant
neurons and project back to F5. In this way, if the ongoing
grasp does not match the encoded affordance, the grasp plan
in F5 is modified or aborted. AIP visual-dominant neurons
are classified into object-type neurons that fire during object
fixation, and non-object-type neurons that fire during grasp-
ing in the light but not object fixation and may respond to the
sight of the hand during the grasp. Non-object-type neurons
are seldom mentioned in discussions of AIP, but make up half
of visual-dominant neurons in the region (Sakata et al. 1995).
Interestingly, their existence fits with the hypothesis outlined
by Oztop and Arbib (2002) that FS mirror neurons evolved
to provide visual feedback of the shape of the hand relative
to the object’s affordances. We suggest that non-object-type
AIP neurons obtain their properties by projections from F5
mirror neurons, and that these projections are used for visual
feedback-based control of grasping. It has been shown that
reversible inactivation of F5 mirror neurons by muscimol
injection in the cortical convexity of the arcuate sulcus results
in slower, clumsy grasps (Fogassi et al. 2001), consistent with
the idea of F5 mirror neurons playing a role in providing
visual feedback. Our conceptual model predicts that musci-
mol injection in the cortical convexity of F5 will abolish the
response of non-object-type AIP neurons to the sight of the
grasp.

In addition to reversible inactivation of mirror neurons,
Fogassi et al. (2001) tested the effects of muscimol injection
in the bank of the arcuate sulcus where most F5 canoni-
cal neurons are located. In this case, the hand preshape was
impaired but monkeys were still able to grasp the object by
contacting it and then making appropriate corrective move-
ments using tactile feedback. This seems similar to the
process modeled by Grupen and Coelho (2000) in which
haptic feedback is used to reposition contact forces. The fact
that corrective movements can still be made after F5 inac-
tivation suggests that they are not based on F5 activity and
may be implemented by the direct projection included in the
FARS model from the primary somatosensory area S1 to the
primary motor cortex.

4.4.1 Future directions

ILGA combines grasp learning ability with a mature reach-
ing system that is smooth and accurate. However, in infants,
reaching and grasping develop simultaneously. By allowing
the development of simultaneously maturing reach and grasp
systems to influence each other, future versions of the model
may be able to address data showing how the reach and grasp
movements are coordinated based on the object to be grasped
(Supuk et al. 2005) or the distal goal of the movement (i.e.,
grasping to lift versus to place, Ansuini et al. 2006).

We have used as realistic simulation of the arm, hand,
and object as possible, within the limitations of our simu-
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lation engine, in order to facilitate translation of ILGA to
a robotic platform. However, several issues would need to
be addressed for this transition. To simplify the task, we did
not include gravity, so that objects had mass, but no weight.
This required the model to preshape the hand and enclose
it around the object to stabilize it, but did not require the
arm to counteract the weight of the object. Additionally, we
did not simulate objects made of different materials. All of
our objects had the same friction coefficient and therefore a
robotic implementation of ILGA would require the computa-
tion of the appropriate contact forces for objects of different
types.

ILGA represents reach and grasp rotation parameters
using Euler angles. While this representation is more com-
pact than rotation matrices, for example, it suffers from
several problems such as composition difficulty (Pastor and
Righetti 2011) and singularities which can cause gimbal lock
(Feix and Romero 2013). Quaternions use one more para-
meter than Euclidean angles, but do not suffer from these
problems while still having lower dimensionality than rota-
tion matrices (Feix and Romero 2013). It is not known what
representation the brain uses to represent joint rotation, but
future versions of ILGA could explore the use of quaternion
representations to avoid the issues caused by Euler angles
and reduce dimensionality.

5 Conclusion

ILGA is the only developmental model of grasping to date
that simultaneously learns to extract affordances from object
features and select motor parameters to successfully grasp
them. We have shown that the model develops distributed
representations in area AIP similar to those reported in the
experimental literature and can use these representations to
generalize grasp plans to objects of varying sizes and at differ-
ent orientations and positions. Finally, we presented several
neurophysiologically testable predictions made by the model
and discussed ways in which it could be extended to handle
context-dependent grasping of complex objects and skilled
manipulation.
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